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Abstract

Froth flotation is a crucial and complex process, which has been used in various industries

for the purpose of separation and beneficiation. Various classes of factors including

chemistry, operational, or equipment influence the process outputs. Its complex nature

makes it difficult to control and monitor the process. For instance, a small disturbance in

any of these classes of factors propagates to the final process output by affecting various

micro-scale sub-processes. In addition to this, process measurements are either accurate

with slower sampling time, or less accurate and expensive for faster sampling times. The

overall objective of this thesis is to develop a monitoring scheme aided with soft sensor

models for online measurements for process outputs. Systematic study was undertaken

in this thesis to develop monitoring schemes for mechanical cell flotations, starting from

pure galena mineral flotation to synthetic mixtures of galena and quartz, and finally

extending it to the real industrial Pb-Zn sulfide ore.

A dynamic process model is required for the monitoring purposes. It was proposed

that a fundamental model, providing the in-depth understanding of the process would

perform better than empirical models to capture the disturbances in the process. For this

purpose, a framework was developed for dynamic fundamental modeling that incorpo-

rates the mathematical relationships between micro-scale sub-processes and macro-scale

transportation. All the significant sub-processes such as bubble-particle attachment, de-

tachment, entrainment, and drainage, were included in the framework . Both pulp and
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froth phases were considered in the model development phase.

Relationship between the froth visuals and process performance were explored to de-

velop soft sensors for online measurements for the process outputs, which are, grade and

recovery. A commercial package, VisioFroth, by Metso R© Minerals was used to extract

real-time images and its features. Image features were used to develop soft sensor mod-

els for process outputs. Soft sensor model were developed based on machine learning

algorithms, such as, Principal Component Regression, Partial Least Squares Regression,

Random Forest, and Support Vector Machines. Soft sensor study was also extended to

oil sands extraction process to demonstrate its applicability in other industries that use

flotation on a regular basis. With bitumen being darker in color, it was more challenging

problem as compared to the mineral flotation. However, set of robust soft sensor models,

that were valid on various flotation conditions showed a promising potential in other

real-time objectives such as model predictive control or real-time optimization.

Finally, real time measurements were reconciled with the dynamic modeling frame-

work for state and parameter estimation using extended Kalman filter. Estimation of

model parameters that represent flotation sub-processes, provides real-time information

about the process performance. Heuristics were developed for monitoring the process and

identifying the disturbances though monitoring of parameter estimates. Various classes

of disturbances were artificially created in batch flotation experiments in mechanical cell

flotation. This included variation in feed particle size, reagent dosages, air flow rate, and

impeller speed. Estimated parameters were successfully able to track the disturbances

and identify its root for remedial actions. Developed scheme was also used to monitor

the entrainment sub-process by decoupling the total recovery and identifying different

components. Entrainment monitoring further helps in increasing the product grade while

maintaining the desired recovery of the minerals. All the monitoring heuristics and soft

sensor models were implemented and developed using batch flotation in a mechanical
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flotation cell.
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Chapter 1

Introduction

1.1 An introduction to froth flotation

Froth flotation is the most commonly used separation process in the mineral industry.

Since the inception of the flotation process in industry in 1905, various researchers have

contributed to the continuous innovation and development in the understanding of the

process (Fuerstenau et al., 2007). Flotation has also been applied to achieve concen-

tration and separation in other industries, such as coal, paper recycling, wastewater

treatment, and oil sands extraction (Rao and Liu, 2013; Rubio et al., 2002; Xing et al.,

2015, 2017). Among the various types of mineral ores, sulfide, copper, and zinc ores are

extensively beneficiated using froth flotation (Fuerstenau et al., 2007). Froth flotation

is primarily driven on the basis of differences in surface properties of the valuable and

the gangue minerals present in the ore. Flotation can be described as the sequence of

following physio-chemical events: i) grinding the ore to obtain sufficient liberation be-

tween desired minerals and gangue minerals, ii) mixing the ore slurry with the required

dosage of different reagents to impart surface hydrophobicity to the desired minerals and

maintain selectivity, iii) attachment of the desired hydrophobic mineral surface to the

rising bubbles, and iv) upward motion of the air bubble-particle aggregate to the top of

the cell and eventually skimming the desired mineral-rich froth layer (Dewitt, 1940; Ata,

1
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2012; Yianatos et al., 2009).

Figure 1.1: A schematic representation of flotation process

A schematic diagram of a flotation cell is given in Figure 1.1 that demonstrates the

basic flotation principle. It shows that the particles attached to the bubbles in the pulp

are rising up the slurry against gravity to reach the froth layer. As seen in Figure 1.1,

the flotation cell creates two different sections, pulp and froth, based on the air present

in the cell. Various sub-processes happen in the flotation cell to recover the valuable

mineral while maintaining a desired quality or grade. These sub-processes are discussed

below.

Attachment and detachment The attachment sub-process is defined as the suc-

cessful capture of the particle with hydrophobic surface layer by the rising bubble and

forming a bubble-particle aggregate (Derjaguin and Dukhin, 1993). Detachment, on the

other hand, is the dislodging of the particles from the formed aggregate when the kinetics

energy exceeds or equals the detachment energy (J. Ralston and Mischuk, 1999).
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True flotation, entrainment, and drainage These sub-processes affect the particle

movement across the pulp-froth interface. A mineral particle is said to be recovered by

true flotation when it rises up the froth while being attached to the bubble. On the

contrary, entrainment is defined as the non-selective mechanical transfer of suspended

mineral particles (hydrophobic and hydrophilic) from the pulp to the froth section, and

subsequently to the concentrate (Wang et al., 2016; Gong et al., 2010). Drainage is the

fall-back of the free particles from the froth to the pulp section through the plateau

border, defined as the hydrodynamic layer between the intersecting bubbles. Phenomena

such as bubble burst and coalescence in the froth section lead to the detachment of

particles from bubbles and further possibility of re-attachment, transfer to concentrate,

or drainage to the pulp section.

Flotation is a complex process with many physical and chemical sub-processes and

the presence of multiple phases (solid, liquid, and gas). Various factors are responsible

to achieve the desired separation and maintain the favorable conditions for the flota-

tion. These factors can be classified as being related to chemistry (reagents), equipment

(cell sizing and design, air flow, mixing rate), and operation (feed properties, feed rate,

liberation, particle size, pulp density, pH)(Kawatra, 2002).

Reagents have a crucial role in the process to enable the separation. The different

types of reagents are collectors, frothers, activators, depressants, and pH regulators (De-

witt, 1940). Collectors are organic chemicals responsible for developing a hydrophobic

layer, selectively on the valuable mineral for bubble-particle attachment. Frothers are

used to stablize the froth by lowering the surface tension of the liquid and increasing the

film strength of the gas bubbles (Bulatovic, 2007; McFadzean et al., 2016). A stable froth

leads to a higher mineral recovery. Activators and depressants influence the selective in-

teraction of a mineral particle with the collector. The activator improves the conditions

for interaction and strengthens the attachment process. In contrast, depressants mod-
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ify the mineral particle-collector interaction to inhibit the mineral hydrophobization and

make the mineral hydrophilic with respect to the attachment sub-process (Bulatovic,

2007). Finally, pH regulators also improve the mineral particle-collector interaction by

controlling the hydrogen ion concentration and consequently, the pH of the pulp.

Equipment factors play an important role in maintaining the conditions required for

the mineral separation. The air flow rate affects the mineral recovery and product grade

through its relationship with bubble size, plateau border area, air hold-up, flotation rate

constant, and attachment sub-process (Fuerstenau et al., 2007; Laplante et al., 1983). The

impeller provides the turbulent energy and its speed has an impact on the attachment

and detachment sub-processes. Operational factors such as feed rate, liberation, pulp

density, and particle size also have relationships with various flotation sub-processes and

directly affect process outputs (mineral recovery and grade). For instance, feed particle

size controls the mineral liberation and affects attachment and detachment kinetics. It

should be emphasized that all the flotation process factors discussed above should be

considered for a smooth and upset-free operation. Disturbance in any of the factors

have an influence on other factors, making it difficult to identify the root cause of a

disturbance. The interdependence of the factors causes difficulty in flotation predictive

modeling and its validation (Klimpel, 1995; Rao et al., 1995).

1.2 Motivation: Disturbances, modeling, control, and

measurements

The main objective of the flotation process is the maximization of grade and recovery

while maintaining stable operation (Fuerstenau et al., 2007). However, highly varying

feed properties and other related operating parameters, potentially leading to poor froth
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stability, can result in reduced grade and/or recovery of the desired mineral. With the

depletion in easily separable ore and high processing costs, it is of utmost importance

to identify and reject any disturbance causing a drop in quality or mineral recovery. A

robust monitoring scheme would aid in identifying the root cause of various disturbances

in the process.

A complete understanding of the system based on its dynamic modeling will lead

to better process control, thereby increasing the profitability. Dynamic modeling can

be approached in different ways: empirical modeling (based on experimental data), fun-

damental modeling (based on first principles) and semi-empirical (based on both data

and first principles). Flotation modeling began with an in-depth understanding of the

pulp phase. However, various researchers explored the importance of froth phase and its

modeling in the 1960 (Arbiter and Harris, 1962; Harris et al., 1963; Harris and Rimmer,

1966). The froth phase is considered to be significant and needs to be studied in detail for

better understanding of the flotation process (Vera et al., 2002). In most of the modeling

studies, a flotation cell has been divided into two phases: pulp and froth. Several empir-

ical and semi-empirical models have been developed to describe the flotation processes

by studying impeller speed and air flow rate (Gorain et al., 1998). Woodburn conducted

the first ever research to use the air recovery for flotation modeling (Woodburn, 1970).

Later on, Hadler et al. (Hadler et al., 2012) studied the relationship between air rate,

froth depth and air recovery and found that the recovery was higher with deeper froth

(Hadler et al., 2012).

Several kinetic models have also been developed to study the flotation rate with

pulp and froth phase dynamics (Vera et al., 2002). Hanumanth et al. (Hanumanth and

Williams, 1992) developed a three-phase model by adding an additional phase to the froth

section. Froth cell was divided into three sections, the pulp phase, primary froth phase

(just above the interface), and the secondary froth phase (rest of the froth) (Hanumanth
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and Williams, 1992). Most of the modeling studies on entrainment were focused towards

developing a empirical relationship between water recovery and entrainment recovery

(Cilek and Umucu, 2001; Bisshop J.P. & White, 1976; Warren, 1985; Kirjavainen, 1992).

One such model is given in equation 1.1 (Cilek and Umucu, 2001).

Rg = x0.2684 − 0.0276Tf (R
−1.10311
w − 0.1186Va) (1.1)

where, Rg is entrainment recovery, x is solids %, Va is the aeration rate, Tf is the froth

thickness, and Rw is the water recovery.

Recently, population balance based modeling has been explored to capture dynamic

changes in bubbles in the froth phase (Bhole et al., 2008; Cruz, 1997). These changes

include bubble bursting and coalescence. Sawyerr et al. (Cruz, 1997) have developed

bubble population balances on two statistically homogeneous zones: the impeller zone

and the bulk zone, as shown in Figure 1.2. It considers that there is no bubble breakage in

the bulk zone, which is mainly characterisized by bubble coalescence. During the last 25

years, a few researchers have been involved with models for column flotation (Vazirizadeh

et al., 2015a,b; Bouchard et al., 2014; Tuteja et al., 1994; Cruz, 1997). These models

connect the hydrodynamic process conditions to the mineral recovery and improve the

theoretical understanding of column flotation.

Currently, empirical models are employed in various process control applications in

the mineral process industry (Ding and Gustafsson, 1999). Empirical models are often

linear and perform well around certain operating conditions at which they were identified.

Also, they do not provide much useful information about the fundamental understanding

of the process.

In summary, several attempts have been made to understand the flotation process

through modeling and present a structure for applications such as process optimization,



1.2: Motivation: Disturbances, modeling, control, and measurements 7

Figure 1.2: Different zones considered for bubble population modeling: reproduced from
(F. Sawyerr D.A. Deglon and O’Connor, 1998)

design, and control. The developed theoretical models can be mainly classified as micro-

scale models that explain sub-processes such as bubble-particle collision, attachment, or

detachment in depth (Derjaguin and Dukhin, 1993; Parkinson and Ralston, 2011; Yoon

and Mao, 1996; Dobby and Finch, 1987; Bascur, 2000). These models provide fundamen-

tal explanations using surface forces and Derjaguin-Landau-Verwey-Overbeek(DLVO)

theory (Dobby and Finch, 1987; Yoon and Mao, 1996). On the other hand, macro-scale

kinetic models provide information about mineral transfer from feed to the concentrate

through flotation rate constants (Vera et al., 2002; Hanumanth and Williams, 1992).

These models typically use experimental data to identify the model parameters and do

not connect it to the microscopic level sub-processes. In the absence of a complete model-

ing framework that connects these two scales of operation, there is no way of determining

which of multiple possible disturbances has affected the process.

Laurila et al. (Laurila et al., 2002) construct a hierarchy for process control in flota-

tion processes, as shown in Figure 1.3; this consists of four levels and aims at maximizing
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profit for the industry. Instrumentation, or measurements are vital components for de-

veloping control schemes. Basic process control for flotation deals with controlling the

primary variables, which are pulp level, air flowrate, and reagent dosages (Shean and Cil-

liers, 2011). Controlling these variables at the desired set points indirectly controls the

main process outputs, mineral grade and recovery. However, advanced process control

(APC) directly controls the main process outputs using modern control techniques such

as model predictive control with real-time optimization. APC works toward developing

a robust system which is unaffected by changes in process conditions. The majority of

the APC systems in flotation are designed to control mass pulls, specific stream grade,

and recovery. Mass pull, or the amount of concentrate collected, is measured using den-

sity and flowrate of the concentrate streams (Shean and Cilliers, 2011). At industrial

scale, mineral separation is achieved thorough a flotation circuit that consists of various

flotation cells. Controlled variables in each cell are connected and controlled by ma-

nipulating the respective input variables for the cell. Each cell is also characterized by

individual operational constraints that have to be considered for control schemes (Bergh

and Yianatos, 2011). Circuit-wide control for flotation, which is frequently applied in

mineral industries, makes it difficult to target disturbance in any given cell (Singh et al.,

2003; Bergh and Yianatos, 2013). It is therefore necessary to design control schemes

that are developed for individual cells and are easily scalable to the whole circuit. New

monitoring and control schemes should be able to identify and reject the disturbances

while informing about the root cause and maintaining desired grade and recovery.

As stated, instrumentation and measurements are the basic block for any control

scheme for froth flotation. Flow sensors are employed to measure the flow rates for

different streams, which are further used for pulp level control purposes (Laurila et al.,

2002). Other similar sensors employed are pH meters, temperature sensors, reagent

flows, and interface detection sensor. Grade and recovery, being the most important
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Figure 1.3: Hierarchy levels for process control in froth flotation operation: reproduced
from (Laurila et al., 2002)

process variables, are measured through elemental assaying. Typically, XRF is used to

measure the contents for the process streams in two ways: a) Offline laboratory analysis

through XRF, and b) Online sample analyzer (OSA). Offline measurements through

XRF suffer the drawback of long delays that make it challenging to use them for control

or monitoring applications (Laurila et al., 2002). A typical on-stream XRF analyzer is

presented in Figure 1.4. It consists of multiple sampling points with different flow rates

and requires frequent calibration. Online sample analyzers have an advantage of low

sampling time of 15 seconds to 1 minute, with cycle time of 5 to 15 minutes (Laurila

et al., 2002). However, OSA instruments are expensive to maintain, hard to calibrate

and, have lesser accuracy than the offline laboratory measurements (Jahedsaravani et al.,

2017; Holtham and Nguyen, 2002). As a consequence, we need a better alternative for

online measurements for mineral grade and recovery. The alternative method should be

fast, accurate, robust, inexpensive, and require lesser efforts on calibration.

Various researchers have tried to explore the relationship between froth surface visuals

and mineral content (Aldrich et al., 2010; Barbian et al., 2007; Bonifazi et al., 2000;

Holtham and Nguyen, 2002; Leiva et al., 2012; Moolman et al., 1996; Duchesne, 2010;
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Liu et al., 2004; Bartolacci et al., 2006; Mehrabi et al., 2014). Machine vision research

has been primarily in the field of developing algorithms for extracting maximum froth

visual features (Mehrabi et al., 2014; Jahedsaravani et al., 2017; Aldrich et al., 2010;

Ventura-Medina and Cilliers, 2002; Wang and Stephasson, 1999; Wang et al., 2003) and

controlling the mass pull through froth velocity (Holtham and Nguyen, 2002). In other

research, some researchers have tried to develop a mathematical correlation for grade

using few image features such as color, bubble size, froth stability, or froth velocity

(Supomo et al., 2008; Runge et al., 2007; Marais and Aldrich, 2010; Bonifazi et al.,

2000; Hargrave and Hall, 1997). One such study by Runge et al. (Runge et al., 2007)

developed a correlation between copper grade and average bubble size for a particular

flotation test (Runge et al., 2007). The results, reproduced in Figure 1.5, demonstrate

that although there is a good correlation, a better model before being applied in a control

and monitoring framework. Combining information from all the possible visual features

would be a better input set for measuring real-time grade and recovery. Despite various

studies related to machine vision, operators rely on their experience and eye vision apart

from XRF for qualitative assessment before taking any control decisions. It is therefore

necessary to provide a replacement supplement to OSA that could also estimate grade

and recovery in real-time.

1.3 Thesis contribution

It is challenging to develop a monitoring scheme for froth flotation with many variable

interactions and process variables affecting the outputs, which are mineral grade and

recovery. This thesis addresses some of the challenges described in previous sections. The

thesis provides original contributions in three important areas for the improvement in

froth flotation understanding and monitoring. These include dynamic modeling, online
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Figure 1.4: Use of a typical online XRF analyzer for process monitoring and control:
reproduced from (Laurila et al., 2002)

measurements, and monitoring scheme. The overall scheme is developed to solve the

following practical concerns and objectives in batch mechanical cell-based flotation:

• Establish a method to inferentially measure the mineral grade and recovery in

real-time

• Demonstrate the validity of the proposed method of measuring real time grade and

recovery for other applications of froth flotation

• Identify the disturbances in equipment-based variables such as impeller speed and

air flow rate

• Identify the disturbances in feed particle size and its effect on flotation performance

• Decouple the overall flotation recovery into recovery by true flotation and recovery

by entrainment
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Figure 1.5: Correlation between average bubble size (cm) and copper grade (%) in a
flotation test: reproduced from (Runge et al., 2007)

• Identify the disturbances in collector reagents and its effect on flotation performance

• Implement the sensing and monitoring scheme on froth flotation for benefication of

real industrial ore

The three areas of theoretical developments as mentioned above and their implemen-

tation using mechanical cell flotation are briefly explained in the following subsections.



1.3: Thesis contribution 13

1.3.1 Development of a dynamic modeling framework to con-

nect sub-processes to process outputs

A multi-scale modeling structure was developed to combine micro-scale and macro-scale

phenomena to the overall flotation process. A compartment-based set of models were

explored further to include sub-processes in the flotation. Different sets of compart-

ments were used with two compartments of gas phase and slurry phase in each pulp and

froth section. The modeling framework utilized the fact that a mineral particle could be

present in any one of the compartments at any given instant of time. Ordinary differen-

tial equations (ODE’s) were used to represent the states of mineral particles and their

transfer from one compartment to another. Intra-phase and inter-phase sub-processes

were considered in the set of ODEs. These sub-processes include attachment, detach-

ment, entrainment, drainage, and transfer from froth to concentrate. A fundamental

description of the micro-scale sub-processes were incorporated to the overall modeling

framework. For instance, the attachment rate constant, a parameter in the attachment

sub-process, is a crucial parameter for mineral separation. Its dependence on factors such

as particle size, bubble size, impeller energy was included in the model through micro-

scale description of probabilities of collision, attachment, and stability. In conclusion, a

fundamental modeling framework was developed to establish the relationship of various

process parameters to the overall process outputs through the respective sub-processes

at the micro-scale.

1.3.2 Development of a inferential image based model to obtain

the online measurements of mineral grade and recovery

The commercial froth image package VisioFroth by Metso R© Minerals was used to capture

froth surface images and extract image features. These features extract sufficient infor-
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mation in the form of 22 variables, ranging from static features such as different color

components, bubble size and froth width to dynamic features such as froth velocity, sta-

bility and collapse rate. Bubble segmentation, which is used in the analysis, is shown in

Figure 1.6. VisioFroth uses a watershed algorithm to obtain the required segmentation.

Image features were used to develop online soft sensors using various machine learning

techniques. Principal component analysis (PCA) was used to study the correlation among

the image features and understand the data collinearity. Supervised machine learning

regression algorithms were used for the correlation of image features to the process out-

puts. These algorithms included principal component regression (PCR), partial least

square regression (PLSR), random forest, and support vector regression (SVR). Also, a

mass balance approach was applied to estimate the mineral recovery using image-based

sensing of online grade and solids recovery for multi-component flotation. Soft sensor

model development considered the necessary robustness for the image based methods

and showed the applicability at diverse various process conditions without the need of

re-calibration. The VisioFroth package was chosen as it is already installed at various

mineral and oil sands industries across Canada. However, it is not fully utilized to its

potential as it is mainly used to control mass pull for the concentrate stream, and this

work expands its potential use. Additionally, soft sensors are easy to maintain and do

not require extra capital for the installation.

Figure 1.6: Bubble segmentation for a sample image extracted through VisioFroth



1.3: Thesis contribution 15

1.3.3 Monitoring and disturbance identification

The model framework described in section 1.3.1 is used to develop a state-space system of

equations. The model was reconciled with online process measurements as described in

section 1.3.2. Various model parameters were used to characterize the sub-processes and

concentration of mineral particles in different compartments were considered as the states

of the model. Based on the observability analysis and available process measurements,

the model was updated in real-time using online measurements and state estimation. Pa-

rameters were augmented to the states for parameter estimation. An extended Kalman

filter (EKF) was used for the state and parameter estimation. The estimated parameters

were used to track the dynamics of the process and identify disturbances by comparing

the dynamic trend to the normal operating conditions. Heuristics could be developed for

various possible disturbances in the flotation process. Also, updated model and param-

eter estimates could be used to inferentially measure the contribution of entrainment to

the overall mineral recovery. Moreover, entrainment estimation is very useful to target

the reduction in entrainment of a specific mineral to improve the product grade while

maintaining its optimum recovery. The overall proposed scheme can be implemented at

the flotation circuit level while being applied in individual cells. In the case of a drop

in mineral recovery or grade, it is then possible to track the cell that is causing the

disturbance and identify its root cause to provide a remedy for the upset.

1.3.4 Diverse process scenarios and implementation of moni-

toring scheme and soft sensors

It was required to develop the monitoring schemes and soft sensors for varied process and

feed conditions. A JK Teck flotation cell was used for the batch flotation with controllable

impeller speed and air flow rate. VisioFroth system was installed on the mechanical cell
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for image features for all the flotation studies. Following types of flotation scenarios were

explored for this study:

• Pure galena (lead sulfide, PbS) flotation

• Flotation for synthetic ore comprising of galena and quartz (silica, SiO2)

• Flotation for real industrial ore mainly consisting of galena and sphalerite (zinc

sulfide, ZnS) among other gangue minerals

• Oil sands extraction using batch flotation to obtain concentrated bitumen

Diverse process conditions were used to show the applicability of the developed meth-

ods and their robustness. Experiments were designed to artificially create the distur-

bances in order to develop and validate heuristics for monitoring and disturbance iden-

tification. Flotation conditions were used to represent the industrial scale flotation. Oil

sands flotation was used to understand the relationship between froth images and bitu-

men grade and recovery. Darker surface images for the oil sands flotation with lesser

variation compared to the mineral processing application provided a challenging environ-

ment for the soft sensor development. Inclusion of oil sands flotation in the study shows

the potential of the image-based soft sensor development to other flotation applications.

1.4 Thesis outline

The thesis is organized as the collection of five primary chapters and a chapter on conclu-

sions, aside from this introductory chapter. Batch flotation experiments were conducted

for different studies and designed based on the requirements. The chapters are described

as follows.
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Chapter 2: Dynamic Modeling and Real-Time Monitoring of Froth Flotation

The chapter focusses on the batch flotation of pure galena mineral. A compartmental

model is expanded to include sub-processes with the help of model parameters. Con-

sidering the feed is pure mineral, froth images were correlated to the mineral recovery

using PCR and PLSR. It demonstrates the application of EKF algorithm for parameter

estimation with attachment and detachment rate constant as the selected parameters. A

diverse range of experiments is used to create and track disturbances in air flow rate and

impeller speed. This chapter provides a solid proof of concept of the developed monitor-

ing algorithm for froth flotation.

Chapter 3: Monitoring the feed particle size in froth flotation using parameter esti-

mation with fundamental dynamic models

This chapter extends the study for pure mineral flotation to understand the effect of feed

particle size. It is not uncommon for disturbances to occur in the feed particle size. The

work in this chapter focuses on proposing a method for feed particle size tracking based

on feedback control that can replace the traditional feedforward control approach for feed

particle size. A dynamic model framework similar to that of Chapter 2 is used to study

the system with inclusion of the effect of feed particle size. Two feed particle size track-

ing methods are proposed and compared using batch flotation experiments for different

particle size distributions. Additionally, a random forest machine learning method is

implemented and proposed for inferential sensing of pure mineral recovery through froth

images.

Chapter 4: Realtime entrainment monitoring using fundamental models and froth im-

ages

The crucial issue of entrainment is addressed in this chapter. It is of great importance to
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reduce entrainment for increasing mineral grade in the concentrate. The chapter expands

on the entrainment and drainage sub-processes in the dynamic model. Experiments are

conducted with a synthetic mixture of galena and quartz used as feed to represent a

mixture of hydrophobic and hydrophilic minerals, respectively. Support vector machine

algorithms are utilized for image- based sensing of grade and recovery for both the min-

erals using froth images. The image-based models extends the previously developed

algorithms from single component feed to a two-component mixture. Parameter esti-

mation for entrainment and drainage related model parameters are used to decouple the

recovery components to true flotation and entrainment recovery. Additionally, the effects

of feed particle size on entrainment are demonstrated in this chapter. The individual re-

covery estimation allows the control algorithms to specifically target the gangue mineral

entrainment and improve the process efficiency.

Chapter 5: Development of online soft sensors and fundamental model based process

monitoring for complex sulfide ore flotation

This chapter extends the study towards a real industrial complex sulfide ore obtained

from Alaska red dog mine. The ore consists of galena and sphalerite as the desired

minerals and pyrite, quartz, and barium oxide as the gangue minerals. Soft sensor model

development solves the challenge associated with developing image-based soft sensors for

multi-stage flotation processes through support vector machine algorithms. Flotation

conditions including the grinding size and reagent dosages are obtained from industrial

standards to represent a realistic flotation scenario. It establishes a methodology for

online measurements on grade and recovery for both the stages of flotation of complex

sulfide ores, which are the lead rougher and zinc rougher stages. A fundamental modeling

framework is used for multiple stages to monitor the flotation process. Additionally,

heuristics are developed for disturbances in reagent dosages. Monitoring and soft sensing
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is demonstrated for a full scale multi-stage flotation of a complex sulfide ore.

Chapter 6: Development of a vision-based online soft sensor for oil sands flotation

using support vector regression and its application in the dynamic monitoring of bitumen

extraction

Other applications of froth flotation are explored in this chapter. The primary objective

is to develop and demonstrate that the online soft sensing method can be extended to

other industries that use flotation. The oil sands industry, based on its relevance to

the Canadian economy and the difficulty it presents in froth image sensing is chosen

for the study. Different types of oil sands ore obtained from the Athabasca field. A

soft sensing method is developed for bitumen grade and recovery using support vector

regressions. Calibration is performed against the off-line measurements obtained using

the Dean-Stark method. The developed soft sensor could be introduced for the purpose

of dynamic monitoring and advanced process control applications. The applicability of

the single model for different types of ore confirms its robustness at different process

conditions and for different feeds with varying bitumen content.

Chapter 6: Conclusions and future work

This chapter summarizes the research in this thesis and provides conclusions for the

findings and developments. It also presents the recommendations for the future research

path and extension of the study to other flotation systems.

