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ABSTRACT

Scoliosis is characterized by an abnormal curvature of the spine. hn order to evaluate
the progression of scoliosis or any potential treatment of ity a method of measaring,
the severity of the deformity is needed. Digital representations of the hack surlaces of
scoliosis patients are created using a sterco camera system. This data is transtformed
into a regularized depth ficld (a Monge pateh) Tor analysis. This thesis presents
an evaluation technique based on shape analysis. Shape representations are liest
constructed to segment the back surface into subsets of homogencous regions, 'hese
shape regions are then quantized into single values through several different sehiemes,
It is these final values that can be nsed to compare the changes to i surface over Lime
as caused by deformity or the clfects due to treatment. The measurements meet the
requirements that they be invariant to changes in rotation, translation and scaling of

the surface.
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Chapter 1

Introduction

1.1 Description of scoliosis

The goal of this work was to provide a means by which clinical technicians could
monitor the progress of patients afflicted with scoliosis. In order to understand the
requirements of a system which could achieve this goal, an understanding of the
disease itself is needed.

Scoliosis is a spinal deformity that mostly affects otherwise healthy adolescent
females. The abnormal curvature of the spine is usually coupled with axial rotation
of the vertebra. Visible characteristics of the deformity usually include asymmetrical
clevations of the shoulders and hips, a twisting of the trunk and a prominence of
one of the shoulder blades. Treatment for scoliosis can vary from exercise therapy
to corrective braces to surgery in the extreme cases. Early detection of scoliosis is
desireable since treatment can help to prevent the possible deterioration of the spine

and the need for surgical intervention. Scoliosis is most often detected in adolescent



females when they are going through a rapid growth spurt. For those that have been
diagnosed as having scoliosis. progress is monitored by examining the patient’s back
postures and by examining x-ray representations of the spine. If the spinal curvature
is worsening, alternate treatments are prescribed. The Scoliosis Research Society has

specified curvature angles for use as references when preseribing tree nent:
e <20° normal spinal variation; treatment not required
e >20°and <50°, non-surgical treatment required
e >50°, surgical correction required

Generally, treatment is not indicated unless the child is at a very high risk of pro-
gression and the curve is higher than 25°. Rescarch at the Glenrose Rehabilitation
Hospital has focused on a non-invasive measurement of the back as a possible alter-

native to frequent spinal x-ray analysis.

1.2 Clinical application

To evaluate the progression of scoliosis or any treatment of it, a characterization of
the back surface is needed. Any proposed method to obtain this information should
be non-invasive, repeatable, practicable, and accurate. The technique used at the
Glenrose hospital entails acquiring a digital image of the scoliotic back through the
use of two CCD television cameras [28]. The images from the two cameras are
correlated to provide perspective information aud consequently depth. The three-

dimensional data is then reconstructed into a representation of the back surface [31].



I'he usefulness of this data as a imeans by which the scoliosis can be monitored depends
on how it is evaluated.

The raw data obtained from the measuring instrumentation will in most cases be
expressed relative to some arbitrary point. To aid in interpretation, a transformation
to an alternate frame of reference may be performed. The problem with using an
cxternal reference frame for desceribing the data is that patient posture and position
Lecome a primary factor to the reproducibility of the data. Attempts have been made
to standardize the patient posture so as to minimize positional variations [41]. Also,
the addition of positional guides to standardize posture have been used. The influence
that these positioning constraints exert on the patient’s natural posture may hinder
the examination of the abnormal spinal curvature. Since reproducibility is desired, the
characterization method should avoid using an absolute reference coordinate frame
and should attempt to base measurements on local changes and relative values. A
measure of invariant characteristics is needed. Invariant characteristics are those
attributes ol a surface which do not vary with arbitrary changes in parameterization,
translation, or rotation. The shape and scale of a surface are invariant characteristics
that can be used to uniquely describe a surface. Since patient growth is another factor
to be considered when attempting to monitor scoliosis by examining back surfaces,
the size of the patient must be accomodated to allow for comparisons. Given this
need to be scale independent, only the shape property of a surface can be used as the
required invariant characteristic.

Asymmetry and complexity of back shape in scoliosis prevent a simple character-



ization by a few parameters. One rather has to study the whole back surface and
take into account a varicty of different structures, Both ISIS [38] and AUSCAN [32]
quantify the curvature of the back in terms of various angles, displacements and dis-
tances. Surface shape is, however, weakly related to the internal spinal alignment [23).
A person may have considerable surface deformity with a relatively mild curvature of
the spine while another person may have mild asymmetry of the trunk with a large
spinal curvature. Change in cither the internal spinal alignment or surface deformity
is of particular concern as one may cither lead or lag the other. Attemipts to relate
surface shape to spinal orientation will not be done in this work. Presently, qualitative
analysis of a scoliotic back can be performed by viewing the re-constructed back sur-
face. The goal of this work is to provide quantitative measures by which the scoliosis
can be monitored. These quantitative results will be determined by segementing the
back into a few homogencous regions that share a similar shape. Fach shape region
will have parameters which can be used to monitor changes to the region.

The shape of a surface can be expressed mathematically as a function of surface
curvature. Surface curvature has the benefit of being independent of coordinate rep-
resentation and thus is not susceptible to an ill- defined reference frame. The use
of surface curvature information has been used as a tool for scoliosis assessment, by
Frobin, Hierholzer and Drerup [40]. However, their use was strictly limited to a

qualitative observation of the curvature segmented back image.



1.3 Objective

T'he goal of this rescarch was to provide various measures to aid in the determination
of the amount of change that has occurred on a uniformly sampled range data set.
Since surface data of scoliotic trunks could be acquired at clinics at the Glenrose
Hospital, the system was designed to satisfy three clincal constraints. The developed
system must be sensitive enough to detect clinically relevant changes in shape and
be casy to interpret. The measuring techniques must be robust so that changes in
the orientation of the patient during data acquistion does not significantly affect the
resultant information. Also, the analysis of the back surface changes should not be

affected by possible growth of the patient between visits.

1.4 Overview

Chapter 2 contains a literature review on the work that has been done in areas appli-
cable to this thesis. Chapter 3 presents the theory of curvature. Surface curvature is
an important property and it is necessary to understand the mathematics upon which
it is based since it is a fundamental part of the back shape analysis. Also discussed
in this chapter are methods for determining curvature with a description of two tech-
niques for determining the quantity using discrete data. The first technique is the
directional derivative approach [40],[17],[13] and the second technique is the Gaussian
convolution approach [44],[26],(25],[21] and [24]. Implementation considerations will

then be analyzed to determine how to produce the best results. Chapter 4 presents



various techniques to represent shape using curvature information. Segimenting the
back surface into smaller regions is then discussed as a means to simplify the analysis
of the scoliotic deformity, In chaptor d formulae are introduced to provide measiive
able parameters for the shape regions, The results of testing these Tormulae with data
will be presented and then analyzed in chapter 6. 'The tests ensure that the elinical
requirements of invariance to rotation and scaling are met. In chapter 7 a conelu
sion is given which commeaents on the results and summarizes the eflectiveness ol the
different techniques used to produce the shape measurements, Future enhancements

and areas for further rescarch related to this thesis are provided in chapter 8,

0



Chapter 2

Literature Review

2.1 Measuring Spinal Deformity

I'here have been many attempts at finding clinically relevent measures of spinal de-
formity. Of the non-invasive techniques the most commonly mentioned are the ISIS
[38],[22] and AUSCAN [32] systems. The ISIS system uses a projector to cast a
plane of light onto a patient’s back at specific vertical locations. These locations
are manually marked on the back with adhesive markers prior to data collection. A
camera transmits the view of cach light plane to a computer for capture and storage.
Ilach projected plane of light appears as a curved line from the camera’s viewpoint.
Together the lines produce a rough approximation of the back surface. Angles and
distances are measured from the various curves to provide diagnostic information.
The AUSCAN system captures the entire patient back surface with a single video im-
age and then processes this image. Processing of the image consists of detecting the

small, reflective, cylindrical adhesives which have been place at various points on the



patient’s back. These markers ave wsually placed in pairs so as to be able to measure
the body symmetries, Measurements consist mostly of angles associated with these
svimetry axes, Some of the problems associated with these systems are that the
patient’s posture must be controlled and there is an inherent error introduceed witly
the manual placement of the veference markers and patient movement it more than
one video frame is required. Also, sinee acquisition process is labor intensive, it is
very time cousuning,

Other rescarchers have tried to make the connection between features on the
back and the underlying skeletal stracture [ V3L[33][ B3] 19)39]17]. One of the
measurements made by Stokes [19] was a tangential angle of the back surface at cach
vertebrac. Around the same time Drerup [1] examined tangential angles at the same
points but from a lateral (side) view. Drerup found that the back profile angles related
well to the same angular measurements taken from lateral x-rays, Since scoliosis can
affect the back symmetry in more than one plane, Drerup used the curvature analysis
method of Irobin [15] to examine the entire back surface.  Drerup compared two
range images of a scoliotic patient’s back taken two years apart and concluded that
the curvature maps showed great stmilarity. This use of curvature for back shape

analysis prompted further study of the technique.

2.2 Shape analysis

In the vision and image processing domain, shape analysis is a widely used technique

for segmenting objects or features from their environment [37],[10],[16], [12],{20]. The



shape property is almost esclusively associated with the enrvature of the surface being
examined, ‘Traneco [37) performed experiments to evaluate a range image segmentation
system which partitioned range data into homogeneous surface patches based on the
sign of the mean and Gaussian carvatures,  Ibtner {20] used a collection of six local
curvature meastires o classify three-dimensional objects from acquired range data,
Gloldgof, Huang and Lee [12] used the extreme values of Gaussian and mean curvatures
to establish Teature points for nse in matching terrain data with a large geographical
database, Besl and Jain [7, 8, 9, 10] have produced a number of papers relating to
image segmentation based on curvature and on the techniques for the calculation of
surface enrvature. Curvatare feainres have been used to recognize human faces [16]
and of a more relevant nature, have been used to find anatomical landmarks on the

human back [17], [13].

