VOLUME II:
by

R.T. SEIDNER<br>Water Quality Control Branch<br>Pollution Control Division<br>Alberta Environment

for

ALBERTA OIL SANDS
ENVIRONMENTAL RESEARCH PROGRAM
HY 2.8.1
July 1980

## TABLE OF CONTENTS

Page
DECLARATION ..... ii
LETTER OF TRANSMITTAL ..... iii
DESCRIPTIVE SUMMARY ..... iv
LIST OF TABLES ..... $x i i$
LIST OF FIGURES ..... xV
ABSTRACT ..... xix
ACKNOWLEDGEMENTS ..... xxi

1. INTRODUCTION ..... 1
1.1 Study Area Overview ..... 1
1.2 Water Quality Sampling Projects and Reports ..... 3
1.3 Objectives of the Water Quality Sampling Program ..... 4
1.4 Regional Water Sampling Sites ..... 5
1.5 Impact Related Water Sampling ..... 12
1.6 Water Sampling Methods ..... 12
1.7 Analytical Methods and Laboratories ..... 15
1.8 Quality Control Program ..... 17
2. COMPLIANCE WITH WATER QUALITY CRITERIA ..... 22
2.1 Standards of Water Qual ity Criteria ..... 22
2.2 Noncompliant Water Quality Data ..... 27
2.2 .1 Calcium ..... 27
2.2.2 Magnesium ..... 30
2.2.3 Sodium ..... 30
2.2 .4 Chloride ..... 30
2.2 .5 Sulphate ..... 32
2.2 .6 Total Alkalinity ..... 32
2.2 .7 pH ..... 32
2.2.8 Carbonate ..... 33
2.2 .9 Fluoride ..... 33
2.2.10 Total Filterable Residue Fixed ..... 33
2.2.11 Threshold Odour Number ..... 33
2.2.12 Total Nonfilterable Residue Fixed ..... 33
2.2.13 Turbidity ..... 34
2.2 .14 Surfactants ..... 34
2.2 .15 Nitrate Plus Nitrite ..... 34
2.2.16 Ammonia ..... 34
2.2 .17 Total Kjeldahl Nitrogen ..... 35
2.2 .18 Total Phosphorus ..... 35
2.2 .19 Phenol ..... 36
2.2 .20 Sulphide ..... 38

## TABLE OF CONTENTS (CONTINUED)

2.2 .21 Cyanide ..... 38
2.2.22 Trace Metals and Elements ..... 38
2.2.23 Boron ..... 38
2.3 Summary of Noncompliance Analysis ..... 40
3. INTERPARAMETER RELATIONSHIPS ..... 43
3.1 Major lons ..... 443.1 .1
Specific Conductance-Discharge Relationships in Tributaries ..... 50
3.1 .2 Specific Conductance-Ion Relationships in Tributaries ..... 55
3.1 .3 Specific Conductance Relationships
in the Mainstem Rivers ..... 75
3.1 .4 Variation of Major Ion Loadings in the Mainstem ..... 82
3.1 .5 Spacial Specific Conductance Variation in Lake Athabasca ..... 88
3.1 .6 Temporal Variation of Alkalinity and Hardness in Lakes ..... 89
3.1 .7 Major Ion Changes in the Peace-Athabasca Delta ..... 94
3.2 Suspended Material ..... 97
3.2 .1
Turbidity Frequency in Tributaries ..... 100
3.2.2 Temporal Variation in Suspended Solids in Tributaries ..... 104
3.3 Nutrients ..... 115
3.3.1 Temporal Variation in Total Dissolved Organic Carbon in Tributaries ..... 117
3.3 .2 Temporal Variation in Total Phosphorous in Tributaries ..... 121
3.3 .3 Temporal Variation in Ammonia in Tributaries ..... 124
3.3.4 Temporal Variation in Total Kjeldahl Nitrogen in Tributaries ..... 127
3.3 .5 Nutrient Ranges in the Pace-Athabasca Delta ..... 127
3.4 Metals and Trace Elements in Lotic Waters ..... 131
3.4 .1 I ron ..... 134
3.4.2 Aluminum ..... 138
3.4 .3 Manganese ..... 138
3.4 .4 Zinc ..... 142
3.4 .5 Copper ..... 142
3.4 .6 Nickel ..... 146
3.4 .7 Lead ..... 146
3.4 .8 Chromium ..... 151
3.4 .9 Cobalt ..... 151
3.4 .10 Silver ..... 151
3.4 .11 Vanadium ..... 158
3.4 .12 Cadmium ..... 158
3.4 .13 Arsenic ..... 158
3.4 .14 Selenium ..... 164
Page
3.4 .15 Mercury ..... 168
3.5 Summary of Interparameter Relationships ..... 168
3.5 .1 Major Ions ..... 168
3.5.2 Suspended Solids ..... 171
3.5 .3 Nutrients ..... 171
3.5.4 Trace Elements ..... 172
4. REFERENCES CITED ..... 173
5. APPENDIX ..... 179
5.1 Reporting and Quality Control Section of Contract for Analytical Services ..... 179
5.1 .1 Analytical Quality Control ..... 179
5.1.2 Reporting ..... 181
5.2 Data Summaries for All Sample Sites ..... 182
6. LIST OF AOSERP RESEARCH REPORTS ..... 242

## LIST OF TABLES

Page

1. Water Sampling Activity in Tributaries ..... 8
2. Water Sampling Activity in Lakes and the Peace- Athabasca Delta ..... 9
3. Water Sampling Activity in the Mainstem Athabasca and Clearwater Rivers ..... 10
4. Dates of Water Sampling Activity on the Mainstem Athabasca and Clearwater Rivers ..... 11
5. Sample Bottles and Preservatives Used ..... 16
6. Parameters Measured and NAQUADAT Methods Used ..... 18
7. Externally Administered Quality Control Tests ..... 20
8. Standards of Water Quality Criteria ..... 23
9. Compliance Analysis of Surface Water in Relationship to the Tightest Criteria Summarized in Table 8 ..... 28
10. Noncompliant Sodium Values and Associated Chloride and Total Filterable Residue Fixed Values for Zone 7 in 1976 and 1977 ..... 31
11. Noncompliant Boron Levels ..... 41
12. Results of Linear Regression on 1976 and 1977 Specific Conductance and Discharge Data for the Relationship $S C=K Q^{n}$ ..... 53
13. Ionic Equivalent Conductivities at Infinite Dilution at $25^{\circ} \mathrm{C}$ for the Main Surface Water Ions ..... 58
14. Results of Linear Regression on 1976 and 1977 Specific Conductance and Filterable Residue Fixed Data for the Relationship $S C=K(F R F)+S C_{o}$ ..... 61
15. Results of Linear Regression on 1976 and 1977 Specific Conductance (SC) and Calcium Data for Equation (5) ..... 65
16. Results of Linear Regression on 1976 and 1977 Specific Conductance (SC) and Magnesium Data for Equation (5). ... ..... 66
17. Results of Linear Regression on 1976 and 1977 Specific Conductance (SC) and Sodium Data for Equation (5) ..... 67

## LIST OF TABLES (CONTINUED)

Page
18. Results of Linear Regression on 1976 and 1977 Specific Conductance (SC) and Potassium Data for Equation (5) ..... 68
19. Results of Linear Regression on 1976 and 1977 Specific Conductance (SC) and Bicarbonate Data for Equation (5) ..... 69
20. Results of Linear Regression on 1976 and 1977 Specific Conductance (SC) and Sulphate Data for Equation (5) ..... 70
21. Results of Linear Regression on 1976 and 1977 Specific Conductance (SC) and Chloride Data for Equation (5) ..... 71
22. Results of Linear Regression on 1976 and 1977 Specific Conductance (SC) and Fluoride Data for Equation (5) ..... 72
23. Results of Linear Regression on 1976 and 1977 Specific Conductance (SC) and Silica Data for Equation (5) ..... 73
24. Results of Linear Regression on 1976 and 1977 Specific Conductance and Discharge Mainstem River Data for Equation (1). The Coefficient of Determination is Shown as $r^{2}$ ..... 77
25. Results of Linear Regression on 1976 and 1977 Specific Conductance and Filterable Residue Fixed Mainstem River Data for Equation (4) ..... 80
26. Loadings of Major lons on Mainstem Sites from February 1976 to February 1977 ..... 83
27. Laboratory Analysis of Water Sampled on 25 October 1977.. ..... 91
28. Relative Atom Proportions of Carbon, Nitrogen, and Phosphorus Occurring in Nature ..... 116
29. Typical Elemental Analyses of 0il Sands ..... 133
30. Occurrence of Levels of Total Iron Greater than 10 ppm in 1976 and 1977 in Rivers and Tributaries ..... 136
31. Upper 25 Percentile Levels Occurring During Autumn-Winter of Total Iron, Aluminum, Manganese, and Zinc for Rivers and Streams. Ranges and Occurrences for October Through March 1976 and 1977 ..... 137
32. Occurrences of Levels of Total Manganese Greater than 1.0 ppm in 1976 and 1977 in Rivers and Tributaries ..... 141

## LIST OF TABLES (CONCLUDED)

## Page

33. Occurrences of Levels of Total Copper Greater than 0.04 ppm in 1976 and 1977 in Rivers and Tributaries .... 145
34. Occurrences of Levels of Total Nickel Greater than 0.03 ppm in 1976 and 1977 in Rivers and Tributaries .... 148
35. Occurrences of Levels of Total Lead Greater than 0.03 ppm in 1976 and 1977 in Rivers and Tributaries150
36. Occurrences of Levels of Hexavalent Chromium Greater than 0.02 ppm in 1976 and 1977 in Rivers and Tributaries153
37. Occurrences of Levels of Total Cobalt Greater than 0.01 ppm in 1976 and 1977 in Rivers and Tributaries ... 155
38. Occurrences of Levels of Total Silver Greater than 0.005 ppm in 1976 and 1977 in Rivers and Tributaries ... 157
39. Occurrences of Levels of Total Vanadium Greater than 0.003 ppm in 1976 and 1977 in Rivers and Tributaries ... 160
40. Occurrences of Levels of Total Cadmium Greater than 0.002 ppm in 1976 and 1977 in Rivers and Tributaries ... 162
41. Occurrences of Levels of Total Arsenic Greater than 0.005 ppb in 1976 and 1977 in Rivers and Tributaries ... 165
42. Occurrences of Levels of Total Selenium Greater than 0.8 ppb in 1976 and 1977 in Rivers and Tributaries ..... 167
43. Occurrences of Levels of Total Mercury Greater than 1.0 ppb in 1976 and 1977 in Rivers and Tributareis170

## LIST OF FIGURES

Page

1. The Alberta Oil Sands Environmental Research Program Study Area ..... 2
2. Water Sampling Sites and Regions ..... 7
3. Beaver River and Poplar Creek Drainages Before Syncrude ..... 13
4. Beaver River and Poplar Creek Drainages After Syncrude ..... 14
5. Phenol Levels at Selected Small Tributaries ..... 37
6. Phenol Ranges and Means for Sites on the Athabasca River ..... 39
7. Modified Stiff Patterns Showing Minimum and Maximum Equivalent Concentrations of the Major lons ..... 45
8. Specific Conductance-Discharge Relationship of the Firebag and MacKay Rivers in 1977 ..... 51
9. Distribution of Loading Factors and Dilution Factors for Gauged Tributaries in 1977 ..... 54
10. Specific Conductance-Discharge Relationship of Poplar Creek from 1976 and 1977 ..... 56
11. Specific Conductance-Filterable Residue Fixed Relationship for the Firebag and MacKay Rivers in 1977 ..... 60
12. Relationship of Proportionality of Ionic Activity per Total Dissolved Solids (K) and non-linearity Factor (SC ${ }_{\mathrm{O}}$ ) ..... 62
13. Relationship of Major Ion Concentrations with Specific Conductance for the Firebag River in 1977 ..... 64
14. Specific Conductance-Discharge Relationships of Sites on the Mainstem River System from February 1976 to February 1977 ..... 76
15. Distribution of Loading Factors (K) and Dilution Factors ( n ) for Mainstem Sites from February 1976 to February 1977 ..... 78

## LIST OF FIGURES (CONTINUED)

Page
16. Distribution of Proportionality and Non-linearity Factors for Mainstem Sites from February 1976 to February 1977 ..... 81
17. Loadings of the Major Cations in the Athabasca River during Selected Seasonal Dates ..... 86
18. Loadings of the Major Anions in the Athabasca River during Selected Seasonal Dates ..... 87
19. Spacial Variance of Specific Conductance in Lake Athabasca on 25 October 1977 ..... 90
20. Temporal Variation in Total Alkalinity in Lakes in 1977 ..... 93
21. Temporal Variation in Total Hardness in Lakes in 1977 ... ..... 95
22. Concentration Ranges for the Major lons at Sites in the Peace-Athabasca Delta ..... 96
23. Suspended Sediment Rating Curves at the WSC Guages below Fort McMurray and at Embarras (from Doyle 1977) ..... 99
24. Turbidity Frequency for Major Watersheds in 1977 ..... 101
25. Turbidity Frequency for Smaller Watersheds in 1977 ..... 103
26. Progression of Nonfilterable Residue- and Nonfilterable Residue Fixed-discharge Relationships for the MacKay River (Site DBOOll) in 1977 ..... 105
27. Progression of Nonfilterable Residue- and Nonfilterable Residue Fixed-discharge Relationships for the Steepbank River (Site DA0060) in 1977 ..... 106
28. Progression of Nonfilterable Residue- and Nonfilterable Residue Fixed-discharge Relationships for the Firebag River (Site DCOOIO) in 1977 ..... 107
29. Progression of Nonfilterable Residue- and Nonfilterable Residue Fixed-discharge Relationships for the Upper Ells River (Site DA0100) in 1977 ..... 108

## LIST OF FIGURES (CONTINUED)

Page
30. Progression of Nonfilterable Residue- and Nonfilterable Residue Fixed-discharge Relationships for the Hangingstone River (Site CDOO40) in 1977 ..... 109
31. Progression of Nonfilterable Residue- and Nonfilterable Residue Fixed-discharge Relationships for Thickwood Creek (Site DB0040) in 1977 ..... 110
32. Progression of Nonfilterable Residue- and Nonfilterable Residue Fixed-discharge Relationships for the Muskeg River (Site DA0080) in 1977 ..... 111
33. Progression of Nonfilterable Residue- and Nonfilterable Residue Fixed-discharge Relationships for Asphalt Creek (Site DA0080) in 1977 ..... 112
34. Progression of Nonfilterable Residue- and Nonfilterable Residue Fixed-discharge Relationships for Poplar Creek (Site DA0070) in 1977 ..... 113
35. Total Organic Carbon Dissolved in Major Rivers ..... 118
36. Total Organic Carbon Dissolved in Small Tributaries ..... 120
37. Total Phosphorus in Major Rivers ..... 122
38. Total Phosphorus in Small Tributaries ..... 123
39. Ammonia in Major Rivers ..... 125
40. Ammonia in Small Tributaries ..... 126
41. Total Kjeldahl Nitrogen in Major Rivers ..... 128
42. Total Kjendahl Nitrogen in Small Tributaries ..... 129
43. Ranges of total Dissolved Organic Carbon, Total Kjeldahl Nitrogen and Total Phosphorus Measured in the Peace-Athabasca Delta in 1977 ..... 130
44. Frequency Distribution for Total Iron in Rivers and Tributaries by Zones from 1976 and 1977 Data ..... 135
45. Frequency Distribution for Total Aluminum in Rivers and Tributaries by Zones from 1976 and 1977 Data ..... 139

## LIST OF FIGURES (CONCLUDED)

Page
46. Frequency Distribution for Total Manganese in Rivers and Tributaries by Zones from 1976 and 1977 Data ..... 140
47. Frequency Distribution for Total Zinc in Rivers and Tributaries by Zones from 1976 and 1977 Data ..... 143
48. Frequency Distribution for Total Copper in Rivers and Tributaries by Zones from 1976 and 1977 Data ..... 144
49. Frequency Distribution for Total Nickel in Rivers and Tributaries by Zones from 1976 and 1977 Data ..... 147
50. Frequency Distribution for Total Lead in Rivers and Tributaries by Zones from 1976 and 1977 Data ..... 149
51. Frequency Distribution for Total Hexavalent Chromium in Rivers and Tributaries by Zones from 1976 and 1977 data ... 152
52. Frequency Distribution for Total Cobalt in Rivers andTributaries by Zones from 1976 and 1977 Data154
53. Frequency Distribution for Total Silver in Rivers and Tributaries by Zones from 1976 and 1977 Data ..... 156
54. Frequency Distribution for Total Vanadium in Rivers and Tributaries by Zones from 1976 and 1977 Data ..... 159
55. Frequency Distribution for Total Cadmium in Rivers and Tributaries by Zones from 1976 and 1977 Data ..... 161
56. Frequency Distribution for Total Arsenic in Rivers and Tributaries by Zones from 1976 and 1977 Data ..... 163
57. Frequency Distribution for Total Selenium in Rivers and Tributaries by Zones from 1976 and 1977 Data ..... 166
58. Frequency Distribution for Total Mercury in Rivers and Tributaries by Zones from 1976 and 1977 Data ..... 169

ABSTRACT

A regular program of water quality sampling has been instituted throughout the region of current oil sands development in northeastern Alberta. The goals of this program were to provide a base of background information on an extensive number of water quality parameters to enable the employment of predictive techniques and at the same time to obtain an understanding of natural water quality loadings and processes. The data collected has been stored under NAQUADAT codes at Alberta Environment, Water Quality Control Branch.

The following trends were concluded from the set of data covering the first two years of sampling (1976 and 1977):

1. Definite relationships of discharge with major ionic species were demonstrated for most of the tributaries in the region. The relationship at each site, attributable to the geology and physiography of the basins, ranged in character from the highly variable hard waters of the Mackay and Hangingstone rivers to the relatively stable soft waters of the Firebag and Richardson rivers emanating from the Precambrian Shield. Disruptions in typical patterns could be discerned for Poplar Creek which had been subject to diversion influence. In the stretch of the Athabasca River flowing through the oil sands development area, dilution behaviour typical of the tributaries was noted. Man made ionic loadings to the Athabasca River could not be discerned from the data.
2. A high variation in the turbidity regimes of the tributaries was noted throughout the area. The tributaries varied, from the highly enduring turbidity of the Hangingstone River to the consistently clear Firebag River. In most streams and rivers, there were at least brief episodes of high suspended solids as measured by both nonfilterable residue and nonfilterable residue fixed. Many smaller tributaries showed high duration of an organic component of the nonfilterable residue, likely caused by muskeg input. The above average suspended materials regimes of tributaries adjacent to oil sands activities were not above the range for the region.
3. Throughout the region, the maximum total dissolved organic carbon levels varied between 10 and 45 ppm . Occurrences of maxima typically corresponded to allochthonous inputs during spring and autumn, but anomalous behaviours were exhibited by a relatively constant regime in Poplar Creek and an irregular pattern in Bridge Creek Diversion which appear to be a consequence of development activities.
4. Maximum total phosphorus levels ranged from 0.1 to 0.5 ppm throughout the region. No single controlling factor was discernible from the data and tributaries affected by mining activity showed no significant departure from the regional pattern.

The large group of scientists and engineers, too numerous to mention by name, associated with the Alberta Oil Sands Environmental Research Program provided a stimulating environment in which to work. The author particularly wishes to thank the follow for their help and encouragement: A. Avramenko, E. Wrangler, A. Masuda, and S.B. Smith.

This research project HY 2.8.1 was funded by the Alberta
$0 i 1$ Sands Environmental Research Program, established to fund, direct, and co-ordinate environmental research in the Athabasca Oil Sands area of northeastern Alberta.

## 1. INTRODUCTION

1.1 STUDY AREA OVERVIEW

The Alberta Oil Sands Environmental Research Program (AOSERP) study area is located in northeastern Alberta (Figure l). It encompasses approximately $28600 \mathrm{~km}^{2}$ including most of the mineable area of the Athabasca deposit of oil sands. This vast deposit, which is one of several oil sands deposits in Alberta, contains $600 \times 10^{9}$ barrels of bitumen (Berkowitz and Spreight 1975). The development of this deposit is currently underway with two surface mines operating north of Fort McMurray, Great Canadian 0il Sands Ltd. (GCOS) ${ }^{1}$ and Syncrude Canada Ltd. Also, a number of pilot in situ thermal recovery operations are being developed in the study area south of Fort McMurray, including Texaco Canada Ltd. and Amoco Petroleum Ltd. (Malden 1978).

The surface water originating in and passing through this study area flows through an extensive network of different types of interconnected water courses ranging from muskeg and lakes to small and large rivers. In addition to providing essential habitat for the aquatic fauna that already exists in these water courses, this water serves as a source for domestic, commercial, industrial, and recreational use.

The primary industrial use of water in the area now is for oil sands mining and processing. Current oil sands technology for both surface operations and in situ recovery requires the intake of water for use in processing and, for most operations, the discharging of some type of effluent into the water-ways. Presently, the first oil sands processing plant, GCOS, has a license to discharge process water into the Athabasca River. Although other surface mining plants, under present licence restrictions, will not be allowed that type of discharge, many will require discharge of mine depressurization water, as does Syncrude Canada Ltd. Most in situ processing of oil sands

[^0]

Figure 1. The Alberta Oil Sands Environmental Research Program study area and regions of water sampling activity.
requires the withdrawal of water from either the surface water or the groundwater systems, in addition to perturbation of the groundwater system. Some kinds of in situ operations may require either discharge or impoundment of waste water (Humphreys 1979).

More general use of the regional water supply is demonstrated in the Athabasca River Delta and the neighbouring region in Wood Buffalo National Park. These areas support a commercial fishery, an important trapping industry, and a significant waterfowl population. Each kind of use of water has its own set of water quality measurements. Naturally, for use of water for human consumption or for safeguarding aquatic fauna, higher standards are called for than with most other uses. Development and expansion of the oil sands industry in the AOSERP area will place demands on the surface water system and maintenance of its quality, especially with regard to the aquatic fauna, is of increasing concern.

### 1.2 WATER QUALITY SAMPLING PROJECTS AND REPORTS

In order to gather information on the state of baseline water quality and to detect any changes that might be caused by current oil sands developments, a number of projects involving water sampling and analysis were initiated by AOSERP, starting in February 1976. Initially, a number of groups contacted by AOSERP collected and analyzed water samples with project goals in mind (Korchinski in revision; Costerton and Geesy 1979; Strosher and Peake 1977, 1978; Akena 1979; Froelich 1980).

At the beginning of 1977, a regionally co-ordinated sampling program was initiated, to be conducted for AOSERP by the Water Quality Control Branch, Pollution Control Division of Alberta Environment. This program was to run for at least three years and was aimed at the entire range of surface water: the mainstem Athabasca and Clearwater rivers, their tributaries, the lakes, and the Peace-Athabasca Delta. All data points gathered by this project were combined with data collected by the other AOSERP projects and stored in the National Water Quality Data Bank (NADUADAT) coded computer files at Water Quality

Control Branch of Alberta Environment. See Akena (in prep.) for availability of these data which constitute a public record of AOSERP activity.

The intention of this report was to summarize and interpret the first run of all data collected from the oil sands area (February 1976 to December 1977). Such an interpretive summary was to generally define the baseline water quality in the AOSERP study area, to provide a preliminary identification of naturally operating processes, and to initially indicate development perturbations affecting the water quality.
1.3 OBJECTIVES OF THE WATER QUALITY SAMPLING PROGRAM

One eventual goal of the regional sampling program was to provide well-founded background data for an extensive number of water quality parameters so that the data base may be used to assist in the evaluation of various types of oil sands development employing predictive methods. Calculated effects of current and alternate policies could be assessed by comparison with pre-development conditions established by the baseline study. To lay the foundation for this goal, it was deemed necessary to establish as wide a base as possible. Also, in order to broaden the data base, data collected prior to AOSERP that could be validated was to be included in the base.

Meeting a second goal was of a more immediate concern: that of obtaining an initial understanding of the natural water quality loadings and processes in the AOSERP study area and establishing baseline conditions of water quality for current and future studies.

Specific objectives set for the project conducted by Water Quality Control Branch were:

1. To provide regional baseline water quality data, including the Athabasca Delta area;
2. To provide data on the variation of water quality parameters with time at the mouths of important stream basins. This will be used in future studies to confirm the general accuracy of calibrated water models by comparing predicted level with measured levels;
3. To identify significant naturally occurring water quality parameters which may be included in procedures for predicting water quality;
4. To provide a preliminary assessment of the contributions of water originating in or passing through the AOSERP area on the water chemistry in the Athabasca Delta area; and
5. To provide water quality information for concurrent studies.
1.4 REGIONAL WATER SAMPLING SITES

Grab samples of lake, river, and stream water were collected at various locations in and near the AOSERP study area commencing in February 1976. Samples collected by other AOSERP projects were taken bi-monthly, quarterly, or less frequently, according to individual project specifications which tended to be site specific. When the regional sampling project was commenced by the Water Quality Control Branch in April 1977, most samples were taken on monthly basis throughout the region.

In order to provide a basis for judging the coverage of water sampling activity, as well as being handy for the purposes of describing water quality data, a broad geographical classification of watersheds was made. The following regions were described (see Figure 1):

1. The watersheds south of Fort McMurray between the Athabasca-Clearwater mainstem. Within the study area, this comprises the Horse and Hangingstone rivers (having basins of 2180 and $914 \mathrm{~km}^{2}$, respectively) and includes all runoff from the north slopes of Stoney Mountain;
2. The watersheds east of the Athabasca River between the Firebag and Clearwater rivers. This area is mainly covered by the Muskeg and Steepbank river basins. These basins are of similar size ( 1460 and $1370 \mathrm{~km}^{2}$, respectively);
3. The Mackay River basin which is a large (5230 $\mathrm{km}^{2}$ ) watershed on the west side of the Athabasca River;
4. The Ells River basin ( $2476 \mathrm{~km}^{2}$ ) which drains the large chain of headwater lakes in the Birch Mountains;
5. A group of small tributaries draining the east slopes of Birch Mountains;
6. The Firebag ( $6030 \mathrm{~km}^{2}$ ) and Richardson (2950 $\mathrm{km}^{2}$ ) river basins, both of which rise in the Canadian Shield in Saskatchewan.
7. Watersheds in the current surface mining area. These comprise the small basins of Poplar Creek and Beaver River;
8. The mainstem trunk of the Athabasca and Clearwater rivers; and
9. The Peace-Athabasca Delta. This area is the ultimate recipient of water flowing through the study area.
These divisions, being primarily geographical, serve well for preliminary regional consideration of water quality data. A more precise regionalization, based on physiographic considerations and surficial geology, has been carried out (Yaremko 1978). Al though that regionalization addressed primarily hydrometric considerations, its structure is remarkably similar to the one presented here.

The 1976-1977 water sampling activity in these regions is presented in Tables 1, 2, and 3. The sampling sites are indicated in Figure 2 and a precise description of each site has been provided elsewhere (Akena in prep.). A detailed schedule of sampling activity for the mainstem Athabasca and Clearwater rivers is presented in Table 4 where the differences in activities of project-oriented objectives (three projects operated in the period of February 1976 to February 1977) and regional objectives (starting June 1977) are apparent.

The AOSERP Mildred Lake Research Facility (Figure l) was used as a base for all sampling with the exception of far northern locations. Truck, jet-boat, snowmobile, and hel icopter were used as required to reach sampling sites. At the time of sampling, measurements of pH , specific conductance, dissolved oxygen, and temperature


Figure 2. Water quality sampling and gauging station locations.

Table 1. Water sampling activity in tributaries.

| Region Figure | Site (Figure ${ }^{2)}$ |  |  | Annual Frequency |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Cride: <br> Figure 4 | Code: Water Survey Canada | Name | 1976 | 1977 |
| 1 | 1.2 | OOATO7C00040 | Hangingstone River at Hwy 63 | $8{ }^{\text {a }}$ | $11^{\text {a }}$ |
|  | 1.3 | OOATO7CDOIOO | Saline Creek | 5 | 3 |
|  | 1.4 | 00atozecoozo | Horse River at Abasands Park |  | $2^{\text {a }}$ |
|  | 1.5 | OOATO7CCO300 | Horse River at Mouth | 0 | 4 |
| 2 | 2.1 | 00ato7da0060 | Steepbank River | $6^{\text {a }}$ | $11^{\text {a }}$ |
|  | 2.2 | OOATO 7 DA0080 | Muskeg River |  |  |
|  | 2.3 | O0ATO70A0090 | Hartley Creek | a | a |
| 3 | 3.1 | OOATOTDB0040 | Thl ckwood Creek | 3 | $11^{\text {a }}$ |
|  | 3.2 | OOATO7DB0020 | Dover River | $2^{\text {a }}$ | $11^{\text {a }}$ |
|  | 3.3 | OOATO7DB00 30 | Dunklrk River | $4^{\text {a }}$ | $12^{\text {a }}$ |
|  | 3.4 | 00AT070B0010 | Mackay River |  |  |
|  | 3.5 | OOATO7DB0011 | Mackay River at Hwy 63 | $7^{\text {a }}$ | $11^{\text {a }}$ |
| 4 | 4.4 | O0ATO7DAOIOO | Upper Ells River | $2^{\text {a }}$ | $11^{\text {a }}$ |
|  | 4.5 | OOATO7DA0170 | Lower Ells River Above Joslyn Cr. | $2^{\text {a }}$ | $13^{\text {a }}$ |
|  | 4.6 | OOATOTDAOI60 | Joslyn Creek |  |  |
|  |  | OOATO7DAOO98 OOATO | Elis River near Mouth \#1 <br> Ells River near Mouth \#2 | $\stackrel{2}{1}$ | ${ }_{0}^{0}$ |
| 5 | 5.1 | O0ATO7DA0190 | Upper Tar River | 2 | $9^{\text {a }}$ |
|  | 5.2 | OOATO70AOI50 | Lower Tar River | $2^{3}$ | $11^{3}$ |
|  | 5.3 | 00AT07DA0151 | Tar River near Mouth | 3 | $1{ }^{1}$ |
|  | 5.4 | O0ATO7DAOIL | Calumet River | $1{ }^{10}$ |  |
|  | 5.5 |  | Calumet River near Mouth | 6 | ${ }^{\text {a }}$ |
|  | 5.6 | OOATOTDAOI 30 | Pierre Rlver | $2^{8}$ | $8{ }^{\text {a }}$ |
|  | 5.7 | OOATO7DAO131 | Plerre River near Mouth | 4 | ${ }_{8}^{0}$ |
|  | 5.8 5.9 | O0ATO7DAOI 20 OOATO | Asphalt Creek Eymundson Creek | ${ }_{4}^{20}$ | 8 |
|  | 5.10 | OOATO7DAOI22 | Eymundson Creek near Mouth | 1 | ${ }_{8}{ }^{\text {a }}$ |
|  | 5.11 | 00AT07DA0110 | Unnamed Creek | $2^{\text {a }}$ | $8{ }^{\text {a }}$ |
|  | 5.12 | O0ATO7DAOIII | Tributary to Unnamed Creek | 1 | 0 |
|  |  | 00atotoailis | Unnamed Creek near Mouth | 2 | 0 |
| 6 | 6.1 | OOATO70C0010 |  | 6a | $11^{\text {a }}$ |
|  | 6.2 | 00ATO7DC0011 | Flrebag Rlver near Mouth | 0 |  |
|  | 6.3 | O0ATO 70 C0020 | Lost Creek | 1 | $7{ }^{\text {a }}$ |
|  | 6.4 | 00ATO7DD0020 | Richardson River | $0^{2}$ | $5^{\text {a }}$ |
| 7 | 7.1 | O0ATO70A0070 | Poplar Creek | $6{ }^{\text {a }}$ |  |
|  | 7.2 | OOATO7DA0180 | Beaver River above Syncrude | $3{ }^{\text {a }}$ | 109 |
|  | 7.3 | OOATOTDAOIT9 | Beaver River inside Syncrude | 2 | 0 |
|  | 7.4 | OOATO7DAO181 | Beaver River at Hwy 63 | 5 | 10 |
|  | 7.5 | O0ATO7DAO182 | Bridge Creek at Hwy 63 | 4 | 8 |

${ }^{a}$ Continuous gauging conducted by Water Survey of Canada.

Table 2. Water sampling activity in lakes and the Peace-Athabasca Delta.

| Region (Figure 1) | Site (Figure 2) |  | Annual Frequency |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Code: Water <br> Survey Canada | Name | 1976 | 1977 |
| 1 | 01AT07DE0011 | Gregoire Lake at weir | 2 | 11 |
|  | O1ATOTCE0010 | Gregoire Lake at Anzac | 1 | 0 |
| 2 | 01 AT07CD3000 | Lake 26 km East of Fort McMurray | 1 | 0 |
|  | 01AT07DA0300 | McClelland Lake | 1 | 0 |
| 3 | $01 \mathrm{AT07DB0035}$ | Birch Lake near Snipe Creek | 0 | 1 |
| 4 | 01AT07DA0220 | Eaglenest Lake | 0 | 12 |
|  | 01 AT07DA0200 | Upper Gardiner Lake | 0 | 11 |
|  | $014 T 07$ DA0210 | Namur Lake | 0 | 11 |
|  | 01AT07DA2000 | Gardiner Lake-lower site | 0 | 4 |
| 9 | 00AT07DD0090 | Jackfish Creek | 0 | 5 |
|  | 01AT07DD0080 | Richardson Lake | 1 | 5 |
|  | 01AT07MD2000 | Lake Athabasca at Sandy Point | 0 | 4 |
|  | 01 AT07KF0200 | Lake Claire North end of Birch River | 0 | 4 |
|  | 01 AT07KF0201 | Lake Claire at 28 th baseline | 0 | 3 |
|  | 00AT07KF0140 | Prairie River | 0 | 5 |
|  | 00AT07KF0100 | Mamawi Lake Channel | 0 | 5 |
|  | 00AT07KF0101 | Chenal des Quatre Fourchers | 0 | 5 |
|  | 00AT07NA0030 | Riviere des Rochers | 1 | 4 |
|  | 00AT07NA0031 | Riviere des Rochers at mile 217.5 | 0 | 1 |

Table 3. Water sampling activity in the mainstem Athabasca and Clearwater rivers.

| $\begin{gathered} \text { Region } \\ \text { (Figure } 1 \text { ) } \end{gathered}$ | Site (Figure 2) |  | Annual Frequency |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Code: Water Survey Canada | Name | 1976 | 1977 |
| 8 | 00AT07CD2300 | Clearwater River | $10^{\text {a }}$ | $7^{\text {a }}$ |
|  | 00AT07CC0012 | Athabasca River above Horse River | 13 | 7 |
|  | 00AT07DA0200 | Athabasca River off McDonald Island | 16 | 2 |
|  | 00AT07DA0201 | Athabasca River at km 10 | 5 | 2 |
|  | 00AT07DA0203 | Athabasca River at km 30 | 5 | 2 |
|  | 00AT07DA0202 | Athabasca River above GCOS | 8 | 0 |
|  | 00AT07DA0204 | Athabasca River at km 42 | 7 | 4 |
|  | 00AT07DA0205 | Athabasca River at km 48 | 5 | 2 |
|  | 00AT07DA0206 | Athabasca River at km 55 | 5 | 2 |
|  | 00AT07DA0207 | Athabasca River at Fort MacKay | 6 | 5 |
|  | 00AT07DA0208 | Athabasca River at km 84 | 5 | 2 |
|  | 00AT07DA0209 | Athabasca River at km 132 | 9 | 2 |
|  | 00AT07DA0210 | Athabasca River 21 km below Firebag | 5 | 2 |
|  | 00AT07DD0010 | Athabasca River at Embarras | $0{ }^{\text {a }}$ | $4^{\text {a }}$ |
|  | 00AT07DD0212 | Athabasca River at Big Point Channel | 2 | 5 |
|  | 00AT07DD0213 | Athabasca River at Fletcher Channel | 1 | 0 |
|  | 00AT07DD0214 | Athabasca River at Goose Island Channel | 1 | 0 |
|  | 00ATO7DA0211 | Athabasca River at Embarras Channel | 1 | , |

[^1]Table 4. Dates of water sampling activity on the mainstem Athabasca and Clearwater rivers.

| $\begin{aligned} & \text { Site } \\ & \text { Code } \\ & \text { (00AT07-) } \end{aligned}$ | 1976 |  |  |  |  |  |  |  |  |  |  |  | 1977 |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | J | F | M | A | M | $J$ | $J$ | A | 5 | 0 | N | D | $J$ | F | M | A | M | $J$ | $J$ | A | s | 0 | N | D |
| CD2300 |  | 9 |  |  | 13,16 | 28 | 27 | 18 | 2,29 |  | 21 | 10 | 23 | 26 |  |  |  |  | 22 | 18 | 19 | 14 |  | 15 |
| CCOO12 |  | 9 |  |  | 16 | 28 | 27 | 27 | 2,30 |  | 21 | 10 | 23 | 26 |  |  |  |  | 22 | 18 | 19 | 14 |  | 15 |
| DA0200 |  | 11 |  |  | 14 |  | 22,28 | $\begin{gathered} 4,9 \\ 18,24 \\ 30 \end{gathered}$ | $\begin{gathered} 2,8 \\ 15,24 \\ 28,30 \end{gathered}$ | 6 |  |  |  |  |  |  | 5 |  |  |  | 21 |  |  |  |
| DA0201 |  |  |  |  |  | 28 | 28 |  | 2,30 |  |  | 10 | 22 | 26 |  |  |  |  |  |  |  |  |  |  |
| DA0203 |  |  |  |  |  | 28 | 28 |  | 2,28 |  |  | 12 | 22 | 26 |  |  |  |  |  |  |  |  |  |  |
| DA0202 |  | 12 |  |  | 15 |  |  | 26 |  |  | 22 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| DA0204 |  |  |  |  |  | 29 | 29 | 28 |  |  |  | 12 | 22 | 26 |  |  |  |  |  |  |  |  |  |  |
| DA0205 |  |  |  |  |  | 29 | 27 | 30 | 28 |  |  | 11 | 22 | 25 |  |  |  |  |  |  |  |  |  |  |
| DA0206 |  |  |  |  | 15 | 29 | 27 | 27 |  |  |  |  | 22 | 25 |  |  |  |  |  |  |  |  |  |  |
| DA0207 |  | 10 |  |  | 14 |  |  | 26 |  |  | 17 |  |  |  |  |  |  |  | 22 | 18 | 19 | 14 | 17 | 19 |
| DA0208 |  |  |  |  |  | 30 | 30 |  | 3 | 2 |  | 11 | 21 | 25 |  |  |  |  |  |  |  |  |  |  |
| DA0209 |  | 11 |  |  | 13 | 30 | 30 |  | 3 |  |  |  | 21 | 25 |  |  |  |  |  |  |  |  |  |  |
| DA0210 |  |  |  |  |  |  | 1,30 |  | 3 | 2 |  | 11 | 21 | 25 |  |  |  |  |  |  |  |  |  |  |
| DA0010 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 28 | 21 |  |  |
| DA0212 |  |  |  |  |  |  |  |  | 8,20 |  |  |  |  |  |  |  | 31 |  | 5 | 16 | 27 | 25 | 30 |  |
| DA0213 |  |  |  |  |  |  |  |  | 10 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| DA0214 |  |  |  |  |  |  |  |  | 10 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| DA0211 |  |  |  |  |  |  |  |  | 10 |  |  |  |  |  |  |  | 31 |  |  |  |  |  |  |  |

were taken using field instruments where they were available. Samples brought to the Mildred Lake facility during the day were air-shipped from Fort McMurray that same evening and reached the analytical laboratories within 24 h of collection. During the summer months, samples taken in the morning were stored in the facility's refrigerated storeroom for evening shipment. The field laboratory at the AOSERP facility proved to be an excellent place for preservative handling and calibration of field equipment.

Sample collection in the Athabasca River Delta was carried out by Alberta Environment Technical Services personnel located at Fort Chipewyan commencing in May 1977. Samples sites were reached by boat and float plane during ice-free months. After collection, the samples were refrigerated overnight and shipped by air the next day to reach the analytical laboratories within 30 h of sampling.

### 1.5 IMPACT RELATED WATER SAMPLING

Direct effects on the quality of the surface water could be anticipated from the discharges of Fort McMurray, GCOS, and Syncrude. Such effects from Fort McMur ray and GCOS would centre on the Athabasca mainstem. Sewage discharge into the Athabasca River from Fort McMurray was below McDonald Island, between Sites DA0200 and DA0201. Process water discharge from GCOS into the Athabasca River was below Site DA0202 (see Figures 2 and 3).

Syncrude provided a more complicated situation. Figures 3
and 4 depict water courses in Zone 7 before and after development. Mine depressurization water was discharged into the Beaver River. Prior to completion of the Ruth Lake diversionary structures and, thus, effects were anticipated at Site DAO181. As completion of the Poplar Creek dam and spillway proceeded, effects were anticipated at Site DA0070. The final scheme involved the discharge of mine depressurization water into Ruth Lake for dilution prior to its entering the Poplar Creek system.

[^2]

Figure 3. Beaver River and Poplar Creek drainages before Syncrude development.


Figure 4. Beaver River and Poplar Creek drainages after Syncrude development.
(Inland Waters Directorate 1973; Murphey 1972). In some instances, numbered bottles were charged with preservative (Table 5) prior to sampling and crated in plywood shipping boxes. In others, preservative was supplied in small teflon-capped vials for addition immediately after sample collection. The choice of method for preservative addition is determined by the nature of the preservative and the analysis required. The Radiometer pH Meter, Hydrolab Conductivity Meter, and Hydrolab Dissolved Oxygen Meter were calibrated immediately before each sampling round using procedures recommended by the manufacturer. The conductivity meter was checked semi-annually with a standard potassium chloride solution and a certified mercury thermometer (see Akana in prep. for details).

Field data were noted on sheets that accompanied each batch of samples. The data included on-site water quality measurements, a cross-section locator, and the sampling technique employed. In some instances, depth integrated samples were taken and, in other instances, they were taken at a specified depth. All locator data were filed in the National Water Quality Data Bank (NAQUADAT) coded files.

Possible sources of sample contamination were monitored continually. The preservatives used were checked regularly for contaminants by both Alberta Environment, Pollution Control Laboratory, and by Chemex Labs (Alberta) Ltd. A possible source of lead contamination was the ice drilling equipment used since it was coated with a lead-based paint. The paint layer was removed using a sand blaster. Precautions were taken when sampling from lakes and ice-holes to insure that no cross-contamination of preservatives occurred. Unpreserved samples and those to be preserved after sampling were taken initially, and then bottles containing preservatives were dipped into the water in a sequence which ensured that overflow did not contain an ion that would contaminate subsequent samples.

### 1.7 ANALYTICAL METHODS AND LABORATORIES

Most samples were submitted for chemical analysis to Chemex Labs (Alberta) Ltd. under contracts with AOSERP and Alberta Environment. Analyses also were performed in Environment Canada, |nland

Table 5. Sample bottles and preservatives used.

| Bottle Designation | Bottle Type | Preservatives | Parameters |
| :---: | :---: | :---: | :---: |
| R | 1 L plastic | None | Calcium, sodium, potassium, silica, magnesium, chloride, fluoride, sulphate, pH, boron, alkalinity, specific conductance |
| G-1 | 32 oz glass | None | Odour, colour, tannins \& lignins, turbidity, hexavalent chromium, surfactants, humic acids, solids--dissolved and suspended |
| G-1 | 32 oz glass | $\begin{aligned} & 7.5 \mathrm{~mL} 33 \% \\ & \mathrm{H}_{2} \mathrm{SO}_{4} \end{aligned}$ | Chemical oxygen demand, total Kjeldahl nitrogen, total phosphorus, ammonia, arsenic, selenium |
| OG | 32 oz glass | $\begin{aligned} & 7.5 \mathrm{~mL} 33 \% \\ & \mathrm{H}_{2} \mathrm{SO}_{4} \end{aligned}$ | $0 i 1$ and grease |
| P | 32 oz glass | $\begin{aligned} & 1 \mathrm{~g} \text { CuSO } \\ & 2 \mathrm{~mL} 85 \% \mathrm{H}_{3} \mathrm{PO}_{4} \end{aligned}$ | Phenolic compounds |
| NC | 5 oz plastic | None | Nitrate, nitrite, orthophosphate, total inorganic carbon, total organic carbon, total dissolved organic carbon |
| M | 1 L plastic | 10 mL conc. $\mathrm{HNO}_{3}$ add after sampling | Cadmium, copper, iron, zinc, manganese, vanadium, lead, aluminum, cobalt, silver, titanium |
| Hg | 2 oz high | 2 mL solution of $0.5 \% \mathrm{HNO}_{3}$ and $5 \% \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{4}$, add after samp sampling | Mercury |
| CH | 32 oz plastic | $1 \mathrm{~mL} 10 \% \mathrm{MgCO}_{3}$ | Chlorophyll |
| PHH | 40 oz glass | None | Total hydrocarbons |
| Cy | 1 L plastic | 4 mL 6 N NaOH | Cyanide |

Water Laboratory, Calgary, and Alberta Environment, Pollution Control Laboratory. Quality control was ensured by using various sample exchange programs among the three analytical laboratories (Akena in prep.).

Bacteriological measurements were carried out at the Provincial Heal th Laboratory, Edmonton, for total coliforms, fecal coliforms, and standard plate count.

All laboratories used standard analytical methods registered with NAQUADAT. The various parameters measured for the AOSERP projects are listed in Table 6 along with NAQUADAT codes for the analytical methods used (National Water Quality Data Bank 1976; American Public Health Association 1976; Pollution Control Laboratory 1977; Traversy 1971).