It is noted that the thesis is based on the paper-format and follows the rules set

by Faculty of Graduate Studies and Research at University of Alberta. Therefore, to

maintain the paper-format and ensure completeness, some part of the chapters might

contain repetitions, especially in the methodology sections. The overlap was not removed

in order to provide smooth flow of the thesis to the readers and ease the understanding

for the material.
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Chapter 2

Dynamic Modeling and Real-Time
Monitoring of Froth Flotation1

A dynamic fundamental model was developed linking processes from the microscopic scale

to the equipment scale for batch froth flotation. State estimation, fault detection, and dis-

turbance identification were implemented using the extended Kalman filter (EKF), which

reconciles real-time measurements with dynamic models. The online measurements for

the EKF were obtained through image analysis of froth images that were captured and

analyzed using the commercial package VisioFroth (MetsoR© Minerals). The extracted

image features were then correlated to recovery using principal component analysis and

partial least squares regression. The performance of real-time state estimation and fault

detection was validated using batch flotation of pure galena at various operating condi-

tions. The image features that were strongly representative of recovery were identified,

and calibration and validation were performed against off-line measurements of recovery.

The EKF successfully captured the dynamics of the process by updating the model states

and parameters using the online measurements. Finally, disturbances in the air flow rate

and impeller speed were introduced into the system, and the dynamic behavior of the

flotation process was successfully tracked and the disturbances were identified using state

1A version of this chapter has been published as Popli, K.; Sekhavat, M.; Afacan, A.; Dubljevic, S.;
Liu, Q.; Prasad, V., 2015 ”Dynamic Modeling and Real-Time Monitoring of Froth Flotation”. Minerals

26
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estimation.

2.1 Introduction

Froth flotation is the most common method in the minerals industry for the selective

recovery of value mineral(s) from finely ground ores. It is based on the differences in the

surface hydrophobicity of valuable and gangue minerals. The chemical (e.g., collector,

frother, etc.) and physical conditions (e.g., feed rate, pulp density, agitation speed, air

flow rate, etc.) are inter-related in froth flotation processes. The main objective of froth

flotation is to maximize the grade and recovery of the value mineral(s) while maintaining

upset-free operation (Fuerstenau et al., 2007). In typical froth flotation operations, large

variations in the feed composition and various disturbances affecting the system result

in a decrease in the grade and recovery. Control strategies applied to flotation systems

typically target bias, froth depth, and gas hold up using feedback control by manipulating

variables such as air and water flow rates, and reagent addition (Bouchard et al., 2005;

Villar et al., 1999; Maffei and de Oliveira Luz, 2000). Typically, empirical models are

used in the design of these feedback controllers. These empirical models are usually

linear and only valid in narrow operating zones, thus making them inaccurate in larger

operating ranges. Furthermore, since they do not provide any physical insight into the

process and its behavior, they do not have any diagnostic utility outside of their use in

control. Fundamental models, on the other hand, incorporate physical understanding of

the process and can be used for predictions of grade and recovery and the diagnosis and

monitoring of process behaviour in the presence of disturbances and process uncertainty.

The fundamental models developed by (Neethling and Cilliers, 2002; Neethling et al.,

2003; Neethling and Cilliers, 2009) that are based on attachment of solids to bubbles

using first order rate constants have been accepted widely in mineral processing. However,
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these models cannot be used for dynamic purposes such as fault detection and real-time

process monitoring. Therefore, there is a requirement for dynamic fundamental models

in froth flotation.

Dynamic models must be coupled with real-time measurements and a model-updating

scheme for process monitoring. However, the complexity and harshness of the process

environment in froth flotation present considerable challenges for the deployment of hard-

ware sensors in the real-time measurement of important process variables. Soft sensing

is an alternative to hard sensing and refers to the use of inferential relations to provide

estimations of variables of interest. Various estimators are used in chemical processes to

estimate the states of the system. These include the Kalman filter (KF), the extended

Kalman filter (EKF), the ensemble Kalman filter (EnKF), and the particle filter (PF)

(Geetha et al., 2014; Höckerdal et al., 2011; Prasad et al., 2002) . The EKF works for

nonlinear systems and has been used effectively for fault detection purposes (Benkouider

et al., 2009).

The EKF minimizes the error covariance between the measured and the predicted

output (grade and/or recovery for froth flotation). Conventionally, X-ray fluorescence

(XRF) is used to determine the composition of the process streams. However, employing

an online XRF is expensive, and calibrating it is difficult due to matrix effects in the

samples. It is also known that both grade and recovery in the concentrate are strongly

related to froth structure (Moolman et al., 1996). Therefore, observing froth images

can provide information about the grade of the concentrate product, which can then be

correlated to the recovery using the grades of the feed and tailing streams. In general,

control decisions are made by operators using basic inferences based on visual observation

without any further analysis of the images (Runge et al., 2007). Quantifying the dynamic

information obtained from the images using machine vision is essential for their use in

control and monitoring, and different image processing algorithms are available for bub-
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ble segmentation and velocity calculations. These algorithms include edge detection and

watershed algorithms for bubble segmentation as well as Fourier and wavelet transforms

for velocity calculations (Aldrich et al., 2010). Some of the commonly used image pro-

cessing software for froth flotation are: (1) VisioFroth (MetsoR© Minerals, Orleans Cedex,

France), (2) METCAM FC (SGS, Lakefield, ON, Canada), (3) FrothMasterTM(Outotec,

Burlington, ON, Canada) (Leiva et al., 2012) and (4) PlantVisionTM (KnowledgeScape

Inc, Salt Lake City, UT, USA). Several researchers have tried to correlate individual

variables such as bubble size, color, and texture to grade and/or recovery; however, the

majority of the studies do not provide quantitative relations suitable for calibration of

these variables against the grade/recovery (Moolman et al., 1996).

In this study, we develop a dynamic fundamental model for batch flotation incorporat-

ing information from multiple scales, develop a method to obtain quantitative informa-

tion about recovery in flotation from dynamic images using principal component analysis

(PCA) and partial least squares (PLS) regression, develop a soft sensor for real-time

updating of the model using extended Kalman filtering (EKF), and then demonstrate

the efficacy of the soft sensor in identifying and tracking unknown disturbances in batch

flotation tests on galena conducted at different operating conditions.

2.2 Experimental Section

Batch flotation experiments are conducted using a mechanical flotation cell to train and

validate the aforementioned real-time estimation algorithm. Flotation of high purity

galena single mineral is chosen to demonstrate the fault detection strategy and represent

a proof of concept for monitoring using fundamental models. In future work, the methods

will be demonstrated on more complex sulphide ores. For these tests, the effects of the air

flow rate, impeller speed, collector, and frother dosage on recovery are investigated. The
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experiments are carried out in a JK Tech batch flotation cell (Julius Kruttschnitt Mineral

Research Centre, University of Queensland, Indooroopilly, Australia) with a capacity of

1.6 L. The cell is equipped with a bottom-drive mechanical stirrer and air supply is

provided from the bottom of the cell.

The batch flotation was monitored with a VisioFroth system (Metso R© Minerals) to

capture the images at the top of the froth surface as shown in Figure 2.1. Hardware

components of the VisioFroth system include a single IP camera, a laser, and LED

lights. These images are then analysed using the software component of VisioFroth the

so-called optimizing control system (OCS), to measure several image features. This image

processing package is used to measure the angle and magnitude of the froth velocity,

bubble distributions, color, froth texture, and stability as well as the height of the froth

overflowing over the lip.

Figure 2.1: (a) Schematic diagram for batch flotation process equipped with VisioFroth,
(b) top view of the batch flotation cell.

The laser is used to find the height of the overflowing froth using the change in the

horizontal position of the laser line on top of the froth as shown in Figure 2.3. The
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reference froth height level corresponds to the laser being at the baseline and is at the

initial time. As the froth height increases, the laser line moves a new position (d).

This difference in laser line positions is used to deduce the horizontal distance from

the baseline. The laser angle is set at the time of installation. The froth height (b) is

calculated as:

b = a− f.tan(c) (2.1)

Figure 2.2: Illustration of dimension reduction using principal component analysis (PCA)
with three principal components.

Table 2.1 lists the various VisioFroth measurements and algorithms.

Statistical techniques, including principal component analysis (PCA) and partial least

square (PLS) regression, are used to identify the important features of the images and

develop a correlation for the recovery using offline measurements. The use of PCA results
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Table 2.1: VisioFroth measurements and algorithms.

Variable Algorithm
Velocity Modified Fourier transforms to calculate the displacement between two consecutive images.
Bubble size measurement Watershed techniques are used to outline bubbles and hence calculate the bubble surface area.
Collapse rate Calculated based on change in bubble surface area.

in dimension reduction of the data for better understanding of the given information

(Jolliffe, 2005). The basic principle of this method is to represent the input matrix of

data X in terms of scores (T) and loadings (P):

X = TP T + E (2.2)

Dimension reduction and correlation is illustrated in Figure 2.2 for the case of three

principal components. The scores represent the projection of the original data samples

onto the transformed space of reduced dimension, and the loadings represent the weights

or contributions of the original variables to each principal component. Only the principal

components that contribute significantly to explaining the variance in the original data

are retained, and dimension reduction is obtained by truncating the number of variables

based on this principle. In Equation 2.2, E represents the error in the representation

after truncation. Thus, variables that have high loadings on the most significant principal

components contribute significantly to explaining the variance in the data, and can be

considered to be significant. To obtain a correlation between the input and output

data, principal component regression (PCR) is employed. In PCR, regression of the

score matrix from PCA is performed against the output measurement (recovery). PLSR

(partial least squares regression) is also used to develop the correlation between images

and recovery (Geladi and Kowalski, 1986).

Potassium ethyl xanthate (KEX) and methyl isobutyl carbinol (MIBC) were used as
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Figure 2.3: Field of view and demonstration of froth height measurement using the laser
light.

collector and frother, respectively. Galena was obtained from Boreal Science Company

in Canada in cleaved form. The galena was crushed and dry ground to -106 μm. The

particle size distribution of the ground galena sample is presented in Table 2.2.

Table 2.2: Particle size distribution for galena feed.
Passing Size (μm) Cumulative Weight (%)
106 100
75 96
45 37
38 30

The output of the flotation process, recovery, is dependent on the air flow rate, im-

peller speed, collector dosage, and frother dosage. In order to capture a wide range of

these operating conditions, a fractional factorial design was used to generate different

operating conditions and levels of these factors, as summarized in Table 2.3. In each

run, after selecting a desired operating condition, galena was mixed with water in the
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concentration of 50 g galena/1.5 L water. First, the slurry was conditioned with collector

and frother for 2 and 6 min, respectively. Then, air was supplied to the cell and froth

was collected at intervals of 10 s up to 100 s, and at 50 s intervals for the next 200 s. The

collected froth was dried after vacuum filtration and weighed for recovery calculation.

Also, images of top surface of the froth were extracted at sample time intervals of 1 s.

Table 2.3: Operating conditions used in the factorial experimental design.
Runs Air Flow rate (L/min) Impeller Speed (rpm) Frother (MIBC) Dosage (mol/L slurry) Collector (KEX) Dosage (mol/L slurry)
1 8 500 0.042 10−5

2 14 500 0.042 10−3

3 8 1100 0.042 10−3

4 14 1100 0.042 10−5

5 8 500 0.1 10−3

6 14 500 0.1 10−5

7 8 1100 0.1 10−5

8 14 1100 0.1 10−3

For testing the fault detection algorithm, an operating condition was selected and a

step disturbance was introduced either in the air flow rate or the impeller speed. For the

first disturbance test, the conditions of run 8 (described in Table 2.3) were used initially,

and the air flow was then decreased from 14 to 8 L/min at time t = 5 s. For the second

disturbance test, the conditions of run 1 were used initially, and the impeller speed was

changed from 500 to 1100 rpm at time t = 5 s.

2.3 Model Development

A flotation cell consists of two distinct phases: a pulp phase and a froth phase with

various inter and intra-phase processes involved in the transport of material. The pro-

posed framework in this research is based on a multi-scale approach, where attachment

processes are coupled to equipment scale and inter-phase processes. This was achieved by

formulating population balance, hydraulic force balance, mass transfer and kinetic rate

equations for attachment and detachment and entrainment/drainage of mineral particles.
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A mineral particle can be present at any of these three states, i.e., (1) attached to

the bubbles in the pulp phase, (2) free in the pulp phase, or (3) attached to the bubbles

in the froth phase. Particles could also be free in the froth phase, in water films and

plateau borders, although the number of such particles may be small. However, in order

to focus on the attachment and detachment, these particles were ignored in this study.

The modeling framework that has been proposed is represented in Figure 2.4.

Figure 2.4: Schematic representation of the flotation modeling framework.

There are several mass transfer and kinetic processes between the three phases in the

cell; they are summarized below:

• Selective attachment of mineral particles to the bubbles in the pulp phase (first

order rate process, r1).

• Detachment of particles from bubbles in the pulp phase (first order rate process,

r2).

• Transfer of particles that are attached to bubbles into the froth phase.
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• Transfer of free particles from the pulp phase to the froth phase by entrainment

and transfer of liquid (water) from the froth back to the pulp phase.

• Drop-back of particles from the froth to the slurry. These particles could be free

particles in the froth phase, or attached particles that were detached at some point

in the froth phase. At our level of modeling, we have opted for simplicity and do

not distinguish between these two types of particles.

These sub-processes and recovery can be mathematically described using the follow-

ing equations. The ordinary differential Equations 2.3, 2.4, and 2.5 represent the mass

balances for valuable mineral particles attached to the bubbles in the pulp phase, the

particles that are free in the pulp phase and the particles that are attached to the bubbles

in the froth phase, respectively, and Equation 2.6 represents the recovery of the valuable

mineral particles.

d

dt
(εVpxb) = k1(1− ε)Vpxp − k2εVpxb −Qairxb (2.3)

d

dt
((1− ε)Vpxp) = k2εVpxb − k1(1− ε)Vpxp −QExp +QE′xc (2.4)

d

dt
(εfVfxc) = −k3Vfxc +Qairxb +QExp −QE′xc (2.5)

y =
εfVf tsampk3xc

minit

(2.6)

Here, y is the instantaneous recovery of galena, minit is the amount of galena in the

feed, xb is the concentration of particles on the surface of the bubbles in the pulp, xp is the

concentration of particles free in the pulp, xc is the concentration of particles attached
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in the froth, k1 is the first order rate constant for attachment, k2 is the first order rate

constant for detachment, k3 is the rate of removal of material in the concentrate product,

ε is the volume fraction of air in the pulp, εf is the volume fraction of air in the froth,

Vp is the volume of the pulp phase, Vf is the volume of the froth phase, Qair is the air

flow rate, QE is the volumetric flow rate of slurry from the pulp to the froth layer, QE′
is the volumetric flow rate of liquid drainage from the froth layer to the pulp phase.

The attachment rate constant, k1, and the detachment rate constant, k2, are further

dependent on various probabilities as discussed in the subsequent sections.

2.3.1 Attachment Phenomena in the Pulp Phase

Various studies have shown that the flotation process can be conceptualized as a chemical

reaction (Bloom and Heindel, 2003; Jameson et al., 1977). The most general expression

was proposed by Ahmed and Jameson (Ek, 1992):

dnf
P (t)

dt
= −k′(nf

B(t))
m(nf

P (t))
n (2.7)

where nf
B(t) and nf

P (t) are the concentrations of free bubbles and particles, t is the

flotation time, k′ is the pseudo-rate constant and m and n are the orders of the reaction

with respect to bubbles and particles, respectively. The pseudo-rate constant can be

expressed in terms of micro-process probabilities (Bloom and Heindel, 1997, 2002; Heindel

and Bloom, 1999; Amand, 1999; Schulze, 1992; Schulze and Hecker, 1984; Schulze, 1991)

based on the following assumptions: (1) the reaction is first order (Nguyen et al., 1998;

Woodburn, 1970; Yoon and Mao, 1996) (2) the bubble concentration is constant, and (3)

the volume of the removed particles is negligible (Ek, 1992). Therefore, Equation 2.7 can

be written as:
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dnf
P (t)

dt
= −knf

P (t) (2.8)

where k is the rate constant and can be defined as:

k = ZPcPaslPtpcPstabn
f
B(t) (2.9)

where Z is the bubble-particle collision frequency, Pc is the probability of bubble-

particle collision, Pasl is the probability of bubble-particle attachment by sliding, Ptpc

is the probability of forming a three-phase contact, Pstab is the probability of bubble-

particle aggregate remaining stable during the transfer from the pulp phase to the froth

phase (Bloom and Heindel, 2003).

The number of bubble-particle collisions is defined (Bascur, 2000) as:

Z = 5NPNBd
2
BUt (2.10)

where Z is the number of collisions per unit time per cell volume, Np is the number

of particles ready for collision, NB is the number of bubbles ready for collision, dB is the

mean size of the aggregates and Ut is the turbulent aggregate velocity.

Heindel and Bloom (Heindel and Bloom, 1999) proposed the probability of bubble-

particle collision to be

Pc =
1

1 + |G|

{
1

2

[
RP

RB
+ 1

]3[2(RP

RB

)3

+ 3

(
RP

RB

)2]

+
2Re∗B[

RP

RB
+ 1

]4[(RP

RB

)3

+ 2

(
RP

RB

)2]}
+

|G|
1 + |G|

(2.11)

where Rp and RB are the particle and bubble radius, respectively, and G is the
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dimensionless particle settling velocity and is defined as

G =
νPS

νB
(2.12)

where vps is the particle settling velocity and vB the bubble rise velocity (Bloom and

Heindel, 2003).

The probability of attachment by sliding is expressed as (Heindel and Bloom, 1999):

Pasl = exp

{
− 2

(
λ̄

Cb

)(
RP

RP +RB

)(
g(r)−G

|k(r)| −G

)(
ho

hcrit

− 1

)}
(2.13)

where

g(r) =

(
1− 3RB

4r
− R3

B

4r3

)
+Re∗B

(
RB

r
+

R3
B

r3
− 2R4

B

r4

)
(2.14)

k(r) =

{(
1− 3RB

2r
+

R3
B

2r3

)
+ 2Re∗B

(
RB4

r4
− R3

B

r3
− R2

B

r2
+

RB

r

)}
(2.15)

λ̄ =
6πμlRp

f
(2.16)

where r is approximately equal to RB + RP , f is the fluid friction factor, CB is a

constant representing the bubble surface mobility, ho is the initial thickness of the film

at the time the sliding process begins and the particle starts to contact the bubble, and

hcrit is the liquid film thickness at the time that the film starts to rupture (Bloom and

Heindel, 2003).

The probability of forming a three-phase contact, Ptpc, is assumed to be equal to

unity, as it is considered to be a highly probable event (Bloom and Heindel, 2002). The

probability of bubble-particle aggregate stability, Pstab, is defined (Schulze, 1992) as
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Pstab = 1− exp

(
1− 1

Bo′
)

(2.17)

where

Bo′ =
4R2

P

(
Δρg + 1.9ρε2/3

(RP+RB)1/3

)
+ 3RB

(
2σ
RB

− 2RBρlg

)
sin2

(
π − θ

2

)
∣∣∣6σsin(π − θ

2

)
sin

(
π + θ

2

)∣∣∣ (2.18)

where ε is the Kolmogorov turbulent energy density, g is the acceleration due to

gravity, θ is the contact angle, ρp is the particle density and Δρ = (ρp − ρl) (Bloom and

Heindel, 2003).

2.3.2 Detachment Phenomena in the Pulp Phase

Bloom and Heindel (Bloom and Heindel, 2003, 1997) developed a population balance

model to include both attachment and detachment phenomena that can be considered

as the equivalents of forward and reverse reactions.

dnf
P (t)

dt
= −k1n

f
P (t) + k2n

a
B(t) (2.19)

where na
B(t) is the concentration of the bubbles to which particles are attached on

their surface, k1 is the attachment rate constant and k2 is the detachment rate constant.

The first term in Equation 2.19 represents attachment phenomena by the formation of

bubble-particle aggregates and the second term represents detachment phenomena in

which the aggregates become unstable and do not reach the froth layer. The detachment

rate constant, k2, is expressed as
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k2 = Z ′Pdestab = Z ′(1− Pstab) (2.20)

where Z′ is the detachment frequency and Pdestab is the probability of the bubble-

particle aggregate becoming unstable in the pulp phase. The detachment frequency can

be expressed as

Z ′ =

√
C1ε1/3

(dP + dB)2/3
(2.21)

where C1 is an empirical constant taken to be 2.

The dependence of the attachment and detachment rate constants on the probabilities

of bubble-particle collision, attachment by sliding, forming a three-phase contact and

aggregate stability during transfer from the pulp to the froth are summarized in Figure

2.5. These relations are used in the interpretation of the online estimates of parameters

and disturbances affecting the system.

2.3.3 State Space Model

For parameter estimation and online updating of the proposed model, the three differ-

ential equations (Equations 2.3 - 2.5) are expressed in state-space form. The states and

the output are given by

dx

dt
= Ax(t) + Bu(t) (2.22)

⎡⎢⎢⎢⎢⎣
ẋ1

ẋ2

ẋ3

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
−a1 a2 0

a3 −a4 a5

a7 0 −(a8 + a9)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
x1(t)

x2(t)

x3(t)

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎣
0

a6

0

⎤⎥⎥⎥⎥⎦ (2.23)
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Figure 2.5: States and outputs of models and their dependence on model parameters.
y represents the output (recovery), xb is the concentration of particles on the surface of
the bubbles in the pulp, xp is the concentration of particles free in the pulp, xc is the
concentration of particles attached in the froth, Z is the number of collisions per unit time
per cell volume, Pc is the probability of bubble-particle collision, Pasl is the probability
of attachment by sliding, Ptpc is the probability of forming a three-phase contact, Pstab

is the probability of bubble-particle aggregate stability during transfer from the pulp to
the froth phase, nf

B is the concentration and Z′ is the detachment frequency of particles.

y(t) =

[
0 0

εVf tsampk3
minit

]⎡⎢⎢⎢⎢⎣
x1(t)

x2(t)

x3(t)

⎤⎥⎥⎥⎥⎦ (2.24)

where y is the instantaneous recovery of galena, minit is the initial mass of material in

the batch flotation cell, k3 is the rate of removal of material in the concentrate product,

x1 is the first state, i.e., the mass of solids attached to the bubbles per unit volume of

pulp phase, x2 is the second state, i.e., the mass of solids free in the pulp phase per unit

volume of the pulp phase, and x3 is the third state, i.e., the mass of solids attached to
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the bubbles in the froth phase. The input for the state-space model is the air flow rate.

The parameters of the proposed state space model are defined in Table 2.4.

Table 2.4: Parameters used in the state space model.
Parameter Definition

a1 k2 +
Qair

εVp

a2
k1(1−ε)

ε

a3
k2ε
1−ε

a4 k1
a5

QE

(1−ε)VP

a6
ṁ

(1−ε)VP

a7
Qair

εVf

a8
QE

εVf

a9
k3
ε

2.4 State and Parameter Estimation

2.4.1 Offline Estimation: Model Parameters

Model parameters were estimated by minimizing the errors between the predicted recov-

ery and the measured recovery obtained from batch experiments for different operating

conditions. Offline parameter estimation was performed by minimizing the sum of errors

between the model predicted and measured recovery over the time of the batch flotation

runs by using the parameter estimates (k1, k2, k3 and ε) as decision variables. These

offline estimates were used as initial guesses for online estimation.

2.4.2 Online Estimation: State and Parameter Estimation

The extended Kalman filter was used for online estimation of states and parameters.

The EKF works in a predictor-corrector format and on the principle of optimality by
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minimization of the estimated error covariance. Its linear variant, the Kalman filter, is

the optimal linear estimator, while the EKF provides a suboptimal estimate for nonlinear

systems (Prasad et al., 2002; Kalman, 1960; Haddad, 1976).

A nonlinear state space model with states x and outputs y is of the form

ẋ = f(x, u) + w(t), w(t) ∼ N(0, Q) (2.25)

y = g(x) + v(t), w(t) ∼ N(0, R) (2.26)

where w and v represent process and measurement noise, respectively. Set of differen-

tial equations are converted to the linear discrete difference equations using discretization

and Jacobian computations:

xk = Axk−1 +Buk−1 + wk−1 (2.27)

yk = Hxk + vk (2.28)

where,

A =
∂f

∂x
(x̂k−1, uk−1, 0) (2.29)

H =
∂f

∂y
(xk−1, 0) (2.30)

Prediction step for the EKF are given as:

x̂−
k = f(x̂k−1, uk−1, 0) (2.31)
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P−
k = AkPk−1A

T
k +Q (2.32)

Correction step is given as:

Kk = Pk|k−1G
T
k (GkPk|k−1G

T
k +R)−1 (2.33)

x̂k|k = x̂k|k−1 +Kk(yk − g(x̂k|k−1)) (2.34)

Pk|k = (I −KkGk)Pk|k−1 (2.35)

The EKF estimate at the end of each time step is given by x̂k|k, and P̂k|k represents the

covariance of the state estimates. Kk is the Kalman gain at each time step tk. Details

on the augmentation of the parameters to be estimated to the state vector has been

explained by Prasad et al. (Prasad et al., 2002).

Parameters can be estimated by treating them as augmented states with no dynamics

and forming new augmented state matrices (Prasad et al., 2002). However, observability

considerations limit the maximum number of parameters to be estimated in this manner

to be equal to the number of outputs; therefore, only one parameter was estimated

online. However, by running multiple EKFs in parallel, each independently estimating

a different parameter, the performance of the state and output estimation based on the

updating of each parameter was compared. Heuristics were developed for fault detection

by observing the changes in the estimates of these parameters and states in real time

during the process operation, and this is described in the next section.
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2.5 Results and Discussions

2.5.1 Correlation of Image Features to Recovery

Several image features were extracted using VisioFroth and correlated to the recovery

measured offline using PCR and PLSR. Figure 2.6 shows a representative result for the

experiments performed using the operating conditions for run 5 shown in Table 2.3.

The images inset in the figure demonstrate that the image features vary with varying

recovery. PCA indicates that three principal components were sufficient to capture 90%

of the variance. This indicates the various extracted image features are well-correlated

to each other. Features such as the velocity in the x-direction (flowing out of the cell)

and the mean bubble diameter have high loadings with respect to principal component

1, and can be considered to be important variables.

PCR and PLSR were performed using five components in the input space to obtain

better correlation between the image features and the recovery. A comparison of the

correlated recovery against the experimental values is presented in Figure 2.7.

Both PLSR and PCR provide good agreement with the measured recovery values at

different times; thus, either technique can be used along with image analysis to replace

the assay measurement and be used online in real time. It can be concluded that froth

features can provide a good description of process conditions in the form of predicting

recovery. Additionally, the advantages of this technique over other methods such as

online XRF include the ability to sample at shorter intervals, ease of calibration and

being relatively inexpensive.
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Figure 2.6: Percentage variance (bars) and cumulative percentage variance (solid line) of
the image features captured by the principal components.

2.5.2 Offline Parameter Estimation

This section describes the offline fitting of the proposed model to the experimental data

obtained from the batch flotation tests. In each run, the operational conditions of the

experiments are input into the model and the states and the recovery were calculated

and then the results are compared with the experimental data. The parameter estimates

were based on obtaining the lowest error between the model predictions and experimental

values for the recovery. The results for run 1 (operating conditions given in Table 2.3

are shown in Figure 2.8 with estimated values for k1, k2 and k3 as 40, 20 and 40 s−1,

respectively. These parameter estimates are taken as the initial values for the online

estimation using the EKF. Similar fits were obtained for the other operating conditions.

The coefficient of determination (R2) was greater than 86% for all the tests (Sekhavat,
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Figure 2.7: Comparison of principal component regression (PCR, solid line) and par-
tial least squares regression (PLSR, dashed line) with experimental values of recovery
(marker).

2014). This indicates that the fundamental model is able to capture the dynamics of the

batch process, and can be used for process monitoring and control.