2.8 Discrete derivative calculation

Since curvature maps will be used to help analyze back shape, a reliable method must
be found to calculate the curvatures. Surface curvature depends on tangents to the
surface at the point being examined. Tangents are related to partial derivatives of
the surface equation. Therefore, finding a reliable method for calculating curvature is
the same as finding a reliable method for calculating partial derivatives. Determining
partial derivatives from parametric equations is explained by Stewart [35]. The back
surface data collected by the data acquistion system at the Glenrose is a quantized

representation of the true surface as is true for any range imaging system. The meth-



ods used for the caleulation of the partial devivatives of the back sueface st otfer a
diserete solution. Discrete curvature or partial derivative calenlation methods are of
fered by Mitchell[30],Bennett [6]0 and Tavatorin[36]. The previously mentioned papers
find either the partinl devivative or the particular curvature divectly from the guan
tized data. Another way of tinding the same information is through indirect means.
The partial derivative information could be the ves & o an operation perforied on

the data, This is how derivative quantitios are found in Florack[20],]27]. and Romeny

2.4 Quantifying change

There is minimal information on procedures used to quantify change hased on shape
classifications. Related arcas of rescarch in computer vision are primarily concerned
with matching the analyzed image as a whole to some generalized version [9], [7).
Other researclilers have used the curvature information to locate a set of feature points
for matching operations. FFeatures that have moved or changed are ignored and only
those that have remained the same are used in the matehing process [37],[16]. Bes| [8]
provides some quantitics which may be of interest in surlace characterization. Some of
Besl’s surface characterization quaatities have been implemented as possible ieasures
of change. In addition, Koenderink and van Doorn [26] deseribe a measure of scale
called curvedness which they used to compensate for the effects of scale. Children
are typically growing very rapidly during the observation period <o it is necessary Lo

accommodate growth.

1



2.5 Summary

The shape analysis process developed in this work has made use of many of the
research papers deseribed previously, Carvature was used to quantify shape and also
played a role in segmenting the surface so as to simmplify the amount of information to
analyze, Implementation proved to be the biggest challenge and in several instances
required an adaptation of a formula or technique in order to achieve the desired

resule.
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Chapter 3

Curvature

In order to quantify shape some mathematically obtainable value is needed which ean
be calculated from the data. Rescarchers studying vision have attributed curvature as
a primary characteristic that provides information about shape [3[[31]. A deseription
of curvature and details about the implementation used to caleulate curvature is

discussed below.

3.1 Theory

3.1.1 Definition

Curvature is a property that can only be measured in a plane. In order to discuss
“surface curvature” we must establish a method by which a three-dimensional surface
can be projected onto appropriate planes. Let us consider some surface defined in
three dimensions that can be specified as the height above a plane. This Lype of

representation is known as a graph surface respresentation and the surface itself is

12



called a Monge paleh [8]. For any point on the surface we can determine a tangential
veetor by examining changes in height with respect to the reference plane. The
change in height along the vector can be viewed as a curve in two dimensions. The
curvature of the surface for that direction is the “bending” of this space curve away
froin its tangent plane with the magnitude being measured by the radius of a circle
that best approximates the “bend™. If two vectors are chosen such that one of the
curves has the maximum radius and the other has the minimum radius, then the
curvatures are known as the principal curvatures with the directions of the vectors
heing appropriately named the principal directions [2].

_-’ . . . . . .
Let v (u,v) represent a regular surface defined parametrically in three dimensions.
— .
E (1, 0) = (s ), y(,0), 5, 0)) (3.1)

where T is the veetor from the origin of an arbitrary 3D coordinate system to the
sampled point; X, y, and z are its 3D coordinates; and (u,v) are the parameters of the
21 space in which the data is mapped. The graph surface is assumed to be smooth
and be at least twice differentiable!. Given such a surface, two basic equations, known

as the first fundamental form and the second fundamental form [2], have been used

to define many surface properties.

YA function fis differentiable at a if f°(e) exists for all values of a. To be twice differentiable
requires that f7(a) exist as well.

13



3.1.2 First fundamental form

The first fundamental form is one of two equations well established in the subject of

differential geometry. The definition of the first fundamental form. denoted by the

roman numeral [, is
-—
I{(u,v.du.de)y=dr -dr
+ 2 . ] . 2
=FEdu+2F dude + G de?

where

Al

F=r, v,
, — -y
G=r,-r,

?v(u, v) = ()?/Uu

— —
r (u,v)=9dr [du

The first fundamental form will not be used directly but the coefficients I, F, and /

are used in the determination of surface curvature.

(3.1)
(3.5)

(3.6)

(3.7)

(3.8)

- . _> - .
The two linearly independent tangents to the surface, r , and r , define a plane

known as the tangent plane (see figure 3.1). All tangents to the parameter curves

on the surface at a point (u,v) lie on this plane. Because I(u,v,du,dv) is invariant to

the rotation, the translation, and the parameterization of the surface, it s said that

the first fundamental form is an infrinsic surface property. lutrinsic properties are

14



significant since the same intrinsic surface primitive viewed from two distinct view-
points remains the same for each viewpoint. This property is key to our assessment
of possible back shape parameters since the viewpoint of the cameras may be not
always be the same with respect to the patient. FEztrinsic properties, on the other
hand, depend on how the surface is embedded in the 3D space and will be different
for the two viewpoints [18]. The functions E,F, and G are also invariant with respect

to coordinate transformations .

Figure 3.1: Tangent plane

3.1.3 Second fundamental form

The sccond fundamental form is another equation well established in the subject of
differential geometry. The definition of the second fundamental form, denoted by the

roman numeral I/, is

H(u,v,du.dv) = —dr -dn (3.9)
H(u,v,du,dv) = Ldu® + 2 M dudv + N dv? (3.10)
where
— —
n o= e X T (3.11)

= =
| rux ro



L=Tu-n (3.12)
— —

M=r,-n (3.13)
. — —

N=r,-n (3.1-1)
?uu(?t, v) = 62?/61'2 (3.15)
T walu,v) = 2T JOu’ (3.16)
T owlu.v) = 3T [dvdu. (3.17)

-

_) . - .
The vector n is known as the surface normal vector and is perpendicular to the
. . . — -—> -
tangent plane. Combined with the two unnormalized vectors r , and r ,, n forms
- . _-’ . .
a local coordinate system at the point r (u,v). As with the first fundamental form,
I(u,v,du,dv), the second fundamental form will not be used directly, but the coefli-

cients that arise from its derivation will be used - L, M, N.

Perhaps the most important surface property for our purposes is curvature, s.

16

Of particular interest are the principal curvatures, &; and k. , referred to also as

the maximum curvature and the minimum curvature, respectively. By using the

coefficients from the first and second fundamental forms the principal curvatures can

be defined.

3.1.4 Principal curvatures

Surface curvature was previcusly described as relating to the radius of a circle that
best approximated the “bending” of a space curve away from the tangential planec.

The principal curvatures are associated with the maximum and minimum radii that



can be found for a given point on a surface. The principal curvatures, «£; and &3, may
be calculated by solving
klo — I kF—M
det =0 (3.18)
kFF— M kG—N
which will generally result in two solutions. The larger value is known as the maximum
curvature, £y, and the smaller value is known as the minimum curvature, ;. E, F, G,
1., M, and N are the coefficients from the first and second fundamental forms and are
defined in equations 3.4, 3.5, 3.6, 3.12, 3.13, and 3.14 respectively. The directions, in

the parameter plane, of the maximum and minimum & are referred to as the principal

directions. The principal directions are given by the angles derived from the roots of

2 -7 1
det\ p F G| =0 (3.19)
L M N

where 7 = du/dv = tant, and @ is the angle in the parameter (u,v)-plane. Using x;

and k2, Gaussian K and mean H curvature values may also be defined:

. LN — M?

KN = riry = 'LTG—:—F,—Z (3.20)
1 EN+GL-2FM

11 = Tz-(h,l + l\,-z) = 2(EG — F2) (3.21)

The Gaussian curvature is an important quantity since it can represent the surface
curvature with a single number and is invariant to all rigid geometrical transforma-
tions. Due to its averaging nature, mean curvature is less susceptible to noise as
compared to Gaussian curvature. Mean curvature, however, is an extrinsic surface

property wherc¢as Gaussian curvature is an intrinsic property.
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Given a continous, twice differentiable graph surface, the surface curvature can
be found. A problem arises, however, when the graph surface is not continous but
discrete as is the case of trunk image data. The calculation of accurate discrete partial

derivatives is a topic that is still being researched [36].[12].

3.2 Discrete derivatives

A stereo pair of CCD television cameras is used to obtain the depth maps of scoliotic
patient back surfaces. The acquistion process begins by fivst projecting a known
pattern of horizontal lines of varying thickness onto the patient’s back. lhmages are
captured from two cameras and the lines in the two images are matched. Geometrice
information from the cameras and the line positions is used to establish the depth
of points on each line [28]. This coordinate information is stored in a text file. A
separate graphical viewing program [31] facilitates viewing the calculated back surface
under controlled lighting conditions and surface textures. Penner [31] has also added
the ability to resample the irregular three dimensional surface coordinate data into a
regularized grid of any desired density. It is this regularized grid surface data that is
used for back shape analysis. Figure 3.2 shows a regular grid-sampled back surface
viewed with this program. For shape analysis it will be necessary to determine various
partial derivatives of this discrete surface. The following sections wiil describe the
implementation of the two techniques for approximating the partial derivatives of a

discretely sampled surface.
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Figure 3.2: Sampled back surface
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3.8 Discrete Approximation

Discrete approximations of curvature are susceptible to both inage noise and quan-
tization limitations [14]. The higher the order of the derivative to be approximated,
the greater the influence of high frequency image compouents - noise in particular,
Typically, smoothing of the image is performed beforchand to remove the higher fre-
quencies. In cases where edge information is important, smoothing can cause the loss
of valuable information.

