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Abstract

Kidneys are essential organs located on either side of the vertebral column which

perform several essential bodily functions. When there is a gradual, permanent loss

of basic kidney functions, a person is said to have Chronic Kidney Disease (CKD).

CKD has been identified to be a global public health issue affecting millions of people

every year. CKD can progress to an end-stage, and the patient’s life would be at stake

without artificial filtering (dialysis) or a kidney transplant. Hemodialysis is a life sus-

taining treatment for End Stage Renal Disease (ESRD) patients. Though being the

most frequently used treatment modality, there are numerous clinical complications,

while the most common include Intradialytic Hypotension (IDH) and Dialysis Dise-

quilibrium Syndrome (DDS), arising during the quick extra-corporeal depuration of

blood in an external device called ‘hemodialyzer’, which is sometimes referred to as

‘artificial kidney’. This thesis starts off with a literature review in chapter 1 followed

by a technical preliminaries review in chapter 2, to help the readers understand the

research background and the problem better.

The perturbations caused by hemodialysis in a patient’s body are complex, though

the underlying phenomenon is a simple bidirectional mass transfer. The use of a

mathematical model can enable a quantitative analysis of perturbations (cardiovas-

cular response, fluid and solute kinetics) induced by hemodialysis taking place within

the patient’s body in different hemodialysis treatment settings and can help in un-

derstanding the intricate physiological mechanisms. In chapter 3, the mathematical

models selected for representing each of the hemodialysis subsystems are presented

along with some derivations, assumptions, control relevant modifications along with

some simulations representing the hemodynamics of different classes of CKD patients.
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Each patient behaves differently to hemodialysis and the challenge is to achieve mean-

ingful predictions for each individual patient. Chapter 4 talks about the design of a

simultaneous state and parameter estimation algorithm, specifically intended to iden-

tify individualized virtual patient simulators, based on synthetic clinical data, which

could aid prediction of important state variables like Mean Arterial Pressure (MAP),

Heart Period (HP), etc.,. For consistent estimation, the observability of the system

has to be ensured and the nonlinear system observability test is not as straightfor-

ward like it would be for linear models. In our proposed approach, a sensitivity-based

local observability test shall be conducted. The sensitivity equations should be solved

in parallel with the original model equations to obtain the sensitivity matrix. Then

a singular value decomposition is done to obtain the observability signature graph.

A clear drop in the graph indicates a lack of observability. If such clear drops are

encountered the user has to identify a subset of observable variables from the total

variable set for estimation. For this purpose, a sequential orthogonalization algo-

rithm was applied, to forward select the non-correlated variables one at a time until

the terminating conditions are met, starting from the most sensitive and least cor-

related variable. The returned subset would be the decision variables during the

simultaneous state and parameter estimation routine.

Traditionally, the hemodialysis treatments are done in open-loop fashion where the

treatments are stopped when clinical complications occur and started again after the

patient returns to normalcy. The model thus identified from chapter 4 could be used

to design ‘individualized optimal treatments’ using advanced model based controllers,

like a Batch Zone Model Predictive Controller (BZMPC) with a built in nonlinear

state estimator, with feedback implementation while taking the treatment objectives

and safety constraints into account as discussed in chapter 5, thus paving the way

for continuous optimal safer treatments. Finally, the future research directions are

narrated in chapter 6.
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Chapter 1

Introduction

Chronic Kidney Disease (CKD) has been identified as a pressing public worldwide

health issue affecting the livelihood of millions of people. In 2017, the Global Bur-

den of Disease (GBD) study estimated that the global prevalence of CKD is around

9.1% (697.5 million cases) of the total global population [19]. One of the sustainable

development goals of the United Nations (UN) is to reduce the mortality from Non

Communicable Diseases (NCD) by one third by 2030 [25], and on those lines targeting

CKD would be of prime importance for achieving that goal. The swift increase in

the total CKD patient numbers worldwide could be because of a lot of factors like

diabetes mellitus, hypertension, obesity, and aging [84].

Millions of people worldwide who are classified as ESRD patients among the CKD

patient pool, undergo dialysis (mainly hemodialysis) treatment or kidney transplan-

tation as a result [33]. The large number of deaths on account of CKD, is mainly

due to poor access to renal replacement therapies and timely medical care. Over

80% of patients who receive good renal replacement therapy are in wealthy countries

which have access to universal healthcare and have large elderly populations [61].

With the CKD population growing at an alarming rate, even the most wealthy coun-

tries will face a substantial economic burden because of CKD. At first, the reader is

introduced to the basic physiology of kidneys, classification of CKD, followed by a

vast array of information, related to the problem under consideration, from literature

which will prompt the reader to critically analyze and appreciate this work’s research

background. The final section in this chapter is dedicated to explain the organization

of this thesis.
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1.1 Physiology of kidneys

Life of an organism is dependant on several biochemical processes working in co-

ordination with each other. The process of excretion is as important as any other

processes in the body of an organism responsible for the sustenance of life. During life

activities such as cellular respiration, chemical reactions known as ‘metabolism’ take

place in the body. These chemical reactions produce waste products such as carbon

dioxide, water, salts, urea and uric acid. Accumulation of these wastes beyond a

certain level inside the body is harmful to the body. Excretion is a process in which

metabolic wastes are removed from a living organism and there is a specialised system

of organs called ‘excretory organs’ for this purpose in human beings. Although the

mode of excretion differs among organisms depending on their habitat and food habit,

in fully evolved vertebrates, excretion is mainly carried out through lungs, kidneys

and skin [17].

For instance, ammonia is the excretory product in aquatic animals, while birds and

insects excrete mainly uric acid. Humans produce urea as the major excretory product

and there are several parts of the body that are involved in the excretory process,

such as sweat glands in the skin, the liver, the lungs and the kidney system. As

this work primarily revolves around the kidneys and their associated phenomena, let

us discuss more about the physiology of kidneys to understand and appreciate the

motivation of this research better.

1.1.1 Anatomy of kidneys

a. Location

In humans, the excretory or more specifically the ‘urinary system’ includes the kid-

neys, a pair of ureters, a urinary bladder and an urethra. The kidneys are ‘bean-

shaped organs’ located on either side of the vertebral column, inside the abdominal

cavity, more specifically in the paravertebral gutter and lie in a retroperitoneal posi-

tion at a slightly oblique angle [111] as shown in figure 1.1. There are two kidneys

in total and each of the kidneys are about 4 to 5 inches long, 6 cm wide and 4 cm

thick [131]. The position of the liver on the right side of the vertebral column creates

an asymmetry within the abdominal cavity and this results in the left kidney being

slightly upper than right kidney, and the left kidneys being located more medial than

the right. At the vertebral level, the left kidney being slightly larger than the right, is

positioned just about T12 to L3, and the right kidney slightly smaller and lower than

the left. Both the kidneys sit below the diaphragm while the right is posterior to the
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liver and the left is posterior to the spleen. The adrenal gland rests on top of each of

the kidneys. The eleventh and twelfth ribs, protect the upper part of the organs to

some extent and each whole kidney and adrenal gland are surrounded by two layers

of fat namely, the perirenal and pararenal fat and the renal fascia. In a fully grown

adult, each kidney weighs between 125 and 170 grams in males and between 115 and

155 grams in females [111].

Figure 1.1: Structure of kidneys. Taken from [51]

b. Structure

If we examine the geometry of the kidneys, each kidney has a convex and a concave

surface. If one looks closely at figure 1.2, a renal artery and a renal vein enters and

exits each kidney respectively, at the medial indentation or the concave surface called

‘renal hilum’ and this notch gives the kidneys the shape of a bean [131]. A ureter

(yellow coloured tube going out of kidneys) which is a smooth muscle walled tube

also exits at the concave surface and this serves as the passage pathway for urine into

the single urinary bladder. A thick fibrous tissue called renal capsule covers both

kidneys. The renal capsule is surrounded by perinephric fat, renal fascia (Gerota)

and paranephric fat. The anterior (front) border of these tissues is the peritoneum,

while the posterior (rear) border is the transversalis fascia [111].
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Figure 1.2: Major vessels that supply the blood flow to the kidney and a schematic
of the microcirculation of each nephron. Taken from [51]

The superior border of left and right kidneys are adjacent to spleen and liver respec-

tively. As the kidneys are located below the diaphragm, both of the kidneys move

down during inhalation of the respiratory process. The functional tissue area of the

kidney called ‘parenchyma’, is divided into two major structures: the renal cortex on

the superficial side and the renal medulla in the interior. As shown in figure 1.1, these

structures take the shape of roughly 8 to 18 cone-shaped renal lobes. Each renal lobe

contains renal cortex surrounding a portion of medulla called as a renal pyramid. The

finger shaped projections of renal cortex between the renal pyramids are knows as

renal columns. The basic functional unit of the kidneys are called nephrons. There

are over a millions nephrons in each of the kidneys and they span across the entire

cortex and medulla area [63], [150]. The filtration of metabolic wastes from the blood

plasma begins in the renal corpuscle, situated in the renal cortex, which is followed by

4



renal tubules that passes from the cortex deep into the renal pyramids. A collection

of renal tubules called as a medullary ray then drains into a single collecting duct.

The tip of each renal pyramid called papilla, then drains urine into a minor calyx,

which in turn empties it into major calyces. Finally these major calyces, empty urine

into the renal pelvis which then becomes the ureter.

c. Blood supply

Every organ in a human body needs blood supply for the supply of essential nutrients

and kidneys are no exception. The blood irrigation in the kidneys occurs through right

and left renal arteries. These arteries branch out of abdominal aorta. Though the

blood circulation system to the kidneys is comparatively smaller in sizer, it attracts

22% of the total cardiac output or 1100 ml/min [51].

The renal arteries which enter the kidneys at the medial position split into segmental

arteries, which in turn branch into interlobar arteries. The interlobar arteries pass

through the renal columns between the renal pyramids and transfix into the renal

cortex. The interlobar arteries then branch into several arcuate arteries which irrigate

the boundary between the cortex and the medulla. The glomerulus, where all the

filtration takes place, is supplied with blood through afferent arterioles which branch

out from the arcuate arteries. The functional void space in the kidneys between the

individual glomerulus called the ‘interstitium’ reabsorbs fluid recovered from urine.

The interstitium is rich in blood vessels too. One can understand by looking at

figure 1.2, that blood is taken out of the kidneys for transfusion and purification

through a similarly named system of veins and venules [55]. The only difference with

the vein system is that the direction of blood flow is towards the heart.

1.1.2 Functions of kidneys

The first thing which pops out in one’s mind when thinking about the functions of

kidneys is that they are organs responsible for removing the toxic substances which

are produced by ingestion or metabolism from the body. The second thought would be

that kidneys help remove waste materials from the blood plasma in the form of urine

and help in regulation of total body fluid volume. Kidneys maintain the electrolyte

composition of the blood within strict physiological limits and they have several

other quintessential functions too. Thus kidneys are responsible for maintaining a

stable internal environment essential of the human body for proper functioning of

many other cellular activities. The kidneys perform complex processes within the

nephron (glomerular filtration, tubular secretion and tubular reabsorption of water,
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electrolytes and metabolic waste products) depending on the needs of the body and

for achieving homeostasis [79].