2.5.3 Online Estimation: State and Parameter Estimation

Online estimation using the EKF is also demonstrated for the operating conditions of

run 1. Three EKFs were run in parallel, and the corresponding sets of results are pre-

sented with parameter estimation for k1, k2, and k3, respectively. Figure 2.9 shows the

performance of the EKF-based model in predicting recovery in real-time for the case

when parameter k1 is being estimated. Similar results were obtained for the cases when

parameters k2 and k3 were being estimated, respectively. Figure 2.10 shows the online

estimates obtained for each of the parameters being updated independently. It is ob-

served that the rate constant of attachment (k1) increases and that of detachment (k2)
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Figure 2.8: Comparison of model predictions of cumulative recovery based on offline
parameter estimation with experimental data for the batch flotation of galena.

decreases with time due to the changing dynamics of the system. The rate of removal

of material in the concentrate product (k3) decreases with time and reaches a steady

value of 13.3 s−1. The final estimates are summarized in Table 2.5. With the model

being updated in real-time, the updates in estimated values of the parameters highlight

that the dependence of these dynamically varying parameters (k1, k2 and k3) on process

conditions is changing with time. This indicates that online estimation is essential for

real-time monitoring, in order to be able to capture the dynamics of the changes in the

parameters.

The results from online estimation are also consistent with the models for attachment

and detachment described in Sections 2.3.1 and 2.3.2. The images of the froth surface

revealed that the bubble size increased with time in the batch flotation run described



2.5: Results and Discussions 50

Figure 2.9: Comparison of real-time model predictions based on the extended Kalman
filter (EKF) with experimental data for cumulative recovery when parameter k1 is being
updated.

Table 2.5: Values of estimated (k1, k2 and k3) and constant model parameters.
Symbols Parameters Values Remarks
Qair(L/min) Air flow rate 8 Constant
Vp(m

3) Volume of pulp phase 1.4x10−3 Constant
Vf (m

3) Volume of froth phase 0.26x10−3 Constant
ε Volume fraction of air 0.4 Constant
k1(s

−1) Rate constant for attachment Final value = 45.8 Estimated and updated (trend shown in Figure 2.10)
k2(s

−1) Rate constant for detachment Final value = 17.1 Estimated and updated (trend shown in Figure 2.10)
k3(s

−1) Rate of removal of material in the concentrate product Final value = 13.3 Estimated and updated (trend shown in Figure 2.10)

above. While the number of particles decreased with time as more mineral was recovered,

leading to a reduction in the number of bubble-particle collisions and the probabilities

of bubble-particle collision and attachment by sliding reduce slightly as the bubble size

increases (Equations 2.9 - 2.10 and 2.13, the probability that the bubble-particle aggre-

gate remains stable during the transfer from the pulp phase to the froth phase increases

with the increase in the bubble size. This increase in Pstab is the dominant effect, and
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leads to an increase in k1 (Equation 2.9) and decrease in k2 (Equations 2.17 and 2.18).

Figure 2.10: EKF estimates of model parameters in real-time: (a) parameter k1 being
estimated, (b) parameter k2 being estimated, and (c) parameter k3 being estimated.

2.5.4 Disturbance Identification

The ability of the EKF estimator to track changes in operation and modifying parameter

estimates was also tested for two case studies with disturbances. In the first case study,

a disturbance in the air flow rate was introduced at time t = 5 s in the batch cell with

initial operating conditions for run 8 (shown in Table 2.3). At this time, the air flow

rate was decreased from 14 to 8 L/min. There is a significant decrease in the cumulative

recovery due to a sudden decrease in the air flow rate; this is shown in Figure 2.11. This

is expected as lowering the air flow rate leads to lowering of the flow rate of the valuable

mineral (galena) in the concentrate and hence to lower recovery. Despite the presence
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of the disturbance in the system, the EKF was able to track the changes by updating

the states and parameters as new measurements arrive and capture the dynamics of the

system satisfactorily, as seen in Figure 2.11.

Figure 2.11: Comparison of cumulative recovery profiles for run 8 (conditions defined in
Table 2.3) with a step disturbance applied in the air flow rate (from 14 to 8 L/min) at
time t = 5 s.

Figure 2.12 shows the EKF-based parameter estimates for each of the parallel esti-

mators (estimating k1, k2 and k3, respectively), with and without the disturbance. When

the disturbance was applied to the system, parameter k1, which is related to the attach-

ment of particles, and parameter k2, which is related to the detachment of particles, did

not change significantly in comparison to the condition when there was no disturbance.

However, parameter k3, which is related to the rate of transfer of particles to the con-

centrate from the froth phase, decreased because lowering the air flow rate resulted in a

decrease in the number of the particles that are brought from the pulp phase to the froth
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phase; consequently, the rate of transfer of particles to the concentrate product would be

decreased as well.

Figure 2.12: Comparison of real-time parameter estimates (k1, k2 or k3 being estimated)
for run 8 with the step disturbance in the air flow rate.

Additionally, the estimated states of the system are shown in Figure 2.13. As is

expected, the only system state that changes with a disturbance in the air flow is the

concentration of the particles attached in the pulp. This slight increase is observed due

to a decrease in the transfer of particles from the pulp to the froth.

The second case study was based on the initial operating conditions for run 1 (given

in Table 2.3), with the impeller speed being increased from 500 to 1100 rpm at time t = 5

s to create a step disturbance. Increasing the impeller speed in the pulp phase increases

the bubble count and the bubble-particle interactions. This leads to an increase in the

probability of bubble-particle collision and therefore attachment (Equations 2.9 and 2.10),
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Figure 2.13: Real-time state estimates using the EKF for run 8 with the step disturbance
in the air flow rate (xb: concentration of particles on the surface of the bubbles in the pulp,
xp: concentration of particles free in the pulp, xc: concentration of particles attached in
the froth).

leading to an increase in the particles brought into the froth phase and consequently in

the concentrate. Figure 2.14 shows the EKF estimates for each of the parallel estimators

for the three parameters of the system (k1, k2 and k3), with and without the disturbance.

The estimates of parameters k2 and k3 did not change significantly but k1, the rate of

attachment, decreased initially due to the increased turbulence, and then increased due

to the larger number of interactions between bubbles and particles.

The changes in the estimated states for the case with the disturbance in the impeller

speed are similar to those for the case with the air flow disturbance, as is shown in

Figure 2.15. This indicates that monitoring of the parameters, and not the states, is

preferred for tracking these types of disturbances in the system, since the estimates of
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the parameters are more sensitive to the presence, size, and type of disturbances present

in the system. These results provide a proof of concept that heuristics related to online

parameter estimation using parallel EKFs (negative step changes in the air flow rate

being detected by a reduction in the value of the parameter estimate for k3, and positive

step changes in the impeller speed being detected by a decrease and then an increase

in the parameter estimate for k1) can be developed and used for process monitoring

and fault diagnosis in froth flotation processes, and are consistent with the fundamental

processes involved in attachment and detachment of particles to bubbles, their transfer

from the pulp to the froth and their eventual recovery in the concentrate. Our future

work aims to extend this proof of concept to more complex ores and continuous flotation

processes, and to develop rigorous algorithms for process monitoring under any operating

conditions and disturbances.

2.6 Conclusions

A fundamental model for batch froth flotation was developed based on descriptions of

bubble-particle collision, attachment, and detachment coupled with bubble and liquid

transport. Real-time measurements of froth bubble size and velocity utilizing image

processing techniques were injected into the model. Offline parameter estimation was

used to verify the validity of this model for describing the dynamics of batch froth flotation

processes. Statistical methods such as principal component regression and partial least

squares regression were used to calibrate the real-time froth surface images against the

recovery measured offline. Both the methods described the recovery well in real time

and were successful in reducing the dimension of image features significantly without any

substantial loss of information or prediction capability. Methods based on advanced state

and parameter estimation techniques (extended Kalman filtering) were used to update the
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Figure 2.14: Comparison of parameter estimates (k1, k2 or k3 being estimated) for run 1
with a step disturbance applied in the impeller speed from 500 to 1100 rpm at time t =
5s.

models and their parameter estimates in real time based on the online measurements.

Validation with experiments confirmed that process dynamics were captured both in

normal operations as well as in the presence of disturbances affecting the batch flotation

process. Disturbances in the air flow rate and impeller speed were induced in the system.

Based on the updated parameter estimates (using the EKF), heuristics were developed

and validated that could discriminate between various disturbances affecting the system,

thus providing a proof of concept that monitoring using real-time updated fundamental

models provides physical insight into the batch flotation process.

2.7 References
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Figure 2.15: Real-time state estimates using the EKF for run 1 with the step disturbance
in the impeller speed (xb: concentration of particles on the surface of the bubbles in
the pulp, xp: concentration of particles free in the pulp, xc: concentration of particles
attached in the froth).
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Chapter 3

Monitoring the Feed Particle Size in
Froth Flotation using Parameter
Estimation with Fundamental
Dynamic Models1

In this work, a fundamental dynamic model was updated in real-time to monitor the feed

particle size in froth flotation using direct and indirect estimation. Direct estimation was

performed by expanding the model using descriptions of micro-scale sub-processes such

as attachment and detachment with mean particle size as a parameter, whereas indirect

estimation was performed by estimating the rate constants and inferring the particle size

based on the micro-scale models. Froth images and their features were acquired using

Visiofroth, a commercial vision package by MetsoR© Minerals. A random forest-based

soft sensor was developed to obtain online recovery measurements using these image

features. Models were updated in real-time using an extended Kalman filter with the

online output measurement (recovery) being obtained from the developed image-based

soft sensor. Batch flotation experiments were performed with pure galena to calibrate

the soft sensor as well as to validate the estimation of the particle size. Four different

1A version of this chapter is submitted as Popli, K.; Afacan, A.; Liu, Q.; Prasad, V., 2017 ”Monitoring
the Feed Particle Size in Froth Flotation using Parameter Estimation with Fundamental Dynamic Models
”. Chemical Engineering Science

60
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feed particle size distributions, with mean particle size ranging from 12 to 112 microns,

were employed with same operating conditions (air flow rate, impeller speed, reagent

and frother concentrations). Changes in particle size were captured better by direct

estimation as compared to indirect estimation. Fundamental effects of particle size on

attachment and detachment were also analyzed using real-time process monitoring.

3.1 Introduction

Froth flotation is a process where multiple factors such as chemical (collector, frother),

physical (air flow, agitator) and operational variables (feed rate, feed size, pulp density)

influence the process performance (Kawatra, 2002). It is characterized by various sub-

processes in the pulp and the froth phase. Along with the intra-phase processes, there

is an interphase transportation of material as well. Bubbles collide with particles in the

pulp phase and form continuously moving bubble-particle aggregates in the froth phase.

However, some of the attached particles in the froth phase do not enter the outlet due to

bubble bursting or bubble coalescence (K. Runge R. Crosbie, 2010). It is very likely that

a small disturbance in any of the sub-process could propagate to other sub-processes and

affect the type and quantity of solids entering the concentrate.

Grinding circuits can often produce undersize or oversize particles and it is crucial to

analyze the effect of changes in feed particle size in real-time. With various flotation cells

in the overall circuit, it is also important to know the source cell of the disturbance. This

can be accomplished by continuously monitoring the various sub-processes in both pulp

and froth phases. A successful monitoring scheme aids in identifying possible faults and

understanding the complex behavior of froth flotation processes. Historically, plant oper-

ators relied on their experience-based heuristics to determine the process status based on

the froth appearance. Later, sophisticated classification systems were developed based
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on machine vision of the froth (Cipriano et al., 1998; Aldrich et al., 1997). Most earlier

studies were conducted to control certain operational variables using froth vision (Kaarti-

nen and Koivo, 2002; Brown et al., 2001; Liu and MacGregor, 2008; Aldrich et al., 2010;

Popli et al., 2015). However, according to the authors’ best knowledge, no study has been

performed to investigate real-time monitoring for feed particle size using a vision-based

system.

The effect of particle size on flotation has been studied extensively and an optimal

particle size range has been suggested for optimal recovery depending on the type of

minerals (Glembotsky, 1953; Trahar, 1981). Fine particles are difficult to float, medium

sized particles have higher chances of floating and coarse particles float depending on the

operating conditions (Trahar, 1981). Apart from this, the recovery and grade depend on

the liberation achieved at each particle size range. Different particle size ranges respond

differently to the physio-chemical conditions in the flotation cell. Collectors enhance the

bubble-particle attachment by making the mineral surface hydrophobic. The same col-

lector concentration performs differently for each particle size range in spite of having

similar chemical conditions in the cell (Gaudin et al., 1931; Glembotsky, 1953). Funda-

mentally, froth flotation kinetics depend on the probability of collision, the probability of

attachment and the probability of detachment between bubble and particles (Popli et al.,

2015). For better performance, particles should have a high probability of collision and

attachment and low probability of detachment along with sufficient mineral liberation.

These probabilities are further influenced by the particle size. A change in particle size in

the feed stream propagates to the final recovery by creating a disturbance or a change in

the rate constants or probabilities for collision, attachment and detachment. Therefore,

it is very important to understand the relationship between particle size and these rate

constants.

There are a few first principles-based steady-state models and other simulators (JK-
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SimFLoat, MODSIM) developed for flotation processes that can be used for optimizing

the process conditions (Neethling and Cilliers, 2002; Neethling et al., 2003; Neethling

and Cilliers, 2009; King, 2012; Schwarz and Alexander, 2006). However, these models

can not be used for dynamic monitoring and process control; also, the flotation models

used for process control are primarily empirical (Bouchard et al., 2005). In this work, we

build on our earlier work (Popli et al., 2015) to develop a set of dynamic fundamental

models that connect micro-scale sub-processes (attachment, detachment) to macro-scale

sub-processes (mass transfer, intraphase transfer).

In this paper, a feed particle size monitoring scheme is developed and tested using

batch flotation experiments for pure galena. Induction time measurements are used

along with the fundamental models to understand the effect of particle size on various

sub-processes. An extended Kalman filter (Prasad et al., 2002; Kalman, 1960; Haddad,

1976) is used to update the fundamental model in real-time by estimating its states

and parameters using online recovery measurements. A statistical ensemble regression

method (random forest) is used to develop a soft sensor to measure online recovery based

on the froth images and their features. The monitoring scheme developed is validated

to estimate the mean particle size for a flotation run with an unknown feed particle size

distribution.

3.2 Experimental Section

3.2.1 Materials: Ore samples and reagents

Pure galena (lead sulfide, PbS) obtained from Boreal Science, Canada was used as the

feed. These samples were ground to different particle size ranges using a combination

of a jaw crusher and a disc pulveriser. Four different feed particle size distributions
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were obtained using sieve analysis. Three of these were used to develop and study the

monitoring algorithm, and a fourth mixed distribution was used to test the estimates of

the feed particle size. Representative samples were obtained using a sample splitter for

particle size measurements. Particle size distributions were measured using a Malvern

Mastersizer 3000 and are summarized in Table 3.1 and represented in Figure 3.1.

Table 3.1: Particle size distribution parameters for different feed samples.
Distribution D10(μm) D50(μm) D90(μm) Mean(μm)
Distribution I 3.3 8.61 29.7 12.13
Distribution II 3.95 21.6 66.5 28
Distribution III 70 100.2 150 113
Test distribution 6.48 22.3 123 45.4

A collector and a frother were added as chemical reagents. Collectors were used to

increase the selectivity for improved attachment between the mineral and bubbles in the

cell (Kawatra, 2002), while the frother was used to improve bubble stability and produce

a stable froth in the cell (Kawatra, 2002). In this study, potassium ethyl xanthate

(C3H5KOS2, KEX) and methyl isobutyl carbinol (C6H14O, MIBC) were employed as the

collector and frother, respectively.
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Figure 3.1: Particle size distribution for different feed samples (logarithmic scale).

3.2.2 Batch flotation

A batch flotation cell was used for the flotation of pure galena. The batch cell was

equipped with the Visiofroth system by MetsoR© Minerals that consists of a camera,

laser, and LED light. It was used to capture the images of the top surface of the froth

in real-time. This has been elaborated in our previous work (Popli et al., 2015) and

the schematic diagram is depicted in Figure 3.2. The image features extracted from

Visiofroth are listed in Table 3.2.
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Figure 3.2: Schematic diagram for a JKTech batch flotation machine with the VisioFroth

setup, where, 1: motor, 2: impeller control, 3: collection pan, 4: batch cell, 5: impeller,

6: air control and rotameter, 7: camera with LED, 8: laser light, 9: data transfer via

network wire, 10: monitoring of realtime data.

Table 3.2: Image features extracted from the top surface of the froth using the Visiofroth
system.

Image features Image features
Velocity Green component
X velocity Purity
Y velocity Load
Froth height Luminance
D50 (Bubble size) Red component
D80 (Bubble size) RBG
Brightness Stability
Blue component Tint
Collapse rate Texture
Cell value a- component lab model
Dispersion b- component lab model

Batch experiments were designed to perform flotation for different feed particle size

distributions. Design specifications were obtained from our previous work, based on the

conditions for high flotation performance (Popli et al., 2015). These are summarized in

Table 3.3.
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Table 3.3: Flotation conditions maintained in the cell.
Design parameter Value
Volume of slurry (l) 1.6
Solids concentration (g/l) 31.25
Air flow rate (cm/s) 2.67
Impeller speed (rpm) 1100
Frother dosage (ml/l) 0.1
Collector dosage (mol/l) 10-3

The slurry of galena was mixed with the collector (KEX) and the impeller speed was

set at 1100 rpm for 8 minutes for conditioning. The frother (MIBC) was added at the

end of the 8 minutes and mixing was continued for 2 more minutes. The air flow rate

was set to 14 lpm to start the flotation process. The images were captured at 5 seconds

time intervals using the Visiofroth system. Table 3.2 shows various features of captured

images based on real-time. Froth was collected at intervals of 10 seconds for a minute,

followed by 50 second intervals, until the completion of the flotation process. The samples

collected were then dried and weighed to obtain data for soft sensor development and

calibration.

3.2.3 Induction time measurement

The induction time is a measure of bubble-particle attachment. It is defined as the

contact time needed for the attachment of particles to the bubble (Gu et al., 2003),

and is used to understand the qualitative relationship between attachment and particle

size. We have used an induction timer apparatus for measurement that is similar to the

set-ups described in (Gu et al., 2003; Ye et al., 1989; Yoon and Yordan, 1991). In our

work, bubbles were generated in a capillary tube and their movement was controlled by

a speaker drum. Bubbles and particles were kept in contact for different time durations.

For a successful attachment, the film between interacting phases should undergo thinning
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and rupture to form a stable attachment. This process consists of the three sub-processes

described below:

• Thinning to a critical level of thickness (tt)

• Rupture of film and formation of three phase contact line (also called TPC) (tr)

• TPC expansion for stable attachment (te)

t = tt + tr + te (3.1)

The total time, t, is defined as the induction time.

The induction time was measured for all feed distributions. All the samples were

mixed with a specific dosage of potassium ethyl xanthate (KEX) as a collector agent.

The concentration of the collector agent per m2 of the galena particles was kept constant

at 0.00187 mol/m2. Various contact times were set ranging from 5ms to 5000 ms to find

the probability of attachment. The bubble was dropped on to the particle bed and stayed

in contact for the specified contact time, and was then lifted upwards. The outcome of

each attempt was observed on the monitor, and multiple trials were performed at each

contact time. A contact time that led to more than 50% probability of attachment

was taken as the induction time. A sample calculation is demonstrated in Figure 3.3,

where the probability of successful attachment attempts is plotted against the contact

time. A power function (y = Axb) is plotted to fit the probability curve and the time

corresponding to the probability of 0.5 is the induction time. Induction time values for

the samples are reported in Section 3.4 and attachment trends are compared qualitatively

with the predictions of the attachment equations in Section 3.3.2. The induction time is

used as an offline estimate for the probability of attachment with particle size.
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Figure 3.3: Sample calculation for induction time measurement based on attachment

probability of 0.5 after fitting the probability with a power function (y = Axb).
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3.3 Monitoring scheme: Image-based soft sensor, fun-

damental model, and real-time estimation

A monitoring scheme was developed based on updating the model using an extended

Kalman filter (EKF), with online measurements being obtained from the image-based

soft sensor. The monitoring scheme is illustrated in Figure 3.4. The model was supplied

with initial guesses for the states along with the model inputs. The outputs of the model

were then compared with the output of the soft sensor to update the state estimates for

the model based on extended Kalman filtering. The particle size was then estimated and

monitored in real-time with the EKF. The following subsections explain the image-based

soft sensor development, fundamental model, and state estimation.

Figure 3.4: Monitoring scheme based on state estimation using the extended Kalman

filter (EKF).

3.3.1 Development of image-based soft sensor for online recov-

ery

It is very difficult to devise online measurements of grade and recovery for ore flota-

tion. Conventional methods such as (offline) X-ray fluorescence (XRF) spectroscopy

have higher sampling times and online methods such as the in-line XRF are expensive
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and often difficult to calibrate (Popli et al., 2015). Image-based soft sensors explore the

relationship between froth appearance and froth composition to develop an online esti-

mate of grade and consequently, recovery (Moolman et al., 1996). In this work, the image

features listed in Table 3.2 were used as real-time inputs to obtain the online recovery

inferentially.

In this case of pure mineral flotation, we proposed that the image was linked to the

cumulative recovery or the amount of mineral entering the concentrate. For example,

image features at time of t = 10 s were correlated to the total/cumulative recovery from

time of t=0 s to t=10 s. While we have developed a soft sensor using froth images

previously (Popli et al., 2015), we have improved it in this work by using ensemble

regression methods. Specifically, we have used random forest-based regression, which

is based on a nearest neighbor approach; we have found it to provide a more accurate

image-based soft sensor.

Random forests, introduced by Breiman (Breiman, 2001), are based on the bagging

ensemble algorithm, where a series of regression trees are developed independently, and

the average of all the outputs from different trees is taken as the final output (Liaw and

Wiener, 2002). Each regression tree choses the data based on bootstrap sampling, which

is resampling with replacement. Unlike normal regression trees, where all the variables are

used to decide the node split, random forest trees choose the node split based on random

variables (Breiman, 2001). In this study, no pruning was performed for the trees. Hence,

two parameters were considered for hyperparameter optimization of the random forest

regression model. The minimum number of observations per trees, No, and the number

of sample variables at each node, Nv, were optimized using the validation error as the

objective function. The validation technique, ‘out of box (oob)’, is based on the average

error in outcomes of samples not chosen as the part of bootstrap sampling. Parameters

were optimized based on Bayesian optimization using the statistics and machine learning
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toolbox in MATLAB with ‘expected improvement plus’ as the acquisition function, which

evaluates the expected amount of improvement in the function and also avoids the local

minima (Snoek et al., 2012; Gelbart et al., 2014). Based on the optimized parameters, a

random forest model was built to predict the cumulative recovery and evaluated on the

22 image features listed in Table 3.2. The soft sensor development using random forest

regression is summarized in Table 3.4. A constraint has been implemented to ensure that

the cumulative recovery (yk) at any time step k is higher than the cumulative recovery

at the previous time step k − 1 (yk−1).

Table 3.4: Image-based soft sensor development specifications for random forest regres-
sion.

Specification Value
Input data and size Image features
Target output Cumulative recovery
Test set percentage 10
Number of trees 300
Range for tuning parameter, No [1 20]
Range for tuning parameter, Nv [1 21]
Optimization function Out of box error
Optimization algorithm Bayesian
Acquisition function Expected improvement plus

3.3.2 Multiscale fundamental model

The detailed modeling framework from our previous work (Popli et al., 2015) considers

the different states a particle can be in: attached to bubbles in pulp, free in the pulp or

collected in the concentrate. In this work, we have modified the model to incorporate

the effect of the particle size on the rate constants related to probabilities of collision,

attachment and detachment. Equations 3.2, 3.3, and 3.4 represent the state equations

for the particles and Equation 3.5 represents the recovery.
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d

dt
(εpVpxb) = k1(1− εp)Vpxp − k2εVpxb −Qairxb (3.2)

d

dt
((1− εp)Vpxp) = k2εp]Vpxb − k1(1− εp)Vpxp −QExp (3.3)

d

dt
(Vfxc) = −k3Vfxc +Qairxb +QExp (3.4)

y =
Vf tsampk3xc

mint

(3.5)

where xb, xp, and xc denote the concentration of particles attached to the bubbles in

the pulp, concentration of particles free in the pulp and concentration of the particles

collected in the froth, respectively. k1, k2, and k3 denote the attachment rate constant,

detachment rate constant, and rate constant for removal into the concentrate, respec-

tively. εp denotes the air volume fraction in the pulp. Vf and Vp denote froth phase and

pulp phase volumes, respectively. Qair and QE denote the air flow rate and the entrain-

ment flow rate, respectively. mint denotes the initial mass, tsamp denotes the sampling

time, and y denotes the instantaneous recovery of the process.

This model can also be represented as

Ẋ = f(X,U) (3.6)

Y = g(X,U) (3.7)

where X is the vector of state variables [xb xp xc]
T , Ẋ is its derivative with respect to

time, Y is the output(recovery), U is the vector of inputs to the system, and w and v

are process and measurement noises, respectively.

The attachment rate constant, k1, and the detachment rate constant, k2, are further
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dependent on various probabilities and can be represented using the following equations:

k1 = Z1PcPaPs (3.8)

k2 = Z2Pd (3.9)

where Z1, Z2, Pc, Pa, Ps, and Pd, represent the collision frequency, detachment frequency,

probability of bubble-particle collision, probability of bubble-particle attachment, prob-

ability of bubble-particle aggregate stability and probability of bubble-particle detach-

ment, respectively, and are given by (Duan et al., 2003; Z. Dai S.S. Dukhin and Ralston,

1998; Dai et al., 2000; Tao, 2005; Dai et al., 1999):

Z1 = 30
Qair

√
U2
b + Up

2

πD2
bVcellvb

(
Dp +Db

2
)2 (3.10)

Z2 =
√
2ε

1
3 (Dp +Db)

− 2
3 (3.11)

(3.12)Pc = 3 sin2 θt exp

[
3K3 cos θt( ln

Db

Dp

− 1.8)− 9K3(
2
3
+ cos3 θt

3
− cos θt

6Dp sin2 θt
Db

]
Dp

Db

(3.13)Pa = sin2

(
2 arctan exp

[
− tind

2(vp + vb) + vb(
Db

Dp+Db
)3

Dp +Db

])

Pd =
1

1 + Fat

Fde

(3.14)

Ps = 1− Pd (3.15)

where Up and Ub are the relative turbulent fluctuating velocities of particles and bubbles,

respectively, Dp and Db are particle and bubble size, respectively, Vcell is the volume of
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the flotation cell, vb is the bubble rise velocity, ε is the turbulent dissipation energy, K3

is a dimensionless number, θt represents the contact angle, vp is the particle settling

velocity, and Fat and Fdet are the total attachment and detachment forces, respectively.

It is observed that the effect of feed particle size (Dp) propagates to the recovery

through the rate constants for attachment (k1) and detachment (k2), and the model for

recovery is nonlinear with respect to Dp.

The variation in probability with an increase in the particle size is shown in Figure 3.5

for the flotation experiments that were performed. The probability of collision, Pc, shows

a maximum at an intermediate value of particle size. While the probability of attachment,

Pa, decreases with an increase in the particle size, the probability of stability, Ps, remains

constant with respect to particle size. In the terms defining the attachment rate constant

(k1), an increase in particle diameter leads to an increase in Pc up to a maximum, followed

by a decrease in Pc at higher particle sizes; an increase in Z1, and a decrease in Pa and

Ps. For k2, both Pd and Z2 increase with increasing particle size. The variation of the

attachment rate constant, k1, and the detachment rate constant, k2, with particle size

is shown in Figure 3.6. It can be seen that an increase in the particle size leads to an

increase in the detachment rate constant, k2, and shows a maximum with respect to the

attachment rate constant, k1. This indicates that the effect of particle size on flotation is

nonmonotonic and justifies the requirement of an optimal particle size range for efficient

flotation.
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Figure 3.5: Variation in probabilities of collision, attachment and stability with an in-

crease in the particle size.
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Figure 3.6: Variation in the rates of attachment and detachment with an increase in the

particle size.