Approximation methods can be divided into two primary categories: litting data
points to a curve or applying kernel operators. To obtain the necessary partial deriva-
tives, the first technique attemipts to find the equation of a curve that best fits the
data and then calculates the required derivatives based on the curve funetion [10].
Fitting variable-order surfaces to our data is not. recommended as the piece-wise sur-
face approximations require sufficiently large regions (10-30 points) that can not be
guaranteed since the size of a region is only determined by its shape attribute, Also,
choosing the order of polynomial to fit to the data can be dillicult. A low order poly-
nomial may not adequately capture the sharp changes of a prominent shoulder blade
for instance while a higher order polynomial may create an irregular fit due to noise
on a flat region. The other possible method for approximating partial derivatives
involves kernel operators. The kernel method consists of convolving a square matrix
with a rectangular grid sampled (raster) data set. The values placed in the matrix are
specific to the operation to be performed, but in the simplest case consists of quan-

tities based on differential methods and on the theory of the dircctional derivative.
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Only the kernel operator method was implemented in this work, The primary reason
for this choice was that the majority of the methods used for shape analysis assumed
hoth regularized data and kernel operations,

In order to find the curvature at a point on a surface, tangents to the surface
al. that point are required.  These tangential lines are found by determining the
partial derivatives of the surface function. Sinee the patient data being analyzed is
diserete, approximations are needed as there is no known surface function. The kernel
operator method establishes a set of discrete points on which an operation will be
performed. If the kernel contains elements which approximate a partial derivative
operation, the affect of convolving the kernel with a local region of data points will
he an approximation to the partial derivative at the center point of the region. Two
methods for selecting values for the kernel matrix will be examined: the differential

derivative approach and the scale-space approach.

3.3.1 Differential Derivatives

For a continuous function, a derivative in a particular direction requires evaluating
the difference between two points an infinitesimal distance apart. The convention for
determining partial derivatives for a raster image requires approximating the infinites-
imal distance by the neighbouring data points. The data points are typically calls
pixels when the data set represents an image. This approximation technique arises
from the direct interpretation of the directional derivative. For a surface r defined

parametrically in terms of a © and v coordinate axis the directional derivative of
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where in the context of raster images, hois the raster period, T'he displacements along
the v and v axes could potentially be any integer value but for our purposes o and
b will only have the values of cither 0 or 1. The complete directional derivative in
the u (horizontal) direction is composed from both the wt and u= directions, For all
directions along the w axis, b is 0. Also, since the neighbourhood approximation will
only consist of the immediately adjacent pixel, a will be 1, e represents an approxi-
mation of the horizontal slope in the ut direction, r,- represents an approximation of
the horizontal slope in the ™ direction. Together, the two results provide an overall
approximation to the horizontal slope at the center of the local neighbourhood bheing
examined.

.or(ug +hyvg) =~ (g, v
7‘11+('lt,‘l')=’l'n_’1(1) (it ’ 0/3 (o, v0)

- (g — ’l‘,‘l’u) — (g, vy)
Tu=(u,0) = ’ll.l—-r-}(l) h

ro(w, v) = ry+ (u, v) — ry-(u, )

. (g + hyvg) — r(ug — h,vy)
ru(, ) = Jing i

(3.22)
Let gu,. represent the immediate neighbouring pixels in the 3 x 3 neighbourhood
as shown in figure 3.3. The value at cach of the nine discrete locations in the neigh-

bourhood is obtained from the surface data which is height (or depth) information.

. . b 4 -
An approximation to r ,, A r ,, can then be expressed as:

A?u(uvv) =< 2”'107.‘11.0 —9-10 >
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Figure 3.3: 3 x 3 neighbourhood of a surface point (gy,v).

The magnitude of the vector componentsof A r ,, (u, v) can be normalized by dividing

L

cach term by 2h. "This results in the simplified form:

A?"(u,v) =< 1,0, g—lﬁ—g—i:i_l—u > (3.23)

The remaining derivatives can he obtained in a similar manner as shown in Abramowitz
[1] (see appendix 3 for a more complete derivation). Frobin and Hierholzer produce
comparable results although their method attempts to improve the kernels’ suscepti-
bility to noise by averaging more of the neighbourhood points into the equations as
in equations 3.24 to 3.28. For approximating the partial derivative in the u direction
equation 5.1 only used the two outside points of the middle row of the neighbourhood
matrix. IFrobin and Hierholzer used the outside points of all three rows and thus

could average the result over six points as opposed to just two.

AT o(u,v) =< 1,0, 4 = 11 + 10 —69}-1,0 R el e o (3.24)
)

AT o(u,0) =< 0,1, I=1L Z 9=t +g°"6; Go1 ¥ 911 “G1-1 (395

A?m,(u, v) =< 0,0, IL1 = 9-11 Fg-1-1 79 (3.26)
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The above equations were inmplementad as one method to approximate partial deriva-
tives for a discrete surface. Another technique used to obtain the same information

is associated with a concept kuown as scale-space.

3.3.2 Scale-space

The second technique used to approximate partial derivatives of a discretely sampled
surface was found in computer vision research literature. A common approach to the
analysis of digitized images is to use the Fourier transform to examine the frequency
spectrunt of the data. A similar analysis can be done in the spatial domain with
a different operation. By convolving the image with a special scalable function the
image can be viewed at multiple scales - similar to examining a breakdown by fre-
quency composition. The transformation of the image data in this manner produces
a scai.-space version of the image.

Florack [29] discussed the benefits of scale-space image analysis and provided a
persuasive argument against the use of neighbouring pixel approximations - a key
assumption in the differential derivative approach discussed previously., Florack re-
ferred to the use of neighbouring pixels to approximate infinitesimal distances as a

“non-robust and rather ad-hoc solution that crucially rclics on imaging conditions,



like grid size and ptrel shape”. Using kernels based on the pixel-neighbourhood con-
vention implies that the stractures of interest in the image have a spatial extent
close to pixel scale. Sinee this is not generally the case, it makes no sense to use
this type of approximation. Florack presented a complete hierarchy of scaled differ-
ential operators which do not make assumptions on the scale of possible regions of
interest, in an image. Florack desceribed the attributes of a scale-space operator for
a front-end vision system and derived it mathematically, Florack reached the same
conclusions as Babaud [21] who carlier presented a mathematically based argument
for the unigueness of the Gaussian as a scale-space kernel operator.

The “blurring” of an image caused by the change of scale of the scale-space op-
crator is reminiscent, of a filter operation and in fact behaves as such. The scale of
the operator performs a similar function to the bandwith of a iow-pass filter but in a
reciprocal manner. For small values of the scale parameter almost all of the frequen-
cies that exist in the image being operated on are present. As the scale parameter
is increased the higher frequencies are “filtered” out and the visual effect is that the
image becomes “blurred” - the result of seeing only the less detailed lower frequency
components of the image. Mathematical proofs derived by Babaud [21] and other
mathematical justifications by Florack [29] formed the foundation for the acceptance
of the Gaussian as the unique scale-space kernel operator. Babaud began his proof
by listing the attributes that the ideal kernel operator must have and then proceeded

to find a function that meets all these criteria. These criteria are:

e the scale parameter influences the kernel by stretching it along an axis while
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keeping its arca invariant
o the kernel is symmetrie ( thus even and not causal )

e the kernel has unit area

e the kernel is infinitely differentiable

Florack’s proposed requirements for a front-end vision system are:

o linearity: allowing lor superposition of input stimuli

e spatial shift invariance: implied by the absence of a preferred location
e isotropy: implied by the absence of a preferred direction

e scale invariance: implied by the absence of a preferred scale

Florack concluded that the constraints arising from the lack of a priori geometrical
knowledge lead to the choice of the Gaussian kernel and its derivatives as the maost
suitable scale-space operators for the study of image structure.

The important concepts introduced by scale-space analysis as they pertain to this
work are: 1) no assumptions are made aboul data sampling, 2) an operator is provided
that is not susceptible to data orientation or scale, and 3) derivatives of the Ganssian
operator maintain the same attributes as the Gaussian operator.

To produce a scale-space image at a particular scale, a normalized Gaussian kernel
is convolved with the image, the width of which corresponds to the inner scale (o ).

The Gaussian function has a number of important properties described above that,
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tnake it suitable for the role of the scale-space operator. Expressed in an alternate
manner these properties are: absence of spurious detail, linearity, and invariance to
transtation, rotation and scale. The problem of finding derivatives that depend conti-
nously on the image has a trivial solution given a smooth scale-space kernel. Letting
D represent. any linear differential operator, 7 represent the image to be analyzed, and
g represent the scale-space kernel on a scale o, then the convolution of @ *Dg, pre-
cisely yields the desired derivative. The complete definition of this theorem is given in
cquation 3.29. The effeet of varying o on shape analysis will be discussed later. The
concepts introduced by scale-space analysis provide an alternate means for finding
partial derivatives of a surface that are necessary for curvature calculations. At the
same time, the scale parameter of the Gaussian kernel operator can be used to control

the contribution of surronnding data to the evaluation of the partial derivatives.
D{i*g,} = Di*g, = i*Dy, (3.29)

I'he normalized two dimensional Gaussian can be expressed as:

12442
C_?(’;S..L.
glz,y) = Ern (3.30)
with the corresponding partial derivatives:
22442
dg(a,y) _ —xe” 7ot 31
dr  2xo? (3:31)
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()g(‘l‘vy) — _ye 20 (3 32)
oy 2rot )
222
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PFglr.y) (y* l)(-x;.v-t‘ - 1.35)
dy* T g2 R i (3.35

3.4 Implementation

Both the differential derivative method and the Gaussian convolution method for
approximating partial derivatives were implemented. Details of the iimplementations

are provided in the following sections.