In overall, the kidneys clear toxic substances from the filtrate, which in turn is ob-

tained from the blood, by excreting them in the urine while reabsorbing the essential

nutrients and sending them back to the blood. The list of some of the important

homeostatic functions performed by healthy kidneys [51], [55], [68], [111] are given

below:

• Excretion of metabolic waste products and foreign chemicals: Kidneys

are the main organs responsible for the excretion of most of the waste products

of metabolism (urea, creatinine, uric acid, bilirubin and metabolites of various

hormones) and other foreign substances that are taken by diet or synthesized

by the body (pesticides, drugs, food additives).

• Regulation of water and electrolyte balances: For maintaining equilib-

rium within the human body or homeostasis, the kidneys excrete water and

electrolytes adapting to one’s eating and drinking habits.

• Regulation of body fluid osmolality and electrolyte concentrations:

The regulatory response of the kidneys to aberrant fluctuations in not only

sodium levels in the blood plasma but also to water and other electrolytes like

such as chloride, potassium, calcium, hydrogen, magnesium, and phosphate ions

is phenomenal.

• Regulation of arterial pressure: Kidneys play a vital role in both long-

term and short-term regulation of arterial blood pressure by removing water

and electrolytes and by secreting vasoactive substances and hormones (renin,

aldosterone) respectively.

• Regulation of acid-base balance: The kidneys work along with lungs and

body fluid buffers for the maintenance of acid-base balance. It is interesting

to note that kidneys are the only means of elimination of some acids from the

body like sulfuric acid and phosphoric acid.

• Regulation of erythrocyte production: The kidneys secrete almost all of

a hormone called erythropoietin, which is responsible for the production of red

blood cells by hematopoietic stem cells in the bone marrow. End Stage Renal

Disease (ESRD) patients who are in a hemodialysis regime also face severe
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anemia as a result of abnormality in this function.

• Regulation of calcitrol production: The main organs behind calcium home-

ostasis are kidneys. Kidneys produce 1,25-dihydroxyvitamin D3 (Calcitrol),

which is the active from of vitamin D. Calcitrol is quintessential for the normal

deposition of calcium in the bones and reabsorption of calcium in the gastroin-

testinal tract.

• Gluconeogenesis: During starvation for a long period of time, kidneys play

an essential role in the production of glucose from amino acids, by removing the

amino group as ammonia waste and make the rest of the compound available

for glucose production.

• Secretion, metabolism, and excretion of hormones: The hormones re-

quired for the functions mentioned above are secreted and excreted by kidneys.

The maintenance of life depends on the homeostasis.

1.2 Literature review

Now that we have developed an understanding of the basic physiology of kidneys and

its functions, we can dig deep into the available sources in literature to understand the

motivation and the formulation of the problem statement in this thesis work better.

In a human being with a healthy functioning ecosystem of organs, approximately

1500 litres of blood is circulated through the kidneys each day [110]. If one assumes

that the average blood volume in a human being is around 5 litres [132], then the

kidneys clean the whole blood volume around 300 times a day. The urine excretion

rate heavily depends on the individual’s intake of water and other factors and can

vary from 0.5 L/day for a dehydrated person to upto 20 L/day for a body fluid

overloaded person [51]. So kidneys play an essential role in maintaining the good

health of a human body. But the performance of the kidneys degrades over time

and they cannot always work with 100% efficiency always. There are several clinical

and pathological conditions which result in the degradation of kidney function. A

person can survive though life if the kidney function is more than 25% though the

person needs medical attention in parallel for such low levels of kidney function, but

if the kidney function drops below this point, the kidneys fail to perform its essential

functions and would not be able to maintain homeostasis. The degradation of kidney

function could be over a period of time or abrupt in onset. Also, the loss of kidney

function could be reversible or irreversible. Any reversible loss of kidney function is
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termed as ‘Acute Renal Failure (ARF)’ and if a person experiences irrecoverable loss

of kidney function then he is said to have a Chronic Kidney Disease (CKD).

Table 1.1: Stages of Chronic Kidney Disease (CKD) based on Glomerular Filtration
Rate (GFR) [57]

GFR
category

GFR
(ml/min/1.73m2)

Residual
kidney function

Description of
kidney function

G1 >90 >90% Normal or high
G2 60 to 89 60 to 89% Mildly decreased
G3 30 to 59 30 to 59% Mild to severely decreased
G4 15 to 29 15 to 29% Severely decreased
G5 <15 <15% Kidney failure

1.2.1 Chronic Kidney Disease (CKD)

In the course of this work, more interest is diverted to patient groups with kidney

diseases, most importantly Chronic Kidney Disease (CKD) patients. Therefore it is

essential for the reader to understand the classification of CKD too. CKD refers to the

gradual loss of kidney function and in the functioning of kidney tissue (nephrons). The

US National Kidney Foundation defines CKD as abnormalities of kidney structure

or function, present for over 3 months, with implications for health [57]. It is not

easy to diagnose a patient with CKD until and unless the function of the kidneys

are lost in an irreversible fashion and are significantly impaired. There are several

symptoms associated with CKD namely, nausea, loss of appetite, fatigue, weakness,

sleep cycle problems, reduced mental sharpness, muscle cramps, swelling of ankles

or itching [38], [54]. But the condition of the kidneys are typically diagnosed by

clinical practitioners through a series of tests of the patient’s blood, urine and other

examinations [66], [80]. US National Kidney Foundation-Kidney Disease Outcomes

Quality Initiative (NKF-KDOQI) classifies CKD into five stages based on Glomerular

Filtration Rate (GFR) as shown in table 1.1. Glomerular Filtration Rate (GFR) is an

indicator of kidney’s efficiency. In specific, it means the volume of blood passing every

minute through the filters in the kidneys called glomeruli, where the waste materials

are separated from the blood. A doctor finds the GFR based on the results of the

blood sample test, age, body size and gender of the patient. One other marker used by

the doctors is the quantity of a type of protein called albumin in the urine sample. The

phenomenon of having albumin in the urine is called albuminaria, and the presence

of protein in the urine can be taken as an initial sign of CKD and that the functions
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of the kidneys are seriously disturbed. The higher the albumin concentration in the

urine, the higher the risk of having a CKD. The category classification of albuminaria,

according to the US National Kidney Foundation, is outlined in table 1.2. AER and

ACR in the table stand for Albumin Excretion Rate and Albumin to Creatinine Ratio

respectively.

Table 1.2: Albuminaria categories in CKD [57]

Category
AER

(mg/day)

ACR
(approx. equiv.)

(mg/mmol)

ACR
(approx. equiv.)

(mg/g)
Description

A1 <30 <3 <30
Normal or mildly
increased

A2 30-300 3-30 30-300 Moderately increased
A3 >300 >30 >300 Severely increased

Figure 1.3: Prognosis of Chronic Kidney Disease (CKD). Taken from [76]

The doctor will continue to critically investigate the cause of CKD and check the func-

tion of the kidneys so that a better treatment can be planned. The final stage of a

CKD in progression (Stage 5), when the GFR falls below 15 mL/min/1.73 m2, is called

the stage of Chronic Renal Failure (CRF) or End Stage Renal Disease (ESRD) [57].
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At this stage, the kidneys cannot effectively remove excess fluids or maintain the elec-

trolyte balance and filter out the waster materials from the blood and the patients

need immediate medical support for survival. Though the GFR and higher levels of

albuminaria are independently related to morbidity, ESRD, greater levels of albu-

minaria could be present at all stages of GFR [31], [77]. Hence, integrating both the

categories of GFR and albuminaria in a single chart, as shown in figure 1.3, gives the

clinical practitioner a better understanding and an enhanced prognosis of the CKD

condition. The patients who fall in the categories marked with red boxes have a very

high risk CKD and need immediate medical care.

Out of several factors resulting in renal failure, the most prominent causes would be

heart attacks, kidney damage, decreased blood flow and complications from certain

medications. Chronic renal failure could be brought about by diabetes, chronic high

blood pressure (hypertension), lupus, chronic nephritis or polycystic kidney disease

and kidney disease [38], [60]. Age, obesity, smoking, family history of CKD could

amplify the occurrence of CKD too. Following are some of the consequences of ESRD

in a patient:

• Uraemia or uremic syndrome caused by abnormal levels of waste products in

the body. This needs more attention and is discussed in the next subsection.

• Accumulation of water in the tissues due to fluid overload, a condition called

‘oedema’.

• Hypertension due to increased circulating blood volume.

• Electrolyte imbalance.

• Hormonal imbalance. For example, diminished production of erythropoietin

causes severe anaemia. Application of advanced process control strategies in

addressing this issue was the focus in some of our research group’s previous

works [13], [95].

• Abnormal enzyme production.

• Decalcification of bones.
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1.2.2 The uremic syndrome

Some of the approaches taken to reverse the signs of renal failure include manipu-

lation of the diet, transplantation and various types of artificial filtration schemes.

‘Uraemia’ means urine in the blood. It refers to a general class of complaints and

signs that the patients exhibit even when the kidney function falls by 5% from the

normal values. GFR and albuminaria which are identified through clinical tests, could

serve as measurements of renal damage but not uraemia in general. There is huge

biovariability in the occurrence of uraemia among different patients. The clinical

practitioners and investigators have been in search of a toxin that could be respon-

sible for this syndrome. The failure of over a century of research to identify one

specific or a group of toxins responsible for this syndrome has made the researchers

settle down with some alternate toxin theories [36]. If the readers are prompted to

know more about the uremic toxins, they could look at some of these well accepted

literature sources [39], [107].

Ever since advanced renal replacement therapies became widespread across the globe,

the incidence of patients with severe levels of uraemia has been drastically reduced.

Better treatment management of ESRD patients can be achieved, if the doctors are

able to identify even minor symptoms and signs for the need for advanced treatment

modalities. If there is a one stop solution for the measurement of uraemia, then this

problem would have been addressed long back. Sadly, only marker solutes that corre-

lated with uremic toxicity have been identified. These marker solutes are not toxic by

themselves in nature. These include the end products of protein metabolism, urea and

creatinine. But there are several other marker solutes which are toxic and accumulate

in a patient’s body without any correlation with uremic toxicity [15], [62], [94].

Creatinine levels correlate fairly well with GFR and it is the most popular marker to

represent the patient’s intrinsic renal function. But as CKD progresses, the tubular

section of the kidneys account of a higher excretion of creatinine and so the GFR

is overestimated. Moreover, creatinine is produced by the muscle and it is highly

dependent on the muscle mass of the patient and there is not an easy way to apply

a correction factor for the muscle mass in the calculations. For an ESRD patient,

high blood creatinine levels could either mean a high production of creatinine by the

muscles or inadequate treatment. So creatinine comes as the second choice, but it

could be used as a marker for low molecular weight substances that are to be removed

by the treatment modality.
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On the other hand, the blood urea concentration, generally expressed as Blood Urea

Nitrogen (BUN), steeply rises in patients with CRF. Urea fails several benchmark

tests when used to quantify mild or moderate reduction in kidney function. However,

as the patient goes into ESRD and encounters CRF, there are several benefits of using

urea as the marker solute [107] and it correlates well with uremic toxicity. According

to the National Cooperative Dialysis Study (NCDS), the average urea levels correlate

with the treatment outcome as well [88]. This makes urea the primary marker solute

choice of uremia for clinical practitioners and researchers.

1.2.3 Renal Replacement Therapy (RRT)

When the kidneys of the patients completely stop functioning or if the patient is in

a ESRD (Stage 5 CKD), the doctors resort to Renal Replacement Therapy (RRT)

to sustain the life of the patient. One could think that the easy way out would be

to do a kidney transplantation (third treatment modality), but not everyone is lucky

enough to find a donor and the queues are so long even in first world countries. This

is because the donors are always lesser than the number of CKD patients worldwide.