3.3.3 State and parameter estimation

Model states and parameters were estimated based on real-time measurements using the

extended Kalman filter (EKF). It is based on minimizing the error covariance between

the predicted output and its measurement. Fundamentally, the EKF is based on two

steps: model prediction and measurement update. In the prediction step, the model is

integrated in time to provide an estimate at the next time step, and in the measurement

update that follows, the state estimates are updaetd based on the error between model
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predictions of the output (recovery) and the measured output value (Kalman, 1960; Welch

and Bishop, 1995; Popli et al., 2015). The nonlinear model (equations 3.6 and 3.7) can be

linearized using Taylor series expansion to obtain the following linear state space model:

Ẋ = AX+BU+w (3.16)

Y = CX+DU+ v (3.17)

where w and v are process and measurement noises, respectively, A, B, C and D are

Jacobian matrices defined as:

A = ∂f(X,U)
∂X

B = ∂f(X,U)
∂U

C = ∂g(X,U)
∂X

D = ∂g(X,U)
∂U

Parameters were estimated by augmenting the state space matrix with a certain number

of model parameters as a state (Popli et al., 2015). Based on observability analysis, only

one parameter could be estimated by augmenting it with the states. Three choices of

parameters to estimate, k1, k2, and Dp, were investigated. Initial parameter conditions

for the EKF were obtained from a combination of evaluating fundamental rate equations

(k1, k2) and nonlinear optimization (k3) with an objective function based on the error

between the recovery predicted by the model and the image-based soft sensor.

Indirect estimation of particle size

As seen from equations 3.8 and 3.9, both the rate constants are functions of Dp. Since only

one parameter can be estimated using the EKF, both cases were considered separately,

i.e., estimation of k1 and k2, and Dp was estimated indirectly by back-calculating it from

these estimates. Also, the variation of the estimated k1 and k2 was studied for different
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feed particle size distributions.

Direct estimation of particle size

Dp can be estimated directly by expanding the functions f(X,U) and g(X,U) in equa-

tions 3.6 and 3.7 explicitly in terms of Dp by using equations 3.8 and 3.9 with Dp as the

parameter. Matrices A, B, C, and D were evaluated using Taylor series expansion with

Dp as an augmented state. This procedure was performed for all the three distributions

with initial conditions obtained from the mean particle size. However, for the test dis-

tribution, no prior knowledge of its particle size was used in the estimation, and Dp was

treated as being unknown. The conditions for Distribution III were used as the initial

conditions for the estimation of the unknown test distribution, and the particle size was

estimated using the image-based soft sensor and the EKF.

3.4 Results and discussion

3.4.1 Batch flotation experiments

Batch flotation was performed for all the four feed particle size distributions. The flota-

tion dynamics are summarized in Figure 3.7 in the form of cumulative recovery versus

time. It can be seen that distribution III, with the largest feed particle size, has the

slowest dynamics and lowest recovery (92%), followed by 96%, 98.3% and 98.6% for dis-

tributions II, I and the test distribution, respectively. This is a clear indication that an

increase in the particle size of galena lowered the recovery (y) and the attachment rate

constant (k1). Also, the recovery curves at the initial stages look similar for all the dis-

tributions and it is very difficult to monitor the particle size as well to isolate the fault in

particle size among other recovery-reducing factors at these early stages of the flotation.
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Figure 3.7: Flotation dynamics: cumulative recovery for all the distributions.

3.4.2 Image based soft sensor - Random forest

The experimental data from the flotation runs was used to develop the random forest-

based soft sensor for prediction of the recovery at each sampling time (i.e., 5 s). Two

sample images are shown in Figure 3.8 for distribution II at 5 s and 25, and we see that

the colour changes significantly in this period. The image features listed in Table 3.2,

including the colour, are used as inputs for the soft sensor. The random forest model

parameters No and Nv were selected based on Bayesian optimization with minimum

prediction error. Optimization results in Figure 3.9 show the variation of the ‘out of box’
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(oob) error with Nv and No. It is shown that the oob error increases with No and Nv

after reaching a minimum at No = 1 and Nv = 2 for oob error = 3.6917.

Figure 3.8: Froth images for distribution II at 5 s (left) and 25 s (right).
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Figure 3.9: Hyperparameter optimization for random forest model using ‘out of box’

error.

The image-based soft sensor developed based on these optimized parameters per-

formed well with a coefficient of determination R2 = 0.94 on validation data. Prediction

results for particle size distribution II are presented in Figure 3.10, showing that the

recovery is successfully predicted at each sampling time using the soft sensor. In the fol-

lowing sections, the output of the soft sensor will be used and referred to as the measured

real-time experimental recovery.
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Figure 3.10: Comparison between the experimental recovery and the recovery predicted

by the random forest-based soft sensor for particle size distribution II.

3.4.3 Qualitative analysis of induction time variation with par-

ticle size

The induction time was measured for all the four distributions with varying collector con-

centrations to maintain the same amount of collector per m2 of the surface of galena. The

probability of attachment in this case is defined as the fraction of attachment attempts in

the induction timer that were successful for a specific contact time between a bubble and

the particles in the bed. The induction time and the corresponding mean particle size
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are summarized in Table 3.5 for all the distributions, and the induction time increases

as the particle size increases. The increase in individual particle size leads to an increase

in its weight that should be carried by the bubbles. Additionally, the time required for

stable attachment through TPC expansion increases for a larger particle size. This is

in agreement with the relation (Equation 3.13 and Figure 3.5) that the probability of

attachment (Pa) decreases with an increase in the particle size. These results are used

to qualitatively understand the increase in induction time (and, decrease in Pa) with

increase in particle size. However, these values are not used in the real-time dynamic

model, as the conditions for the induction time measurement are not similar to those in

the flotation cell. The induction time function used for modeling purpose is given below:

tind = 100(Dp
0.99) (3.18)

where tind is the induction time, and Dp is the particle mean size.

Table 3.5: Induction time measurements for all particle size distributions.
Distribution Mean particle size (μ) Induction time (ms)
Distribution I 12 7
Distribution II 28 23
Distribution III 113 86
Test distribution 45.4 45

3.4.4 Estimation and monitoring

The initial values for all the rate constants were estimated using offline nonlinear opti-

mization (k3) and fundamental equations for the attachment rate constant, k1, and the

detachment rate constant, k2 (Equations 3.8 and 3.9). Nonlinear optimization results

for recovery are presented in Figure 3.11 for distribution I. It demonstrates the model

fit based on least squares regression. Initial conditions that were evaluated for all three
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distributions are summarized in Table 3.6. However, for the test distribution, initial

conditions were chosen to be the same as that of distribution III, since the estimation

should be tested without knowledge of the true distribution.

Figure 3.11: Comparison between experimentally measured recovery and the recovery

estimated offline for particle size distribution I with an optimized initial value for k3, the

rate constant for removal into the concentrate.

EKF-based state estimation was performed to update the model online using the

real-time experimental values of recovery at each time step. Figures 3.12, 3.13 and 3.14

show the online recovery predictions along with parameter estimation for particle size

distribution I while Figure 3.15 shows the corresponding real-time estimation of the states
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Table 3.6: Initial estimates for model parameters in the extended Kalman filter (EKF).
Distribution Variable Initial value (1/sec)
I k1 0.324

k2 0.050
k3 5.10

II k1 0.388
k2 0.281
k3 2.25

III k1 0.051
k2 3.99
k3 3.12

(xb, xp and xc). The EKF model was initialized using the values given in Table 3.6. The

parameter estimation converges and captures the real recovery successfully for all the

particle size distributions studied. Parameter estimation concludes that attachment rate

constant, k1, has a maximum value for optimum particle size range while detachment

rate constant, k2, increases with the increase in particle size (Dp) in the range studied.

These trends are in agreement with the trends based on fundamental relations (section

3.3.2).
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Figure 3.12: Estimation of the parameter k1 along with prediction of the online recovery

for particle size distribution I using the extended Kalman filter.
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Figure 3.13: Estimation of the parameter k2 along with prediction of the online recovery

for particle size distribution I using the extended Kalman filter.
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Figure 3.14: Direct estimation of particle size (Dp) along with online recovery prediction

using the extended Kalman filter for particle size distribution I.
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Figure 3.15: Estimation for all the system states using the extended Kalman filter for

particle size distribution I.

Indirect particle size monitoring is presented in Figure 3.16 where estimation of k1

was performed for both distribution III and the test distribution, with the same initial

conditions. Indirect Dp estimation was performed by back-calculating Dp using the equa-

tions for k1 and k2 (Equations 3.8 and 3.9). Direct estimation of Dp for distribution III

and the test distribution is presented in Figure 3.17, with the same initial conditions

in both the cases. These values are summarized in Table 3.7. It was observed that Dp

is estimated more accurately using the direct estimation, where the estimate converges

closer to the true value. Indirect estimation does not work accurately; this is because Dp
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influences both k1 and k2, but only one of those two parameters can be updated using

the EKF, and this leads to inconsistency and inaccuracy in the back-calculation of the

particle size. Therefore, we recommend using the direct estimation of Dp for monitoring

the particle size.

Figure 3.16: Indirect estimation of the particle size (Dp): monitoring of the rate of

attachment (k1) for the test distribution.
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Table 3.7: Particle size estimation using indirect and direct estimation for the test dis-
tribution.

Estimation method Particle size estimate, Dp (microns)
Indirect using k1 94
Indirect using k2 81
Direct 50
Measured value 45.4

Figure 3.17: Direct estimation of the particle size (Dp) for the test distribution (true Dp

= 45.4 microns).
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3.5 Conclusions

This work proposed a methodology to monitor the feed particle size in the flotation

process in real time. Four different galena particle size distributions, including one test

distribution were considered for the development and testing of the monitoring scheme.

The monitoring scheme consisted of a fundamental dynamic model, a soft sensor based

on image processing and random forest regression for online estimation of recovery, and

an extended Kalman filter-based real time estimation scheme to update estimates of the

particle size.

We have provided validation for the random forest-based soft sensor for recovery and

the particle size estimation using the extended Kalman filter (EKF). The fundamental

model with real-time measurements and parameter estimation can be used to monitor

the flotation process and understand different sub-processes and their dynamics. This

scheme can be used in an industrial-scale flotation circuit, where the soft sensor and the

EKF can be used on each flotation cell. Real-time monitoring of flotation sub-processes

and the particle size distributions in each cell can be used for real-time fault detection

and diagnosis to identify possible disturbances in the particle size distribution of the feed

to the various cells in the flotation circuit and enable quick corrective action.
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Chapter 4

Real-time Monitoring of
Entrainment using Fundamental
Models and Froth Images1

In this study, entrainment monitoring algorithms were developed, trained and imple-

mented on the batch flotation of three synthetic mixtures of galena and quartz with

different particle size ranges for the quartz mineral. An online image-based soft sensor

framework was developed to estimate product grade and recovery using support vector

regression. A dynamic fundamental model was developed with emphasis on the entrain-

ment and drainage sub-processes. The model was reconciled with online soft sensor mea-

surements and was updated in real-time by estimating the states and parameters using

an extended Kalman filter. Along with the online measurements of quartz entrainment

recovery, measurements of entrainment and the true flotation contribution for galena

particles were obtained in real-time. The proposed monitoring framework was shown to

be effective in monitoring entrainment for reducing entrainment while maximizing the

grade and recovery of the desired minerals.

1A version of this chapter is submitted as Popli, K.; Liu, Q.; Afacan, A.; Prasad, V., 2017 ”Real-time
Monitoring of Entrainment using Fundamental Models and Froth Images ”. Minerals Engineering

97
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4.1 Introduction

The most commonly used mineral separation technique in mineral processing, froth flota-

tion, is based on the principle of selective attachment of mineral particles to gas bubbles.

In the majority of flotation processes, the desired mineral is induced with surface hy-

drophobicity, thus the propensity to attach to gas bubbles, in order to achieve separation

from other non-desired (gangue) minerals. With the depletion of good quality (i.e., easily

separable) ores, efforts are being made to achieve the desired separation from low quality

(i.e.difficult to separate) ores. To process low quality ores, minerals liberation is achieved

through fine grinding. However, fine particle flotation causes two major problems: reduc-

tion in the attachment of hydrophobic value mineral particles, leading to low recovery,

and an increase in the quantity of hydrophilic particles in the concentrate through en-

trainment, leading to low grade.

Entrainment is a phenomenon wherein the solid particles suspended in the pulp enter

the froth phase and the concentrate stream purely by mechanical or hydraulic means

rather than by genuine flotation. It is considered a two-step process: upward transfer

of particles from the top of the pulp phase to the froth phase, and transfer of these

particles from froth phase to the concentrate (Seaman et al., 2006; Wang, 2016; Gorain

et al., 1998). the literature reports three ways suspended particles can be entrained

and transferred to the froth phase: (Wang, 2016; Smith and Warren, 1989; Gong, 2011;

Gaudin, 1957; Moys, 1978; Hemmings, 1981; Bascur and Herbst, 1982; Yianatos et al.,

1988)

• Bubble swarm theory: Bubbles are crowded just below the pulp-froth interface

and the trapped water along with the suspended particles flows downwards. Buoy-

ancy from the bubble swarm pushes some of the water and suspended particles over
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the interface. (Smith and Warren, 1989; Gong, 2011)

• Boundary layer theory: The water layer surrounding the bubbles is used to carry

the suspended particles to the froth phase. (Gaudin, 1957; Moys, 1978; Hemmings,

1981; Bascur and Herbst, 1982; Wang, 2016)

• Bubble wake theory: Wake generated by the flowing bubbles is used to transfer

the suspended particles to the froth phase. (Yianatos et al., 1988; Wang, 2016)

Bubble swarm theory is generally accepted as the dominant mechanism for mechan-

ical entrainment of suspended particles(Wang, 2016; Gong, 2011). Entrained particles,

along with the particles detached in the froth phase, can be transferred back to the pulp

phase by drainage (Cutting et al., 1986). Plateau borders are formed by the assembly

of the water layer surrounding the bubble consists of the liquid in froth zone as shown

in Figure 4.1. They provide passage for the drainage of the water and entrained solids,

and encourage their settling (Neethling and Cilliers, 2002b). Entrainment to the con-

centrate stream is the net upward motion of the suspended particles. The entrained

particles are part of the water in the plateau border. Many researchers have studied

the relationship between water recovery and entrainment recovery (Trahar, 1981; En-

gelbrecht and Woodburn, 1975; Hemmings, 1981; Lynch, 1981; Johnson, 2005; Laplante

et al., 1989). Most of the entrained minerals follow a linear relationship with entrained

recovery and water recovery, and the slope is approximated as the degree of entrainment

(Wang, 2016; Trahar, 1981; Zheng et al., 2006; Warren, 1985; Jowett, 1966). The en-

trainment is dependent on various feed parameters such as particle size (Wang, 2016;

Smith and Warren, 1989; Lynch, 1981) and particle density (Wang, 2016; Johnson, 2005;

Maachar A. & Dobby, 1992), and operational parameters such as pulp density (Zheng

et al., 2006; Johnson, 2005), impeller speed (Wang, 2016; Akdemir and Sönmez, 2003),

and gas flow rate (Wang, 2016; Zheng et al., 2006).
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Figure 4.1: Plateau border description

Entrainment is non-selective and affects both hydrophilic and hydrophobic particles.

The presence of hydrophilic particles in the froth phase reduces the grade of the desired

minerals. It reduces the efficiency of the flotation process for the separation of fine

ground ore. Several methods have been suggested to reduce entrainment in froth flotation.

These methods can be grouped into the following categories: reducing the water recovery,

increasing the drainage (Gong, 2011), and direct reduction in the particle suspension by

selective flocculation (Gong, 2011; Liu et al., 2006; Gong et al., 2010). A washwater

stream has been introduced in flotation to wash the froth and increase the drainage of

particles by providing counter current flow (Gong, 2011; Mulleneers et al., 2002).

To improve the product grade, entrainment needs to be minimized, monitored, and

controlled. Real-time entrainment needs to be measured for effective monitoring and

control. Since, a reduction in the overall entrainment also reduces the amount of hy-

drophobic (desired) minerals (the entrainment contribution), entrainment needs to be

measured for hydrophilic and hydrophobic minerals individually. Entrainment of hy-

drophilic minerals is usually measured off-line by timed weight measurements (with a

long sampling time), followed by X-ray fluorescence (XRF) measurements (which also
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have longer sampling times). It is difficult to measure the entrainment contribution of

the hydrophobic minerals. Recovery obtained by various methods provides the sum of

true flotation and mechanical entrainment contributions. Three common methods are

proposed in the literature (Trahar, 1981; Warren, 1985; Ross, 1988). Trahar (Trahar,

1981) suggested that two flotation tests, one in the presence of collector and frother

(true flotation and entrainment), and the other in the presence of only the frother (en-

trainment), can be used to quantify entrainment. Differences in solid recovery between

the two tests can be attributed to the true flotation, through which entrainment can be

quantified. This method is not suitable for naturally hydrophobic minerals that have the

capability of attachment even in the absence of a collector, or even in cases where the

frother demonstrates collecting capabilities. Also, different reagents in both tests would

influence the froth structure, and further affect the drainage and entrainment in both

runs (Wang, 2016; Ross, 1989). Warren (Warren, 1985) explored the linear relationship

between solids recovery and the water recovery as described in the following equation:

R(t) = Rf (t) +KRw(t) (4.1)

where R(t), Rf (t), K and Rw(t) represent overall recovery at time t, true flotation recovery

at time t, degree of entrainment, and water recovery at time t, respectively. Recovery

due to entrainment is represented as KRw(t) at time t. Various experiments need to

be conducted at different water recoveries obtained by varying the froth height, froth,

pulp height, or the rate of froth removal (Warren, 1985; Pita, 2015). The true flotation

recovery (Rf (t)) and the degree of entrainment (K) can be calculated using a linear

regression relation between the overall mineral recovery and water recovery. However,

varying the froth height, pulp height or the rate of froth removal also disturbs the froth

structure and consequently, the drainage and entrainment rates. Hence, this method does
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not give an accurate measurements of the entrainment contribution. Also, it should be

noted that the degree of entrainment changes with time and its variation is not considered

in this method. Along with these drawbacks, this method requires numerous test runs,

making it time consuming and economically infeasible. Another method, based on a

single flotation test, was proposed by Ross and Van Deventer (Ross, 1988). It is based

on the calculation of two timed functions X(t) and Y(t):

X(t) =
E(t).Cw(t)

W (t).Cm(t)
(4.2)

Y (t) =
R(t).Cw(t)

W (t).Cm(t)
(4.3)

where E(t), R(t), W(t) Cw(t), and Cm(t) represent the total mass of entrained solids

at time t, the total mass of recovered solids (true flotation and entrained) at time t, the

total mass of water recovered at time t, the concentration of water in the pulp at time

(t), and the concentration of solids in the pulp at time t, respectively. This method is

based on three assumptions: a) the recovery at the end (t = ∞) of batch flotation is

solely due to entrainment, b) the timed function X(t) decreases linearly with flotation

time, and c) the pulp is homogeneous. At t = ∞, X(t) can be approximated by using

the assumption X(t) = Y(t), and Y(t) is calculated based on the total mass recovered.

Based on the X(t) points towards the end, the X(t) line is extrapolated towards time t

= 0, such that it increases linearly while moving from time t = ∞ to t = 0. It is critical

to run the batch process until the optimum time where all the solids recovered are due

to entrainment (Ross, 1988; Pita, 2015). Using the above simplification, the entrained

mass E(t) can be calculated by measuring the mass of water recovered (M(t)) and the

concentration of the specific mineral in the pulp (Cm(t)):
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E(t) = M(t)Cm (4.4)

This method provides inaccurate results for hydrophobic species, as their concentration

in the pulp changes due to both true flotation and entrainment. In other words, hy-

drophobic minerals in the pulp are available for attachment to the bubbles as well as

entrainment. Furthermore, all of these methods require a number of batch flotation tests

to be completed before calculating the contribution from entrainment. In addition to the

potential inaccuracies, these methods cannot be used to obtain real-time measurement

of the entrainment contribution for the minerals floated. Hence, there is a critical need

for a method to measure the entrainment contribution in real-time.

Several authors have proposed models for entrainment recovery. These models can be

classified as empirical (Maachar A. & Dobby, 1992; Ross, 1989; Bisshop J.P. & White,

1976; Savassi et al., 1998; Yianatos and Contreras, 2010; Gulsoy, 2005; Çilek and Yl-

mazer, 2003; Alford, 1990; Uribe et al., 1999; Cilek and Umucu, 2001) or steady-state

fundamental models (Moys, 1978; Neethling and Cilliers, 2002a; Bisshop J.P. & White,

1976; Neethling and Cilliers, 2003; Stevenson, 2007). Empirical models are usually valid

only in a small range of certain process conditions. Fundamental models, on the other

hand are general and provide valuable understanding of the entrainment process; how-

ever, the models cited cannot be used for dynamic monitoring or control since they

are valid only at steady-state. A few compartment-based models that are dynamic in

nature, have also been introduced for the flotation process (Dobby and Savassi, 2005;

Fuerstenau et al., 2007; Bascur, 2000; Popli et al., 2015; Alves dos Santos et al., 2014;

Hanumanth and Williams, 1992). These models divide the flotation process into various

compartments such as pulp and froth, and apply the mass conservation principle to define

various sub-processes for inter- and intra-compartment transfers. A fundamental under-
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standing of the sub-processes of attachment, detachment, entrainment, and drainage can

be incorporated to develop these models. The lack of direct entrainment-based dynamic

models encourages the use of compartment-based models. We have previously used a

similar model framework to monitor the attachment and detachment sub-processes in

batch flotation (Popli et al., 2015).

The objectives of this study are to develop a froth image-based method to measure

online grade and recovery for minerals, and to monitor the entrainment and drainage

through online state and parameter estimation with a detailed compartment-based dy-

namic fundamental model using an extended Kalman filter. Furthermore, a method is

proposed to estimate the entrainment and true flotation recovery for hydrophobic min-

erals separately in real-time using the developed monitoring algorithm.

4.2 Experimental Section

4.2.1 Materials: Minerals and reagents

Synthetic mixtures were prepared using pure galena (lead sulfide, PbS) and pure quartz

(silicon dioxide, SiO2). Galena and quartz were chosen to represent a mixture of hy-

drophobic and hydrophilic particles. Galena was obtained from Boreal Sciences, Canada

and quartz was obtained from U.S. Silica, United States. In this study, three different

types of quartz were used: MIN-U-SIL 15 (Q1, under 15 μm), MIN-U-SIL 40 (Q2, under

40 μm) and MIN-U-SIL 90 (Q3, under 90 μm). XRF was used to confirm the 99.8%

and 99.6% mineral purity for galena and quartz, respectively. The three quartz types

represented by Q1, Q2, and Q3 correspond to 98% under 15 μm, 40 μm, and 90 μm,

respectively. Galena was dry ground using a jaw crusher and disc pulverizer to obtain

solids under 110 μm. Three uniform samples of 50 g crushed galena were obtained using
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a RETSCH sample splitter. Particle size distributions were obtained for galena samples

using a Mastersizer 3000. The particle sizes of D10, D50, and D90 were obtained as

3.95 μm, 21.6 μm, and 66.5 μm, respectively. A total of 450 g of each quartz type was

mixed with 50 g of galena to form three types of mixtures, as summarized in Table 4.1.

Variations in the quartz particle size were used to determine the effect of particle size

on entrainment recovery and to monitor the process at different particle size conditions

in the feed. Flotation experiments were conducted with quartz as a hydrophilic tracer.

Potassium ethyl xanthate (C3H5KOS2, KEX) and methyl isobutyl carbinol (C6H14O,

MIBC) were used as the collector and frother, respectively.

Table 4.1: Types of synthetic feed mixtures
Type Composition
1 50 g galena + 450 g Q1 quartz
2 50 g galena + 450 g Q2 quartz
3 50 g galena + 450 g Q3 quartz

4.2.2 Batch flotation

Batch flotation was performed using a 1.5L JKTech flotation cell. A VisioFroth imaging

system by Metso R© Minerals consisting of an IP camera, and laser was installed on the

batch cell. Full details of the setup are given in our previous work (Popli et al., 2015).

Batch flotation experiments were conducted for the three different feeds as given in

Table 4.1 and the flotation conditions for the batch experiments are summarized in Table

4.2. The same experimental conditions were maintained for the three runs to isolate the

effects of quartz particle size amongst the different runs. Feed solids (Feed 1, 2, or 3)

were mixed with water to make a slurry with the required volume and density (see Table

4.2 for detailed flotation conditions). It was transferred to the flotation cell, followed by

the addition of the collector. The impeller was turned on and the slurry was mixed for
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6 minutes at 1100 rpm. Subsequently, the desired amount of frother was added and the

solution was mixed for 2 more minutes. Also, the make-up water was prepared with the

same frother dosage to avoid disturbances in the frother concentration in the process.

Air flow was initiated to start the flotation process and this time was defined as t=0.

Make-up water was added during the process to maintain the pulp level. Froth was

collected into different collection pans at time intervals: 10, 20, 30, 40, 50, 60, 90, 290,

and 300 seconds. The collected froth was weighed in the presence of water, dried, and

weighed again to obtain water and solid weights individually. Dried solid samples were

then analyzed using X-ray fluorescence to determine the silica and galena content.

Table 4.2: Flotation conditions for the batch experiments
Variable Value
Volume of slurry (l) 1.35
Solids weight % in feed (%) 29.8
Air flow rate (lpm) 6
Impeller speed (rpm) 1100
Frother dosage (ml/l) 0.1
Collector dosage (mol/l) 10-3

4.3 Image based soft sensor: Data and modeling

The VisioFroth package was used to measure and analyze the real-time froth images

along with various additional features as listed in Table 4.3. Detailed measurements

algorithms were highlighted in our previous work (Popli et al., 2015). A sampling time of

10 seconds was chosen for image capture and calculations. Image-based models, named

soft sensor A and soft sensor B, were developed for online galena grade and solids (sum

of galena and quartz) cumulative recovery, respectively using support vector regression.

The overall objective for the soft sensor model as illustrated in Figure 4.2 was to use the

image data as an input to measure the online grade and recovery for galena and quartz.
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Outputs from the image based soft sensors A and B were further used as inputs for mass

balance equations.

Table 4.3: Image features extracted using VisioFroth system on top of the cell
Image features Image features
Velocity Green component
X velocity Purity
Y velocity Load
Froth height Luminance
D50 (Bubble size) Red component
D80 (Bubble size) RBG
Brightness Stability
Blue component Tint
Collapse rate Texture
Cell value a- component lab model
Dispersion b- component lab model
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Figure 4.2: Overall framework for soft-sensor network: Online measurement of grade and

recovery for quartz and galena

4.3.1 Soft-sensor A and soft-sensor B

Froth image features in real-time were used to inferentially measure galena grade (%) and

solids cumulative recovery (%) using machine learning based regression models. Various

researchers have stated that the froth features are indicative of the quality of the recovered

sample (Moolman et al., 1996; Runge et al., 2007; Aldrich et al., 2010). We have also

demonstrated machine learning methods to relate image features to recovery for pure

mineral flotation in our previous work(Popli et al., 2015). In this work, XRF-based

measurements were used to train and calibrate the machine learning regression models.
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Model and algorithm

Support vector regression (SVR) is based on the principles of support vector machines

(SVM), which were initially developed for classification problems (Vapnik, 1995; Boser

et al., 1992). The SVR utilizes a kernel trick to transform the data in the feature space

(Rm) to higher dimension space using a function, Φ(x). The nonlinear problem in the

feature space is now linear in the higher-dimensional space using the kernel trick. Unlike

other regression techniques, the SVR is based on structural risk minimization and reduces

the model complexity alongwith the training data error. We have used the ε-SVR, which

allows the training error up to a threshold ε. Hence, no cost is applied to the points where

the error is less than ε. For a given set of training data, (x1, y1), (x2, y2), ......(xn, yn), with

x ∈ Rm, and y ∈ R, the prediction model is formulated as:

f = WTΦ(x) + b (4.5)

where W is the parametrized weight vector and b is the model bias. A constrained opti-

mization problem was structured to minimize the empirical error and model complexity

(Smola and Scholkopf, 2003):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize
w,b,ξ,ξ′

1
2
wTw+ C

(∑n
i=1 ξi +

∑n
i=1 ξ

′
i

)
subject to (i = 1,2,....n):

yi −wTΦ(xi)− b ≤ ε+ ξi

wTΦ(xi) + b− yi ≤ ε+ ξ′i

ξi ≥ 0

ξ′i ≥ 0

(4.6)

where ξi and ξ′i denote the slack variables to allow for the infeasible constraints with
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maximum error range of ε. C, also called the box constraint, is used to trade-off between

two components of the objective function: model complexity (1
2
wTw) and error tolerance

(
∑n

i=1 ξi +
∑n

i=1 ξ
′
i).