3.4.1 Differential Derivative

Using the assumption that the an infinitesimal neighbourhood can be adequately
approximated by a neighbouring pixel, a set of derivative kernels can be created.
Using a 3 x 3 matrix, a coordinate system is defined such that the central location

can be referenced as 0,0. This coordinate system is shown in figuee 3.4,
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Figure 3.4: Kernel coordinate reference frame

By using equations 3.24 to 3.28 and the coordinate system shown above, a collection
of first and second order partial derivative kernels can be constructed. These kernels

are shown below:
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The other method for producing partial derivative approximations using discrete

data involves convolution with a Gaussian kernel operator.

3.4.2 Gaussian Kernel

To implement the discrete convolution of a Gaussian kernel with a raster image a
kernel size must be chosen. The choice of kernel size is not arbitrary and can have a
major cffect on the quality of the derivative being sought. The choice of kernel size
depends on the tolerance level for data loss due to edge effects, truncation problems
fitting a discretely sampled Gaussian into the kernel, and computation time. Com-
putation time becomes a problem when the kernel size becomes very large because
there are a large number of computations for each resultant point. In this work com-
putation time was not a concern since the other factors require the kernel size to be

relatively small. For most tests a kernel size of 7 x 7 was used.



Kernel edge effects

Edge effects relate to the problem caused by lack of data points at the extreme ~nds of

a data set involved in a discrete linear convolution operation. In the one-dimensional
case, linear convolution on the data set r(n) with a function h(n) for 0SS n SN — | s

defined as shown in equation 3.36.

N-1

y(n) = Z h(k)r(n — k) (3.36)
k=0

The size of the operator A(n)is N samples. Since o(n) only has values for0S n SN —1,
there are no defined values when n — £ <0. This is the situation that causes edge
effects. In some cases the undefined values can be assumed to be zero with no harmful
effects but that is not usually the case when performing convolution with images.
Since the convolution operation cannot be properly computed on these edges points,
the standard solution is to only perform the convolution on points for which all the
necessary data exists. This results in a loss of (N — 1)/2 data points on cach edge
of the image (assuming that the operator kernel is of size N x N). The boundary
data points of the sampled back surface are of lesser diagnostic value than the large
proportion of points which compose the rest of the surface. Lin [28] explained the

problems with determining boundary points for the back surface data.

Gaussian kernel size

In addition to edge effects, there is another factor to consider when determining a
suitable size for the kernel operator. The operator is to be a Gaussian function which

has a scale parameter o. The width of the Gaussian can be varied by changing the
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magnitude of . For best convolution results, a kernel should have values at is edges
that are zero. 'The continnous Gaussian function does approach zero at its outer
limits but, the edge values of the kernel depend on the size of o and on the sampling
method used.  As the Gaussian width, o, increases, the percentage of the function
volume that is within the boundaries of the kernel decreases. The resulting kernel no
longer has a smooth transition from the peak of the Gaussian to zero at the edges.
Figure 3.5 shows how the voluime of the two-dimensional Gaussian kernel is affected
by both kernel size and the magnitude of . The volume differences compared in the
chart are with respect to the volume of the continous normalized Gaussian which is
1.0.

After chosing an appropriate kernel size, the kernel must be given values for each
location within the matrix. Since the kernel has a limited number of entries, the
continuous Gaussian must be sampled in order to obtain the needed values. The
direct approach to obtaining samples of the continous Gaussian would be to evaluate
cquation 3.30 at integer values [| -N/2 |,| N/2 |] corresponding to entry coordinates in
the N x N kernel. For larger values of o there are no great inaccuracies in the resulting
convolution operation provided the kernel is large enough to avoid truncation effects.
However, for o values close i, the resulting convolution can be very incorrect
due to poor appreximation of the Gaussian volume. An alternate method to direct
sampling of the Gaussian is to obtain two samples near the point determined by the

direct sampling method and average them; this is known as block sampling. The
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Figure 3.5: Volume difference by kernel size (nxn) and Gaussian width (sigia) as
compared with the theoretical volume of 1.0



equation for a block sampling a two-dimensional function is given in equation 3.37.

+1/2 pi+1/2
g(i, ) = / / g(z,y)dx dy

" 2 (3.37)

A visual comparison between the two techniques for discrete sampling is shown
using the two-dimensional Gaussian in figure 3.6. The effects of o on the volume of a
discretely sampled Gaussian kernel is shown in table 3.1. As can be seen in the table,
the direct sampling method results in a kernel whose volume is not unity for small
values of a. 'T'he size of the kernel has been chosen to be much larger than would be
practically used.
the volume that lies outside the kernel and therefore the volumes do not remain at
1.0 for large values of o. Since it is desireable to maintain a constant Gaussian kernel
volume regardless of the choice of o, the block averaged method was used to sample

the Gaussian and its derivatives as needed.

Iiven with the large kernel size there is still a small percentage of
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[ed
0.50 0.75 7.0 5 2.0 3.0 1.0 5.0
55 a(i,d) 1.02897 | 1.00006 | 1.00000 | 1.00000 | 1.00000 | .099943 | .096544 | .975603
S5 30, 4) 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | .999938 | .096447 | .075316
S5 19l d) —a(, )] | 312135 | .096505 | 057719 | .026352 | .015211 | .006770 | .003830 | .002446

Table 3.1: Sampled vs. Block averaged discrete Gaussian kernels

Derivatives

Using the relationship given in equation 3.37 the resulting block averaged Gaussian

and derivative functions are:

g, i) _

(538 95 (g - oy

i

2

Ars~!

(3.38)
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Figure 3.6: A one-dimensional Gaussian with o = 1.0
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Where the error function erfis defined as:

erfa) = / 2 (3.43)
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Kernels were ereated using values from these functions as one of the necessary steps
for approximating the curvature of the scolivtic back surface,

Implementing the direct interpretation ol equation 3.29 does not quite yield the
dosired derivative result when using the Ganssian, Weiss’s work on high-order differ-
entiation filters [42] suggested that the Gaussian was not suitable for finding deriva-
tives greater than the first order. Contrary to this information, Blom [24] concluded
that determining derivatives, even for high orders, combined with scale space (the
Gaussian operator), was a very robust and stable operation. Since the determina-
tion of second order derivatives is necessary for the calculation of curvature it was
necessary to determine il the Gaussian was capable of providing stable second order
derivatives for use in the convolution operation. Since the choice of o could be selected
out a range ol values, it is necessary for the derivatives to provide consistent results
regardless of the o value. To test the stability of the Gaussian derivative kernels the
first derivative of an arbitrarily chosen third degree polynomial (x® + 5x? + 12) was
compared with the Gaussian convolution approach as shown in figure 3.7. The arbi-
trary decision concerns the coeflicients of the polynomial and not the degree of the
polynomial. The degree of the polynomial was chosen to best reflect a contour that
could be produced by examining a cross-section of the back surface in a region where
the surface has large height variations. A first degree polynomial would imply that a
cross-section of the back surface could be represented by a straight line which is very
unlikely. A second degree polynomial could possibly be used to represent some back

surfaces where the changes in elevation are very subtle. Polynomials of degree higher
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than three could become susceptible to small variations in surface elevation due to

noise and consequently produce inaceurate representations, The Gaussian used in
the convolution was generated with & values of 0.8, 0.9, 1.0 and 1.1, "The minimal
range of & was used only for a better comparison with the range used in the second
derivative case which had to be limited, All valnes of @ used overlap the curve in
the figure 3.7 demonstrating that the first derivative of the Gaussian kernel is not

susceptible to variations in o,

x 10" 18l detivative approximation
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Figure 3.7: First derivative of a? 4+ ha? + 12 (322 + 102) compared with Gaussian
approximations

An example is provided in figure 3.8 which demonstrates the instability of the Gans-

sian’s second derivative to approximate the second partial derivative of a third degree
. . . . . -

polynomial function when used in the convolution operation. The o values used are

0.8,0.9,1.0, and 1.1. Large valucs of ¢ would not be visible on the provided scale of

the graph. The exact value of the derivative is the straight line eqnation y = 6 + 10,
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Figure 3.8: Second derivative of @? 4502+ 12 compared with Gaussian approximations

Now although the experimental results demonstrate that using the second deriva-
tive of the Gaussian is not stable, the Gaussian may still be used. These results
suggest that a kernel that contains values directly sampled from the second partial
derivative of a Gaussian should not be used. This concurs with Weiss’ statement
about the Gaussian only being stable for direct determination of first order deriva-
tives. Although Blom provides a strong mathematical justification for his stand on
the stability of the Gaussian for higher order derivatives, (he provides experimental
results up to the fourth derivative) it is unclear from his paper [24] how the various
partial derivative Gaussian kernels were implemented. Weiss [42] describes how to
design a better filter that can be tuned to provide the necessary derivatives up to a
given order. Weiss’ power-preserving filters will not be examined further but a part
of his filter creation method will be used. Since the second partial derivative of the
Gaussian is absolutely necessary for curvature calculation and because the instability

of the Gaussian prevents the direct use of a second partial derivative, another method
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must be used to provide the necessary convolution kernels. 'This other method was
used by Weiss and is another property of the convolution operator. T'he property
that will be used is:

DY = DD (3.41)

where D™ is the nth order derivative operator. 'The coneept intuitively makes sense.
If a first order partial derivative kernel is convolved with an image the result will be
a scaled version of the first order partial derivative of the image. If that resultant
image is again convolved with the same kernel, the result will be the second partial
derivative of the image - exactly what we are looking for!  Fquation 3.44 doesn’t.
exactly express this relationship, however. It can be interpreted as stating that to
get the nth order partial derivative kernel, convolve a fivst order partial derivative » -
1 times. Convolving this resultant kernel with an iimage would provide the nth order
partial derivative data. Using this method, the second order partial derivative of
the example polynomial used previously (@ + bar? + 12) was determined for multiple
values of 0. A plot of the resultant curves is shown in figure 3.9. As can clearly be
seen, all of the determincd derivative curves are exactly the same - y = G - 10, 'This
procedure is used to calculate the necessary sccond order partial derivatives ol the
back surface data. The cost for performing two convolutions on the data is that there
is an even larger loss of data points at the borders attributed to compensation for
the edge effect of discrete convolution described carlier. There will be a loss of N - |
data points at each edge of the back surface array. This can be scen clearly by the

black borders surrounding the shape analysis images shown in the results section to
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2nd dativale: two convolutions
1000 -+ - -oee ¥ e e 1

1404
1200
1000

E 800 1
600
400}

2001

[ [ESUREPURIRY S

0 WO I ke L
[i] 50 100 150 200 250 300

IFigire 3.9: Second derivative approximation using two convolutions

follow (chapter 6).