Only around 20% of the CKD patients who are in the organ reception waitlist, ac-

tually get a kidney transplantation while the other 80% relies on other treatment

modalities [65]. Even after all these challenges, if one successfully finds a donor, there

could be instances of newly implanted organ rejection too.

Dialysis which means ‘separation’, refers to the process in which the blood from the

human body undergoes therapeutic purification artificially. Some of the functions of

dialysis [110] are given below:

• Toxin management

• Fluid level management

• Electrolyte balance

• Correcting metabolic acidosis

• Arterial blood pressure management

The reader understands from the above list that dialysis is an essential life sustaining

therapy for ESRD patients, but it does not replace all the basic functions of the

kidneys. The underlying phenomenon occurring in a dialyzer is a simple bidirectional

mass transfer (diffusion, convection or both). Normally, blood flows on one side of
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the semi-permeable membrane and the cleaning fluid called ‘dialysate’ flow on the

other side in a direction opposite to the direction of blood flow.

The patients might still need additional doses of synthetic hormones, vitamin D and

other medicines. In addition to this , the doctors might advice patients to limit the

intake of fluids, electrolytes and protein to minimize the weight gain due to fluid

overload between dialysis sessions [2], [34]. The two broad classifications of dialysis

are defined below, but more attention is given to hemodialysis as it is the focus of

study of this work.

a. Peritoneal Dialysis (PD)

Peritoneal Dialysis (PD) is an intracorporeal (within body) technique in which a

sterile cleansing fluid is injected into abdominal cavity through a tube (catheter).

The lining of the abdomen (peritoneum) acts as the filter and removes excess water

and metabolic wastes from the blood. After the prescribed period of time, the fluid

with toxins is removed from the abdomen and is discarded and this kind of dialysis

can be done at home, at work or even while travelling and giving the patient a greater

degree of flexibility. This type of dialysis is carried out more frequently (4 to 5 times)

in a day or usually overnight [78], [150].

Figure 1.4: A pictorial representation of Peritoneal Dialysis (PD). Taken from Na-
tional Institute of Diabetes and Digestive and Kidney Diseases, National Institutes
of Health (www.kidney.niddk.nih.gov)
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b. Hemodialysis (HD)

Hemodialysis (HD) is an extracorporeal (outside body) technique in which the blood

to be purified is taken to an external circuit element called as a ‘hemodialyser’, or sim-

ply a ‘dialyzer’. The toxic wastes and the overloaded fluid from the blood is removed

in the hemodialyzer and then sent into the patient’s body. Dialysis was first described

in 1854 by Thomas Graham, known as the ‘Father of dialysis’, and the milestones in

the development of the HD process are well documented in literature [10], [40], [99].

Figure 1.5: A simple layout of Hemodialysis (HD) setup. Taken from National In-
stitute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health
(www.kidney.niddk.nih.gov)

As depicted in figure 1.5, an anticoagulant (Heparin) is added to the blood side

to prevent the blood from clotting during the treatment process. The dialysate is

free of toxins and it should be strictly in the right specifications [20] as guided by

the governing medical authority. The concentration of important electrolytes in the

dialysate is set according to the required direction of flow (high for addition and zero

to low for removal). The waste products being at a higher concentration in the blood,

diffuses through the semipermeable membrane in the hemodialyzer to the dialysate

side due to a concentration gradient. During the entire filtration process, blood
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flows in and out of the hemodialyzer continuously, while most often the dialysate is

used only once or fresh dialysate is sent through the hemodialyzer every time. This

ensures that there is always a gradient for clearance of substances from the blood.

Presence of a blood pump on the blood side circuit increases the pressure on the

blood side and excess water from the blood flows into the dialysate side because of

the transmembrane difference in pressure. Toxin and fluid management targets are

achieved by a combination of both diffusion and convection (ultrafiltration). The

reader can look at figure 1.6 to get a visual understanding of how the mass transfer

processes work.

Figure 1.6: The mass transfer processes in HD. Taken from [60]

On a global perspective, the number of dialysis patients is constantly rising at a rate

of 6% annually [65] and HD is the most common treatment modality with almost 90%

of the dialysis patients undergoing HD and so it is the focus of this research work. To

support our argument, let us look at the data from the European Renal Association

(ERA) for the year 2018 [6]. Roughly over 80,000 patients began their RRT for ESRD

(an overall unadjusted incidence rate of 129 per million population). By the end of

the same year, approximately 569,000 patients were on RRT (unadjusted prevalence

rate of 897 per million population) in total, of which the majority were men. Most of

the new ESRD patients were primarily kept on a dialysis regime for atleast 3 months,

while waiting for a transplantation. At the end of 2012, if the reader looks on a

broader perspective examining figure 1.7, 57% of the ESRD patients were on HD, 5%

on PD and the rest 38% were living with a transplanted kidney. Most of the developed

countries could follow a similar pattern and so advanced scientific understanding of
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the hemodialyis treatment modality which contributes to a major chunk of the RRT

becomes quintessential.

Figure 1.7: Percentages of patients in Renal Replacement Therapy (RRT) across
different treatment modalities in Europe 2018 (HD: Hemodialysis, PD: Peritoneal
dialyis, T: Transplant). Data from [6]

1.2.4 Clinical challenges during hemodialysis

The patients on HD receive intermittent treatments, around 3 to 4 times a week,

removing a prescribed amount of overloaded fluid from the blood plasma by ultra-

filtration for meeting the dry weight targets. The clinical prescription of dialysis

has the information about the flow rates of blood, dialysate, composition of the

dialysate, frequency and the length of the treatment [110]. Though the patient

receives good renal treatment therapy, they are subjected to severe cardiovascular

complications [37], [119] because of the quick removal of solutes and fluids during

the short treatment windows (typically 3 to 5 hours). One can see from figure 1.8,

that ESRD patients are always in a state of fluid overload between treatments as
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the excretory function of the kidneys is completely lost. This is one of the reasons

for cardiovascular complications in HD patients. Additionally, the fluid removed in

the dialyzer is directly from the circulatory blood volume, and so the hemodynamic

stability depends on how quick vascular refilling happens [103], [106], [128] and the

regulatory action of the autonomic nervous system.

Figure 1.8: Fluid overload chart of a patient undergoing HD 3 times a week. Taken
from [110]

Also the HD procedure could induce burden on the hemodynamic stability of the

patient within or after the treatment session. A majority of the patients can handle

the sudden drop in blood volume by HD without exhibiting fluctuations in blood

pressure [27], [136] while for some the hemodynamic stability collapses. Some of the

clinical problems encountered during HD deserve an explanation.

a. Intradialytic hypotension (IDH)

This is most frequently occurring hemodialysis complication and it is encountered in

almost 30% of the HD patient population [159]. The US National Kidney Founda-

tion’s Kidney Disease Outcomes Quality Initiative (KDOQI) defines IDH as a decrease

of Systolic Blood Pressure (SBP) of at least 20 mmHg or a decrease of mean arterial

pressure (MAP) of at least 10 mmHg and this can even lead to the collapse of the

circulatory system [151]. It is defined not only based on the drop in blood pressure

but also based on the frequency of blood pressure drops by some researchers [8]. The

causes of IDH are complex, sometimes asymptomatic [23] and very patient specific

and so it stands as the major problem in the dialysis treatment centres [24].
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b. Intradialytic hypertension

Intradialytic hypertension is the exact opposite to IDH in definition and it occurs less

frequently, around 15%, than IDH [58]. One cannot find a textbook definition for

intradialytic hypertension but some other authors say that it has occurred when the

MAP has risen to greater than or equal to 15 mmHg or an increase in SBP of atleast

10 mmHg [59] from the pre dialysis values. Similar to IDH, some investigators define

intradialytic hypertension based on the frequency of occurrence over a time period

(over 6 months) [142], rather than defining it based on a single occurrence. The causes

of intradialytic hypertension are not very well understood in a clinical sense, yet this

has resulted in more adverse outcomes and higher mortality rates [143].

c. Dialysis Disequilibrium syndrome (DDS)

The Dialysis Disequilibrium Syndrome (DDS) is a less frequent but serious compli-

cation of HD, which still needs to be investigated a lot [157]. This could lead to

seizures, coma or even death. The possible explanation of DDS could be the HD

induced sudden drop in blood plasma osmolarity (concentration), leading to a shift of

water from plasma to the intracellular compartment (brain tissue and cells) resulting

in cerebral oedema. It occurs more frequently in new ESRD patients on HD, if they

are dialysed too fast [34], [157].

d. Technical complications

HD system involves not only the patient but also a list of other mechanical devices

like pumps, tubes. There could be a lot of technical complications on the treatment

side, completely out of the patient’s purview, like clotting of blood in the extracor-

poeral circuit, air embolism, blood access complications, blood line leaks, blood line

disconnections and dislodging of dialysis needles [135]. Some of these complications

could be avoided if the dialysis equipment is built with appropriate safety systems

and kept in a well maintained condition and proper checks are made before starting

and while the treatment is in progress. Continuous training of the clinical personnel

involved in giving dialysis care is mandatory to avoid these issues.

1.2.5 Attempts to mathematically model the elements of a
hemodialysis system

A hemodialysis system consists of the patient who is undergoing the treatment, the

hemodialysis machine (data processing system, water purification system, control
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system, safety monitoring system), the hemodialyzer and several other minor compo-

nents. For the purpose of modelling, if one looks at the hemodialysis system, there are

only a few subsystems which need to be modelled to study the integrated dynamics

and interactions between different subsystems shown in figure 1.9.

Figure 1.9: A schematic representation of the HD system

One might wonder that the underlying phenomenon behind HD is just a simple bidi-

rectional mass transfer process, a combination of diffusion and convection (ultrafil-

tration), but the fluctuations induced by HD in the body of a patient disturbs the

complete harmony between different body fluid compartments and the whole cardio-

vascular system and are quite complex to predict, analyse and comprehend. HD is

nothing but an example of an external systemic perturbation, which causes the pa-

tient’s body to deviate from a pre-treatment state and tries to bring the body back to

equilibrium (homeostasis) before the end of the treatment. But the with the help of

a mathematical model capable of quantitatively describing the perturbations (cardio-

vascular response, fluid and solute kinetics) in an effective way, the HD process can

be well studied. With the aid of a versatile mathematical model of the HD system,

the researcher will not only be able to investigate different HD treatment settings but

also will be able to understand the intricate physiological mechanisms taking place
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within the patient’s body and find answers to several unanswered questions in the

context of HD. Even from a systems engineering perspective, a mathematical model

(white, grey or black box) becomes quintessential if the reader wishes to look at pos-

sible opportunities for the application of advanced process control strategies on a HD

system.

Figure 1.10: Pictorial representation of the 3 compartment model of the human body

There are several models in literature to study the solute and fluid (water) dy-

namics, derived to critically analyse the blood volume changes during infusion ther-

apy [18], [49], [149] or to study the HD induced perturbations [90], [104], [105], [138],

[148]. Most of these models look at the human body as multiple compartments as

shown in figure 1.10. For instance, all the cells and tissues are lumped into one in-

tracellular compartment and anything exterior to the cells are lumped together into

an extracellular compartment. The transport of solutes and fluid between different

compartments arrive at ordinary differential equations if one starts deriving them

from scratch using mass and volume balance principles.