The objective function and the constraints were used to design a dual optimization

problem by presenting dual variables (αi, α
′
i) and Lagrange multipliers as illustrated in

equation 4.7 (Smola and Scholkopf, 2003). It is to be noted that the training points are

used as inner products, which allows the use of the kernel trick. The optimal values of

w and b were calculated based on saddle point conditions (Kuhn-Tucker conditions) and

represented in equations 4.8 and 4.9 (Smola and Scholkopf, 2003). The optimal value of

w is the support vector expansion, a linear combination of support vectors. The types of

kernel functions used are summarized in Table 4.4 along with the function parameters.

(4.7)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maximize
α,α′

n∑
i=1

yi(αi − α′
i)− ε

n∑
i=1

(αi + α′
i)−

1

2

n∑
i,j=1

(αi − α′
i)(αj − α′

j)Φ(xi)
TΦ(xj)

subject to:
n∑

i=1

(αi − αi′) = 0

C ≥ αi, α
′
i ≥ 0, i = 1, 2, ....., n

w =
l∑

i=1

(αi − α′
i)Φ(xi) (4.8)

b = yj − Φ(xj)
Tw+ ε, , s.t. 0 ≤ α′

i ≤
C

n
(4.9)

Hyperparameter optimization : SVM model parameters selection

The SVM model parameters are very crucial in the sensor development process. The

box constraint, C, is the contribution of the empirical error to the overall objective
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Table 4.4: Common kernel functions used in support vector machines
Type of kernel Function
Linear xt

ixj

Polynomial (xT
i xj + 1)p

Radial basis function e−γ||xi−xj ||2

(rbf, Gaussian)

function and decides the tradeoff between model accuracy and complexity. Half the

width of the insensitive band (error allowance), ε is used to control the ε-sensitive loss

function, and it’s optimal value decides the number of support vectors. Kernel parameters

such as the choice of kernel function, and respective function parameters are critical in

the model selection and were also selected based on the hyperparameter optimization.

These parameters and their design range are summarized in Table 4.5. Optimization

was performed using the grid search technique, where random samples were evaluated

based on uniform sampling without replacement. A 10-fold cross validation technique

was applied for model selection where training data was randomly divided into 10 parts

and the model was developed using 9 of these parts and validated with the 10th part of

the initial training data.

Table 4.5: Parameter range for hyperparameter optimization using grid search technique
Parameter Range Scale
C [10−3 103] log
ε [0.0062 623.7583] log
Kernel function [linear, gaussian, polynomial] NA (categorical)
γ (gaussian kernel scale) [10−3 103] log
p (polynomial kernel order) [2,4] linear

Data selection and preparation

Froth images were collected at every second. However, a sampling time of 10 seconds was

chosen based on the froth collection time and requirements of model accuracy. Certain
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froth samples collected from all three experiments were used in the development of the

soft sensor. A sampling point (k) consists of a 10 second interval. For example, k = 1, 2,

and 3 correspond to the time 10, 20, and 30 seconds respectively. Specific data selection

for soft sensor models A and B is discussed below:

Soft sensor A (Galena grade)

• Input data for kth sample: average image features of all the images from time

10(k-1)+1 to 10k seconds

• Output variable for kth sample: the overall grade for the sample collected

between 10(k-1)+1 and 10k seconds.

Soft sensor B (Cumulative solids recovery)

• Input data for kth sample (10k seconds): average image features of all the

images from time 1 to 10k seconds

• Output variable at kth sample (10k seconds): Cumulative solids recovery at

10k seconds

4.3.2 Galena and quartz recoveries

The outputs from these soft sensors (galena grade and solids recovery) were then used to

evaluate quartz grade, galena recovery, and quart recovery based on mass balances. Since

the synthetic mixture contained two minerals, the quartz grade was obtained from the

galena grade using equation 4.10, where Gq,k and Gg,k are quartz grade (%) and galena

grade (%), respectively, at time step k. The cumulative solids recovery at step k and

step k-1 was used to find the recovery for the range of k seconds as shown in equation

4.11, where CRs is the cumulative solids recovery (%) and Rs,k is the solids recovery(%)
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for that time range of 10 seconds at time step k. The amount of solids mass recovered

in 10 seconds was calculated using equation 4.12. The denominator in equation 4.12

represents the initial solids mass in the feed stream (500 g). The masses of recovered

quartz and galena were calculated using equations 4.13 and 4.14, respectively. Finally,

galena (Rg,k) and quartz (Rq,k) recovery (%) were calculated using equations 4.15 and

4.16 based on their initial amounts in the feed stream (50 g and 450 g, respectively) and

the grade measurements. Their cumulative recoveries were then calculated based on the

sum of recovery values until the required time.

Gq,k = 100−Gg,k (4.10)

Rs,k = CRs,k − CRs,k−1 (4.11)

Ms,k = 500
Rs,k

100
(4.12)

Mq,k =
Gq,kMs,k

100
(4.13)

Mg,k =
Gg,kMs,k

100
(4.14)

Rg,k =
Mg,k

50
100 (4.15)

Rq,k =
Mq,k

450
100 (4.16)
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4.4 Fundamental model and real-time estimation

The monitoring and estimation scheme is presented in Figure 4.3 to update the model in

real time. The fundamental model, reconciled with online measurements (from the image

based soft sensor), was updated online using an extended Kalman filter that estimates

states and parameters (augmented states) of the model.

Figure 4.3: Developed scheme for entrainment monitoring and estimation

4.4.1 Fundamental modeling framework

Various structures for compartmental models for froth flotation have been proposed in

the literature (Dobby and Savassi, 2005; Fuerstenau et al., 2007; Bascur, 2000; Popli

et al., 2015; Alves dos Santos et al., 2014; Hanumanth and Williams, 1992). In this

study, the model structure shown in Figure 4.4 divides the flotation precess into four
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compartments:

1. Gas phase in the pulp section

2. Slurry phase in the pulp section

3. Gas phase in the froth section

4. Slurry phase in the froth section

Figure 4.4: Model structure for the compartment-based dynamic fundamental modeling

A solid particle can be in any of the four compartments based on its state, i.e.,

attached to bubbles (gas phase) in the pulp or froth, or detached (free) in the slurry

phase in the pulp or froth. The various sub-processes for the transport between the

compartments are attachment, detachment, entrainment, and drainage (Bascur, 2000).
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Attachment and detachment In this study, it was assumed that the attachment

and detachment were first order processes and occur only in the pulp section (Popli

et al., 2015). Therefore, a particle maintains its state (attached or detached) while

moving from the pulp to the froth section. Attachment and detachment rate constants

(ka and kd respectively) are defined in equations 4.17 and 4.18, where Z1, Z2, Pc, Pa,

Ps, and Pd represent collision frequency, detachment frequency, probability of bubble-

particle collision, probability of bubble-particle attachment, probability of bubble-particle

aggregate stability and probability of bubble-particle detachment (Duan et al., 2003; Z.

Dai S.S. Dukhin and Ralston, 1998; Tao, 2005; Dai et al., 1999, 2000; Popli et al., 2015)

. It was assumed that the quartz mineral has no hydrophobic properties (even in the

presence of a xanthate collector) and attachment and detachment sub-processes only

impact galena. Therefore, quartz always remains in the detached state (slurry phase in

the pulp and froth sections)

ka = Z1PcPaPs (4.17)

kd = Z2Pd (4.18)

Entrainment and drainage The entrainment sub-process is used to carry the slurry

phase (free particles) from the pulp section to the froth section. The drainage sub-process

is the settling process of the slurry in the froth compartment to the pulp compartment.

Their net effect is the contribution of the entrainment mechanism to the overall flotation.

Entrainment and drainage flowrates are defined in equations 4.19 and 4.20, where ke and

kr are entrainment and drainage parameters, respectively, Qa is the air flow rate, VSf

is the volume of slurry phase in froth compartment, σ is the surface tension, A is the
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cross-sectional area, and dBp and dBf are the bubble diameters in the pulp and froth

compartments, respectively (Fuerstenau et al., 2007).

QE =
keQa

d0.75Bp

(4.19)

QR = kR
(Qa

A
)0.53V 0.56

Sf A0.4

σ0.24d1.92Bf

(4.20)

Equations 4.21, 4.22, 4.23, 4.24, 4.25, and 4.26 describe the sub-processes in a dynamic

flotation process, where εp and εf are volumetric gas-phase fractions for pulp and froth

respectively, Vp and Vf are the pulp and froth volume respectively, krg and krq are

the solid drainage constant for galena and quartz respectively, and kw and kgf are the

residence time of liquid and gas phase in the froth, respectively. Various particle states

used in the model are summarized in Table 4.6.

d

dt
((1− εp)Vpxg1) = −ka(1− εp)Vpxg1 + kdεpxg2 −QExg1 + krgQRxg3 (4.21)

d

dt
(εpVpxg2) = ka(1− εp)Vpxg1 − kdεpxg2 −Qaxg2 (4.22)

d

dt
((1− εf )Vfxg3) = QExg1 − krgQRxg3 − kw(1− εf )Vfxg3 (4.23)

d

dt
(εfVfxg4) = Qaxg2 − kgεfVfxg4 (4.24)

d

dt
((1− εp)Vpxq1) = krqQRxq3 −QExq1 (4.25)
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d

dt
((1− εf )Vfxq3) = QExq1 − krqQRxq3 − kw(1− εf )Vfxq3 (4.26)

Table 4.6: Descriptions of the particle states used in the compartmental model
State Description
xg1 Concentration(kg/m3) of galena particles free in the pulp (compartment 1)
xg2 Concentration(kg/m3) of galena particles attached in the pulp (compartment 2)
xg3 Concentration(kg/m3) of galena particles free in the froth (compartment 3)
xg4 Concentration(kg/m3) of galena particles attached in the froth (compartment 4)
xq1 Concentration(kg/m3) of quartz particles free in the pulp (compartment 1)
xq3 Concentration(kg/m3) of quartz particles free in the froth (compartment 2)

The entrainment and drainage rates described in equations 4.19 and 4.20 are substi-

tuted into equations 4.21, 4.22, 4.23, 4.24 ,4.25, 4.26 to obtain the detailed compartment

based fundamental model (equations 4.27, 4.28, 4.29, 4.30, 4.31, 4.32), which can be used

for dynamic monitoring and/or control purposes. The measurements (galena and quartz

recovery) are given in equations 4.33 and 4.34, where ts is the sampling time, and Mgi

and Mqi are the initial feed mass (kg) of galena and quartz, respectively. The first term

in equation 4.33 is the entrainment contribution to the recovery, while the second term

corresponds to the true flotation component of the overall recovery. The literature on

the effects of density on entrainment indicates that the degree of entrainment is compa-

rable for quartz and galena minerals (Maachar A. & Dobby, 1992; Wang et al., 2015).

Therefore, in this work, it was assumed that the solid drainage constants krg and krq are

equal, and can be denoted by a single parameter, krqg.

A new parameter kr′, the product of krqg and kR can be used to represent the net

drainage parameter in the following set of differential equations (Equation 4.27, 4.28,

4.29, 4.30, 4.31, and 4.32). This simplification reduces the number of parameters to be

estimated in the model.
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dxg1

dt
= −

(
ka +

keQa

d0.75Bp (1− εp)Vp

)
xg1 +

(
kdεp
1− εp

)
xg2

+

(
kr′(Qa

A
)0.53(Vf (1− εf ))

0.56A0.4

σ0.24d1.92Bf (1− εp)Vp

)
xg3

(4.27)

dxg2

dt
=

(
ka(1− εp)

εp

)
xg1 −

(
kd +

Qa

εpVp

)
xg2 (4.28)

dxg3

dt
= −

(
keQa

d0.75Bp (1− εf )Vf

)
xg1 −

(
kw +

kr′(Qa

A
)0.53(Vf (1− εf ))

0.56A0.4

σ0.24d1.92Bf (1− εf )Vf

)
xg3 (4.29)

dxg4

dt
=

(
Qa

εfVf

)
xg2 − (kg)xg4 (4.30)

dxq1

dt
= −

(
keQa

d0.75Bp (1− εp)Vp

)
xq1 +

(
kr′(Qa

A
)0.53(Vf (1− εf ))

0.56A0.4

σ0.24d1.92Bf (1− εp)Vp

)
xq3 (4.31)

dxq3

dt
=

(
keQa

d0.75Bp (1− εf )Vf

)
xq1 −

(
kw +

kr′(Qa

A
)0.53(Vf (1− εf ))

0.56A0.4

σ0.24d1.92Bf (1− εf )Vf

)
xq3 (4.32)

yg =

(
(1− εf )Vfkwxg3

Mgi

+
εfVfkgxg4

Mg

)
100 (4.33)

yq =

(
(1− εf )Vfkwxq3

Mqi

)
100 (4.34)
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4.4.2 Extended Kalman Filter: State and parameter estimation

An extended Kalman filter (EKF) was used to estimate the state and parameters (aug-

mented states) of the model using online measurements from the developed image-based

soft sensor (Prasad et al., 2002; Kalman, 1960; Popli et al., 2015). The EKF is essentially

a nonlinear version of the Kalman filter, which estimates the states based on minimiza-

tion of the error covariance between the predicted output and the online measurements

(Kalman, 1960; Welch and Bishop, 1995). Consider the nonlinear difference equation

Xk = f(Xk−1, Uk−1,Wk−1) (4.35)

Zk = h(Xk, Vk) (4.36)

where X represents the vector of states, u is the input vector, Z is the measurement

vector, and W and V are the process and measurement noise, respectively. W and V

follow normal distributions with covariance Q and R, respectively. The Taylor series is

used to linearize the model by using a Jacobian matrix to evaluate A and H:

A =
∂f

∂X
(X̂k−1, Uk−1, 0) (4.37)

H =
∂f

∂Z
(Xk−1, 0) (4.38)

where, X̂k−1 is the posteriori estimate of the state vector at time step k. The Linear

form of the model is presented below using the calculated Jacobian matrices. In this

work, differential equations 4.27, 4.28, 4.29, 4.30, 4.31 and 4.32 are used to represent

the state space equation 4.39 where X vector is [xg1, xg2, xg3, xg4, xq1, xq3], and the
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measurements (yg and yq) in equations 4.33 and 4.34 are used in the equation 4.40 with

Z = [yg yq].

Xk = AXk−1 +BUk−1 +Wk−1 (4.39)

Zk = HXk + Vk (4.40)

The EKF algorithm is based on two fundamental steps: predictor and corrector

(Kalman, 1960; Welch and Bishop, 1995).

Prediction step State and covariance estimates from time step k-1 are projected to

time step k :

X̂−
k = f(X̂k−1, Uk−1, 0) (4.41)

P−
k = AkPk−1A

T
k +WkQk−1W

T
k (4.42)

Correction step In this step, state and covariance estimates are corrected using the

real-time measurements and calculated Kalman gain (Kk):

Kk = P−
k HT

k (HkP
−
k HT

k + VkRkV
T
k )−1 (4.43)

X̂k = X̂−
k +Kk(zk − h(X̂−

k , 0)) (4.44)

Pk = (I −KkHk)P
−
k (4.45)
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These series of predictor and corrector steps are continued to estimate the states of

the model. Model parameters were estimated by using them as augmented states in

the state-space equations. States and parameters that can be estimated depend on the

observability of the system. In this system of augmented states, observable parameters

other than the states ( xg1, xg2, xg3, xg4, xq1, xq3) are the attachment rate constant, ka,

the net drainage parameter, kr′, and the entrainment parameter, ke.

The model was updated for all three experiments and was used to evaluate the dy-

namic effect of quartz particle size on the estimated kr′ and ke. Estimated states and

parameters were used to evaluate the dynamic contribution of true flotation and entrain-

ment on the overall galena recovery using equation 4.33.

4.5 Results and discussion

4.5.1 Batch flotation experiments

Froth samples were collected at 10, 20, 30, 40, 50, 60, 90, 290, and 300 seconds for three

different feed samples. Galena and quartz content were obtained using XRF, and used

with dried weight measurements to determine the recovery for quartz and galena. Water

content was obtained based on the difference in the wet and dried froth samples that

were collected. Water recovery was calculated based on the initial water present in the

flotation cell. Figures 4.5 and 4.6 show the experimental galena recovery as a function of

time for feed 1,2 and 3. The final galena recovery is 92% ±1% for all three feed samples.

It can be seen that galena recovery was not highly dependent on the variation of quartz

particle size. However, the experiment with feed 3, which contained quartz particles

under 90 μm shows a relatively lower galena recovery in comparison to feed types 1 and

2, which contain finer quartz particle sizes. Quartz recovery, on the other hand, showed
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clear variation with changes in quartz particle size, and decreased with an increase in

the particle size. Type 1 (under 15 μm) flotation resulted in the highest quartz recovery

with final recovery of 25%. It was followed by type 2 (under 45 μm) and type 3 (under

90 μm) with ultimate quartz recovery of 17% and 12%, respectively.

Figure 4.5: Galena recovery for batch flotation calculated using XRF
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Figure 4.6: Quartz recovery for batch flotation calculated using XRF

Figure 4.7 shows the quartz recovery (entrainment) as a function of water recovery

for three different feed stream types. It can be seen that there is a linear relationship

between quartz and water recovery for all three feed streams. These trends agree with

reported literature trends (Trahar, 1981; Gong et al., 2010). It can also be deduced that

the slope, known as the degree of entrainment, decreases with an increase in the quartz

particle size, which is consistent with the results given in the literature (Wang et al.,

2015; Bisshop J.P. & White, 1976). These experimental results were used to calibrate
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the image-based soft sensors.

Figure 4.7: Quartz entrainment and water recovery for batch flotation experiments

4.5.2 Image-based soft sensor: Real-time grade and recovery

measurements

Froth images are a good indication of the quality and quantity of product being floated.

A sample set of time-based images are shown in Figure 4.8 for the Type 1 feed stream.

A clear distinction is observed in the images with the increase in flotation time, and the
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developed soft sensors capture the relationship between the images and process outputs

quantitatively. Real-time galena grade (image based soft sensor A) and solids recovery

(image based soft sensor B) measurements were used to determine online grade and

recovery for galena and quartz minerals.

Figure 4.8: Variation in the froth images with time for the case of feed stream type 1

Soft sensors A and B

Support vector regression was used to develop image-based soft sensors and hyperparam-

eter optimization was performed to obtain the optimal SVR model parameters. Results

of the grid search algorithm are tabulated in Table 4.7. Due to the lack of training data

between 200 and 300 seconds, soft sensors were implemented up to 200 seconds and cap-

ture the majority of the process dynamics. Figures 4.9 and 4.10 show the comparison

between experimental and predicted galena grades (soft sensor A) and solids recoveries

(soft sensor B), respectively, and the sensors predict the experimental grade and recovery

accurately. The developed soft sensors A and B were then used to predict the galena

grade and solids recovery to be used in mass balance-based inferential measurements of

other process outputs.
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Table 4.7: Hyper-parameter selection based on grid search optimization
Parameter Soft-sensor A Soft-sensor B
C 1000 215.44
ε 0.0191 0.0062
Kernel function Gaussian Gaussian
γ (Gaussian kernel scale) 10 10
p (polynomial kernel order) n/a n/a

Figure 4.9: Parity plot of experimental (XRF based) measurements and online image-

based soft sensor A estimates for galena grade
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Figure 4.10: Parity plot of experimental measurements and online image-based soft sensor

B estimates for solids recovery

Online estimates of the galena grade and solids recovery based on soft sensors A and

B are shown along with the small number of offline XRF measurements in Figures 4.11

and 4.12, respectively, for feed stream Type 1. The soft sensor estimates show that the

instantaneous grade reduces with time for 0-200 seconds. This trend is validated by the

XRF-based grade measurements shown in Figure 4.11 and the XRF measurement of 3.2%

for the sample collected between 290 and 300 seconds (not shown in the figure).
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Figure 4.11: Soft sensor A-based galena grade prediction for feed Type 1
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Figure 4.12: Soft sensor B-based solids recovery prediction for feed Type 1

Galena and quartz recovery are estimated using the image-based soft sensor outputs

as a function of time, and are presented in Figures 4.13, 4.14, and 4.15 for Type 1, 2, and 3

feed streams, respectively. XRF-based experimental measurements for a few samples are

also included in the figures for validation, which show that the complete sensor network

provides accurate estimates in real-tie, and confirms that online froth images can be used

to measure real-time process outputs such as grade and recovery under the flotation test

conditions.
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Figure 4.13: Soft sensor-based prediction for galena and quartz recovery for feed stream

Type 1.



4.5: Results and discussion 132

Figure 4.14: Soft sensor-based prediction for galena and quartz recovery for feed stream

Type 2.
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Figure 4.15: Soft sensor-based prediction for galena and quartz recovery for feed stream

Type 3.

4.5.3 Model update: EKF based state and parameter estima-

tion

The final measurements of galena and quartz recovery from the soft sensor framework

were then provided to EKF to update the model by state and parameter estimation.

Offline estimation was performed using nonlinear optimization to obtain the initial set of
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model parameters for the EKF. These parameters, along with other constants describing

the hydrodynamic condition in the model are summarized in Table 4.8. The same initial

values were maintained for EKF estimation for feed streams of type 1,2 and 3. This was

done to track the real-time changes in net drainage and entrainment parameters caused

by variation of quartz particle size in feed streams of Type 1, 2 and 3. The true flotation

and entrainment contribution were isolated for the experiments through the estimated

values of attachment rate constant (ka), net drainage (kr′), and entrainment parameter

(ke). Figures 4.16 and 4.17 show the updated fundamental model prediction for overall

galena and quartz recovery, respectively, for feed stream Type 2, and compares it to

the real-time estimates from the soft sensors. Additionally, Figure 4.16 shows the true

flotation and entrainment recovery components for galena and provides estimates of true

flotation and entrainment recovery with time.

Table 4.8: Model parameters for fundamental model structure
Parameter Value Method
dBf (cm) 0.8 VisioFroth
dBp(cm)(cm) 0.4 Assumption: Half of froth bubble size (Bouchard et al., 2014)
Vp (L) 1.1 Based on interface
Vf (L) 0.4 Based on interface
σ 0.05 Physical property
Ac (m

2) 0.0121 Measured
ka 0.16 Least squares optimization
kd 0.42 Least squares optimization
kw 0.03 Least squares optimization
ke 4.59 Least squares optimization
kac 0.143 Least squares optimization
kr′ 0.511 Least squares optimization
εp 0.50 Least squares optimization
εf 0.88 Least squares optimization



4.5: Results and discussion 135

Figure 4.16: Prediction of the overall recovery of galena (and identification of the individ-

ual components of recovery) based on the updated fundamental model and its comparison

with soft sensor-based measurements for flotation of Feed Type 2.
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Figure 4.17: Quartz recovery prediction based on the updated fundamental model and

its comparison with soft sensor-based measurements for flotation of feed Type 2.

Figures 4.18, 4.19, and 4.20 show the estimated ka, ke, and kr′ parameters for different

quartz particle sizes in feed stream Types 1,2 and 3. The estimated parameters obtained

with the same initial conditions are able to track the dynamics of the flotation process

for all three quartz particle sizes in feed streams of Type 1,2 and 3. It is observed that

the change in quartz particle size does not have any effect on the estimated parameter

ka, which represents the attachment behavior of galena particles. Figure 4.20 shows
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the effect of quartz particle size on the estimated parameter kr′, which represents the

drainage behavior. kr′ has its highest value in feed stream Type 3 (under 90 μm) followed

by Type 2 (under 40 μm) and Type 1 (under 15 μm). However, Figure 4.19 shows the

opposite trend. Feed stream Type 1, which contains smaller particles, has the highest

estimated parameter value for ke , which represents the entrainment process behavior.

ke increases with a decrease in quartz particle size, and this is in agreement with the

reports of high entrainment for fine particles in the literature (Wang, 2016; Smith and

Warren, 1989; Lynch, 1981).
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Figure 4.18: Estimate of attachment rate constant (ka) for feed stream Types 1, 2, and

3
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Figure 4.19: Estimate of entrainment parameter (ke) for feed stream Types 1, 2, and 3
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Figure 4.20: Estimate of drainage parameter (kr′) for feed stream Types 1, 2, and 3

Entrainment recovery measurements were obtained based on estimated parameters for

feed streams types 1 and 3. The trends in entrainment recovery based on the parameter

estimates are shown in Figures 4.21 and 4.22. Galena entrainment, showed much less

dependence on quartz particle size, which is possibly due to the assumption of same kr′
for both the minerals. Low galena entrainment for feed stream Type 1 containing fine

quartz could be due to high quartz entrainment. With the same plateau border area, less

galena particles are entrained with the presence of a large amount of fine quartz particles.
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Figure 4.21: Prediction of the overall recovery of galena (and identification of the true

flotation and entrainment components of recovery) based on the updated fundamental

model and its comparison with soft sensor-based estimates for flotation of feed stream

Type 1.

Apart from the identification of the true flotation and entrainment components of

galena recovery, the estimated parameters can be used for process monitoring and iden-

tification of the disturbances causing an increase in entrainment recovery. Entrainment

reduction methods can be studied and tested by using the real-time estimates of kr′, and
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ke for the process.

4.6 Conclusions

In this paper, a framework was developed to monitor the entrainment and determine the

contribution of true flotation and entrainment to the overall mineral recovery in real-time.

Batch flotation experiments were designed and conducted with different sized quartz as

a hydrophilic tracer. The SVR model was developed and trained to obtain online process

estimates using images and the proposed soft sensor network. The soft sensor network

was validated and showed the potential for being used to generate online estimates for

entrainment. The fundamental model, combined with the online process measurements,

was updated in real time using EKF-based state and parameter estimation. The updated

model was used to obtain individual components of mineral recovery. Real-time moni-

toring showed that the net drainage parameter increased and the entrainment parameter

decreased with increasing quartz particle size.
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Figure 4.22: Prediction of overall recovery of galena (and identification of the true flota-

tion and entrainment components of recovery) based on the updated fundamental model

and its comparison with soft sensor-based measurements for flotation of feed Type 3.
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Chapter 5

Development of Online Soft Sensors
and Dynamic Fundamental
Model-Based Process Monitoring for
Complex Sulfide Ore Flotation1

Complex sulfide ores are difficult to process and often require multi-stage sequential

flotation. Process outputs such as grade and recovery in each stage are affected by

various sub-processes in the system, and it is crucial to monitor the performance in order

to maximize the production. In this work, we have proposed and implemented a dynamic

monitoring scheme using fundamental modeling and an online soft sensor network for real-

time measurements of grade and recovery. Dynamic fundamental models for lead and zinc

recovery were developed to represent the multi-stage rougher flotation for lead-zinc sulfide

ores. A soft sensor network was built to measure the grade and recovery in real-time

using support vector machine classification and regression on multivariate image data. A

factorial design with feed particle size, collector dosage in the lead rougher flotation stage,

and collector dosage in the zinc rougher flotation stage as the design variables was used

to obtain diverse process conditions for validation. Successful validation at the entire

1A version of this chapter is submitted as Popli, K.; Liu, Q.; Afacan, A.; Prasad, V., 2017 ”Develop-
ment of Online Soft Sensors and Dynamic Fundamental Model-Based Process Monitoring for Complex
Sulfide Ore Flotation ”. Minerals Engineering
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range of process conditions demonstrates the potential of the technique for use in process

control and monitoring applications. Changes in the collector dosage were monitored in

the lead and zinc rougher flotation stages using state and parameter estimates of the

fundamental model structure. The process monitoring framework can be extended to

monitor other key variables in the process.

5.1 Introduction

Froth flotation is the most used separation process in the mineral industry (Nguyen and

Schulze, 2003; Wu et al., 2016) and is used to separate the ore into valuable mineral

concentrates and tailings (gangue minerals) based on physicochemical principles(Yalcin

and Kelebek, 2011; Kawatra, 2002; Wang et al., 2016). The process is driven by the

difference in the surface hydrophobicity between the value and gangue minerals. In most

cases, the value mineral is rendered hydrophobic using a chemical reagent known as

the collector, which has a direct impact on the process outputs (grade and recovery).