### 1.8 QUALITY CONTROL PROGRAM

All analytical quality control programs fall into one of two categories: intra-laboratory checks and inter-laboratory sample exchanges. Intra-laboratory checks, when internally administered, bring unacceptable results of analysis to the immediate attention of the analyst and, when externally administered, such checks will provide a measure of the routine precision. Sample exchanges can provide an external check on the effectiveness of an analytical laboratory's internal quality control program by giving a measure of the laboratory's accuracy. In addition, they will reveal errors in in the preparation of control samples and standards and the use of poor quality reagents. When a laboratory has prior knowledge of a test, the test tends to reflect the capability rather than routine accuracy or precision. For no prior knowledge (as in disguised samples) the reverse tends to hold.

The quality control program contained both kinds of tests. Table 7 lists all the externally administered quality control tests throughout 1976-77.

In the spring of 1977, the quality control program was strengthened by the use of a contract patterned after an example

Table 6. Parameters measured and NAQUADAT methods used.

| Parameter | Methods |  |
| :---: | :---: | :---: |
| Conducted routinely: |  |  |
| Calcium | 20103 L |  |
| Magnesium | 12102 L |  |
| Sodium | $11103 \mathrm{~L}, 11102 \mathrm{~L}$ | - |
| Potassium | $19103 \mathrm{~L}, 19102 \mathrm{~L}$ |  |
| Chloride | 17203 L |  |
| Sulphate | 16306 L |  |
| Total alkalinity | 10101 L |  |
| pH | 10301 L |  |
| Carbonate | 06301 L |  |
| Bicarbonate | 06201 L |  |
| Total hardness | 10603 L |  |
| Fluoride | 09105 L |  |
| Silica | 14101 L |  |
| Conductance | 02041 L |  |
| Threshold odour No. | 02001 L |  |
| Colour | 02011 L |  |
| Tannin \& lignin | 06551 L |  |
| Total filt. residue | 10451 L |  |
| Total filt. residue fixed | 10551 L |  |
| Total non-filt. residue | 10401 L |  |
| Total non-filt. residue fixed | 10501 L |  |
| Turbidity | 02073 L |  |
| Surfactants | 10701 L |  |
| Humic acids | 06581 L |  |
| Total organic carbon | 06001 L, 06048 L |  |
| Total inorganic carbon | 06051 L |  |
| Total diss. organic carbon | 06101 L |  |
| Total diss. inorganic carbon | 06151 L |  |
| Nitrate + nitrite - nitrogen | 07110 L, 07651 L |  |
| Anmonia nitrogen | 07555 L |  |
| Total Kjeldahl nitrogen | $07015 \mathrm{~L}, 07013 \mathrm{~L}$ |  |
| Total phosphorus | 15406 L, 15001 L |  |
| Ortho-phosphorus | 15256 L |  |
| Chemical oxygen demand | 08301 L |  |
| Cadmium | $\begin{aligned} & 48302 \mathrm{~L}, 48301 \mathrm{~L} \\ & 48101 \mathrm{~L} \end{aligned}$ |  |
| Hexavalent chromium | 24101 L, 24302 L |  |
| Copper | 29305 L, 29306 L |  |
| Iron | 29301 L, 29101 L |  |
| I ron | $\begin{aligned} & 26394 \text { L, } 26301 \\ & 26101 \text { L } \end{aligned}$ |  |
| Lead | 82302 L, 82301 L |  |
|  | 82101 L |  |
| Manganese | 25304 L, 25301 L |  |
|  | 25101 L |  |
| Silver | $47302 \mathrm{~L}, 47301 \mathrm{~L}$ |  |
|  | continued ... |  |

Table 6. Concluded.

| Parameter | Methods |
| :---: | :---: |
| Conducted routinely: |  |
| Zinc | $30305 \mathrm{~L}, 33304 \mathrm{~L}$ |
|  | $30301 \mathrm{~L}, 30101 \mathrm{~L}$ |
| Vanadium | 23003 L, 23301 L |
|  | 23101 L |
| Selenium | $34102 \mathrm{~L}, 34302 \mathrm{~L}$ |
|  | 38101 L , |
| Mercury | 80011 L, 80301 L |
| Arsenic | 33104 L , |
|  | 33101 L, |
| Nickel | 28302 L, 28301 L |
|  | 28101 L |
| Aluminum | $13302 \mathrm{~L}, 13301 \mathrm{~L}$ |
| Cobalt | 27302 L, 27301 L |
|  | 27101 L |
| Boron | $05106 \mathrm{~L}, 05101 \mathrm{~L}$ |
|  | $05105 \mathrm{~L}, 05301 \mathrm{~L}$ |
| Conducted often: |  |
| Phenol | $06532 \mathrm{~L}, 06533 \mathrm{~L}$ |
| 0il \& grease | 06521 L |
| Standard plate count | 36900 L |
| Total coliform | 36001 L |
| Fecal coliform | 36011 L |
| Conducted on occasion: |  |
| Nitrite | 07206 L |
| Chlorophyll | 06711 L |
| Cyanide | 06603 L |
| Total hydrocarbons | N/A |
| Sulphide | 16101 L |
| Barium | 56301 L |
| Beryllium | 04301 L, 04101 L |
| Molybdenum | 42301 L |
| Strontium | 38301 L |
| Antimony | $51101 \mathrm{~L}, 51301 \mathrm{~L}$ |

Table 7. Externally administered quality control tests.

| Category | Date | Test | Prior Knowledge of Chemex |
| :---: | :---: | :---: | :---: |
| Intra-laboratory | April 1977 | Spiked samples and standard metals | no |
|  | Sept. 1977 | Spiked samples and standard metals | no |
| Inter-laboratory |  | Contract competition | yes |
|  | Aug. 1976 | Duplicate with PCL | no |
|  | Sept. 1976 | Duplicate with PCL | no |
|  |  | PCL program | yes |
|  | Jan. 1977 | 2 Duplicates with PCL | no |
|  | Feb. 1977 | Duplicate with PCL | no |
|  | Feb. 1977 | Standard exchange with PCL | yes |
|  | March 1977 | 2 duplicates with PCL | no |
|  | April 1977 | 2 duplicates with PCL | no |
|  | June 1977 | Standard exchange (3 labs) | yes |
|  | July 1977 | Standard exchange (3 labs) | yes |
|  | July 1977 | Contract competition (4 labs) | yes |
|  | July 1977 | PCL program | yes |
|  | July 1977 | Triplicate | no |
|  | Aug. 1977 | Triplicate | no |
|  | Sept. 1977 | Triplicate | no |

in the literature (Edwards et al. 1975, 1977). See Appendix 5.1 for pertinent sections of this contract. The compliance with stricter quality control formed part of the terms of this contract. In addition to internal quality control, which formed part of the first contract, external quality control was to be provided by two government laboratories, Alberta Environment, Pollution Control Laboratory in Edmonton and Environment Canada, Inland Water Laboratory in Calgary. Authentic samples, spiked samples, or standard solutions were to be submitted simultaneously to all three laboratories. Any deviation or discrepancy between data generated in the subcontracted laboratory and that generated in the government laboratories was penalized by reduced payment for services rendered. The results of quality control tests throughout the entire program have been compiled (Akena in prep.) and generally greater accuracy was achieved as problem areas were flagged by the test results.

## 2. COMPLIANCE WITH WATER QUALITY CRITERIA

2.1 STANDARDS OF WATER QUALITY CRITERIA

Suitability of water source for use depends upon both the amount of water available and the quality of that water. Whatever use the water is being put to sets the specifications, so each use will have a specific set of requirements. Five broad categories of important water uses can be envisioned where the quality of the water is a critical aspect (McNeely and Neimanis 1978):

1. Domestic consumption (drinking water);
2. Protection of aquatic life;
3. Industrial applications;
4. Agricultural use; and
5. Recreation.

Each category has its own set of criteria, so it is a difficult task to construct a sweeping set of acceptable levels of constituents that define the quality of the water. Regulating agencies of both Alberta and Saskatchewan (Alberta Environment 1977; Saskatchewan Water Resources Commission 1970) have touched upon this area and have established objective levels of constituents after considering typical demands on water resources such as public water supply, industry, agriculture, recreation, and the preservation of fish, wildife, and the aesthetics of watershed areas. Emphasis was placed on the maintenance of existing water quality where it might be affected by developments and so no definite statements on desirable levels of many parameters, such as predominant ions, are made because of wide natural variation. Acceptable levels of many parameters were assigned by both provinces and these are presented in Table 8.

Criteria respecting human consumption, based on toxicological considerations, are readily available for a wide variety of constituents (National Health and Welfare 1969). Such criteria have been divided into three guideline levels: maximum permissible, acceptable, and objective. Maximum permissible levels are standards for certain substances that are known or suspected to have adverse effects on

Table 8. Standards of water quality criteria.

| Parameter ${ }^{\text {d }}$ | General Objective ${ }^{a}$ | Additional criteria: acceptable for drinking water ${ }^{b}$ | Additional criteria: protection of aquatic $1 \mathrm{ife}^{\mathrm{C}}$ | Summary of tightest criteria |
| :---: | :---: | :---: | :---: | :---: |
| Calcium |  | LE 200 |  | LE 200 |
| Magnesium |  | LE 150 |  | LE 150 |
| Sodium | GE 30, LE 75 |  |  | NA LE 75 |
| Potassium |  |  |  |  |
| Chloride |  | LE 250 |  | LE 250 |
| Sulphate |  | LE 500 |  | LE 500 |
| Total alkalinity |  | GE 30, LE 500 | GE 20 | GE 30, LE 500 |
| pH | GE 6.5, LE 8.5 | GE 6.5, LE 8.3 | GE 6.5, LE 8.5 | GE 6.5, LE 8.3 |
| Carbonate |  |  |  | LE 38.5 |
| Bicarbonate |  |  |  | NA |
| Total hardness |  |  |  | NA |
| Fluoride | LE 1.5 |  |  | LE 1.5 |
| Silica |  |  |  | NA |
| Conductance |  |  |  | NA |
| Threshold odour no. | LE 8 | LE 4 |  | LE 4 |
| Colour |  |  |  |  |
| Tannin \& lignin |  |  |  | NA |
| Total filterable residue |  |  |  | NA |
| Total fllterable residue fixed |  | LE 500 |  | LE 500 |
| Total non-filt. residue |  |  |  | NA |
| Total non-filt. residue fixed | LE 10 |  |  | LE 10 |
|  |  |  | con | tinued . . |

Table 8. Continued.

| Parameter ${ }^{\text {d }}$ | $\begin{gathered} \text { General } \\ \text { Objective } \end{gathered}$ | Additional criteria: acceptable for drinking water ${ }^{\text {b }}$ | Additional criteria: protection of aquatic lifec | Summary of tightest criteria |
| :---: | :---: | :---: | :---: | :---: |
| Turbidity (JTU) | LE 25 | LE 5 | Warm stream LE 50 Warm lakes LG 25 | LE 5 |
| Surfactants | LE 0.5 |  |  | LE 0.5 |
| Humic acids |  |  |  | NA |
| Total organic carbon |  |  |  | NA |
| Total inorganic carbon |  |  |  | NA |
| Total diss. organic carbon |  |  |  | NA |
| Nitrate + nitrite nitrogen |  | LT 10.0 |  | LE 10 |
| Ammonia nitrogen |  | LE 0.5 | . | LE 0.5 |
| Total Kjeldahl nitrogen | LE 1.0 |  |  | LE 1.0 |
| Total phosphorus | LE 0.15 | LE 0.2 |  | LE 0.15 |
| Ortho-phosphorus |  |  |  | NA |
| Phenol | LE 0.005 | LE 0.002 | LE 0.001 | LE 0.001 |
| 0 il \& grease |  |  |  | NA |
| Sulphide | LE 0.05 |  | LE 0.002 | LE 0.002 |
| Cyanide | LE 0.01 | LE 0.01 | LE 0.005 | LE 0.004 |
| Chlorophyll a |  |  |  | NA |
| Chemical oxygen demand |  |  |  | NA |
| Cadmium | LE 0.01 | LT 0.01 | LE 0.003 | LE 0.003 |
| Hexavalent chromium | LE 0.05 |  | LE 0.05 | LE 0.05 |
| Copper | LE 0.02 | LE 1.0 | LE 0.005 | LE 0.005 |
| I ron | LE 0.3 | LE 0.3 | LE 0.3 - | LE 0.3 |

Table 8. Concluded.

| Parameter ${ }^{\text {d }}$ | $\begin{gathered} \text { General } \\ \text { Objective } \end{gathered}$ | Additional criteria: acceptable for drinking waterb | Additional criteria: protection of aquatic $1 i \mathrm{fe}^{c}$ | Summary of tightest criteria |
| :---: | :---: | :---: | :---: | :---: |
| Lead | LE 0.05 | LT 0.05 | LE 0.03 | LE 0.03 |
| Manganese | LE 0.05 | LE 0.05 |  | LE 0.05 |
| Silver | LE 0.05 |  |  | LE 0.05 |
| Zinc | LE 0.05 | LE 5.0 | LE 0.03 | LE 0.03 |
| Vanadium |  |  |  | NA |
| Selenium | LE 0.01 | LT 0.01 . |  | LT 0.01 |
| Mercury | LE 0.0001 |  | LE 0.0002 | LE 0.0001 |
| Arsenic | LE 0.01 | LE 0.01 |  | LE 0.01 |
| Nickel |  |  | LE 0.025 | LE 0.025 |
| Aluminum |  |  |  | NA |
| Cobal t |  |  |  | NA |
| Boron | LE 0.5 | LT 5.0 |  | LE 0.5 |

[^3]human health and no water supply should be permitted to carry these substances at the indicated levels continuously. Acceptable levels concern substances which, at indicated limits, are objectionable to a significant number of people or are capable of producing deleterious health or other effects. Objective levels should be interpreted as long-term goals and water supplies that meet such levels are of very good quality and safe from health, aesthetic, and other viewpoints. Guidelines for acceptable levels of parameters are presented in Table 8.

Criteria related to the protection of the aquatic life are not easy to establish because of the complicated structure of the aquatic ecosystem. For example, fish can adapt to gradual changes in their environment on a short-term basis and can adapt on a longer term basis by genetic selection. The resultant feature is that populations of the same species in different habitats will tolerate different ranges in water chemistry parameters. Compounding the problem is the existence of a wide variety of life forms that are all trophically related. However, some guidelines have been published by a variety of sources and are shown in Table 8.

Criteria related to industrial application are very specific to the applications. As an extreme, high pressure steam generation generally requires very high quality feedstock. The total dissolved solids must be less than or equal to $0.5 \mathrm{mg} / \mathrm{L}$ (USEPA 1973). On the other hand, oil sands process water is already obtained from the Athabasca River by GCOS and Syncrude. Each individual venture will consider the character of available water and produce a suitable process design and thus no detailed consideration will be made here.

Criteria related to agricultural use concern either livestock watering or irrigation and guidelines have been published by both USEPA (1973) and the Australian Water Resources Council (1974). Presently, there is little agricultural utilization of water in the study area, so no detailed consideration of the application of guidelines to the AOSERP study area will be made. However, similarities
can be drawn between large wildife using the water and livestock watering and between periodic flooding of the Peace-Athabasca Delta and irrigation.

Criteria related to recreational use revolve around bacteriological and aesthetic considerations rather than the chemical constituents. Bacteriological parameters were measured at sites during most monthly sampling rounds in 1977. However, a detailed analysis of these parameters would have to await the generation of a larger sample suite.

Table 8 also contains a summary of the tightest criteria concluded from the general considerations and the drinking water and aquatic biota requirements. This summary will be used in the subsequent discussion on compliance.
2.2 NONCOMPLIANT WATER QUALITY DATA

The set of data for 1976 and 1977 for all sites 1 isted in Tables 1, 2, and 3 was sorted into groups of compliance and noncompliance to the final criteria developed in Table 8. A summary of these groupings is given in Table 9. The purpose was not to evaluate the suitability of the water at each site for a particular purpose. Rather it was to identify possible parameters of concern regarding water surrounding oil sands developments. A summary of this grouping follows.

### 2.2.1 Calcium

There was only one occurrence of a noncompliant calcium level (above 200 ppm) throughout the entire set. It was at Eymundson Creek (Site DAO121) in February 1977, one of 11 measurements at that site. Natural calcium levels varied geographically and typically peaked during base flow (see Section 3.1).

Table 9. Compliance analysis of surface water in relation to the tightest criteria summarized in Table 8. Noncompliant to included values are displayed.

| Site Code | Na | Cl | Alk. | pH | Odour | TFRF | TNFRF | Turb. |  | TKN | Tp Pl | Phenol | CN | Cd | Cr | Cu | Fe | Pb | Mn | $2 n$ | Hg | $N i$ | B |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tributaries |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CDO040 Hangingstone River | 2/19 |  |  | 1/19 | 4/15 | 1/18 | 12/19 | 15/18 |  | 10/15 |  | 9/18 |  | $1 / 19$ |  | 12/19 | 19/19 | 1/18 | 15/19 | 5/18 | 4/13 | 2/19 |  |
| CDOIOO Saline Creek |  |  |  |  | 3/7 |  | 6/8 | 6/7 |  | 3/7 | 4/7 | 8/8 | 4/4 |  |  | 5/8 | 8/8 |  | 6/8 | 3/8 | 1/5 |  |  |
| CC0030 Horse River |  |  |  | 1/5 | 1/3 |  | 4/5 | 4/5 |  |  | 1/3 | 4/4 | 1/1 |  |  | 2/5 | 5/5 |  |  | 1/5 | 1/2 |  |  |
| cC0300 Horse River-mouth |  |  |  |  | 1/4 |  | 2/4 | $2 / 4$ |  | 2/4 |  |  |  |  |  |  | 4/4 |  | 2/4 | 1/4 |  |  |  |
| DA0060 St eepbank River |  |  |  | 1/18 | 3/15 |  | 3/18 | 9/17 |  | 5/15 | 3/15 | 6/18 |  |  |  |  | 18/18 |  |  |  | $2 / 13$ |  |  |
| DA0080 Muskeg River |  |  |  |  | $5 / 18$ |  |  | 6/15 | 2/18 | 12/18 |  | 6/18 | $6 / 6$ |  |  | $3 / 18$ | 18/18 |  | 10/18 | 3/18 | 2/16 |  |  |
| DA0090 Hartley Creek |  |  |  |  | 6/17 |  | 1/17 | 4/15 |  | $8 / 17$ | 1/17 | 7 7/16 | 5/5 |  |  | 7/17 | 17/17 |  | 5/17 | 4/16 | 3/14 |  |  |
| DB0040 Thickwood Creek |  |  |  |  | 3/13 |  |  | 5/10 |  | 9/13 | $2 / 13$ | 3 4/9 | $3 / 3$ |  |  | $5 / 13$ | 11/13 |  | $5 / 13$ | 1/13 | 2/13 |  |  |
| DB0020 Dover River | 3/13 |  |  | $2 / 13$ | 4/13 | 1/13 | 5/13 | $7 / 11$ |  | 9/13 | 2/13 | 3 4/13 | 3/3 |  |  | 4/13 | 13/13 |  | 5/13 | 1/13 | 3/13 |  | 1/13 |
| D80030 Dunkirk River |  |  |  | 1/16 | 7/14 |  | 3/16 | 8/13 |  | 10/15 | 4/15 | $57 / 12$ | 4/4 |  |  | 5/16 | 16/16 |  | 9/16 | 4/16 | 3/13 |  |  |
| DB0011 Mackay River | 4/18 |  | 1/18 | 2/18 | 3/15 | 3/17 | 6/18 | 11/17 | 1/15 | 9/15 | 2/15 | 5/16 | 5/5 |  |  | 7/18 | 18/18 | 1/18 | 5/18 |  | 3/13 | 1/18 | 2/17 |
| DA0100 Upper Ells River |  |  |  |  | $4 / 13$ |  | 1/13 | 1/11 |  | 1/13 |  | $2 / 9$ | 3/3 |  |  | 5/13 | 7/13 |  | 3/13 | 1/13 | 1/12 |  |  |
| DA0170 Lower Ells River |  |  |  | 1/14 | 3/14 |  | 2/14 | 4/12 |  | 2/14 | 1/14 | 4 3/14 | 3/3 | 1/14 |  | 4/14 | 14/14 |  | 1/14 | 1/14 | 3/14 |  |  |
| DA0160 Joslyn Creek |  |  |  |  | 3/9 |  | 8/9 | $6 / 7$ |  | 5/9 | 5/9 | 1/9 | 2/2 | 1/9 |  | 7/9 | 9/9 |  | 5/9 | 2/9 | 1/9 |  |  |
| DA0098 Ells River-mouth |  |  |  |  |  |  | 2/2 | 1/2 |  |  |  | $2 / 2$ |  |  |  | 1/2 | $2 / 2$ |  | 1/2 |  |  |  |  |
| DA0099 Ells River-mouth |  |  |  |  | 1/1 |  | 1/1 | 1/1 |  | 1/1 |  | 1/1 | 1/1 |  |  |  | 1/1 |  | 1/1 |  | 1/1 |  |  |
| OAO190 Upper Tar River |  |  |  |  | 3/11 |  |  | 3/9 |  | $3 / 11$ $8 / 13$ | 1/11 | $1 \begin{aligned} & 1 / 11 \\ & 7 / 13\end{aligned}$ | 3/3 |  |  | $2 / 11$ | $11 / 11$ $13 / 13$ |  | 10/11 | 3/11 | 2/11 |  |  |
| OAOI50 Lower Tar River |  |  |  | 1/13 | 3/13 |  | 5/13 | 8/11 | 3/13 | 8/13 | 5/13 | $37 / 13$ | 3/3 |  |  | $7 / 13$ | 13/13 | 1/13 | 10/13 | 1/13 |  | 1/13 |  |
| DAOISI Tar River-mouth |  |  |  | 1/4 |  |  | 1/3 | 3/3 |  |  |  | 3/3 | 1/1 |  |  |  | 3/3 |  | 1/3 |  | $1 / 1$ |  |  |
| DA0140 Calumet River | 3/11 |  | 2/11 | 1/11 | 3/11 | 3/11 |  | 2/10 | 3/11 | 10/11 | 3/11 | $13 / 11$ | 1/1 |  |  | 4/11 | 11/11 |  | 6/11 | 1/11 | 4/11 |  | 2/11 |
| DAO141 Calumet River-mouth | 1/6 |  |  |  | 1/2 |  | $2 / 6$ | 3/5 |  | 1/2 | 2/2 | $5 / 6$ | 2/2 |  |  | $2 / 6$ | 6/6 | 1/5 | 5/6 |  | 2/2 |  | 1/2 |
| da0l 30 Plerre River |  |  |  |  | 3/10 |  | 1/10 | 3/8 |  | 4/10 | 2/10 | 4/10 | 2/2 |  |  | $2 / 10$ | 10/10 |  | 9/10 |  | 1/9 |  |  |
| DAOI31 Pierre River-mouth |  |  |  |  | 1/1 |  | 2/4 | 4/4 |  | 1/1 |  | 4/4 | 1/1 | 1/4 |  | 1/4 | 4/4 | 1/4 | 4/4 |  | 1/1 | 1/4 |  |
| DAOI20 Asphalt Creek |  |  |  |  | 3/10 |  | 9/10 | 7/8 |  | 5/11 | 4/10 | 1/10 | 2/2 |  |  | 7/10 | 9/10 | 1/9 | 10/10 | 5/10 | 1/10 | 3/10 |  |
| DAO121 Eymundson Creek | 1/11 |  | 1/11 | 1/11 | 3/8 | 3/11 | 7/11 | 10/11 |  | 7/8 | 4/8 | 5/11 | 1/1 |  |  | $7 / 11$ | 10/11 | 1/9 | 11/11 | 3/10 | 2/8 | 3/11 | 1/11 |
| 0A0122 Eymundson Creek-mouth |  |  |  |  |  |  | 1/1 |  |  |  | 1/1 | 1/1 | 1/1 |  |  | 1/1 | $1 / 1$ |  | $1 / 1$ | 1/1 |  | 1/1 |  |
| DAO110 Unnamed Creek |  |  |  | 1/10 | 3/10 |  | 2/10 | 5/9 |  | 6/10 |  | 4/10 | $2 / 2$ |  |  | 1/10 | 10/10 |  | 10/10 |  | 2/10 |  | 1/10 |
| DAOIII Unnamed Creek |  |  |  |  |  |  |  |  |  |  |  |  | 1/1 |  |  | 1/1 | 1/1 | 1/1 | 1/1 |  | 1/1 |  |  |
| DAOII5 Unnamed Creek-mouth |  |  |  |  |  |  |  | 2/2 |  |  |  | 2/2 |  |  |  | 1/2 | 2/2 |  | 2/2 |  |  |  |  |
| dC0010 Firebag River |  |  |  | 2/17 | 4/14 |  | 2/17 | 1/15 |  | 4/13 |  | 5/16 | 4/4 | 1/16 |  | 7/16 | 16/16 |  | 3/16 | 2/16 | 1/14 |  |  |
| 0C0011 Firebag River-mouth |  |  |  |  | 2/3 |  | 1/3 | 1/3 |  | 1/3 |  |  |  |  |  |  | 3/3 |  |  |  | 1/3 |  |  |
| DC0020 Lost Creek |  |  |  | 1/8 | 2/8 |  |  |  |  | 4/8 |  | 4/5 | 1/1 |  |  | 2/8 | 7/8 |  | 1/8 |  | 1/5 |  |  |
| DD0020 Richardson Rlver |  |  |  |  | 1/5 |  | 1/5 | 1/5 |  | 1/5 |  |  |  |  |  | 1/4 | 4/4 |  |  | 1/4 | 1/5 |  |  |
| da0070 Poplar Creek | 3/15 | 1/15 |  | 1/15 | 2/12 | 1/15 | 7/15 | 10/14 |  | 10/12 | 1/12 |  | 3/3 | $2 / 14$ | 3/12 | 5/15 | 14/15 | 1/14 |  | 5/14 | 5/11 |  |  |
| DA0180 Beaver River | $3 / 14$ |  |  | 1/14 | 2/14 | 1/14 | 4/14 | 9/12 |  | 8/14 | 4/14 | 46114 | 4/4 | 1/14 |  | 3/14 | 13/14 |  | 7/14 | 2/14 | 3/14 |  |  |
| DAOI79 Beaver River |  | 2/2 | 2/2 |  | 1/2 | 2/2 | 2/2 | 1/1 | 2/2 | 1/2 |  | 2/2 | $2 / 2$ |  |  | 2/2 | 2/2 |  | $2 / 2$ |  | 2/2 | 1/2 | 1/2 |
| DA0181 Beaver River | 4/15 | 2/15 |  | 2/15 | 4/15 | 3/15 | 5/14 | 8/12 | 2/15 | 11/15 | 2/15 | 5 3/13 | 6/6 |  | 1/15 | 5/15 | 15/15 |  | 15/15 | 6/15 | 2/13 |  | 1/15 |
| DA0182 Bridge Creek |  |  |  |  | 6/12 |  | 8/12 | 8/10 |  | 10/12 | 1/12 | 2 6/11 | 4/4 |  | 1/12 | 2/12 | 12/12 |  | 11/12 | 3/12 | 4/11 |  |  |

Table 9. Concluded.

2.2.2 Magnesium

Noncompliant (greater than 150 ppm ) magnesium values did not occur in the set. Natural magnesium levels showed considerable geographical variance and typically peaked during base flow (see Section 3.1).

### 2.2.3 Sodium

Noncompliant (greater than 75 ppm ) sodium values did not occur in the lakes or the mainstem. However, a number of noncompliant values occurred in some tributaries. A notable cluster of noncompliance occurred in Zone 7 where current surface mining activity has necessitated the discharge of mine depressurization groundwater into the Beaver River and the Poplar Creek system (see Figures 3 and 4 and Table 10). However, the occurrence of noncompliant values in the adjacent Zone 3 (MacKay River ranged from 76 to 140 ppm from December 1976 to March 1977 and Dover River ranged from 87 to 92 ppm from January to March 1977) indicate natural saline discharge in winter as there have been no mining impacts in this zone. Thus, seasonal highs for sodium in Poplar Creek and Beaver River above Syncrude may be ascribed to natural base flow (especially in the case of Beaver River where no correspondingly high chloride values were exhibited). Noncompliance at Beaver River inside Syncrude and below Syncrude, however, shows the effects of mine depressurization water as these measurements were made during pumping. The data indicate that discharge of large amounts of mine depressurization to Lower Beaver River was interrupted in December 1976.

### 2.2.4 Chloride

The only noncompliant chloride values (greater than 250 ppm ) throughout the entire data set were from Zone 7 (Table 10). The pattern closely corresponds to that of sodium noncompliance in that the highest noncompliant sodium values paired with the noncompliant chlorides. This parameter is another reflection of the impact of mine depressurization water which yields typical chloride values

Table 10. Noncomplicant sodium values and associated chloride and total filterable residue fixed values for Zone 7 in 1976 and 1977.

| Site Code (00AT07-) |  | Date | Na $(\mathrm{ppm})$ | $\begin{gathered} \mathrm{Cl} \\ (\mathrm{ppm}) \end{gathered}$ | TFRF (ppm) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DA0070 | Poplar Creek | 21-12-76 | 125 | $164^{\text {a }}$ | $458{ }^{\text {a }}$ |
|  |  | 24-02-77 | 102 | $125^{\text {a }}$ | $408{ }^{\text {a }}$ |
|  |  | 16-12-77 | 388 | 525 | 1190 |
| DA0180 | Beaver River above Syncrude | 04-01-77 | 115 | $3^{\text {a }}$ | $450{ }^{\text {a }}$ |
|  |  | 04-03-77 | 150 | $3^{\text {a }}$ | 502 |
| DA0179 | Beaver River inside Syncrude | 19-10-76 | 800 | 1010 | 2132 |
|  |  | 18-11-76 | 1050 | 1320 | 2730 |
| DA0181 | Beaver River below Syncrude | 11-08-76 | 412 | 575 | 1204 |
|  |  | 10-09-76 | 98 | $124^{\text {a }}$ | $468{ }^{\text {a }}$ |
|  |  | 20-10-76 | 162 | $217{ }^{\text {b }}$ | 645 |
|  |  | 17-11-76 | 240 | 302 | 836 |
|  |  | 21-12-76 | $22^{\text {a }}$ | $22^{\text {a }}$ | $210^{\text {a }}$ |

[^4]between 2000 and 10000 ppm (Lake and Rogers 1979). At some locations, there were pronounced maxima of natural chloride levels during base flow (see Section 3.1).

### 2.2.5 Sulphate

Noncompliant (greater than 500 ppm ) sulphate values did not occur. Natural sulphate levels showed considerable geographic variation and typically peaked during base flow, though some peaks occurred during the spring-summer season (see Section 3.1).

### 2.2.6 Total Alkalinity

Noncompliant (less than 30 ppm or greater than 500 ppm ) total alkalinity values did not occur in lakes or the mainstem river system. However, a small number of noncompliant values occurred in tributaries in Zones 3, 5, and 7. The MacKay River (DB0011) exhibited total alkalinity of 577 ppm in February 1977; Eymundson Creek (DA0121), 1000 ppm in February 1977; Calumet River (DAO141), 702 and 676 ppm in February and March 1977, respectively; and Beaver River inside Syncrude (DA0179), 625 and 764 ppm in October and November 1976, respectively. High alkalinity values during base flow no doubt reflect natural groundwater discharge for occurrence in Zones 3 and 5 (see Section 3.1) but mine depressurization water discharge explains the noncompliance in Zone 7.

### 2.2.7 pH

All pH values in the lakes and mainstem were slightly alkaline and virtually all complied with the criteria by being 8.3 or lower. Only one lake value (Birch Lake, Site DB0035, at a pH of 8.8 in July 1977) failed to comply. However, noncompliant values occurred randomly scattered among the tributaries of every zone at all times of the year, although ranging only up to 8.6. A detailed study of the Muskeg River basin (Akena 1979; Froelich 1980) observed some occurrences of low pH ranging down to 6.5. Occurrence of pH below 7.0 in headwater streams could be expected due to muskeg water input.

### 2.2.8 Carbonate

Noncompliant values (greater than 38.5 ppm ) for carbonate were not detected, which is a consequence of pH compliance.

### 2.2.9 Fluoride

Noncompliant (greater than 1.5 ppm ) fluoride values virtually did not occur. Only one measurement did not comply: Site DD0212 on the Athabasca River exhibited 6.0 ppm fluoride in September 1976. Higher fluoride levels did not correlate well with base flow conditions (see Section 3.1.2).

### 2.2.10 Total Filterable Residue Fixed

Noncompliant (greater than 500 ppm ) total filterable residue fixed values did not occur in the lakes and mainstem. However, numerous noncompliant values were observed in the tributaries, notably Eymundson and Calumet creeks and in Zone 7. Mine depressurization water made available to the water course of Zone 7 ranged from 9300 to 19000 ppm. Total filterable residue fixed compliance and occurrences of noncompliance corresponded closely with noncompliant sodium and chloride (Table 10). All other occurrences were during winter base flow, with Calumet River ranging up to 983 ppm and Eymundson up to 1630 ppm .

### 2.2.11 Threshold Odour Number

There was only partial compliance with threshold odour numbers throughout the entire region. The high organic content arising from muskeg and forest input, along with weathering of oil sands deposits, is no doubt responsible for elevated levels of odour.

### 2.2.12 Total Nonfilterable Residue Fixed

Only partial compliance of less than or equal to 10 ppm was noted at most of the sites, reflecting the sedimentary effects in the water courses described in Section 3.2. The best compliances were observed in Lake Athabasca and Birch Mountain Lakes; some smaller headwater streams like Thickwood Creek, Upper Tar River,
and Lost Creek; and a few larger rivers such as the Firebag, Richardson, and Ells rivers. The worst example was the Athabasca River where typical ranges of up to 300 to 400 ppm caused a $67 \%$ noncompliance; the Hangingstone River, where $63 \%$ were noncompliant (ranging typically up to 600 ppm ) ; Joslyn Creek, where $89 \%$ were noncompliant (ranging up to 100 ppm ); and Asphalt Creek, where $90 \%$ were noncompliant (ranging up to 1000 ppm ). Bridge Creek Diversion was also typically noncompliant (uṣally 10 to 40 ppm and above 2000 ppm on occasion), possibly a reflection of runoff from construction activities around Syncrude in 1976 and 1977.

### 2.2.13 Turbidity

The lack of turbidity compliance corresponded closely to the pattern of total nonfilterable residue fixed compliance (Table 9) and the characteristics outlined in Section 3.2.1.

### 2.2.14 Surfactants

There was only one occurrence of a noncompliant surfactants level (greater than 0.5 ppm ) in the entire set. It was 0.80 ppm at Site DA0207 on the Athabasca River in October 1977, one of six measurements at that site.

### 2.2.15 Nitrate Plus Nitrite

Noncompliant values (greater than 10 ppm ) for nitrate plus nitrite did not occur in the data set.
2.2.16 $\frac{\text { Ammonia }}{\text { Only scattered noncompliance (greater than } 0.5 \mathrm{ppm} \text { ) was }}$
noted for ammonia throughout the region. The one occurrence of lake
noncompliance and most of the Athabasca River noncompliances all
happened during one sampling round in late July 1976 , raising the
question of contamination for these values. However, the non-
compliance scattered throughout the tributary streams appears genuine,
always occurring during ice-cover months when anaerobic processes
become more significant. Ranges for the Lower Tar noncompliant values were 0.64 to 0.80 ppm which are typical for the region. Noncompliance was also noted for sites receiving mine depressurization water in Zone 7. Such occurrences were in winter and ranged from 0.62 to 1.10 ppm for Beaver River inside Syncrude, and from 0.50 to 0.68 ppm for Beaver River at Hwy 63. However, no occurrences were noted in Poplar Creek.

### 2.2.17 Total Kjeldahl Nitrogen

Noncompliance (greater than 1.0 ppm ) for total Kjeldahl nitrogen occurred in a majority of data throughout the region with the exception of sites in Zones 4 and 6 which were receive relatively low organic loadings. Seasonal patterns were not readily identifiable (see Section 4.3.3). Noncompliant values from sites receiving mine depressurization water ranged up to 3.06 ppm , not much different from normal noncompliant ranges up to 1.60 ppm (Muskeg River), 3.20 ppm (Beaver River above Syncrude), and 5.10 ppm (Eymundson Creek).

### 2.2.18 Total Phosphorus

A general tendency toward 20 to $50 \%$ noncompliance (greater than 0.15 ppm$)$ was evident throughout the region except for the complete compliance of Gregoire Lake, Lake Athabasca, Namur Lake, the Muskeg River, and the relatively soft water tributary streams of Zones 4 and 6 (Table 9). In contrast to neighbouring Namur Lake, Eaglenest Lake showed a number of noncompliant values evident before spring break-up (up to 0.58 ppm on 1 March 1977) and in late summer ( 0.243 ppm on 23 August 1977).

The mainstem Athabasca River tended to show phosphorus peaks in spring-summer with clusters of noncompliance occurring in June and September. The June high values corresponded with peak particulate loadings and the September highs reflected full freshet conditions. Some noncompliance was noted also in January. Winter noncompliance values ranged only up to 0.45 ppm whereas summer noncompliance typically showed a slightly wider range. Two unusually
high values were recorded: on 22 July 1977 at site DA 0207 (Athabasca River at Fort MacKay), the total phosphorus was 1.05 ppm , and on 30 August 1976 at Site DA0205, the total phosphorus was 1.85 ppm .

Noncompliance in the tributaries tended to show a major cluster in April and a lesser one in October. The spring cluster tended to contain the highest values: Lower Tar River showed 1.4 ppm on 1 April 1977; Asphalt Creek, 0.63 ppm on 28 April 1977; Beaver River above Syncrude, 0.49 ppm on 18 May 1977; Hangingstone River, 0.41 ppm on 22 April 1977; and Beaver River at Hwy 63, 0.40 ppm on 27 April 1977. The autumn cluster of noncompliance contained only two values over 0.40 ppm , both in the Dunkirk River: 0.50 ppm on 7 February 1977 and 0.50 ppm on 7 November 1977.

Atypical of this seasonal pattern was an occurrence at Beaver River at Hwy 63 on 11 August 1976 of 0.60 ppm, probably reflecting the influence of mine depressurization water discharged from the Syncrude site.
2.2.19 Phenol

Noncompliance (greater than 0.001 ppm ) occurred, generally, in at least $30 \%$ of the data from each sampling point throughout the region. Exceptions to this were data from the Upper Ells River where only $22 \%$ failed to comply, Asphalt Creek (only 10\%) , and Joslyn Creek (only $11 \%$ ). Noncompliances in the lakes were scattered randomly throughout the seasons at levels below 0.010 ppm . Noncompliance in the mainstem Athabasca River also showed no seasonal preference, with the majority of values occurring below 0.010 ppm. However, a definite seasonal trend in many tributaries could be noted: most of the noncompliant occurrences clustered in the ice-covered months (see Figure 5). Also, ice-covered months in the tributaries contained the highest phenol values: spring and summer typically were limited to values below 0.005 ppm , whereas winter values ranged up to 0.030 ppm . This would seem to indicate that assimilation of naturally supplied phenol derivations is limited during ice-cover conditions.


Figure 5. Phenol levels in selected small tributaries.

Noncompliance could not be ascribed definitely to an effect of mine depressurization water. However, noncompliance at Beaver River below Syncrude, at low levels during the summers of 1976 and 1977, appears to be out of phase of natural phenomena (see Figure 5) and thus anthropogenic. Noncompliance in the Athabasca River appears to increase slightly through the region of current surface mining activity (see Figure 6). However, a clear effect outside of normal variance of the data set was not discernable.

### 2.2.20 Sulphide

A limited number of sulphide determinations were conducted on 1976 samples from throughout the region. Noncompliance (greater than 0.002 ppm ) did not occur in the set.

### 2.2.21 Cyanide

A limited number of cyanide determinations were run on 1976 samples from throughout the region and all were found not to comply with the criteria (greater than 0.004 ppm ). However, due to the small size of the data set, no further consideration is given.

### 2.2.22 Trace Metals and Elements

Noncompliant silver values did not occur in the data set and only one noncompliant selenium value was noted. A small number ( 2 to 5) of noncompliant levels occurred for cadmium, chromium, lead, arsenic, and nickel. Some occurrences of noncompliant cadmium and chromium centred on the current oil sands development area (Zone 7). Large noncompliance was noted for copper, zinc, and mercury, and general noncompliance occurred throughout the area for iron and manganese. The details of occurrences of higher levels of these elements are covered in Section 3.4.
2.2 .23

Boron
Noncompliant boron levels (greater than 0.5 ppm ) occasionally occurred in the data set at scattered tributaries in Zones 3, 5,


Figure 6. Phenol ranges and means for sites on Athabasca River.
and 7 and in the mainstem (Zone 8) but not in the lakes. The tributaries exhibited higher boron values during base flow conditions when scattered noncompliance levels between 0.5 and 1.0 ppm occurred (Table 11). Mine depressurization water contained elevated boron levels between 0.48 and 7.08 ppm (Lake and Rogers 1979) and evaporitic salts in other areas were notably high in boron (Hem 1970). Thus, there is nothing unusual about boron contributions during base flow. On the other hand, the three occurrences of noncompliant boron in the mainstem were during high flow conditions. This may indicate precipitation of borate complexes onto sediments provided to the mainstem and subsequent availability either as re-suspended particulate or as released dissolved species.

### 2.3 SUMMARY OF NONCOMPLIANCE ANALYSIS

The analysis of the data set for compliance to the tighest criteria in Table 8 indicates a number of parameters of interest regarding the management of the quality of the surface water in the oil sands area.

From a region-wide perspective, noncompliance occurred in a majority of cases for levels of total odour number, total nonfilterable residue fixed, turbidity, total Kjeldahl nitrogen, iron, and manganese. Additionally, there were a large number of occurrences of noncompliant levels of phenol, total phosphorus, copper, zinc, and mercury. The high frequency of noncompliance for these parameters reflects background "noise" of natural inputs. Thus, such parameters would appear inappropriate to detect chronic oil sands impacts. However, a toxicological analysis of these high frequency noncompliance parameters (along with those of low frequency) might indicate situations that could easily be stressed by additional anthropogenic loadings even at a relatively low level.

From the perspective of oil sands impacts, occurrences of noncompliant chloride, sodium, and total filterable residue fixed in tributaries adjacent to mining operations could be readily attributable to discharge of mine depressurization water. Additionally, noncompliant values of ammonia, total phosphorus, boron, and phenol

Table 11. Noncompliant boron levels (levels greater than 0.5 ppm ).

| Site | Date | B <br> $(\mathrm{ppm})$ |
| :--- | :--- | :--- |
| MacKay River | $21-12-76$ <br> $25-02-77$ | 0.59 |
| Beaver River above Syncrude | 0.58 |  |
|  | $04-01-77$ <br> $04-03-77$ <br> $06-12-77$ | 0.93 |
| Beaver River inside Syncrude | $18-11-76$ | 0.58 |
| Calumet River | $09-10-76$ | 0.69 |
| Eymundson Creek | $02-03-77$ | 0.76 |
| Unnamed Creek | $07-11-77$ | 0.90 |
| Athabasca River - Site DA0200 | $30-08-76$ | 0.90 |
|  | $30-08-76$ | 1.51 |
|  | $30-07-76$ | 1.51 |

appeared to be associated with the same type of discharge. The few occurrences of noncompliant values of cadmium and chromium centred in the region of current oil sands development but could not be directly attributable to particular effluent. A slight tendency for phenol levels in the Athabasca River to increase throughout the reach north of Fort McMurray could be a reflection of the weathering of exposed oil sands deposits.

The surface water at any point can be visualized as
stemming from differing components of upstream sources, such as direct runoff, including a subsurface part, shallow groundwater discharge, and deep groundwater discharge. The ultimate composition of a sample of water is determined by whatever physical, chemical, and biological processes that have operated previously on these components. Examples of such processes are the various chemical equilibria between the percolating water and the surface or subsurface materials, the storage and mixing caused by lakes and muskegs, and the utilization of dissolved and particulate matter by microorganisms. Thus, many values for parameters can exhibit relationships with each other and with time (McNeely and Neimanis 1978).

Where the processes involved are mainly chemical equilibria and physical discharge, well-defined relationships tend to hold true. Where the operating processes are physical transport mechanisms, although relationships can be drawn, the definition becomes less direct and more statistical. And where the operating processes are biological, relationships tend to be much less predictable. As with hydrometric analysis, data over a full range of environmental conditions are desirable to fully define the various relationships, and so the extent of definition of operating processes is reflected in the amount of data available.

The ensuing discussion has been grouped to coincide with the kinds of relationships operating: (1) the direct relationships that can be derived for the major ion parameters; (2) the regular but not quantitative seasonal variations associated with clastic loads; (3) the much less predictive relationships of compounds of carbon, nitrogen, and phosphorus as subjects of biological activity; and (4) the less predictive relationships of metals which are highly variable subjects of chemical transformations, particulate loading, and also biological activity. Irregularities in the regional patterns occurring adjacent to current oil sands operations are discussed in terms of impacts.
3.1 MAJOR IONS

An inspection of data summaries for the entire region (Appendix 5.2) reveals the general order of dominance of the major ions for the surface water as:
cations: calcium > magnesium > sodium
anions: bicarbonate > sulphate > chloride
a typical catena for glacial till watershed overlaying sedimentary formations. It should be noted, though, that most of the surface water in the area is highly variable, both geographically and temporally, and, at higher concentrations corresponding to base flow, sodium dominates magnesium and even calcium at many sites and chloride occassionally dominate sulphate and even bicarbonate.