The use of mathematical models to represent hemodialysis therapy has come a long

way [34], [39]. The first HD adequacy index KT/V (Dialyzer clearance multiplied by

the treatment duration divided by the total fluid distribution volume) was introduced

in the year 1985 [47], after analysis of clinical data using a one compartment kinetic

model of urea [121]. With the scientific advancement in the design and utilization of

better hemodialyzers, higher clearance rates were achievable in shorter duration of
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time. The perturbations induced by faster clearance were more strong and necessi-

tated the introduction of a two compartment model for the marker solutes, urea and

creatinine [87], [158]. Urea was found to be perfused differently in different organs of

the body and so an alternative to the two compartment solute models was proposed

by some authors [126], [129].

If one looks at figure 1.10 again, the splitting of the extracellular compartment into

interstitium and plasma is mainly because of the need to understand the cardiovas-

cular dynamics of a patient undergoing HD. Plasma is the circulating fluid volume

through the vessels in the body. There are several models in literature to study the

cardiovascular dynamics and the patient’s inherent regulatory mechanisms for differ-

ent cases [52], [100], [101], [109], some particularly with a focus on HD [53], [110], [140].

In those models, similar vascular compartments are grouped together. The number of

vascular compartment groupings equals the number of compartments of the cardio-

vascular model. For example, all arteries are grouped into one arterial compartment

and all veins are grouped into one venous compartment. Depending on the necessity

and the problem under consideration, a researcher has the freedom to choose between

simple and more advanced models with pulsatile blood pressure output [35], [114].

Some authors have focused exclusively on deriving the equations for mass transfer

dynamics in the hemodialyzer. The researcher has the choice to select a simple

model [86], [122], [147] to compute the exit concentration of the solutes from the dia-

lyzer at every time instant or a complex model [16], [82] (Partial differential equations)

to compute the spatio temporal concentration profile of the solutes at every time in-

stant during HD. The choice of the nature, type and complexity of the mathematical

models to represent the individual elements of the HD system is solely dependent on

the requirements set by the problem statement.

1.2.6 Selection and estimation of variables of a mathematical
model

Mathematical models are usually composed of relationships and variables, written

down in the form of equations. The accuracy and flexibility of the mathematical

model determines whether the mathematical model will be used confidently by the

researchers and investigators. The accuracy of the model in turn depends on the

accuracy of the variables (parameters and states). We focus on studying HD and its

associated symptoms and impacts on a patient in this work and so in our case, the

patient subsystem models should be initialized with meaningful physiological values
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of variables (parameters and states) to give meaningful model predictions. There are

nominal values of physiological variables of patient groups available in literature [51],

but this might not work for all. Each patient undergoing HD behaves differently, and

this makes the problem even more interesting.

State and parameter estimation problems arise in several areas of advanced pro-

cess systems engineering (modelling, control, process monitoring and fault diagno-

sis). These concepts have been applied in a wide range of industries, starting from a

simple batch chemical plant to the most advanced aerospace, power, petroleum and

petrochemical industries [7], [69], [74], [108]. In literature, the reader can find many

attempts by researchers to improve the performance of the existing state and param-

eter estimation algorithm and to develop new efficient algorithms [108], [141], [155].

In general, there can be two different approaches to solve the state and parameter

estimation problem. The first one being a sequential, separate estimation of param-

eters and states [108], [153]. In this approach, the parameter estimation is carried

out first and updated when new data comes into the system. The second style of

tackling this problem would be to do simultaneous, joint estimation of parameters

and states. This approach has caught the attention of a lot of researchers and offers

superior performance too [22], [50], [56], [64], [134]. A common way of solving the

state and parameter estimation problem using the second approach, is to augment

the parameters as additional states of the system [21], [81], [146] and looking at the

problem as a state estimation problem.

Observability of a system plays a crucial role in the estimation of states and parame-

ters of a system. In practice, it is not very easy to test the observability of a nonlinear

system model, like for the one we have adopted in this work to represent the HD sys-

tem. The test involves computationally demanding steps like the calculation of higher

order Lie derivatives and the test results are sensitive to noise [93], [133], [144]. The

observability test of a nonlinear system can be also done using approximate, alter-

native approaches through linearization of the nonlinear system, sensitivity analysis

and structural observability [85], [145]. Each of these methods come with both ad-

vantages and disadvantages. If the original system model under consideration fails

the observability test, then only a subset of variables can be estimated from the orig-

inal list of variables (states and parameters). There are several articles focusing on

variable (parameter) selection and estimation [42], [48], [96], but this work [85] shall

be adopted for building a sensitivity analysis based framework, for the selection and

estimation of hemodialysis system model variables in this thesis work.
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1.2.7 Feedback control in hemodialysis

The scientific advancement of the tools used for intradialytic monitoring, with an

ambition to prevent clinical complications induced by HD and to continuously mea-

sure hemodynamic process variables, has led to a significant improvement in the way

the HD therapy is delivered to CKD patients over the last few decades. These tools

were not considered seriously for clinical applications until recently. Traditionally,

the clinical care give would determine the time of dialysis (T), clearance (K) for the

estimated patient volume (V), using ‘KT/V’ as the dosage prescription for dialysis.

Due to several process disturbances and treatment complications, there is always a

difference between the delivered and the prescribed dose, resulting in the treatment

objectives not being met fully [12]. The traditional therapy has always worked in

an open loop fashion, with no information fusion of the physiological condition of

the patient. Researchers have looked at the application of the closed-loop strategy

in HD, by integrating different techniques into the dialysis computer machine over

the last few decades. These closed loop systems continuously monitor the patient’s

physiological conditions and automatically adjust the parameters of the treatment.

Some of the feedback systems (blood volume, blood temperature, arterial pressure,

ionic dialysance) in HD, which are currently in use, are reviewed here.

Figure 1.11: Feedback control of hemodialysis. Taken from (www.uninet.edu)
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A group of investigators along with Gambro-Hospal research group, put forth their

automatic Blood Volume (BV) control system which varies the ultrafiltration in a

continuous fashion [118]. This system was capable of guiding the BV along a prede-

fined trajectory by continuously changing two inputs, Ultrafiltration Rate (UFR) and

Dialysate Sodium Concentration (DSC) [116], [117]. This kind of strategy has got

the support of some other authors too [41], [115]. In spite of active research, there

are only two feedback control systems which are commercially available, the Hospal

and the Fresenius systems [12]. Temperature control has also been investigated by

some researchers with a motive of preventing heat accumulation, which rises the body

temperature of the patient during HD [125], [127]. The dialysate temperature is also

one other variable to be individualised. The thermal balance and the patient’s body

temperature can be controlled by the Blood Temperature Monitor (BTM), available

in Fresenius machines. The commercially used controllers for blood volume and tem-

perature control are of Proportional, Integral, Derivative (PID) type. Active research

has been done in arterial blood pressure feedback control systems based on fuzzy logic

systems too [91], [98], [124]. These fuzzy systems work on a set of rules, rather than

having a mathematical model of the system, mimicking how a doctor would make

decisions in the event of occurrence of any clinical complications. Ionic dialysance

and the plasma conductivity of the patient can be computed easily from on-line mea-

surements at two different steps of dialysate conductivity. A feedback system has

been designed to identify the plasma conductivity of the patient and modulate the

conductivity of the dialysate continuously in order to achieve a desired patient plasma

conductivity corresponding to a desired plasma sodium concentration at the end of

the treatment [12], [70], [102].

The number of literature works focusing on the application of advanced feedback

control strategies like model predictive controllers are very few and can be hand

numbered [60], [156]. In conclusion, the reader has to understand that the adaptive

control of the hemodialysis treatment session using feedback systems will enhance the

process of renal replacement therapy and make it more physiological and safe but we

still have a long way to go.

1.3 Research background

1.3.1 Motivation

According to the Kidney Foundation of Canada, approximately 10% of the Canadian

population have kidney disease and millions more are at risk. The number of people
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living with kidney disease has grown 36% from 2007 to 2018. The most common form

of treatment modality for kidney failure in Canada is dialysis. Nearly 48,000 Cana-

dians are being treated for kidney failure and 58.4% of those patients are treated on

hemodialysis (HD). Across all provinces in Canada, HD remains the most frequently

used treatment modality for new patients who require dialysis [97]. In 2013, the rate

of patients with End Stage Renal Disease (ESRD) initiated on HD varied from 91%

in Newfoundland and Labrador to 71% in Manitoba. Moreover, in the same year,

most Canadian dialysis patients (76%) received in-centre HD, which describes HD

performed in an institution such as a hospital, satellite unit, or a dialysis facility,

with the assistance of a health care professional.

Based on the literature review presented, the reader is prompted to understand that

there have been several attempts to model the hemodialysis system to study the inte-

grated dynamics. But there has not been any progress towards building a systematic

framework for data (patient history: clinical measurement data) based identification

of the first principles model, with an agenda of building an individualized virtual

patient simulator (grey box modelling approach). If done, that would be the first

step towards achieving the so-called ‘Precision medicine’ in HD. As presented be-

fore, the identification of an invidualized patient model is essentially a simultaneous

state and parameter estimation problem and the observability of the nonlinear sys-

tem model has to be ensured for consistency and so we have adopted a sensitivity

analysis framework, which could be easily implemented and is computationally more

friendly than finding Lie derivatives. On top of that, majority of the feedback control

systems explored by researchers, are PID controllers which do not have the ability to

take optimal control actions and handle process constraints and they follow a refer-

ence trajectory (BV: exponential profile) defined to be clinically safe by doctors after

conducting randomized control trails. It is quite interesting to note that, even in

the works on the application of MPC to HD, the model-based controllers were forced

to follow clinically determined reference trajectories and also the control inputs were

forced into taking only certain values towards the end of the treatment (funnel shaped

constraints). It can be argued that the clinically determined reference trajectories are

always not optimal.

In addition to all the reasons stated above, HD is often considered the most expen-

sive medical intervention that society will pay for on an ongoing basis [72]. According

to the Kidney Foundation of Canada, dialysis costs the health care system between

$56,000 and $107,000 per patient per year. The cost to the health care system for
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chronic kidney disease is approximately $50 billion per year. This situation is get-

ting more severe due to the limited treatment resources, qualified doctors (Total 715

registered nephrologists in Canada, equates to roughly 1.9 nephrologists per 100,000

population [5]) and increasing number of CKD patients. Also, people living with kid-

ney failure (ESRD) frequently face significant financial challenges related to increased

medication costs due to longer treatment time. Hence, it is necessary to increase the

dialysis equipment utilization efficiency from a resource optimization perspective.

1.3.2 Problem statement

Hemodialysis, although being a life-sustaining therapy for ESRD patients, is found

to induce several clinical complications, like IDH, DDS, in patients. Each patient

behaves differently to HD and so the need for identifying an individualized treatment

regime gets amplified. In the past, the hemodialysis treatments were done in an

open-loop or semi automated fashion where the treatments were stopped when clin-

ical complications occurred and started again after the patient returns to normalcy.

These kinds of treatments might be not be optimal and safe from a clinical point of

view and often result in under treatment. The problem preventing optimal control

techniques to be applied in HD is the unavailability of a comprehensive framework of

modeling, control and optimization for the treatment process. This research work is

an attempt to address this multifaceted problem in a systems engineering perspective

and will provide benefits not only to the large population of CKD patients through

improvements in the quality and safety of the delivery of treatment and clinical care,

but also to the scientists and researchers who are trying to develop a scientific un-

derstanding supported by first principles models of this clinical phenomena and its

associated symptoms. It will also provide benefits to the nephrology health care

providers through improvement in operating efficiency, which will result in improved

business and financial performance, and a more attractive economic return.