Froth flotation is a multi-phase process with gas flowing through the slurry to initiate

the attachment of hydrophobic particles to the bubbles (Kawatra, 2002; Finkelstein and

Lovell, 1972).

Flotation has been practiced for the beneficiation of sulfide ores for over 100 years

(Somasundaran, 1980). With the recent advances in the technology, it is now possible

to concentrate poor quality complex sulfide ores through fine grinding (Kohad, 1998).

Most of the research has been focused on improving the types and dosage of reagents

used in sulfide ore flotation (Barbaro, 2000). Thiol-type collectors (e.g., xanthates) have

generally been accepted and employed for the separation of complex sulfide ores (Bar-

baro, 2000). Various researchers have studied the adsorption effects of Xanthates on

the minerals (Barbaro, 2000; Little et al., 1961; Page and Hazell, 1989). It was found
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that the Xanthates can float all sulfide minerals and are thus not selective towards spe-

cific minerals found in the sulfide ores, and hence, the process requires the use of other

reagents such as modifiers or depressants to achieve the differential flotation of different

sulfide minerals (Barbaro, 2000; Finkelstein and Alllison, 1976). Lead-zinc sulfide ores

are among the common sulfide ores that use flotation for beneficiation. Flotation of these

sulfide ores is accomplished using multi-stage differential flotation. Several flotation cells

are used to separate and recover galena (lead sulfide, PbS), followed by floating sphalerite

(ZnS) in a sequential manner (Basilio et al., 1996). Various disturbances may be present

and cause the separation process to deviate from its desired state of maximum possible

grade and recovery. For instance, kinetic studies for the lead-zinc sulfide ore flotation

have reported that the sphalerite shows certain floatability towards the end of galena

flotation, and reduces the lead concentrate grade and zinc concentrate recovery (Basilio

et al., 1996). The presence of copper activates sphalerite during the grinding (Fisher and

Tokich, 1943), thus reducing the separation efficiency further. Depressants are added to

inhibit the sphalerite activation. Bubble-particle attachment, dependent on these chem-

ical reagents, is an important process for the ultimate objective of mineral separation,

and any disturbance in collector or reagent addition or its quality has a direct impact on

the concentrate grade and recovery by affecting the bubble-particle attachment. Other

than the chemistry-based factors, there are several operational and feed-based variables

that need to be manipulated and monitored to achieve the desired separation (Kawatra,

2002; Popli et al., 2015). Disturbances in feed particle size, feed density, feed grade, air

flow rate, or pH are relatively common during operation. These disturbances influence

the process and can degrade the product quality and move the operation away from the

optimized state. It is therefore of great importance to develop in-depth fundamental pro-

cess knowledge and monitor the attachment, detachment and transport sub-processes to

maximize the grade and recovery without upsetting the operation. It is also important to
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understand the importance of these operational variables and their relationship to lead

and zinc recovery to achieve effective process control.

Various attempts have been made to model the flotation processes and develop an

accurate mathematical treatment. The majority of the studies deal with fitting first

order kinetic models to the experimental data (Asghar et al., 2015; Kracht et al., 2005;

Wills, 1997). First principles models have also been studied for the flotation process.

The early first principles models were based solely on the pulp phase; later, many models

were proposed for the froth phase by considering it as an important component (Arbiter

and Harris, 1962; Harris et al., 1963; Harris and Rimmer, 1966; Lynch et al., 1974).

Ventura-Medins and Celiers (Ventura-Medina and Cilliers, 2002) introduced the plateau

border to describe the froth in the flotation process. Compartment-based models divide

the process into various compartments and develop mathematical relations for inter-

compartment processes (Fuerstenau et al., 2007; Bascur, 2000; Popli et al., 2015; Alves dos

Santos et al., 2014). Some of these sub-processes include attachment between a bubble

and particles to form an aggregate, detachment of a particle from the bubble-particle

aggregate, entrainment of a particle from the pulp phase to the froth phase without

being attached to a bubble and drainage of a detached particle from the froth to the pulp

phase (Bascur, 2000; Popli et al., 2015; Alves dos Santos et al., 2014). The majority of

these models are valid only at steady-state and their inability to connect various sub-

processes has made them unsuitable for the control and monitoring purposes. In this

study, we propose a compartment-based model that includes theoretical dependence of

various operational and feed variables to sub-processes in both the lead and zinc rougher

flotation stages of flotation for a Pb-Zn sulfide ore. These sub-processes were further

connected to the lead and zinc concentrate recovery by developing dynamic equations for

those relations.

Real-time or online process measurements are another vital component to complete
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a monitoring and control framework. Grade and recovery are the key measurements

for the flotation processes. Traditional offline procedures of obtaining the grade mea-

surements using analytical methods in the laboratory are not suitable for the dynamic

operations due to their long sampling and measurement times. Recently developed online

sample analyzers (online X-ray Fluorescence) have been implemented in various plants

to measure the grade with better response time. However, their high maintenance, high

initial cost, inaccurate data, and difficulty in calibration demand a better solution for the

process control purposes (Duchesne, 2010; Popli et al., 2015). Additionally, experienced

operators also rely on the qualitative assessment of the visual features of the froth such

as color, texture, and stability. However, this assessment is not quantitative, and it is dif-

ficult for the operators to understand the process conditions or the root-cause for certain

setbacks in the operations (Aldrich et al., 2010; Popli et al., 2015). However, it is known

that two similar looking froth images can have different extracted features using machine

vision, unnoticeable by even the experienced operators (Aldrich et al., 2010). In the

last 25 years, several researchers have exploited the relationship between the froth image

structure and corresponding mineral grade (Pryor, 1965; Aldrich et al., 2010; Barbian

et al., 2007; Bonifazi et al., 2000; Holtham and Nguyen, 2002; Leiva et al., 2012; Moolman

et al., 1996; Popli et al., 2015). Image processing algorithms have been applied to extract

various static (color, texture, etc.) and dynamic features (froth mobility, speed, stabil-

ity, etc.) followed by their application in control systems (Brown et al., 2001). Most of

the research in flotation control and implementation in the industry is focused on using

single variables such as froth velocities or color to control the product quality (Runge

et al., 2007). Recently, multivariable analysis has been proposed for the flotation control

and information extraction using image features (Duchesne, 2010). Modern develop-

ments in machine vision for flotation have led to the development of various commercial

packages to extract and measure the image features. These packages include METCAM
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FC (SGS), VisioFroth (Metso R© Minerals), FrothMasterTM Outotec), and PlantVisionTM

(KnowledgeScape Inc) (Popli et al., 2015). We have previously attempted to correlate

the image features obtained by VisioFroth to key process measurements for pure minerals

and synthetic mixtures (Popli et al., 2015). In this work, we extend our studies to a real

complex sulfide ore with multi-stage flotation. The concentrate grade is inferred with

image features and supplied to a mass balance framework for inference of recovery. A

robust structure is proposed to be implemented for multi-stage flotation circuits. Vi-

sioFroth is chosen for the studies due to its common usage in the Canadian mining and

oil industries.

The objective of this work is to develop a process monitoring scheme using fundamen-

tal models and online measurements from a soft sensor network for complex lead-zinc

sulfide ores. The fundamental model was updated in real-time using online process mea-

surements and state and parameter estimation. Factorial design of experiments (DOE)

was used to generate a set of multi-stage flotation operating conditions using two levels of

each of three factors: the dosage of Xanthate collector in the lead stage of flotation, the

dosage of Xanthate collector in the zinc stage of flotation, and the particle size distribu-

tion of the feed. The monitoring framework was used to estimate the rate of attachment

in real-time and identify the disturbances introduced in the collector dosage. Further-

more, to demonstrate other applications of the image-based soft sensor network, results

from factorial DOE were used to analyze the effects of design variables on online process

measurements.
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5.2 Experimental methods

5.2.1 Materials: Feed sample and reagents

Feed samples in the form of lead-zinc sulfide ore were obtained in the crushed form

from the Red Dog Mine, Alaska. X-ray diffraction was used to analyze the feed ore and

identify the minerals present as galena (lead sulfide), sphalerite (zinc sulfide), pyrite (iron

sulfide), quartz (silicon dioxide), and barium oxide. Galena and sphalerite were the value

minerals to be recovered while pyrite and quartz were identified as the gangue minerals.

Lead and zinc content in the feed ore were found to be 3.52% and 18.12% respectively

using atomic absorption spectroscopy (AAS) and classic zinc titration. A grinding circuit

was designed for 500 g of the homogenized sample. A jaw crusher and wet ball mill (65%

solid density) were used to obtain two types of feed streams with different particle size

distributions of P80 at 35 μm and 75μm, respectively. Particle size distributions were

measured using a Mastersizer 3000 and are presented in Figure 5.1. The feed streams

have median particle sizes (P50) of 18.4 μm and 47.1 μm, respectively.
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Figure 5.1: Particle size distributions for the two feed streams obtained using the Mas-

tersizer 3000

Rougher flotation of lead and zinc ores requires several chemical reagents for efficient

separation. Lime (CaO) was used to modify the pH of the slurry to the specific pH re-

quirements. Potassium ethyl xanthate (C3H5KOS2, KEX) was used as a sulfide collector

for both lead and zinc stage flotation. Methyl isobutyl carbinol (C6H14O, MIBC) was

used as a frother in both stages for stabilizing the froth. Depressants are the reagents that

inhibit the flotation of certain minerals by controlling metal ion activation. Activators

enhance the conditions for the interaction of the desired mineral with the collector (Bu-

latovic, 2007). Zinc sulfate (ZnSO4) and sodium sulfite (Na2SO3) were used as sphalerite
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depressants for lead rougher flotation. Also, lime acts as a depressant for pyrite mineral.

Copper sulfate (CuSO4) was used as a sphalerite activator for zinc rougher flotation.

All the reagent solutions were freshly prepared before being utilized in the grinding and

flotation process.

5.2.2 Batch flotation: Lead and zinc stage

Flotation scheme Lead-zinc ore requires sequential flotation with galena being floated

first, followed by the flotation of sphalerite. In a typical industrial flow-sheet (Bulatovic,

2007), the overall process is divided into two stages (lead and zinc flotation) with lead

concentrate and zinc concentrate being the products. There is also a tailings stream.

Sphalerite is initially depressed during the lead stage and then activated and floated in

the zinc stage. Rejects from the lead rougher are passed to the zinc rougher through

the lead scavenger. Rougher products from both lead and zinc stages are further passed

through cleaners to improve the product quality. The objective of the scheme is to

reduce the amount of lead and zinc in the tailing stream while maximizing their grade

and recovery in respective stages. We have designed a laboratory scale procedure to

mimic the rougher stages for lead and zinc flotation. Figure 5.2 presents the flow-sheet

used in this work, focusing on the rougher stages of both desired minerals.
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Figure 5.2: A schematic scheme to demonstrate the lab-scale flotation circuit used in this

work.

Experimental set-up A 1.5 L JKTeck flotation cell was used for the batch flota-

tion of lead and zinc ores, and was equipped with the VisioFroth package to acquire

images of the froth (Popli et al., 2015). C Add-ons to the batch flotation cell include an

LED light, laser light, and a froth IP camera. A laser beam was used to measure the

height of the overflowing froth. Image features are summarized in Table 5.1, and various

measurement algorithms are explained in our previous work (Popli et al., 2015). These

measurements were further used for developing the image-based soft sensor network for
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process measurements.

Table 5.1: Image features extracted using Visiofroth system on top of the cell
Image features Image features
Velocity Green component
X velocity Purity
Y velocity Load
Froth height Luminance
D50 (Bubble size) Red component
D80 (Bubble size) RBG
Brightness Stability
Blue component Tint
Collapse rate Texture
Cell value a- component lab model
Dispersion b- component lab model

Flotation procedure Depressants for sphalerite during the flotation of galena were

added to the grinding circuit with zinc sulfate and sodium sulfite dosages at 500g/t and

400g/t, respectively. The pulp solid density was fixed at 35% using 500 g of the feed ore

and added water. Agitation was started at 1000 rpm to condition the pulp with the lime

to maintain the required pH at 9. It was followed by adding required dosage of KEX and

mixing for 2 minutes. MIBC with 0.1ml/L dosage was further added to the slurry and

agitation was continued for 1 minute. Lead flotation was initiated with the addition of air

at a controlled flow rate of 10 L/min using a rotameter. The concentrates were collected

at every 10 seconds for 150 seconds, followed by collection at 270 seconds, 280 seconds,

290 seconds, 590 seconds, and 600 seconds. More frequent samples were collected at the

beginning to capture the fast initial dynamics. The collected froth was dried, weighed,

and stored for further analysis. After the lead rougher flotation is completed, makeup

water is added to the slurry for the zinc rougher flotation to maintain the required slurry

volume. The pH was again regulated and maintained at pH value of 10.5 using lime. The

required dosage (400g/t) of copper sulfate was added to the pulp, followed by required
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dosage of KEX. The slurry was conditioned for 2 minutes with an agitation speed of

1000 rpm. Air was added with a flow rate of 10 L/min to start the zinc flotation. Froth

samples were collected with the same sampling times described above for lead stage

flotation. Image features were acquired with a sampling time of 5 sec. Make-up water,

mixed with the required amount of MIBC, was used to maintain the froth height for both

lead and zinc stages.

Table 5.2: Flotation conditions for the batch experiments
Variable Value
Volume of slurry (l) 1.35
Solids weight % in feed (%) 29.8
Air flow rate (L/min) 10
Impeller speed (rpm) 800
Frother dosage (ml/l) 0.1
Sodium sulfite(g/t) 400
Zinc sulfate (g/t) 500
Copper sulfate (g/t) 400

Factorial design of experiments Lead and zinc flotation were characterized by fixed

and variable process parameters. Fixed parameters are summarized in Table 5.2, and the

variable process parameters (KEX for the lead stage, KEX for the zinc stage, and particle

size for the feed stream) were designed using the factorial design of experiments. High

and low level values for these process parameters are given in Table 5.3. Experiments

were designed with two levels of 3 variables using factorial design. Table 5.4 presents

the experimental conditions for 23 = 8 runs obtained using the DOE technique. A 9th

run was used as a test run to validate the DOE model for zinc concentrate grade and

recovery. Center values(zero) for X2 and X3 were 100g/t and 210g/t, respectively.
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Table 5.3: Symbols, low level, and high level for design variables of full factorial design
Design parameter Symbol Low level (-1) High level (+1)
Feed particle size (P50, microns) X1 18.4 47.1
KEX for lead flotation stage (g/t) X2 80 120
KEX for zinc flotation stage (g/t) X3 180 240

Table 5.4: Experiment conditions based on full factorial design.
Standard order Run order X1 X2 X3

5 1 -1 +1 +1
8 2 +1 +1 +1
4 3 +1 +1 -1
1 4 -1 +1 -1
3 5 -1 -1 -1
2 6 +1 -1 -1
6 7 +1 -1 +1
7 8 -1 -1 +1
9 9 +1 0 0

5.3 Real-time monitoring: Image-based soft sensor,

fundamental model, and estimation

The monitoring scheme shown in Figure 5.3 was implemented to monitor the performance

of flotation in real-time. A similar scheme has been proposed and implemented in our

previous work for pure mineral flotation (Popli et al., 2015). The main features include:

• An online soft sensor to measure process outputs.

• A fundamental model to describe various sub-processes and their relationship to

process output measurements.

• State and parameter estimation to update the fundamental model in real-time using

the online process measurements.
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Figure 5.3: Proposed monitoring scheme for the sub-processes of flotation process

State and parameter estimates were then used to monitor the performance of the

process. Disturbances in the process can be identified by the changes in these estimates.

5.3.1 Image-based soft sensor development

Image features (summarized in Table 5.1) are used to predict the mineral grade and solids

recovery. A sampling time of 10 s was selected for the image-based models. Flotation

experiments for each stage were conducted for 600 seconds; however, due to the lack of

training data from 500 s to 600 s, online sensors were developed only for flotation times up

to 500 s. The images and their features were considerably different for lead and zinc stages

of flotation. Therefore, a single image-based soft sensor model cannot be developed to

predict grade and recovery for both these stages with high accuracy. Therefore, different

soft sensor models were developed for each stage of flotation. However, to automate
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the process, an image-based classifier was developed to classify any froth image to its

respective flotation stage (lead or zinc) using a support vector machine for classification.

The complete soft sensor network design is presented in Figure 5.4. The machine learning

models were developed for the lead grade, zinc grade, and solid recovery separately for

the lead and zinc concentrates. In total, there were six image-based regression models

and a classification model as summarized in Table 5.5. Datasets of image features were

converted to standard scores to remove the effects of different scaling in the algorithms.

The converted dataset was characterized by zero mean and a standard deviation of 1.

Grade and recovery for lead and zinc can be predicted for both stages using this design.

Figure 5.4: Soft sensor network based on the froth surface images to obtain real-time

process measurements
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Table 5.5: Summary of image-based machine learning models for soft sensor network
Model name Type Output Flotation stage
MC Classification Flotation stage Lead and zinc stage
MR1 Regression Lead grade Lead stage
MR2 Regression Solids recovery Lead stage
MR3 Regression Zinc grade Lead stage
MR4 Regression Lead grade Zinc stage
MR5 Regression Solids recovery Zinc stage
MR6 Regression Zinc grade Zinc stage

Image-based model for classification to lead and zinc stage flotation

Dataset and sampling A data set consisting of images from nine flotation tests was

constructed with 22 image features as the inputs, and lead or zinc stage as the classes of

outputs. The complete data set was divided into two parts: training and validation. The

training data set contained 8896 sample points (chosen randomly), while the validation

set contained 1569 randomly selected samples. Image features at any given discrete time

sample ’t’ were used to predict the flotation stage for the corresponding sample point.

Classification model A support vector machine (SVM) was used to develop the

image-based classification model. The SVM was chosen based on its robustness and

ability to handle noisy data and outliers. Unlike other classifiers that are based on

minimizing the error on prediction, the SVM algorithm minimizes the maximum allowed

misclassification cases on the prediction (Gunn, 1998). It separates the training data into

classes by constructing a hyperplane based on the maximum margin among two classes.

Data points on the boundary of the margins are called support vectors.

Support vector machines use the kernel technique to handle the linearly non-separable

problems. The kernel technique consists of transforming the data into higher dimension

using a kernel function followed by construction of a linear hyperplane (Basak et al.,

2007; Smola and Scholkopf, 2003). Detailed explanations of the SVM algorithm can be
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found in the literature (Basak et al., 2007; Smola and Scholkopf, 2003; Gunn, 1998; Hsu

et al., 2010) and are omitted here. A grid search algorithm was used for the entire range

of parameters given in Table 5.6 to develop the SVM classifier for the flotation stage. C

is the box constraint that decides the trade-off between model accuracy and structure

complication, and ε represents the maximum misclassification allowed by the model.

Table 5.6: Parameter range for hyperparameter optimization using grid search technique
Parameter Range Scale
C [10−3 103] log
ε [0.0062 623.7583] log
Kernel function [linear, gaussian, polynomial] NA (categorical)
γ (kernel scale) [10−3 103] log
p (polynomial kernel order) [2,4] linear

Image-based model for predicting mineral grade and solids recovery, for lead

and zinc stage flotation

Model and methodology Regression models were developed using support vector

regression (SVR). ε- sensitive loss functions were defined to allow the training error less

than ε. The regression model with kernel transformation is formulated as

F = WTΦ(x) + b (5.1)

Here F is the prediction model, X is the input data set, W is the weight vector, and

b is the bias vector. Computation of W and b is based on structural loss minimization

for the training dataset. Further details about the regression algorithm can be found

in the reported literature (Basak et al., 2007; Smola and Scholkopf, 2003; Gunn, 1998).

Regression models have similar model parameters to tune as the classification model. The

Grid search was used for hyperparameter selection, and 5-fold cross-validation was used

for the validation. A novel selection of input data consisting of dynamic image features
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and model outputs, mineral grade and solid recovery was utilized for the regression

models.

Data selection for mineral grade The same data selection scheme was used for the

mineral (lead and zinc) grade models for lead and zinc concentrates (ML1, MZ1, ML2,

MZ2). Offline output measurements were obtained for flotation run 2 (defined in Table

5.4). Lead and zinc content was measured offline using AAS and zinc titration performed

by a commercial laboratory. Image data was acquired from VisioFroth at intervals of

every five seconds. However, the output for the training data set was obtained with a

sampling time of 10 seconds due to experimental and testing constraints. The training

data set consisted of 18 samples each for lead and zinc flotation. The grade output at

any time t s was assumed to be dependent on the average image features of 10 images

from t-9 seconds to t seconds.

Data selection for solids recovery Solids recovery is defined as the percentage of

solids in the feed that are collected in the concentrate. Offline measurements were ob-

tained from all nine experiments (defined in Table 5.7) with a total of 180 samples for

each lead and zinc stage of flotation. A total of 10% of the data was randomly selected

as the test data to validate the developed models for image-based solid recovery, and the

other 90% was used to train the models. It was observed that the cumulative recovery

at each time t seconds was explained well with the average features of the images from

beginning of the flotation test to the image at time t (Popli et al., 2015). Accordingly,

the data scheme chosen was:

for t = 10, 20, 30,....500 sec

Input for time t: Average of features obtained from images from time one second to t
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seconds

Output for time t: Cumulative solids recovery at time t

Prediction of lead and zinc recovery

Finally, the results from the image-based soft sensors were used to predict lead and zinc

recovery for both flotation stages. The cumulative solid recovery prediction (SCR) was

used to calculate solid recovery (SR) using the difference between current and preceding

cumulative recovery value.

SR|t= SCR|t+10−SCR|t (5.2)

Solid recovery (SR) was further used to compute the solid mass (SM) collected for

each 10 second time interval using the initial solid mass of 500 g.

SM |t= 100
SR|t
500

(5.3)

The amount of lead (PbM) and zinc (ZnM) collected at the concentrate was calculated

by multiplying the solid amount (SM) by the image-based prediction of lead and zinc

grade, respectively.

PbM |t= SM |tPbG|t
100

(5.4)

ZnM |t= SM |tZnG|t
100

(5.5)

Lead and zinc amounts were further used to calculate their recovery using feed content.

PbR|t= 100
PbM |t
17.6

(5.6)
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ZnR|t= 100
ZnM |t
90.6

(5.7)

The same procedure was applied for lead and zinc stage flotation. It was assumed that

there was no material loss, and mass balance was complete between feed, concentrates,

and tailing for total solids, lead, and zinc content. The models trained using offline

measurements from run number 2 (defined in Table 5.4) were used to predict mineral

grade and recovery for lead and zinc stage flotation with different process conditions

(Table 5.4).

5.3.2 Fundamental model for lead and zinc flotation

A dynamic modeling framework was previously proposed by us for single stage pure

mineral flotation (Popli et al., 2015). The framework is extended in this work for a

multi-stage flotation of complex sulfide ores. The modeling structure developed aims to

satisfy the following requirements:

• Capture the dynamics of the process

• Describe micro-scale sub-processes in the flotation (attachment and detachment)

• Describe macro-scale sub-processes in the flotation (transfer of material from pulp

to froth, and froth to the concentrate)

• Connect the micro-scale sub-processes to the macro-scale sub-processes
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Figure 5.5: Compartment-based framework for multi-stage flotation: a) Lead stage flota-

tion, b) Zinc stage flotation

The model framework is described in Figures 5.5a and 5.5b for lead and zinc stages

of flotation, respectively. Three compartments (1, 2, 3) were proposed to represent the

three states of the mineral particles: (1) particles free in the pulp , (2) particles attached

in the pulp, and (3) particles attached in the froth (Popli et al., 2015; Bascur, 2000).

The compartments depict the slurry phase in the pulp section, the gas phase in the

pulp section, and the gas phase in the froth section. A mineral particle can be present

in any of these three states during the flotation process. Modeling the mathematical

equations for the proposed design involves mass transfer and kinetics-based relationships.

Within the pulp section, particles are transferred from the slurry phase to the gas phase

through attachment, and from the gas phase to the slurry phase by detachment. Attached

particles present in the gas phase of pulp section are transferred to the froth section by

upward motion of bubble-particle aggregates. Particles in the froth are collected in
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the concentrate as the final product. Kinetics for the attachment and detachment sub-

processes were specified using the attachment rate constant (kamj) and the detachment

rate constant kdmi, respectively. Here, m and j represent the mineral type (g: galena,

and s: sphalerite) and stage (1: lead stage, and 2: zinc stage), respectively. The dynamic

set of equations for lead and zinc flotation are given in equations (5.8, 5.9, 5.10) and

(5.12, 5.13, 5.14) for galena and sphalerite, respectively. Galena and sphalerite recovery

equations are presented in equations 5.11 and 5.15. Concentrations of minerals (kg/m3)

are represented by xmij, where m denotes the mineral (galena or sphalerite), i denotes

the compartment number (1, 2, 3) and j denotes the stage.

(1− εpj)Vp1
d

dt
xg1j = −kagj(1− εpj)Vpjxg1j + kdgjεpjVpjxg2j (5.8)

εpjVpj
d

dt
xg2j = kagj(1− εpj)Vpjxg1j − kdgjεpjVpjxg2j −Qajxg2j (5.9)

εfjVfj
d

dt
xg3j = Qajxg2j − k3jxg3jVfjεfj (5.10)

ygj =

(
tsεfjVfjk3jxg3j

Mg,feed

)
100 (5.11)

(1− εpj)Vpj
d

dt
xs1j = −kasj(1− εpj)Vpjxs1j + kdsjεpjVpjxs2j (5.12)

εpjVpj
d

dt
xs2j = kasj(1− εpj)Vpjxs1j − kdsjεp1Vpjxs2j −Qajxs2j (5.13)

εfjVfj
d

dt
xs3j = Qajxs2j − k3jxs3jVfjεfj (5.14)
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ysj =

(
tsεfjVfjk3jxs3j

Ms,feed

)
100 (5.15)

where, εpj and εfj are the volume fraction of gas phase in pulp and froth, respectively,

Vpj and Vfj are the pulp and froth volumes (m3), respectively, k3j is the froth residence

time (1/s), ts is the sampling time, Qaj is the air flow rate (m3), Mg,feed and Ms,feed

are the amount of galena and sphalerite, respectively, in the feed, and ygj and ysj are

the galena and sphalerite recovery, respectively. All the variables are presented for lead

(j=1) and zinc stage (j=2) of flotation.

Equations 5.16 and 5.17 explain the fundamental relationship between rate constants

(kamj and kdmj) and the probabilities of attachment, detachment, and stability (Popli

et al., 2015). These equations were used to calculate initial values of the kinetic param-

eters for estimation. Further details about the probability calculations are given in our

previous work (Popli et al., 2015). kamj, kdmj, and k3j represent the model parameters

used in estimation.

kamj = Z1,mjPc,mjPa,mjPs,mj (5.16)

kdmj = Z2,mjPd,mj (5.17)

where, Z1,m1, Z2,m1, Pc,m1, Pa,m1, Ps,m1, and Pd,m1, represent the collision frequency,

detachment frequency, probability of bubble-particle collision, probability of bubble-

particle attachment, probability of bubble-particle aggregate stability and probability

of bubble-particle detachment, respectively, for stage 1 and mineral m (galena or spha-

lerite).
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5.3.3 Monitoring: State and parameter estimation

The dynamic fundamental models described in section 5.3.2 were updated in real-time

using online measurements from the soft sensor network (described in section 5.3.1). The

set of models can be written as:

Xk = f(Xk−1,Wk−1) (5.18)

Zk = h(Xk, Vk) (5.19)

where, Xk and Zk are the state and measurement vectors described in Table 5.7

for the four sets of models. Wk−1 and Vk denote the process and measurement noise,

respectively.

State estimation is a technique used to estimate the important physical variables of a

system (states) that are not measurable using instrumentation. The Kalman filter (KF)

and extended Kalman filter (EKF) have been applied for various industrial applications

ranging from chemical industries to battery systems (Bressel et al., 2015; Popli et al.,

2015; Prasad et al., 2002a; Bo et al., 2015). The KF provides the optimal state estimate

in linear systems using the real-time information of the plant through online process mea-

surements. The EKF is a nonlinear version of the KF that is based on the minimization

of mean of the squared error.