Chapter 4

Shape Representation

The need for invariance and scale independence lead to the selection of shape as
the surface property by which scoliotic back surfaces would be analyzed. ‘Prying to
describe the shape of a complex surface such as a scoliotic back is not a simple task.
In order to analyze such a surface it is necessary to reduce the complexity. Simplifying
the surface to be analyzed will be done by partitioning the surface into a lew regions
that share a similiar attribute. The attribute itself can very depending on how the
calculated curvature values are used. As will be shown, surfaces can be partitioned
into as many regions as one would like depending on how the curvatures values are

used.

4.1 Defining shape

The human visual system is very adept at distinguishing the shape of objects. We
are able to discern if two items although possibly differing in size, orientation, tex-

ture or color have the same shape. In the previous chapters techniques have bheen
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discribed on how to obtain curvature information given a surface defined as a height
ficld above o reference plane - a Monge patch. The range of values for the computed
curvatures are theoretically limitless but practically limited by the precision of the
hardware on which the program is bheing executed. In this thesis the practical lim-
its for computed curvature are based on the precision of a double precision floating
point value as implemented by the Hewlett Packard PA-RISC machines - [4.94066e-
321,1.79769¢+-308].  The discrete sampling of the patient’s back images to produce
the Monge pateh limits the accuracy of the data by which the curvature is calculated.
Consequently, for the same back surface the curvature determined for the same loca-
tion in separately acquired images may have different values. Since there will be some
error associated with every calculated curvature value the range of curvature will be-
come segmented into an indeterminate number of regions defined by & + €. Many
rescarchers [2][10][12}[25] have found it useful to classify the curvature of a surface
into a small number of regions. Goldgof [12] used thresholding of absolute Gaussian
curvature to determine feature” points for matching terrain. Frobin [40] used the
sign of the Gaussian curvature to define elliptic ( K > 0 ), parabolic ( K = 0 ) and
hyperbolic ( K <0 ) regions. Koenderink [26] derived a shape index to categorize
shape into nine regions. Other possible segmentation schemes noted by Arman [2] are
[) using curvatures &y and &, to distinguish four distinct regions and 2) using both the
Gaussian (K) and mean (H) curvature values to provide more information to define
six distinct regions. Examples of some of the various classifications of shape applied

to scoliotic back surface data are shown in figure 4.1. The original back surface data
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comnsists of an array of depth values which are mapped to a grayscale or color scheme.

The closer points are brighter while the more distance points are darker.

Figure 4.1: From left to right: depth map, K sign map, H and K, shape index
Examples of surface partitioning by different shape classifications.

4.2 Principal Curvatures

In his survey of classification techniques Arman [2] describes a shape classification

based on principal curvature signs (Table 4.1). This is what Frobin [15] used in his

K1 >0k =08 <0
k2 <0 | saddle | ridge peak
k2 =0 | valley flat ridge
Ko >0 pit valley | saddle

Table 4.1: Classifying Surface Types Using Principal Curvature Inforination

first examination of back surface shapes and was also used by Besl {10]. Frobin also
used the magnitude and direction of the principal curvatures as another visual respre-
sentation in the qualitative analysis of scoliotic back deformity. Frobin [410] psrovides
an example of a back surface representation using principal curvature information

which is shown in figure 4.2. In the image the length of the axes are proportional
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to the magnitude of the principal curvatures. The orientation of the lines is based
on the angle of the principal curvatures. The magnitude of the principal curvatures

determnined in equation 3.18 are:

EN+GL~2FM+\/[EN+GL-2FM)?—4EG - F2)(LN — M?)
2(E G — F2)

Kyz2 =

(4.1)
where the larger value is referred to as the maximum curvature £; and the lesser value
is referred to as the minimum curvature ;. 7'he direction of the principle curvatures
or: the surface is given by equation equation 3.19. In particular the maximum and

minimum principal directions are:

(4.2)

4 ({—BxvV/B2-AC
P12 = tan

C

where A=IFM—-FL 2B=FEN-GL, C=FN-GM

4.3 Gaussian and mean curvature

Gaussian and mean curvature have been the most commonly used measures of cur-
vature. Frobin, Hierholzer and Drerup have been very innovative in application of
mathematical techniques to scoliotic research. In particular, [40] and [15] describe
the use of scoliotic back curvature to help evaluate the progress of deformity while
[17] and [13] describe the use of curvature to find anatomical “landmarks” on the
back surface. Although the work by Frobin was only used for qualitative analysis

of the back surface, it did provide inspiration to attempt to use similar means for

quantitative analysis.
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Picture omitted due to copyright
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Figure 4.2: Principal curvatures and directions of a scoliotic back surface



Picture omitted due to copyright

IFigure 4.3: Gaussian (left) and mean (right) curvature

I'he range of possible curvature values is from negative infinity to positive infinity.
There are two choices for dividing this range of values in an attempt to reduce the
number of curvature classifications: by sign or by magnitude. Separation by sign is a
simple solution but the regions it produces are very coarse and may not be informative.
In his analysis of human back shape, Frobin [40] first scaled the calculated values
of curvature logarithmically, and then experimentally found adequate partitioning
points. Figure 4.3 shows an example of Frobin’s partitioning of a scoliotic back using
Gaussian and mean curvature. Besides using the Gaussian and mean curvatures
separately, Arman [2] notes that a combination of the two curvatures can produce an

cight region shape classification. This classification is shown in table 4.2.
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K>0|K=0 K <0
H <0 | peak | ridge | saddle ridge
H=0 - flat minimal
H>0 pit valley | saddle valley

Table 4.2: Classifying Surface Types Using Gaussian and Mean Curvature Informa-
tion

4.4 Shape Index

Koenderink and van Doorn [26] define a shape index which encompasses the intuitive
properties of shape. Koenderink states that although Gaussian and mean curvature
are informative they do not by themsclves capture the intuitive notion of “local shape”
- thus both are necessary. The best option is described as nsing a combination of the
principal curvatures. The shape index is derived from an analysis of the curvature
parameter plane shown in figure 4.4. Using a polar coordinate system, the length of
a half-ray from the origin represents size and the angle of the half-ray denotes the
Ko

shape

Ky

4

size

|

#

Figure 4.4: Curvature parameter plane



local shape at the point being examined on the surface. The noteworthy properties

of the polar representation are:

e the origin represents the uncurved patch

e all points of a half-ray from the origin represent the same shape, although the

shapes differ in size

e diametrically opposite points at an equal distance from the origin represent

surfaces that fit together - complementary shapes

e points al an equal distance from the origin, related through a reflection at the

axis K = Kg, are congruent

e points on the line k; = —k2 at an equal distance from the origin are simultane-

ously complementary and congruent

The problems that arise from this approach to defining the space of shapes are

two-fold:

e using the (two-sided) rays of the (k;, £2)-plane, you cannot distinguish between

inside and outside
e using half-rays leads to the same shape appearing twice in shape space

Koenderink and van Doorn picture the space of shapes as having the topology of

a l-dimensional disc as shown in figure 4.5. This is clearly brought out through their
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definition of a shape inder as given in equation L3, They use of the arctangent fune
tion limits the range of shape indices from -1 to 41, As with the normal convention,

x, refers to the maximum curvature value,

. . 2 —1 Ry - .
(Shape indea) s = ﬁlun (;—.)—rj‘:—) RS KRG (-1.3)

All patches, except for the planar patch which has an indeterndinate shape index
as should be, map on the segment s €[-1,+1]. This representation highlights the

“natural” properties that are intuitive of shape. These properties include:

Picturc omitted duc to copyright

Figure 4.5: Koenderink’s shape space plane

e two shapes for which the shape index differs merely by sign represent. comple-

mentary pairs

e the shape for which the shape index vanishes, and consequently has indetermi-

nate sign, represents the objects which are congruent to their own moulds

e convexities and concavities find their places on opposite sides of the shape scale



o the shape index seale is uniformly covered since it is directly proportional to

the angle with the k) 4 1y = 0 axis

o the endpoints represent the outside (s = 1) or the inside (s = -1) of a spherical

surface

The segmentation of the shape index scale is given in table 4.3 with pictures of the
various shape types shown in figure 4.6, The shape types range from the purely
concave when s = 1 to the purely convex when s = -1, The intermediate shape
types are formed by changing the principal axes from one extreme to the other.
When surfaces are segmented by shape classifications methods, colour may be used
to visually distinguish the different shape types. Colours are usually selected to
maximize contrast and are based on user preference. However, the choice of colours
for the different shape index ranges is not arbitrary. Koenderink and van Doorn [26]

devised a colour scheme that had the following properties:

e convexities, concavities and saddle shapes should perceptually segregate. They

should be assigned hues that are highly distinguishable.
e recognizable hues should be used: red, green, blue, yellow and white
e cxtremes should be clearly visable
e complementary shapes should be represented by complementary hues

e the shape index scale should map on a continous curve in colour space
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Anemonie Inder range Colour name (h"(‘-"‘.'li) ”
Spherical cup s € [-1.-T/8) Green TR
Trough 8 € [-T/8.,-H/8) (van (0, 1.1 /2)
Rut s € [-h/8,-3/%) Blue (0.0
Saddle rut s € [-3/8.-1/8) Pale Blue (l/20.0
Saddle s € [[1/8+1/8)  Wihite (Lo
Saddle vidge s € [+1/8,43/8)  Pale Yellow  (1L.1,1/2)
Ridge s € [+3/8,40/8)  Yellow (1.0
Dome s € [H/8.4T7/8)  Orange (Lo1/2.0)
Spherical cap s € [+7/8,+1] Red (1.0,0)

Table 41.3: Classilying Surface Types Using Shape Index

The work in this thesis will present visual representations of surface shapes to the
user. The colour scheme suggested by Koenderink [26] was used sinee it helps to

distinguish the shape regions in a simple manner.