To describe the ionic character of each tributary, as well as the variability in character, Stiff patterns (Hem 1970) were modified to include the equivalent ion concentration at minimum and maximum total dissolved solids and these are shown in Figure 7. Such patterns for each tributary illustrate the wide variety of differences among the tributaries, mainstem rivers, and lakes. Points at minimum and maximum concentrations tend to represent two types of loading to the surface water: maximum concentration coincides with winter base flow and is representative of deeper groundwater sources connected with such flow, whereas minimum concentration coincides with spring or summer freshets representing surface or much shallower groundwater sources.

For the cations, one noticeably common thread among all the sites was the presence of calcium and magnesium in a ratio generally between 3:1 and 4:1. Supply of these major ions, particularly during base flow, is provided by Uper Devonian formations of limestone, dolomites, and anhydrites. This ratio generally did not show much seasonal variation, indicating the similarity in cationic structure of eroded surface materials. Exceptions to the generalization were Hartley Creek, Bridge Creek Diversion, and Mamawi Lake Channel, which all showed relatively elevated calcium over magnesium during base flow conditions, and Joslyn Creek, Muskeg River, Unnamed Creek, and Lake Claire, which maintained a higher calcium content

REGION I

REGION 2
STEEPBANK 1977

STEEPBANK 1976

MUSKEG 1977

MUSKEG 1976

HARTLEY 1977

REGION 3
THICKWOOD 1977

DOVER 1977

DUNKIRK 1977

MACKAY 1977

MACKAY 1976

REGION 4
UPPER ELLS 1977

LOWER ELLS 1977

JOSLYN 1977


Figure 7. Modified Stiff patterns showing minimum and maximum equivalent concentrations of the major ions.


Figure 7. Continued.
EAGLENEST
UPPER GARDNER
NAMUR

GREGOIRE
RICHARDSON
L. ATHABASCA
L.CLAIRE@ 28 th
PRAIRIE RIVER
MAWAWI LAKE CHANNEL
CHENEL DES QUATRES FOURCHERS
RIVIERE DES ROCHERS


Figure 7. Continued.


Figure 7. Concluded.
throughout the year (ratios ranged from 4.8:1 to 5.9:1). Sodium was a major cation in a number of tributaries, notably Poplar Creek, Beaver River, Calumet River, MacKay River, Dover River, Hangingstone River, Clearwater River, and Lake Claire, where it exceeded or rivaled calcium as the major cation. Water from Middle Devonian formations ranges up to 100000 ppm chloride due to evaporitic halites (Gorrell 1974). Thus, in some cases, sodium appears to provide an indicator of a deeper groundwater component. However, shallower sources might be operating in the case of the Beaver and Dover rivers, where no corresponding high chlorides are evident.

Bicarbonate was the major anion in every case, except for Pierre River, where sulphate was the major anion, especially at base flow, and Lake Claire, where both sulphate and chloride exceeded bicarbonate. High sulphate concentrations were also evident at Bridge Creek Diversion, Joslyn Creek, and MacKay River. At Poplar Creek and the Clearwater River, chloride rivaled bicarbonate at base flow and it was a substantial component in Calumet River, Mamawi Lake Channel, and Prairie River. La Saline Spring, along the east bank of the Athabasca River (Figure 3), contained over 39000 ppm chloride. Both sulphate and chloride can stem from Middle Devonian halites and anhydrites and indicate communications with deep sources at these sampling points. Mine depressurization water from the Syncrude operation ranged up to 10500 ppm chloride and 78 ppm sulphate (Lake and Rogers 1974).

A variety of methods of analyzing interparameter relationships of major ionic species in natural surface water can be carried out to define and quantify the kinds of variations taking place. For flowing water, one approach that relates the variations to natural processes stems from the concept of dilution relationships. The relationship of specific conductance with discharge is first demonstrated, then the specific conductance is related to the individual ionic components of the natural water.
3.1.1 Specific Conductance-Discharge Relationship in Tributaries

Reviews of various dissolved solids-discharge relationships are available (Hall 1971; Liken et al. 1969). In the following discussion, the relationship between the specific conductance of stream water and the discharge of the stream for most surface waters in the form of a power curve (Steele 1973) was adopted:

$$
\begin{equation*}
S C=K Q^{n} \tag{1}
\end{equation*}
$$

where: $\quad S C=$ specific conductance
$Q=$ discharge
$K=$ loading factor
$\mathrm{n}=$ dilution factor ranging between
0 and -1
Thus, for each stream, the actual specific conductance and corresponding discharge can be related to two factors: a loading factor which is proportional to the amounts of ionic material supplied by the watershed; and a dilution factor which is proportional to the variability of ionic concentrations. Where the variation in flow has no effect on changing the concentration of ionic substances, the diluting factor would be 0.0 and, where the diluting forces comprise no ionic species, the diluting factor would be -1.0. The range in between represents the typical situation where increased flows tend to accompany concentrations of solutes higher than anticipated by strict dilution.

This relationship is very useful not only from the physical understanding gained but also from the fact that specific conductance and discharge can be measured easily. Specific conductance can be further related to individual ionic species present as it represents the composite of cations and anions present.

By taking the $\log$ of the dilution equation (1), the equation takes the form:

$$
\begin{equation*}
\log S C=\log K+n \log Q \tag{2}
\end{equation*}
$$

and thus, the relationship between the specific conductivity and discharge can be expressed graphically. Figure 8 shows such a graphical representation for data obtained from two rivers from similarly sized but different kinds of watersheds: the MacKay


Figure 8. Specific conductance-discharge relationship of the Firebag and Mackay rivers in 1977.
(5230 $\mathrm{km}^{2}$ ) and the Firebag ( $6030 \mathrm{~km}^{2}$ ) rivers. It is evident that the dilution equation displays a very good fit to both groups of data. Also discernable in Figure 8 are characteristic differences between the two watersheds. The MacKay River relationship has a steeper slope ( $-n$ ) depicting a greater dilution effect. The Mackay River relationship also has a higher elevation on the specific conductance axis showing the higher net loading (K) carried by that river.

The values for $n$ and $K$, calculated by linear regression of all 1976 and 1977 specific conductance data collected at gauged tributaries in the study area, are shown in Table 12 along with the coefficients of determination. Data for most of the tributaries showed a good fit to the power curve as evidenced by their high coefficient of determination over the range of the data. However, data for Joslyn Creek, Pierre River, and Poplar Creek produced a poor fit. From a comparison of the results from sites where two years of data are available, one can tentatively conclude there is a yearly variation in this relationship that is more pronounced in the highly variable (high -n) sites, such as the MacKay River, than in the sites of low variability, such as the Firebag River. It is also notable that this yearly variation is particularly evident in the dilution factor whereas the loading factor between the two years is not as affected.

A plot of the loading factors versus dilution factors for each tributary for 1977 data portrays the types of tributaries in the study area (Figure 9). From the distribution presented by Figure 9, the types of tributaries range from a group of highly loaded and highly variable tributaries (the MacKay, Hangingstone, and Steepbank rivers) to a group of two relatively unloaded and stable tributaries (the Upper Ells and the Richardson rivers). The MacKay, Hangingstone, and Steepbank rivers all drain basins comprising mainly clayey and silty till (Griffiths 1978). The sampling point was low on the stream profiles (relatively close to the confluence with the mainstem) so that groundwater influence accounts for the

Table 12. Results of 1 inear regression on 1976 and 1977 specific conductance ( SC ) and discharge ( $Q$ ) data for the relationship $S C=K O^{n}$. The coefficient of determination is shown as $r^{2}$.

| Site Code (Figure 2) | Name | 1977 |  |  | 1976 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | K | n | $\mathrm{r}^{2}$ | K | n | $\mathrm{r}^{2}$ |
| CD0040 | Hangingstone River | 413 | -0.43 | 0.97 | 441 | -0.32 | 0.87 |
| DA0060 | Steepbank River | 356 | -0.46 | 0.96 | 383 | -0.37 | 0.94 |
| DA0080 | Muskeg River | 366 | -0.30 | 0.79 | 364 | -0.19 | 0.92 |
| DA0090 | Hartley Creek | 194 | -0.24 | 0.79 | 242 | -0.21 | 0.75 |
| DB0040 | Thickwood Creek | 75 | -0.29 | 0.69 |  |  |  |
| DB0020 | Dover River | 421 | -0.19 | 0.59 |  |  |  |
| DB0030 | Dunkirk River | 282 | -0.35 | 0.90 |  |  |  |
| DB0011 | Mackay River | 584 | -0.46 | 0.91 | 530 | -0.31 | 0.89 |
| DAO100 | Upper Ells River | 137 | -0.13 | 0.82 |  |  |  |
| DA0170 | Lower Ells River | 265 | -0.28 | 0.85 |  |  |  |
| DAO160 | Joslyn Creek | 364 | -0.08 | 0.19 |  |  |  |
| DAOI90 | Upper Tar River | 168 | -0.19 | 0.71 |  |  |  |
| DAO150 | Lower Tar River | 263 | -0.13 | 0.83 |  |  |  |
| DA0140 | Calumet River | 153 | -0.35 | 0.84 |  |  |  |
| DAO130 | Pierre River | 301 | -0.05 | 0.05 |  |  |  |
| DAOI20 | Asphalt Creek | 310 | -0.14 | 0.53 |  |  |  |
| DAO1 10 | Unnamed Creek | 299 | -0.13 | 0.77 |  |  |  |
| DC0010 | Firebag River | 347 | -0.22 | 0.83 | 403 | -0.23 | 0.77 |
| DC0020 | Lost Creek | 86 | -0.28 | 0.86 |  |  |  |
| DD0020 | Richardson River | 124 | -0.16 | 0.83 |  |  |  |
| DA0070 | Poplar Creek | 323 | -0.04 | 0.06 | 347 | -0.19 | 0.84 |
| DAO180 | Beaver River | 238 | -0.20 | 0.83 |  |  |  |



Figure 9. Distribution of loading factors ( $K$ ) and dilution factors ( $n$ ) for guaged tributaries in 1977 (equation (1)).
loading and variability (difference between runoff and groundwater). For both the Upper Ells and Richardson rivers, their low $-n$ and $K$ characters are determined chiefly by the large holdings of soft water in headwater lakes for both basins.

A noticeable cluster of points appears for sites of low variability yet high loading. This includes all lower sites for streams draining the east slopes of the Birch Mountains along with Poplar Creek (for 1977). This would seem to indicate a proportionally high groundwater influence. Possibly, the common low coefficients of determination for these data may indicate that another relationship would better describe their behaviour.

In the case of Poplar Creek, however, its inclusion in this grouping seems to be an artifact of the diversion of Beaver Creek into this watershed by Syncrude. Figure 3 shows the structure of Beaver River and Poplar Creek before Syncrude development and Figure 4 shows their resulting structure after development of the plant and mine. The increase in level of the Ruth Lake diversion complex, resulting in intermittent discharges into the Poplar Creek, appears to have disrupted the normal ionic regime of Poplar Creek, causing the low coefficient of determination and displacing its position in Figure 9 for 1977 data. In fact, the dilution relationship of Poplar Creek (Figure 10) indicates sporadic changes in its regime for 1977.

Another noticeable clustering of points in Figure 9 occurs with Lost Creek and Thickwood Creek. Both are small headwater tributaries ( $60 \mathrm{~km}^{2}$ and $170 \mathrm{~km}^{2}$, respectively) but they drain completely different terrain. Lost Creek drains mainly a jack pine community on hummocky morraine, whereas Thickwood Creek drains mainly muskeg, and yet their dilution factors and loading factors were almost identical for 1977.
3.1.2 Specific Conductance-Ion Relationships in Tributaries

The concentrations and subsequent ionic activity of each of the ionic species together determine the electrolytic character of


Figure 10. Specific conductance-discharge relationship of Poplar Creek from 1976 and 1977 data.
water. The electrical conductance of a water sample, then, is a composite of the ionic conductivities of both the cationic and anionic species present, such that:

$$
\begin{equation*}
\frac{1}{R}=K\left(C_{a} \lambda_{a}+C_{b} \lambda_{b}+\ldots C_{z} \lambda_{z}\right) \tag{3}
\end{equation*}
$$

where: $\quad \frac{1}{R}$ is reciprocal resistance, or conductance
$C_{i}$ is concentration of ion $i$ (equivalent/litre)
$\lambda_{i}$ is constant characteristic of ion $i$
$K$ is a proportionality constant that equals 1 under the standard conditions that defined $\frac{1}{R}=$ specific conductance In case of a constant proportion of the various ionic components, as would be supplied by a common source to the base flow and diluting flow, one expects a linear relationship between the total dissolved solids and specific conductance (where $\lambda_{i}$ would not vary appreciably in the range in question). In the case of varying proportions of the various ionic components, one expects an extent of non-linearity in the relationship of total dissolved solids and specific conductance that would reflect a shift in $\lambda$ contributions. The $\lambda_{o}$ ( $\lambda$ values at infinite dilution) values for typical ions in surface waters are shown in Table 13. A consideration of the significant ions from the standpoint of naturally occurring concentrations (calcium, magnesium, sodium, bicarbonate, chloride, and sulphate) indicates that not much deviation from linearity would be expected by varying the proportion of cations; however, one would expect a shift to higher specific conductance per total amount of ionic solids by increasing the proportion of either chloride or sulphate at the expense of bicarbonate. The total dissolved ionizable material is measured by the parameter filterable residue fixed.

Assuming a measure of linearity over the range of interest, an approximation of equation (3) can be made in the following form:

$$
\begin{equation*}
S C=K(F R F)+S C_{0} \tag{4}
\end{equation*}
$$

Table 13. Ionic equivalent conductivities at infinite dilution at $25^{\circ} \mathrm{C}\left(\lambda_{0}\right)$ for the main surface water ions. ${ }^{\text {a }}$

|  | Ion | $\text { mho }-\mathrm{cm}^{2} / \mathrm{g}^{\lambda}{ }^{\lambda} \text { equivalent }$ |
| :---: | :---: | :---: |
| Anions | $\mathrm{HCO}_{3}^{-}$ | 44.48 |
|  | $\mathrm{F}^{-}$ | 55.0 |
|  | $\frac{1}{2} \mathrm{CO}_{3}=$ | 69.3 |
|  | $\mathrm{Cl}^{-}$ | 76.34 |
|  | $\frac{1}{2} \mathrm{SO}_{4}=$ | 80.0 |
|  | $\mathrm{OH}^{-}$ | 198.0 |
| Cations | $\mathrm{Na}^{+}$ | 50.11 |
|  | $\frac{1}{2} \mathrm{Mg}{ }^{+}$ | 53.06 |
|  | $\frac{1}{2} \mathrm{Ca}^{++}$ | 59.50 |
|  | $K^{+}$ | 73.52 |
|  | $\mathrm{H}^{+}$ | 349.82 |

a
From Meites and Thomas (1958).
where: $\quad S C$ is the specific conductance
FRF is the parameter filterable residue fixed
$K$ is the proportionality factor
$S C_{o}$ is a measure of non-linearity
The proportionality factor (K) relates to the amount of ionic activity per total amount of ionizable material. The higher the K, the higher . the specific conductivity per ionizable material which reflects on the amount of ions provided by the solids and their $\lambda_{i}$. The $S C_{o}$ is related to the non-linearity of fit. In actuality $\mathrm{SC}_{\mathrm{o}}$ approaches 0 where concentrations approach zero but, in the range of interest, a positive $\mathrm{SC}_{\mathrm{o}}$ indicates a decreasing contribution to specific conductivity at higher concentrations.

The relationship expressed by equation (4) is shown in Figure 11 for the MacKay and Firebag rivers for 1977. The more highly variable MacKay River displays a better fit and shows more specific conductance per dissolved material (probably as a result of a higher proportion of sulphate and chloride). It also has a slightly smaller non-linearity factor indicating that at higher concentrations the sulphate or chloride ions play an even more dominant role.

Values for $\mathrm{SC}_{\mathrm{O}}$ and K , calculated by li near regression of 1976 and 1977 data for all tributaries, are shown in Table 14 along with the coefficient of determination. Data for most tributaries show a good fit to the approximation as evidenced by their high coefficient of determination over the range of the data. However, 1977 data for Poplar Creek obviously did not fit and 1977 data for Richardson River, Joslyn Creek, and Bridge Creek Diversion displayed a poor fit.

A plot of the proportionality factor versus non-linearity factors portrays the types of electrical character of the tributaries (Figure 12). Three groupings are apparent:

1. A group of the majority of tributary sites forming a generally smooth transition in $K$ from lower activity per solid with a concurrent increase in this activity at higher loading (lower SC ${ }_{o}$ ), likely caused by chloride


Figure II. Specific conductance-filterable residue fixed relationship for the Firebag and MacKay rivers in 1977.

Table 14. Resuits of 1 inear regression on 1976 and 1977 specific conductance (SC) and filterable residue fixed (FRF) data for the relationship $S C=K(F R F)+S C_{0}$. The coefficient of determination is shown as $r^{2}$.

| $\begin{gathered} \text { Site } \\ \text { Code } \\ \text { (Figure 2) } \end{gathered}$ | Name | 1977 |  |  | 1976 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SC | K | $\mathrm{r}^{2}$ | SC | K | $\mathrm{r}^{2}$ |
| CD0040 | Hangingstone River | 41 | 1.66 | 1.00 | -12 | 1.99 | 0.88 |
| DA0060 | Steepbank River | 55 | 1.66 | 0.99 | 98 | 1.10 | 0.89 |
| DA0080 | Muskeg River | 64 | 1.59 | 0.92 | 146 | 1.19 | 0.66 |
| DB0090 | Hartley Creek | 64 | 1.59 | 0.99 |  |  |  |
| DB0040 | Thickwood Creek | 36 | 1.90 | 0.92 |  |  |  |
| DB0020 | Dover River | 64.1 | 1.67 | 0.98 |  |  |  |
| DB0030 | Dunkirk River | 39 | 1.96 | 0.98 |  |  |  |
| DB0011 | Mackay River | 56 | 1.68 | 1.00 | -9 | 1.91 | 0.98 |
| DAOIOO | Upper Ells River | 63 | 1.04 | 0.91 |  |  |  |
| DAO170 | Lower Ells River | 30 | 1.73 | 0.92 |  |  |  |
| DA0160 | Joslyn Creek | 190 | 0.98 | 0.65 |  |  |  |
| DAO190 | Upper Tar River | 29 | 1.72 | 0.99 |  |  |  |
| DAO150 | Lower Tar River | 58 | 1.58 | 0.96 |  |  |  |
| DAO140 | Calumet River | 57 | 1.78 | 0.98 |  |  |  |
| DAO130 | Pierre River | 3 | 1.78 | 0.83 |  |  |  |
| DAO120 | Asphalt Creek | -9 | 1.76 | 0.98 |  |  |  |
| DAOO110 | Unnamed Creek | 143 | 1.14 | 0.83 |  |  |  |
| DCOO10 | Firebag River | 96 | 0.98 | 0.83 | 123 | 0.77 | 0.61 |
| DC0020 | Lost Creek | -1 | 2.02 | 0.89 |  |  |  |
| DD0020 | Richardson River | 56 | 50.00 | 0.52 |  |  |  |
| DA0070 | Poplar Creek | 380 | -0.06 | 0.02 | 17 | 2.06 | 0.99 |
| DA0180 | Beaver River | 72 | 1.44 | 0.97 |  |  |  |
| DAO181 | Beaver River at Hwy 63 | 165 | 1.22 | 0.91 |  |  |  |
| DA0182 | Bridge Creek Diversion | 154 | 1.24 | 0.71 |  |  |  |



Figure 12. Relationship of proportionality of ionic activity per total dissolved solids ( $K$ ) and non-linearity factor $\left(S C_{0}\right)$ for equation (4).
and sulphate. Such a grouping appears indicative of similar kinds of base flow and of dilution operating at these sites;
2. A grouping of the Firebag, Upper Ells, and Richardson rivers out of line of the other tributaries. Lower ionic activity per solid reflects water from the Precambrian Shield, in the case of the eastern tributaries, and water from the high elevation soft water lakes, in the case of the Upper Ells River; and
3. Poplar Creek for 1977. Data for this year do not group with the rest of the region which probably reflects the disruptive effect of diversion.
The same relationship expressed by equation (4) can be
explored for each individual ion concentration such that:
$S C=K_{i}\left(I_{i}\right)+S C_{o}$
where: $\quad S C$ is the specific conductance
$\left(I_{i}\right)$ is the parameter producing ion $\mathbf{i}$
$K_{i}$ is the proportionality factor for ion $i$
$S C_{o}$ is a measure of non-linearity for ion $i$
The fact that the two factors deal with comparing an individual ion effect to a total effect preclude the kind of analysis conducted for equation (3). However, in general, one would expect good correlations for the major contributors to specific conductance. The relationship of equation (5) for major ionic species in the Firebag River is depicted in Figure 13.

Values for $\mathrm{SC}_{\mathrm{o}}$ and ( $\mathrm{I}_{\mathrm{i}}$ ) for equation (5), calculated by linear regression of 1976 and 1977 data for all tributaries, are shown in Tables 15 to 23 for the following ions: calcium, magnesium, sodium, potassium, bicarbonate, sulphate, chloride, fluoride, and silica. Good correlations are demonstrated for many cases, especially the major ions. Where a particular ion has the major effect on the conductivity, or is released to the surface water by the same processes releasing the ion with the predominant effect, one would expect a good correlation.


Table 15. Results of linear regression on 1976 and 1977 specific conductance (SC) and calcium data for equation (5). The coefficient of determination is shown as $r^{2}$.

| SiteCode(Figure 2) | Name | 1977 |  |  | 1976 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{SC}_{0}$ | ${ }^{\mathrm{Ca}}$ | $r^{2}$ | $\mathrm{SC}_{0}$ | $\mathrm{K}_{\mathrm{Ca}}$ | $r^{2}$ |
| CD0040 | Hangingstone River | -30.05 | 10.63 | 0.99 | -32.10 | 9.33 | 0.97 |
| DA0060 | Steepbank River | -28.98 | 9.26 | 0.99 | -34.13 | 9.05 | 0.99 |
| DA0080 | Muskeg River | 62.52 | 6.00 | 0.91 | 79.96 | 5.35 | 0.97 |
| DB0090 | Hartley Creek | 23.65 | 7.07 | 0.98 |  |  |  |
| DB0040 | Thickwood Creek | 3.62 | 7.44 | 0.91 |  |  |  |
| DB0020 | Dover River | 21.97 | 10.52 | 0.97 |  |  |  |
| DB0030 | Dunkirk River | -3.79 | 7.92 | 0.99 |  |  |  |
| DB0011 | MacKay River | -70.31 | 11.94 | 0.99 | $-44.13$ | 10.78 | 1.00 |
| DA0100 | Upper Ells River | -4.56 | 8.11 | 0.79 |  |  |  |
| DA0170 | Lower Ells River | -51.3 | 10.8 | 0.97 |  |  |  |
| DA0160 | Joslyn Creek | 219.33 | 4.18 | 0.43 |  |  |  |
| DA0190 | Upper Tar River | -31.84 | 8.35 | 0.89 |  |  |  |
| DA0150 | Lower Tar River | -3.59 | 8.87 | 0.95 |  |  |  |
| DA0140 | Calumet River | -63.14 | 12.67 | 1.00 |  |  |  |
| DA0130 | Pierre River | -86.60 | 13.13 | 0.83 |  |  |  |
| DAO120 | Asphalt Creek | 130.77 | 6.63 | 0.95 |  |  |  |
| DA0110 | Unnamed Creek | 175.31 | 4.01 | 0.52 |  |  |  |
| DC0010 | Firebag River | 25.00 | 6.31 | 0.89 | -17.29 | 7.50 | 0.99 |
| DC0020 | Lost Creek | 68.98 | 3.62 | 0.73 |  |  |  |
| DD0020 | Richardson River | 55.84 | 2.37 | 0.11 |  |  |  |
| DA0070 | Poplar Creek | 406.20 | -1.30 | 0.01 | $-474.78$ | 27.59 | 0.95 |
| DA0180 | Beaver River | -242.86 | 23.65 | 0.68 |  |  |  |
| DA0181 | Beaver River at Hwy 63 | 280.92 | 4.34 | 0.13 |  |  |  |
| DA0182 | Bridge Creek Diversion | 16.42 | 9.40 | 0.96 |  |  |  |

Table 16. Results of 1 inear regression on 1976 and 1977 specific conductance (SC) and magnesium data for equation (5). The coefficient of determination is shown as $r^{2}$.

| Site Code (Figure 2) | Name | 1977 |  |  | 1976 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{SC}_{0}$ | $\mathrm{K}_{\mathrm{Mg}}$ | $r^{2}$ | SCo | $\mathrm{K}_{\mathrm{Mg}}$ | $\mathrm{r}^{2}$ |
| CD0040 | Hangingstone River | -29.73 | 34.84 | 0.99 | -48.75 | 36.31 | 0.96 |
| DA0060 | Steepbank River | -37.78 | 30.58 | 0.98 | -45.15 | 29.64 | 0.95 |
| DA0080 | Muskeg River | 4.59 | 28.48 | 0.93 | -13.56 | 28.75 | 0.91 |
| DB0090 | Hartley Creek | -24.87 | 30.26 | 0.97 |  |  |  |
| DB0040 | Thickwood Creek | 2.99 | 20.85 | 0.90 |  |  |  |
| DB0020 | Dover River | 35.25 | 27.10 | 0.94 |  |  |  |
| DB0030 | Dunkirk River | -11.71 | 27.22 | 1.00 |  |  |  |
| DB0011 | Mackay River | -21.76 | 29.81 | 0.99 | -50.28 | 31.79 | 0.98 |
| DA0100 | Upper Ells River | 5.34 | 24.36 | 0.64 |  |  |  |
| DAO170 | Lower Ells River | -80.22 | 39.97 | 0.92 |  |  |  |
| DA0160 | Joslyn Creek | 171.26 | 18.88 | 0.66 |  |  |  |
| DAO190 | Upper Tar River | 0.36 | 23.89 | 0.91 |  |  |  |
| DA0150 | Lower Tar River | 7.37 | 26.93 | 0.93 |  |  |  |
| DA0140 | Calumet River | -9.18 | 33.05 | 0.99 |  |  |  |
| DAO130 | Pierre River | -12.98 | 32.35 | 0.62 |  |  |  |
| DAO120 | Asphalt Creek | 84.06 | 22.36 | 0.97 |  |  |  |
| DAO110 | Unnamed Creek | 32.78 | 25.73 | 0.73 |  |  |  |
| DC0010 | Firebag River | 12.51 | 21.63 | 0.90 | -6.66 | 22.82 | 0.96 |
| DC0020 | Lost Creek | 10.82 | 21.30 | 0.90 |  |  |  |
| DD0020 | Richardson River | 63.79 | 4.58 | 0.07 |  |  |  |
| DA0070 | Poplar Creek | 399.98 | -3.07 | 0.02 | -337.81 | 64.00 | 0.93 |
| DAO180 | Beaver River | -189.74 | 58.05 | 0.83 |  |  |  |
| DA0181 | Beaver River at Hwy 63 | 107.40 | 26.33 | 0.33 |  |  |  |
| DA0182 | Bridge Creek Diversion | -40.69 | 34.22 | 0.92 |  |  |  |

Table 17. Results of linear regression on 1976 and 1977 specific conductance (SC) and sodium data for equation (5). The coefficient of determination is shown as $r^{2}$.

| Site <br> Code (Figure 2) | Name | 1977 |  |  | 1976 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{SC}_{0}$ | $\mathrm{K}_{\mathrm{Na}}$ | $r^{\text {a }}$ | SCo | $\mathrm{K}_{\mathrm{Na}}$ | $r^{2}$ |
| CD0040 | Hangingstone River | 24.37 | 11.38 | 0.99 | 42.19 | 9.95 | 0.97 |
| DA0060 | Steepbank River | 65.14 | 12.27 | 0.99 | 84.84 | 11.25 | 0.99 |
| DA0080 | Muskeg River | 247.62 | 6.35 | 0.21 | 332.98 | 0.88 | 0.001 |
| DB0090 | Hartley Creek | -65.53 | 21.92 | 0.94 |  |  |  |
| DB0040 | Thickwood Creek | 90.60 | 9.33 | 0.36 |  |  |  |
| DB0020 | Dover River | 71.11 | 9.00 | 0.98 |  |  |  |
| DB0030 | Dunkirk River | 33.76 | 18.37 | 0.98 |  |  |  |
| DB0011 | MacKay River | 74.20 | 9.30 | 0.98 | 56.09 | 10.15 | 1.00 |
| DA0100 | Upper Ells River | 89.67 | 9.06 | 0.49 |  |  |  |
| DA0170 | Lower Ells River | 75.90 | 11.49 | 0.97 |  |  |  |
| DA0160 | Joslyn Creek | 233.25 | 6.39 | 0.85 |  |  |  |
| DA0190 | Upper Tar River | 232.86 | 6.42 | 0.51 |  |  |  |
| DA0150 | Lower Tar River | 134.01 | 12.23 | 0.94 |  |  |  |
| DA0140 | Calumet River | 99.43 | 7.90 | 1.00 |  |  |  |
| DA0130 | Pierre River | 74.71 | 12.29 | 0.61 |  |  |  |
| DA0120 | Asphalt Creek | 40.83 | 19.32 | 0.24 |  |  |  |
| DA0110 | Unnamed Creek | 325.48 | 3.29 | 0.06 |  |  |  |
| DCOO10 | Firebag River | 74.5 | 36.21 | 0.75 | 31.13 | 44.70 | 0.98 |
| DC0020 | Lost Creek | 13.70 | 69.11 | 0.62 |  |  |  |
| DD0020 | Richardson River | 63.62 | 8.46 | 0.25 |  |  |  |
| DA0070 | Poplar Creek | 336.4 | -0.10 | 0.004 | 125.62 | 6.70 | 0.99 |
| DA0180 | Beaver River | 126.23 | 4.74 | 0.98 |  |  |  |
| DA0181 | Beaver River at Hwy 63 | 333.06 | 5.55 | 0.61 |  |  |  |
| DA0182 | Bridge Creek Diversion | 6.16 | 11.50 | 0.92 |  |  |  |

Table 18. Results of linear regression on 1976 and 1977 specific conductance (SC) and potassium data for equation (5). The coefficient of determination is shown as $r^{2}$.

| site Code (Figure 2) | Name | 1977 |  |  | 1976 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Sco | $\mathrm{K}_{\mathrm{k}}$ | $r^{2}$ | $\mathrm{SC}_{0}$ | K | $\mathrm{r}^{2}$ |
| CD0040 | Hangingstone River | -13.62 | 174.5 | 0.88 | -14.33 | 209.73 | 0.85 |
| DA0060 | Steepbank River | 85.28 | 176.71 | 0.53 | 50.36 | 252.86 | 0.76 |
| DA0080 | Muskeg River | 319.85 | 17.15 | 0.01 | 122.33 | 248.33 | 0.81 |
| DB0090 | Hartley Creek | 296.56 | 8.47 | 0.70 |  |  |  |
| DB0040 | Thickwood Creek | 72.35 | 91.22 | 0.66 |  |  |  |
| DB0020 | Dover River | -253.12 | 236.86 | 0.71 |  |  |  |
| DB0030 | Dunkirk River | 6.69 | 170.41 | 0.88 |  |  |  |
| DB0011 | MacKay River | -61.16 | 219.54 | 0.87 | $-51.78$ | 266.71 | 0.85 |
| DAO100 | Upper Ells River | 49.78 | 75.23 | 0.62 |  |  |  |
| DA0170 | Lower Ells River | -65.17 | 203.63 | 0.85 |  |  |  |
| DA0160 | Joslyn Creek | 214.00 | 65.36 | 0.73 |  |  |  |
| DA0190 | Upper Tar River | 83.46 | 148.37 | 0.86 |  |  |  |
| DA0150 | Lower Tar River | 46.46 | 162.54 | 0.83 |  |  |  |
| DA0140 | Calumet River | -71.51 | 181.42 | 0.96 |  |  |  |
| DAO1 30 | Pierre River | 395.98 | -11.15 | 0.01 |  |  |  |
| DAO120 | Asphalt Creek | -39.33 | 167.24 | 0.63 |  |  |  |
| DAOIIO | Unnamed Creek | 695.06 | -113.83 | 0.51 |  |  |  |
| DC0010 | Firebag River | 135.78 | 83.04 | 0.75 | 96.29 | 155.68 | 0.84 |
| DC0020 | Lost Creek | 167.6 | -86.84 | 0.08 |  |  |  |
| DD0020 | Richardson River | 84.4 | -5.38 | 0.04 |  |  |  |
| DA0070 | Poplar Creek | -260.33 | 219.57 | 0.51 | -251.32 | 311.46 | 0.56 |
| DAO180 | Beaver River | 119.28 | 129.68 | 0.20 |  |  |  |
| DA0181 | Beaver River at Hwy 63 | 497.36 | 15.07 | 0.01 |  |  |  |
| DA0182 | Bridge Creek Diversion | 397.12 | -25.13 | 0.01 |  |  |  |

Table 19. Results of linear regression on 1976 and 1977 specific conductance (SC) and bicarbonate data for equation (5). The coefficient of determination is shown as $r^{2}$.

| Site Code (Figure 2) | Name | 1977 |  |  | 1976 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SCo | $\mathrm{K}_{\mathrm{HCO}}^{3}$ | $r^{2}$ | SCo | $\mathrm{K}_{\mathrm{HCO}}^{3}$ | $r^{2}$ |
| CD0040 | Hangingstone River | -7.27 | 2.02 | 1.00 | 5.08 | 1.85 | 0.94 |
| DA0060 | Steepbank River | 10.66 | 1.48 | 1.00 | 14.97 | 1.49 | 0.99 |
| DA0080 | Muskeg River | 15.94 | 1.47 | 0.96 | 42.30 | 1.32 | 0.95 |
| DB0090 | Hartley Creek | 2.96 | 1.51 | 0.98 |  |  |  |
| DB0040 | Thickwood Creek | 9.81 | 1.54 | 0.92 |  |  |  |
| DB0020 | Dover River | -18.63 | 1.73 | 0.96 |  |  |  |
| DB0030 | Dunkirk River | 6.65 | 1.68 | 0.99 |  |  |  |
| DB0011 | MacKay River | 141.58 | 1.54 | 0.59 | -17.28 | 2.00 | 0.99 |
| DA0100 | Upper Ells River | -3.55 | 1.79 | 0.83 |  |  |  |
| DA0170 | Lower Ells River | -34.58 | 2.18 | 0.96 |  |  |  |
| DA0160 | Joslyn Creek | 291.04 | 0.68 | 0.31 |  |  |  |
| DA0190 | Upper Tar River | -11.32 | 1.69 | 0.99 |  |  |  |
| DA0150 | Lower Tar River | 82.45 | 1.37 | 0.93 |  |  |  |
| DA0140 | Calumet River | -127.52 | 2.34 | 1.00 |  |  |  |
| DA0130 | Pierre River | 363.74 | -0.09 | 0.001 |  |  |  |
| DA0120 | Asphalt Creek | 307.66 | 0.95 | 0.79 |  |  |  |
| DA0110 | Unnamed Creek | 278.19 | 0.48 | 0.19 |  |  |  |
| DCOO10 | Firebag River | 28.70 | 1.33 | 0.93 | -8.70 | 1.65 | 1.00 |
| DC0020 | Lost Creek | 14.90 | 1.28 | 0.94 |  |  |  |
| DD0020 | Richardson River | 49.12 | 0.63 | 0.12 |  |  |  |
| DA0070 | Poplar Creek | 430.75 | -0.32 | 0.03 | -496.86 | 5.07 | 0.92 |
| DA0180 | Beaver River | 1.17 | 1.57 | 0.99 |  |  |  |
| DA0181 | Beaver River at Hwy 63 | 282.37 | 1.17 | 0.22 |  |  |  |
| DA0182 | Bridge Creek Diversion | 30.77 | 1.89 | 0.54 |  |  |  |

Table 20. Results of linear regression on 1976 and 1977 specific conductance (SC) and sulphate data for equation (5). The coefficient of determination is shown as $r^{2}$.

| $\begin{gathered} \text { Site } \\ \text { Code } \\ \text { (Figure } 2 \text { ) } \end{gathered}$ | Name | 1977 |  |  | 1976 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{SC}_{\mathrm{o}}$ | $\mathrm{K}_{\mathrm{SO}}^{4}$ | $r^{2}$ | $\mathrm{SC}_{0}$ | $\mathrm{K}_{\mathrm{SO}}^{4}$ | $\mathrm{r}^{2}$ |
| CD0040 | Hangingstone River | 42.25 | 15.12 | 0.96 | 9.98 | 13.64 | 0.99 |
| DA0060 | Steepbank River | 82.11 | 35.08 | 0.34 | -32.69 | 44.99 | 0.60 |
| DA0080 | Muskeg River | 360.65 | -3.55 | 0.01 | 288.70 | 21.29 | 0.68 |
| DB0090 | Hartley Creek | 187.96 | 20.52 | 0.05 |  |  |  |
| DB0040 | Thickwood Creek | -54.49 | 26.49 | 0.40 |  |  |  |
| DB0020 | Dover River | 331.42 | 7.85 | 0.86 |  |  |  |
| DB0030 | Dunkirk River | -47.74 | 16.27 | 0.95 |  |  |  |
| DB0011 | MacKay River | 72.42 | 11.84 | 0.97 | 74.71 | 10.58 | 0.96 |
| DA0100 | Upper Ells River | 82.32 | 6.30 | 0.13 |  |  |  |
| DA0170 | Lower Ells River | 42.51 | 10.78 | 0.92 |  |  |  |
| DA0160 | Joslyn Creek | 331.60 | 1.02 | 0.25 |  |  |  |
| DA0190 | Upper Tar River | 85.72 | 16.49 | 0.85 |  |  |  |
| DA0150 | Lower Tar River | 365.34 | 1.91 | 0.03 |  |  |  |
| DA0140 | Calumet River | 232.47 | 13.56 | 0.95 |  |  |  |
| DA0130 | Pierre River | 194.31 | 1.80 | 0.66 |  |  |  |
| DAO120 | Asphalt Creek | 523.46 | -0.85 | 0.06 |  |  |  |
| DA0110 | Unnamed Creek | 346.59 | 0.53 | 0.07 |  |  |  |
| DC0010 | Firebag River | 188.11 | 3.08 | 0.05 | 122.11 | 28.05 | 0.66 |
| DC0020 | Lost Creek | 173.36 | -8.86 | 0.16 |  |  |  |
| DD0020 | Richardson River | 82.60 | -0.73 | 0.05 |  |  |  |
| DA0070 | Poplar Creek | 355.07 | 0.52 | 0.00008 | 140.56 | 21.97 | 0.98 |
| DAO180 | Beaver River | 143.30 | 14.48 | 0.84 |  |  |  |
| DA0181 | Beaver River at Hwy 63 | 527.72 | 0.32 | 0.02 |  |  |  |
| DA0182 | Bridge Creek Diversion | 252.76 | 2.73 | 0.49 |  |  |  |

Table 21. Results of linear regression on 1976 and 1977 specific conductance ( SC ) and chloride data for equation (5). The coefficient of determination is shown as $r^{2}$.

| Site Code (Figure 2) | Name | 1977 |  |  | 1976 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{SC}_{0}$ | $\mathrm{K}_{\mathrm{Cl}}$ | $\mathrm{r}^{2}$ | SCo | $\mathrm{K}_{\mathrm{Cl}}$ | $r^{2}$ |
| CD0040 | Hangingstone River | -56.63 | 23.76 | 0.95 | 49.88 | 18.67 | 0.79 |
| DA0060 | Steepbank River | -14.00 | 99.51 | 0.97 | 60.86 | 73.64 | 0.99 |
| DA0080 | Muskeg River | 314.79 | 4.22 | 0.08 | 316.18 | 5.20 | 0.05 |
| DB0090 | Hartley Creek | 152.16 | 24.73 | 0.80 |  |  |  |
| DB0040 | Thickwood Creek | 52.99 | 69.86 | 0.70 |  |  |  |
| DB0020 | Dover River | 119.50 | 50.73 | 0.82 |  |  |  |
| DB0030 | Dunkirk River | 34.93 | 234.72 | 0.67 |  |  |  |
| DB0011 | Mackay River | 143.77 | 23.15 | 0.98 | 148.96 | 19.04 | 0.81 |
| DA0100 | Upper Ells River | 108.75 | 22.88 | 0.36 |  |  |  |
| DA0170 | Lower Ells River | 102.25 | 53.21 | 0.93 |  |  |  |
| DA0160 | Joslyn Creek | 372.11 | 18.24 | 0.10 |  |  |  |
| DAO190 | Upper Tar River | 256.49 | 12.85 | 0.39 |  |  |  |
| DA0150 | Lower Tar River | 192.83 | 62.86 | 0.91 |  |  |  |
| DA0140 | Calumet River | 264.83 | 10.21 | 1.00 |  |  |  |
| DA0130 | Pierre River | 412.60 | -15.78 | 0.10 |  |  |  |
| DAO120 | Asphalt Creek | 322.86 | 31.72 | 0.05 |  |  |  |
| DAO110 | Unnamed Creek | 337.89 | 25.51 | 0.04 |  |  |  |
| DC0010 | Firebag River | 93.65 | 59.54 | 0.78 | 102.23 | 46.62 | 0.98 |
| DC0020 | Lost Creek | 140.31 | 9.94 | 0.01 |  |  |  |
| DD0020 | Richardson River | 69.85 | 8.92 | 0.31 |  |  |  |
| DA0070 | Poplar Creek | 372.63 | -0.15 | 0.02 | 263.75 | 4.27 | 0.99 |
| DA0180 | Beaver River | -195.52 | 315.12 | 0.71 |  |  |  |
| DA0181 | Beaver River at Hwy 63 | 442.38 | 2.98 | 0.55 |  |  |  |
| DA0182 | Bridge Creek Diversion | 206.90 | 9.45 | 0.60 |  |  |  |

Table 22. Results of linear regression on 1976 and 1977 specific conductance (SC) and fluoride data for equation (5). The coefficient of determination is shown as $r^{2}$.

| Site <br> Code (Figure 2) | Name | 1977 |  |  | 1976 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{SC}_{0}$ | $\mathrm{K}_{\mathrm{F}}$ | $r^{2}$ | $\mathrm{SC}_{0}$ | $\mathrm{K}_{\mathrm{F}}$ | $r^{2}$ |
| CD0040 | Hangingstone River | -32.18 | 2714.91 | 0.42 | -44.78 | 2950.19 | 0.45 |
| DA0060 | Steepbank River | 32.51 | 2511.97 | 0.44 | 228.47 | 424.43 | 0.02 |
| DA0080 | Muskeg River | -9.32 | 2888.23 | 0.54 | 89.59 | 2479.73 | 0.66 |
| DB0090 | Hartley Creek | -87.03 | 3073.07 | 0.72 |  |  |  |
| DB0040 | Thickwood Creek | -21.07 | 2233.86 | 0.61 |  | ' |  |
| DB0020 | Dover River | -14.97 | 2661.27 | 0.80 |  |  |  |
| DB0030 | Dunkirk River | 236.69 | 700.43 | 0.04 |  |  |  |
| DB0011 | MacKay River | 148.33 | 2102.05 | 0.13 | -32.11 | 3455.70 | 0.42 |
| DAO100 | Upper Ells River | 119.53 | 28.16 | 0.001 |  |  |  |
| DA0170 | Lower Ells River | 50.00 | 1425.00 | 0.28 |  |  |  |
| DA0160 | Joslyn Creek | 423.38 | -66.68 | 0.01 |  |  |  |
| DAO190 | Upper Tar River | -237.62 | 3577.38 | 0.70 |  |  |  |
| DA0150 | Lower Tar River | 51.42 | 1664.34 | 0.50 |  |  |  |
| DA0140 | Calumet River | 19.44 | 3631.63 | 0.18 |  |  |  |
| DA0130 | Pierre River | 258.54 | 273.66 | 0.06 |  |  |  |
| DA0120 | Asphalt Creek | 3.00 | 1263.67 | 0.13 |  |  |  |
| DA0110 | Unnamed Creek | 321.45 | 186.35 | 0.10 |  |  |  |
| DC0010 | Firebag River | 206.75 | -47.17 | 0.001 | 380.10 | -1434.88 | 0.20 |
| DC0020 | Lost Creek | 134.84 | 136.78 | 0.01 |  |  |  |
| DD0020 | Richardson River | 104.20 | -300.00 | 0.20 |  |  |  |
| DA0070 | Poplar Creek | 530.81 | -1402.97 | 0.06 | -507.07 | 8362.96 | 0.28 |
| DA0180 | Beaver River | -54.61 | 2983.51 | 0.91 |  |  |  |
| DA0181 | Beaver River at Hwy 63 | 66.52 | 2184.87 | 0.41 |  |  |  |
| DA0182 | Bridge Creek Diversion | -87.03 | 3073.07 | 0.72 |  |  |  |

Table 23. Results of linear regression on 1976 and 1977 specific conductance (SC) and silica data for equation (5). The coefficient of determination is shown as $r^{2}$.

| SiteCode(Figure 2) | Name | 1977 |  |  | 1976 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{SC}_{0}$ | $\mathrm{K}_{\mathrm{SiO}_{2}}$ | $r^{2}$ | $\mathrm{SC}_{0}$ | $\mathrm{K}_{\mathrm{SiO}}^{2}$ | $r^{2}$ |
| CD0040 | Hangingstone River | -91.17 | 48.93 | 0.97 | -76.74 | 42.93 | 0.71 |
| DA0060 | Steepbank River | 12.14 | 41.88 | 0.95 | 67.83 | 24.95 | 0.43 |
| DA0080 | Muskeg River | 121.52 | 26.47 | 0.76 | 237.59 | 7.92 | 0.24 |
| DB0090 | Hartley Creek | 57.54 | 33.20 | 0.82 |  |  |  |
| DB0040 | Thickwood Creek | 50.48 | 15.97 | 0.80 |  |  |  |
| DB0020 | Dover River | 273.13 | 38.87 | 0.98 |  |  |  |
| DB0030 | Dunkirk River | 39.26 | 40.38 | 0.92 |  |  |  |
| DB0011 | MacKay River | 57.41 | 60.71 | 0.94 | -50.29 | 50.17 | 0.59 |
| DA0100 | Upper Ells River | 104.18 | 4.56 | 0.79 |  |  |  |
| DAO170 | Lower Ells River | 146.01 | 16.31 | 0.81 |  |  |  |
| DA0160 | Joslyn Creek | 540.97 | -21.86 | 0.10 |  |  |  |
| DA0190 | Upper Tar River | -48.10 | 42.91 | 0.94 |  |  |  |
| DA0150 | Lower Tar River | 74.64 | 31.96 | 0.86 |  |  |  |
| DA0140 | Calumet River | -154.00 | 80.44 | 0.92 |  |  |  |
| DA0130 | Pierre River | 298.75 | 7.35 | 0.07 |  |  |  |
| DA0120 | Asphalt Creek | 57.67 | 35.47 | 0.96 |  |  |  |
| DA0110 | Unnamed Creek | 260.14 | 9.71 | 0.19 |  |  |  |
| DC0010 | Firebag River | 122.29 | 6.87 | 0.93 | 47.38 | 12.59 | 0.96 |
| DCOO20 | Lost Creek | 28.77 | 20.24 | 0.72 |  |  |  |
| DD0020 | Richardson River | 69.94 | 0.77 | 0.20 |  |  |  |
| DA0070 | Poplar Creek | 456.46 | -16.78 | 0.03 | 399.43 | 8.89 | 0.01 |
| DA0180 | Beaver River | -90.21 | 63.79 | 0.95 |  |  |  |
| DA0181 | Beaver River at Hwy 63 | 512.29 | 7.01 | 0.05 |  |  |  |
| DA0182 | Bridge Creek Diversion | 42.69 | 66.35 | 0.50 |  |  |  |

For each ion, a comparison of the different proportionality factor $K_{i}$ displayed by each site gives a quantitative distribution of the effect of the ions on the total electrical character of water from each site. The higher the $K_{i}$, the less the relative contribution that ion has to the total specific conductance. These values for each tributary correspond well with what is indicated by Figure 7 for the six major ions. In addition to the major contributors to the electrical character of the water, the relationships exhibited by the minor contributing parameters of potassium, fluoride, and silica deserve mention.