1.3.3 Objectives

With the motivation of this research presented already, this thesis work aims to

accomplish the following objectives:

• To develop a control relevant first principles model of the HD system with

integrated dynamics (cardiovascular, solute and fluid dynamics).

• To devise a systematic framework for building an individualized virtual patient

simulator from limited clinical data.
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• To design a feedback control strategy to automatically control the treatment

parameters, thereby achieving clinical treatment objectives, while ensuring su-

perior safety and hemodynamic stability of the patient undergoing HD.

If the above objectives are met, a comprehensive framework for tailoring HD treat-

ments according to the individual patient’s needs will emanate.

1.4 Thesis organization

1.4.1 Outline

This thesis is organised as follows:

• Chapter 1 provides the reader with the necessary background information to ap-

preciate this piece of work and a concise literature review of CKD, RRT modal-

ities and some complications associated with it, previously developed mathe-

matical models of the HD system, parameter and state estimation algorithms

and feedback control techniques applied in HD treatments.

• Chapter 2 introduces the reader to the basic concepts of observability, sensi-

tivity analysis, Singular Value Decomposition (SVD), orthogonalization, design

of an Extended Kalman Filter (EKF), Proportional Integral Derivative (PID)

controller and Zone Model Predictive Controller (ZMPC).

• Chapter 3 acquaints the reader with the mathematical model used for represent-

ing the HD system in the course of this study, along with a few modifications

done to make it control relevant. Additionally, a mass transport model (Partial

differential equations) of the hemodialyzer is explored for practical implemen-

tation in future.

• Chapter 4 focuses on the identification of an individualized virtual patient simu-

lator from synthetic clinical data, which is essentially a simultaneous state and

parameter estimation problem, solved using the techniques outlined in chap-

ter 2. The results of the sensitivity based observability test performed on the

HD model are also presented here.

• Chapter 5 talks about the application of optimal control strategies as discussed

in chapter 2, a model based controller with process constraints integrated with

an estimator, with feedback implementation for a HD treatment setting. Then
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the proposed control algorithm is tested on the virtual patient simulator and

the results are presented. The proposed algorithm is also compared with tradi-

tionally prevalent feedback control strategies in HD.

• Chapter 6 summarizes the work presented in this thesis and presents some

possible improvements and future research directions which can be pursued to

tailor the treatment according to each individual patient, making HD treatments

even better, safer, comfortable and more quicker than it is today.

1.4.2 Contributions

The contributions of this thesis are as follows:

• A well-accepted nonlinear mathematical model of Ursino and Innocenti [140] for

studying the integrated fluid, solute, cardiovascular and mass transfer dynamics

during HD is adopted from literature and modified in such a way to give the

investigators and HD treatment providers the freedom of having upto 6 control

inputs or even more. This is one of the first attempts in HD research, where a

first principles model of HD is realized in a optimal control sense with practical

feasibility of implementation in the near future.

• A framework for nonlinear system observability based on sensitivity analysis,

with a variable selection algorithm to ensure consistent estimation (state and

parameters simultaneously) even for systems which show signs of unobservabil-

ity. This is done for the first time with respect to HD and this paves the way

for the development of individualized grey box patient simulator models in HD

with the available non invasive clinical measurement data.

• Development of a computer controlled HD system constructed out of a novel

control methodology based on Batch Zone Nonlinear Model Predictive Control

(BZNMPC) with physiological constraints and treatment objectives. This is the

first time a NMPC of this kind, where the model in the controller is completely

based on first principles with cardiovascular dynamics predictive capability, is

used in HD.
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Chapter 2

Preliminaries

2.1 Terms and definitions

Firstly, in this section, the important terms and definitions that will be frequently

used in this research work are defined. After this section, the reader will be introduced

to all the fundamental technical concepts which are utilized for building the proposed

methodologies in this research work.

• Hemodialysis system: If one neglects most of the intricate mechanical equip-

ment as shown in figure 1.9, the hemodialysis system consists of two subsystems

namely, the patient and the hemodialyzer.

• Patient: The person with CKD undergoing HD treatment.

• Hemodialyzer: The fibre module where the extracorporeal cleansing of the

blood occurs. It is also called as ‘artificial kidney’.

• Dialysate or dialysis fluid: The cleaning solution consisting of water and

chemicals (electrolytes) which passes through the hemodialyzer to remove excess

fluids and waste products from the blood.

• Solute: A solute is a substance dissolved in a solution. In our problem, the

solutes could be toxins (Urea) or essential nutrients (Sodium, Potassium) dis-

solved in blood plasma (solvent).

• Fluid overload: The condition in which excess fluid (water) in the body causes

edema.
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• Dry weight: It refers to the original weight (ideal) of the patient when over-

loaded fluid has been removed.

• Ultrafiltration: The migration of fluid across a semipermeable membrane

because of transmembrane pressure gradient. In a dialysis prescription, the

total fluid volume to be extracted is called ‘Ultratfiltration Volume (UFV)’.

• Dialysance: The number of milliliters of blood completely cleared of any sub-

stance by a hemodialyzer in a unit of time. Mathematically, it could be ex-

pressed as shown below [122].

Dialysance =
Change in solute content of incoming blood

Concentration driving force

=
Qbi(Cbi − Cbo)
Cbi − Cdi

where Qbi is the blood flow rate into the hemodialyzer, Cbi is the inlet concen-

tration of a solute in blood, Cbo is the exit concentration of the solute in blood

and Cdi is the inlet concentration of the solute in dialysate.

• Clearance: It is the dialysance when Cdi becomes zero.

• Urea Reduction Ratio (URR): It is the HD treatment induced reduction

in the blood concentration of urea over time. The target is to reach an URR of

great than 65%. It can be computed from the expression shown below.

URR = 100%× Cpre
urea − Cpost

urea

Cpre
urea

where Cpre
urea is the predialysis blood urea concentration and Cpost

urea is the post-

dialysis blood urea concentration.

• Infusion rate: It is the amount of fluid administered to the patient intra-

venously or through the blood stream. It is also called as ‘injection rate’ or

‘saline infusion rate’ if a hypertonic saline solution is infused.

2.2 Representation of the HD system model

The adopted mathematical model of the hemodialysis system can be written as a set

of nonlinear ordinary differential equations in the general form as shown below,

ẋ(t) = f(x(t), u(t), θ) + ω(t), x(t0) = x0 (2.1)

y(t) = h(x(t), u(t), θ) + ν(t) (2.2)
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In the outlined compact representation, x(t) ∈ RNx , u(t) ∈ RNu , y(t) ∈ RNy , θ ∈
RNθ denote the state, input, output and parameters at time t, respectively. ω(t) ∈
RNx and ν(t) ∈ RNy represent the model disturbance and measurement noise at

time t respectively. f(·) and h(·) denote the nonlinear state and output equations

respectively. x0 is the state of the system at the initial time t0. In this work, the

parameters of the HD system (θ) are assumed to be constant and time invariant.

Also, the total number of parameters of the HD system is a sum of patient-specific

parameters (θp), which are to be estimated, and other known system parameters (θk)

as shown in Eq. (2.3).

Nθ = Nθp +Nθk (2.3)

2.2.1 Augmentation of the HD system model

Out of the parameter vector of the HD system, the patient-specific parameters were

removed and augmented as additional states of the system with zero dynamics [145],

as by our assumption all parameters are time invariant. For the sake of presentation

simplicity, the time index, disturbance and noise are omitted.

ẋ = f(x, u, θ)
y = h(x, u, θ)

⇒

{
ẋ = f(x, u, θk)

θ̇p = 0
y = h(x, u, θk)

⇒ Ẋa = fa(Xa, u, θk)
y = ha(Xa, u, θk)

(2.4)

In Eq. (2.4), Xa = [xT θTp ]T ∈ RNx+Nθp ∈ RNXa is the augmented state vector. fa(·)
and ha(·) denote the augmented nonlinear state and output equations respectively.

2.3 Observability of a system

In control theory, the observability and controllability of a linear system are mathe-

matical duals. Let us consider a discrete time system, as shown below, to define the

notion of observability.

x(k + 1) = Ax(k) + Bu(k) (2.5a)

y(k) = Cx(k) (2.5b)

The system is said to be observable if, for any possible sequence of state and control

vectors, the current states can be determined uniquely in finite time using only the

outputs. We can check if the system is observable by checking whether the following

observability matrix (O), built by using the system matrices A and C, is full rank or
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not [112]. In Eq. (2.6), n is the size of the state vector x.

O =


C
CA
...
CAn−1

 (2.6)

If the above observability matrix is of full rank, we can uniquely determine the initial

states of the system based on the input and output data, and we say that the system

is observable. If the observability matrix is rank deficient, all system states cannot be

estimated simultaneously. For a nonlinear system like the HD system model, it is in

general challenging to check the observability, as it involves the computation of Lie-

derivatives and Lie-brackets [133]. In literature, there are some alternative approaches

to approximate the nonlinear system’s observability based on the linearization of the

nonlinear system successively along typical trajectories and checking the observability

of the linearized models (using Popov–Belevitch–Hautus test) [22], or using sensitivity

equations [85], [133].

2.4 Sensitivity analysis

By definition, sensitivity analysis aims to study the uncertainty in the output of a

mathematical model or a system through a rigorous numerical approach by splitting

the uncertainty into different possible input sources. It is widely used in the field

of systems engineering and there are two broad classifications of sensitivity analysis

namely, local and global sensitivity analysis. A local structural observability test

could be formulated based on a rank-test of the sensitivity matrix. A full rank sensi-

tivity matrix is a sufficient condition for observability [85], [133]. In this section, the

fundamental equations which are required to construct the aforementioned sensitivity

matrix are outlined. Omitting θk from Eq. (2.4) for simplicity, the dynamics of the

augmented HD system model can be represented by the following set of equations.

Ẋa = fa(Xa, u,Xa0), Xa(t0) = Xa0 (2.7)

y = ha(Xa, u,Xa0) (2.8)

In the above equations, the initial states have been explicitly mentioned as variables.

The sensitivity variables are defined as follows,

SXaXa0 =
∂Xa

∂Xa0

, SyXa0 =
∂y

∂Xa0

(2.9)
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The sensitivity ODEs which give the sensitivities of the initial states to the output

(or measurements) are given below [48],

ṠXaXa0 =
∂fa
∂Xa

SXaXa0 +
∂fa
∂Xa0

, SXaXa0(t0) = I (2.10)

SyXa0 =
∂ha
∂Xa

SXaXa0 +
∂ha
∂Xa0

(2.11)

∂fa
∂Xa0

=
∂ha
∂Xa0

= 0 (2.12)

The sensitivity equation (2.10) shall be solved in parallel with the original augmented

system model equation (2.7). The initial state to output sensitivities (SyXa0) can

be obtained by numerically integrating equations (2.7), (2.10) and substituting the

results in equation (2.11). Then, the sensitivity matrix Or, which is an approximation

of the observability matrix of a nonlinear system, can be constructed as shown below.

Or =


SyXa0 |t0
SyXa0 |t1

...
SyXa0 |tN

 =



∂y1
∂X1

a0

∣∣∣
t0

∂y1
∂X2

a0

∣∣∣
t0
· · · ∂y1

∂X
NXa
a0

∣∣∣∣
t0

...
...

. . .
...