The fundamental model framework can be converted to four sets of state-space equa-

tions, each with one output and three states. These are summarized in Table 5.7. Physical

parameters used for the models were estimated based on the experimental conditions and

machine specifications. Other parameters were obtained using offline estimation by least

squares fitting against mineral recovery values. The initial values of states were based on
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feed pulp density for the lead stage and the initial pulp density for the zinc stage. Based

on observability analysis for all the models given in Table 5.7, it was deduced that one

parameter (kamj, or kdmj) can be augmented with the three states to perform state and

parameter estimation.

Table 5.7: Summary of states and output measurements for different models
Model States (kg/m3) Output measurement (%) Stage
1 [xg11 xg21 xg31] yg1 Lead stage flotation
2 [xs11 xs21 xs31] ys1 Lead stage flotation
3 [xg12 xg22 xg32] yg2 Zinc stage flotation
4 [xs12 xs22 xs32] ys2 Zinc stage flotation

Extended Kalman filter

Model structure The general state-space model described in equations (5.18) and

(5.19) is converted to a linear discrete state-space form as:

Xk = AXk−1 +Wk−1 (5.20)

Zk = HXk + Vk (5.21)

where, Wk−1 and Vk are the discrete process and measurement noise, respectively.

Both process and measurement noise are assumed to be white Gaussian noise with co-

variance matrices as Qk and Rk, respectively. Xk is the state vector that includes the

augmented parameter.

Algorithm The EKF algorithm is an iteration of the following two steps (Welch and

Bishop, 1995; Prasad et al., 2002b):
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• Predictor step. This step projects the state and covariance estimates to next

time step (from k − 1 to k) (Welch and Bishop, 1995).

X̂−
k = f(X̂k−1, Uk−1, 0) (5.22)

P−
k = AkPk−1A

T
k +WkQk−1W

T
k (5.23)

• Corrector step. This is a measurement update step and uses the online measure-

ment to correct (update) the estimates (Welch and Bishop, 1995).

Kk = P−
k HT

k (HkP
−
k HT

k + VkRkV
T
k )−1 (5.24)

X̂k = X̂−
k +Kk(zk − h(X̂−

k , 0)) (5.25)

Pk = (I −KkHk)P
−
k (5.26)

Real-time process monitoring

The models were reconciled in real-time with the online data and updated using the

EKF. The constant model parameters are summarized in Table 5.8 for Models 1 and

4, representing the lead and zinc stages of flotation, respectively (see Table 5.7). The

process output measurements were galena recovery for the lead stage and sphalerite

recovery for the zinc stage. Any change in the process conditions should be observed

in the changes in the respective state or parameter estimates. It is known that changes

in the collector dosage will have an impact on the recovery propagated through the
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change in the attachment sub-process. The attachment rate constant (kamj) was used

as a representative parameter of the attachment sub-process and augmented with the

state vector for estimation. A disturbance was introduced to the collector dosage in the

lead and zinc stages of flotation to evaluate the ability of the estimates to detect such

disturbances.

Table 5.8: Parameters for Model 1 (lead stage) and Model 4 (zinc stage)
Parameter Model 1 Model 4 Method
Vp (L) 1.1 1.1 Based on interface
Vf (L) 0.3 0.3 Based on interface
kamj(s−1) 0.015 0.086 Least square optimization
kdmj(s−1) 0.09 3.575 Least square optimization
k3j(s

−1) 4.9 4.97 Least square optimization
εpj 0.2 0.21 Least square optimization
εfj 0.95 0.734 Least square optimization

5.4 Results and discussion

5.4.1 Batch flotation: Offline measurements

Offline measurements were used to train (i.e. calibrate) the image-based soft sensor

models for solids recovery, lead grade, and zinc grade. Solid recovery measurements were

obtained for all the nine experiments. Lead and zinc grade measurements for both lead

and zinc stages were measured for run 2 using AAS and classic zinc titration (defined

in Table 5.4). Lead and zinc recoveries were obtained for run 2, and complete flotation

results are summarized in Table 5.9. Variations of lead and zinc recoveries with time are

presented in Figures 5.6 and 5.7, respectively, for both stages of batch flotation. The

lead stage recovers 55.6 % of lead present in the feed and the zinc stage recovers 74.0%

of the zinc present in the feed.
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Table 5.9: Batch flotation results for run 2: Metal balance
Stream Mass (%) Pb (%) Zn (%) Pb recovery (%) Zn recovery (%)
Feed ore 100 3.52 18.05 100 100
Lead concentrate 17.85 10.96 21.60 55.6 21.4
Zinc concentrate 30.32 1.04 44.24 9.0 74.3
Tailing 51.83 2.41 1.5 35.5 4.3

Figure 5.6: Variation of lead recovery with time for lead and zinc concentrate
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Figure 5.7: Variation of zinc recovery with time for lead and zinc concentrate
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5.4.2 Image-based soft sensors

Figure 5.8: Representative images demonstrating variation in the top surface of the froth

with time for lead and zinc concentrates

SVM classification of flotation stage Froth images were first used to classify the

stage into lead or zinc flotation. Sample froth images are shown in Figure 5.8 for both

lead and zinc stages of experiment number 2. It also demonstrates the variation of the

froth images with the flotation time. Hyper-parameter selection was based on the grid

search for selecting the best SVM parameters for the 2-class classification. Optimum SVM

parameters are summarized in Table 5.10. The confusion matrix for the test data points

is shown in Figure 5.9. It can be seen that the model developed was validated successfully

with 100 % accuracy for the validation data-set. A clear difference in the colour between

the froth images of both stages contributed to the success of the classification model

(Figure 5.8).
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Table 5.10: Hyperparameter selection based on grid search optimization for classification
model MC

Parameter Value
C 10
Kernel function Linear
Kernel scale 0.1
polynomial kernel order n/a

Figure 5.9: Confusion matrix for SVM bases flotation stage classifier for validation data

Lead and zinc grade - support vector regression Regression models for online

lead and zinc grade measurements were developed for the individual stages of batch

flotation. Results for the selection of SVM models parameters based on the grid search

optimization are summarized in Table 5.11. The coefficient of determination (R2) was

used as a performance metric for the regression models and is also given in Table 5.11

for all the models. The comparison between off-line measurements and image-based

prediction is shown in Figures 5.10 and 5.11 for lead and zinc grade, respectively. It was

observed that the models perform better in the initial stages of flotation capturing the

essential dynamic information. R2 values and the comparison plots indicate that all the

developed models have the potential for usage in real-time control applications. Online

measurements of lead and zinc grade were obtained from all the nine experiment runs

(see Table 5.4) and used for the prediction of lead and zinc recoveries.



5.4: Results and discussion 179

Figure 5.10: Image-based soft sensor prediction and off-line measurements for lead grade

in lead and zinc stage flotation
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Figure 5.11: Image-based soft sensor prediction and off-line measurements for zinc grade

in lead and zinc stage flotation

Table 5.11: Hyperparameter selection based on grid search optimization for all regression
models
Parameter Model-MR1 Model-MR2 Model-MR3 Model-MR4 Model-MR5 Model-MR6
C 1.0617 109.9924 114.7613 0.0115 804.5277 915.8475
ε 0.1927 0.2573 0.6592 0.0124 0.0086 1.7355
Kernel function Linear Linear Polynomial Linear Linear Polynomial
Polynomial kernel order n/a n/a 2 n/a n/a 2
R2 0.95 0.95 0.96 0.62 0.87 0.99
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Solids recovery - support vector regression Offline solids recovery measurements

from nine runs were used to train the support vector models for regression. Individual

models were obtained for lead and zinc stages of the flotation. Model parameters obtained

from the grid search algorithm are given in Table 5.11 for both the lead and zinc stages.

The developed models were validated successfully against the test data with R2 values of

0.95 and 0.87 for the lead and zinc stages, respectively. Figure 5.12 shows the comparison

between offline measurements and image-based online estimates for the training and test

data of the lead and zinc stage. It was seen that the model worked well for both the

training and test data of both stages with the entire range of process conditions, and the

model was used for online prediction of solid recovery. The model was applied to froth

image data of all the runs for the entire time range with a sampling time of 10 s. The

variation of online solids recovery values with time, predicted using the SVR models,

are presented in Figure 5.13 for both the stages of flotation with their respective models

against the offline measured data points, and the models are shown to be accurate. It

was also noticed that the solids recovery was higher in the zinc stage compared to the

lead stage, and this can be attributed to the higher zinc percentage in the feed.
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Figure 5.12: Image-based soft sensor prediction and offline measurements for solids re-

covery in lead and zinc stage flotation

Prediction of lead and zinc recovery Online predicted values of solids recovery,

lead grade, and zinc grade were further used in the complete soft sensor network (Figure

5.4 and Table 5.8) to predict the lead and zinc recoveries for both stages of batch flota-

tion. The soft sensor network was implemented on froth images of all nine experimental

runs (see Table 5.4). The online predicted estimates of lead and zinc recovery with their
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variation in time, are given in Figures 5.14 and 5.15 for lead stage and zinc stage flota-

tion, respectively. It can be seen that the soft sensor network was able to predict the

process outputs across the diverse process conditions in the nine runs. The final lead

and zinc recovery values from their respective concentrates are presented in Table 5.12 to

summarize the DOE results. Since the values are based on image based prediction, there

is a slight difference from the off-line measurements for the run 2. The ultimate recovery

values were also used to calculate the final concentrate grades given in Table 5.12.

Table 5.12: Full factorial design results: Image based measurements of grade and recovery
for lead and zinc concentrate.
Run order Lead concentrate grade (%) Lead concentrate recovery (%) Zinc concentrate grade (%) Zinc concentrate recovery (%)
1 14.37 78.61 43.25 67.24
2 11.59 56.90 44.13 73.35
3 9.85 47.63 41.57 71.34
4 14.99 69.14 39.91 66.83
5 8.42 33.13 37.75 69.30
6 8.06 29.79 34.74 63.15
7 7.85 29.75 30.46 67.05
8 7.56 31.08 44.64 72.24
9 4.01 36.07 36.38 69.25

DOE analysis Effects of the DOE design variables, feed particle size (P50), collector

dosage in the lead stage, and collector dosage in the zinc stage, on the process outputs,

lead recovery in the lead stage, lead grade in the lead stage, zinc recovery in the zinc

stage, and zinc grade in the zinc stage are plotted in Figures 5.16 , 5.17, 5.18, and 5.19,

respectively. It was observed that the particle size (P50) and collector dosage in the

lead stage have predominant effects on lead concentrate grade and recovery. This is

expected as theoretically, the collector dosage in the zinc concentrate has no effect on the

lead concentrate grade and recovery. A small variation in the lead concentrate recovery

could be due to experimental errors. Also, the lead concentrate recovery increases with a

decrease in the feed particle size within the tested range, and an increase in the collector

dosage in the lead stage. A similar effect was observed for the lead concentrate grade,

but with smaller variation in the concentrate grade with changes in the design variables.
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Zinc concentrate grade and recovery, on the other hand, were affected by changes in all

three design variables. However, it was observed that the changes in zinc concentrate

grade and recovery with the variation in design variables were smaller than the changes

in lead concentrate. It shows that the range chosen for the collector dosages could be

higher than is optimum. Since zinc concentrate grade and recoveries were affected by all

three design variables, they were chosen to develop DOE-based models using the data

from the eight designed experiments. Zinc grade and recovery models for the zinc stage

are given in equations 5.27 and 5.28, respectively.

Figure 5.16: Effect of design variables on lead recovery in lead concentrate
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Figure 5.17: Effect of design variables on lead grade in lead concentrate
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Figure 5.18: Effect of design variables on zinc recovery in zinc concentrate
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Figure 5.19: Effect of design variables on zinc grade in zinc concentrate

Zg(%) = −62.04 + 2.909X1 + 0.7450X2 + 0.5744X3 − 0.02309X1 ∗X2

+0.01855X1X3 − 0.004255X2X3

(5.27)

Zr(%) = 67.36− 0.9257X1 + 0.01317X2 + 0.1361X3 − 0.007630X1 ∗X2

+0.000176X1X3 − 0.001220X2X3

(5.28)

where, Zg and Zr denote zinc concentrate grade and recovery. X1, X2, and X3 are

uncoded values for the design variables given in Table 5.4. Run 9 from Table 5.4 was

used to validate the DOE models for the zinc concentrate. DOE model predictions



5.4: Results and discussion 191

were obtained using the values of designed variables as given in Table 5.4, with P50 of

47.1 μm, and collector dosages of 100 g/t in the lead concentrate and 210 g/t in the

zinc concentrate. Table 5.13 compares the experimental (soft sensor network) estimates

and DOE model predictions for zinc concentrate grade and recovery. The DOE model

predictions were accurate for both the models and this validates the overall analysis for

the designed experiments.

Table 5.13: Validation run (Run 9) results for DOE-based models for zinc concentrate
Output Model prediction Experimental (soft sensor network)
Zinc grade (%) 37.72 36.38
Zinc recovery (%) 68.72 69.25

5.4.3 Attachment monitoring and parameter estimation

Theoretical effects of collector dosage on attachment sub-process were used to moni-

tor the attachment sub-process. Online lead and zinc recovery measurements obtained

through the soft sensor network were used to update the fundamental models by state

and parameter estimation. Online estimates of lead and zinc recoveries from the the soft

sensor network were used as the measurements in the EKF algorithm.

1. Monitoring of the change in collector dosage in lead stage

Online lead recovery was used as an online process measurement to estimate the

attachment rate constant (kag1) by augmenting it to the state vector. Two experi-

ments based on designed DOE (Table 5.4) were conducted with different collector

dosages while other process conditions were kept constant. Process measurements

from experiment run 8 (Table 5.4) with collector dosage of 80g/t, were used to up-

date the model with state and parameter estimation. It was followed by the state

and parameter estimation for experiment run 1 (Table 5.4) with collector dosage of
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120 g/t. The initial values for state and parameter estimation for experiment run

1 were kept the same as the values used for the estimation for experiment run 8.

Lead recovery predictions from the EKF-based updated model is compared with

the online recovery measurements in Figure 5.20. The lead recovery was higher for

experimental run 1 with higher collector dosage and shows the effect of collector

dosage on the recovery. The model predictions were able to capture the dynamics of

the lead concentrate flotation for both runs (run 8 and run 1). Real-time estimation

of (kag1) is plotted in Figure 5.21 for both experiments. Parameter estimation were

compared for both experiments in order to monitor the attachment sub-process

with change in collector dosage. After starting from the same initial value of 0.015

s−1 , the estimate of (kag1) for run 1 with higher collector dosage is higher than its

estimate for run 8 with a lower collector dosage. This shows that the parameter

estimate monitors the attachment sub-process and directly indicates the change in

collector dosage, as other experiment conditions were kept constant between these

two runs.
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Figure 5.20: Comparison of lead concentrate recoveries for run 1 and run 8
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Figure 5.21: Comparison of estimated attachment rate constant (kag1) for run 1 and run

8

2. Monitoring of the change in collector dosage in zinc stage

In this case, online process zinc recovery measurements were used for state and

parameter estimation. The attachment rate constant for sphalerite mineral, kas2,

was used as a parameter augmented to the states for estimation. Two experiments,

run 5 and run 8, with zinc concentrate collector dosages of 180g/t and 240g/t for

zinc, respectively, were used for the estimation and real-time updating of the mod-
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els. To monitor the attachment sub-process for zinc with the changes in collector

dosage, the same initial conditions were maintained for the EKF-based estimation.

Figure 5.22 plots the real-time model prediction with EKF update for zinc recovery

and the online zinc recovery measurements for both experiments. Unlike the case

of lead concentrate, there is a smaller change in recovery values between the two

experiments. The parameter (kas2) estimates are compared in Figure 5.23 for both

experiments. Due to smaller variation in recovery values among the two experi-

ments, the parameter estimates show a similar trend. However, there is a clear

increase in the kas2 estimate for experiment 8 compared to experiment 1, especially

in the beginning of the experiment, followed by a decrease towards the end. With

other experiment conditions kept constant, monitoring the attachment sub-process

through the increase in the estimate of kas2 in the initial time-frame is indicative

of the change or increase in the collector dosage.
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Figure 5.22: Comparison of zinc concentrate recoveries for run 5 and run 8
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Figure 5.23: Comparison of the estimated attachment rate constant (kas1) with time for

run 5 and run 8

Thus, monitoring of the attachment sub-process through estimation of a fundamental

model parameter (kag1 or kas2) was demonstrated successfully for lead and zinc concen-

trate. The framework can be extended to other sub-processes and used to monitor the

performance and identify various disturbances or changes in the process.
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5.5 Conclusions

A monitoring scheme was proposed to observe the performance of the Pb and Zn sul-

fide flotation process. A fundamental model framework was extended to be used in a

multi-stage flotation process for flotation of a lead-zinc sulfide ore. Froth images were

used to develop soft sensor models (support vector regression) for online measurements

of solids recovery, lead grade, and zinc grade. Separate models were developed for lead

and zinc concentrates. A classification model (SVM) was also developed to detect the

flotation stage (lead or zinc concentrate) for automatic implementation of the respective

concentrate regression models. Online estimates from the regression models were used

to calculate online lead and zinc recovery using mass balances. A set of batch flotation

experiments were designed to train and validate the soft sensor network. A 2-level fac-

torial design was used with feed particle size, and collector dosage in the lead and zinc

stages of flotation as design variables. Online data from the image-based soft sensor net-

work was used to update the fundamental models in real-time by applying EKF for state

and parameter estimation. The attachment rate constant was estimated in real-time to

observe the attachment sub-process for lead and zinc concentrate. Finally, a disturbance

in collector dosage was created for both lead and zinc concentrates to test the ability of

the estimation and monitoring algorithm to capture the changes in attachment and their

effect on the concentrate recoveries. It was observed that the attachment rate constants

increase in real-time with the increase in collector dosage. It was demonstrated that the

disturbances in process conditions can be identified using real-time estimation and used

for process monitoring.
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Chapter 6

Development of a Vision-Based
Online Soft Sensor for Oilsands
Flotation Using Support Vector
Regression and its Application in
the Dynamic Monitoring of Bitumen
Extraction1

Extraction from oil sands is a crucial step in the industrial recovery of bitumen. It is

challenging to obtain online measurements of process outputs such as bitumen grade and

recovery. Online measurements are a prerequisite for innovating better process control

solutions for process efficiency and cost reduction. We have developed a soft sensor to

provide online measurements of bitumen grade and recovery in a flotation-based oil sand

extraction process. Continuous froth images were captured using a VisioFroth camera

system on a batch flotation unit. A support vector regression (SVR) model with a

Gaussian kernel was constructed to develop a soft sensor for bitumen grade and recovery

using froth image features as the inputs. The model was trained and validated for batch

1Popli, K.; Maries, Victor.; Afacan, A.; Liu, Q.; Prasad, V., 2017 ”Development of a Vision-Based
Online Soft Sensor for Oilsands Flotation Using Support Vector Regression and its Application in the
Dynamic Monitoring of Bitumen Extraction ”. The Canadian Journal of Chemical Engineering
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flotation of different grades of oil sands ore at industry-relevant process conditions. A

Dean-Stark analyzer was used to obtain offline grade and recovery measurements that

were used to calibrate the soft sensor. Mean squared errors (MSE) of 62 and 74 were

achieved for grade (%) and recovery (%), respectively, and this was obtained using 5-fold

cross validation. The developed soft sensor model has been applied successfully in the

real-time dynamic monitoring of flotation grade and recovery for different grades of ore

and operating conditions.

6.1 Introduction

Oil sands ore is comprised of a mixture of mineral solids, water and bitumen. Ore is mined

using open-pit mining and is further passed through the extraction process to recover

bitumen. Most of the oil sands deposits contain bitumen ranging from 0-16 % by weight

(Jia, 2010). The water-based extraction process for bitumen, proposed by Clark, is one of

the standard commercial methods used since the 1960s (Masliyah et al., 2004; Clark and

Pasternack, 1932). A typical process starts with crushing to disintegrate the oil sands ore

lumps. The crushed ore is then mixed with warm water (about 50◦C) and caustic soda

to liberate the bitumen from the minerals. The slurry is pumped through hydrotransport

pipelines to a primary separation vessel (PSV) where the liberated bitumen is aerated and

floated off (Scramma et al., 2002; Masliyah et al., 2004). The froth stream from the PSV

is deaerated and then sent to the froth treatment operations. The middlings stream from

the PSV, containing unrecovered bitumen, is forwarded to the primary flotation units to

further recover the bitumen. The tailings stream from the PSV and primary flotation is

sent to the secondary flotation unit. Froth streams from primary flotation and secondary

flotation units are recycled to the PSV in the feed stream, and the tailings stream from

the secondary flotation unit is sent to tailings processing followed by its discharge in the
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tailing pond. The primary and secondary flotation units are conventional mechanical

flotation cells. A final bitumen recovery up to approximately 90 % can be achieved with

this process. The final bitumen froth typically contains 60 % bitumen, 30 % water, and

10 % solids by weight (Masliyah et al., 2004).

A batch extraction unit (BEU) was developed by Syncrude Canada Ltd to imitate

the hot water extraction process in a laboratory environment (Sanford and Seyer, 1979).

A conventional flotation machine is used to extract the bitumen from the oil sands ore

in a single or multi-step flotation process, and the overall bitumen recovery from batch

cells can be used to scale-up the parameters for commercial extraction of bitumen. Var-

ious oil sand extraction studies have been performed using BEUs to improve the overall

understanding of the process (Kasongo et al., 2000; Liu et al., 2004), and this is the

justification for our use of a batch flotation cell in our work.

With many factors such as water input rate, power input, different streams output

flow-rate and temperature playing an important role, it is very crucial to control and

monitor the overall extraction process. Even a 5% drop in grade or recovery in an

hour can lead to losses of millions of dollars (Shao et al., 2012), and a good monitoring

scheme is required to maintain overall quality and bitumen recovery. A lack of accurate

online measurements makes it extremely challenging to monitor and control the product

quality in extraction units. Currently, bitumen froth recovery estimation is based on the

measurement of bitumen content in the tailings stream. Both offline (detailed laboratory

analysis) and online (stream analyzer) measurements are obtained for bitumen content

in tailings. Offline measurements are typically accurate with slow sampling times (of

the order of a few hours), while online analyzers have fast sampling, but can be more

inaccurate. A comparison of these methods is presented in Deng et al. (Deng et al.,

2013), and they found that the online analyzer failed to provide accurate and dependable

measurements for bitumen content. The Dean-Stark analysis, based on solvent extraction
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using toluene, is often used to characterize froth samples offline (Jia, 2010; Zhu, 2013) and

provide the bitumen, water, and solids content. It takes 5− 15h to complete the analysis

of one sample and has a high maintenance cost for the solvents, and is thus unsuited

for adaptation to real-time analysis. Due to unavailability of standard references, off-

line measurements with Dean-Stark method can be used as reference measurements for

accuracy. Inaccuracy of online analyzers has been studied with MSE values of bitumen

content (%) ranging from 80 to 425 (Deng et al., 2013). Online measurement of recovery,

which is usually calculated from bitumen content can be characterized with similar range

of MSE values.

Inferential or soft sensors have been used extensively to estimate the non-measurable

variables of various industrial processes (Fortuna et al., 2007; Kadleca et al., 2009;

Sharmina et al., 2006; Liua and Chen, 2013; Khatibisepehr et al., 2013). A soft sen-

sor is primarily a mathematical black box model for a key variable that is based on

relations developed with other measurable process variables (Fortuna et al., 2007). Most

of these soft sensors can work along with already installed hardware sensors to augment

process information, and soft sensors can also be calibrated against offline measurements

that may be available with delays.

There have been only a few soft sensors introduced in oil sands processes. A Bayesian

method-based soft sensor was used to predict the water content in the conditioned slurry

(Shao et al., 2012). Jampanaa et al. built a soft sensor to estimate the interface level in

the PSV using a sight camera and particle filtering, which provided faster measurements

than DP level transmitters (P.V. et al., 2010). Khatibisepehr et al. (Khatibisepehr et al.,

2013) developed an inferential model for the bitumen recovery index based on partial least

squares regression for bitumen content in the tailing. These inferential models identify the

key process variables that are dependent on the target output and rely on adequate black-

box modeling for the process and need to be re-trained for different operating conditions.
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A lack of complete process understanding and different sampling times of variables present

challenges for the development of these models. To the authors’ knowledge, no robust

soft sensor has been developed for direct prediction of output bitumen grade or recovery

that does not depend on other key process measurements and yet provides accurate

measurements in the entire range of operating conditions.

In our proposed solution, we have exploited the relationship between the visual char-

acteristics of the froth surface and froth quality (Moolman et al., 1996). Various vision-

based soft sensors have been developed for mineral flotation, where grade/recovery is

predicted using the froth color or bubble size, amongst other features (Moolman et al.,

1996; Runge et al., 2007; Aldrich et al., 2010; Popli et al., 2015). This relationship has not

been utilized in oil sands flotation to determine froth quality directly from images of the

froth. Various commercial packages such as VisioFroth (Metso R© Minerals, Orleans Cedex,

France), METCAM FC (SGS, Lakefield, ON, Canada), and FrothMasterTM (Outotec,

Burlington, ON, Canada) are available for image acquisition and analysis for the froth

flotation process (Popli et al., 2015; Runge et al., 2007; Leiva et al., 2012). VisioFroth is

used in this study because it is already installed in a few industrial operations in the oil

sands and it provides a variety of image features such as color components, brightness,

texture, and speeds through image analysis. Once calibrated, the image-based soft sensor

does not rely on other process measurements and can operate in stand-alone fashion.

Machine learning and statistical algorithms (such as partial least square regression,

artificial neural networks, random forest regression, principal component regression and

support vector regression) can be useful to correlate image features to bitumen grade or

recovery. We have used support vector regression (SVR) with Gaussian kernels in this

work due to its higher accuracy and ability to handle the nonlinear relationship between

image features and the target outputs of bitumen grade and recovery. The principle of

support vector machines (SVMs) and regression was first proposed by Vapnik (Vapnik,
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2006) and was proven to be a robust technique based on its ability to handle noisy

data along with a higher variables-to-samples ratio in the data. Unlike other regression

algorithms that are based on empirical risk minimization, this technique is based on

more accurate structural risk minimization and shares various characteristics of artificial

neural networks (ANNs) in this respect (Gunn et al., 1997).

We have used a batch extraction unit, the JKTech batch flotation cell, to mimic the

commercial oil sands extraction. Different grades of Athabasca oil sands were processed

in this flotation cell. VisioFroth was installed to acquire and analyze the froth images;

this is explained in Section 6.2. Separate support vector-based models were trained

and validated for grade and recovery prediction based on the average image features and

offline results from Dean-Stark analysis. Hyperparameter optimization was performed for

SVM parameters based on the minimization of the mean squared error with 5-fold cross-

validation. The developed soft sensor was then applied at different operating conditions

of the laboratory BEU process and for different grades of oil sands ore to validate its

performance in a variety of cases. Section 6.2 outlines the experimental details along with

data collection and formulation of the regression problem. SVM and its hyperparameter

optimization is explained in Section 6.3. Section 6.4.1 describes the hyperparameter

optimization results and 5-fold cross validation results for the developed SVM. Validation

of the soft sensor for different cases is presented in Section 6.5.

6.2 Experimental section

6.2.1 Materials: Ore samples and characterization

Three different oil sands ore samples with different grades of Athabasca oil sands were

obtained. Samples were homogenized and ground using a comil conical mill. Homog-
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enized samples were then stored in a freezer to avoid aging effects that deteriorate the

extraction performance (Schramm and Smith, 1987). Dean-Stark analysis (Jia, 2010;

Zhu, 2013; Bulmer and Starr, 1979) was performed to characterize the composition of

the oil sands. Table 6.1 presents the Dean-Stark analysis results for the three types of ore

samples. Ores were classified based on the bitumen composition. Typically, high-grade

ore contains bitumen in the range of 12-14 wt %, followed by medium and low grade ore

in the ranges of 10-11 wt% and 6-9 wt % respectively (Pow et al., 1963).