Fluoride concentrations generally showed a very poor fit
(Table 22). Only in Beaver River did there seem to be a good relationship with nonfilterable residue fixed and to a lesser extent in the Dover River, Upper Tar River, and Hartley Creek. Thus, the release of fluoride is not simple and it may be that complexing, with metals such as aluminum and iron, may be complicating the fluoride discharge relationship.

Potassium also showed a generally poor fit to equation (5), but appeared to fit well for the Calumet, MacKay, Dunkirk, Upper Tar, Hangingstone, Lower Tar, and Lower Ells rivers (Table 18). For the sites on the lower portions of the profiles of the tributaries (in particular the Calumet, Hangingstone, and MacKay rivers), this correlation would appear to indicate a groundwater source of potassium along with sodium. The discharge relationship of potassium in surface water of the Muskeg basin has been shown to be a hysteresis which was interpreted to indicate leaching of leaf fall as a primary source (Schwartz 1978).

It is notable that silica can be correlated well with specific conductivity in most cases. As the silicate ion itself constitutes no more than $10 \%$ of total dissolved silica species between pH 8.4 and 8.9 (Hem 1970), its correlation is coincidental and would seem to indicate similar kinetics of release from the watershed as that of the major electrolytes. Silica is associated more with water that seeps through the soil (subsurface flow) than with overland flow or groundwater. Normally, during a rising stage, silica decreasesinitially while overland flow comprises the greater component, then increases as
the subsurface component increases in dominance, and finally decreases as the groundwater component dominates (Kennedy 1971). The dilution behaviour implied by the correlations in Table 23 is contrary to this general behaviour of silica and may indicate the major source of silica from a component deeper than just subsurface.
3.1.3 Specific Conductance Relationships in the Mainstem Rivers

Two types of sampling program were conducted on the mainstem river system (Table 4). The program, starting in June 1977 involved only a part of that year, therefore, the following analysis deals only with the data collected from February 1976 to February 1977.

The specific conductance-discharge relationships of three sites is shown in Figure 14 for the time period of February 1976 to February 1977. The specific conductance-discharge relationships of these sites along the Athabasca-Clearwater river mainstem follow the same kind of pattern as the tributaries. However, it must be noted that a sparsity of data points during medium discharge periods makes for less confidence in the fit of this relationship to the power curve equation (1) than was attainable in the case of the tributaries. Values for the dilution factors and loading factors calculated by linear regression of group for 1976-77 data are shown in Table 24 along with the coefficients of determination. A plot of the loading factors versus dilution factors for these data graphically portrays differences between sites (Figure 15) and, from the display of points, it is apparent that the sites differ more in loading as expressed by $K$ than in variability as expressed by $n$. As expected, the Clearwater River, which drains some Precambrian Shield headwaters in Saskatchewan, has the lowest loading factor. However, the distribution of the other points indicates a complicated situation. Loading increases from Site CCOO12 to Sites DAO2O1 and DAO2O3, despite what would be expected from the diluting influence of the Clearwater River. Samples were collected mid-stream, so the diluting influence of the Clearwater River depends upon the mixing characteristics of this particular section. Investigations of mixing characteristics, near the confluence of the Clearwater River and the Athabasca River and


Figure 14. Specific conductance-discharge relationships of sites on the mainstem river system from February 1976 to February 1977.

Table 24. Results of linear regression on 1976 and 1977 specific conductance and discharge mainstem river data for equation (1). The coefficient of determination is shown as $r^{2}$.

| $\begin{gathered} \text { Site } \\ \text { Code } \\ \text { (Figure 2) } \end{gathered}$ | Description | $S C=K Q^{n}$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | K | n | $r^{2}$ |
| CD2300 | Clearwater River | 746 | -0.25 | 0.41 |
| CCOO12 | Athabasca River above Horse River | 1307 | -0.27 | 0.83 |
| DA0201 | Athabasca River at km 10 | 1457 | -0.29 | 0.83 |
| DA0203 | Athabasca River at km 30 | 1699 | -0.31 | 0.84 |
| DA0204 | Athabasca River at km 42 | 1401 | -0.27 | 0.71 |
| DA0205 | Athabasca River at km 48 | 848 | -0.19 | 0.81 |
| DA0206 | Athabasca River at km 55 | 885 | -0.19 | 0.54 |
| DA0208 | Athabasca River at km 84 | 1348 | -0.26 | 0.83 |
| DA0209 | Athabasca River at km 132 | 2100 | -0.32 | 0.90 |
| DA0210 | Athabasca River below Firebag River | 1846 | -0.30 | 0.87 |



Figure 15. Distribution of loading factors $(K)$ and dilution factors ( $n$ ) for mainstem sites from February 1976 to February 1977.
for the Athabasca River under ice conditions downstream of Fort McMurray (Lipsett and Beltaos 1978; Beltaos 1979), have indicated slow transverse mixing in this relatively straight stretch of the Athabasca River and that 30 km may be necessary for the averaging effect of water quality parameters to take effect on the left side of the Athabasca River. Compounding this situation is a change in the suspended sediment regime that occurs at Fort McMurray which at times provides supersaturated conditions immediately below Fort McMurray (Doyle 1977; see Section 3.2). It could be that the interaction between the suspended solids and dissolved solids mimics this supersaturation so that the loading factors decrease after settling out of the solids. A decrease in loading factors occurs in the region of current oil sands activities between Sites DA0203 and DA0206 (about 30 to 50 km below the confluence). Following this, there is again an evident increase in loading.

A comparison of Figure 15 with the corresponding plot for the tributaries (Figure 9) proves worthwhile. The variability, as expressed by the dilution factor, is within what appears to be the average for the tributaries. On the other hand, the loading factors all greatly exceed the factors for the tributaries which is an indication that the loading effect of the tributaries on the mainstem is minimal. Even the diluting effect may be regarded as negligible in most cases. On the average, all study area tributaries amount to only about $9 \%$ contribution to the main flow (Neill 1979); however, it should be noted that, in the spring, the lag in runoff from upstream regions of the Athabasca River enhances the influence of the tributaries for short durations. For example, the MacKay River alone can contribute up to $10 \%$ of the total daily discharge briefly in the spring (Doyle 1977).

The specific conductance-filterable residue fixed relationships are of a similar kind to the tributary relationships albeit at a poorer fit to equation (4). Linear regression of 1976-77 data for the mainstem to fit equation (4) provides the proportionality and nonlinearity factors shown in Table 25 along with their coefficients of determination. The values are similar to what was observed for the tributaries (Table 14) although generally lower coefficients of determination prevailed. The values are plotted in Figure 16.

Table 25. Results of 1 inear regression on 1976 and 1977 specific conductance and filterable residue fixed mainstem river data for equation (4). The coefficient of determination is shown as $r^{2}$.

| Site <br> Code (Figure 2) | Description | $S C=K(F R F)+S C_{0}$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{SC}_{0}$ | K | $r^{2}$ |
| CD2300 | Clearwater River | 131 | 0.75 | 0.42 |
| CCOO12 | Athabasca River above Horse River | 75 | 1.33 | 0.67 |
| DA0201 | Athabasca River at km 10 | 114 | 1.04 | 0.66 |
| DA0203 | Athabasca River at km 30 | 101 | 1.12 | 0.73 |
| DA0204 | Athabasca River at km 42 | 175 | 0.58 | 0.19 |
| DA0205 | Athabasca River at km 48 | 150 | 0.83 | 0.65 |
| DA0206 | Athabasca River at km 55 | 225 | 0.39 | 0.18 |
| DA0208 | Athabasca River at km 84 | 93 | 1.21 | 0.87 |
| DA0209 | Athabasca River at km 132 | 76 | 1.48 | 0.89 |
| DA0210 | Athabasca River below Firebag | 64 | 1.45 | 0.93 |



Figure 16. Distribution of proportionality and non-linearity factors for mainstem sites from February 1976 to February 1977.

A comparison of values for tributaries (Figure 12) shows that lower ionic activity per nonfilterable residue fixed factors is displayed by the mainstem than by most of the tributaries. A pattern of decreasing electrical activity per dissolved material downstream of the Clearwater River confluence to about 50 km (Sites DA0204, DA0205, DA0206) and then a subsequent increase with downstream distance is evident. This would indicate that the kind of loading of the downstream portion (from Site DA0206 to Sites DA0209 and DAO210 as shown in Figure 16) might be due to proportional increases in concentrations of active ions such as chloride or sulphate during high ionic activity periods (base flow conditions).

### 3.1.4 Variation of Major lon Loadings in the Mainstem

Loadings for the major ions at each site were calculated from determined parameters and daily average discharge. The discharge values at each sampling point were deducted from that of the Athabasca River below Fort McMurray and whatever gauged tributaries (Loeppky and Spitzer 1977) were necessary to subtract from or add to this value. Such calculated loadings are shown in Table 26. Plots of the loadings for a selection of seasonal times are shown in Figure 17 for the cations and Figure 18 for the anions.

All the major cation loadings exhibited similar behaviour of a somewhat complicated variation throughout a 50 km stretch north of Fort McMurray, which includes the zone of current surface mining activity. This complex behaviour may be caused by a number of factors such as the mixing characteristics of the Clearwater River input, groundwater discharge-recharge phenomena, effluent discharge from Fort McMurray and/or oil sands mining operations, and absorption-desorption effects in the change in suspended sediment regime taking place at Fort McMurray (see Section 3.2). Downstream from this stretch, only gradual steady increases in cationic loadings were evident. By projecting this increase back to Fort McMurray, one can see that the net loading on the stretch immediately north of Fort McMurray does not appear to be substantially augmented by mining activity. Thus, the notable

Table 26. Loadings of major ions on mainstem sites from February 1976 to February 1977.


Table 26. Continued.

| Dates | Site Code | Loadings ( $\mathrm{kg} / \mathrm{s}$ ) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Ca | Mg | Na | $\mathrm{HCO}_{3}$ | $\mathrm{SO}_{4}$ | C1 |
| 2-3 September 1976 | CD2300 | 5.75 | 1.93 | 4.08 | 27.08 | 0.78 | 4.53 |
|  | CCOOI2 | 34.97 | 9.87 | 7.54 | 142.61 | 19.47 | 2.19 |
|  | DA0201 | 28.97 | 9.72 | 19.63 | 140.18 |  | 21.68 |
|  | DA0203 | 36.64 | 10.90 | 16.35 | 161.61 | 15.03 | 12.60 |
|  | DA0208 | 42.55 | 12.31 | 13.58 | 172.02 | 21.73 | 7.97 |
|  | DA0209 | 42.55 | 11.95 | 15.39 | 168.39 | 20.82 | 10.32 |
|  | DA0210 | 46.33 | 13.34 | 17.05 | 198.29 | 29.28 | 10.56 |
| 27 September to 2 October 1976 | CD2300 | 2.80 | 0.88 | 3.15 | 11.90 | 1.17 | 4.17 |
|  | CCOO12 | 17.34 | 4.55 | 3.69 | 65.37 | 10.69 | 0.80 |
|  | DA0203 | 16.57 | 4.73 | 10.33 | 69.44 | 7.10 | 11.68 |
|  | DA0204 | 22.31 | 6.00 | 7.06 | 89.25 | 13.71 | 4.14 |
|  | DA0205 | 24.34 | 6.33 | 6.09 | 95.74 | 14.44 | 4.71 |
|  | DA0206 | 23.30 | 5.89 | 7.36 | 94.83 | 13.08 | 4.50 |
|  | DA0208 | 19.33 | 5.50 | 7.81 | 75.08 | 11.00 | 5.87 |
|  | DA0210 | 20.59 | 5.64 | 10.14 | 80.09 | 11.82 | 9.46 |
| 21 November 1976 | CD2300 | 1.39 | 0.48 | 1.82 | 5.89 | 0.57 | 2.26 |
|  | CCOO12 | 4.45 | 1.26 | 1.19 | 17.14 | 2.99 | 0.41 |
| 10-12 December 1976 | CD2300 | 1.07 |  | 1.68 |  | 0.42 | 2.38 |
|  | CCOO12 | 5.55 | 1.54 | 1.56 | 21.27 | 4.13 | 0.50 |
|  | DA0201 | 5.95 | 1.70 | 3.48 | 24.30 | 3.96 | 3.19 |
|  | DA0203 | 8.07 | 2.21 | 3.17 | 31.18 | 5.71 | 2.32 |
|  | DA0204 | 7.72 | 2.16 | 3.45 | 29.62 | 5.18 | 2.91 |
|  | DA0205 | 5.97 | 1.76 | 3.87 | 24.30 | 3.66 | 3.75 |
|  | DA0208 | 6.96 | 1.98 | 3.92 | 26.04 | 6.19 | 3.71 |
|  | DA0210 | 6.66 | 1.90 | 6.18 | 25.68 | 4.19 | 7.00 |

Table 26. Concluded.

| Dates | Site <br> Code | Loadings ( $\mathrm{kg} / \mathrm{s}$ ) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\overline{\mathrm{Ca}}$ | Mg | Na | $\mathrm{HCO}_{3}$ | $\mathrm{SO}_{4}$ | Cl |
| 21-23 January 1977 | CD2300 | 1.07 | 0.34 | 2.20 | 5.23 | 0.41 | 3.12 |
|  | CCOO12 | 5.61 | 1.44 | 1.65 | 23.24 | 3.59 | 0.46 |
|  | DA0201 | 8.52 | 2.22 | 2.71 | 32.48 | 5.71 | 1.00 |
|  | DA0203 | 8.56 | 2.24 | 2.72 | 34.83 | 5.74 | 1.01 |
|  | DA0204 | 7.66 | 2.02 | 3.93 |  | 4.94 | 3.19 |
|  | DA0205 | 6.35 | 1.77 | 4.44 | 28.04 | 3.49 | 4.44 |
|  | DA0206 | 7.26 | 1.94 | 4.03 | 30.46 | 4.24 | 3.49 |
|  | DA0208 | 7.07 | 1.88 | 4.45 | 29.71 | 4.51 | 4.45 |
|  | DA0209 | 7.28 | 1.94 | 6.06 | 29.93 | 4.99 | 7.22 |
|  | DA0210 | 8.14 | 2.20 | 4.95 | 33.65 | 5.30 | 7.37 |
| 25-26 February 1977 | CD2300 | 0.98 | 0.34 | 1.86 | 4.49 | 0.40 | 2.67 |
|  | CCOO12 | 6.58 | 1.81 | 2.01 | 24.30 | 5.20 | 0.74 |
|  | DA0201 | 9.39 | 2.58 | 2.87 | 35.34 | 7.07 | 1.26 |
|  | DA0203 | 8.73 | 2.47 | 3.42 | 33.58 | 6.96 | 2.03 |
|  | DA0204 | 6.42 | 1.90 | 5.09 | 27.44 | 4.32 | 5.84 |
|  | DA0205 | 6.86 | 2.02 | 4.79 | 26.77 | 5.29 | 5.11 |
|  | DA0206 | 7.07 | 2.09 | 4.57 | 28.07 | 5.38 | 4.79 |
|  | DA0208 | 7.67 | 2.19 | 4.60 | 30.03 | 5.55 | 4.43 |
|  | DA0209 | 7.67 | 2.19 | 5.59 | 32.00 | 5.92 | 6.27 |
|  | DA0210 | 8.27 | 2.37 | 5.97 | 30.78 | 6.84 | 7.00 |




Figure 18. Loadings of the major anions in the Athabasca River during selected seasonal dates.
complicated loading charges appear to be caused by mixing, groundwater discharge-recharge, or absorption-desorption on the sediments. Seasonal variation of calcium and magnesium was larger than sodium which reflects relatively constant sodium loading by the Clearwater River, augmented by further relatively constant loading as perhaps by groundwater discharge.

The three major anions exhibit markedly differing behaviour. Bicarbonate loading shows a fairly regular, gradual increase north of Fort McMurray and wide seasonal swings that reflect control by upstream sources, modified only slightly by perturbations just north of Fort McMurray. Sulphate loadings swing widely and erratically which may be inherent primarily in the parameter itself as it has a tendency to be non-conservative (Schwartz 1978; McNeely and Neimanis 1978). Chloride loadings show temporal and special variations in the 50 km stretch north of Fort McMurray, then settle into a constant pattern of gradual increase with amazingly little seasonal variation. Projection of this constant pattern of gradual increase back to Fort McMurray indicates little if any augmentation of loading by man's activities just north of Fort McMurray. Levels of chloride are affected by the adsorption effect on sediments (Hem 1970). Control of this loading is also unaffected by the hydrological cycle and thus appears to be the relatively constant supply from the Clearwater River augmented by groundwater discharge.

### 3.1.5 Spacial Specific Conductance Variation in Lake Athabasca

Two different kinds of drainage basins meet directly in Lake Athabasca: (1) the rivers of the Western Canadian Sedimentary Basin that drain from the south and west as far as the Rocky Mountains; and (2) the rivers and lakes to the east of the Peace-Athabasca Delta within the Precambrian Shield. The character of water from these two drainage basins is distinct. Water draining from the Western Canadian Sedimentary Basin is highly variable in both filterable and nonfilterable residues and can be characterized as moderately hard and moderately to highly turbid of filterable residues. The predominant characteristics of water draining from the Canadian Shield are its soft nature and clarity due to consistently low amounts of both filterable and nonfilterable residues.

During winter months, minimal mixing of the two water types occurs under ice conditions within Lake Athabasca (PAD 1972). However, no knowledge of mixing during open-water periods has been gathered. A measurement of the mixing effect in the autumn of 1977 was carried out. On 26 and 27 October 1977, the variation in temerature, specific conductance, and dissolved oxygen were measured on three courses across Lake Athabasca north of the outlet channels of the Athabasca River. An in situ water quality analyzer, the Hydrolab Model 6D, coupled to a Hydrolab data scanner and recorder, was operated from a boat cruising at a steady rate of $6 \mathrm{~km} / \mathrm{h}$. Readings were taken at a depth of 0.5 m .

Water temperature varied from 2.5 to $4^{\circ} \mathrm{C}$ with colder temperatures encountered in the shallow southern portion of the lake. Dissolved oxygen was at saturation, varying only slightly from 12.8 to 13.3 ppm because of the temperature differences. Specific conductance measurements varied dramatically and provided a good marker for the relative positions of the two water sources.

Figure 19 illustrates specific conductance values recorded during the field measurements. Although some evidence of swirling of the two water types can be detected near 0ld Fort Point, the major characteristic detected is very little mixing of the two types in the autumn. Laboratory analysis for water samples collected 25 October 1977 for three sites, shown in Table 27 , correspond well with field data.

This feature of minimum mixing during an open-water period may be significant in terms of oil sands development in that the extent of this effect limits the diluting of impacts on Athabasca River water by the relatively pure Precambrian Shield waters flowing west from Lake Athabasca. In addition, if the effect occurs in the spring, the Athabasca River water quality would have a primary effect on Mamawi Lake and Lake Claire during spring reversals where those lakes are flooded from the east.
3.1.6 Temporal Variation of Alkalinity and Hardness in Lakes

Nearly all of the classic lake types (oligotrophic, eutrophic, mesotrophic, and dystrophic) are represented in the AOSERP study area as the area is located primarily in the transition zone between the


Figure 19. Spacial variance of specific conductance in Lake Athabasca on 25 October 1977.

Table 27. Laboratory analyses of water sampled 25 October 1977.

| Location | Laboratory pH | Laboratory Specific <br> Conductance <br> $(\mu \mathrm{s} / \mathrm{cm})$ |
| :--- | :---: | :---: |
| Lake Athabasca at <br> Sand Point | 7.48 | 75 |
| Athabasca River at <br> Big Point Channel <br> Riviere des Rochers | 7.92 | 232 |

mineral lakes of the prairies and the mineral-poor lakes of the north (Jantzie 1977). Large numbers of lakes are present in the northern portion of the study area north and south of Lake Athabasca and some large and important lakes are within 60 km of the current oil sands developments. However, few lakes are located within the current area of oil sands development; only Ruth Lake and Mildred Lake have been directly impacted by oil sands operations (Figures 3 and 4).

A key function provided by some of the dissolved ionic species and also by clays and silicates on the lake bottom is the capacity to buffer the lake ecosystem against acidification (Schindler 1978). Acid can be introduced into a lake by a number of physical and biological processes, the main one being by precipitation. Precipitation is naturally acidic from its content of carbon dioxide and nitrogen oxides. Such acid content can be augmented considerably by industrial emissions and lake acidification has become a worldwide concern (Wright and Gjessing 1976). The buffering capacity of many of the lakes in the study area has been assessed on the basis of the calcite saturation index which takes into account the lake's alkalinity, pH , and calcium concentrations (Hesslein 1979). It was found that generally the mineralized lakes in the study area were highly buffered due to high input of calcium-magnesium-bicarbonate type water but that some of the less mineralized lakes in the Namur-Gardiner group were less protected.

The temporal variation in total alkalinity for 1977 is shown in Figure 20 for a number of lakes. Typical seasonal patterns are displayed. Relatively high alkalinity builds up during periods of ice-cover when areal precipitation is unavailable to the lakes. During this period, plant respiration of dissolved carbon dioxide and groundwater discharge of anions would be operating to cause this increase. For some shallow lakes (e.g., Lake Claire), ice formation would be an important mechanism causing such a buildup. Spring break-up sees a steep reduction in alkalinity affected by the diluting and neutralizing effects of precipitation and surface runoff that are available to the lake. The stable period of relatively low alkalinity during the spring


Figure 20. Temporal variation in total alkalinity in lakes in 1977.
and summer is followed by a brief increase during autumn lake turnover, when deeper water rich in buffering ions mixes with the surface water. Also, evident from Figure 18 is the comparatively low alkalinity of soft water lakes, Namur Lake, and Lake Athabasca.

Another indicator of the electrolytic character of a lake is total hardness. Because total hardness measures the sum of calcium and magnesium concentrations, it is generally representative of the cationic structure of most of the lakes in the area. Total hardness is of significance when considering the handling qualities of water and also toxicity (Sprague 1978). Temporal variation in total hardness is shown in Figure 21. Patterns very close to temporal variation in total alkalinity are apparent which indicates that generally the same kinds of controls operate in both cases (i.e., supply of calcium-magnesium-bicarbonate type water and lake mixing at turnover times).

### 3.1.7 Major Ion Changes in the Peace-Athabasca Delta

As referred to in Section 3.1.5, soft water from Precambrian Shield sources mixes with hard water passing through the AOSERP study area in Lake Athabasca near Fort Chipewyan. The western section of the Peace-Athabasca Delta also receives water from the study area which eventually mixes with the water from Lake Athabasca.

Figure 22 shows ranges of each of the major ion parameters at sites in the Peace-Athabasca Del ta in 1977 (June to December). Also depicted is the general water flow direction. Of course, reverse flow phenomenon occurs for brief periods in the spring where, for example, water at Site NAOO3O in Riviere des Rochers is moving from the Peace River and not from Lake Athabasca. Also, reverse flow in Chenal des Quartre Forches (Site KFOlOI) can occur, bringing water into Lake Claire (Sites KFO2Ol and KFO200) from the Peace River and Lake Athabasca (PAD 1972).

The pattern of all the major ion ranges in the eastern part of the delta reflect the behaviour outlined in Section 3.1 .5 where the composition of the outflow of Lake Athabasca at Riviere des Rochers (Site NA0030) reflects a mixture of water from eastern Lake Athabasca (Site MD2000) and the Athabasca River (Site DD0212). All parameter


Figure 2. Temporal variation in total hardness in lakes in 1977.


Figure 22. Concentration ranges for the major ions at sites in the Peace - Athabasca Delta.
ranges at Riviere des Rochers are intermediate between ranges at Site MD2000 and Site DDO212. The range at Site NA0030 is greater for all ions, showing the variation in contribution from the two starting sources.

The pattern of the major ion ranges in the western part of the delta reflects a general dilution effect as the water moves east to its outlet through the Peace-Slave River system. In the case of the sodium and chloride ranges, a diluting effect is even evident in Lake Claire where the southern site (KFO2O1) shows higher ranges than the northern site (KFO200). Such an effect would indicate groundwater discharge at the southern end of the lake possibly, in part, arising from the northern or northeastern slopes of the Birch Mountains. It is interesting to note, though, that bicarbonate and magnesium levels generally are maintained until dilution at Site KFOlOl, showing the hard nature of the water arising from the north and west.

### 3.2 SUSPENDED MATERIAL

Suspended materials in rivers and streams also follow a seasonally cyclic pattern. Instead of being diluted to lower concentrations by high flows as are the inorganic ions, concentrations of suspended materials are generally high during high flows as the events that cause high flow also wash these materials into the surface water system. The nature and occurrences of suspended and deposited sediments in rivers and streams of the AOSERP study area have been reported on by a number of investigators.

An analysis of the suspended and deposited sediment regime of parts of the Muskeg River basin was carried out (Froelich 1980; Akena 1979) using both standard water quality data and hydrometric and suspended sediment data collected by Water Survey of Canada (Warner and Spitzer 1978). The pattern of low loading with the brief occurrence of sharp peaks of loading corresponding to high discharges generally prevails in the area.

The suspended sediment regime of the Athabasca River has been described by Doyle (1977). The differing processes operating in the three distinct reaches, the turbulent meandering upstream of Fort

McMurray, the placid straight channel below Fort McMurray, and the Athabasca River Delta, were deduced from the suspended sediment rating curves (see Figure 23). These curves indicate that, at higher flows, the upstream section has a higher capacity to transport sediments whereas, at lower flow rates, the carrying capacity of the downstream section becomes more important. During high flow periods, a heavily loaded condition of the upstream section causes supersaturation of the downstream section and the sediments are deposited in the reach downstream of Fort McMurray. However, during low flows, the upstream loading is not at a saturation point relative to the downstream section and any deposited sediments are resuspended. Eventually, the greater amount of suspended material is deposited in the next reach, the Athabasca River Delta formation. In terms of loading, the various tributaries do not alter this picture appreciably.

The metal content of deposited sediments in the mainstem has been investigated by Allan and Jackson (1978). They correlated the metal content with fluvial and geochemical processes. Associated with larger amounts of metals, such as vanadium and nickel, were finer textured sediments which were related to larger surface areas, amorphous inorganic-organic coatings, layer silicate concentrations, and organic content. A general progression from lower to higher concentrations of metals was detected from downstream of Fort McMurray, to the Athabasca River Delta, to Lake Athabasca. The highest concentrations were found in the fine-textured sediments of Lake Athabasca.

The organic content of deposited sediments in the mainstem Athabasca River under winter conditions has been investigated by Strosher and Peake (1978). The total organic content of these deposited sediments was largely not extractable with organic solvents; of the extractable portion, the largest component was an asphaltene fraction.

The sedimentation characteristics of tributary basins in the area have been compiled (Griffiths and Walton 1978). Areas having high erosion potential in relation to development activities were determined to be the Lower Ells River basin and the adjacent eastern slopes of Birch Mountains (exemplified by Zone 5), the tributaries immediately


Figure 23. Suspended sediment rating curves at the wSC guages below Fort McMurray and at Embarras (from Doyle 1977).
north of Fort McMurray (including Zone 7), the Christina basin, the Hangingstone and Horse basins (in Zone 1), the Mackay and Dunkirk basins (Zone 3), and the Upper Ells basin (Zone 4).

Three water quality parameters commonly employed relate to the concentration of suspended materials: turbidity, nonfilterable residue (total suspended solids), and nonfilterable residue fixed (total inorganic suspended solids). Although these parameters relate directly to the amounts of solids carried by the surface water bodies, it should be emphasized that depth gradients produced by particle sizes complicate the picture (Guy and Norman 1970) and that standard methods employed by Water Survey of Canada (Warner and Spitzer 1978) are meant to provide the most accurate picture of clastic loading. Nevertheless, the water quality parameters can provide an understanding of the processes in operation.
3.2.1 Turbidity Frequency in Tributaries

Plots of 1977 turbidity frequency for larger tributaries (watersheds greater than $900 \mathrm{~km}^{2}$ ), as calculated by the NAQUADAT Water Quality Summary Program, are presented in Figure 24. Three general observations are evident from these plots:

1. One group of sites, comprising the Upper Ells, Firebag, and Muskeg rivers, has a very low turbidity regime. The turbidity is less than 6 JTU for $90 \%$ of the time and even the detected peaks are very low, less than 12 JTU. The effect of the headwater lakes as a settling area likely causes this kind of regime for the Firebag and Upper Ells rivers.
2. All the other major tributaries, except for the Hangingstone, fall into another group of sites where peak times of high turbidity occur but they are of short duration. In this group, low turbidity generally prevails most of the time, with $75 \%$ of the turbidity measurements being less than 10 JTU (except for the Dover and Dunkirk rivers which were slightly higher).


Figure 24. Turbidity frequency for major watersheds in 1977.
3. Two anomalies can be noted. The Hangingstone River site showed a prevailing regime of high turbidity. According to Griffiths (1978), the banks and lower reaches of the Hangingstone River are reasonably stable, so this high regime may be caused by the steep slopes of Stoney Mountain in the upper reaches. Also, a noticeable difference is the shape of the Dover River curve. It is somewhat anomalous. in its convex pattern (showing a higher duration of intermediate values), as the typical concave curve limited the duration of higher values.

Plots of 1977 turbidity frequency for the smaller tributaries are presented in Figure 25. A much wider variation in turbidity regimes than in the larger tributaries reflects site-specific effects. Four general observations can be made from these plots:

1. None of the smaller tributaries fits in with the grouping of larger tributaries showing very low total turbidity regime. However, Thickwood Creek, Pierre River, and Upper Tar River have a similar kind of constant regime, albeit at a generally higher level. It may be that colloidal, organic material, relatively constantly supplied by extensive muskegs in these small watersheds, is responsible for this.
2. A general grouping of Hartley Creek, Calumet River, Poplar Creek, Unnamed Creek, Beaver River above Syncrude, and Beaver River at Hwy 63 can be made for tributaries showing turbidity of less than 10 JTU for half of the samples. This corresponds to a similar grouping for the larger tributaries but the recession of turbidity is not as steep as in the case of the larger rivers.
3. Asphalt Creek, Bridge Creek Diversion, Lower Tar River; and Eymundson River all have an enduring high turbidity comparable to that exhibited by the Hangingstone River. In the case of Asphalt Creek, Lower Tar Creek, and Eymundson Creek, steep slopes and erosion of Birch Mountains may be responsible.


Figure 25. Turbidity frequency for smaller watersheds in 1977.
4. Notable as a typical behaviour is the convex pattern of the curves for Beaver River at Hwy 63 and Poplar Creek showing long duration of intermediate turbidity. $0 i l$ sands developments have directly affected the drainage pattern of Bridge Creek, Beaver River, and Poplar Creek (Figures 3 and 4). This appears to have affected the turbidity regime somewhat by a typical pattern of enduring intermediate turbidity in Poplar Creek and Beaver River and by a heavy regime for Bridge Creek Diversion. However, the effects are not outside the range of regional behaviour.

### 3.2.2 Temporal Variation in Suspended Solids in Tributaries

Suspended solids can be divided into two components, the organic and the inorganic part. For purposes of analysis, these parts are categorized as two parameters: nonfilterable residue, which measures total inorganic and organic suspended solids, and nonfilterable residue fixed, which measures only the inorganic suspended solids.

The progressional relationship of these parameters with discharge for some selected representative tributaries is shown in Figures 26 to 34. Opposite to the discharge relationship in the conservative parameters (Figure 8), higher levels of particulates relate to higher discharges. Several trends are discernable:

1. For the larger tributaries (Figures 26 to 29 ), except the Hangingstone, a fairly stable regime of 10 ppm or less total suspended materials prevails throughout most of the year. The substantial organic component of the regime (nonfilterable residue minus nonfilterable residue fixed) varies somewhat throughout this period, usually reaching a maximum during base flow conditions. At such a time, the organic component of the particles can reach up to $90 \%$.
2. For the larger tributaries, a brief episode of high suspended materials can occur during peak flow events. For sedimentary basins, such episodes can be 100 to 1000 ppm total nonfilterable residue, of which only $5 \%$ is typically the organic component. For the more stable sites, such as


Figure 26. Progression of nonfilterable residue- and nonfilterable residue fixed-discharge relationships for the Mackay River (Site DBOOII) in 1977.


Figure
27. Progression of nonfilterable residue - and nonfilterable residue fixed-discharge relationships for the Steepbank River (Site DA0060) in 1977.


Figure 28. Progression of nonfilterable residue-and nonfilterable residue fixed-discharge relationships for the Firebag River (Site DCOOIO) in 1977.


Figure 29. Progression of nonfilterable residue-and nonfilterable residue fixed-discharge relationships for the Upper Ells River (Site DAOIOO) in 1977.


Figure 30. Progression of nonfilterable residue - and nonfilterable residue fixed-discharge relationships for the Hangingstone River (Site CD0040) in 1977.


Figure 31. Progression of nonfilterable residue - and nonfilterable residue fixed - discharge relationships for Thickwood Creek (Site DB0040) in 1977.


Figure 32. Progression of nonfilterable residue-and nonfilterable residue fixed-discharge relationships. for the Muskeg River (Site DAOO80) in 1977.


Figure 33. Progression of nonfilterable residue-and nonfilterable residue fixed-discharge relationships for Asphalt Creek (Site DAOO8O) in 1977.


Figure 34. Progression of nonfilterable residue-and nonfilterable residue fixed-discharge relationships for Poplar Creek (Site DAOO7O) in 1977.
the Firebag and Upper Ells rivers (Figures 28 and 29), such episodes are not very pronounced and the general measured regime is maintained at less than 14 ppm throughout the year.
3. A general phenomenon can be noted in that the rising stage increases the inorganic component of the suspended materials and the falling stage increases the organic component. A consistent example of this is the Steepbank River (Figure 27).
4. For both Thickwood Creek and Muskeg River (Figures 31 and 32), a high duration of the organic component of suspended substances is evident. Such an effect likely is attributable to the dissolved and colloidal organic compounds provided by base flow from the extensive muskeg areas in these basins. Figure 31 shows the result of such organics of Thickwood Creek in winter.
5. Hangingstone River (Figure 30) and Asphalt Creek (Figure 33), which are two examples of very high turbidity regimes (see Figures 24 and 25), have suspended materialsdischarge relationships unlike the other tributaries. Sustaining duration of solids with a high organic component did not occur. Wildly fluctuating values were of primarily inorganic composition at both sites indicating possibly slump or bank sources. The steep upper reaches of both these watersheds (Griffiths 1978) may be the prime contributing factor. Such inorganic contribution overshadows any organic effects.
6. Poplar Creek has a regime similar to that of the Hangingstone River in that there is high duration of elevated levels. However, the elevation of inorganic loading during winter base flow is much more pronounced which might reflect the recently effected diversionary measures in the watersheds.

The supply of organic particulate matter is of prime importance to microbial and invertebrate production. It appears that flow from muskegs sustains this supply in most basins in the area. Typically, a peak of organic detritus would be expected in early autumn corresponding to leaf fall. However, the organic particulate content remains high throughout late winter suggesting a groundwater supply. The organic plant derivatives could be supplied from shallow groundwater systems in muskegs in colloidal form or a dissolved material which later consolidates in the surface water course.

### 3.3 NUTRIENTS

The term nutrients can be very encompassing involving not only the major compounds utilized by the biota but also dissolved forms of many metal ions, compounds of sulphur and silicon, plus particulate forms of most of these compounds. But from the standpoint of being components of biomass uptake by plants and animals, compounds of carbon, nitrogen, and phosphorous are the major nutrients.

The relative proportions of these elements in the environment are given in Table 28 (Kramer et al. 1972). Evident from this summary are differing ratios of the various components relative to their ratios in the average organism. Nitrogen and phosphorus are selectively taken up by the organisms but, upon death, decay, burial, and/or diagenesis, phosphorus is selectively released before release of nitrogen. Thus, levels of such compounds are inseparably woven into the life cycles of the aquatic flora and fauna. A detailed interpretive discussion should be conducted from an organism standpoint (uptake) and a large amount of data points of the non-conservative parameters are desirable. A biologically oriented study of nutrient control by microorganisms in the Muskeg River basin has been conducted (Lock and Wallace 1978 , 1979) and an investigation into microbial population and processes dealing mainly with compounds of carbon in the Athabasca River has been carried out (Costerton and Geesy 1978; Nix et al. 1979).

Table 28. Relative atom proportions of carbon, nitrogen, and phosphorus occurring in nature (Kramer et al. 1972).

| Occurrence | Phosphorus | Carbon | Nitrogen |
| :--- | :---: | :---: | :---: |
| Earth (total) | 1 | 0.7 | 0.002 |
| Average sediment | 1 | 96 | 2 |
| Ocean (maxima) | 1 | 780 | 16 |
| Average river (soluable) | 1 | 610 | 11 |
| Average river (particulate) | 1 | 300 | 26 |
| Average organism | 1 | 106 | 16 |

The following sections are meant only to explore general trends due to the limited number of data points so far. Four parameters are discussed: total dissolved organic carbon (TDOC), total phosphorus (TP) ammonia, and total Kjeldahl nitrogen (TKN).
3.3.1 Temporal Variation in Total Dissolved Organic Carbon in Tributaries
Plots of TDOC levels measured for six of the larger tributary rivers are presented in Figure 35. Common maxima are exhibited both in the spring and the autumn at almost all sites. Two different groups of TDOC regimes are evident:

1. The Firebag and Ells rivers display TDOC values at relatively stable levels, generally below 15 ppm. This behaviour no doubt reflects the stable hydrological regime prevailing in both the Firebag and Ells watersheds. Precambrian Shield lakes supply water free of organic materials to the Firebag River and the relatively high altitude, large headwater lakes in the Birch Mountain appear to serve the same function to the Ells River.
2. The other major rivers display TDOC levels that fluctuate between 10 and 40 ppm . The other larger tributaries (Dunkirk, Dover, and Steepbank rivers) fit into this category. A common tendency in this group is a downward trend during winter ice conditions to levels displayed by the Firebag and Ells rivers. Spring break-up causes a sharp rise that maintains the levels above those of the Firebag and Ells rivers throughout the open-water months. The autumn peaks are about the same order of magnitude above prevailing summer levels at all sites.
Control of TDOC levels thus appears to be mainly allochthonous associated with overland and subsurface flow involving plant materials. Spring runoff provides the main supply and autumn leaf fall provides a second maxima. However, a late winter peak in the Firebag and Hangingstone (and also the Dunkirk) rivers, and a tendency for


Figure 35 . Total organic carbon dissolved in major rivers.
levels not to recess smoothly in late winter in the Muskeg and Lower Ells river, may indicate a deeper source of TDOC such as would be supplied by leachate of oil sands deposits.

Plots of TDOC levels for a selected number of smaller tributaries are presented in Figure 36. Most of these small tributaries show wide variations between 10 and 40 ppm, the extremes exhibited by the larger tributaries. However, there is no clear division into groupings of ranges as could be discerned in the case of larger tributaries. Noticeable trends were:

1. Most of the small tributaries showed a decline in TDOC levels during ice-cover conditions with a subsequent sharp increase at spring break-up typified by Hartley Creek in Figure 36. Such a regime no doubt reflects the typical inputs of allochthonous carbon in the spring and autumn as were displayed by the large rivers. However, Thickwood Creek and Calumet River did not behave in such a manner. Thickwood Creek maintained a relatively stable TDOC level at about 25 ppm , probably due to the large muskeg coverage of its catchment. The large muskeg storage would cause an influential subsurface component high in organic derivatives throughout the year. Long duration of elevated particulate carbon is evident from Figure 31. Figure 24 shows evidence of enduring high levels of carbon compounds in late winter. Calumet River maintained a similar high TDOC regime.
2. Watersheds, where development activities were occurring, showed irregular behaviour compared to the others. Noticeable in Bridge Creek Diversion was an unusually low minimum in TDOC in the autumn. Noticeable in Poplar Creek was a late minimum in May long after ice-out. The regime in Poplar Creek no doubt reflects sporadic inputs from Beaver Creek Diversion (Figure 10).


Figure 36. Total organic carbon dissolved in small tributaries.

### 3.3.2 Termporal Variation in Total Phosphorus in Tributaries

Plots of TP levels measured at six of the larger tributaries are shown in Figure 37. A general trend is seen in common, low stable periods from June to October when it appears that control of phosphorus levels is exercised by uptake by growing biota. At other times of the year, levels are much less predictable. Similar to TDOC regimes, two different groups of behaviour are evident:

1. The Firebag, Ells, and Muskeg rivers maintain relatively stable levels below 0.10 ppm throughout the year; and
2. In the other rivers, there are sporadic occurrences of levels between 0.15 and 0.50 ppm , with the Hangingstone River providing the highest level. The Dover, Dunkirk, and Steepbank rivers also showed this trend, the Dunkirk showing a very pronounced maxima. However, no common temporal cycles like those shown by TDOC regimes were discernable.

If maxima occurred in late winter, groundwater discharge could be the controlling factor; in early winter, algal die-off could be a major source; or in spring runoff, leaf litter leaching could be flagged as a major source. But without significant temporal cyclical trends evident in these plots of the large tributaries, no single factor is indicated as a predominate control of phosphorus levels.

Plots of TP levels measured at a selected number of small tributaries are shown in Figure 38. As with the larger tributaries, there occurred a common period of low TP from June to October. In all of the samll tributaries, maxima $T P$ levels (over 0.10 ppm ) were measured during the December to May period. The timing of maxima varies widely. A number of tributaries not shown in Figure 38, such as Asphalt Creek and Beaver River, had pronounced maxima occurring in late April and May. Noticeable trends included:

1. Streams that exhibited early maxima (January to March) tended to have a lower and more stable TP regime. Hartley and Thickwood creeks are notable examples of this and it may be that muskeg headwaters hold phosphorus released by spring runoff so that a winter release (possibly by winter die-off) provides the maxima.


Figure 37. Total phosphorus in major rivers.


Figure 38. Total phosphorus in small tributaries.
2. A number of streams showed very pronounced maxima in measured TP that corresponded to spring breakup. Poplar Creek show this behaviour. Asphalt Creek and Beaver River are notable examples of this in that their maxima were very pronounced.

### 3.3.3 Temporal Variation in Ammonia in Tributaries

Plots of ammonia levels measured at six of the larger tributaries are shown in Figure 39. A general trend is seen in a common, brief period of low levels from mid-April to mid-June. Also common to all rivers are two maxima--one in early winter and one in late summer. In a pattern similar to TDOC regimes, two different groups of behaviour are evident:

1. The Firebag and Ells rivers maintain relatively stable levels below 0.10 ppm throughout the year; and
2. In the other rivers, relatively high peaks between 0.3 and 0.6 ppm occur for both winter and summer highs, with the Muskeg River providing the highest level.
The temporal trends common to all the large rivers indicate reductive processes predominating, both under ice conditions and in late summer, and oxidation processes being of particular significance immediately following spring ice-out. Oxidation and reduction of natural aqueous nitrogen species are allied closely with biological activity. Thus, the wide swings in the sedimentary rivers indicate their higher level nitrogen nutrient status and subsequent biological activity.