∂yNy
∂X1

a0

∣∣∣
t0

∂yNy
∂X2

a0

∣∣∣
t0
· · · ∂yNy

∂X
NXa
a0

∣∣∣∣
t0

∂y1
∂X1

a0

∣∣∣
t1

∂y1
∂X2

a0

∣∣∣
t1
· · · ∂y1

∂X
NXa
a0

∣∣∣∣
t1

...
...

. . .
...

∂yNy
∂X1

a0

∣∣∣
tN

∂yNy
∂X2

a0

∣∣∣
tN
· · · ∂yNy

∂X
NXa
a0

∣∣∣∣
tN


Ny(N+1)×NXa

(2.13)

In the matrix given above, N is the total simulation time steps. Then scale the

sensitivity matrix using the nominal values (from [140]) of the variables (X̂j
a0) and

this scaled sensitivity matrix (for simplicity Or again) shall be used for further anal-

ysis [96], [154]. In addition to that, the user should feel free to adopt other scaling

approaches (for instance, using the bounds of variables or by simply using a rea-

sonable guess values of variables) as deemed to be suitable for the problem under

consideration.

∂yi

∂Xj
a0

∣∣∣∣
tk

⇒ X̂j
a0

yi|tk

∂yi

∂Xj
a0

∣∣∣∣
tk

(2.14)

where i ∈ {1, 2, .., Ny}, j ∈ {1, 2, .., NXa} and k ∈ {0, 1, 2, .., N}.
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2.5 Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) is a general eigen decomposition (factorization)

of a real or complex matrix and it is a well known approach to find the rank of a

matrix [44]. The SVD of a real matrix (M ) of shape m× n is given by,

Mm×n = Um×m · Σm×n · V T
n×n (2.15)

Here U and V are real orthogonal matrices and the columns of U and V are called the

left and right singular vectors of M respectively. The diagonal entries of Σ are the

singular values of the matrix M and the number of non zero singular values determine

the rank of matrix M .

2.6 Orthogonalization

The sensitivity based selection methods are widely used in parameter selection and

estimation [3], [96], [154]. We can directly borrow them for the implementation of

state and parameter selection process in this research work. The basic ideas and

methods of variable (state and parameter) selection will not be discussed here in

detail. The reader is motivated to look into some interesting works in literature to

understand the nitty gritties of the variable selection process [28], [69], [96]. The

revised forward selection procedure to sequentially choose the most important and

estimable variables based on the orthogonalization method [89], [154] is given below.

• Step 1: Calculate the magnitude (i.e. the two norm) of each column of the

relative sensitivity matrix Or, and set k = 1;

• Step 2: Select the column with the largest magnitude as Xk, and mark its

corresponding state or parameter as the first estimable variable;

• Step 3: Estimate the optimal effect of the selected states and parameters using

Xk based on forward selection: Ẑk = Xk(Xk
TXk)

−1Xk
TOr;

• Step 4: Eliminate the effect of selected states and parameters from the original

matrix, and calculate the residual matrix Rk: Rk = Or − Ẑk;

• Step 5: Calculate the magnitude of each column in the residual matrix Rk, and

choose the state or parameter with the largest magnitude as the next estimable

variable;
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• Step 6: Select the corresponding column of the next estimable variable in Or,

and augment Xk to Xk+1 by including the new column;

• Step 7: Advance the iteration counter, and repeat steps 3 to 6 until one of the

prescribed termination conditions is satisfied;

1. All states and parameters have been ranked.

2. The largest magnitude of the columns in Rk is smaller than a prescribed

cut-off value.

3. It is impossible to carry on the optimal effect estimation of Xk in step 3

due to matrix singularity (inverse computation).

2.7 Design of a nonlinear state estimator

2.7.1 Extended Kalman Filter (EKF)

In industrial practice, one has to measure a large number of physical variables to

ensure the required level of state estimation performance. However, some physical

quantities cannot be directly measured or measuring them is not desired in a cost

reduction motive. For example in chemical process industries, there is a huge lag in

the receipt of concentration measurements from fluid samples. In that case, one has

to estimate the states of the system from the available online measurements and a

generic block diagram of a state estimation algorithm is shown in figure 2.1.

Figure 2.1: Block diagram of a state estimation algorithm

One of the methods used for the estimation of states of a nonlinear system is the Ex-

tended Kalman Filter (EKF), which is widely used in several practical applications,

like sensorless control, fault-tolerant control of AC drives, energy systems, robotics,

signal processing and industrial control systems, owing to this computational sim-

plicity [9]. It is based on the successive linearization of the original nonlinear system.
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In a broader perspective, the EKF algorithm can be divided into two fundamental

steps, the first being a prediction step and the next being an updation step. In the

prediction step, the state (x) of the system under consideration and the state covari-

ance matrix (P ) are predicted. New measurements come into the system from the

sensors and when a new measurement is available, the Kalman gain (K) is calculated

first and then x and P are updated. The Kalman gain is the relative weight given

to the measurements and the current state estimate. With a high gain, the filter

places more weight on the most recent measurements, and thus follows them more

responsively. With a low gain, the filter follows the model predictions more closely.

The steps involved in an EKF algorithm are summarized below.

1. Initialisation:

(a) The filter is initialized as follows,

E(x0) = x̂0 (2.16)

E((x0 − x̂0)(x0 − x̂0)T ) = P (0|0) (2.17)

2. Prediction step:

(a) State prediction:

x̂(t|t− 1) = f
(
x̂(t− 1|t− 1), u(t− 1)

)
(2.18)

The model disturbance is included in the state covariance prediction ex-

plicitly.

(b) State covariance prediction:

P (t|t− 1) = A(t)P (t− 1|t− 1)A(t)T +Q (2.19)

where A(t) = ∂f
∂x

∣∣
x̂(t−1|t−1)

and Q is the covariance matrix of the model

disturbance ω.

3. Update step:

(a) Kalman gain calculation:

K(t) = P (t|t− 1)C(t)T
[
C(t)P (t|t− 1)C(t)T +R

]−1
(2.20)

where C(t) = ∂h
∂x

∣∣
x̂(t|t−1)

and R is the covariance matrix of the measure-

ment noise ν.
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(b) State update:

x̂(t|t) = x̂(t|t− 1) +K(t) ·
(
y(t)− h(x̂(t|t− 1))

)
(2.21)

The state vector x of the system is updated when new measurement data

y(t) is available.

(c) State covariance update:

P (t|t) =
(
I −K(t)C(t)

)
· P (t|t− 1) (2.22)

State covariance matrix P is updated. I is the identity matrix with di-

mension Nx.

2.8 Design of feedback control algorithms

In this section a brief overview of the feedback control strategies tested in this research

work will be elucidated.

Figure 2.2: Block diagram of a PID controller (forum.dronebotworkshop.com)

2.8.1 Proportional, Integral, Derivative (PID) controller

PID controllers have been in existence for many decades and it is the most commonly

used form of feedback control strategy. It was initially used in governors and it

became quintessential in process control by the middle of 20th century. Most of the
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controllers in industries are of PI type. It is also an integral part of the Distributed

Control Systems (DCS) package sold by automation vendors. PID controllers today

often come with built in logics, sequential functions and function blocks and are used

in a wide range of industries. Even in hierarchical control layout, PID controllers

work at the lower level to keep the system near the set points provided by upper

multivariable control layers. Though there are several forms of PID, the parallel form

of PID control algorithm is shown in figure 5.1. The textbook definition of a PID

control law is given below,

u(t) = Kc

[
e(t) +

1

τI

∫ t2

t1

e(t).dt+ τD
de(t)

dt

]
(2.23)

From figure 5.1, it is clear that y(t) is the measured process variable, r(t) is the

reference signal or set point, u(t) is the control signal and e(t) is the error signal

(e = ysp−y, as it is negative feedback). The control signal is therefore a sum of three

terms: the P-term (that is proportional to the error), the I-term (that is proportional

to the integral of the error), and the D-term (that is proportional to the derivative of

the error). The parameters of the controllers which are to be tuned are proportional

gain Kc, integral time τI , and derivative time τD. The integral, proportional and

derivative parts can be visualised as past, the present and the future control actions

respectively.

2.8.2 Zone Model Predictive Controller (ZMPC)

In HD, the outputs are more in number than the control inputs (i.e., more objectives

than degrees of freedom) and so zone control could be considered as a natural choice.

Also many of the physiological variables are defined in ranges (with upper and lower

bounds as shown in figure 2.3) rather than a strict clinically accepted point value

because of bio-variability among individuals. Also zone control can be used when

there are conflicting objectives. If there are conflicting objects, the set point based

MPC often suffers from parameter tuning difficulties. One strategy to reduce this

burden is to specify reasonable zone targets. Another factor that comes into play

is the process uncertainty and noise. This adds another dimension of objectives to

the control system (i.e., variances and disturbance rejection). Zone Model Predictive

Controllers (ZMPC) have gained momentum in medical applications like diabetes [45]

and many more recently. In this particular work, the researchers have clinically tested

the efficiency of the ZMPC algorithm under plant model mismatch and measurement

noises.
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Figure 2.3: State trajectory in a typical zone control setting

The mathematical problem formulation of a ZMPC with a prediction horizon Np is

shown below.

min
x(i), εL, εU , ∆u

Np∑
i=1

(
εLQLεL + εUQUεU

)
+

Np−1∑
i=0

(
R ·∆u2

i

)
(2.24a)

s.t. xi+1 = f(xi, ui) + ωi i = 1, 2, .., Np (2.24b)

yi = h(xi, ui) + νi i = 1, 2, .., Np (2.24c)

xmin ≤ xi ≤ xmax i = 1, 2, .., Np (2.24d)

umin ≤ ui ≤ umax i = 0, 1, .., Np − 1 (2.24e)

∆umin ≤ ∆ui ≤ ∆umax i = 0, 1, .., Np − 1 (2.24f)

BL − εL ≤ yi ≤ BU + εU (2.24g)

εL ≥ 0, εU ≥ 0 (2.24h)

In the above formulation, zone control is realized with the help of slack variables

εL, εU for the lower (BL) and upper (BU) target zone bounds respectively, along

with its associated constraints (states, inputs and rate of input change). The use

of a slack variable eliminates the cost as long as the states are within the specified

zone bounds. If the states are outside the specified target zone, the cost associated

with that point is computed by taking the product of the squared distance from the

point to the nearest zone boundary and the tuning parameter Q. R is the tuning

parameter associated with the rate of change of input. Both Q and R are adjusted

according to the user’s requirements. In HD, the measurements are subjected to huge

disturbances and the same patient behaves differently on different days, which results

in plant model mismatch. Therefore, a ZMPC can also be applied to HD treatment

settings and it will be discussed in detail in chapter 5.
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2.9 Summary

To facilitate this research work to be understood by people from a wide array of pro-

fessions and to promote a healthy dialogue between the heterogeneous community of

engineers and physicians and systems engineers the fundamentals have to be outlined

first. Therefore, in this chapter, the reader is first introduced to the fundamental

definitions which are quite frequently used in the context of HD and aid in under-

standing the language used in a clinical HD treatment setting better. Finally, the

technical concepts required for building the proposed frameworks and methods for

simultaneous state and parameter estimation in chapter 4 and for optimal control of

HD treatments in chapter 5 are presented to the reader.
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Chapter 3

Mathematical modelling of the
hemodialysis system

In the broad context, modelling aims to achieve a realistic reproduction of the dynam-

ics of the process through mathematical relations. A model can either be physical,

which is a replica of the real world object, or conceptual like a mathematical model.