Table 6.1: Dean-Stark analysis for oil sand ores: Weight % for bitumen, solids and water
Ore Bitumen (%) Solids (%) Water (%) Type
I 14.1 82.7 3.2 High grade
II 10.5 84 5.5 Medium grade
III 7 86.24 6.81 Low grade

6.2.2 Batch flotation : Methodology and set-up

The JKTech flotation machine was used to extract bitumen from the oil sands. It consists

of a 1.5L cell with a bottom-driven impeller and a rotameter to measure and control the

air flow into the cell. A VisioFroth package was used to acquire froth images and analyze

their features. Image features are based on a selected area called ’region of interest’ on

the surface image. It includes a camera, laser and LED light that were installed 55cm

above the froth surface. The laser was used to measure the froth width overflowing out

of the cell (Popli et al., 2015). A schematic representation of the experimental set-up

is given in Figure 3.2 (Chapter 3). Bitumen extraction required ore conditioning (to

liberate the bitumen) and flotation. Table 6.2 summarizes the experimental conditions

that were chosen based on industrial process conditions. 300g of homogenized oil sands

ore was mixed with de-ionized water at 50◦C to form 1.4L of slurry. The slurry was fed

to the batch cell, and the impeller was turned on at 1500rpm for 12min for conditioning.



6.3: Soft sensor development: Support vector regression 210

Unlike other flotation processes where collectors and frothers are added, bitumen flotation

utilizes the natural surfactants present in the oil sands. After the conditioning, the air

flow was turned on at 4.5lpm to start the flotation. Image acquisition was initiated

at this time. Froth samples were collected in the collection pan at time intervals of

30s, 60s, 150s, 300s and 600s. These samples were analyzed using the Dean-Stark

method to estimate the amount of bitumen, sand, and water. Image measurements were

continuously recorded up to 600s with a sampling time of 5s, and the features of the

images that are obtained are listed in Table 6.3; further information on these images

features can be obtained from Popli et al. (Popli et al., 2015). These experiments were

performed for all three types of oil sand ores.

Table 6.2: Experimental conditions for batch flotation of oil sands ores
Parameter Value
Cell Volume (l) 1.5
Feed density (g/l) 214
Air flow rate (lpm) 4.5
Impeller speed (rpm) 1500
Conditioning time (minutes) 12
De-ionized water temperature (◦C) 50

6.3 Soft sensor development: Support vector regres-

sion

The support vector machine (SVM) was designed initially for high-dimensional pattern

recognition classification problems (Basak et al., 2007). Support vector algorithms were

then used for regression after having been proposed by Vapnik et al. (Boser et al.,

1992). While most regression algorithms compute in the same dimensional feature space,

support vector regression (SVR) maps the training data to a higher space by using a
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Table 6.3: Image features extracted using VisioFroth
Notation Image feature
a Froth velocity
b Froth velocity x component
c Froth velocity y component
d Froth height for outlet stream
e D80 - Bubble size
f Bx color component
g Blue color component - RGB model
h Green color component - RGB model
i D50- Bubble size
j Lumen
k Texture
l Tint
m Red color component - RGB model
n Cell Value
o RGB
p Stability
q Purity
r Load
s Dispersion
t Brightness
u Collapse
v Ax color component

kernel feature space Φ(x) and kernel function K (Vapnik, 1995). The kernel trick allows

the inner product calculation to be carried out implicitly without working in the higher

dimension space. For a given set of data, (x1, y1), (x2, y2), ......(xn, yn), with x ∈ Rm, and

y ∈ R, the following function needs to be developed for the prediction of y:

f(x) = wTΦ(x) + b (6.1)

where w is a vector of weights and b is the bias term.

SVR is based on the structural risk minimization (SRM) and aims to minimize gen-

eralization error instead of training error (Vapnik, 2006). It minimizes the complexity
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of the model along with the error loss function and avoids over-fitting of the data. SVR

uses an ε-sensitive loss function that allows the predictive output to deviate as much as ε

from the actual output. The ε-sensitive loss function and optimization scheme for finding

the optimum values of w and b are defined in equations 6.2 and 6.3, respectively. SVR

algorithm has been presented in literature and is summarized in equations 6.2, 6.3, 6.4,

6.5, 6.6, 6.7, 6.8, and 6.9 (Vapnik, 1995, 2006).

minimize
n∑

i=1

εL(i) (6.2)

εL(i) = max(|(yi −wTΦ(xi) + b|−ε, 0) (6.3)

The optimization problem is reformulated using slack variables, ξ and ξ′, as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize
w,b,ξ,ξ′

1
2
wTw+ C

(∑n
i=1 ξi +

∑n
i=1 ξ

′
i

)
subject to (i = 1,2,....n):

yi −wTΦ(xi)− b ≤ ε+ ξi

wTΦ(xi) + b− yi ≤ ε+ ξ′i

ξi ≥ 0

ξ′i ≥ 0

(6.4)

The first term of the objective function (1
2
wTw) captures the model complexity and

improves the generalization ability of the model. Parameter C, the penalty cost, is

introduced to maintain the tradeoff between model complexity and training errors by

controlling the penalty assigned to slack variables. Constrained optimization is handled

using Lagrangian method by incorporating Langrange multipliers (αi, α′
i) to reframe



6.3: Soft sensor development: Support vector regression 213

the objective function (Smith, 2004). The optimization problem in equation 6.4 can be

converted to a dual problem by using the Lagrangian method to give:

(6.5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maximize
α,α′

n∑
i=1

yi(αi − α′
i)− ε

n∑
i=1

(αi + α′
i)−

1

2

n∑
i,j=1

(αi − α′
i)(αj − α′

j)Φ(xi)
TΦ(xj)

subject to:
n∑

i=1

(αi − αi′) = 0

C ≥ αi, α
′
i ≥ 0, i = 1, 2, ....., n

Equating the partial derivatives at the saddle point to zero provides estimates for w

and f(x) represented by equations 6.6 and 6.7. The kernel trick can be used to evaluate the

inner product in f(x) (Equation 6.8). The final function evaluation after incorporating the

kernel trick is given in Equation 6.9. The optimal solution of w is the linear combination

of the support vectors.

w =
l∑

i=1

(αi − α′
i)Φ(xi) (6.6)

f(x) =
l∑

i=1

(αi − α′
i)(Φ(xi).Φ(x)) (6.7)

K(xi, x) = Φ(xi).Φ(x) (6.8)

f(x) =
l∑

i=1

(αi − α′
i)K(xi, x) (6.9)

The kernel trick allows the nonlinear models to be treated by linear methods by

transforming the training data points to a higher dimensional domain. Three common

types of kernel functions are described in Table 6.4 (Wu et al., 2009). A standard kernel,

rbf (Gaussian) was used in this work.
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Table 6.4: Common kernel functions used in support vector machines

Type of kernel Function

Linear xt
ixj

Polynomial (γxT
i xj + constant)d, γ > 0

Radial basis function e−γ||xi−xj ||2

(rbf, Gaussian)

6.3.1 Hyperparameter optimization: Parameter selection

It is very critical to choose an optimum set of parameters for SVR. C, penalty cost,

which affects the trade-off between training errors and model complexity. A higher value

of C constructs a complex model with very little error on training points, whereas a

lower value flattens the model response by allowing higher training error. Epsilon (ε)

also affects the complexity of the model as it influences the number of support vectors

by controlling the ε-sensitive loss function (Ito and Nakano, 2003). An increase in the

value of ε decreases the number of support vectors required for the development of the

model. The other parameter that has an effect is the parameter for the kernel function

(γ for the rbf kernel that was used in this work; see Table 6.4). A grid-search mechanism

was used to find an optimal set for C, γ and ε based on 5-fold cross-validation, which

means that the data was divided into five parts, and each part was used for validating

the model obtained by the training of the remaining four parts. Grid search, in this case,

was not computationally heavy due to less number of training instances. Moreover, grid-

search is commonly used for hyperparameter selection for similar SVR problems (Zhang

et al., 2014; Hsu et al., 2010). 5-fold cross-validation has been commonly employed for

industrial soft sensors (Hua and Sun, 2001; Shokri et al., 2016; Gholami et al., 2015; Yang

and Shieh, 2010). Also, 5- fold cross validation was chosen over higher fold validations,
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such as 10-fold, to retain more data points for testing fold in this scenario, with lesser

number of instances. The mean squared error (MSE) reported is the average over all of

the 5-folds. The parameters and their ranges are summarized in Table 6.5 for the SVR

models for both grade and recovery.

Table 6.5: Parameter range for hyperparameter optimization using grid-search technique

Parameter Range

C [10−3 103]

ε [0.107×10−3 0.107×102]

γ [10−3 103]

The SVR models for recovery were constrained to ensure that estimates of cumulative

recovery increased monotonically with time.

6.4 Results and Discussion

6.4.1 Batch flotation

Froth samples collected at different flotation times were analyzed using the Dean-Stark

apparatus for all three types of oil sand ores, and the results are summarized in Table

6.6, where the grade reported has been calculated on a water-free basis. Recovery mea-

surements for the different ores are summarized in Figure 6.1. The highest recovery of

82.3% was obtained for the high grade ore, followed by 74% and 49.2% for medium grade

and low grade ore, respectively. This recovery is slightly lower than that obtained in

industry, possibly because caustic soda was not used in our process. However, that is not

a serious concern since the aim in this work is to show that the soft sensor can be used

to monitor processes over a large range of grade and recovery values.
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Figure 6.1: Experimental measurements of bitumen recovery for batch flotation

Representative real-time images of the top surface of the froth for the flotation of

medium grade ore are shown in Figure 6.2 (from 5s to 500s). The overall image color gets

lighter with time as the amount of bitumen decreases in the cell. The laser-produced red

line indicated on the image and its horizontal movement were used to measure the froth

width for the outlet stream. The image features were normalized before using them for

the soft sensor development. All the 22 variables obtained from VisioFroth, representing

image features, were used as the soft sensor inputs, and grade and recovery were the

target outputs. Samples were collected for offline analysis and used for calibration of the

soft sensor, and image features were averaged over the time of sample collection when
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developing the calibration relations.

Table 6.6: Batch flotation results for all three types of ores based on Dean-Stark analysis.

Experimental conditions are summarized in Table 6.2. Grade is reported on a water-free

basis

Ore type Time (sec) Cumulative grade (%) Cumulative recovery (%)

High grade 30 29.94 22.97

60 34.9 46.9

90 31.3 59.7

150 24.3 69.1

600 18.9 82.3

Medium grade 40 42 18

100 57 41

160 40 50

300 43 64

540 31 74

Low grade 30 16 13

60 24.7 19.3

100 35.6 28.8

300 26.7 42.3

600 19.77 49.2
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Figure 6.2: Variation of froth images for flotation of medium grade ore with time

6.4.2 Soft sensor development: Hyperparameter optimization

The soft sensor was developed for bitumen grade and recovery, since models for bitumen

content and solids content were not accurate enough. Models were selected based on

the minimum values of mean square error (MSE) for 5-fold cross-validation. A grid

search was performed to find the optimal set of model parameters. The variation of

5-fold validated MSE with the SVR parameters C, ε, and γ is shown in Figure 6.3

and Figure 6.4 for grade and recovery as the output, respectively. It demonstrates the

selection of hyperparameters based on minimum MSE value. Round points in both the

figures represent MSE values corresponding to the respective parameter grids. A wide

distribution of MSE values justifies the requirement of optimization for hyperparameter

selection. Figure 6.3 shows that the MSE value is low at the grids representing lower

values of C, ε and γ. The lowest MSE value of 62 was used to select model parameters

as given in Table 6.7. Grid search results for recovery model in Figure 6.4 show a similar

regions of low MSE values. Majority of the lower MSE values were observed at the

intersection of low regions of C, ε and γ. Hyperparameters were selected based on lowest

MSE value of 74 with ε value in this case higher than the optimum value for grade model
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(see Table 6.7).

Computations Matlab (version 9.1.0.441655 and release R2016b) with ’Statistics

and Machine Learning Toolbox’ was used to develop and implement the SVR models.

Computational times for hyperparameter selection using grid-search optimization was

19.15 and 22.15 minutes for grade and recovery models, respectively. However, once the

parameters were selected, SVR model development was faster with computational times

of 0.55 and 0.26 seconds, respectively.

Figure 6.3: Variation of MSE for grade model with SVR parameters C, ε and γ
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Figure 6.4: Variation of MSE for recovery model with SVR parameters C, ε and γ

Table 6.7: Optimal SVR parameter set for grade and recovery models

Model output Minimum MSE C ε γ

Grade(%) 62 0.001 0.000107 0.46416

Recovery(%) 74 0.02 0.00029 0.46415
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Figure 6.5: Comparison of online SVR model for prediction of grade with offline experi-

mental values
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Figure 6.6: Comparison of online SVR model for prediction of recovery with off-line

experimental values

The predictions of the SVR-based soft sensor are compared with the results of offline

analysis using the Dean-Stark method. Figures 6.5 and 6.6 present comparison of offline

and SVR-estimated grade and recovery, respectively. The Dean-Stark measurements have

a delay of approximately 15h for analysis, while the soft sensor estimates are available

every 5s. Proximity of points to the 45◦ line in the figures represents good prediction

performance. Both the grade and recovery models perform reasonably well for the three
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types of ores that were used as the feed. Root-mean square error (RMSE), which is

square root of MSE, was calculated for both the models according to the equation 6.10.

RMSE =

√∑n
i=1(yexp,i − ypred,i)2

n
(6.10)

Here, yexp,i is the experimental value of the observation, ypred,iis the predicted value

of the observation, and n is the number of observations. RMSE for training data set

was found to be 6.4% and 3.4% for grade and recovery model, respectively. However,

recovery model with lower RMSE value performs better than the grade model which

is also seen in Figures 6.5 and 6.6. The outlier point in the Figure 6.6 corresponds to

the 22.97 % recovery for high grade ore at 30 seconds. The prediction gap could be

attributed to the faster flotation rate compared to other grade ores and slightly different

image features. It can be improved by improving experimental capabilities to collect

more training data between zero and 30 seconds of flotation. Also, a single model was

developed and validated for different operating conditions for each of grade and recovery,

which means that the developed model is robust to the feed type and operating conditions

of the process. As the model only relies on froth images, it can potentially be used to

monitor the performance of various units in the industrial extraction process where images

can be obtained, such as the primary separation vessel (PSV) and primary and secondary

flotation cells to obtain real-time grade and recovery measurements. However, model

needs to be re-calibrated for its use in different part of the overall extraction circuit.

The developed soft sensor can be used for optimizing process conditions, developing

process control strategies, fault diagnosis and process monitoring. In particular, multi-

objective optimization can be used to find the conditions that maintain an optimal trade-

off between higher grade and recovery.
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6.5 Implementation of soft sensor at other process

conditions

In this section, we present results for the use of the soft sensor for real-time monitoring

of grade and recovery at operating conditions that are different from those at which it

was developed. A systematic approach using a stuctured design of experiments (e.g.,

factorial or response surface designs) would require a significant amount of experimental

effort, and is the basis for future work. The results of two flotation runs are presented

for the high grade ore, and one run each for the low and medium grade ores. Figure 6.7

presents the predicted grade and recovery using the soft sensor for the two runs performed

with the high grade ore, and Figure 6.8 shows representative images of the froth surface

at different times during the flotation runs along with the cumulative recovery and the

instantaneous grade. Run 1 for the high grade ore is performed at an air flow rate

of 4.5lpm, initial temperature of 25◦C and impeller speed of 1500rpm, and Run 2 is

performed at an air flow rate of 6.0lpm, initial temperature of 50◦C and impeller speed

of 1100rpm, i.e., Run 1 has a different temperature than the conditions listed in Table

6.2 and run 2 has different temperature and impeller speed. The flotation for the low

grade ore was carried out at an air flow rate of 6.0lpm, initial temperature of 25◦C and

impeller speed of 1100rpm, and the predicted grade and recovery are shown in Figure

6.9, and representative froth images are shown in Figure 6.10. Finally, flotation of the

medium grade ore was performed at an air flow rate of 4.5lpm, initial temperature of

50◦C and impeller speed of 1100rpm, and Figure 6.11 presenting the change in grade and

recovery with time and Figure 6.12 showing representative froth images. High grade ore

demonstrates the faster process dynamics due to better liberation and attachment rate

for higher bitumen and lesser solids content. From the results, it is clear that the soft

sensor is able to predict the grade and recovery in different regions of operation and for
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different grades of ore. Thus, it can be used as a basis for the optimization of grade and

recovery by manipulating processing conditions.

Figure 6.7: SVR model predictions of grade and recovery for high grade ore
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Figure 6.8: Images at different flotation times for the high grade ore and predicted grade

and cumulative recovery
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Figure 6.9: SVR model predictions of grade and recovery for low grade ore
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Figure 6.10: Images at different flotation times for the low grade ore and predicted grade

and cumulative recovery
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Figure 6.11: SVR model predictions of grade and recovery for medium grade ore
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Figure 6.12: Images at different flotation times for the medium grade ore and predicted

grade and cumulative recovery

6.6 Conclusions

In this work, a soft sensor was developed to measure the real-time grade and recovery

for batch flotation of bitumen using real-time image data for the top surface of the froth

along with support vector regression models. The soft sensor was calibrated against

offline estimates of grade and recovery obtained using Dean-Stark analysis. Good model

performance, with the mean squared error of prediction for grade being 0.62% and that

for recovery being 0.74%, suggested that visual features are good indicators for flotation

performance. 5-fold cross-validation was used in the development of the soft sensor. In

addition, the developed SVR soft sensor was tested at different operating conditions of air

flow rate, temperature and impeller speed for the different grades of ore, and was shown

to provide meaningful estimates of grade and recovery in all these cases. This makes

it suitable for real-time process monitoring and multi-objective optimization performed

using the relations that can be developed between processing conditions and grade and

recovery.
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Chapter 7

Conclusions and Future work

7.1 Concluding remarks

The complex nature of the froth flotation processes gives rise to various unidentified

disturbances in the system. It is necessary to monitor the process in real-time with diag-

nostics of the various sub-processes taking part in the overall process. However, real-time

monitoring in froth flotation is always limited by absence of online process measurements

and an adequate modeling framework. Various challenges needs to be addressed before

developing monitoring schemes and online sensing for process measurements. These chal-

lenges range from the development of dynamic fundamental models incorporating first

principles knowledge of the sub-processes to robustness of the inferential sensing meth-

ods. The overall objective of the thesis was to develop a real-time monitoring scheme

for froth flotation processes using fundamental modeling structure and image-based soft

sensors for mineral grade and recovery. A multiscale model framework was developed to

connect sub-processes to the overall process.

The overall scheme was developed for pure mineral flotation as a proof of concept and

then extended to a synthetic mixture of two minerals and finally a real industrial sulfide

ore. Furthermore, disturbances in various factors influencing flotation were studied and

heuristics were developed for their tracking in real-time. The factors included air flow

234
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rate, impeller speed, feed particle size, and reagent dosages. Studies were also undertaken

to obtain their influences on sub-processes in the system. A major contributor to the

reduction in product quality, entrainment, was also studied and estimated by decoupling

the overall recovery to its components of true flotation and entrainment recoveries. The

concluding remarks for the thesis are discussed below with reference to the studies in

different chapters.

Chapter 2 mainly dealt with the pure mineral (galena) flotation to provide proof

of concept for the monitoring scheme. A set of models were developed with in-depth

explanation of attachment and detachment sub-processes. An induction time machine

was used to calculate the induction time which was further used as a offline measurement

to the model to obtain the initial values for the parameters. Online measurements for

the recovery were obtained using statistical methods, (principal component regression

and partial least squares regression) on froth image features that were obtained through

VisioFroth. Model was applied for diverse process conditions which were created based

on fraction factorial design of experiments with air flow rate, impeller speed, frother

dosage, and collector dosage as the design variables. The extended Kalman filter (EKF),

a state and parameter estimation technique was used to update the fundamental model

based on the online recovery values. The parameters estimated were the attachment rate

constant, detachment rate constant, and froth residence time. These parameters were

estimated parallely with one at a time estimation based on the observability analysis.

Disturbances were induced in the batch flotation experiments by changing the air flow

rate from 14 L/min to 8 L/min, and impeller speed from 500 rpm to 1100 rpm in the

middle of the experiments. Models were updated in the presence of disturbances and

captured the process dynamics. Successful tracking of the disturbances through the

changes in parameter estimation led to the development of heuristics for identifying

disturbances incurred through any changes in air flow rate and impeller speed. The
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proof of concept obtained in this chapter, was then extended to rest of the study to

include more disturbances and increase in the complexity of process feed.

The effect of feed particle size was successfully studied in Chapter 3. Also, the

soft sensor model for galena recovery based on froth image features was successfully

upgraded using a random forest machine learning algorithm. A fundamental model for

froth flotation was included with in-depth understanding of the particle size effect on

the attachment and detachment sub-processes. Feed particle size was also included in

the modeling structure. Batch flotation experiments were conducted with four different

particle size distributions for galena. The mean particle size was in the range of 12.13

microns to 113 microns for the four distributions. Induction times were obtained for

all the particle size ranges to study the particle size effects specifically on the bubble-

particle attachment. A clear variation among the induction time values showed the high

dependency of attachment on feed particle size. Models were updated through state and

parameter estimation by using EKF. Two separate methods were proposed to monitor the

feed particle size using online recovery measurements and parameter estimation. These

methods were named direct and indirect estimation based on the parameters estimated.

The direct method was based on estimating feed particle size as a parameter while the

indirect method back-calculated the feed particle size based on the estimated attachment

and detachment rate constants. The direct method showed better performance and was

successful in estimating the feed particle size of an unknown test distribution. Hence, a

drop in recovery because of, for example, issues in the grinding circuit and variation in

feed particle size could now be captured with the proposed monitoring scheme.

In chapter 4, single mineral flotation was extended to bi-mineral flotation consisting

of synthetic mixture of galena and quartz. Successful attempts were made to monitor

the entrainment by decoupling the overall recovery to the recovery by entrainment and

true flotation. The fundamental modeling structure was further upgraded to include
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detailed functions for entrainment and drainage sub-processes. Unlike previous single

mineral flotations studies, both grade and recovery were measured online through froth

image features. A complete network was developed using a machine learning algorithm

based on support vector regression (SVR) and mass balance equations to inferentially

estimate grade and recovery for galena and quartz in real-time. Galena grade and solids

recovery were used as model outputs for image-based SVR machine learning models. An

EKF-based model update was used to estimate model parameters for entrainment and

drainage sub-processes. Different quartz sizes (under 15 microns, 40 microns, and 90

microns) were used for batch flotation to understand the effect of quartz particle size on

entrainment. The monitoring scheme was successful in decoupling the overall recovery

to obtain entrainment recoveries for both galena and quartz in real-time. It showed the

potential of the developed entrainment monitoring scheme to be used for maintaining

product grade and specifically target the reduction of the gangue entrainment recovery.

To accomplish the study for a full scale industrial flotation, Chapter 5 established

monitoring algorithms for multi-stage flotation of a real industrial complex sulfide ore

procured from Red Dog mine, Alaska. Batch flotation experiments were conducted for

lead and zinc rougher cells to represent the industrial flotation by multiple stages of dif-

ferential flotation. Experiments were designed using factorial-based DOE and collector

dosages as the design variables. The soft sensor network was extended for a complex feed

ore to measure grade and recovery in real-time for galena and sphalerite. Image-based

SVR models were developed for galena grade, sphalerite grade, and solids recovery, with

distinct models for lead and zinc rougher flotation. These measurements were further

used in mass balance equations to measure galena and zinc recovery in real-time. Off-line

laboratory measurements were obtained for mineral grade to calibrate the image-based

models. A support vector machine classifier was constructed and calibrated to classify the

froth images to two classes of lead rougher or zinc rougher that automated the entire pro-
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cess of obtaining online process measurements. The soft sensor network was successfully

applied for diverse process conditions that were created using design of experiments. A

fundamental dynamic model was developed for the multi-stage flotation network, keeping

the connection between micro-scale and macro-scale sub-processes. An EKF was used

for state and parameter estimation by reconciling soft sensor online measurements to the

dynamic model. Disturbances were created in the process through variation in collector

dosages in both the stages. The attachment rate constant was selected as the parameter

to estimate based on its theoretical dependence on collector dosages. Estimates of at-

tachment rate constant showed higher values for the cases with higher collector dosages.

Successful monitoring was obtained for collector dosages through the trends observed

in attachment rate constant estimation. The online sensing, modeling, and monitor-

ing scheme for the real industrial ore with multi-stage flotation provides a promising

application for the developed framework.

Chapters 2 to 5 showed a step-by-step method development for monitoring in froth

flotation for mineral processing. Another study was performed with oil sands extraction

as reported in Chapter 6, to demonstrate the potential of the image-based soft sensing in

other applications that use froth flotation. Different types of oil sands ore were obtained

from the Athabasca region for the study. Batch flotation was used to extract bitumen

from the oil sands ore. Dean-Stark analysis was performed for the collected froth samples

to obtain off-line measurements for bitumen grade, and consequentially recovery. Soft

sensor models were obtained for the online measurements of bitumen grade and recovery

using froth surface images. Training data was obtained for different types of oil sands

ore to create diversity in the data-set. The developed model was validated and applied

to diverse process conditions with wide ranges of bitumen content in the feed ore. The

application demonstrated the robustness of the soft sensor and suggests that the model

need not be re-calibrated for different types of oil sands ore as the feed. This establishes
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its potential in process monitoring and advanced process control for the oil sands industry.

It also provides a method to the oil sands industry for real-time process measurements

in the form of a soft sensor by reducing the previous sampling time of 10-15 hours for

Dean Stark measurements to 10 seconds for image-based measurements. It should be

noted that, apart from the VisioFroth installation, which is already available with many

oil sands operators, this method does not require any additional capital cost.

7.2 Future Work

The proposed monitoring scheme, dynamical modeling framework, and online soft sensing

present many research paths to enhance the understanding of the flotation process and

improve the process control scenario for the industries using flotation. The following list

presents the ideas and motivation for other studies that could be conducted based on the

work in this thesis:

• Enhancement of the fundamental model

The modeling framework developed in this study provides a good mechanism to

connect various sub-processes to the mineral recovery. It can be extended to include

the quantitative relationship between chemistry reagents and the sub-processes. For

instance, a model for efficiency of a collector for the separation can be incorporated

into the modeling framework for better understanding of the attachment process.

This would also improve the detection of disturbances obtained through changes

in reagent dosages. The model would also be useful in identifying new collectors

for the specific flotation tasks. Additionally, bubble population models should be

added to the framework to capture the dynamics of bubble breakage and bubble

coalescence.
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• New sensors for the online measurements of froth flotation variables

The developed research proposes a robust method for inferential measurements of

grade and recovery using froth images and machine learning algorithms. However,

various other measurements could improve the observability and increase the pa-

rameters that can be estimated using EKF. These measurements for the variables

could be obtained with the development of new soft or hard sensors. The variables

may include of plateau border area, or dissipation energy in the mixing zone.

• Monitoring algorithm for the oil sands extraction

Chapter 6 provides the soft sensor development for oil sands extraction for real-

time measurements of bitumen grade and recovery. A detailed study can be carried

out for developing a dynamic model for oil sands extraction processes in primary

separation vessels (PSV) and mechanical flotation cells. It would be challenging and

interesting to understand the dynamic behavior of these processes and their effects

on the final bitumen recovery. Models and online measurements could then be

used for advanced process control applications or real-time monitoring to improve

bitumen content in the concentrate.

• Column flotation

Column flotation, a recent development in flotation technology, has been widely

used in the industry for beneficiation and final cleaning of the concentrates. It

is therefore necessary to develop similar monitoring schemes for column flotation.

This involves modification of the model and incorporating already developed dy-

namic models for column flotation that are available in the literature. Also, new

soft sensor models should be developed to be applicable in continuous processes

using column flotation. With continuous processes, it is easy to artificially create

various disturbances in the feed streams to test the monitoring scheme. A column



7.2: Future Work 241

flotation circuit has already been developed for further study. Figure 7.1 shows the

schematic diagram for the column cell that is designed and fabricated for further

study. The column has been equipped with VisioFroth for image features and basic

control using PI and PID control loops for flows and level in the column. With

more states arising in the column operation, the EKF estimation method can be

replaced with other methods such as the particle filter (PF) or Ensemble Kalman

filter (EnKF) which could handle more states in the model. Additionally, dynamic

models could be combined with black box models for developing model predictive

control (MPC) algorithms. Once the image-based soft sensors are developed, on-

line grade and recovery can be directly used as control variables instead of other

secondary variables such as bias or froth height.

Figure 7.1: A schematic diagram for the column flotation set-up
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