Plots of ammonia levels measured at a selected number of small tributaries are shown in Figure 40. As with the larger tributaries, there occurs a common period of low ammonia immediately following ice-out. However, the duration of this period is shorter than for the large rivers, reflecting the responsiveness of the smaller streams. Ranges were much wider than the large rivers and, typically, for the small tributaries, maxima ammonia measured at levels over 0.20 ppm under ice conditions. There were no clear divisions of tributaries into groups as was the case of the larger rivers.


Figure 39. Ammonia in major rivers.


Figure 40. Ammonia in small tributaries.

However, noticeable trends were:

1. Some small streams exhibited a winter maximum earlier than the rest and these corresponded to those exhibiting earlier maximum TP regime. Hartley and Thickwood creeks are notable examples of this.
2. Watersheds, where development activities were occurring, showed somewhat irregular behaviour compared to the undisturbed sites. Bridge Creek had a very early icecover maximum; Poplar Creek had an enduringly high late summer maximum.
3. Both Thickwood Creek and Calumet River had exceptionally high late winter ammonia levels. These levels likely reflected reducing conditions operating on the nitrogen regime.
3.3.4 Temporal Variation in Total Kjel dahl Nitrogen in Tributaries Plots of the TKN levels measured at the larger tributaries are shown in Figure 41. In contrast to the other nutrient parameters, no significant temporal trends are evident from the plots. In general, the values ranged randomly between 0.3 and 2.0 ppm , with the Firebag and Ells rivers displaying a lower regime than the others.

Plots of the TKN levels measured at some smaller tributaries are shown in Figure 42. Almost all sites showed a maximum in June 1977. This may have been related to late spring conditions and was also evident in data from the larger rivers. However, no similar effects were noted in the behaviour of either TDOC or TP levels.
3.3.5 Nutrient Ranges in the Peace-Athabasca Delta

Ranges of TKN, TDOC, and TP, measured during 1977, at points in the Peace-Athabasca Delta are shown in Figure 43.

The patterns of levels of these nutrient parameters in the eastern part of the delta are somewhat different than the patterns of inorganic parameters which are controlled mainly by dilution. Although TDOC and TP levels at the outflow of Lake Athabasca (Riviere des Rochers, Site NA0030) are intermediate between eastern Lake Athabasca water,


Figure 41. Total kjeldahl nitrogen in major rivers.


Figure 42. Total kjendahl nitrogen in small tributaries.


Figure 43. Ranges of total dissolved organic carbon, total Kjeldahl nitrogen and total phosphorus measured in the Peace-Athabosca Delta in 1977.
as represented by Site MD2000, and Athabasca River water (Site DD0212), a general tendency to exhibit a higher resultant regime at Site NA0030 than exhibited by the inorganic parameters (Figure 22) can be seen. In the case of TKN, there is an obviously higher regime than would be accounted for by dilution. Thus, nutrient levels in western Lake Athabasca appear to be highly augmented by discharge from the Athabasca River Delta directly but not through main channels, as represented by Big Point Channel (Site DD0212).

The patterns of levels of these nutrient parameters in the eastern part of the delta also contrast with behaviour of inorganic parameters which are controlled mainly by groundwater-surface water relationships (Section 3.1.7). As water moves from the southern part of Lake Claire (Site KFO201) through to Quatre Fourches (Site KFOlOl, there is an increase in TDOC levels all the way and an increase and subsequent decrease in TP and TKN levels, with maxima generally occurring at the exit of Lake Claire (Site KF0140). Thus, it appears that the supply-demand relationships of the biota in the main water courses, as well as the adjacent marshes, have a major control on nutrient levels.
3.4 METALS AND TRACE ELEMENTS IN LOTIC WATERS

Metals in surface waters can be in the form of dissolved ion species, particulates, or organic complexes. The amount of metal in each form represents a steady state of processes involving dissolution and complexing. Studies by Allan and Jackson (1978) and Korchinski (in prep.) have explored some aspects of the dynamics of these interactions in the AOSERP study area.

Allan and Jackson traced the concentrations of metals in sediments of the Athabasca River, its delta, and Lake Athabasca, and related them to fluvial processes and to the texture, organic content, carbonate content, and ferrous mineral content of the sediments. They found the finer textured sediments associated with higher amounts of precipitated heavy metals, which in turn related to increases in surface area, amorphous inorganic-organic coatings, layer silicate concentrations, and organic content. Generally, there is a progression from lower to higher concentrations of metals in sediments downstream from

Fort McMurray to the delta and into Lake Athabasca. The highest concentrations were found in fine-textured sediments taken from Lake Athabasca. They correlated the sediment concentrations of vanadium and nickel with each other as well as with organic carbon. Thus, it was concluded that these metals were present in an organic form that may be similar to that which occurs naturally in the oil sands deposits. As such, they would have undergone relatively little chemical or bacteriological alterations between the source and the site of deposition in bottom sediments.

Korchinski (in prep.) related the complexing capacity of surface water in the AOSERP study to the total organic content. Considering levels of both the organic content and complexing ability in surface waters, complexing would appear to be an important process operating in the oil sands area. However, from analysis of bank materials, he suggested erosional factors to be the major control of most metals in the surface water.

Metals are made available to surface waters by weathering processes and by groundwater discharge. Of particular interest are the metals associated with oil sands deposits which could be provided to surface water systems by weathering of exposed deposits, groundwater leaching and discharge, or by oil sands mining operations. 0il sands contain a variety of trace metals (Table 29), notably enriched in vanadium and nickel, as are many other oils (Hodgson 1954). It has been established that vanadium, in oil sands, occurs as porphyrin and related complexes (Cotton and Wilkenson 1972; Yen 1978) and nickel probably has a similar form. Important sources of other metals to the surface waters in the oil sands region may be underlying Devonian bedrock formations.

Total concentrations of many metals and trace elements were measured at each site in 1976 and 1977. Total concentrations include not only the dissolved ionic form but also whatever is dissolved from suspended particulates and whatever can be dissociated from the organic

Table 29. Typical elemental analyses of oil sands.

| Concentration (ppm) |  |  |
| :---: | :---: | :---: |
| V | 210-290 ${ }^{\text {a }}, 200^{\text {e }}$ | $32-117^{\text {c }}$ |
| Fe | $142^{\text {b }}, 254^{\text {b }}, 75^{\text {a }}$ | $800-13800{ }^{\text {d }}$ |
| Ni | $80-100^{\text {a }}, 72{ }^{\text {b }}, 74^{\text {b }}, 60^{\text {e }}$ | $12-20^{\text {c }}$ |
| Ti | $110^{\text {e }}$ |  |
| Zn |  | 61-2222 ${ }^{\text {c }}, 5-2600^{\text {d }}$ |
| Mn | $3.9{ }^{\text {b }}$ | $12-180^{\text {d }}$ |
| Pb |  | $6-52^{c}, 5-180^{\text {d }}$ |
| Cu | $2-5{ }^{\text {a }}$ | $3-16^{\text {c }}$ |
| Co | 1.9, 1.3 | 1-13 ${ }^{\text {c }}$ |
| Cr | $1.7^{\text {b }}, 1.0^{\text {b }}$ | $7-30^{\text {c }}$ |
| Be | 0.5-2.1 |  |
| Ru | $0.72{ }^{\text {b }}, 0.38^{\text {b }}$ |  |
| As | $0.32{ }^{\text {b }}, 0.40^{\text {b }}$ |  |
| Se | $0.52^{\text {b }}, 0.29^{\text {b }}$ |  |
| Ga | $0.27^{\text {b }}, 0.31{ }^{\text {b }}$ |  |
| Sc | $0.19^{\text {b }}, 0.20^{\text {b }}$ |  |
| Hg | $0.082^{\text {b }}$ |  |
| Ce | $0.069^{\text {b }}, 0.026^{\text {b }}$ |  |
| Sb | $0.028^{\text {b }}, 0.031^{\text {b }}$ |  |
| Eu | $0.023^{\text {b }}, 0.009^{\text {b }}$ |  |
| Au | $0.001{ }^{\text {b }}$ |  |

a Puttagunta et al. 1977.
${ }^{b}$ Hitcon et al. Unpublished.
C Jonasson in Allan and Jackson 1978.
${ }^{d}$ Jonasson Unpublished.
e Walker et al. 1976.
complexes by the preservative employed (Table 5). The general order of dominance for total metals and trace elements in rivers and streams was concluded to be:
$\mathrm{Fe}>\mathrm{Al}>\mathrm{Mn}>\mathrm{Zn}>\mathrm{Cu}>\mathrm{Ni}>\mathrm{Pb}>\mathrm{Cr}>\mathrm{Co}>\mathrm{Ag}>\mathrm{V}>\mathrm{Cd}>\mathrm{As}>\mathrm{Se}>\mathrm{Hg}$
The following sections detail the occurrences of levels of each of these elements.
3.4.1 $\frac{\text { Iron }}{\text { Frequency distributions for total iron levels in streams }}$ and rivers by zones are shown in Figure 44. Virtually all occurrences were noncompliant (greater than 0.3 ppm ) with the water quality criteria (see Table 9). In fact, levels above l ppm generally prevail throughout in all zones except for the Ells River (Zone 4) and the Firebag and Richardson rivers (Zone 6). In view of the markedly low suspended sediment regime in these two zones (see Figure 21), such a pattern seems to indicate a major role for erosional processes in providing total iron to the surface waters. In line with such a conclusion is the observation that for Zone 4 the majority of occurrences below 0.4 ppm were for the Upper Ells River (Site DAOlOO) and between 0.4 and 1.0 ppm were for the Lower Ells River (Site DAOl70), and all above 1.0 ppm were for Joslyn Creek (Site DAOl60).

The timing of occurrences of the highest levels of total iron (greater than 10 ppm ) also indicates the importance of erosional factors (Table 30). Almost all very high values occurred during high suspended material (spring and summer). Sites where these kinds of levels occurred in winter were ones of highly enduring turbidity, like Lower Tar River and Asphalt Creek (see Figures 25 and 33). An exception to this rule was the total iron of Beaver River above Syncrude (16 ppmi) in January 1977.

For the mainstem Athabasca system, major contributions to the total iron regime were not significant in the months October through March. For example, there were no occurrences in the upper 25 percentile during the autumn and winter (Table 31). However, the situation for some tributaries was different, notably in Zones 2, 3, and 6 (Table 31) where a major contribution to the upper 25 percentile was during the


Figure 44. Frequency distribution for total iron in rivers and tributaries by zones from 1976 and 1977 data.

Table 30. Occurrences of levels of total iron greater than 10 ppm in 1976 and 1977 in rivers and streams.

| Level (ppm) | Site Code |  |
| :--- | :--- | :--- |
| 63 | DA0200 | Athabasca River |
| 63 | DA0205 | Athabasca River |
| 52.5 | DA0150 | Lower Tar River |
| 49 | CD0040 | Hangingstone River |
| 27.7 | DA0120 | Asphalt Creek |
| 24 | CD2300 | Clearwater River |
| 19.9 | DA0150 | Lower Tar River |
| 19 | CD0040 | Hangingstone River |
| 17 | DA0150 | Lower Tar River |
| 16 | DA0180 | Beaver River |
| 15.5 | DD0010 | Athabasca River |
| 14 | DA0160 | Joslyn Creek |
| 14 | DA0181 | Beaver River-Hwy 63 |

Table 31. Upper 25 percentile levels occurring during autumn-winter of total iron, aluminum, manganese, and zinc for rivers and streams. Ranges and occurrences for October through March, 1976 and 1977.

| Zone | Percent Occurrence |  |  |  | Ranges |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Fe | Al | Mn | Zn | Fe | Al | Mn | Zn |
| 1 | 22 | 22 | 44 | 11 | 3.65-49 | 1.90-10.0 | 0.130-1.4 | 0.035-0.20 |
| 2 | 67 | 33 | 69 | 46 | 1.30-4.95 | 0.08-0.70 | $0.10-0.97$ | 0.018-0.091 |
| 3 | 80 | 33 | 60 | 43 | 2.35-5.60 | 0.23-1.90 | 0.079-0.52 | 0.014-0.068 |
| 4 | 44 | 44 | 33 | 56 | 2.00-14.0 | 0.29-6.20 | 0.050-0.525 | 0.018-0.088 |
| 5 | 43 | 35 | 70 | 55 | 3.25-52.5 | 0.27-11.2 | 0.405-6.40 | 0.024-0.155 |
| 6 | 71 | 20 | 86 | 29 | 0.68-0.89 | 0.10-0.48 | 0.039-0.79 | 0.010-0.043 |
| 7 | 29 | 29 | 71 | 47 | 2.60-16.0 | 0.54-7.7 | 0.242-0.510 | 0.031-0.109 |
| 8 | 0 | 0 | 8 | 18 | 2.70-63.0 | 0.82-23.7 | $0.11-1.70$ | 0.029-0.331 |

autumn-winter period, indicating a subsurface component of dissolved or complexed iron. Ranges for winter occurrences in these three zones were relatively low compared to other zones but were still higher than would be accounted for by iron solubility under normal redox conditions of surface waters (Hem 1970), which suggests a significant complexing role by organic derivatives supplied from muskeg.

### 3.4.2 Aluminum

Frequency distributions for total aluminum levels in running waters by zones are shown in Figure 45 . Levels generally clustered around 0.1 ppm throughout the region except for relatively clear water in Zone 6 (the Firebag and Richardson basins) where the levels were much lower. Also, the majority of occurrences in the upper 25 percentile were in the spring-summer period (Table 31). All indications imply levels controlled by sedimentary aluminum provided by clays which is typical for aluminum (Hem 1970).

### 3.4.3 Manganese <br> Frequency distributions for total manganese levels by zones

 are shown in Figure 46. The majority of occurrences were noncompliant (greater than 0.05 ppm ) with the water quality criteria (see Table 9). Levels generally centred about 0.1 ppm (except for Zones 4 and 6) in a pattern strikingly similar to iron (Figure 44). The upper 25 percentile occurrences for manganese were also seasonally similar (Table 31) but then also showed substantial autumn and winter contributions in Zones 5 and 7.Occurrences of the highest levels of total manganese (above $1 \mathrm{ppm})$ also indicate substantial autumn-winter contributions, especially in Zone 5, where they invariably occurred in the autumn-winter period (Table 32). Dissolved organic compounds (see Figure 34 for Calumut River and Unnamed Creek) thus appear to complex with manganese to maintain levels above what would be expected by solubility in oxygenated alkaline water (Hem 1970). Groundwater discharge (see Loeppky and


Figure 45. Frequency distribution for total aluminum in rivers and tributaries by zones from 1976 and 1977 data.


Figure 46. Frequency distribution for total manganese in rivers and tributaries by zones from 1976 and 1977 data.

Table 32. Occurrences of levels of total manganese greater than 1.0 ppm in 1976 and 1977 in rivers and streams.

| Level (ppm) | Site Code |  |
| :--- | :--- | :--- |
| 6.4 | DA0150 Lower Tar River | Date |
| 4.7 | DA0150 Lower Tar River | $01-04-77$ |
| 3.5 | DA0150 Lower Tar River | $09-02-77$ |
| 2.0 | DA0121 | Eymundson Creek |
| 1.82 | DA0121 | Eymundson Creek |
| 1.7 | DA0200 | Athabasca River |
| 1.7 | DA0205 | Athabasca River |
| 1.65 | DA0140 | Calumet River |
| 1.65 | DA0140 | Calumet River |
| 1.4 | DA0121 | Eymundson Creek |
| 1.17 | DA0110 | Unnamed Creek |
| 1.0 |  | $30-03-08-77$ |

Spitzer 1977 for evidence of substantial groundwater input into Unnamed Creek) may be responsible for the initial supply of manganese in this region. The high levels measured in the Athabasca and Hangingstone rivers relate better to particulate loadings.

### 3.4.4 Zinc

Frequency distributions for total zinc levels by zones are shown in Figure 47. Noncompliance with water quality criteria (greater than 0.03 ppm ) ranged from 0 to $50 \%$ for the tributaries and typically ran about $30 \%$ for the mainstem (see Table 9). Asphalt Creek, with its enduring turbidity (Figures 25 and 33), showed the highest noncompliance at $50 \%$. Levels centred about 0.01 ppm for the region and appeared to follow the same general pattern throughout. No marked differences between zones in ranges of the upper 25 percentile were detected (Table 31). Also, the seasonal occurrences of high levels were similar for all zones, except Zone 1 , where the spring-summer predominates. Thus, it appears that undissolved and dissolved contributions are similary important to the total regime in all zones, except Zone 1 , where high values appear to be related only to particulate loadings.

### 3.4.5 Copper

Frequency distributions for total copper levels by zones are shown in Figure 48. Noncompliance with water quality criteria (greater than 0.005 ppm ) typically ranged from 30 to $60 \%$ throughout the entire region (see Table 9). The majority of occurrences were below 0.01 ppm, with generally higher levels prevailing in the mainstem (Zone 8) and in the Birch Mountain tributaries (Zone 5), although striking differences among zones were not evident.

Occurrences of the highest levels of total copper (above 40 ppb )
are shown in Table 33, where the prevalence of high values (in the Athabasca River) can be noted. Very high values occurred during winter conditions, corresponding to dissolved loading, but a number of high values also occurred in the summer period, corresponding to particulate loadings. The solubility of hydroxy-carbonate mineralized copper in aerated water has been indicated to have a limit in the range from


Figure 47. Frequency distribution for total zinc in rivers and tributaries by zones from 1976 and 1977 data.


Figure 48. Frequency distribution for total copper in rivers and tributaries by zones from 1976 and 1977 data.

Table 33. Occurrences of levels of total copper greater than 0.04 ppm in 1976 and 1977 in rivers and tributaries.

| Level (ppm) | Site Code | Date |
| :--- | :--- | :--- |
| 0.180 | DB0011 MacKay River | $10-01-77$ |
| 0.114 | DA0150 Lower Tar River | $02-03-77$ |
| 0.093 | DA0205 Athabasca River | $25-02-77$ |
| 0.077 | DA0208 Athabasca River | $11-12-76$ |
| 0.059 | DA0200 Athabasca River | $30-08-76$ |
| 0.059 | DA0205 Athabasca River | $30-08-76$ |
| 0.053 | DA0200 Athabasca River | $28-07-76$ |
| 0.049 | DA0201 Athabasca River | $26-02-77$ |
| 0.048 | CD0040 | Hangingstone River |
| 0.046 | DA0206 | Athabasca River |
| 0.045 | DA0213 | Athabasca River |

0.064 ppm at pH 7.0 to 0.0064 ppm at pH 8.0 (Hem 1970). Thus, solubility enhancement by organic ligands or other complexing agents appears to be operating during winter conditions for these high values.

### 3.4.6 Nickel

Frequency distributions for total nickel by zones are shown in Figure 49. Sporadic noncompliance with the water quality criteria (greater than 0.025 ppm ) occurred in some tributaries and in the mainstem river (Table 9). The regimes in most zones were less than 10 ppb , with the exceptions of Zones 5 and 8, where substantial occurrences above 10 ppm can be noted which is remarkably similar to the pattern of the total copper occurrences.

Occurrences of the highest levels of total nickel (greater than 30 ppb ) are shown in Table 34. It can be noted that these high occurrences in the mainstem (Zone 8) prevailed during the springsummer season, whereas occurrences in the Birch Mountain tributaries prevailed during autumn-winter conditions. Nickel is one of the elements present in substantial amounts in oil sands (Table 16) and, thus, oil sands weathering or leaching may be implicated as a nickel source in Zone 5. The high occurrence at Beaver River inside Syncrude was almost certainly a result of discharge of mine depressurization water pumped out from beneath the McMurray formation.

### 3.4.7 Lead

Frequency distributions for total levels by zones are shown in Figure 50. Only sporadic noncompliance (greater than 0.030 ppm ) was noted in some tributaries and the mainstem river system (Table 9). The majority of occurrences were below 2 ppb , a similar pattern throughout the region, with the exception of very low regimes in Zones 2,4 , and 6 .

Occurrences of the highest levels of total lead (greater than 30 ppb ) are shown in Table 35 . The majority of high values occurred in the autumn-winter category. As the question of contamination from paint on the ice auger was raised in the midst of the project and steps were taken in the summer of 1977 to eliminate the possibility of contanination, future data will be necessary to tell if these high values are authentic.


Figure 49. Frequency distribution for total nickel in rivers and tributaries by zones from 1976 and 1977 data.

Table 34. Occurrences of levels of total nickel greater than 0.03 ppm in 1976 and 1977 in rivers and tirbutaries.

| Level (ppm) | Site Code |  |
| :--- | :--- | :--- |
| 0.130 | DA0206 | Athabasca River |
| 0.080 | DA0200 | Athabasca River |
| 0.072 | CD0040 | Hangingstone River |
| 0.071 | DA0200 | Athabasca River |
| 0.071 | DA0205 | Athabasca River |
| 0.058 | DA0122 | Eymundson Creek (mouth) |
| 0.051 | DA0173 | Beaver River inside Syncrude |
| 0.046 | DA0120 | Asphalt Creek |
| 0.046 | DA0121 | Eymundson Creek |
| 0.044 | DA0121 | Eymundson Creek |
| 0.042 | CD2300 | Clearwater River |
| 0.034 | CD0040 | Hangingstone River |
| 0.032 | DA0121 | Eymundson Creek |



Figure 50. Frequency distribution for total lead in rivers and tributaries by zones from 1976 and 1977 data.

Table 35. Occurrences of levels total lead greater than 0.03 ppm in 1976 and 1977 in rivers and tributaries.

| Level (ppm) | Site Code |  |
| :--- | :--- | :--- |
| 0.175 | DA0070 Poplar Creek | Date |
| 0.052 | CD0040 | Hangingstone River |
| 0.049 | DA0131 Pierre River (mouth) | $27-04-77$ |
| 0.048 | DA0204 | Athabasca River |
| 0.048 | DA0111 | Unnamed Creek (mouth) |
| 0.048 | DB0011 | Mackay River |
| 0.042 | DA0209 | Athabasca River |
| 0.040 | DA0210 | Athabasca River |
| 0.038 | DA0150 | Lower Tar River |
| 0.036 | CD2300 | Clearwater River |
| 0.035 | DA0120 | Asphalt Creek |

### 3.4.8 Chromium

Frequency distributions for hexavalent chromium are shown in Figure 51. The number of noncompliant (greater than 0.050 ppm ) values were minimal with such occurrences predominating in Zones 1, 5, 7, and 8. Occurrences of the highest levels of hexavalent chromium (above 20 ppb ) are shown in Table 36. There was a preponderance of high values in Zone 7 where current surface mining activity is being conducted. These particular occurrences showed no seasonal preferences even though high occurrences in other zones showed a definite trend to fall in the spring-summer season. Thus, industrial or related activity appears to be associated with these sporadic occurrences.
3.4.9 Cobalt

Frequency distributions for total cobalt levels by zones are shown in Figure 52. There were very few occurrences above 2 ppb , with Zones 1, 5, 7, and 8 accounting for just about all high occurrences.

Occurrences of the highest levels of total cobalt (above 10 ppb ) are shown in Table 37. Every occurrence happened in the springsummer period with the exception of one winter value in a Birch Mountain tributary (Zone 5) which implicates particulate loading with these high values.
3.4.10 Silver

Frequency distributions for total silver levels by zones are shown in Figure 53. Noncompliance with water quality criteria (greater than 0.05 ppm ) did not occur at any site. The low number of occurrences above 1 ppb is notable and the silver regime is remarkably similar to that of cobalt, albeit at a lower level.

Occurrences of the highest levels of total silver (greater than 5 ppm ) are shown in Table 38. Occurrences in the tributaries of Zones 5 and 7 fell mostly in the spring-summer period, corresponding to an erosional supply for the high silver levels. However, the high levels in the mainstem occurred during autumn-winter, which would correspond to either groundwater loading or a release from sediments


Figure 51. Frequency distribution for total hexavalent chromium in rivers and tributaries by zones from 1976 and 1977 data.

Table 36. Occurrences of levels of hexavalent chromium greater than 0.02 ppm in 1976 and 1977 in rivers and tributaries.

| Level (ppm) | Site Code |  |
| :--- | :--- | :--- |
| 0.205 | DA0181 | Beaver River (Hwy 63) |
| 0.177 | DA0182 | Bridge Creek Diversion (Hwy 63) |
| 0.13 | DA0210 | Athabasca River |
| 0.086 | DA0206 | Athabasca River |
| 0.075 | DA0070 | Poplar Creek |
| 0.075 | DA0070 | Poplar Creek |
| 0.065 | DA0070 | Poplar Creek |
| 0.033 | DA0131 | Pierre River (mouth) |
| 0.032 | DA0010 | Athabasca River |
| 0.031 | DA0120 | Asphalt Creek |



Figure 52. Frequency distribution for total cobalt in rivers and tributaries by zones from 1976 and 1977 data.

Table 37. Occurrences of total cobalt greater than 0.01 ppm in 1976 and 1977 in rivers and tributaries.

| Level (ppm) | Site Code | Date |
| :--- | :--- | :--- |
| 0.043 | DA0205 | Athabasca River |
| 0.043 | DA0200 | Athabasca River |
| 0.035 | DA0206 | Athabasca River |
| 0.033 | CD0040 | Hangingstone River |
| 0.031 | DA0070 | Poplar Creek |
| 0.028 | DA0120 | Asphalt Creek |
| 0.019 | CD2300 | Clearwater River |
| 0.014 | DA0121 | Eymundson Creek |
| 0.011 | DA0121 | Eymundson Creek |
| 0.011 | DA0181 | Beaver River (Hwy 63) |



Figure 53. Frequency distribution for total silver in rivers and tributaries by zones from 1976 and 1977 data.

Table 38. Occurrences of levels of total silver greater than 0.005 ppm in 1976 and 1977 in rivers and tributaries.

| Level (ppm) | Site Code |  |
| :--- | :--- | :--- |
| 0.070 | DA0150 Lower Tar River | Date |
| 0.028 | DA0070 Poplar Creek | $16-08-77$ |
| 0.015 | DA0131 Pierre River (mouth) | $27-04-77$ |
| 0.015 | DA0204 | Athabasca River |
| 0.015 | DA0208 | Athabasca River |
| 0.013 | CD2300 | Clearwater River |
| 0.010 | DA0210 | Athabasca River |
| 0.010 | DA0205 | Athabasca River |
| 0.009 | DA0180 | Beaver River above Syncrude |

of what was previously made available as bound silver. The occurrence of high silver levels in Beaver River above Syncrude suggests that occurrences in lower reaches (now Poplar Creek) may not be due to mine depressurization water available through the Beaver River diversion.
3.4.11 Vanadium

Frequency distributions for total vanadium by zones are shown in Figure 54. A very low regime is noticeable and scattered occurrences above 3 ppb are mostly in Zones 1, 4, 5, 7, and 8.

Occurrences of the highest levels of total vanadium (greater than 3 ppb ) are shown in Table 39. Most occurrences fell during the spring-summer period indicating association with particulate loading. A sediment-vanadium link has been suggested by Jackson and Allan (1978), where levels of vanadium have been correlated with fine sediments in the mainstem Athabasca River system. However, some autumn-winter values were also evident at scattered locations.
3.4 .12

Cadmium
Frequency distributions for total cadmium by zones are shown in Figure 55. Sporadic occasions of noncompliance with water quality criteria (greater than 0.003 ppm ) were noted in some of the tributaries (see Table 9). The cadmium regimes of only sporadic points above 2 ppb were very similar throughout the region. However, the area of current surface mining activity showed the highest range.

Occurrences of the highest levels of total cadmium (above 2 ppb ) are shown in Table 40. The occurrences are scattered throughout the seasons as well as representing many zones. All high cadmium occurrences in Zone 7 cannot be blamed on surface mining effluent because one high occurrence in Beaver River was above Syncrude, but it is noted that Poplar Creek showed sporadic high values after receiving diverted water (Figure 4).

### 3.4.13 Arsenic

Frequency distributions for arsenic levels by zones are shown in Figure 56. Only three occasions of noncompliance with water quality


Figure 54. Frequency distribution for total vanadium in rivers and tributaries by zones from 1976 and 1977 data.

Table 39. Occurrences of levels of total vanadium greater than 0.003 ppm in 1976 and 1977 in rivers and streams.

| Level (ppm) | Site Code |  | Date |
| :--- | :--- | :--- | :--- |
| 0.013 | DA0160 | Joslyn Creek | $18-05-77$ |
| 0.011 | DA0204 | Athabasca River | $22-01-77$ |
| 0.010 | DA0204 | Athabasca River | $26-02-77$ |
| 0.009 | DA0211 | Athabasca River | $31-05-77$ |
| 0.008 | CD0040 | Hangingstone River | $28-07-77$ |
| 0.007 | DA0182 | Bridge Creek Diversion | $27-04-77$ |
| 0.007 | DA0150 | Lower Tar River | $01-04-77$ |
| 0.007 | DB0011 | MacKay River | $19-05-77$ |
| 0.006 | CD0100 | Sal ine Creek | $27-04-77$ |
| 0.005 | CD0040 | Hangingstone River | $11-03-77$ |
| 0.004 | CD0040 | Hangingstone River | $27-04-77$ |
| 0.004 | CD0040 | Hangingstone River | $18-05-77$ |
| 0.004 | CD0100 | Saline Creek | $16-05-76$ |
| 0.004 | DA0120 | Asphalt Creek | $28-04-77$ |
| 0.004 | DA0150 | Lower Tar River | $08-02-77$ |



Figure 55. Frequency distribution for total cadmium in rivers and tributaries by zones from 1976 and 1977 data.

Table 40. Occurrences of levels of total cadmium greater than 0.002 ppm in 1976 and 1977 in rivers and tributaries.

| Level (ppm) | Site Code |  |
| :--- | :--- | :--- |
| 0.016 | DA0070 | Poplar Creek |
| 0.016 | DA0070 | Poplar Creek |
| 0.006 | DA0180 | Beaver River Above Syncrude |
| 0.005 | CD2300 | Clearwater River |
| 0.003 | CD0040 | Hangingstone River |
| 0.003 | DA0170 | Lower E11s River |
| 0.003 | DA0160 | Joslyn Creek |
| 0.003 | DA0130 | Pierre River (mouth) |
| 0.003 | DA0111 | Tributary to Unnamed Creek |
| 0.003 | DC0010 | Firebag River |
| 0.003 | DA0070 | Poplar Creek |



Figure 56. Frequency distribution for total arsenic in rivers and tributaries by zones from 1976 and 1977 data.
criteria (greater than 0.010 ppm ) were observed (Lower Tar River and Athabasca River). Levels centred around 0.001 ppm in a similar pattern amongst the zones, except for Zone 1 (south of Fort McMurray), which tended toward high values, and Zone 6 (the Firebag and Richardson rivers), which tended toward low values.

Occurrences of the highest levels of arsenic (above 0.005 ppm ), shown in Table 41, indicate that practically all high occurrences happen in the autumn-winter period. Groundwater is a typical source of arsenate (Hem 1970), corresponding to base flow occurrences. However, high occurrences in the Athabasca River are notable in the spring-summer period. Thus, much of the arsenate supplied to the mainstem may coprecipitate with metals such as iron (Hem 1970) into the sediments in the mainstem, which would explain detection of high levels during times of high turbidity.

### 3.4.14 Selenium

Frequency distributions for selenium levels by zone are shown in Figure 57. Noncompliance with water quality criteria (greater than or equal to 0.010 ppm ) only occurred one time, at the Clearwater River site. Levels were generally below 0.001 ppm , with Zones 4 (Ells River basin) and 6 (Firebag and Richardson rivers) displaying relatively low regimes and Zones 2 (Muskeg and Steepbank rivers) and 8 (mainstem) displaying relatively high regimes.

Occurrences of the highest levels of selenium (greater than 0.0008 ppm ; Table 42) show a preponderance of high levels during the autumn-winter period. The high occurrences within Zone 7 are likely due to mine depressurization water. The occurrence at Beaver River (Hwy 63) was out of step with seasonal trends, thus indicating anthropogenic influence, and the high occurrence in the sample from Beaver River within Syncrude corresponds in timing to influence of mine depressurization water (see Section 4.2.3).

| Level (ppb) |  | Site Code | Date |
| :---: | :---: | :---: | :---: |
| 20 | DA0080 | Muskeg River | 16-12-76 |
| 17.3 | DA0150 | Lower Tar River | 10-05-77 |
| 15 | DA0205 | Athabasca River | 30-08-76 |
| 12 | DA0080 | Muskeg River | 29-10-76 |
| 10 | DA0203 | Athabasca River | 02-09-76 |
| 10 | DA0203 | Athabasca River | 28-09-76 |
| 9 | DAO170 | Lower Ells River | 10-11-78 |
| 8 | DA0205 | Athabasca River | 28-09-76 |
| 7 | DB0011 | MacKay River | 21-12-76 |
| 7 | DB0020 | Dover River | 04-01-77 |
| 7 | DA0150 | Lower Tar River | 08-02-77 |
| 6 | DA0204 | Athabasca River | 26-02-77 |
| 6 | DAO140 | Calumet River | 02-03-77 |



Figure 57. Frequency distribution for total selenium in rivers and tributaries by zones from 1976 and 1977 data.

Table 42. Occurrences of levels of total selenium greater than 0.8 ppb in 1976 and 1977 in rivers and tributaries.

| Level (ppb) | Site Code |  |
| :---: | :--- | :--- |
| 35.0 | CD2300 | Clearwater River |
| 6.0 | DA0205 | Athabasca River |
| 4.0 | CD2300 | Clearwater River |
| 3.4 | DA0206 | Athabasca River |
| 1.4 | DA0060 | Steepbank River |
| 1.0 | DA0181 | Beaver River (Hwy 63) |
| 0.9 | DA0060 | Muskeg River |
| 0.9 | DA0100 | Upper Ells River |
| 0.9 | DA0130 | Pierre River |
| 0.9 | DA0150 | Lower Tar River |
| 0.9 | DA0179 | Beaver River inside Syncrude |
| 0.9 | DA0210 | Athabasca River |

### 3.4.15 Mercury

Frequency distributions for total mercury levels by zones are shown in Figure 58. Noncompliance with water quality criteria (greater than 0.0001 ppm ) was evident on occasion at most sites (Table 9). Levels were typically below 0.0001 ppm , with most of the high levels occurring in the mainstem (Zone 8), the region of current surface mining activity (Zone 7), and the Birch Mountain tributary streams (Zone 5).

Occurrences of the highest levels of mercury (greater than 0.001 ppm ) are shown in Table 43. A large number of occurrences are notable in the period 24 February to 2 March 1977 which raises a question of contamination for these data. Even by ignoring these data, winter occurrences predominate for these high levels, suggesting either strong groundwater contribution or mobilization of erosionally supplied mercury. One sampling of Beaver River inside Syncrude, which carries mine depressurization water, provided a high occurrence of mercury.

### 3.5 SUMMARY OF INTERPARAMETER RELATIONSHIPS

### 3.5.1 Major lons

Definite relationships of discharge with filterable residue fixed were demonstrated for most of the tributaries in the region. The relationship at each site, attributable to the geology and physiography of the basins, ranged in character from the highly variable hard waters of the MacKay and Hangingstone rivers to the relatively stable soft waters of the Firebag and Richardson rivers emanating from the Precambrian Shield. Proportional variation of the ionic components at most sites tended to show the regular pattern of relatively elevated chlorides and/or sulphates at the higher levels of filterable residue fixed. Disruptions in these patterns could be discerned in the data set for Poplar Creek which had been subject to diversion influence.

In the stretch of the Athabasca River flowing through the oil sands development area, dilution behaviour typical of the tributaries was noted. Variations in either loading or dilution factors may be attributable either to mixing characteristics downstream of the


Figure 58. Frequency distribution for total mercury in rivers and tributaries by zones from 1976 and 1977 data.

Table 43. Occurrences of levels of total mercury greater than 1.0 ppb in 1976 and 1977 in rivers and tributaries.

| Level (ppb) |  | Site Code | Date |
| :---: | :---: | :---: | :---: |
| 60.0 | CD2300 | Clearwater River | 09-02-76 |
| 48.0 | DA0207 | Athabasca River | 19-09-77 |
| 6.4 | DA0182 | Bridge Creek Diversion | 16-09-76 |
| 4.6 | DA0140 | Calumet River | 09-02-77 |
| 4.4 | DA0200 | Athabasca River | 08-09-76 |
| 4.2 | DAO179 | Beaver River inside Syncrude | 18-11-76 |
| 2.7 | DAO121 | Eymundson Creek | 02-03-77 ${ }^{\text {a }}$ |
| 2.1 | DB0011 | MacKay River | 25-02-77 ${ }^{\text {a }}$ |
| 1.7 | CDOO40 | Hangingstone River | 24-02-77 ${ }^{\text {a }}$ |
| 1.6 | DA0070 | Poplar Creek | 24-02-77 ${ }^{\text {a }}$ |
| 1.5 | DA0208 | Athabasca River | 25-02-77 ${ }^{\text {a }}$ |
| 1.4 | CD2300 | Clearwater River | 26-02-77 ${ }^{\text {a }}$ |
| 1.4 | DA0210 | Athabasca River | 25-02-77 ${ }^{\text {a }}$ |
| 1.3 | DA0204 | Athabasca River | 12-12-76 ${ }^{\text {a }}$ |
| 1.3 | DA0209 | Athabasca River | 25-02-77 ${ }^{\text {a }}$ |
| 1.3 | DAO122 | Eymundson Creek (mouth) | 08-11/76 |
| 1.3 | DCOOIO | Firebag River | 09-10-76 |
| 1.2 | DA0070 | Poplar Creek | 21-12-76 |
| 1.2 | DA0204 | Athabasca River | 12-12-76 |
| 1.2 | DA0204 | Athabasca River | 21-01-77 |
| 1.1 | DA0070 | Poplar Creek | 18-11-76 |
| 1.1 | DA0206 | Athabasca River | 19-12-77 |

confluence of the Athabasca and Clearwater rivers or to interchange effects involving sediments north of Fort McMurray. Calculated loadings of the major ions, particularly the anions, displayed a complex behaviour north of Fort McMurray possibly reflecting groundwater discharge-recharge or adsorption-desorption phenomenon. Manmade inputs north of Fort McMurray were not detectable.

### 3.5.2 Suspended Solids

There was a high variation in the turbidity regimes of the tributaries throughout the area. The large tributaries varied, from the highly enduring turbidity of the Hangingstone River to the consistently clear Firebag River. The smaller tributaries showed a similar variation, the highest turbidity shown by Asphalt Creek and the lowest by Thickwood Creek. In most streams and rivers, there were at least brief episodes of high suspended solids as measured by both nonfilterable residue and nonfilterable residue fixed. Many smaller tributaries showed high duration of an organic component of the nonfilterable residue, likely caused by muskeg input. The above average suspended materials regimes of tributaries adjacent to oil sands activities were not above the range for the region.

### 3.5.3 Nutrients

Throughout the region, the maximum total dissolved organic carbon levels varied between 10 and 45 ppm . Occurrences of maxima typically corresponded to allochthonous inputs during spring and autumn, but anomalous behaviours were exhibited by a relatively constant regime in Poplar Creek and an irregular pattern in Bridge Creek Diversion which appear to be a consequence of development activities. Calumet River also was atypical in displaying pre-ice-out elevated levels which could possibly be caused by high loadings from groundwater discharge.

Maximum total phosphorus levels ranged from 0.1 to 0.5 ppm throughout the region. No single controlling factor was discernible from the data and tributaries affected by mining activity showed no significant departure from the regional pattern.

Maximum ammonia values ranged from 0.1 to 0.6 ppm, typically occurring in late summer and in mid-winter. Bridge Creek Diversion was somewhat different by displaying an early mid-winter maximum and Poplar Creek had an unusual, enduringly high, late summer-autumn regime.

Maximum total Kjeldahl nitrogen levels ranged randomly
between 0.3 and 2.0 ppm . Total $\mathrm{Kjeldahl} \mathrm{nitrogen} \mathrm{regimes} ,\mathrm{in} \mathrm{tribu-}$ taries impacted by oil sands activities, were not out of step with the undisturbed tributaries.

### 3.5.4 Trace Elements

The general order of dominance for each of the trace elements was concluded to be:
$\mathrm{Fe}>\mathrm{Al}>\mathrm{Mn}>\mathrm{Zn}>\mathrm{Cu}>\mathrm{Ni}>\mathrm{Pb}>\mathrm{Cr}>\mathrm{Co}>\mathrm{Ag}>\mathrm{V}>\mathrm{Cd}>\mathrm{As}>\mathrm{Se}>\mathrm{Hg}$
Generally, the levels of most of the elements included particulate, ionic, and complexed forms and control of the levels appeared to be through natural geochemical processes. However, slightly higher occurrences of chromium, cadmium, and selenium were discerned in the region of current oil sands activity, which appears to reflect anthropogenic inputs. A larger data set would be necessary to confirm this.

## 4. REFERENCES CITED

Akena, A.M. 1979. An extensive surface water quality study of the Muskeg River watershed. Volume I: Water chemistry. Prep. for the Alberta 0 il Sands Environmental Research Program by Alberta Environment, Water Quality Control Branch. AOSERP Report 85.187 pp.

Akena, A.M. in prep. Water quality of the Athabasca 0 il Sands area: Volume 1, data collection and quality. Prep. for Alberta Oil Sands Environmental Research Program by Alberta Environment, Water Quality. AOSERP Project WS 1.2.1.

Alberta Environment. 1977. Methods manual for chemical analysis of water and wastes. Alberta Environment, Pollution Control Laboratory, Water Analysis Section.

Allan, R., and T. Jackson. 1978. Heavy metals in bottom sediments of the mainstem Athabasca River system in the AOSERP study area. Prep. for the Alberta Oil Sands Environmental Research Program by Fisheries and Environment Canada, Freshwater Institute. AOSERP Report 34. 74 pp .

American Public Association, et al. 1976. Standard methods for the examination of water and wastewater. 14th ed. Washington, D.C.

Australian Water Resources Council. 1974. A compilation of Australian Water Quality criteria. Caulfield Institute of Technology Tech. Paper No. 7. Australian Government Publishing Service, Canberra.

Beltaos, S. 1979. Mixing studies in the Athabasca River and delta-winter conditions in the river. Prep. for the Alberta $0 i l$ Sands Environmental Research Program by Alberta Research Council. AOSERP Report 40. 110 pp .

Berkowitz, N., and J.G. Speight. 1975. The oil sands of Alberta. Fuel: the science of fuel and energy. 54:138-149.

Costerton, J., and G.G. Geesy. 1979. Microbial populations in the Athabasca River. Prep. for the Alberta Oil Sands Environmental Research Program by Dept. of Biology, University of Calgary. AOSERP Report 55. 66 pp.

Cotton, F.A., and G. Wilkenson. 1972. Vanadium. Pages 818-829 in Advances in inorganic chemistry. Volume 3. Interscience Pub., New York. 1145 pp.

Department of National Heal th and Welfare. 1969. Canadian drinking water standards and objectives, 1968.

Doyle, P.F. 1977. Hydrologic and hydraulic characteristics of the Athabasca River from Fort McMurray to Embarras. Alberta Research Council. SWE-77/02. 47 pp.

Edwards, R.R., R.A. Daily, and H. Cruse. 1975. Quality assurance in water analysis contracts. Journal of American Water Works Association. 67(7):363-366.

Edwards, R.R., D.C. Schilling, Jr., and T.L. Rossmiller. 1977. A performance evaluation of certified water analysis laboratories. Journal of Water Pollution Control Federation. 49(7):1704-1712.

Froelich, C.R. 1980. An intensive surface water quality study of the Muskeg River watershed. Volume 11: Hydrology. Prep. for the Alberta 0 il Sands Environmental Research Program by Alberta Environment. AOSERP Project HY 2.5. 194 pp.

Gorrell, H.A., R.J. Clissold, D.V. Currie, R. Farvolden, A. Freeze, and W. Meneley. 1974. Regional hydrogeological study McMurray oil sands area, Alberta. Syncrude Environmental Research Mongram 1976-5. 92 pp .

Great Lakes Water Qual ity Board. 1976. Great Lakes water quality 1975. Appendix A--Annual report of the Water Quality Objectives Sub-committee Fourth Annual Report.

Griffiths, W.G. 1973. Preliminary fisheries survey of the Fort McMur ray tar sands area. Alberta Dept. of Lands and Forests, Fish and Wildlife Division. 618 pp.

Griffiths, W.H., and B.D. Walton. 1978. The effects of sedimentation on the aquatic biota. Prep. for the Alberta Oil Sands Environmental Research Program by Renewable Resources Consulting Services Ltd. AOSERP Report 35. 86 pp .

Guy, H.P. and V.W. Norman. 1970. Field methods for measurements of fluvial sediment. U.S. Geological Survey. Washington. 59 pp .

Hall, F.R. 1971. Dissolved solids-discharge relationships. 2. Applications to field data. Water Resources Research 7(3):591-601.

Hem, J.D. 1970. Study and interpretation of the chemical characteristics of natural water. 2nd edition. Geological Survey Water Supply Paper 1473.

Hesslein, R.H. 1979. Lake acidification potential in the Alberta 011 Sands Environmental Research Program study area. Prep. for the Alberta 0il Sands Research Program by the Freshwater Institute, Environment Canada. AOSERP Report 71. 36 pp .