The mathematical model built should reproduce the dynamics of the system from

which it was inspired, with a user acceptable degree of accuracy and consistency.

Analysis of process characteristics and intervariable relationships are of paramount

importance in prediction, control, monitoring, design and innovation of process sys-

tems. In our study, mathematical modeling of the hemodialysis system helps in

understanding the process intricacies, patient’s response to HD, designing and pre-

scribing optimal treatments, tracking the course of the patient’s treatment and paves

the way for the application of Model Predictive Controls (MPCs) [83]. Process models

can either be developed from fundamental laws of science (white box) or developed

from input-output data in an empirical approach (black box). Quite often, developing

white box models becomes a cumbersome task as it requires in-depth knowledge of

the system under consideration and we propose using a grey box approach, a com-

bination of both fundamental laws of science and synthetic input-output data. The

very first objective of this research is to build a first principles model of the hemodial-

ysis system which could be used for control relevant applications. Firstly, the reader

is briefly introduced to a HD kinetic modelling guide, and the derivation of a single

compartment model is shown as an example. Then the HD system model equations

considered in this research are presented to the reader along with some derivations,

model assumptions and modifications.
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3.1 Guide to kinetic modelling

The structured approach for building a mathematical model for any physiological

system [120] is as follows:

1. The initial step is to formulate the system under consideration in to a diagram

with inputs and outputs to systems represented by arrows going into and out

of the system respectively.

2. To write down the balance (mass, volume, solute) equations of the system,

subsystem or compartment under consideration.

(Accumulation) =
∑

(Inputs)−
∑

(Outputs)

d(Content)

dt
=
∑

(Inputs)−
∑

(Outputs)

3. The unit consistency of the inputs and outputs must be ensured. Inputs and

the outputs must be in similar units and should be going into and out of the

system respectively.

4. In most of the cases, we end up with first order differential equations. Solve

the equations either analytically or numerically using the classical techniques

of applied mathematics.

5. Based on the user’s requirement, the final expression can be rearranged to cal-

culate the required parameters.

3.1.1 Example derivation: Single compartment model

a. Derivation of Single Pool Fixed Volume (SPFV) kinetic model

If the entire body fluid is considered to be a single pool of constant volume, then we

can derive the expression for the blood toxins in the patient’s body at any time instant.

The single pool fixed volume model assumes that the total body water is constant and

that there is only a single volume for urea distribution (no urea generation occurs

here). The urea enters the compartment only from the liver and it is generated

from amino acid catabolism. The urea is continuously removed through the patient’s

kidneys with clearance (Kr) and through the dialyzer with clearance (Kd) during

HD treatment. Therefore, the overall clearance(K) is the sum of renal clearance and

dialyzer clearance during dialysis and equal to the patient’s renal clearance alone
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between treatments. However, for chronic kidney patients if the native kidneys have

completely failed (ESRD), then the renal clearance (Kr) can be taken as zero.

Figure 3.1: Single Pool Fixed Volume (SPFV) urea kinetic model. Taken from [36]

We assume that the volume change occurring during dialysis is negligible ( dV
dt

= 0)

and if we write down the urea mass balance over the single compartment we get,

d(V C)

dt
= G−KC (3.1)

Here, G is the urea generation rate expressed in (mg/min) and K is the total clearance

expressed in (ml/min). Applying product rule over the left hand side of Eq. (3.1) we

get,

C
dV

dt
+ V

dC

dt
= G− (Kr +Kd)C (3.2)

V
dC

dt
= G− (Kr +Kd)C (3.3)

The analytical solution for Eq. (3.3) can be obtained by separating the variables and

by the use of integration formulae. Upon integration and applying limits (At time

t = 0, C = C0 and at time t = t, C = C) we get,

dC

G− (Kr +Kd)C
=
dt

V
(3.4)
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∫ C

C0

dC

G− (Kr +Kd)C
=

∫ t

0

dt

V

ln

[
G− (Kr +Kd)C

G− (Kr +Kd)C0

]
=
−(Kr +Kd)t

V

G− (Kr +Kd)C = (G− (Kr +Kd)C0).e
−(Kr+Kd)t

V (3.5)

We can get an expression for the concentration of a toxin (as obtained by authors [46])

at a time instant ‘t’ by rearranging Eq. (3.5) as shown below,

C = C0

[
e

−(Kr+Kd)t

V

]
+

G

Kr +Kd

[
1− e

−(Kr+Kd)t

V

]
(3.6)

where C0 and C are the concentrations of toxin at time t = 0 and t = t respectively in

(mg/ml), V is the urea distribution volume (ml). The above equation can be used to

compute the solute removal and if one examines Eq. (3.6) it is understood that solute

removal is achieved by either dialyzer or renal clearance and the concentration of the

solute is a function of both Kt
V

and the urea generation rate (G). Urea concentra-

tion drops during each hemodialysis session (falls exponentially during dialysis, not

linearly) and increases between consecutive hemodialysis sessions (due to urea gener-

ation and because of reduced renal function) as shown in figure 3.2. The simulation

settings are given in table 3.1.

Table 3.1: Simulation settings for single and double pool fixed volume urea kinetic
models

S.No Model variable name Notation Value Unit

1 Urea generation rate G 0.1 mmol/min
2 Renal clearance Kr 0 ml/min
3 Dialyzer clearance Kd 150 ml/min
4 Urea distribution volume V 34800 ml
5 Extracellular volume Ve 11600 ml
6 Intracellular volume Vi 23200 ml
7 Intercompartmental mass transfer coefficient Kc 300 ml/min
8 Initial blood urea concentration (BUC) C0 35 mmol/L
9 Initial extracellular BUC Ce(0) 35 mmol/L
10 Initial intracellular BUC Ci(0) 35 mmol/L
11 Treatment time t 210 min
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Figure 3.2: Simulation of the Single Pool Fixed Volume (SPFV) and Double Pool
Fixed Volume (DPFV) urea kinetic model

The derivation and simulation results for the single pool urea kinetic model are shown

here to educate the reader about the first approaches which were taken previously

by researchers to study the dynamics. However, many of the assumptions of the

single pool urea kinetic model might not hold true. We have assumed that the

volume distribution remains constant during HD, but this is not true in real HD

treatments. The patient loses weight during dialysis (due to ultrafiltration) and gains

weight between dialysis treatments (due to fluid loading). With the development of

more efficient dialyzers, we could remove urea 4 to 7 times quicker than normally

functioning human kidneys [36]. This causes a steep change in the concentration of

urea in the body in a short duration of time through a small funnel in the human

body, i.e, the Arteriovenous (AV) graft. One more assumption while deriving the

single pool model is that urea attains equilibrium rapidly. This means that the cell

membrane and vascular permeability to urea is infinite, allowing us to consider the

entire fluid space as one single pool. However, scientific findings suggest that urea

permeability is finite. The mass transfer of urea across tissues and cell walls cannot
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keep up with the rate at which urea is removed in the dialyzer. Therefore, a noticeable

concentration gradient develops [130]. This gradient is believed to be developed at

the cell wall between intracellular (IC) and extracellular (EC) pools. Therefore, we

should consider that the body consists of two compartments as shown in figure 3.3.

To get a visual understanding, two-pool fixed volume model equations from [158] are

solved numerically (as analytical solutions are hard to obtain by hand) and the results

are compared with the single pool model in figure 3.2. The double pool model can be

used to explain the clinically significant ‘rebound’ phenomenon, which refers to the

sudden jump in the extracellular concentration of urea immediately after stopping

dialysis (right after 210 minutes in figure 3.2).

Figure 3.3: Double Pool Fixed Volume (DPFV) urea kinetic model. Taken from [36]

3.2 Hemodialysis system model

Intradialytic hypotension (IDH) and Dialysis Disequilibrium Syndrome (DDS) are

the most frequently occurring HD complications because of the removal of overloaded

fluid in a short period of time. Various superimposing nonlinear complex factors help

in blood pressure stability of the patient. Some of these factors include, vascular

refilling from the interstitial fluid space and the impact of the internal cardiovascular

control mechanisms in the patient’s body. As a result, each patient behaves differ-

ently to the same HD treatment. For instance, some can tolerate quicker treatments

while some have very poor hemodynamic stability. One cannot understand the com-
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plex relationships between different HD variables very easily, and so a comprehensive

mathematical model is necessary. The model utilized in this research work [140]

contains the equations to represent the fluid transfer dynamics between compart-

ments with the related solute dynamics, a simple compartment model of the human

heart and cardiovascular dynamics (systemic and pulmonary circulation) along with

the action of pressoreceptors (low pressure cardiopulmonary baroreceptors and high

pressure arterial barorecptors), bidirectional solute and fluid exchange dynamics (dif-

fusion and convection) across the hemodialyzer. The HD system is divided into the

following subsystems as shown here for comprehensible presentation.

1. Patient subsystem

(a) Solute balance model (2 compartment)

(b) Fluid balance model (3 compartment)

(c) Cardiovascular dynamics model

i. The heart pressures (6 compartment)

ii. Baroflex regulation (3 manipulated variables)

2. Hemodialyzer subsystem

(a) Simple model: Exit concentration (Used in chapters 3, 4)

(b) Complex model: Spatio-temporal concentration profile

Although this model is a comprehensive framework, it comes with some assumptions

to make the model simple enough for easy implementation in limited computing re-

sources while explaining all integrated dynamics without fail. The most important

assumptions of the model are outlined next while the other assumptions will be pre-

sented in the subsequent subsections.

1. For studying fluid exchange dynamics, the patient’s body is split into three com-

partments namely, intracellular fluid space, interstitial fluid space and plasma.

2. For studying solute dynamics, the interstitial fluid space and plasma are summed

into an ‘extracellular’ compartment as the concentration of any solute in the

interstitial fluid space and plasma is nearly equal. Thus two compartments are

enough to explain solute dynamics.
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3. The main solutes considered are Urea (marker solute for HD), Sodium and

Potassium. All other solutes that do not cross the cellular membrane and

hemodialyzer membrane are clubbed into one and then considered for the sim-

ulations.

4. This model does not differentiate the hemodynamics and solute kinetics of dif-

ferent organs in the body. Instead, each compartment is considered to be a

representation of the entire patient body.

5. The cardiovascular system is considered to be a culmination of two cardiac (left

and right) and four vascular compartments (systemic arteries, systemic veins,

pulmonary arteries and pulmonary veins).

6. The blood pressure output is not pulsatile, instead it is an average. This is

because the cardiac cycle (roughly 0.83 seconds) is very short when compared

to the HD treatment (roughly 4 hours).

7. It is assumed that the cardiovascular reflex is mainly due to the activity of two

groups of baroreceptors (low and high pressure).

8. Only bicarbonate dialysis is considered for the purpose of modelling. This is

because sodium bicarbonate is most commonly used buffer solution in HD.

In the next few subsections, the fundamental equations representing different subsys-

tems of the biotechnological HD system (figure 1.9) are presented.

3.2.1 Patient subsystem model: Solute and fluid dynamics

a. Solute balance model (2C)

In this work, only 3 main solutes (s = Na,K,U) are considered. They are sodium

(Na) and potassium (K), which are the primary substances responsible for osmo-

larity at the cellular membrane, and urea (U), which is the marker solute for HD.