Picture omitted due to copyright

Figure 4.6: Shape classifications according to shape index scale



4.5 Other classifications

4.5.1 Ridge and Groove

In addition to the use of principal curvatures, Gaussian curvature, and mean cur-
vature, Frobin  [40] employed a shape classification which he described as “ridge
and groove” curvature. ‘The benefit of the “ridge and groove” curvature was that
it emphasized the regions where there was a large difference between the principal
curvatures, Irobin admits to choosing the shape classifications arbitrarily but the
sclections provided an objective means by which asymmetry of the back could be

detected. Frobin's definition of “ridge and groove” curvature is given in equation 4.4.

R = (k) — Ko * signum'(ry * ky))/2 (4.4)

4.5.2 Gaussian feature points

Another method of using curvature magnitude to segment the curvature range into
[ewer regions is to use extreme values. Goldgof [12] uses Gaussian curvature to aid in
extracting features for use with terrain matching. Unlike Besl and Jain [10] who used
both Gaussian and mean curvature analysis in their work, Goldgof uses only large
values of Gaussian curvature. The advantage of this approach is that the feature
matching is less susceptible to noise. To limit the number of extreme points for

matching, Goldgof had to select a threshold level. The choice of this threshold affected

'signum(x) returns either -1, 0 or 1 depending on the sign of x being less than 0, equal to 0, or
greater than 0 respectively.
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the number of points that were produced and available for matching and was selected

based on experimental results and is application dependent.

4.6 Summary

There are many ways to 1‘(_‘|-)1'csenl, the shape of a surface. The primary methods
involve the Gaussian and mean curvatures cither directly or in some combination.
This work will only examine those classifications techniques that can subdivide the
surface into a fixed set of shape regions. 'These classilications include the Ganssian and
mean curvature combination, shape index, and the sign of the principal curvatures,
Since the back surface data that will be analyzed is of a discrete nature, it will be

necessary to implement discrete algorithins to calculate the surface curvatures.



Chapter 5

Applying shape analysis

A large surface such as a scoliotic back is too complex to be described as a whole.
Partitioning the surface into small; similarily characterized regions was previously
discussed as a means of reducing the difficulty for a quantitative description of the
back surface. Quantitative analysis can then be performed by determining useful

parameters for cach of these shape regions.

5.1 Obtaining information from shape regions

It would be difficult to observe changes on a patient’s scoliotie back if all that could
be monitored were hmndreds of individual points with soioe curvature value. For
this reason the back surface was segmented to reduce the features of interest to a
few regions of similar shape. From these regions we wish to quantify the change of
shape in a scoliotic back over a period of time as measured by two digitized back
surface data sets. Since there is no apriori knowledge as to what type of measure will

best provide this information 1 can but offer a few formula that may meet this goal.
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The quantities calculated for cach of the shape regions ave: estimated surface arvea,

projected surface arca, and the magnitude and direction of the principal curvatures.

5.1.1 Estimated surface area

In his paper discussing intrinsic and extrinsic surface characteristies, Bes! [8] deseribed

an intrinsic quantity which is the determinant of the fivst fundamental form matrix:
sprea = NI G — ¢ (Hh.1)
This quantity, when summed over a region, can provide an estimate of the surface

area of that region.

5.1.2 Projected surface area

Projected surface arca is merely a count of the number of samples within a region. It

is provided as a reference value since it directly characterizes size.

5.1.3 Principal Curvatures

The resultant magnitude and angles of the principal directions for a region are deter-
mined by taking the average of ithe values at cach point in the region.
5.2 Accounting for size

These measurements by themselves de not account for the scale of the object however.,

As mentioned earlier, shape was chosen as a suitable surface charvacteristic to icasure
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hecanse of its independence from size. Many of the mentioned quantities trom which
measurements are made are very dependent on the number of data points composing
a surface. 'To remove this dependence, a scale factor should be applied which would
normalize the results, If all that was required was to make the surfaces the same size
this could be trivially solved by scaling the image and interpolating data as required.
Becanse we are dealing with data that may be used for diagnostic purposes, this
Lype of solution is not. acceptable. Rescaling the back surface data in such a manner
would distort the back surface fratures making any interpretation of the analysis
suspect. A possible solution to this problem is to use the curvedness measurement
desceribed by Koenderink and van Doorn [26]. While investigating a measurement of
shape, Koenderink found it useful to provide a measure of the intensity of the surface
curvature. Whereas his shape index provides a measure of shape, his curvedness
provides a measure of size. Relating back to Koenderink’s one-dimensional disc or
“lincar segment” analogy of shape space, the scale index relates to the angle along
the segment and the curvedness relates to the distance from the origin. This provides

the mathematical definition for curvedness as:

2
c = h,1+fi%
o 2

(5.2)

Unlike the unitless shape index, curvedness has the units of reciprocal length. Thus,
in order to “normalize” an area measurement the value would have to be multiplied

by the square of the curvedness value.
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5.3 Determining equality

Regions are divided up into separate planes according to values for the particular
shape classification technique being used. Given a point from one image the appro-
priate plane is selected by examining the shape classification value of the point. Iach
region in the corresponding plane is scarched to see if the point is within its bounding
box. Once found, the paramecters for that regions are retrieved. The same plane is
retrieved in the opposing image and cach of the regions there are compared with the
parameters from the selected region in the first image. The region that best matches

all the parameters is determined to be the corresponding region.



Chapter 6

Experimental results

6.1 Which kernel to use?

As discussed carlier, two kernels could be used to provide approximations for the par-
tial derivatives necessary for calculating surface curvatures. The same third degree
polynomial used for demonstrating the deficiency of the Gaussian kernel implementa-
tion, x* + Ha + 12, was also tested with the directional derivative kernel. The kernels

used for approximating the first and second partial derivatives were:

O 1 0 -1 and oy =1 1 92 1

The resulting convolutions were compared against the actual data corresponding to
the appropriate derivative and are shown in figures 6.1 and 6.2. Figures 3.7 and 3.9
demonstrated that the Gaussian convolution method could reliably produce deriva-

tives for a third degree polynomial. The directional derivative was shown to produce
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a poor approximation for the first partial derivative of the same polynomial L. did
provide a good approximation of the second partial derivative. Scoliotic back sur-
faces can vary in the degree of deformity which can be compared to the degree of a
polynomial that could be used to approximate the surface where it intersects a trans-
verse plane. For back surfaces that exhibit little deformity, the polynomial may be of
a lower degree and thus both the directional derivative and the Gaussian derivative
would provide a reasonable approximation of the actual surface derivatives. However,
if the back surface exhibited a prominence of one scapula for instance, the variation
in the surface would need a polynomial of a higher degree to represent it. In such a
case, the first order derivative approximations provided by the directional derivative
kernel could be inaccurate. Of course, this relationship of polygonal order to back

surface deformity is only speculative.

6.2 Visual assessment of shape classifications

A visual comparison was performed Lo sec if the shape classification regions looked
similar using both kernel methods. The shape classifications are provided in the
legend shown in figure 6.3. The colour scheme proposed by Koenderink and van
Doorn [26] is used for all the classification methods - not just the shape index method.
In cases where the number of possible classifications is not the same, the most similar
shape was used to provide the colour value. For instance, flat regions described in the
Gaussian and mean curvature classification would be matched with the saddle region

of the shape index classification since both represent shapes near the middle of their
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respective shapes range~. Since the Gaussian convolution method inherently smooths
the data, a normalized Gaussian kernel of the same size was used to provide the same
filtering effect on the back data before Frobin's kernels (section 3.01) were applied.
Images produced using lrobin’s kernels on back surface data smoothed beforehand
with a 3 x 3 Gaussian kernel are shown in figure 6.4, For all tests the Gaussian width
(o) was set to 1.0. Images produced using Gaussian derivative kernels of size 3 x 3
are shown for comparison in figure 6.5.

SIp‘l‘l‘tbaAric‘al-.qu

“Trough

' Rut

Saddle Rut
Saddle

Ridge

2l
‘.,Saddl_? Ridge - -

Dome N
Spl1efical Cap
| _‘Flat

Figure 6.3: Shape classication colour legend
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Figure 6.5: I'rom left to right: K sign map, H and K, shape index
Shape classifications using a Gaussian kernel (3x3)

The two methods appear to be quite similar with the exception of the shape index
classified image. Frobin’s kernels do not appear to be able to adequately supply
cnough accuracy for the shape index classification to be able to distinguish more
than a few regions. The Gaussian convolution method allows the production of all

the shape classification regions even though the kernel size is small (3x3).
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Using a larger kernel size, the same tests were repeated. Images produced using

Frobin’s kernels on back surface data smoothed beforehand with a T x 7T Gaussian

kernel are shown in figure 6.6. The images produced using Gaussian derivative kernels

Figure 6.6: From left to right: K sign map, H and K, shape index

of size 7 x 7 are shown below in figure 6.7. Again the two methods appeared to produce

Figure 6.7: From left to right: K sign map, H and K, shape index

similar results except for the shape index classification. The Gaussian convolution
method also seemed to produce regions that were in general more homogeneous. 'The
homogeneity of a shape classified region is important since the connectivity algorithm
used to identify regions requires that there be no separation between similarly valued

points.



6.3 Testing

Testing of the techniques suggested to quantize the shape of scoliotic backs was needed

to ensure that the requirements of invariance to orientation and scaling had been met.