Hitcheon, B., R.H. Filby, and K.R. Shah. 1975. Geochemistry of trace elements in crude oils, Alberta, Canada. Pages 111-120 in T.F. Yen, ed. The role of trace metals in petroleum. Ann Arbor Science Publishers Inc. Michigan.

Hodgson, G.W. 1954. Vanadium, nickel and iron: trace metals in crude oils of western Canada. Bulletin of American Association of Petroleum Geologists. 38:2537-2554.

Humphreys, R.D. (Reg), Engineering and Management Consultants. 1979. An overview assessment of in situ development in the Athabasca deposit. Prep. for the Alberta $0 i l$ Sands Environmental Research Program. AOSERP Program Management Report PM-1. 83 pp .

Inland Waters Directorate. 1973. Instructions for taking and shipping water samples for physical and chemical analyses. Inland Waters Directorate, Environment Canada. Ottawa.

International Joint Commission. 1977. New and revised specific water quality objectives. Volume |l Great Lakes Water Quality Board Report.

Jantzie, T.D. 1977. A synopsis of the physical and biological limnology and fishery programs within the Alberta 0 il sands area. Prep. for the Alberta Oil Sands Environmental Research Program by Renewable Resources Consulting Services L.td. AOSERP Report 7.73 pp .

Kramer, J.R., S.E. Herbes, and H.E. Allen. 1972. Phosphorus: analysis of water biomass, and sediment. Pages 51-100 in H.E. Allen and J.R. Kramer, eds. Nutrients in natural waters. John Wiley and Sons, Inc., New York. 457 pp.

Kennedy V.C. 1971. Silica variation in stream water with time and discharge. Pages 94-130 in Nonequilibrium systems in natural water chemistry. Advanced in Chemistry Series 106. American Chemical Society, Washington, D.C.

Korchinski, M.L. in prep. Interaction of humic substances with metallic elements. Prep. for the Alberta Oil Sands Environmental Research Program by Fisheries and Environment Canada, Inland Waters Directorate. AOSERP Project HY 2.3.

Lake, W., and W. Rogers. 1979. Acute lethality of mine depressurization water on trout-perch and rainbow trout. Prep. for the Alberta Oil Sands Environmental Research Program by Alberta Environment. AOSERP Report 23. 44 pp .

Likens, G.E., F.H. Bormann, N.M. Johnson, and R.S. Pierce. 1967. The calcium, magnesium, potassium and sodium budgets for a small forested ecosystem. Ecology 48:772-785.

Lipsett, and A.W.S. Beltaos. 1978. Tributary mixing characteristics using water quality parameters. Alberta Research Council. SWE-78/04. 41 pp.

Loeppky, K.D., and M.O. Spitzer. 1977. Interim compilation of stream gauging data to December 1976 for the Alberta Oil Sands Environmental Research Program. Prep. for the Alberta $0 i l$ Sands Environmental Research Program by Fisheries and Environment Canada, Water Survey of Canada. AOSERP Report 18. 257 pp.

Malden, M.L., editor. 1978. In situ projects dominate but third mining project is surfacing. Energy Processing/Canada 71 (1):22-38.

McNeeley, R.N., and V.P. Neimanis. 1978. Water quality interpretive report, Prince Edward Island, 1961-1973. Inland Waters Directorate, Environment Canada.

Meites, L. and H.C. Thomas. 1958. Advanced analytical chemistry. McGraw-Hill Book Co. Inc., New York. 540 pp.

Murphy, K.L., editor. 1972. Manual on wastewater sampling practice. Prep. by The Canadian Institute on Pollution Control. pp. 41-54.

National Water Quality Data Bank (NAQUADAT). 1976. Alphabetical dictionary index. Canada Dept. of the Environment, Inland Waters Directorate. Ottawa.

Neill, C.R., and B.J. Evans. 1979. Synthesis of surface water hydrology hydrology. Prep. for the Alberta Oil Sands Environmental Research Program by Northwest Hydraulic Consultants Ltd. AOSERP Report 60. 84 pp .

Nix, P.G., J.S. Costerton, R. Ventullo, and R.T. Coutts. 1979. A preliminary study of chemical and microbial characteristics in the Athabasca River in the Athabasca 0il Sands area of northeastern Alberta. Prep. for the Alberta Oil Sands Environmental Research Program by Chemical and Geological Laboratories Ltd., Microbios Ltd., and Zenotox Services Ltd. AOSERP Report 54. 135 pp .

Peace-Athabasca Delta Project Group. 1972. The Peace-Athabasca Delta--a Canadian resource. Summary report, 1972. 144 pp.

Pollution Control Laboratory. 1977. Methods manual for chemical analysis of water and wastes. Prep. by Alberta Environment, Pollution Control Laboratory, Water Analysis Section.

Puttagunta, V.R., et al. 1977. Role of nuclear energy in the recovery of oil from the tar sands of Alberta. Journal of Canadian Petroleum Technology. 16(3):

Saskatchewan Water Resources Commission. 1970. Water quality criteria.

Schindler, D.W., R. Wagemann, and R.H. Hesslein. 1979. Interim report on the acidification of Lake 223, experimental lakes area: background data, the first year of acidification (1976), and pilot experiment. Prep. for the Alberta Oil Sands Environmental Research Program by Freshwater Institute, Environment Canada. AOSERP Project AF 2.3.1. 90 pp.

Schwartz, F.G. 1979. Interim report on hydrogeological investigations of the Muskeg River basin, Alberta. Prep. for the Alberta Oil Sands Environmental Research Program by the University of Alberta, Dept. of Geology. AOSERP Report 48. 101 pp .

Sprague, J.B., D.A. Holdway, and D. Stendahl. 1978. Acute and chronic toxicity of vanadium to fish. Prep. for the Alberta Oil Sands Environmental Research Program by the University of Guelph. AOSERP Report 41.92 pp .

Steele, T.D. 1973. Simulation of major inorganic chemical concentrations and loads in streamflow. NTIS PB 222 556. 30 pp.

Strosher, M.T., and E. Peake. 1976. The evaluation of wastewaters from an oil sand extraction plant. Prep. for the Alberta 0 il Sands Environmental Research Program by The University of Calgary, Environmental Sciences Centre (Kananaskis). AOSERP Report 5. 103 pp.

Strosher, M.T., and E. Peake. 1978. Characterization of organic constitutents in waters and wastewaters of the Athabasca Oil Sands mining area. Prep. for the Alberta Oil Sands Environmental Research Program by The University of Cal gary, Environmental Sciences Centre (Kananaskis). AOSERP Report 20. 70 pp .

Traversy, W.J. 1971. Methods for chemical analysis of waters and wastewaters in use in water quality division laboratories. Inland Waters Branch, Dept. of the Environment.

USEPA 1972. Water quality criteria. Washington, D.C. 535 pp .
Walker, L.A., R.W. Luhning, and K. Rashid. 1976. Potential for recovering vanadium from Athabasca tar sands. 26th Canadian Chemical Engineering Conference, Toronto, Ontario.

Warner, L.A., and M.O. Spitzer. 1979. Interim compilation of stream gauging data, 1977. Prep. for the Alberta 011 Sands Environmental Research Program by Environment Canada. AOSERP Project HY 1.l. 99 pp .

Wright, R.F., and G.T. Gjessing.. 1976. Acid precipitation changes in the chemical composition of lakes. Ambio 5(5-6):219-223.

Yaremko, E.K., and R.B. Murray. 1979. Evaluation of the baseline hydrometric and water quality networks in the AOSERP study area. AOSERP Program Management Report PM-2. 216 pp.

Yen, T.F. 1978. The nature of vanadium complexes in the refining of heavy oil. Energy Sources. 3(3/4):339-351.
5.

APPENDIX
5.1 REPORTING AND QUALITY CONTROL SECTION OF CONTRACT FOR ANALYTICAL SERVICES

### 5.1.1 Analytical Quality Control

(1) The Consultant will provide full documentation of its services, • equipment, expertise, experience and fee schedule.
(2) The Consultant will demonstrate an acceptable internal quality control program and will submit documentation of it with monthly invoices to Environmental Protection Services. Such a program will include replicate analyses of at least one sample per twenty which will be reported to Environmental Protection Services. All costs of this program will be borne by the Consultant.
(3) The Consultant will participate in external quality control program administered by the Alberta Pollution Control Laboratory. It is anticipated that many other laboratories in Alberta including Syncrude Canada Ltd., and Great Canadian Oil Sands Ltd. will participate in the quality control program. All costs for this participation will be borne by the Consultant.
(4) CONSISTENCY OF ANALYTICAL DATA: An acceptable report will contain an ion balance (NAQUADAT method 00103 L ) within the range 0.90 to 1.10 . In the case of a smaller amount of sample being available for analysis an analytical report containing an ion balance within the range 0.85 to 1.15 will be acceptable if there is insufficient sample to recheck some of the ion analyses.
(5) PRECISION QUALITY CONTROL: From time to time agents of AOSERP may submit to the Consultant, without prior notification or identification as such, two or more samples of identical composition but differing in composition by a known factor established by volumetric dilution in the field. The Consultant will be informed of all results of duplicate analysis. If there occurs a deviation greater than $10 \%$ of the mean value on any particular analysis that results in a mean value greater than ten times the detection limit, the Consultant will make every effort
to discover the source of error and correct the situation. A consecutive occurrence of such unsatisfactory deviation in the same particular analysis may be cause of non-payment of that particular analysis on the duplicate run.

Furthermore, for those results that are less than ten times the detection limit (as for example, trace metal analysis), the company will demonstrate an improvement of its precision where such improvement is indicated as desirable and necessary to agents of AOSERP by the results of the duplicate analysis.
(6) ACCURACY QUALITY CONTROL: From time to time, agents of AOSERP may submit for analysis to two other laboratories (probably the Pollution Control Laboratory and Inland Waters Quality Laboratory in Calgary), water samples from the field identical to the water samples submitted to the Consultant for analysis. The results might indicate areas where an improvement in accuracy is desirable. The Consultant will respond to suggestions by striving to improve accuracy in the areas of concern.

From time to time, agents of AOSERP may prepare and submit for analysis to the Consultant without prior notification or identification as such, solutions or other materials of precise known composition or solutions or other materials to which precise amounts of chemicals have been added ("spiked" samples). The comparisons of the analytical results with the design concentrations will subsequently be made available to the Consultant. If these comparisons indicate areas where the Consultant should improve the accuracy of the analysis, the Consultant will endeavour to improve.

For persistent gross errors (deviations greater than $25 \%$ from a design concentration or from a valid mean) in a particular analysis as indicated by any quality control procedure, the Consultant will not be paid for that particular analysis until such time as the faulty analysis procedure is rectified as demonstrated by acceptable accuracy quality control analysis.
(7) DETECTION LIMITS: Payment for any analytical result that does not achieve the detection limits specified in Appendix 1 or as might be adjusted by negotiation with the Minister, will not be made.

### 5.1.2 Reporting

(1) Analytical data reports will be edited and forwarded to designated Alberta Environment personnel within fifteen working days of receipt of samples. The standard NAQUADAT form will be used for data reporting. Codes will be provided by agents of AOSERP. The Consultant may hold back data on individual samples if required for analytical verification.
(2) If the Consultant does not maintain a timely schedule of analysis and reports as set out in clause (1) of this part, the Consultant's invoices may be discounted by the Minister for each week or portion thereof elapsing after the due date, by an amount of $10 \%$ of the total payable under the invoices concerned.
(3) Results from quality control work will be reported on a monthly basis. These dated monthly reports will detail any areas of concern indicated by internal and/or external quality control programs. They will also specify how the Consultant is handling problems in these areas.
(4) Written interim progress reports are required at three-month intervals after commencement of work. The reports will contain a summary of the problems encountered in the receipt of samples and sample analysis, analytical methods and modifications thereof, a summary of the data collected, and an historical documentation from the start of contract of changes in analytical procedure and detection limits.
(5) Invoices will be sub-totalled according to the project number which is specified on the sample submission form to the Consultant.
5.2

DATA SUMMARIES FOR ALL SAMPLE SITES

STATION: CCOO12 Athabasca River above Horse River
DATES: 1976 and 1977

| Parameter | Minimum | MaxImum | Mean |
| :---: | :---: | :---: | :---: |
| calcium | 23.0 | 55.0 | 37.0 |
| magneslum | 6.8 | 16.3 | 10.0 |
| sodium | 4.3 | $1{ }^{\text {'3. }} 1$ | 9.1 |
| potassium | 0.5 | 2.4 | 1.5 |
| chlorlde | 1.0 | 9.0 | 3.0 |
| sulphate | 11.8 | 46.0 | 24.0 |
| total alkalinlty | 55.6 | 195.0 | 120.0 |
| pH | 7.4 | 8.21 | 7.9 |
| carbonate | - | - | - |
| bicarbonate | 104.0 | 230.0 | 146.0 |
| total hardness | 35.4 | 203.0 | 135.0 |
| fluorlde | 0.05 | 0.19 | 0.09 |
| silica | 4.0 | 9.0 | 5.3 |
| conductance | 171 | 440 | 275 |
| threshold odour number | 2 | 4 | 3 |
| colour | 5 | 30 | 30 |
| tamin and lignin | 0.08 | 1.40 | 0.7 |
| turbidity | 1.5 | 255.0 | 52.0 |
| TFR | 109.0 | 251.0 | 162.0 |
| TFRF | 86.0 | 216.0 | 133.0 |
| TNFR | 0.3 | 433.0 | 71.0 |
| TNFRF | L. 4 | 397.0 | 61.0 |
| surfactants | L. 02 | 0.09 | 0.04 |
| humic acids | L. 1.0 | 18.0 | 3.0 |
| total organic carbon | 4.0 | 144.0 | 19.0 |
| total inorg. carbon | 15.5 | 41.0 | 26.0 |
| total diss. org. carbon | 2.5 | 12.0 | 9.0 |
| nitrate and nitrite $N$ | 0.003 | 0.66 | 0.09 |
| ammonla nitrogen | L. 01 | 1.40 | 0.16 |
| total KJeldahi N | 0.51 | 1.05 | 3.19 |
| total phosphorus | 0.013 | 0.35 | 0.08 |
| ortho-phosphorus | 0.003 | 0.01 | 0.01 |
| phenol | L. 001 | 0.011 | 0.00 |
| oll and grease | L. 1 | 3.0 | 0.8 |
| suphide | L. 05 | L. 05 | L. 05 |
| cyanlde | L. 01 | L. 01 | L. 01 |
| chlorophyll a | L. 001 | L. 001 | L. 001 |
| chemical oxygen demand | 15.0 | 123.0 | 48.0 |
| cadmium ${ }^{\text {a }}$ | L. 001 | 0.002 | 0.001 |
| hexavalent chromium ${ }^{\text {a }}$ | L. 003 | 0.008 | 0.004 |
| copper ${ }^{\text {a }}$ | L. 001 | 0.015 | 0.006 |
| iron ${ }^{\text {a }}$ | 0.20 | 9.20 | 1.50 |
| lead ${ }^{\text {a }}$ | L. 002 | 0.008 | 0.004 |
| manganese ${ }^{\text {a }}$ | 0.003 | 0.290 | 0.06 |
| $\text { silver }{ }^{a}$ | L. 001 | L. 005 | L. 004 |
| zinc b | L. 001 | 0.047 | 0.02 |
|  | L. 001 | L. 001 | L. 001 |
| $\text { selenium }{ }^{c}$ | L. 0002 | 0.0011 | 0.0004 |
| mercury ${ }^{\text {c }}$ | L. 0001 | 0.0003 | 0.0002 |
|  | 0.0002 | 0.0015 | 0.0010 |
| nlckel ${ }^{\text {a }}$ | L. 002 | 0.002 | 0.005 |
| aluminum ${ }^{\text {a }}$ | 0.033 | 4.15 | 0.7 |
| cobalt ${ }^{\text {a }}$ | L. 001 | 0.006 | 0.002 |
| boron ${ }^{\text {c }}$ | 0.02 | 0.17 | 0.07 |
| a extractable <br> b total <br> c dissolved |  |  |  |

STATION: CCOO3O Horse River at Abasands Park DATES: 1976 and 1977

| Parameter | Minlmum | Maximum | Mean |
| :---: | :---: | :---: | :---: |
| calclum | 18.5 | 65.9. | 47.6 |
| magnesium | 5.5 | 19.3 | 14.0 |
| sodium | 12.0 | 47.0 | 32.0 |
| potassium | 0.8 | 3.2 | 2.0 |
| chiorlde | 2.0 | 15.6 | 9.9 |
| sulphate | 9.7 | 40.0 | 25.0 |
| total alkalinlty | 75.5 | 271.0 | 195.0 |
| pH | 7.0 | 8.3 | 7.7 |
| carbonate | 0.0 | 0.0 | 0.0 |
| bicarbonate | 92.0 | 330.0 | 237.0 |
| total hardness | 68.8 | 229.7 | 159.4 |
| fluoride | 0.09 | 0.23 | 0.15 |
| silica | 2.8 | 16.4 | 11.4 |
| conductance | 155 | 590 | 428 |
| threshold odour number | 2 | 4 | 3 |
| colour | 25 | 140 | 67 |
| tannin and lignin | 0.8 | 2.95 | 1.7 |
| turbldity | 4.7 | 41.0 | 13.8 |
| tFR | 120.0 | 390.0 | 275.0 |
| tFrf | 98.0 | 361.0 | 208.0 |
| TNFR | 6.4 | 23.6 | 14.0 |
| tnfrf | 4.0 | 20.0 | 12.0 |
| surfactants | 1.02 | 0.10 | 0.05 |
| humic acid. | 11.0 | 9.0 | 3.0 |
| total organic carbon | 2.0 | 31.0 | 19.0 |
| total lnorg. carbon | 14.5 | 66.0 | 40.0 |
| total diss. org. carbon | 2.0 | 27.0 | 16.0 |
| nitrate and nitrite $N$ | 0.01 | 0.37 | 0.19 |
| ammonia nitrogen | 0.04 | 0.12 | 0.07 |
| total Kjeldahi $N$ | 0.39 | 0.81 | 0.67 |
| total phosphorus | 0.05 | 0.18 | 0.11 |
| ortho-phosphorus | 0.03 | 0.04 | 0.03 |
| phenol | 0.001 | 0.005 | 0.004 |
| oll and grease | L. 1 | L. 1 | 1.1 |
| suphide | 1.05 | 1.05 | 1.05 |
| cyanlde | L. 01 | 1.01 | 1.01 |
| chlorophylla | - | - | - |
| chemical oxygen demand | 27.0 | 87.3 | 61.0 |
| cadmlum ${ }^{\text {a }}$ | 0.001 | 0.002 | 0.001 |
| hexavalent chromium ${ }^{a}$ | 1.003 | 0.003 | 0.003 |
| copper ${ }^{\text {a }}$ | 0.001 | 0.021 | 0.007 |
| Iron ${ }^{\text {a }}$ | 0.86 | 1.85 | 1.3 |
| lead ${ }^{\text {a }}$ | 1.002 | 0.005 | 0.003 |
| manganese ${ }^{\text {a }}$ | 0.03 | 0.045 | 0.04 |
| silver ${ }^{\text {a }}$ | 1.004 | 1.005 | L. 005 |
| $z$ inc ${ }^{\text {a }}$ | 0.002 | 0.037 | 0.012 |
| vanadum ${ }_{\text {c }}$ | 1.001 | L. 001 | 1.001 |
| selenlum ${ }^{\text {c }}$ <br> b | 1.0005 | L. 0005 | L. 0005 |
| mercury | 1.0001 | 0.0004 | 0.0002 |
| arsenlc ${ }^{\text {c }}$ | 0.0007 | 0.006 | 0.003 |
| nickel ${ }^{\text {a }}$ | L. 002 | 0.007 | 0.003 |
| a luminum ${ }^{\text {a }}$ | 0.05 | 0.30 | 0.13 |
| cobalt ${ }^{\text {a }}$ | 1.002 | 0.003 | 0.002 |
| boron ${ }^{\text {c }}$ | 0.01 | 0.36 | 0.22 |

[^5]

| STATION: CCO300 Horse Rlver near fort mcmurray |  |  |  |
| :---: | :---: | :---: | :---: |
| DATES: 1976 and 1977 |  |  |  |
| Parameter | Minimum | Maximum | Mean |
| calclum | 14.5 | 28.0 | 21.1 |
| magneslum | 4.2 | 0.5 | 6.6 |
| sodium | 6.4 | 17.5 | 12.2 |
| potassium | 0.5 | 1.28 | 0.91 |
| chloride | 2.0 | 5.0 | 3.6 |
| sulphate | 8.7 | 18.0 | 11.5 |
| total alkallnity | 54.0 | 115.0 | 86.0 |
| pH | 7.53 | 8.11 | 7.8 |
| carbonate | - | - | - |
| blcarbonate | 66.0 | 141.0 | 105.0 |
| total hardness | 53.5 | 104.9 | 79.7 |
| fluorlde | 0.09 | 0.13 | 0.11 |
| sllica | 4.7 | 6.5 | 5.5 |
| conductance | 106 | 214 | 165 |
| threshold odour number | 2 | 4 | 3 |
| colour | 180 | 200 | 195 |
| tannin and lignin | 2.0 | 2.5 | 2.3 |
| turbidity | 2.30 | 32.0 | 26.0 |
| TFR | 75.4 | 141.0 | 109.0 |
| TFRF | 37.0 | 90.0 | 69.0 |
| TAFR | 8.8 | 102.4 | 35.2 |
| TNFRF | 6.0 | 89.2 | 29.2 |
| surfactants | 0.025 | 0.15 | 0.09 |
| humic aclds | 2.5 | 54.0 | 13.0 |
| total organic carbon | 25.0 | 34.0 | 29.0 |
| total inorg. carbon | 9.0 | 22.0 | 17.0 |
| total diss. org. carbon | 23.0 | 27.5 | 25.3 |
| nitrate and nitrite $N$ | 1.003 | 0.150 | 0.043 |
| ammonia nitrogen | L. 01 | 0.07 | 0.04 |
| total Kjeldahi N | 0.72 | 1.65 | 1.07 |
| total phosphorus | 0.054 | 0.14 | 0.08 |
| ortho-phosphorus | 0.009 | 0.024 | 0.016 |
| phenol | L. 001 | L. 001 | L. 001 |
| 011 and grease | 0.3 | 1.6 | 1.0 |
| suphide | - | - | - |
| cyanide | - | - | - |
| chlorophyll a | - | - | - |
| chemical oxygen demand | 66.0 | 98.0 | 73.0 |
| cadmium ${ }^{\text {a }}$ | L. 001 | L. 001 | L. 001 |
| hexavalent chromiuma | L. 003 | L. 003 | 1.003 |
| copper ${ }^{\text {a }}$ | 0.002 | 0.003 | 0.003 |
| iron ${ }^{\text {a }}$ | 1.10 | 3.55 | 1.95 |
| lead ${ }^{\text {a }}$ | 1.002 | 1.002 | 1.002 |
| manganese ${ }^{\text {a }}$ | 0.027 | 0.134 | 0.062 |
| sliver ${ }^{\text {a }}$ | 1.001 | 1.001 | L. 001 |
| $z$ inc ${ }^{\text {a }}$ | 0.003 | 0.073 | 0.023 |
| vanadlum ${ }^{\text {b }}$ | L. 001 | 1.001 | 1.001 |
| $\text { selenium }{ }^{c}$ | L. 0002 | 1.0002 | 1.0002 |
| $\text { mercury }{ }^{\text {b }}$ | L. 0001 | 1.0001 | 1.0001 |
| arsenic ${ }^{\text {c }}$ | 0.0004 | 0.0003 | 0.0006 |
| nickel ${ }^{\text {a }}$ | L. 002 | 1.002 | 1.002 |
| aluminum ${ }^{\text {a }}$ | 0.12 | 0.69 | 0.31 |
| cobalt ${ }^{\text {a }}$ | L. 002 | L. 002 | 1.002 |
| $\text { boron }{ }^{c}$ | 1.05 | 0.21 | 0.16 |
| a extractable <br> $b$ total <br> c dissolved |  |  |  |



STATION: CD2300 Clearwater River above Waterways
DATES: 1976 and 1977

| Parameter | Minimum | Max Imum | Mean |
| :---: | :---: | :---: | :---: |
| calcium | 11.5 | 30.4 | 16.0 |
| magnesium | 3.7 | 9,4 | 5.0 |
| sodium | 10.01 | 34.0 | 21.0 |
| potassium | 0.5 | 1.8 | 1.0 |
| chloride | 9.8 | 45.3 | 27.0 |
| sulphate | 0.1 | 19.0 | 7.0 |
| total alkallnity | 45.0 | 94.9 | 61.0 |
| pH | 7.1 | 8.0 | 7.5 |
| carbonate | - | - | - |
| bicarbonate | 55.0 | 116.0 | 75.0 |
| total hardness | 43.9 | 109.0 | 63.0 |
| fluorlde | 1.05 | 0.9 | 0.1 |
| sllica | 5.0 | 112.0 | 15.0 |
| conductance | 129 | 309 | 208 |
| threshold odour number | 2 | 4 | 3 |
| colour | 15 | 180 | 49 |
| tannin and lignin | 0.40 | 1.85 | 0.8 |
| turbidity | 1.1 | 450.0 | 52.0 |
| TFR | 77.4 | 223.0 | 139.0 |
| tFrf | 52.5 | 171.0 | 107.0 . |
| thfr | 2.0 | 1751.0 | 139.0 |
| TNFRF | 0.4 | 1603.0 | 118.0 |
| surfactants | L. 02 | L. 2 | 1.1 |
| humic acids | 1.0 | 2.0 | 2.0 |
| total organle carbon | 5.0 | 83.0 | 16.9 |
| total inorg. carbon | 8.0 | 22.0 | 13.0 |
| total diss. org. carbon | 4.0 | 20.0 | 10.0 |
| nitrate and nitrite $N$ | 0.003 | 1.20 | 0.13 |
| ammonia nitrogen | L. 01 | 0.73 | 0.13 |
| total KJeldahi N | 0.43 | 2.61 | 1.1 |
| total phosphorus | 0.03 | 0.32 | 0.09 |
| ortho-phosphorus | 1.005 | 0.047 | 0.01 |
| phenol | L. 001 | 0.011 | 0.004 |
| 011 and grease | 1.1 | 0.9 | 3.0 |
| suphide | 1.05 | L. 05 | 1.05 |
| cyanide | 1.01 | 1.01 | 1.01 |
| chlorophyll a | L. 001 | 1.001 | L. 001 |
| chemical oxygen demand | 11.0 | 101.0 | 42.0 |
| cadmlum ${ }^{\text {a }}$ | 1.001 | 0.005 | 0.001 |
| hexavalent chromium ${ }^{\text {a }}$ | 1.003 | 0.004 | 0.003 |
| copper ${ }^{\text {a }}$ | 1.001 | 0.032 | 0.006 |
| Iron ${ }^{\text {a }}$ | 0.69 | 24.0 | 3.0 |
| lead ${ }^{\text {a }}$ | 1.002 | 0.036 | 0.006 |
| manganese ${ }^{\text {a }}$ | 0.022 | 0.69 | 0.10 |
| sllver ${ }^{\text {a }}$ | 1.001 | 0.013 | 0.004 |
| zinc ${ }^{\text {a }}$ | 1.001 | 0.087 | 0.016 |
| vanadium ${ }^{\text {b }}$ | 1.001 | L. 001 | 1.001 |
| $\text { selentum }{ }^{c}$ | 1.0002 | 0.035 | 0.004 |
| mercury ${ }^{\text {b }}$ | 1.0001 | 0.06 | 0.00 |
| arsentc ${ }^{\text {c }}$ | L. 0005 | L. 0005 | 1.0005 |
| nickel ${ }^{\text {a }}$ | L. 002 | 0.042 | 0.01 |
| aluminum ${ }^{\text {a }}$ | 0.02 | 4.3 | 0.5 |
| cobalt ${ }^{\text {a }}$ | 1.002 | 0.019 | 0.004 |
| boron ${ }^{\text {c }}$ | 1.01 | 0.38 | 0.11 |

a extractable
$b$ total
c dissolved

STATION: CEOOII Gregoire Lake at Weir DATES: 1976 and 1977



STATION: DAOO70 POplar Creek
DATES: 1976 and 1977


STATION: DA0080 Muskeg River, 2.2 mi n.E. of Fort Mackay
DATES: 1976 and 1977

| Parameter | Minimum | Maximum | Mean |
| :---: | :---: | :---: | :---: |
| calclum | 16.5 | 82.0 | 47.6 |
| magnes ium | 4.5 | 18.5 | 12.1 |
| sodium | 4.9 | 38.5 | 14.8 |
| potassium | 0.5 | 2.6 | 1.2 |
| chloride | 1.7 | 29.7 | 6.2 |
| sulphate | 0.1 | 9.5 | 4.4 |
| total alkalinity | 64.6 | 289.0 | 184.2 |
| pH | 7.28 | 8.2 | 7.7 |
| carbonate | - | - | - |
| blcarbonate | 79.0 | 352.0 | 225.0 |
| total hardness | 59.0 | 280.9 | 168.6 |
| fluorlde | 0.06 | 0.16 | 0.12 |
| silica | 2.2 | 25.0 | 10.1 |
| conductance | 126 | 520 | 343 |
| threshold odour number | 2 | 16 | 3 |
| colour | 20 | 110 | 68 |
| tannin and lignin | 0.08 | 1.75 | 1.2 |
| turbidity | 0.65 | 17.0 | 6.0 |
| TFR | 80.0 | 365.0 | 218.0 |
| TFRF | 68.0 | 308.0 | 172.0 |
| TNFR | 1.4 | 10.0 | 4.3 |
| TNFRF | 1.4 | 6.0 | 1.5 |
| surfactants | L. 02 | 0.14 | 0.05 |
| humic acids | 11.0 | 9.0 | 2.2 |
| total organic carbon | 8.0 | 35.0 | 24.0 |
| total inorg. carbon | 10.0 | 61.0 | 37.0 |
| total diss. org. carbon | 7.0 | 34.0 | 22.0 |
| nitrate and nitrite $N$ | 0.003 | 0.31 | 0.04 |
| ammonia nitrogen | 1.01 | 0.57 | 0.17 |
| total kjeldahl N | 0.35 | 1.66 | 1.10 |
| total phosphorus | L. 005 | 0.09 | 0.04 |
| ortho-phosphorus | 1.003 | 0.02 | 0.01 |
| phenol | L. 001 | 0.018 | 0.003 |
| oll and grease | L. 0 | 3.5 | 0.8 |
| suphide | L. 05 | L. 05 | 1.05 |
| cyanide | L. 01 | 1.01 | 1.01 |
| chlorophyll a | 1.001 | 0.003 | 0.001 |
| chemical oxygen demand | 34.0 | 88.4 | 56.0 |
| cadmium ${ }^{\text {a }}$ | L. 001 | L. 001 | 1.001 |
| hexavalent chromium ${ }^{\text {a }}$ | 1.003 | 0.016 | 0.004 |
| copper ${ }^{\text {a }}$ | L. 001 | 0.026 | 0.004 |
| iron ${ }^{\text {a }}$ | 0.45 | 3.85 | 1.42 |
| lead ${ }^{\text {a }}$ | 1.002 | 0.021 | 0.003 |
| manganese ${ }^{\text {a }}$ | 0.015 | 0.97 | 0.21 |
| sllver ${ }^{\text {a }}$ | 1.001 | L. 005 | 1.003 |
| zinc ${ }^{\text {a }}$ | 0.002 | 0.091 | 0.016 |
| vanadium ${ }^{\text {b }}$ | L. 001 | L. 001 | L. 001 |
| selenium ${ }^{\text {c }}$ | L. 0002 | 0.0009 | 0.0004 |
| mercury ${ }^{\text {b }}$ | L. 0001 | 0.0004 | 0.0001 |
| arsenic ${ }^{\text {c }}$ | L. 0002 | 0.020 | 0.003 |
| nickel ${ }^{\text {a }}$ | L. 001 | 0.010 | 0.002 |
| aluminum ${ }^{\text {a }}$ | 1.01 | 0.22 | 0.04 |
| cobalt ${ }^{\text {a }}$ | 1.002 | 0.006 | 0.002 |
| boron ${ }^{\text {c }}$ | 1.05 | 0.26 | 0.15 |
| a extractable <br> ${ }^{b}$ total <br> c dissolved |  |  |  |


| STATION: daOOgo Hartiey Creek |  |  |  |
| :---: | :---: | :---: | :---: |
| DATES: 1976 and 1977 |  |  |  |
| Parameter | Minlmum | MaxImum | Mean |
| calclum | 11.5 | 91.0 | 38.1 |
| magneslum | 3.5 | 21.8 | 10.6 |
| sodium | 5.5 | 30.0 | 16.4 |
| potassium | 0.2 | 2.5 | 0.9 |
| chlorlde | 1.0 | 17.0 | 5.4 |
| sulphate | 0.1 | 12.5 | 5.1 |
| total alkalinity | 46.4 | 348.2 | 158.2 |
| pH | 7.2 | 8.2 | 7.7 |
| carbonate | - | - | - |
| blcarbonate | 57.0 | 424.0 | 193.0 |
| total hardness | 43.1 | 317.0 | 138.5 |
| fluoride | 0.005 | 0.24 | 0.12 |
| sllica | 1.7 | 16.8 | 8.1 |
| conductance | 105 | 660 | 293 |
| threshold odour number | 2 | 4 | 3 |
| colour | 30 | 130 | 88 |
| tannin and llanin | 0.85 | 2.40 | 1.4 |
| turbidity | 0.9 | 320.0 | 27.0 |
| TFR | 67.0 | 420.0 | 184.0 |
| TFRF | 49.0 | 383.0 | 145.0 |
| TNFR | L. 4 | 459.0 | 32.0 |
| TNFRF | L. 4 | 400.0 | 26.0 |
| surfactants | 1.02 | 0.13 | 0.05 |
| humic acids | 1.0 | 18.0 | 3.3 |
| total organic carbon | 9.0 | 36.0 | 25.0 |
| total lnorg. carbon | 9.0 | 73.0 | 33.0 |
| total diss. org. carbon | 8.0 | 34.0 | 23.0 |
| nitrate and nitrite $N$ | 0.003 | 0.07 | 0.02 |
| ammonfa nitrogen | 0.01 | 0.21 | 0.09 |
| total KJeldahl N | 0.35 | 2.25 | 1.04 |
| total phosphorus | L. 005 | 0.33 | 0.06 |
| ortho-phosphorus | 0.004 | 0.06 | 0.01 |
| phenol | L. 001 | 0.022 | 0.003 |
| oll and grease | L. 1 | 1.9 | 0.5 |
| suphide | 1.05 | 1.05 | 1.05 |
| cyanide | L. 01 | 1.01 | L. 01 |
| chlorophylla | L. 001 | 1.001 | L. 001 |
| chemical oxygen demand | 40.0 | 111.0 | 70.0 |
| cadmium $^{\text {a }}$ | L. 001 | L. 001 | L. 001 |
| hexavalent chromlum ${ }^{\text {a }}$ | L. 003 | 0.005 | 0.003 |
| copper ${ }^{\text {a }}$ | 1.001 | 0.028 | 0.007 |
| iron ${ }^{\text {a }}$ | 0.43 | 4.95 | 1.1 |
| lead ${ }^{\text {a }}$ | 1.002 | L. 002 | 1.002 |
| manganese ${ }^{\text {a }}$ | 0.009 | 0.42 | 0.07 |
| silver ${ }^{\text {a }}$ | L. 001 | L. 005 | L. 003 |
| $z \operatorname{lnc}{ }^{\text {a }}$ | 0.001 | 0.048 | 0.015 |
| vanadium ${ }^{\text {b }}$ | L. 001 | 1.001 | 1.001 |
| selenium ${ }^{\text {c }}$ | L. 0001 | 0.0007 | 0.0003 |
| mercury ${ }^{\text {b }}$ | L. 0001 | 0.0007 | 0.0002 |
| arsenic ${ }^{\text {c }}$ | L. 0002 | 0.0026 | 0.001 |
| nickel ${ }^{\text {a }}$ | L. 001 | 0.004 | 0.002 |
| aluminum ${ }^{\text {a }}$ | 1.01 | 0.36 | 0.07 |
| cobalt ${ }^{\text {a }}$ | 1.001 | 1.002 | L. 002 |
| boron ${ }^{\text {c }}$ | 0.01 | 0.48 | 0.14 |
| a extractable <br> $b$ total <br> c dissolved |  |  |  |

STATION: DAO100 Upper Elis River
DATES: 1976 and 1977

| Parameter | Minimum | Maximum | Mean |
| :---: | :---: | :---: | :---: |
| calclum | 13.0 | 19.5 | 15.8 |
| magneslum | 3.7 | 5.8 | 4.8 |
| sodium | 2.4 | 8.0 | 3.6 |
| potassium | 0.4 | 1.3 | 0.9 |
| chlorlde | 0.3 | 2.1 | 0.6 |
| sulphate | 4.2 | 8.1 | 6.4 |
| total alkallnity | 48.8 | 70.3 | 58.0 |
| pH | 7.1 | 8.1 | 7.4 |
| carbonate | - | - | - |
| blcarbonate | 59.0 | 86.0 | 71.0 |
| total hardness | 47.7 | 72.6 | 59.0 |
| fluorlde | 0.07 | 0.14 | 0.10 |
| sllla | 0.37 | 9.9 | 4.3 |
| conductance | 96 | 123 | 152 |
| threshold odour number | 2 | 8 | 3 |
| colour | 5 | 40 | 28 |
| tannin and $11 \mathrm{gn} / \mathrm{n}$ | 0.30 | 1.85 | 0.7 |
| turbidity | 0.50 | 11.35 | 3.0 |
| TFR | 59.6 | 106.0 | 79.0 |
| tfrf | 37.0 | 91.0 | 58.0 |
| TNFR | 1.2 | 16.8 | 5.7 |
| TNFRF | L. 4 | 14.9 | 3.0 |
| surfjactants | 1.02 | 0.11 | 0.05 |
| humlc acids | L. 1.0 | L2.5 | 1.1 |
| total organic carbon | 7.0 | 17.0 | 12.0 |
| total inorg. carbon | 9.0 | 16.0 | 11.0 |
| total diss. org. carbon | 7.0 | 17.0 | 7.0 |
| nitrate and nitrite $N$ | 1.003 | 0.011 | 0.007 |
| ammonla nitrogen | 0.01 | 0.13 | 0.006 |
| total KJeldahl N | 0.1 | 1.02 | 0.8 |
| total phosphorus | 0.031 | 0.09 | 0.05 |
| ortho-phosphorus | 0.003 | 0.04 | 0.02 |
| phenol | L. 001 | 0.020 | 0.004 |
| oll and grease | L. 1 | 0.5 | 0.2 |
| suphide | 1.05 | 1.05 | 1.05 |
| cyanide | L. 01 | L. 01 | L. 01 |
| chlorophyll a | L. 001 | 0.002 | 0.001 |
| chemical oxygen demand | 20.0 | 54.0 | 37.0 |
| cadmlum ${ }^{\text {a }}$ | 1.001 | 0.002 | 0.001 |
| hexavalent chromlum ${ }^{\text {a }}$ | 1.003 | 1.003 | 1.003 |
| copper ${ }^{\text {a }}$ | 0.001 | 0.021 | 0.006 |
| Iron ${ }^{\text {a }}$ | 0.18 | 0.58 | 0.31 |
| lead ${ }^{\text {a }}$ | 1.002 | 0.002 | 0.002 |
| manganese ${ }^{\text {a }}$ | 0.013 | 0.090 | 0.04 |
| sllver ${ }^{\text {a }}$ | 1.001 | 1.005 | 0.003 |
| zinc ${ }^{\text {a }}$ | 0.002 | 0.088 | 0.016 |
| vanadium ${ }^{\text {b }}$ | L. 001 | 1.001 | 1.001 |
| selenium ${ }^{\text {c }}$ | 1.0002 | 0.0009 | 0.0004 |
| mercury ${ }^{\text {b }}$ | L. 0001 | 0.0002 | 0.0000 |
| arsenic ${ }^{\text {c }}$ | L. 0002 | 0.005 | 0.001 |
| nickel ${ }^{\text {a }}$ | 1.002 | 1.002 | 1.002 |
| aluminum ${ }^{\text {a }}$ | L. 01 | 0.25 | 0.07 |
| cobalt ${ }^{\text {a }}$ | L. 002 | 0.002 | 0.002 |
| boron ${ }^{\text {c }}$ | 0.02 | 0.19 | 0.08 |

[^6]

STATION: DAO120 Asphalt Creek
DATES: 1976 and 1977

| Parameter | M\|n|mum | MaxImum | Mean |
| :---: | :---: | :---: | :---: |
| calclum | 21.5 | 105.0 | 45.6 |
| magnes ${ }^{\text {a }}$ (um | 7.5 | 33.0 | 15.7 |
| sodium | 13.5 | 30.0 | 21.5 |
| potassium | 1.9 | 4.5 | 2.7 |
| chloride | 1.9 | 4.9 | 3.4 |
| sulphate | 28.5 | 185.0 | 122.8 |
| total alkalinity | 37.2 | 435.2 | 98.3 |
| pH | 7.2 | 8.0 | 7.6 |
| carbonate | 0.0 | 0.0 | 0.0 |
| bicarbonate | 45.0 | 531.0 | 120.0 |
| total hardness | 84.6 | 398.0 | 178.3 |
| fluoride | 0.28 | 0.45 | 0.35 |
| sillea | 5.2 | 21.0 | 10.7 |
| conductance | 221 | 810 | 440 |
| threshold odour number | 2 | 4 | 3 |
| colour | 20 | 60 | 37 |
| tannin and lignin | 0.45 | 1.3 | 1.1 |
| turbldity | 1.4 | 890.0 | 220.0 |
| TFR | 150.0 | 502.0 | 278.0 |
| tFrf | 129.0 | 460.0 | 246.0 |
| TNFR | 4.0 | 1058.0 | 189.0 |
| TNFRF | 2.0 | 966.0 | 168.0 |
| surfactants | 1.02 | 0.14 | 0.05 |
| humic acids | L1:0 | 3.0 | 1.2 |
| total organic carbon | 8.0 | 21.0 | 13.0 |
| total inorg. carbon | 9.0 | 61.0 | 17.0 |
| total diss. org. carbon | 5.0 | 14.0 | 10.0 |
| nitrate and nitrite $N$ | 0.005 | 0.033 | 0.02 |
| ammonla nitrogen | 0.01 | 0.16 | 0.07 |
| total KJeldahi N | 0.43 | 5.60 | 1.55 |
| total phosphorus | 0.02 | 0.63 | 0.18 |
| ortho-phosphorus | 0.003 | 0.04 | 0.01 |
| phenol | L. 001 | 0.020 | 0.003 |
| 011 and grease | 1.1 | 1.7 | 0.5 |
| suphide | 1.05 | 1.05 | L. 05 |
| cyanlde | 1.01 | L. 01 | L. 01 |
| chlorophyll a | 1.001 | L. 001 | 1.001 |
| chemical oxygen demand | 29.0 | 90.0 | 54.0 |
| cadmlum ${ }^{\text {a }}$ | 1.001 | 0.002 | 0.001 |
| hexavalent chromlum ${ }^{\text {a }}$ | 4.003 | 0.031 | 0.009 |
| copper ${ }^{\text {a }}$ | 0.003 | 0.033 | 0.009 |
| Iron ${ }^{\text {a }}$ | 0.16 | 27.7 | 6.8 |
| lead ${ }^{\text {a }}$ | 1.002 | 0.035 | 0.008 |
| manganese ${ }^{\text {a }}$ | 0.135 | 0.54 | 0.32 |
| silver ${ }^{3}$ | 1.001 | L. 005 | 1.003 |
| zinc ${ }^{\text {a }}$ | 0.018 | 0.155 | 0.042 |
| vanadium ${ }^{\text {b }}$ | L. 001 | 0.004 | 0.001 |
| $\text { selenlum }{ }_{b}^{c}$ | L. 0002 | L. 0005 | L. 0003 |
| mercury ${ }^{\text {b }}$ | L. 0001 | L. 0002 | L. 0001 |
| arsenic ${ }^{\text {c }}$ | L. 0002 | 0.0023 | 0.0010 |
| nicke1 ${ }^{\text {a }}$ | L. 0002 | 0.046 | 0.017 |
| aluminum ${ }^{\text {a }}$ | L. 01 | 11.20 | 3.53 |
| cobalt ${ }^{\text {a }}$ | L. 002 | 0.028 | 0.006 |
| boron ${ }^{\text {c }}$ | 0.13 | 0.27 | 0.19 |

${ }^{a}$ extractable
${ }^{b}$ total
c dissolved


| STATION: DAOI30 Pierte Rlver |  |  |  |
| :---: | :---: | :---: | :---: |
| DATES: 1976 and 1977 |  |  |  |
| Parameter | M1n/mum | MaxImum | Mean |
| calcium | 25.0 | 42.5 | 34.8 |
| magneslum | 8.5 | 14.3 | 11.7 |
| sodium | 14.5 | 25.5 | 22.8 |
| potassium | 2.2 | 4.6 | 3.5 |
| chloride | 1.9 | 6.4 | 4.0 |
| sulphate | 50.0 | 123.5 | 85.1 |
| total alkalinity | 58.4 | 130.0 | 88.1 |
| pH | 7.2 | 7.9 | 7.7 |
| carbonate | 0.0 | 0.0 | 0.0 |
| blcarbonate | 71.0 | 158.0 | 107.0 |
| total hardness | 97.0 | 165.0 | 135.0 |
| fluoride | 0.06 | 0.43 | 0.32 |
| sllica | 4.3 | 14.3 | 8.6 |
| conductance | 248 | 442 | 359 |
| threshold odour number | 2 | 4 | 3 |
| colour | 40 | 60 | 54 |
| tannin and lignin | 0.5 | 1.2 | 0.9 |
| turbidity | 2.45 | 10.0 | 4.8 |
| TFR | 165.0 | 260.0 | 226.0 |
| tfrf | 153.0 | 239.0 | 198.0 |
| TAFR | 2.8 | 38.4 | 9.1 |
| TNFRF | L. 4 | 31.2 | 5.7 |
| surfactants | 1.02 | 0.22 | 0.09 |
| humic acids | 1.0 | 3.0 | 1.2 |
| total organic carbon | 7.0 | 34.0 | 20.0 |
| total inorg. carbon | 10.0 | 28.0 | 17.0 |
| total diss. org. carbon | 6.5 | 33.0 | 18.0 |
| nitrate and nitrite $N$ | 0.007 | 0.08 | 0.02 |
| ammonla nitrogen | 1.01 | 0.13 | 0.05 |
| total Kjeldahl N | 0.30 | 1.86 | 0.99 |
| total phosphorus | 0.047 | 0.23 | 0.23 |
| ortho-phosphorus | 0.006 | 0.020 | 0.01 |
| phenol | 4.001 | 0.029 | 0.006 |
| oll and grease | t. 1 | 1.0 | 0.4 |
| suphlde | L. 05 | 1.05 | 1.05 |
| cyanlde | 2.01 | 1.01 | L. 01 |
| chlorophyll a | L. 001 | 1.001 | 1.001 |
| chemical oxygen demand | 31.0 | 96.0 | 58.0 |
| cadmlum ${ }^{\text {a }}$ | L. 001 | L. 001 | L. 001 |
| hexavalent chromlum ${ }^{\text {a }}$ | L. 003 | 0.005 | 0.003 |
| copper ${ }^{\text {a }}$ | 0.0021 | 0.16 | 0.005 |
| iron ${ }^{\text {a }}$ | 0.40 | 3.25 | 1.46 |
| lead ${ }^{\text {a }}$ | L. 002 | 0.029 | 0.005 |
| manganese ${ }^{\text {a }}$ | 0.046 | 0.88 | 0.28 |
| sllver ${ }^{\text {a }}$ | L. 001 | 1.005 | 1.002 |
| $2 \operatorname{lnc}{ }^{\text {a }}$ | 0.005 | 0.019 | 0.013 |
| vanadium ${ }^{\text {b }}$ | L. 001 | 0.001 | 0.001 |
| selenium ${ }^{\text {c }}$ | L. 0002 | 0.0009 | 0.0004 |
| mercury ${ }^{\text {b }}$ | L. 0001 | 0.0002 | 0.0001 |
| arsenle ${ }^{\text {c }}$ | 1.0002 | L. 001 | L. 001 |
| nickel ${ }^{\text {a }}$ | L. 002 | 0.010 | 0.004 |
| aluminum ${ }^{\text {a }}$ | 0.015 | 0.47 | 0.12 |
| cobalt ${ }^{\text {a }}$ | 1.002 | 0.004 | 0.002 |
| boron ${ }^{\text {c }}$ | 0.04 | 0.28 | 0.16 |
| extractable <br> ${ }^{b}$ total <br> ${ }^{c}$ dissolved |  |  |  |


| STATION: DAOI40 Calumet River |  |  |  |
| :---: | :---: | :---: | :---: |
| DATES: 1976 and 1977 |  |  |  |
| Parameter | Minimum | Max Imum | Mean |
| calcium | 32.5 | 160.0 | 62.7 |
| magnesium | 10.7 | 61.0 | 22.4 |
| sodlum | 35.0 | 225.0 | 80.0 |
| potassium | 2.0 | 10.5 | 4.4 |
| chlorlde | 12.0 | 165.0 | 45.3 |
| sulphate | 3.8 | 118.0 | 38.3 |
| total alkalinity | 161.0 | 702.0 | 199.7 |
| pH | 7.6 | 8.3 | 7.9 |
| carbonate | 0.0 | 0.0 | 0.0 |
| bicarbonate | 196.0 | 856.0 | 365.0 |
| total hardness | 125.2 | 650.7 | 248.7 |
| fluoride | 0.12 | 0.35 | 0.20 |
| sllica | 4.75 | 23.2 | 11.2 |
| conductance | 372 | 1920 | 729 |
| threshold odour number | 2 | 8 | 3 |
| colour | 110 | 170 | 132 |
| tamin and lignin | 1.3 | 2.7 | 2.0 |
| turbidity | 0.5 | 18.9 | 4.2 |
| TFR | 227.0 | 1178.0 | 461.0 |
| TFRF | 168.0 | 983.0 | 375.0 |
| thfr | L. 4 | 13.2 | 4.1 |
| TNFRF | L. 4 | 8.0 | 1.9 |
| surfactants | L. 02 | 0.20 | 0.08 |
| humic acids | 1.0 | 6.0 | 3.2 |
| total organic carbon | 7.3 | 46.0 | 36.0 |
| total inorg. carbon | 10.8 | 112.0 | 44.0 |
| total diss. org. earbon | 7.2 | 46.0 | 34.0 |
| nitrate and nitrite $N$ | 0.003 | 0.08 | 0.02 |
| ammonla nitrogen | 0.02 | 0.82 | 0.23 |
| total KJeldahl N | 0.85 | 4.23 | 2.30 |
| total phosphorus | 0.072 | 0.18 | 0.12 |
| ortho-phosphorus | 0.13 | 0.172 | 0.05 |
| phenol | L. 001 | 0.026 | 0.004 |
| oll and grease | L. 1 | 1.4 | 0.5 |
| suphide | L. 05 | L. 05 | 1.05 |
| cyanide | L. 01 | 1.01 | L. 03 |
| chlorophylla | L. 001 | L. 20 : | 1.001 |
| chemical oxygen demand | 41.0 | 355.0 | 130.0 |
| cadmium ${ }^{\text {a }}$ | L. 001 | L. 001 | L. 001 |
| hexavalent chromium ${ }^{\text {a }}$ | L. 003 | 0.005 | 0.003 |
| copper ${ }^{\text {a }}$ | 0.001 | 0.017 | 0.005 |
| Iron ${ }^{\text {a }}$ | 0.6 | 3.45 | 1.3 |
| lead ${ }^{\text {a }}$ | 1.002 | 0.008 | 0.003 |
| manganese ${ }^{\text {a }}$ | 0.02 | 1.65 | 0.40 |
| sllver ${ }^{\text {a }}$ | 1.001 | 1.005 | 1.003 |
| $z \mathrm{inc}^{\text {a }}$ | 0.005 | 0.096 | 0.019 |
| vanadium ${ }^{\text {b }}$ | L. 001 | 0.001 | 0.001 |
| $\text { selentum }{ }^{\mathrm{c}}$ | 1.0002 | 0.0005 | 0.0003 |
| mercury ${ }^{\text {b }}$ | 1.0001 | 0.0046 | 0.0006 |
| arsenlc ${ }^{\text {c }}$ | 0.003 | 0.0062 | 0.001 |
| nickel ${ }^{\text {a }}$ | L. 002 | 0.020 | 0.004 |
| aluminum ${ }^{\text {a }}$ | L. 01 | 0.11 | 0.05 |
| cobalt ${ }^{\text {a }}$ | 1.002 | 1.002 | L. 002 |
| boron ${ }^{\text {c }}$ | 0.04 | 0.69 | 0.27 |
| a extractable <br> ${ }^{b}$ total <br> c dissolved |  |  |  |


| STATION: DAOI50 Lower Tar River |  |  |  |
| :---: | :---: | :---: | :---: |
| DATES: 1976 and 1977 |  |  |  |
| Parameter | Minimum | Maximum | Mean |
| calclum | 29.5 | 80.0 | 46.6 |
| magnes ium | 9.2 | 27.5 | 15.0 |
| sodium | 4.4 | 50.0 | 23.2 |
| potasslum | 1.1 | 4.5 | 2.1 |
| chlorlde | 0.8 | 9.2 | 3.5 |
| sulphate | 8.6 | 62.5 | 27.8 |
| total alkalinity | 108.0 | 392.0 | 193.7 |
| pH | 7.0 | 8.3 | 7.7 |
| carbonate | 0.0 | 0.0 | 0.0 |
| bicarbonate | 132.0 | 478.0 | 236.0 |
| total hardness | 11.5 | 313.0 | 178.0 |
| fluorlde | 0.10 | 0.38 | 0.21 |
| sllica | 5.0 | 18.8 | 10.6 |
| conductance | 267 | 710 | 411 |
| threshold odour number | 2 | 8 | 3 |
| colour | 15 | 100 | 59 |
| tannin and lignin | 0.45 | 2.10 | 1.1 |
| turbidity | 1.45 | 570.0 | 89.0 |
| TFR | 162.0 | 508.0 | 262.0 |
| tFrf | 126.0 | 438.0 | 219.0 |
| tNFR | 3.6 | 986.0 | 122.0 |
| tNFRF | 1.2 | 883.0 | 101.0 |
| surfactants | 1.02 | 0.202 | 0.05 |
| humic acids | 11.0 | 5.0 | 1.6 |
| total organic carbon | 10.0 | 30.0 | 19.0 |
| total inorg. carbon | 19.0 | 65.0 | 37.0 |
| total diss. org. carbon | 9.0 | 26.0 | 17.0 |
| nitrate and nitrite $N$ | 1.003 | 0.100 | 0.02 |
| ammonia nitrogen | L. 01 | 0.80 | 0.22 |
| total KJeldahi N | 0.3 | 4.40 | 1.7 |
| total phosphorus | 0.063 | 1.4 | 0.3 |
| ortho-phosphorus | 0.009 | 0.05 | 0.02 |
| phenol | L. 001 | 0.024 | 0.006 |
| oll and grease | L.1 | 1.6 | 0.4 |
| suphide | L. 05 | L. 05 | L. 05 |
| cyanlde | L. 01 | 1.01 | 1.01 |
| chlorophyll a | 1.001 | 1.001 | L. 001 |
| chemical oxygen demand | 24.0 | 151.0 | 80.0 |
| cadmlum ${ }^{\text {a }}$ | L. 001 | 0.001 | 0.001 |
| hexavalent chromlum ${ }^{\text {a }}$ | L. 003 | 0.009 | 0.004 |
| copper ${ }^{\text {a }}$ | 0.002 | 0.114 | 0.017 |
| $1 \mathrm{ran}^{\text {a }}$ | 1.20 | 52.5 | 8.7 |
| lead ${ }^{\text {a }}$ | L. 002 | 0.038 | 0.005 |
| manganese ${ }^{\text {a }}$ | 0.002 | 6.40 | 1.24 |
| sllver ${ }^{\text {a }}$ | 1.001 | 0.070 | 0.008 |
| $z \operatorname{lnc}{ }^{\text {a }}$ | 1.001 | 0.041 | 0.014 |
| vanadium ${ }^{\text {b }}$ | L. 001 | 0.007 | 0.002 |
| selenlum ${ }^{\text {c }}$ | L. 0002 | 0.0009 | 0.0004 |
| mercury ${ }^{\text {b }}$ | 1.0001 | 0.0003 | 0.0001 |
| arsenic ${ }^{\text {c }}$ | 1.0002 | 0.0173 | 0.003 |
| nickel ${ }^{\text {a }}$ | 1.002 | 0.026 | 0.007 |
| aluminum ${ }^{\text {a }}$ | 0.02 | 1.39 | 0.33 |
| cobalt ${ }^{\text {a }}$ | L. 002 | 0.008 | 0.003 |
| boron ${ }^{\text {c }}$ | 0.07 | 0.31 | 0.16 |
| a extractable <br> ${ }^{b}$ total <br> c dissolved |  |  |  |





| TION |  |  |  |
| :---: | :---: | :---: | :---: |
| DATES: 1976 and 1977 |  |  |  |
| Parameter | MIn Imum | MaxImum | Mean |
| calcium | 48.0 | 77.5 | 62.7 |
| magnesium | 13.5 | 32.5 | 18.7 |
| sodium | 22.5 | 412.5 | 88.1 |
| potassium | 2.4 | 8.0 | 3.7 |
| chloride | 17.8 | 575.0 | 106.2 |
| sulphate | 28.0 | 120.0 | 60.0 |
| total alkalinlty | 162.0 | 328.0 | 210.0 |
| pH | 7.40 | 8.54 | 7.8 |
| carbonate | 0.0 | 0.0 | 0.0 |
| blcarbonate | 197.0 | 400.0 | 246.0 |
| total hardness | 175.4 | 308.8 | 233.3 |
| fluoride | 0.11 | 0.24 | 0.16 |
| silica | 1.6 | 8.9 | 6.0 |
| conductance | 460 | 2100 | 791 |
| threshold odour number | 2 | 8 | 3 |
| colour | 15 | 70 | 33 |
| tannin and lignin | 0.20 | 2.60 | 1.0 |
| turbidlty | 1.65 | 41.0 | 13.0 |
| TFR | 288.0 | 1452.0 | 494.0 |
| TFRF | 210.0 | 1204.0 | 434.0 |
| TNFR | 3.2 | 55.0 | 21.0 |
| TNFRF | L. 4 | 45.0 | 15.0 |
| surfactants | 1.02 | 0.21 | 0.08 |
| humic acids | L1.0 | 8.5 | 1.9 |
| total organic carbon | 13.5 | 85.0 | 27.0 |
| total inorg. carbon | 24.0 | 95.0 | 39.0 |
| total diss. org. carbon | 7.0 | 35.0 | 18.0 |
| nitrate and nitrite $N$ | 1.01 | 0.48 | 0.16 |
| ammon9 ${ }^{\text {O }}$ hltrogen | 0.01 | 0.68 | 0.25 |
| total KJeldahi $N$ | 0.65 | 1.70 | 1.24 |
| total phosphorus | 0.025 | 0.60 | 0.12 |
| ortho-phosphorus | 1.003 | 0.046 | 0.01 |
| phenol | L. 001 | 0.010 | 0.002 |
| oll and grease | L. 1 | 1.8 | 0.6 |
| suphide | L. 05 | 1.05 | 1.05 |
| cyanlde | L. 01 | 4.01 | L. 01 |
| chlorophylla | L. 001 | 1.001 | L. 001 |
| chemical oxygen demand | 22.0 | 326.0 | 72.0 |
| cadmium ${ }^{\text {a }}$ | L. 001 | 0.001 | 0.001 |
| hexavalent chromium ${ }^{\text {a }}$ | 1.003 | 0.205 | 0.018 |
| copper ${ }^{\text {a }}$ | 0.002 | 0.014 | 0.005 |
| Iron ${ }^{\text {a }}$ | 0.3 | 14.0 | 2.5 |
| lead ${ }^{\text {a }}$ | L. 002 | 0.027 | 0.005 |
| manganese ${ }^{\text {a }}$ | 0.076 | 0.51 | 0.22 |
| sliver ${ }^{\text {a }}$ | L. 001 | 1.005 | 1.003 |
| zinc ${ }^{\text {a }}$ | 0.014 | 0.109 | 0.031 |
| vanadium ${ }^{\text {b }}$ | 1.001 | 0.002 | 0.001 |
| selenium ${ }^{\text {c }}$ | L. 0002 | 0.001 | 0.0 |
| mercury ${ }^{\text {b }}$ | L. 0001 | 0.0002 | 0.0001 |
| arsentc ${ }^{\text {c }}$ | L. 0002 | 0.0014 | 0.001 |
| nickel ${ }^{\text {a }}$ | L. 002 | 0.022 | 0.004 |
| aluminum ${ }^{\text {a }}$ | 0.01 | 7.70 | 0.83 |
| cobalt ${ }^{\text {a }}$ | 1.002 | 0.011 | 0.003 |
| boron ${ }^{\text {c }}$ | L. 01 | 0.71 | 0.16 |
| a extractable <br> $b$ total <br> c dissolved |  |  |  |





| STATION: DA0203 Athabasca River at km 30 |  |  |  |
| :---: | :---: | :---: | :---: |
| DATES: 1976 and 1977 |  |  |  |
| Parameter | Minlmum | Maximum | Mean |
| calcium | 19.5 | 44.5 | 30.7 |
| magnesium | 5.8 | 12.2 | 8.6 |
| sodium | 5.0 | 17.5 | 12.2 |
| potasslum | 0.4 | 2.1 | 1.3 |
| chloride | 2.9 | 14.8 | 8.9 |
| sulphate | 5.8 | 31.5 | 17.5 |
| total alkalinity | 70.4 | 141.6 | 103.5 |
| pH | 7.4 | 8.3 | 7.7 |
| carbonate | 0.0 | 0.0 | 0.0 |
| blcarbonate | 86.0 | 173.0 | 126.0 |
| total hardness | 72.6 | 161.3 | 112.0 |
| fluorlde | 0.07 | 0.15 | 0.09 |
| sllica | 6.1 | 7.8 | 7.0 |
| conductance | 150 | 350 | 255 |
| threshold odour number | 2 | 4 | 3 |
| colour | 15 | 100 | 38 |
| tannin and lignin | 0.06 | 1.65 | 0.78 |
| turbidity | 1.6 | 218.0 | 72.0 |
| TFR | 110.0 | 236.0 | 165.0 |
| TFRF | 64.0 | 216.0 | 137.0 |
| thFr | 1.6 | 314.0 | 88.0 |
| TNFRF | 1.4 | 278.0 | 77.0 |
| surfactants | 1.02 | 1.02 | 1.02 |
| humic acids | L1.0 | 14.0 | 5.6 |
| total organle carbon | 9.5 | 22.0 | 14.0 |
| total inorg, carbon | 11.0 | 35.0 | 22.0 |
| total diss. org. carbon | 10.0 | 14.0 | 12.0 |
| nitrate and nitrite $N$ | 2.01 | 0.65 | 0.14 |
| ammonia nitrogen | 0.02 | 0.86 | 0.17 |
| total Kjeldahi N | 0.54 | 3.7 | 1.24 |
| total phosphorus | 0.03 | 0.43 | 0.19 |
| ortho-phosphorus | 1.005 | 0.26 | 0.06 |
| phenol | 1.001 | 0.011 | 0.004 |
| oll and grease | L. 1 | 2.0 | 0.4 |
| suphide | 1.05 | L. 05 | 1.05 |
| cyanide | 4.01 | 1.01 | L. 01 |
| chlorophyll a | 1.001 | 1.005 | 1.002 |
| chemical oxygen demand | 28.4 | 154.0 | 77.0 |
| cadmium ${ }^{\text {a }}$ | 1.001 | L. 001 | L. 001 |
| hexavalent chromium ${ }^{\text {a }}$ | 1.003 | 0.009 | 0.004 |
| copper ${ }^{\text {a }}$ | 0.001 | 0.035 | 0.010 |
| iron ${ }^{\text {a }}$ | 0.31 | 8.60 | 2.9 |
| lead ${ }^{\text {a }}$ | L. 002 | 0.009 | 0.003 |
| manganese ${ }^{\text {a }}$ | 0.012 | 0.230 | 0.09 |
| sllver ${ }^{\text {a }}$ | 1.005 | 1.005 | 1.005 |
| zinc ${ }^{\text {a }}$ | 0.005 | 0.029 | 0.011 |
| vanadium ${ }^{\text {b }}$ | 1.001 | 1.001 | 1.001 |
| selenium ${ }^{\text {c }}$ | L. 0005 | 0.0020 | 0.0010 |
| mercury ${ }^{\text {b }}$ | L. 0001 | 0.0009 | 0.0003 |
| arsenic ${ }^{\text {c }}$ | 1.001 | 0.010 | 0.005 |
| nicke1 ${ }^{\text {a }}$ | L. 002 | 0.014 | 0.005 |
| a luminum ${ }^{\text {a }}$ | 1.01 | 2.20 | 0.61 |
| cobalt ${ }^{\text {a }}$ | 1.001 | 0.005 | 0.003 |
| boron ${ }^{\text {c }}$ | 0.02 | 0.24 | 0.09 |
| a extractable <br> $b$ total <br> c dissolved |  |  |  |



STATION: DAO205 Athabasca River at km 48
DATES: 1976 and 1977

| Parameter | Minimum | Maximum | Mean |
| :---: | :---: | :---: | :---: |
| calclum | 21.0 | 34.0 | 28.0 |
| magneslum | 5.7 | 10.01 | 7.9 |
| sodium | 7.4 | 22.0 | 14.2 |
| potassium | 0.5 | 1.7 | 1.3 |
| chloride | 1.4 | 23.5 | 12.5 |
| sulphate | 0.2 | 26.9 | 16.9 |
| total alkalinity | 86.0 | 114.0 | 98.4 |
| pH | 7.4 | 7.9 | 7.7 |
| carbonate | 0.0 | 0.0 | 0.0 |
| bicarbonate | 105.0 | 139.0 | 120.0 |
| total hardness | 75.9 | 126.1 | 102.4 |
| fluorlde | 0.07 | 0.16 | 0.09 |
| silica | 5.7 | 9.5 | 7.3 |
| conductance | 190 | 310 | 255 |
| threshold odour number | 2 | 4 | 3 |
| colour | 10 | 120 | 42 |
| tannin and lignin | 0.07 | 2.60 | 0.86 |
| turbidity | 2.4 | 675.0 | 160.0 |
| TFR | 110.0 | 195.0 | 157.0 |
| TFRF | 60.0 | 180.0 | 126.0 |
| TNFR | 3.6 | 2602.0 | 435.0 |
| tnfrf | 0.8 | 2456.0 | 406.0 |
| surfactants | 1.02 | 0.04 | 0.02 |
| humic aclds | 1.0 | 11.5 | 5.0 |
| total organic carbon | 9.0 | 57.0 | 21.0 |
| total inorg. carbon | 18.0 | 26.0 | 22.0 |
| total diss. org. carbon | 9.0 | 19.0 | 14.0 |
| nitrate and nitrite $N$ | 1.01 | 0.60 | 0.14 |
| ammonla nitrogen | 0.04 | 0.71 | 0.17 |
| total KJeldahi N | 0.68 | 3.20 | 1.43 |
| total phosphorus | 0.04 | 1.85 | 0.34 |
| ortho-phosphorus | L. 005 | 0.03 | 0.02 |
| phenol | 1.001 | 0.009 | 0.003 |
| oll and grease | 1.1 | 0.9 | 0.3 |
| suphide | 1.05 | 1.05 | L. 05 |
| cyanlde | L. 01 | L. 01 | 1.01 |
| chlorophyll a | L. 001 | L. 005 | L. 003 |
| chemical oxygen demand | 27.9 | 267.0 | 97.0 |
| cadmlum ${ }^{\text {a }}$ | 1.001 | 0.001 | 0.001 |
| hexavalent chromlum ${ }^{\text {a }}$ | L. 003 | 0.018 | 0.006 |
| copper ${ }^{\text {a }}$ | L. 001 | 0.093 | 0.026 |
| iron ${ }^{\text {a }}$ | 0.36 | 63.0 | 10.8 |
| lead ${ }^{\text {a }}$ | 1.002 | 0.019 | 0.006 |
| manganese ${ }^{\text {a }}$ | 0.12 | 1.70 | 0.30 |
| silver ${ }^{\text {a }}$ | 1.005 | 0.01 | 0.01 |
| $z i n c^{\text {a }}$ | 0.004 | 0.331 | 0.065 |
| vanadium ${ }^{\text {b }}$ | L. 001 | L. 001 | 1.001 |
| selenlum ${ }^{\text {c }}$ | L. 0005 | 0.006 | 0.002 |
| mercury ${ }^{\text {b }}$ | 1.0002 | 0.0009 | 0.0003 |
| arsenic ${ }^{\text {c }}$ | 1.001 | 0.015 | 0.006 |
| nickel ${ }^{\text {a }}$ | 1.002 | 0.071 | 0.015 |
| aluminum ${ }^{\text {a }}$ | 0.040 | 10.6 | 1.9 |
| cobalt ${ }^{\text {a }}$ | 1.002 | 0.043 | 0.008 |
| boron ${ }^{\text {c }}$ | 0.04 | 1.51 | 0.30 |

[^7]

[^8]c dissolved

STATION: DAO207 Athabasca River at Fort MacKay
DATES: 1976 and 1977

| Parameter | Minlmum | Maximum | Mean |
| :---: | :---: | :---: | :---: |
| calcium | 26.5 | 52.5 | 33.7 |
| magnes lum | 6.7 | 15.0 | 9.7 |
| sodium | 4.9 | 23.5 | 14.0 |
| potassium | 0.8 | 1.7 | 1.3 |
| chiorlde | 1.4 | 24.0 | 10.0 |
| sulphate | 10.3 | 32.0 | 19.0 |
| total alkalinlty. | 89.0 | 177.0 | 115.0 |
| pH | 7.5 | 8.1 | 7.9 |
| carbonate | 0.0 | 0.0 | 0.0 |
| blcarbonate | 108.0 | 216.0 | 140.0 |
| total hardness | 93.8 | 192.8 | 126.0 |
| fluorlde | 1.05 | 0.12 | 0.09 |
| silica | 4.8 | 9.2 | 6.5 |
| conductance | 170 | 422 | 280 |
| threshold odour number | 2 | 8 | 3 |
| colour | 10 | 65 | 37 |
| tannin and lignin | 0.25 | 0.9 | 0.6 |
| turbidity | 1.8 | 102.0 | 23.0 |
| TFR | 114.0 | 260.0 | 161.0 |
| tFrf | 66.0 | 227.0 | 121.0 |
| TNFR | 2.4 | 180.4 | 40.0 |
| TNFRF | 0.8 | 162.8 | 35.0 |
| surfactants | 1.02 | 0.80 | 0.20 |
| humle acids | 1.0 | 2.0 | 1.0 |
| total organic carbon | 6.5 | 27.0 | 13.0 |
| total inorg. carbon | 16.0 | 31.5 | 25.0 |
| total diss. org. carbon | 6.0 | 18.0 | 12.0 |
| nitrate and nitrite $N$ | 0.012 | 0.13 | 0.05 |
| ammonia nitrogen | 1.01 | 0.12 | 0.06 |
| total KJeldahl N | 0.50 | 1.20 | 0.88 |
| total phosphorus | 0.012 | 0.166 | 0.06 |
| ortho-phosphorus | 0.004 | 0.013 | 0.008 |
| phenot | L. 001 | 0.022 | 0.006 |
| 011 and grease | 0.2 | 1.1 | 1.0 |
| suphide | - | - | - |
| cyanlde | - | - | - |
| chlorophyl1 a | - | - | - |
| chemical oxygen demand | 11.0 | 87.0 | 41.0 |
| cadmlum ${ }^{\text {a }}$ | L. 001 | 0.001 | 0.001 |
| hexavalent chromlum ${ }^{\text {a }}$ | 1.003 | 0.004 | 0.003 |
| copper ${ }^{\text {a }}$ | 0.002 | 0.008 | 0.005 |
| iron ${ }^{\text {a }}$ | 0.34 | 2.5 | 0.9 |
| lead ${ }^{\text {a }}$ | 1.002 | 1.004 | 1.003 |
| manganese ${ }^{\text {a }}$ | 0.015 | 0.147 | 0.05 |
| silver ${ }^{\text {a }}$ | 1.001 | 1.004 | 1.002 |
| $z$ lnc ${ }^{\text {a }}$ | 1.001 | 0.034 | 0.011 |
| vanadlum ${ }^{\text {b }}$ | L. 001 | 1.001 | 1.001 |
| selenium ${ }^{\text {c }}$ | 1.0002 | 1.0005 | L. 0003 |
| mercury ${ }^{\text {b }}$ | L. 0001 | 0.048 | 0.008 |
| arsenle ${ }^{\text {c }}$ | L. 0002 | 0.0007 | 0.0004 |
| nicke1 ${ }^{\text {a }}$ | 1.002 | 0.011 | 0.003 |
| aluminum ${ }^{\text {a }}$ | 0.022 | 1.3 | 0.3 |
| cobalt ${ }^{\text {a }}$ | L. 002 | 0.003 | $0 . .2$ |
| boron ${ }^{\text {c }}$ | 0.02 | 0.16 | 0.10 |

a extractable
b total
${ }^{c}$ dissolved

| STATION: DAO208 Athabasca River at km 84 |  |  |  |
| :---: | :---: | :---: | :---: |
| DATES: 1976 and 1977 |  |  |  |
| Parameter | Minimum | Maximum | Mean |
| calclum | 23.5 | 39.0 | 30.1 |
| magnes lum | 6.7 | 11.2 | 8.3 |
| sodium | 6.4 | 22.0 | 14.1 |
| potassium | 0.5 | 1.9 | 1.3 |
| chloride | 4.4 | 11.0 | 12.2 |
| sulphate | 4.0 | 34.7 | 19.0 |
| total alkalinity | 77.6 | 120.4 | 99.0 |
| pH | 7.3 | 7.9 | 7.6 |
| carbonate | 0.0 | 0.0 | 0.0 |
| bicarbonate | 95.0 | 147.0 | 121.0 |
| total hardness | 86.7 | 143.5 | 109.4 |
| fluoride | 0.06 | 0.16 | 0.09 |
| sllica | 4.6 | 8.2 | 6.9 |
| conductance | 175 | 350 | 262 |
| threshold odour number | 2 | 4 | 3 |
| colour | 15 | 50 | 29 |
| tannin and lignin | 0.40 | 1.55 | 0.78 |
| turbidity | 1.8 | 218.0 | 84.0 |
| TFR | 107.0 | 238.0 | 164.0 |
| TFRF | 84.0 | 206.0 | 139.0 |
| TNFR | 3.2 | 330.0 | 108.0 |
| TNFRF | 1.4 | 302.0 | 97.0 |
| surfactants | 1.02 | 1.02 | L. 02 |
| humic acids | 11.0 | 22.0 | 5.1 |
| total organic carbon | 5.0 | 23.0 | 12.0 |
| total inorg. carbon | 15.5 | 33.0 | 21.0 |
| total diss. org. carbon | 5.0 | 10.5 | 7.0 |
| nitrate and nitrite $N$ | 1.001 | 0.59 | 0.12 |
| ammonia nltrogen | 0.01 | 0.13 | 0.07 |
| total KJeldahi $N$ | 0.51 | 2.75 | 1.05 |
| total phosphorus | 0.02 | 0.67 | 0.18 |
| ortho-phosphorus | L. 005 | 0.07 | 0.02 |
| phenol | L. 001 | 0.007 | 0.003 |
| oll and grease | L. 1 | 0.4 | 0.2 |
| suphide | 1.05 | 1.05 | L. 05 |
| cyanide | L. 01 | L. 01 | L. 01 |
| chlorophyll a | L. 001 | 0.008 | 0.003 |
| chemical oxygen demand | 24.8 | 79.0 | 54.0 |
| cadmium ${ }^{\text {a }}$ | L. 001 | 0.001 | 0.001 |
| hexavalent chromlum ${ }^{\text {a }}$ | 1.003 | 0.006 | 0.004 |
| copper ${ }^{\text {a }}$ | 0.003 | 0.077 | 0.017 |
| Iron ${ }^{\text {a }}$ | 0.38 | 8.0 | 3.0 |
| lead ${ }^{\text {a }}$ | L. 002 | 0.016 | 0.006 |
| manganese ${ }^{\text {a }}$ | 0.014 | 0.265 | 0.09 |
| silver ${ }^{\text {a }}$ | 1.005 | 0.015 | 0.006 |
| zinc ${ }^{\text {a }}$ | 0.011 | 0.098 | 0.033 |
| vanadium ${ }^{\text {b }}$ | L. 001 | 0.002 | 0.001 |
| $\text { selenium }{ }^{c}$ | L. 0005 | 0.0007 | 0.0006 |
| mercury ${ }^{\text {b }}$ | L. 0001 | 0.0015 | 0.0004 |
| arsenic ${ }^{\text {c }}$ | L. 001 | 0.005 | 0.003 |
| nickel ${ }^{\text {a }}$ | L. 001 | 0.019 | 0.007 |
| aluminum ${ }^{\text {a }}$ | L. 01 | 2.40 | 0.84 |
| cobalt ${ }^{3}$ | L. 002 | 0.004 | 0.002 |
| boron ${ }^{\text {c }}$ | 0.01 | 0.14 | 0.08 |
| a extractable <br> ${ }^{b}$ total <br> c dissolved |  |  |  |


| STATION: DAO209 Athabasca River at km 132 |  |  |  |
| :---: | :---: | :---: | :---: |
| DATES: 1976 and 1977 |  |  |  |
| Parameter | Minimum | Max Imum | Mean |
| calclum | 23.5 | 38.1 | 32.3 |
| magnesium | 6.6 | 10.7 | 8.7 |
| sodium | 8.0 | 30.0 | 18.0 |
| potassium | 0.8 | 1.9 | 1.5 |
| chloride | 5.5 | 35.7 | 17.0 |
| sulphate | 7.7 | 27.0 | 21.0 |
| total alkalinity | 76.0 | 121.6 | 104.0 |
| pH | 7.5 | 8.0 | 7.7 |
| carbonate | 0.0 | 0.0 | 0.0 |
| bicarbonate | 93.0 | 148.0 | 126.0 |
| total hardness | 85.9 | 139.0 | 117.0 |
| fluoride | 1.05 | 0.09 | 0.07 |
| silica | 4.6 | 8.3 | 6.5 |
| conductance | 170 | 390 | 292 |
| threshold odour number | 2 | 4 | 3 |
| colour | 10 | 70 | 28 |
| tannin and lignin | 0.40 | 1.40 | 0.72 |
| turbidity | 2.1 | 230.0 | 56.0 |
| tFr | 105.0 | 251.0 | 165.0 |
| tFRF | 66.0 | 211.0 | 120.0 |
| TNFR | 4.4 | 334.0 | 92.0 |
| TNFRF | L. 4 | 310.0 | 83.0 |
| surfactants | L. 02 | L. 02 | 0.02 |
| humic acids | 11.0 | 11.0 | 4.0 |
| total organic carbon | 5.0 | 23.0 | 12.0 |
| total Inorg, carbon | 17.0 | 40.0 | 25.0 |
| total diss. org. carbon | 6.0 | 12.0 | 10.0 |
| nitrate and nitrite $N$ | L. 01 | 0.60 | 0.18 |
| ammonla nitrogen | 0.03 | 0.12 | 0.06 |
| total Kjeldahl N | 0.61 | 2.89 | 1.40 |
| total phosphorus | 0.03 | 0.36 | 0.15 |
| ortho-phosphorus | L. 01 | 0.02 | 0.01 |
| phenol | L. 001 | 0.010 | 0.005 |
| 011 and grease | L. 1 | L1.0 | L. 4 |
| suphide | L. 05 | 6.0 | 15.0 |
| cyanide | L. 01 | L. 01 | L. 01 |
| chlorophyll a | L. 001 | L. 005 | 1.002 |
| chemical oxygen demand | 19.4 | 110.0 | 53.0 |
| cadmlum ${ }^{\text {a }}$ | L. 001 | 0.002 | 0.001 |
| hexavalent chromium ${ }^{\text {a }}$ | 1.003 | 0.006 | 0.004 |
| copper ${ }^{3}$ | 0.001 | 0.014 | 0.004 |
| Iron ${ }^{\text {a }}$ | 0.15 | 0.22 | 0.18 |
| lead ${ }^{\text {a }}$ | 1.002 | 0.042 | 0.010 |
| manganese ${ }^{\text {a }}$ | 0.019 | 0.49 | 0.12 |
| sllver ${ }^{\text {a }}$ | L. 004 | L. 005 | L. 0.05 |
| 2 inc ${ }^{\text {a }}$ | 1.001 | 0.103 | 0.019 |
| vanadium ${ }^{\text {b }}$ | L. 001 | 0.003 | 0.002 |
| selenlum ${ }^{\text {c }}$ | L. 0005 | 1.0005 | L. 0005 |
| mercury ${ }^{\text {b }}$ | 1.0002 | 0.0013 | 0.0005 |
| arsentc ${ }^{\text {c }}$ | L. 0005 | 0.005 | 0.002 |
| alcke1 ${ }^{\text {a }}$ | L. 002 | 0.020 | 0.008 |
| aluminum ${ }^{\text {a }}$ | 0.005 | 2.85 | 0.69 |
| cobalt ${ }^{\text {a }}$ | 1.002 | 0.004 | 0.002 |
| boron ${ }^{\text {c }}$ | 0.04 | 0.67 | 0.19 |
| a extractable <br> ${ }^{b}$ total <br> c dissolved |  |  |  |




| STATION: DBOO11 Mackay River at Hwy 63 |  |  |  |
| :---: | :---: | :---: | :---: |
| DATES: 1976 and 1977 |  |  |  |
| Parameter | Minimum | Maximum | Mean |
| calcium | 17.0 | 120.0 | 43.0 |
| magnes lum | 5.7 | 47.0 | 15.3 |
| sodium | 12.0 | 140.0 | 38.3 |
| potassium | 0.5 | 6.2 | 2.1 |
| chloride | 2.4 | 57.0 | 13.0 |
| sulphate | 5.1 | 100.0 | 32.0 |
| total alkalinity | 13.4 | 577.0 | 170.0 |
| pH | 6.9 | 8.5 | 7.8 |
| carbonate | 0.0 | 0.0 | 0.0 |
| bicarbonate | 16.0 | 703.0 | 207.0 |
| total hardness | 65.9 | 493.1 | 170.0 |
| fluoride | 0.07 | 0.29 | 0.14 |
| silla | 1.0 | 20.0 | 7.5 |
| conductance | 166 | 1370 | 434 |
| threshold odour number | 2 | 8 | 3 |
| colour | 70 | 180 | 118 |
| tannin and lignin | 0.7 | 3.0 | 1.9 |
| turbidity | 0.9 | 370.0 | 35.0 |
| TfR | 113.0 | 862.0 | 276.0 |
| tFRF | 73.0 | 781.0 | 222.0 |
| tNFR | 0.4 | 547.0 | 58.0 |
| tafra | L. 4 | 463.0 | 48.0 |
| surfactants | L. 02 | 0.26 | 0.07 |
| humic acids | 1.0 | 7.0 | 3.0 |
| total organic carbon | 9.0 | 45.0 | 32.0 |
| total linorg. carbon | 11.0 | 88.0 | 37.0 |
| total diss. org. carbon | 9.0 | 39.0 | 30.0 |
| nitrate and nitrlte $N$ | 6.003 | 0.32 | 0.07 |
| ammonla nitrogen | 0.02 | 0.50 | 0.12 |
| total Kjeldahi N | 0.67 | 2.17 | 1.32 |
| total phosphorus | 0.029 | 0.24 | 0.08 |
| ortho-phosphorus | L. 003 | 0.08 | 0.02 |
| phenol | L. 001 | 0.009 | 0.003 |
| 011 and grease | L. 1 | 2.3 | 0.6 |
| suphide | L. 05 | 1.05 | L. 05 |
| cyanide | L. 01 | L. 01 | L. 01 |
| chlorophyll a | L. 001 | 1.001 | L. 001 |
| chemical oxygen demand | 34.0 | 127.0 | 81.0 |
| cadmium $^{\text {a }}$ | L. 001 | 0.001 | 0.001 |
| hexavalent chromium ${ }^{\text {a }}$ | L. 003 | 0.006 | 0.003 |
| copper ${ }^{\text {a }}$ | L. 001 | 0.180 | 0.015 |
| iron ${ }^{\text {a }}$ | 0.59 | 4.4 | 1.7 |
| lead ${ }^{\text {a }}$ | L. 002 | 0.048 | 0.006 |
| manganese ${ }^{\text {a }}$ | 0.015 | 0.29 | 0.06 |
| silver ${ }^{\text {a }}$ | L. 001 | 0.005 | 0.003 |
| zinc ${ }^{\text {a }}$ | L. 002 | 0.020 | 0.009 |
| vanadium ${ }^{\text {b }}$ | L. 001 | 0.007 | 0.001 |
| selenium ${ }^{\text {c }}$ | L. 0002 | 0.0007 | 0.0004 |
| mercury ${ }^{\text {b }}$ | L. 0001 | 0.0021 | 0.0003 |
| arsenic ${ }^{\text {c }}$ | 0.0003 | 0.007 | 0.001 |
| nlckel ${ }^{\text {a }}$ | L. 002 | 0.030 | 0.004 |
| aluminum ${ }^{\text {a }}$ | 0.01 | 1.9 | 0.3 |
| cobalt ${ }^{\text {a }}$ | 1.002 | 0.006 | 0.002 |
| boron ${ }^{\text {c }}$ | 0.05 | 0.59 | 0.25 |
| extractable <br> b <br> total <br> c dissolved |  |  |  |


| STATION: DB0020 Dover River |  |  |  |
| :---: | :---: | :---: | :---: |
| DATES: 1976 and 1977 |  |  |  |
| Parameter | Minlmum | Max Imum | Mean |
| calcium | 31.5 | 84.0 | 51.2 |
| magneslum | 11.2 | 31.5 | 19.3 |
| sodium | 32.0 | 92.5 | 53.5 |
| potassium | 1.4 | 5.0 | 3.3 |
| chloride | 3.7 | 14.5 | 8.8 |
| sulphate | 7.8 | 83.0 | 29.1 |
| total alkalinity | 161.0 | 436.0 | 272.2 |
| pH | 7.5 | 8.4 | 8.0 |
| carbonate | 0.0 | 0.0 | 0.0 |
| bicarbonate | 196.0 | 531.0 | 330.0 |
| total hardness | 124.8 | 339.4 | 207.2 |
| fluoride | 0.08 | 0.35 | 0.21 |
| sllica | 2.1 | 15.7 | 7.8 |
| conductance | 370 | 920 | 554 |
| threshold odour number | 2 | 8 | 3 |
| colour | 25 | 160 | 89 |
| tannin and lignin | 0.6 | 2.3 | 1.5 |
| turbidity | 1.65 | 21.0 | 10.6 |
| TFR | 220.0 | 575.0 | 342.0 |
| TFRF | 122.5 | 505.0 | 285.0 |
| Tnfr | 4.4 | 52.0 | 15.8 |
| TNFRF | 2.4 | 24.8 | 9.1 |
| surfiactants | L. 02 | 0.19 | 0.07 |
| humic acids | L. 1.0 | 7.0 | 1.9 |
| total organic carbon | 14.0 | 47.0 | 27.0 |
| total inorg. carbon | 30.0 | 87.0 | 53.0 |
| total diss. org. carbon | 12.0 | 43.0 | 26.0 |
| nitrate and nitrite $N$ | L. 003 | 0.37 | 0.07 |
| ammonia nitrogen | L. 01 | 0.25 | 0.08 |
| total Kjeldahl $N$ | 0.50 | 1.76 | 1.17 |
| total phosphorus | 0.03 | 0.30 | 0.10 |
| or tho-phosphorus | 0.005 | 0.03 | 0.02 |
| phenol | L. 001 | 0.23 | 0.003 |
| oll and grease | L. 1 | 1.7 | 0.6 |
| suphlde | L. 05 | 1.05 | 1.05 |
| cyanide | L. 01 | 1.01 | L. 01 |
| chlorophylla | L. 001 | L. 001 | 1.001 |
| chemical oxygen demand | 36.0 | 137.0 | 85.0 |
| cadmium ${ }^{\text {a }}$ | L. 001 | 0.002 | 0.001 |
| hexavalent chromium ${ }^{\text {a }}$ | L. 003 | 0.006 | 0.003 |
| copper ${ }^{\text {a }}$ | 0.001 | 0.020 | 0.006 |
| Iron ${ }^{\text {a }}$ | 0.65 | 2.70 | 1.49 |
| lead ${ }^{\text {a }}$ | L. 002 | 0.024 | 0.005 |
| manganese ${ }^{\text {a }}$ | 0.022 | 0.115 | 0.05 |
| sllver ${ }^{\text {a }}$ | 1.001 | L. 005 | 1.003 |
| $z$ inc $^{\text {a }}$ | 0.002 | 0.067 | 0.013 |
| vanadium ${ }^{\text {b }}$ | L. 001 | 0.001 | 0.001 |
| selenium ${ }^{c}$ mercury ${ }^{\text {b }}$ | L. 0002 | L. 0005 | 1.0003 |
|  | L. 0001 | 0.0003 | 0.0001 |
| arsenic ${ }^{\text {c }}$ | L. 0002 | 0.007 | 0.001 |
| nickel ${ }^{\text {a }}$ | L. 002 | 0.012 | 0.003 |
| aluminum ${ }^{\text {a }}$ | 0.07 | 0.96 | 0.23 |
| cobalt ${ }^{\text {a }}$ | L. 002 | 0.004 | 0.002 |
| boron ${ }^{\text {c }}$ | 0.10 | 0.61 | 0.32 |
| a extractable <br> $b^{b}$ total <br> c dissolved |  |  |  |