The measured parameters for the shape regions were tested for accuracy as the test

surface 1 rotated and scaled. In addition tests were conducted to determine the

dependence on o since a Gaussian was used in the determination of curvature values.
I

T'he tests conducted in this work have primarily used synthesized data. There are a

number of recasons as to why this was done.

e the neced to establish the validity of the proposed techniques required a surface

for which all attributes were known and could be controlled.

e the lack of a sufficent number of actual patient data sets made it difficult to

produce statistically meaningful results.

e the patient data that was available was produced by a relatively new system.
The transformation of this data into a suitable input form was still in the
experimental stage with a number of factors that could be adjusted. It was
unclear as to the appropriate settings of these factors and what the consequences

of certain choices would be.

A cylinder was chosen for the test function since it provides two easily identifiable
principal axes, has a simple shape classification, can be easily scaled, and has a known
curvedness quantity. Data for the cylinder was generated from an equation to allow

for ease in changing sampling density, orientation, and radius. The cylinder was also
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used because it resembled the back surface. The major shape regions of a typical
back surface are two ridges separated by a trough. This could be represented by the
top halves of two cylinders separated by the bottom half of another. Other functions
were used to test the ability of the techniques to determine appropriate shape regions

but only the cylinder was used to test the robustness of methods,

6.4 Rotation invariance

If the back surface data set is considered to be a collection of points in the x-y plane,
rotation tests were perforined about the z-axis and the x-axis. 'I'he z-axis rotation can
be related to the lateral sway of the patient while the x-axis rotation can be related

to the front-to-back “rocking” motion.

6.4.1 Surface area

The first test of invariance to rotation examined the estimated surface arca measure-
ment. The formula used for the estimated surface area was not exactly as thal pro-
vided earlier i.e. sgrea &~ VF GG — FZ%. A shape that is to be rotated and represented
on a discrete grid will always suffer aliasing inaccuracies. A simple line drawn to the
same length but viewed at two different angles on a discrete grid will in general not,
be composed of the same number of discrete points. Therefore, it can not be expected
that an abitrarily shaped region will always have the same number of samples within
its bounds as it undergoes rotation. To compensate for this the estinated surface

area is normalized by dividing its value by the number of samples used to obtain the



deg. area deg. area

0.0 | 1.0019 [ 35.0 | 1.00163
50 1 1.00157 1 40,0 | 1.00161
10.0 | 1.00172 | 45.0 | 1.00152
15.0 | 1.00169 | 50.0 | 1.00161
20.0 ] 1.00169 | 55.0 [ 1.00162
25.0 1 1.00163 | 60.0 | 1.00164
30.0 | 1.00164 | 65.0 | 1.00163

Table 6.1: Normalized, estimated surface area of a cylinder undergoing z-axis rotation

deg. | area | deg. area

0.0 | 1.0019 | 20.0 | 1.00639
5.0 | 1.00318 | 25.0 | 1.00794
10.0 | 1.00388 | 30.0 | 1.00953
15.0 | 1.00499

Table 6.2: Normalized, estimated surface area of a cylinder undergoing x-axis rotation

quantity - s,red’ = VEG — FF2/N. N typically varies from 1 to 300 but depends on
the segmentation method used and the density of the surface being examined. This
normalization makes the surface area estimation independent of scaling as well. The
results of the rotation tests are shown in tables 6.1 and 6.2. The normalized surface
area has an average valuc of 1.00165 with a maximum deviation of + 0.0025 or 0.25%
for the z-axis rotation tests. For the x-axis rotation tests the difference was almost
as insignificant with a maximal difference of 0.76%. Comparison of actual surface
area and the normalized surface area estimate is not suggested since the comparison
would not be limited to determining the accuracy of the implementation, but of the
cstimation method as well. Consequently, surface area should be regarded as having

the units of wunits?.
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6.4.2 Principal curvature directions

The principal curvatures, x; and a3 are vectors and as such have a magnitude and
a direction. To similify ('onu)a,rib'()h. the magnitudes have been normalized with the
magnitude of x; set to one resulting in &y being equal to the ratio xp/ay. During
the tests from which the surface arca rotation data was collected, the angles of the
principal curvatures were also measured. Recall that curvature can be visualized as
the inverse of the radius of a circle that best approximates the tangent at a point.
The maximum curvature of a cylinder is then related to its radiu. with the minimum
curvature having a value of zero. The minimum curvature is zero since it requires a
circle of infinite radius to approximate the flat tangent along the length of the eylinder,
The angles of the principal curvatures for a cylinder are 90 degrees apart. Figures 6.8
and 6.9 compare the measured principal curvature angles with the known angles of
the rotated cylinder. The maximum curvature angle in this was equal to the angle of
rotation (y = ). Using a least squares fitting method, the experimental data best (it
the equation y = 1.0397x — 1.1812 with a correlation of 0.99936. For the minimum
curvature angle the theoretical relationship was y = « — 90. The (-.xpcrinmn.!,n.l data
fit the equation y = 1.02372 — 91.2477 with a corrclation of 0.99915.

All of the above rotation tests involved rotations within the plane of the image.
That is, if the data set is considered to be a collection of points on the x-y plane,
rotations were solely around the z-axis. Another test, conducted to examine the effect,
of rotating the data about the x-axis angles, found that there was no measurcable

difference in the calculated principal curvature angles.
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IMigure 6.9: Minimum curvature angle compared to cylinder rotation angle

6.4.3 Curvedness

In addition to rotation invariance, the measured quantities were intended to be invari-
ant to scale. To capture the size attribute of a region, curvedness was suggested by
Koenderink and van Doorn[26]. Curvedness should also be invariant to rotation since
any region, regardless of size could have a change in orientation. Table 6.3 shows that

for the cylinder test data the curvedness is essentially constant and therefore invariant
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to rotation about the z-axis. The value of curvedness for a eylinder with radius equal

Lo onc, iz ¢ = 1/v/2. There was a slight change in the value of curvedness for rotation

deg. | curvedness | deg. | curvedness
0.0 | 0.707107 [ 35.0 | 0.707107
5.0 | 0.707107 [40.0 [ 0.707107
10.0 | 0.707107 | 45.0 [ 0.707107
15.0 | 0.707107 | 50.0 { 0.707107
20.0 | 0.707108 | 55.0 | 0.707107
25.0 | 0.707108 | 60.0 | 0.707107
30.0 | 0.707107 | 65.0 0.707108

Table 6.3: Curvedness mecasure of cylinder undergoing z-axis rotation

about the x-axis. Figurc 6.10 shows an increasing trend in the value of curvedness but

even at 30°, the percentage difference is less than 0.005%. Koenderink and van Doorn
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Figure 6.10: Curvedness measure of cylinder undergoing x-axis rotation

[26] related curvedness to scale. The first implementation of their curvedness defini-

tion did indeed provide a measure of scale but it was also found to be dependent on

the width of the Gaussian used (o). To remove the dependence on o, the formula for

calculating curvedness was adjusted which resulted in the normalized version shown

7 7
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bhelow:
¢ =\ —=E (6.1)

The summitions involve all of the sample values within the region of interest.

6.5 Scale invariance

To test for scale invariance, the radius of the test cylinder was incremented from 5

units Lo 50 units.

6.5.1 Surface area

T'he normalized surface arca measure increased slightly with increasing cylinder ra-
dius. While experiencing a change of scale of a factor of 10, the normalized surface
arca only experienced a 0.15% change. A graph of the results is shown in figure 6.11.°
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Figure 6.11: Normalized surface area as affected by scale changes
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6.5.2 Principal curvature directions

The principal axes were also examined for invariance to scale changes.  As shown
in figure 6.12, the maximum curvature angle improved in accuracy as the radius of
the cylinder was increased. Figure 6.13 shows that the minimum curvature angle
remained relatively consistent within a £2.0% tolerance with the exception of a few
points. Including these points the change in the minimum curvature angle was within
+4% of the actual value of -80°. Besl [8]-~ did not propose to use these angles as
surface characteristics because he considered them to be very sensitive Lo noise. The

behavior of the minimum principal curvature angle could be related Lo this problem

with noise.

maximum curvature vs. cylinder radius
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Figure 6.12: Maximum curvature angle as affected by scale changes

6.5.3 Curvedness

The normalized curvedness measure remained very stable as the radins of the cylinder

was increased. In fact, there was no mcasurcable difference over the entire scale of



minimum cutvature vs. cylinder radius
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Figure 6.13: Minimum curvature angle as affected by scale changes

radius as can be seen by examing the results shown in table 6.4.

radius | curvedness | radius | curvedness
5.0 0.707107 30.0 0.707107
10.0 0.707107 35.0 0.707107
15.0 [ 0.707107 | 4C.0 | 0.707107
20.0 0.707107 40 9 0.707107
25.0 0.707107 50.0 0.707107

Table 6.4: Curvedness measure of cylinder undergoing scale change

6.6 Gaussian width effects

The width of the Gaussian plays an important part in the effectiveness of the kernel
for ~e in determining partial derivatives. Ideally all of the measurements made for
use in comparisons would not be affected by the value chosen for . However, o and
kernel size are primary implementation considerations. The choice of o was examined

to see how various measurements were affected.



6.6.1 Surface area

Table 6.2 showtd how normalied surface arca was practically invariant to x-axis
rotation. The cylinder data was also used to examine surface arca for a rauge of
o values. A separate test was conducted on a slightly rotated ceylinder { 10°) {or
the same o range to sec if surface arca was still invariant to rotation. Figure 6.1
shows that invariance to rotation is dependent on o selection. Figure 6.15 shows the

normalized surface area vs. sigma
1.35 T u T T — v al

--- rolated 10 dogrees

nommalized surface area

1 15 2 25 3 a5 4 45 5 5.5 a
sigma

Figure 6.14: Gaussian width effects on estimated surface arca.

difference between the surface arcas for the rotated and non-rotated cylinder as o is
increased. The largest discrepancy is only 3.45% but this is still much arger than the
0.25% difference in surface arca due to rotation alone. For an error less than 1%, the

choice of o should be greater than 2.0.