| STATION: DCOO11 Firebag River near Mouth |  |  |  |
| :---: | :---: | :---: | :---: |
| DATES: 1976 and 1977 |  |  |  |
| Parameter | Minimum | MaxImum | Mean |
| calclum | 24.0 | 32.0 | 28.3 |
| magnes ium | 8.3 | 10.7 | 9.2 |
| sodium | 3.3 | 4.6 | 4.0 |
| potassium | 0.65 | 0.88 | 0.78 |
| chioride | 2.0 | 2.5 | 2.2 |
| sulphate | 0.1 | 5.0 | 3.0 |
| total alkalinlty | 100.2 | 129.2 | 111.7 |
| pH | 7.68 | 7.89 | 7.77 |
| carbonate | 0.0 | 0.0 | 0.0 |
| blcarbonate | 122.0 | 157.0 | 136.0 |
| total hardness | 94.1 | 124.0 | 108.5 |
| fluorlde | 0.09 | 0.13 | 0.11 |
| sllica | 9.7 | 16.0 | 11.8 |
| conductance | 171 | 231 | 198 |
| threshold odour number | 2 | 8 | 5 |
| colour | 25 | 35 | 32 |
| tannin and lignin | 0.5 | 0.7 | 0.6 |
| turbidity | 2.0 | 10.4 | 5.6 |
| tFR | 114.0 | 155.0 | 129.0 |
| TFRF | 100.0 | 130.0 | 110.0 |
| ThFR | 4.0 | 17.2 | 10.3 |
| thfrf | L. 4 | 12.8 | 6.4 |
| surfactants | 0.06 | 0.09 | 0.07 |
| humic acids | 1.0 | 1.0 | 1.0 |
| total organic carbon | 7.0 | 11.0 | 9.2 |
| total inorg. carbon | 19.0 | 32.0 | 24.5 |
| total diss. org. carbon | 6.5 | 11.0 | 9.0 |
| nltrate and nitrite $N$ | 1.003 | 0.090 | 0.046 |
| ammonla nitrogen | L. 01 | 0.06 | 0.04 |
| total Kjeldahi N | 0.82 | 1.07 | 0.95 |
| total phosphorus | 0.034 | 0.051 | 0.044 |
| ortho-phosphorus | 0.010 | 0.016 | 0.013 |
| phenol | - | - | - |
| 011 and grease | - | - | - |
| suphide | - | - | - |
| cyanide | - | - | - |
| chlorophyll a | - | - | - |
| chemlcal oxygen demand | 25.0 | 87.0 | 47.0 |
| cadmlum ${ }^{\text {a }}$ | L. 001 | L. 001 | L. 001 |
| hexavalent chromium ${ }^{\text {a }}$ | 1.003 | L. 003 | 1.003 |
| copper ${ }^{\text {a }}$ | 0.001 | 0.001 | 0.001 |
| iron ${ }^{\text {a }}$ | 0.65 | 0.79 | 0.74 |
| lead ${ }^{\text {a }}$ | L. 002 | 0.004 | 0.003 |
| manganese ${ }^{\text {a }}$ | 0.024 | 0.049 | 0.037 |
| sllver ${ }^{\text {a }}$ | L. 001 | 0.001 | 0.001 |
| zinc ${ }^{\text {a }}$ | 0.003 | 0.009 | 0.007 |
| vanadium ${ }^{\text {b }}$ | L. 001 | L. 001 | L. 001 |
| $\text { selenlum }{ }^{c}$ | L. 0002 | 1.0002 | 1.0002 |
| mercury ${ }^{\text {b }}$ | L. 0001 | 0.0002 | 0.0001 |
| arsenic ${ }^{\text {c }}$ | 1.0002 | 1.0002 | L. 0002 |
| nicke1 ${ }^{\text {a }}$ | L. 002 | L. 002 | L. 002 |
| aluminum ${ }^{\text {a }}$ | 0.05 | 0.12 | 0.09 |
| cobalt ${ }^{\text {a }}$ | L. 002 | 1.002 | 1.002 |
| boron ${ }^{\text {c }}$ | - | - | - |
| ```a extractable b total c dissolved``` |  |  |  |


| Station: DCOO2O Lost Creek |  |  |  |
| :---: | :---: | :---: | :---: |
| DATES: 1976 and 1977 |  |  |  |
| Parameter | Minlmum | Maximum | Mean |
| calclum | 13.0 | 30.5 | 22.6 |
| magnesium | 3.7 | 8.3 | 6.3 |
| sodium | 1.4 | 2.5 | 2.0 |
| potassium | 0.04 | 0.4 | 0.2 |
| chloride | 0.2 | 1.2 | 0.4 |
| sulphate | 0.1 | 4.9 | 2.9 |
| total alkalinity | 46.4 | 112.9 | 83.2 |
| pH | 7.4 | 8.3 | 7.8 |
| carbonate | 0.0 | 0.0 | 0.0 |
| bicarbonate | 57.0 | 138.0 | 102.0 |
| total hardness | 47.7 | 110.3 | 82.2 |
| fluoride | 1.05 | 0.13 | 0.07 |
| silica | 2.7 | 7.5 | 6.0 |
| conductance | 88 | 198 | 150 |
| threshold odour number | 2 | 4 | 3 |
| colour | 40 | 80 | 54 |
| tannin and lignin | 0.6 | 1.6 | 0.9 |
| turbidity | 0.6 | 2.2 | 1.4 |
| TFR | 55.0 | 120.0 | 93.0 |
| tFrf | 46.0 | 101.0 | 74.0 |
| TNFR | L. 4 | 6.8 | 2.3 |
| TNFRF | L. 4 | 4.0 | 0.9 |
| surfactants | 1.02 | 0.09 | 0.05 |
| humic acids | 11.0 | 2.5 | 1.2 |
| total organic carbon | 6.0 | 15.5 | 11.0 |
| total linorg. carbon | 8.0 | 27.0 | 17.0 |
| total diss. org. carbon | 6.0 | 15.0 | 11.0 |
| nitrate and nitrite $N$ | 0.003 | 0.049 | 0.01 |
| ammonia nitrogen | L. 01 | 0.12 | 0.04 |
| total Kjeldahi N | 0.48 | 5.98 | 1.59 |
| total phosphorus | 0.03 | 0.051 | 0.04 |
| ortho-phosphorus | 0.01 | 0.03 | 0.02 |
| phenol | L. 001 | 0.011 | 0.004 |
| oll and grease | 1.1 | 0.5 | 0.2 |
| suphide | 1.05 | 1.05 | 1.05 |
| cyanlde | L. 01 | L. 01 | L. 01 |
| chlorophyll a | 1.001 | L. 001 | 1.001 |
| chemical oxygen demand | 25.0 | 85.0 | 42.0 |
| cadmlum ${ }^{\text {a }}$ | L. 001 | L. 001 | L. 001 |
| hexavalent chromium ${ }^{\text {a }}$ | L. 003 | L. 003 | 1.003 |
| copper ${ }^{\text {a }}$ | 1.001 | 0.005 | 0.002 |
| iron ${ }^{\text {a }}$ | 0.25 | 0.74 | 0.56 |
| lead ${ }^{\text {a }}$ | 1.002 | 1.002 | 1.002 |
| manganese ${ }^{\text {a }}$ | 0.013 | 0.51 | 0.26 |
| $\text { sllver }{ }^{a}$ | L. 001 | L. 005 | L. 002 |
| $\text { zine }^{a}$ | L. 001 | 0.023 | 0.009 |
| vanadium | 4.001 | L. 001 | L. 001 |
| $\text { selenlum }{ }_{b}^{c}$ | L. 0002 | L. 0005 | 1.0003 |
| mercury | L. 0001 | 0.0006 | 0.0002 |
| arsenic ${ }^{\text {c }}$ | L. 0002 | L. 0005 | 1.0003 |
| nickel ${ }^{\text {a }}$ | L. 002 | 0.005 | 0.002 |
| a luminum ${ }^{\text {a }}$ | 1.01 | 0.10 | 0.03 |
| cobalt ${ }^{\text {a }}$ | 1.000 | 1.002 | L. 002 |
| boron ${ }^{\text {c }}$ | 0.04 | 0.15 | 0.10 |
| a extractable <br> ${ }^{b}$ total <br> c dissolved |  |  |  |


| STATION: DDO010 Athabasca River at Embarras |  |  |  |
| :---: | :---: | :---: | :---: |
| DATES: 1976 and 1977 |  |  |  |
| Parameter | Minimum | Maximum | Mean |
| calcium | 26.0 | 40.0 | 32.3 |
| magnes ium | 6.0 | 11.7 | 8.8 |
| sodium | 6.8 | 26.1 | 14.4 |
| potassium | 1.15 | 2.0 | 1.5 |
| chloride | 6.0 | 26.4 | 12.8 |
| sulphate | 8.6 | 27.2 | 14.9 |
| total alkalinlty | 91.8 | 144.0 | 114.5 |
| pH | 7.7 | 8.01 | 7.9 |
| carbonate | 0.0 | 0.0 | 0.0 |
| blcarbonate | 112.0 | 176.0 | 140.0 |
| total hardness | 89.6 | 148.0 | 116.9 |
| fluoride | 0.09 | 0.18 | 0.12 |
| sllica | 5.2 | 7.9 | 6.4 |
| conductance | 190 | 285 | 261 |
| threshold odour number | 1 | 4 | 3 |
| colour | 25 | 50 | 35 |
| tannin and lignin | 0.3 | 0.8 | 0.6 |
| turbidity | 1.5 | 290.0 | 93.0 |
| tFr | 125.0 | 252.0 | 171.0 |
| TFrf | 91.0 | 221.0 | 143.0 |
| TNFR | 3.2 | 592.0 | 173.0 |
| tnfrf | 1.2 | 548.0 | 158.0 |
| surfactants | 1.02 | 0.07 | 0.05 |
| humic aclds | L1.0 | 1.0 | 1.0 |
| total organic carbon | 10.0 | 25.0 | 15.0 |
| total inorg. carbon | 15.5 | 31.5 | 21.6 |
| total diss. org. carbon | 6.0 | 24.5 | 13.1 |
| nitrate and nitrite $N$ | 0.005 | 0.083 | 0.04 |
| ammonia nitrogen | 1.01 | 0.07 | 0.04 |
| total KJeldahi N | 1.06 | 1.45 | 1.26 |
| total phosphorus | 0.032 | 0.36 | 0.13 |
| ortho-phosphorus | 0.005 | 0.01 | 0.01 |
| phenol | 1.001 | 1.001 | L. 001 |
| oll and grease | 0.1 | 0.1 | 0.1 |
| suphide | - | - | - |
| cyanlde | - | - | - |
| chlorophyll a | - | - | - |
| chemical oxygen demand | 36.0 | 55.0 | 49.0 |
| cadmlum ${ }^{\text {a }}$ | 1.001 | L. 001 | L. 001 |
| hexavalent chromium ${ }^{\text {a }}$ | 1.003 | 0.032 | 0.010 |
| copper ${ }^{\text {a }}$ | 0.003 | 0.031 | 0.011 |
| iron ${ }^{\text {a }}$ | 0.85 | 15.5 | 4.9 |
| lead ${ }^{\text {a }}$ | L. 002 | L. 002 | 1.002 |
| manganese ${ }^{\text {a }}$ | 0.048 | 0.290 | 0.119 |
| silver ${ }^{\text {a }}$ | 1.001 | 0.001 | 0.001 |
| zinc ${ }^{\text {a }}$ | 0.011 | 0.074 | 0.033 |
| vanadium ${ }^{\text {b }}$ | 1.000 | 0.003 | 0.002 |
| $\text { selenlum }{ }^{c}$ | L. 0002 | 0.0005 | 0.0003 |
| $\text { mercury }{ }^{b}$ | L. 0001 | 0.0004 | 0.0002 |
| arsenic ${ }^{\text {c }}$ | L. 0002 | 0.0016 | 0.0007 |
| nickel ${ }^{\text {a }}$ | L. 002 | 0.008 | 0.004 |
| aluminum ${ }^{\text {a }}$ | 0.17 | 23.7 | 6.3 |
| cobait ${ }^{\text {a }}$ | 1.002 | 0.003 | 0.002 |
| boron ${ }^{\text {c }}$ | 0.05 | 0.08 | 0.07 |
| a extractable <br> ${ }^{b}$ total <br> c dissolved |  |  |  |








| STATION: DAO220 Eaglenest Lake |  |  |  |
| :---: | :---: | :---: | :---: |
| DATES: 1976 and 1977 |  |  |  |
| Parameter | Minimum | Maximum | Mean |
| caicium | 12.0 | 24.0 | 16.8 |
| magnes ium | 3.8 | 7.8 | 5.7 |
| sodium | 2.4 | 5.4 | 3.6 |
| potasslum | 0.6 | 1.3 | 0.9 |
| chloride | 0.2 | 2.2 | 0.6 |
| sulphate | 2.5 | 6.6 | 4.9 |
| total alkalinity | 46.2 | 92.0 | 65.4 |
| pH | 6.8 | 7.6 | 7.3 |
| carbonate | 0.0 | 0.0 | 0.0 |
| bicarbonate | 56.0 | 112.0 | 80:0 |
| total hardness | 45.6 | 91.2 | 65.4 |
| fluoride | 0.09 | 0.19 | 0.13 |
| silica | 0.3 | 5.5 | 2.6 |
| conductance | 90 | 191 | 133 |
| threshold odour number | 2 | 8 | 4 |
| colour | 25 | 55 | 39 |
| tannin and lignin | 0.30 | 3.35 | 1.0 |
| turbidity | 2.3 | 453.0 | 42.1 |
| tFR | 54.0 | 121.0 | 82.0 |
| tFrf | 30.0 | 100.0 | 58.0 |
| TNFR | 3.2 | 352.0 | 38.0 |
| TNFRF | 1.4 | 232.0 | 23.0 |
| surfactants | 1.02 | 0.16 | 0.06 |
| humic acids | 1.0 | 1.0 | 1.0 |
| total organic carbon | 8.0 | 21.5 | 15.0 |
| total inorg. carbon | 9.0 | 17.5 | 13.0 |
| total diss. org. carbon | 7.0 | 17.0 | 13.0 |
| nitrate and nitrite N | 0.005 | 0.380 | 0.09 |
| ammonia nltrogen | 0.01 | 0.45 | 0.16 |
| total KJeldahl N | 0.67 | 6.55 | 1.97 |
| total phosphorus | 0.09 | 0.58 | 0.18 |
| ortho-phosphorus | 0.03 | 0.15 | 0.06 |
| phenol | L. 001 | 0.003 | 0.002 |
| oll and grease | L. 1 | 3.3 | 1.0 |
| suphide | L. 05 | L. 05 | 1.05 |
| cyanlde | L. 01 | L. 01 | 1.01 |
| chlorophyll a | L. 001 | L. 001 | 1.001 |
| chemical oxygen demand | 28.0 | 235.0 | 62.0 |
| cadmium $^{\text {a }}$ | 1.001 | L. 001 | L. 001 |
| hexavalent chromium ${ }^{\text {a }}$ | L. 003 | 0.004 | 0.003 |
| copper ${ }^{\text {a }}$ | 0.001 | 0.122 | 0.024 |
| iron ${ }^{\text {a }}$ | 0.43 | 9.60 | 1.59 |
| lead ${ }^{\text {a }}$ | L. 002 | 0.003 | 1.002 |
| manganese ${ }^{\text {a }}$ | 0.032 | 0.41 | 0.13 |
| silver ${ }^{\text {a }}$ | 1.001 | L. 005 | L. 002 |
| $z$ inc ${ }^{\text {a }}$ | 0.003 | 0.051 | 0.014 |
| vanadium ${ }^{\text {b }}$ | L. 001 | L. 001 | 1.001 |
| selenium ${ }^{\text {c }}$ | L. 0002 | 0.0005 | 0.0004 |
| mercury ${ }^{\text {b }}$ | L. 0001 | L. 0001 | 1.0001 |
| arsenic ${ }^{\text {c }}$ | 1.0002 | 0.005 | 0.001 |
| nlekel ${ }^{\text {a }}$ | 1.002 | 0.020 | 0.004 |
| alum/num ${ }^{\text {a }}$ | 0.02 | 1.13 | 0.20 |
| cobalt ${ }^{\text {a }}$ | L. 002 | L. 002 | 1.002 |
| boron ${ }^{\text {c }}$ | 0.02 | 0.25 | 0.09 |
| a extractable <br> ${ }^{b}$ total <br> c dissolved |  |  |  |



| STATION: DDOO80 Richardson Lake - centre |  |  |  |
| :---: | :---: | :---: | :---: |
| DATES: 1976 and 1977 |  |  |  |
| Parameter | Minimum | Maximum | Mean |
| calcium | 25.5 | 29.0 | 27.2 |
| magneslum | 6.7 | 7.5 | 7.2 |
| sodium | 7.6 | 10.3 | 8.3 |
| potasslum | 1.2 | 1.8 | 1.6 |
| chlorlide | 4.9 | 7.7 | 5.7 |
| sulphate | 8.2 | 16.0 | 12.7 |
| total alkalinity | 86.8 | 99.5 | 91.8 |
| pH | 7.3 | 7.9 | 7.7 |
| carbonate | 0.0 | 0.0 | 0.0 |
| bicarbonate | 106.0 | 121.0 | 112.0 |
| total hardness | 92.5 | 103.3 | 97.4 |
| fluoride | 0.10 | 0.10 | 0.10 |
| sllica | 4.1 | 8.2 | 5.9 |
| conductance | 191 | 230 | 213 |
| threshold odour number | 2 | 4 | 2 |
| colour | 15 | 20 | 12 |
| tannin and llgnin | 0.3 | 0.85 | 0.5 |
| turbidity | 1.0 | 120.0 | 43.0 |
| TFR | 122.0 | 140.0 | 132.0 |
| TFRF | 101.0 | 122.0 | 109.0 |
| TNFR | 0.8 | 126.0 | 46.0 |
| thfrf | 0.0 | 106.0 | 31.0 |
| surfactants | L. 02 | 0.06 | 0.04 |
| humic acids | - | - | - |
| total organlc carbon | 8.5 | 13.5 | 11.0 |
| total linorg. carbon | 14.5 | 22.0 | 18.0 |
| total diss. org. carbon | 4.5 | 10.5 | 8.0 |
| nitrate and nltrite $N$ | 0.003 | 0.097 | 0.03 |
| ammonla nitrogen | L. 01 | 0.10 | 0.05 |
| total KJeldahi N | 0.94 | 1.74 | 1.28 |
| total phosphorus | 0.022 | 0.138 | 0.07 |
| ortho-phosphorus | 0.005 | 0.01 | 0.01 |
| phenol | - | - | - |
| oll and grease | - | - | - |
| suphide | - | - | - |
| cyanide | - | - | - |
| chlorophyll a | - | - | - |
| chemical oxygen demand | 7.0 | 58.0 | 32.0 |
| cadmium ${ }^{\text {a }}$ | L. 001 | 0.002 | 0.001 |
| hexavalent chromium ${ }^{\text {a }}$ | 1.003 | 0.009 | 0.005 |
| copper ${ }^{\text {a }}$ | 0.002 | 0.021 | 0.006 |
| iron ${ }^{\text {a }}$ | 0.17 | 4.75 | 2.2 |
| lead ${ }^{\text {a }}$ | 0.002 | 0.006 | 0.003 |
| manganese ${ }^{\text {a }}$ | 0.002 | 0.135 | 0.049 |
| sllver ${ }^{\text {a }}$ | L. 001 | L. 001 | L. 001 |
| $z / n c^{\text {a }}$ | 0.008 | 0.053 | 0.021 |
| vanadium ${ }^{\text {b }}$ | L. 001 | 0.003 | 0.002 |
| $\text { selenlum }{ }^{c}$ | 1.0002 | L. 0005 | 1.003 |
| mercury ${ }^{b}$ | L. 0001 | 1.0001 | L. 0001 |
| arsenic ${ }^{\text {c }}$ | L. 0002 | 0.0009 | 0.0004 |
| nickel ${ }^{\text {a }}$ | 1.002 | 0.005 | 0.003 |
| aluminum ${ }^{\text {a }}$ | 0.06 | 7.2 | 2.2 |
| cobalt ${ }^{\text {a }}$ | L. 002 | 0.003 | 0.002 |
| boron ${ }^{\text {c }}$ | 0.04 | 0.12 | 0.07 |
| extractable <br> ${ }^{b}$ total <br> c dissolved |  |  |  |




STATION: KFO2OO Lake Claire, N. end of Birch River
DATES: 1976 and 1977

| Parameter | Minimum | Maximum | Mean |
| :---: | :---: | :---: | :---: |
| calcium | 37.5 | 44.0 | 40.8 |
| magnesium | 10.7 | 11.2 | 11.0 |
| sodium | 33.0 | 42.0 | 36.8 |
| potassium | 3.0 | 3.4 | 3.2 |
| chloride | 38.0 | 54.5 | 46.5 |
| sulphate | 42.2 | 70.5 | 57.2 |
| total alkalinity | 17.5 | 107.8 | 80.4 |
| pH | 7.7 | 8.11 | 7.9 |
| carbonate | 0.0 | 0.0 | 0.0 |
| bicarbonate | 21.0 | 131.0 | 98.0 |
| total hardness | 138.9 | 153.9 | 146.9 |
| fluorlde | 0.15 | 0.19 | 0.17 |
| silica | 1.7 | 3.3 | 2.4 |
| conductance | 420 | 480 | 448 |
| threshold odour number | 2 | 4 | 3 |
| colour | 15 | 30 | 21 |
| tannin and lignin | 0.55 | 0.7 | 0.6 |
| turbidity | 27.8 | 262.0 | 141.0 |
| TFR | 252.0 | 304.0 | 283.0 |
| TFRF | 233.0 | 268.0 | 246.0 |
| TNFR | 28.8 | 219.0 | 104.0 |
| thfrf | 24.8 | 190.0 | 90.0 |
| surfactants | 1.02 | 0.11 | 0.08 |
| humic aclds | - | - | - |
| total organle carbon | 10.0 | 27.0 | 17.0 |
| total inorg. carbon | 16.0 | 28.0 | 22.0 |
| total diss. org. carbon | 9.0 | 17.0 | 4.0 |
| nitrate and nitrite $N$ | 0.007 | 0.051 | 0.024 |
| ammonia nltrogen | 0.01 | 0.15 | 0.07 |
| total Kjeldahl $N$ | 1.96 | 3.33 | 2.83 |
| total phosphorus | 0.050 | 0.198 | 0.12 |
| ortho-phosphorus | 0.007 | 0.015 | 0.011 |
| phenol | - | - | - |
| oll and grease | - | - | - |
| suphide | - | - | - |
| cyanide | - | - | - |
| chlorophyll a | - | - | - |
| chemical oxygen demand | 28.0 | 70.0 | 43.0 |
| cadmium ${ }^{\text {a }}$ | 1.001 | 1.001 | 1.001 |
| hexavalent chromlum ${ }^{\text {a }}$ | 1.003 | 0.011 | 0.006 |
| copper ${ }^{\text {a }}$ | 0.005 | 0.011 | 0.007 |
| iron ${ }^{\text {a }}$ | 0.87 | 8.0 | 4.22 |
| lead ${ }^{\text {a }}$ | 1.002 | 0.002 | 0.002 |
| manganese ${ }^{\text {a }}$ | 0.028 | 0.245 | 0.108 |
| sllver ${ }^{\text {a }}$ | L. 001 | 1.001 | 1.001 |
| zinc ${ }^{\text {a }}$ | 0.009 | 0.033 | 0.021 |
| vanadium ${ }^{\text {b }}$ | L. 001 | 0.004 | 0.002 |
| selenlum ${ }^{\text {c }}$ <br> b | L. 0002 | 0.002 | 0.001 |
| mercury ${ }^{\text {b }}$ | 0.0001 | 0.0002 | 0.0002 |
| arsenic ${ }^{\text {c }}$ | 0.0003 | 0.0022 | 0.0010 |
| nlckel ${ }^{\text {a }}$ | 0.003 | 0.004 | 0.004 |
| aluminum ${ }^{\text {a }}$ | 0.67 | 2.85 | 1.51 |
| cobalt ${ }^{\text {a }}$ | 1.002 | 0.002 | 0.002 |
| boron ${ }^{\text {c }}$ | 0.09 | 0.09 | 0.09 |
| extractable <br> total <br> ${ }^{c}$ dissolved |  |  |  |




STATION: NAOOSO Riviere des Rochers
DATES: 1976 and 1977

| Parameter | Minimum | Maximum | Mean |
| :---: | :---: | :---: | :---: |
| calcium | 13.0 | 26.0 | 20.7 |
| magneslum | 3.9 | 6.5 | 5.5 |
| sodium | 4.7 | 7.0 | 6.2 |
| potassium | 0.9 | 1.4 | 1.1 |
| chloride | 4.5 | 5.9 | 5.2 |
| sulphate | 5.0 | 12.0 | 9.0 |
| total alkallnity | 47.0 | 84.3 | 68.1 |
| pH | 7.6 | 8.0 | 7.8 |
| carbonate | 0.0 | 0.0 | 0.0 |
| bicarbonate | 57.0 | 103.0 | 83.0 |
| total hardness | 48.5 | 91.7 | 74.5 |
| fluoride | 0.08 | 0.09 | 0.09 |
| silica | 3.5 | 5.4 | 4.4 |
| conductance | 104 | 205 | 161 |
| threshold odour number | 2 | 8 | 4 |
| colour | L5 | 114 | 36 |
| tannin and llanin | 0.2 | 0.7 | 0.5 |
| turbidity 13.6 | 13.6 | 160.0 | 78.0 |
| TFR | 69.0 | 125.0 | 99.0 |
| TFRF | 51.0 | 101.0 | 81.0 |
| TNFR | 11.6 | 200.0 | 93.0 |
| TNFRF | 8.0 | 182.0 | 82.0 |
| surfiactants | 1.02 | 0.03 | 0.02 |
| humic acids | - | - | - |
| total organic carbon | 6.0 | 17.0 | 9.0 |
| total inorg. carbon | 9.5 | 17.0 | 15.0 |
| total diss. org. carbon | 6.0 | 8.0 | 7.0 |
| nitrate and nitrite N | 0.006 | 0.050 | 0.023 |
| ammonia nitrogen | L. 01 | 0.11 | 0.05 |
| total KJeldahi $N$ | 1.17 | 3.33 | 2.14 |
| total phosphorus | 0.021 | 0.146 | 0.08 |
| ortho-phosphorus | 0.004 | 0.007 | 0.006 |
| phenol | - | - | - |
| oll and grease | - | - | - |
| suphide | - | - | - |
| cyanlde | - | - | - |
| chlorophyll a | - | - | - |
| chemical oxygen demand | 7.0 | 60.0 | 25.0 |
| cadmlum ${ }^{\text {a }}$ | L. 001 | 1.001 | 1.001 |
| hexavalent chromluma ${ }^{\text {a }}$ | L. 003 | 0.008 | 0.005 |
| copper ${ }^{\text {a }}$ | 0.002 | 0.007 | 0.004 |
| iron ${ }^{\text {a }}$ | 0.48 | 9.65 | 3.5 |
| lead ${ }^{\text {a }}$ | L. 002 | 1.004 | L. 002 |
| manganese ${ }^{\text {a }}$ | 0.015 | 0.155 | 0.068 |
| sllver ${ }^{\text {a }}$ | L. 001 | L. 001 | L. 001 |
| zinc ${ }^{\text {a }}$ | 0.005 | 0.031 | 0.016 |
| vanadium ${ }^{\text {b }}$ | 1.001 | 1.001 | 1.001 |
| selenium ${ }^{\text {c }}$ | 1.0002 | L. 0005 | 1.0003 |
| mercury ${ }^{\text {b }}$ | L. 0001 | 0.0009 | 0.0004 |
| arsenic ${ }^{\text {c }}$ | 0.0004 | 0.0012 | 0.0006 |
| nickel ${ }^{\text {a }}$ | 1.002 | 0.004 | 0.003 |
| aluminum ${ }^{\text {a }}$ | 0.26 | 3.85 | 2.24 |
| cobalt ${ }^{\text {a }}$ | L. 002 | 0.004 | 0.003 |
| boron ${ }^{\text {c }}$ | L. 01 | 0.08 | 0.05 |
| ${ }^{a}$ extractable <br> $b$ total <br> ${ }^{c}$ dissolved |  |  |  |


| STATION: NAOO31 Riviere des Rochers at mile 217.5 |  |  |  |
| :---: | :---: | :---: | :---: |
| DATES: 1976 and 1977 |  |  |  |
| Parameter | Minimum | Maximum | Mean |
| calcium | 23.5 | 23.5 | 23.5 |
| magnesium | 5.7 | 5.7 | 5.7 |
| sodium | 7.6 | 7.6 | 7.6 |
| potassium | 1.3 | 1.3 | 1.3 |
| chloride | 5.9 | 5.9 | 5.9 |
| sulphate | 10.0 | 10.0 | 10.0 |
| total alkalinlty | 80.0 | 80.0 | 80.0 |
| pH | 7.7 | 7.7 | 7.7 |
| carbonate | 0.0 | 0.0 | 0.0 |
| bicarbonate | 98.0 | 98.0 | 98.0 |
| total hardness | 82.1 | 82.1 | 82.1 |
| fluorlde | 0.09 | 0.09 | 0.09 |
| sillea | 5.3 | 5.3 | 5.3 |
| conductance | 187 | 187 | 187 |
| threshold odour number | 4 | 4 | 4 |
| colour | 30 | 30 | 30 |
| tannin and lignin | 0.85 | 0.85 | 0.85 |
| turbidity | 195.0 | 195.0 | 195.0 |
| TFR | 123.0 | 123.0 | 123.0 |
| TFRF | 113.0 | 113.0 | 113.0 |
| TNFR | 269.0 | 269.0 | 269.0 |
| TNFRF | 241.0 | 241.0 | 241.0 |
| surfactants | 1.02 | 1.02 | 1.02 |
| humlc acids | - | - | - |
| total organic carbon | 8.5 | 8.5 | 8.5 |
| total inorg. carbon | 15.0 | 15.0 | 15.0 |
| total diss. ors. carbon | 5.0 | 5.0 | 5.0 |
| nitrate and nitrite $N$ | 0.04 | 0.04 | 0.04 |
| ammonia nitrogen | 0.04 | 0.04 | 0.04 |
| total Kjeldahl N | 1.27 | 1.27 | 1.27 |
| total phosphorus | 0.15 | 0.15 | 0.15 |
| ortho-phosphorus | L. 01 | L. 01 | L. 01 |
| phenol | - | - | - |
| 011 and grease | - | - | - |
| suphide | - | - | - |
| cyanide | - | - | - |
| chlorophyll a | - | - | - |
| chemical oxygen demand | 68.0 | 68.0 | 68.0 |
| cadmium ${ }^{\text {a }}$ | 1.001 | L. 001 | L. 001 |
| hexavalent chromium ${ }^{\text {a }}$ | 0.016 | 0.016 | 0.016 |
| copper ${ }^{\text {a }}$ | 0.009 | 0.009 | 0.009 |
| iron ${ }^{\text {a }}$ | 10.1 | 10.1 | 10.1 |
| lead ${ }^{\text {a }}$ | 1.002 | 1.002 | 1.002 |
| manganese ${ }^{\text {a }}$ | 0.200 | 0.200 | 0.200 |
| $\text { sliver }{ }^{a}$ | 1.001 | 1.001 | L. 001 |
| $\operatorname{zin}^{a}$ | 0.031 | 0.031 | 0.031 |
| vanadium ${ }^{\text {b }}$ | 0.010 | 0.010 | 0.010 |
| selenium ${ }^{\text {c }}$ | 0.0008 | 0.0008 | 0.0008 |
| mercury ${ }^{\text {b }}$ | 1.0001 | 1.0001 | 1.0001 |
| arsenic ${ }^{\text {c }}$ | 0.0011 | 0.0011 | 0.0011 |
| nickel ${ }^{\text {a }}$ | 0.004 | 0.004 | 0.004 |
| aluminum ${ }^{\text {a }}$ | 9.10 | 9.10 | 9.10 |
| cobalt ${ }^{\text {a }}$ | 1.002 | L. 002 | 1.002 |
| boron ${ }^{\text {c }}$ | 0.07 | 0.07 | 0.07 |
| a extractable <br> ${ }^{b}$ total <br> ${ }^{c}$ dissolved |  |  |  |


| LIST OF AOSERP RESEARCH REPORTS |  |  |
| :---: | :---: | :---: |
| 1. |  | AOSERP First Annual Report, 1975 |
| 2. | AF 4.1.1 | Walleye and Goldeye Fisheries Investigations in the Peace-Athabasca Delta--1975 |
| 3. | HE 1.1 .1 | Structure of a Traditional Baseline Data System |
| 4. | VE 2.2 | A Preliminary Vegetation Survey of the Alberta 0 il Sands Environmental Research Program Study Area |
| 5. | HY 3.1 | The Evaluation of Wastewaters from an $0 i 1$ Sand Extraction Plant |
| 6. |  | Housing for the North--The Stackwall System |
| 7. | AF 3.1.1 | A Synopsis of the Physical and Biological Limnology and Fisheries Programs within the Alberta Oil Sands Area |
| 8. | AF 1.2.1 | The Impact of Saline Waters upon Freshwater Biota (A Literature Review and Bibliography) |
| 9. | ME 3.3 | Preliminary Investigations into the Magnitude of Fog Occurrence and Associated Problems in the Oil Sands Area |
| 10. | HE 2.1 | Development of a Research Design Related to Archaeological Studies in the Athabasca Oil Sands Area |
| 11. | AF 2.2.1 | Life oycles of Some Common Aquatic Insects of the Athabusca River, Alberta |
| 12. | ME 1.7 | Very High Resolution Meteorological Satellite Study of Oil Sands Weather: "A Feasibility Study" |
| 13. | ME 2.3.1 | Plume Dispersion Measurements from an Oil Sands Extraction Plant, March 1976 |
| 14. |  |  |
| 15. | ME 3.4 | A Climatology of Low Level Air Trajectories in the Alberta Oil Sands Area |
| 16. | ME 1.6 | The Feasibility of a Weather Radar near Fort McMurray, Alberta |
| 17. | AF 2.1.1 | A Survey of Basel ine Levels of Contaminants in Aquatic Biota of the AOSERP Study Area |
| 18. | HY 1.1 | Interim Compilation of Stream Gauging Data to December 1976 for the Alberta Oil Sands Environmental Research Program |
| 19. | ME 4.1 | Calculations of Annual Averaged Sulphur Dioxide Concentrations at Ground Level in the AOSERP Study Area |
| 20. | HY 3.1.1 | Characterization of Organic Constituents in Waters and Wastewaters of the Athabasca Oil Sands Mining Area |
| 21. |  | AOSERP Second Annual Report, 1976-77 |
| 22. |  | Alberta 0 il Sands Environmental Research Program Interim Report to 1978 covering the period April 1975 to November 1978 |
| 23. | AF 1.1.2 | Acute Lethality of Mine Depressurization Water on Trout Perch and Rainbow Trout |
| 24. | ME 1.5 .2 | Air System Winter Field Study in the AOSERP Study Area, February 1977. |
| 25. | ME 3.5.1 | Review of Pollutant Transformation Processes Relevant to the Alberta Oil Sands Area |


| 26. | AF 4.5.1 | Interim Report on an Intensive Study of the Fish Fauna of the Muskeg River Watershed of Northeastern Alberta |
| :---: | :---: | :---: |
| 27. | ME 1.5.1 | Meteorology and Air Quality Winter Field Study in the AOSERP Study Area, March 1976 |
| 28. | VE 2.1 | Interim Report on a Soils Inventory in the Athabasca Oil Sands Area |
| 29. | ME 2.2 | An Inventory System for Atmospheric Emissions in the AOSERP Study Area |
| 30. | ME 2.1 | Ambient Air Quality in the AOSERP Study Area, 1977 |
| 31. | VE 2.3 | Ecological Habitat Mapping of the AOSERP Study Area: Phase I |
| 32. |  | AOSERP Third Annual Report, 1977-78 |
| 33. | TF 1.2 | Relationships Between Habitats, Forages, and Carrying Capacity of Moose Range in northern Alberta. Part I: Moose Preferences for Habitat Strata and Forages. |
| 34. | HY 2.4 | Heavy Metals in Bottom Sediments of the Mainstem Athabasca River System in the AOSERP Study Area |
| 35. | AF 4.9. | The Effects of Sedimentation on the Aquatic Biota |
| 36. | AF 4.8.1 | Fall Fisheries Investigations in the Athabasca and Clearwater Rivers Upstream of Fort McMurray: Volume I |
| 37. | HE 2.2.2 | Community Studies: Fort McMurray, Anzac, Fort MacKay |
| 38. | VE 7.1.1 | Techniques for the Control of Small Mammals: A Review |
| 39. | ME 1.0 | The Climatology of the Alberta Oil Sands Environmental Research Program Study Area |
| 40. | WS 3.3 | Mixing Characteristics of the Athabasca River below Fort McMurray - Winter Conditions |
| 41. | AF 3.5.1 | Acute and Chronic Toxicity of Vanadium to Fish |
| 42. | TF 1.1 .4 | Analysis of Fur Production Records for Registered Traplines in the AOSERP Study Area, 1970-75 |
| 43. | TF 6.1 | A Socioeconomic Evaluation of the Recreational Fish and Wildlife Resources in Alberta, with Particular Reference to the AOSERP Study Area. Volume 1: Summary and Conclusions |
| 44. | VE 3.1 | Interim Report on Symptomology and Threshold Levels of Air Pollutant Injury to Vegetation, 1975 to 1978 |
| 45. | VE 3.3 | Interim Report on Physiology and Mechanisms of Air-Borne Pollutant Injury to Vegetation, 1975 to 1978 |
| 46. | VE 3.4 | Interim Report on Ecological Benchmarking and Biomonitoring for Detection of Air-Borne Pollutant Effects on Vegetation and Soils, 1975 to 1978. |
| 47. | TF 1.1.1 | A Visibility Bias Model for Aerial Surveys for Moose on the AOSERP Study Area |
| 48. | HG 1.1 | Interim Report on a Hydrogeological Investigation of the Muskeg River Basin, Alberta |
| 49. | WS 1.3.3 | The Ecology of Macrobenthic Invertebrate Communities in Hartley Creek, Northeastern Alberta |
| 50. | ME 3.6 | Literature Review on Pollution Deposition Processes |
| 51. | HY 1.3 | Interim Compilation of 1976 Suspended Sediment Date in the AOSERP Study Area |
| 52. | ME 2.3.2 | Plume Dispersion Measurements from an Oil Sands Extraction Plan, June 1977 |


|  | HY 3.1.2 | Baseline States of Organic Constituents in the Athabasca River System Upstream of Fort McMurray |
| :---: | :---: | :---: |
| 54. | WS 2.3 | A Preliminary Study of Chemical and Microbial |
|  |  | Characteristics of the Athabasca River in the |
|  |  | sca Oil Sands Area of Northeastern Alberta |
|  |  |  |
| 56. |  | The Acute Toxicity of Saline Groundwater and of Vanadium to Fish and Aquatic Invertebrates |
| 57. | LS 2.3.1 | Ecological Habitat Mapping of the AOSERP Study Area (Supplement): Phase I |
| 58. | AF 2.0.2 | Interim Report on Ecological Studies on the Lower Trophic Levels of Muskeg Rivers Within the Alberta Oil Sands Environmental Research Program Study Area |
| 59 | TF | Semi-Aquatic Mammals: Annota |
| 60. | WS | Synthesis of Surface Water Hydrol |
| 61. | AF 4.5.2 | An Intensive Study of the Fish Fauna of the Steepbank River Watershed of Northeastern Alberta |
| 62. | TF 5.1 | Amphibians and Reptiles in the AOSERP Study Area |
| 63. | ME 3.8.3 | Analysis of AOSERP Plume Sigma Data |
| 64. | LS 21.6.1 | A Review and Assessment of the Baseline Data Relevant to the Impacts of 011 Sands Development on Large Mammals in the AOSERP Study Area |
| 65. | LS 21.6.2 | A Review and Assessment of the Baseline Data Relevant to the Impacts of Oil Sands Development on Black Bears in the AOSERP Study Area |
| 66. | AS 4.3.2 | An Assessment of the Models LIRAQ and ADPIC for Application to the Athabasca Oil Sands Area |
| 67. | WS 1.3.2 | Aquatic Biological Investigations of the Muskeg River Watershed |
| 68. | $\begin{array}{ll} \text { AS } & 1.5 .3 \\ \text { AS } & 3.5 .2 \end{array}$ | Air System Summer Field Study in the AOSERP Study Area, June 1977 |
| 69. | HS 40.1 | Native Employment Patterns in Alberta's Athabasca Oil Sands Region |
| 70. | LS 28.1.2 | An Interim Report on the Insectivorous Animals in the AOSERP Study Area |
| 71. | HY 2.2 | Lake Acidification Potential in the Alberta Oil Sands Environmental Research Program Study Area |
| 72. | LS 7.1.2 | The Ecology of Five Major Species of Small Mammals in the AOSERP Study Area: A Review |
| 73. | LS 23.2 | Distribution, Abundance and Habitat Associations of Beavers, Muskrats, Mink and River Otters in the AOSERP Study Area, Northeastern Alberta |
| 74. | AS 4.5 | Air Quality Modelling and User Needs |
| 75. | WS 1.3.4 | Interim Report on a Comparative Study of Benthic Algal Primary Productivity in the AOSERP Study Area |
| 76. | AF 4.5.1 | An Intensive Study of the Fish Fauna of the Muskeg River Watershed of Northeastern Alberta |
| 77. | HS 20.1 | Overview of Local Economic Development in the Athabasca Oil Sands Region Since 1961. |
| 78. | LS 22.1.1 | Habitat Relationships and Management of Terrestrial Birds in Northeastern Alberta |

79. AF 3.6.1 The Multiple Toxicity of Vanadium, Nickel, and Phenol to Fish.
80. HS 10.2 \& History of the Athabasca 0il Sands Region, 1980 to HS 10.1 1960's. Volumes 1 and 11.
81. LS 22.1.2 Species Distribution and Habitat Relationships of Waterfowl in Northeastern Alberta.
82. LS 22.2 Breeding Distribution and Behaviour of the White Pelican in the Athabasca Oil Sands Area.
83. LS 22.2 The Distribution, Foraging Behaviour, and Allied Activities of the White Pelican in the Athabasca 0 il Sands Area.
84. WS 1.6.1 Investigations of the Spring Spawning Fish Populations in the Athabasca and Clearwater Rivers Upstream from Fort McMurray; Volume 1.
85. HY 2.5 An intensive Surface Water Quality Study of the Muskeg River Watershed. Volume 1: Water Chemistry.
86. AS 3.7 An Observational Study of Fog in the AOSERP Study Area.
87. WS 2.2 Hydrogeological Investigation of Muskeg River Basin,
88. AF 2.0.1 Ecological Studies of the Aquatic Invertebrates of the Alberta Oil Sands Environmental Research Program Study Area of Northeastern Alberta
89. AF 4.3.2 Fishery Resources of the Athabasca River Downstream of Fort McMurray, Alberta. Volume 1
90. AS 3.2 A Wintertime Investigation of the Deposition of Pollutants around an Isolated Power Plant in Northern Alberta
91. LS 5.2 Characterization of Stored Peat in the Alberta Oil Sands Area
92. WS 1.6.2 Fisheries and Habitat Investigations of Tributary Streams in the Southern Portion of the AOSERP Study Area. Volume 1: Summary and Conclusions
93. WS 1.3.1 Fisheries and Aquatic Habitat Investigations in the MacKay River Watershed of Northeastern Alberta
94. WS 1.4.1 A Fisheries and Water Quality Survey of Ten Lakes in the Richardson Tower Area, Northeastern Alberta. Volume 1: Methodology, Summary, and Discussion.
95. AS 4.2.6 Evaluation of the Effects of Convection on Plume Behaviour in the AOSERP Study Area
96. HS 20.3 Service Delivery in the Athabasca 0 il Sands Region Since 1961
97. LS 3.4.1 Differences in the Composition of Soils Under Open and Canopy Conditions at Two Sites Close-in to the Great
98. LS 3.4 .2 Canadian Oil Sands Operation, Fort McMurray, Alberta
99. LS 3.4.2 Baseline Condition of Jack Pine Biomonitoring Plots in the Athabasca 0 il Sands Area; 1976 and 1977
100. LS 10.1 Synecology and Autecology of Boreal Forest Vegetation in the AOSERP Study Area
101. LS 10.2 Baseline Inventory of Aquatic Macrophyte Species Distribution in the AOSERP Study Area
102. LS 21.1.3 Woodland Caribou Population Dynamics in Northeastern Alberta 102. LS 21.1.4 Wolf Population Dynamics and Prey Relationships in Northeastern Alberta

This material is provided under educational reproduction permissions included in Alberta Environment and Sustainable Resource Development's Copyright and Disclosure Statement, see terms at http://www.environment.alberta.ca/copyright.html. This Statement requires the following identification:
"The source of the materials is Alberta Environment and Sustainable Resource Development http://www.environment.gov.ab.ca/. The use of these materials by the end user is done without any affiliation with or endorsement by the Government of Alberta. Reliance upon the end user's use of these materials is at the risk of the end user.


[^0]:    ${ }^{1}$ GCOS amalgamated with Sun 0 il Company in August 1979, after the writing of the report was completed, to become Suncor, Inc.

[^1]:    ${ }^{\text {a }}$ Continuous gauging conducted by Water Survey of Canada

[^2]:    1.6 WATER SAMPLING METHODS

    The procedures employed by Alberta Environment's Pollution Control Laboratory were used for sample collection and preservation

[^3]:    a Alberta Environment 1977; Saskatchewan Water Resources Commission 1970.
    ${ }^{b}$ National Heal th and Welfare 1969.
    c Great Lakes Water Quality Board 1976; U.S. Environmental Protection Agency 1973; International Joint Commission 1976
    d Parameter values in ppm except for turbidity in Jackson Turbidity Units (JTU); LE-less than or equal to; GE-greater than or equal to; LT-less than.

[^4]:    a in compliance

[^5]:    a extractable
    ${ }^{b}$ total
    ${ }^{6}$ dissolved

[^6]:    ${ }^{a}$ extractable
    b total
    c dissolved

[^7]:    a extractable
    $b^{6}$ total
    c dissolved

[^8]:    ${ }^{a}$ extractable
    $b$ total