6.6.2 Principal curvatures

The relationships between the principal curvature angles and the Ganssian width are

shown in figures 6.16 and 6.17. The maximum curvature angle seems to be susceptible
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Figure 6.15: Percentage difference between rotated and non-rotated cylinder
surface arcas as affected by choice of .

to low values of o while the minimum curvature angle seems susceptible to higher
values of o. A line has been drawn on figure 6.17 at ¢ &~ 3.8 to show where the
volume of the Gaussian kernel falls below 90% ( kernel size = 7x7 ). The inaccuracy
ol the values within the kernel may be a cause for the erratic behavior of the minimum
curvature angle after this point. For the maximum curvature angle, the choice of o
suggested from figure 6.15 ( 6>2.0 ) would eliminate the erratic values associated

«¢th smaller o values.

6.6.3 Curvedness

Changing the width of the Gaussian use- in creation of the convolution kernel had
no effect on the value of the normalized curvedness. The testing of o in the range 1.0

to 5.8 did not affect the calculated curvedness for the cylinder data.
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maxnum curvature angle vs. sigma
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Figure 6.17: Affect of sigma on the minin.. . principal curvature angle

6.6.4 Shape classification

The width of the Gaussian directly afic s the visual appearance of the shape classi-
fication regions. Larger values of o mean that more samples will have a larger effect,
on the end value of an operation. This is visually scen in the crcation of larger, more

homogeneous shape regions as shown in figure 6.18.

-3
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Figure 6.18: A) Depth map, B) - F) are H and K shape maps created by varying the

(Gaussian width



Chapter 7

Conclusions

The objective of this work was to find and implement techniques that would allow
for the monitoring of change in the appearance due to scoliosis as seen on the sur-
face of the back. Segmentation of the back surface into regions o similar shape was
performed as a first step to reduce the number of arcas which could be monitored. A
number of shape classifications were suggested: Gaussian and mean curvalure, sign
of curvatures, and shaje index. Determining the surface curvature values required a
method for calculating discrete partial derivatives. Two methods were examined: the
directional derivative method as used by Frobin [40] and the Gaussian convolution
method as used by Witkin [44], Koend- -1 k and van Doorn [26],[25], Babaud [21] and
Blom [24]. The directional derivative approach suflered from a number of problems.
One problem was its inability to produce suitably homogencous shape regions, pos-
sibly related to its poor first partial derivative approximation as presented carlier,
Another problem was the effect of rotation on the approximated partial derivatives.

While attempting to gather test results it was noticed that for rotated data the re-
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sulting shape regions were extremely noisy - there was a visible lack of homogeneity.
As mentioned previously, homogeneous shape regions are’crucial to determining any
results since regions are formed as continuous groupings of similarly-valued samples.
Fortunately, the Gaussian convolution approach was able to provide adequate ap-
proximations for the partial deri ratives that were not affected by rotation or scaling.

Changes in regions were examined by rotating and scaling test data and recording
the effects on curvedness, surface area, and the angles of the principal curvatures.
Curvedness was found to be veyy stable and was invariant to changes in rotation and
scaling. Normalized surface area and the principal curvature angles experienced little
change as a result of rotation and scaling but were found to have a dependence on the
width of the Gaussian used in the cuavolution kernel. A range of o which minimized
this dependency was determined to be o € (2.0,4.0). This range applied to the use
of a kernel that was 7x7. A larger kernel would allow a larger o as the upper bound.

The use of colour to identify shape classifications was added to help the operator
interpret "he segmented images. The colour labelling technique suggested by Koen-
derink and van Doorn [26] has been developed with ease of identification in mind and
it is hoped that users of the system developed in part with this work will find the

colour scheme to be intuitive.
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Chapter 8

Future Work

This work provides a good basis for the analysis of change in the scoliotic hack surface,
In order to improve its usefulness as a possible diagnostic tool, work should continue
in both the calculation of the quantitative results and in the clinic. For the soltware

program the following areas should be investigated:
e removal of o dependence from surface arca and principal curvature angles.
e find other invariant quantities to describe the shape regions

e find an alternate kernel which does not require v - convolutions to produce an
approximation to the second partial derivative. This would allow use of a targer
kernel if necessary with the same loss of edge data as the current implementa-
tion. One possible kernel design technique is offered by Weiss” power-preserving

filters [42].

On the clinical side, many back surface data scts need to be examined to test the

practical values of curvedness, normalized surface arca, and the principal curvature
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angles as measures of change, Also, the type of shape representation which provides
the best results needs to be determined. From the tests conducted in this work it
would scem that the shape index classification offers the most discrimation between
shape types but it may be too much discrimination for practical use. Lastly, if an
alternate kernel technique is not found, further usage of the program with clinical
data may help to find a suitable o value which provides good results for most back

surface analyses.
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Appendix 1

Vector Mathematics

1.1 Vector Definition

vector: a quantity that has both a magnitude and a direction. A vector in n-

dimensional space can be represented as an ordered n-tuple where caclh component of

the n-tuple is the magnitude in that direction. For the three-dimensional case vectors
_’ ' 0 -

can be expressed as: v = < v;,v,,v. >, where the standard Cartesian coordinate

reference frame is being used.

1.2 Vector Operations

Addition

—

2 + -B) = ¢ =<ay+bgay+bya,+ 06, >
Subtraction

- = —
C

a-b = =<az—bx,ay—[)y,az—/)z>

Magnitude
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- —7>
Ia|= va§+a§+a3

Dot product,

— — —
a -b=c¢ =a+b.+a,+b,+a,*b.
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Appendix 2

Discrete Convolution

The continous convolution operation for two function fla.y) *g(r.y) is defined as,

o]

f(z,y)*g(e,y) = / r\ S, B)gle — o, y— pB)da df3.

—e J =00
The two-dimensional discrete convolution relationship is similarly defined. Lt
f(z,y) and g(z,y) be two discrete arrays of size A x I3 and ' x 1) respectively. For
discrete functions periods are assumed in both the x and y directions. 'The periodic
nature of discrete functions is evident when they are examined in the Fourier domain.
To avoid the wrapping effect of circular convolution, the periods in the  and y

directions for the resultant function are chosen as

MZ2A+C —1
and

NzB+D -1
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M~ N—-1

[y)rgle,y)= 3 > [(m.n)g(r —m, y—n)

m=0 n=0
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Appendix 3

Discrete derivative kernels

Let S be a surface expressed as a collection of discrete points S(i.j). Using a 3x3
neighbourhood centered about a point, an approximation to the curvature al that
point can be doterasoed. The surface vectors for the neighbourhood g, are created

as follows: ( h it the sampling distanc %

9ij =< 1,3,5(¢,j) >
Gisrg =< i+ hj, S+ hj) >
Gt =< i— hyj,S(i = h,j) >
Gij—1=<1t,3 —h,S(2,5 — h) >
Gije1 =< t,3 + R, 50,7+ h) >
givr i1 =<t+h, g+ h,SE+hj4+h) >

Git1,5—-1 =< t+ h7.7 - I",'S’(": + l"’.j - I’) >
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92
Ji—14+1 =< i— /l,j + II,S'(Z' - }L,j -+ }l) >

i1 -1 =<i—=h,j—hSGE—=hj—=h)>

Using these vectors, the approximations to the derivatives of the surface are:

Ty = on Jit —g-11 +gio — g—10 + G1-1 — g-1-1)
I
o = (g = go1a + go1 — go-1 + 911 — Gi—1)

|
Tuw = 55(ho+ g0+ 91 +F9-11 + 91-1 + 9-1-1 — 2(goo + go1 + go-1))

3h?
]
Tyy = ;ﬁL.j(!ln — g+ g1 — g1-1)
1
Wyy = T gor +go—r + 911 + 911 +F 911 + g—1-1 — 2(goo + 910 + g-10))

Substituting in the vectors g; ; yields:

1
tw =< 1,0, (S + hoj + h) = S(E = hyj + k) + 56 + by j)

~S(E—h,j)+SE+h,j—h)—S@E—h,7—h))>
l . . . . ..

Xy =< 0, l,a(S(z ~h,j+h)—-SE—-h,; —h)+S5GE,7+h)
—S( G — k) + S+ hyj+ h) = SG + hyj ~R)) >

Ty =< O,O,W(S(z +hg)+S@E=n,j)+SE+h,j+h)

+S(E~h,j+h)+SGE+h,j—h)+SG—h,j—h)

— 25(4,5) — 28(4,5 + k) — 25(i,§ — b)) >

1

Ty = Ow 07_——
! < 4h2



Lp =< O.O.W(S(z._l + )+ S =) S h)

+ S(I + ’I.j et h) + ‘Q(l —_ ]“j 4 h) + .\‘(l. i h-.i - ")

— 28500 ) =280+ hog) =280 = ho) >

Gaussian curvature K of the surface can be determined using:

M=n-wx,

N = (3.1)

where n is defined as

Ty X Ty

|, % @y

Il

n

To simplify notion, I will refer to the x,y and z components of a vector as vec-
tor.component. For instance, the z component of the vector o, would be i, 2.

Evaluating for E, F, and G yields:

E =14 (z4.2)* (3.2)

a3



I = (r,.z)(r,.2) (3.3)

G =1+ (£,.2)° (3.4)

Solving for the normal vector noL..

< =z, —p.2, 1 >

\'zﬂ;r,,.z)2 + (Xp.2)% + 1

" o=

Now evalnating for I, M, and N ...

|, = — .-'I-'muz (35)
\/\.’r“.z)z + (x,.2)2 + 1

:l"uv-z v . (3.6)
\'2/(;1:“.:)2 + (@,.2)2 + 1

N = "”‘*’“"" (3.7)
\2/(.1:,,.,:)2 + (2y.2)% + 1

=
I

Substituting equations 3.3 through 3.7 into equation 3.1 to solve for K yields:

- (e 2) (@ p0.2) = (B40.2)? ]
h= ((4.2)2 + (2,.2)% + 1)2 (3.8)