The bidirectional flow of solutes between the intracellular and extracellular pools

because of the concentration gradient is assumed to be linear. Active and passive

transport are accounted for sodium and potassium, while urea is transported only by

diffusion. If the readers look at figure 3.4, they can see that the pale yellow boxes en-

closed within dotted lines represent the two compartments and that the change in the

concentration of any solute in the extracellular pool is because of two positive (from

infusion fluid, from intracellular pool) and two negative contributions (going out from
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the extracellular pool, crossing dialyzer). According to some authors’ findings [67],

the solute concentrations in plasma (Cpl
s ) can be computed from the interstitial fluid

solute concentrations (C is
s ).

Cpl
s =

Fp
αs
· C is

s (3.7)

Figure 3.4: Body compartment model for solute (2C - dotted line) and fluid exchange
(3C - solid line) kinetics. Adopted from [140]

The Donnan-Gibbs ratio for a solute (αs) in the interstitial fluid is approximately

equal to 0.95 for sodium and potassium while the plasma water fraction (Fp) is ap-

proximately equal to 0.94 [122]. So the concentration of sodium and potassium is

almost equal in the plasma and in the interstitial fluid and hence a two compartment

model could be used for describing solute kinetics with fair accuracy.

Cex
s = C is

s ' Cpl
s (3.8)

There are different solutes in the patient’s body that should be within safe limits for

the normal functioning of the body. The general mass balance equations for any par-

ticular solute (s) over the two compartments namely, intracellular and extracellular,

considering both active and passive transport can be written as:

dM ic
s

dt
= Kc

s(βsC
ex
s − C ic

s ) (3.9)

dM ex
s

dt
= Gs −Kc

s(βsC
ex
s − C ic

s )− Js +Qinf · C inf
s (3.10)
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C ic
s =

M ic
s

Vic
(3.11)

Cex
s =

M ex
s

Vpl + Vis
(3.12)

In the above equations, M ic
s , M ex

s , M is
s , Mpl

s represent the mass of solutes (s) in

intracellular, extracellular, interstitial and plasma compartment respectively. The

letter V along with a subscript is used to represent the volume of any compartment.

Kc
s , βs are the intercompartmental mass transfer coefficients of the solute (s). Gs

symbolises the generation rate of the solute (s) in the patient and Js is the mass

flux of the solute (s) across the hemodialyzer. The solute concentration difference

between the intracellular and the extracellular pool is the main driving forcing for

mass transfer.

b. Fluid balance model (3C)

Approximately 60% of the body weight of the patient comprises of fluids and there

are different formulae to arrive at the total fluid distribution volume (Vtot) of a pa-

tient [158]. The total fluid volume is assumed to be distributed in three compartments

namely, the intracellular pool (Vic), interstitial pool (Vis) and plasma (Vpl), as repre-

sented in figure 3.4 by solid outlined blue boxes. The blood volume (Vb) is the sum

of plasma volume and Red Blood Cell (RBC) volume (Vrc), and hematocrit (H) is

the volume percentage of RBCs in blood. The set of fluid balance equations given in

this subsection describe the dynamics of transcellular fluid shifts due to fluctuations

in plasma osmolarity induced by the hemodialysis treatment.

Vex = Vpl + Vis (3.13)

Vtot = Vpl + Vis + Vic = Vex + Vic (3.14)

Vb = Vpl + Vrc (3.15)

H =
Vrc
Vb

=
Vb − Vpl
Vb

= 1− Vpl
Vb

(3.16)

The fluid balance over the three compartments are derived next and one can see that

the sum of equations (3.17), (3.18), (3.19) is same as equation (3.20), which means

that the total change in the body fluid volume is because of Ultrafiltration rate (UFR)

and Infusion Rate (IR). In a simpler sense, UFR is the rate of removal of fluid from

the blood plasma and IR is the rate of addition of fluid into the blood plasma. The
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equations governing the intercompartmental fluid transfer are outlined next.

dVpl
dt

= −Quf +Qinf − Fa +Rv (3.17)

dVis
dt

= −Kf · (C ic − C is) + Fa −Rv (3.18)

dVic
dt

= Kf · (C ic − C is) (3.19)

dVtot
dt

= −Quf +Qinf (3.20)

C ic =
M ic

K +M ic
Na +M ic

U +M ic
eq

Vic
(3.21)

C is = Cex =
M ex

K +M ex
Na +M ex

U +M ex
eq

Vpl + Vis
(3.22)

where C ic, C is are the concentrations of all the osmotically effective solutes in the

intracellular and the interstitial fluid respectively while Meq represents the mass of all

osmotically substances that remain constant throughout HD. Quf represents UFR,

Qinf denotes IR and Kf is the water transfer coefficient. Fa is the filtration rate

at the arterial capillaries and Rv is the absorption rate at the venous capillaries.

Additionally, the following algebraic equations are necessary for solving the ordinary

differential equations of fluid balance given above.

Fa = La · (Pac − Pis − πpl + πis) (3.23)

Rv = Lv · (πpl − πis − Pvc + Pis) (3.24)

In the above equations, La and Lv are the permeability coefficients of the arterial

capillaries and venous capillaries respectively. Pis, Pac, Pvc are the pressures at in-

terstitial fluid space, arterial capillaries, venous capillaries respectively. Pac, Pvc are

derived by imposing mass preservation principles at the arterial and venous capillary

nodes [140]. πpl, πis are the oncotic pressures in the plasma and interstitial fluid

respectively. Landis-Pappenheimer equations [71] are used to compute the oncotic

pressure in the interstitial fluid and plasma compartments.

πis = 2.8 · C is
p + 0.18 · (C is

p )2 + 0.012 · (C is
p )3 (3.25)

πpl = 2.1 · Cpl
p + 0.16 · (Cpl

p )2 + 0.009 · (Cpl
p )3 (3.26)

The protein content in the plasma (Cpl
p ) and in the interstitial fluid (C is

p ) is assumed to

be constant throughout the hemodialysis treatment. Their concentrations fluctuate

because of the changing compartment volumes but the total mass of protein in a
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compartment will remain the same. The subscript (n) represents the basal or nominal

value of a physiological quantity.

C is
p = C isn

p ·
Visn
Vis

(3.27)

Cpl
p = Cpln

p ·
Vpln
Vpl

(3.28)

Finally, the hydraulic pressure in the interstitial fluid space is a linear function of the

interstial fluid volume by assuming a constant elastance of the interstitial place (Eis).

Pis = Eis · (Vis − Visn) + Pisn (3.29)

3.2.2 Patient subsystem model: Cardiovascular dynamics

a. The heart pressures (6C)

A patient’s cardiovascular system is modelled as six compartments as shown in fig-

ure 3.5. It was assumed that there are four vascular compartments and two cardiac

compartments. Each compartment has a hydraulic resistance which accounts for

energy dissipation and loss of pressure, and a compliance that represents the total

blood volume in that compartment . The pressure (P ) changes in each compart-

ment depend on the compliance (C) of the compartment, pressures in the adjacent

compartments or cardiac outputs from left and right heart (ql, qr) and the vascular

resistances (R) [43]. As the heart was represented by an equivalent electric circuit by

the original authors of this model [140], ohm’s law for electric current could be applied

here with blood flow, pressure and vascular resistance resembling current, voltage and

electric resistance respectively. Thus, the pressure equations can be derived by mass

preservation principles at each of the compartment as given below.

dPsa
dt

=
1

Csa
·
(
ql −

Psa − Pac
Rs1

)
(3.30)

dPra
dt

=
1

Cra
·
(Psv − Pra

Rsv

− qr
)

(3.31)

dPpa
dt

=
1

Cpa
·
(
qr − Ppa − Ppv

Rpa

)
(3.32)

dPpv
dt

=
1

Cpv
·
(Ppa − Ppv

Rpa

− Ppv − Pla
Rpv

)
(3.33)

dPla
dt

=
1

Cla
·
(Ppv − Pla

Rpv

− ql
)

(3.34)
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Figure 3.5: A schematic of the 6 compartment model of the cardiovascular system.
Adopted from [43]

The subscripts sa, sv, pa, pv, la, ra represent systemic arteries, systemic veins, pul-

monary arteries, pulmonary veins, left and right atrium respectively. The pressure

in the systemic veins has been computed by considering that the volume in a com-

partment must be equal to the difference between the total blood volume(Vb) and

the remaining compartment volumes. Because blood vessels are elastic in nature, we

have unstressed volumes (Vu) and filling volumes (CcPc) and so we can write,

Psv =
1

Csv
· (Vb − Vu − CsaPsa − CpaPpa − CpvPpv − CraPra − ClaPla) (3.35)

Vu = Vusa + Vusv + Vupa + Vupv + Vura + Vula (3.36)

δ(t) is a sympathoinhibitory signal, with a gain Gδ and a time constant τδ, normally

equal to zero. The dynamics of this sympathoinhibitory signal is as follows,

dδ

dt
=

{
0, if Pla ≥ Plat
Gδ ·(Plat−Pla)−δ

τδ
, if Pla < Plat

}
(3.37)

The initial value of δ(t) is always zero and so we can assume that we know this state

before running the state estimation algorithm. There are some more expressions that

have to be specified to enable the user to compute the pressure dynamics. The cardiac

output is equal to the product of the stroke volume (SV ) and the cardiac frequency
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(f), therefore for the left (ql) and right (qr) ventricles we can write,

ql = SVl · f (3.38)

qr = SVr · f (3.39)

Frank-Starling mechanism says that stroke volume depends on the end diastolic

volume and therefore upon upstream atrial pressure [140]. A linear dependence is

used in this derivation. Furthermore, the stroke volume decreases if the downstream

atrial pressure rises above normal. To replicate this physiological cardiovascular phe-

nomenon, a square root dependence upon arterial pressure has been used [137]. Hence,

the stroke volumes from the left and the ventricles can be written as follows,

SVl = kl · (Pla − Pla0)/al (3.40)

SVr = kr · (Pra − Pra0)/ar (3.41)

If Psa ≤ Psan, then al = 1 and if Psa > Psan then al =
√
Psa/Psan. Similarly

for the right ventricle we can say, if Ppa ≤ Ppan, then ar = 1 and if Ppa > Ppan then

ar =
√
Ppa/Ppan, where kl, kr are the slopes of the stroke volume versus atrial pressure

relationships (or cardiac effectiveness) for the left and right heart respectively, Pla0,

Pra0 are the x-axis intercepts of the same relationships, the quantities al,ar describe

the effect of afterload on the stroke volume and the subscript ‘n’ denotes that a

physiological quantity is in its nominal or basal condition [140].

b. Baroflex regulation (3 MVs)

Based on our assumptions, the short term baroflex (pressure) regulation is primarily

due to the activity of two groups of baroreceptors namely, arterial (high pressure)

and cardiopulmonary (low pressure) baroreceptors. The mathematical equations for

describing the inherent control mechanisms for maintaining hemodynamic stability

(blood pressure) of the patient undergoing HD by adjusting cardiovascular system

states (Systemic resistance, heart period or heart rate, unstressed venous volume)

both during the sympathoexcitatory phase and the sympathoinhibitory phase have

been taken from the article [140]. From a systems engineering perpective, these three

cardiovascular states can be called as manipulated variables while blood pressure can

be called as the controlled variable. To get a good understanding, the mechanism of

system resistance manipulation is explained here. The afferent signals coming from

both the baroreceptors are weighted by their respective gain values and then inte-

grated at the level of the central nervous system into an efferent signal and then sent

54



out to adjust the systemic resistance value. The presence of physiological saturation

limits for the manipulated variables is brought in by assuming a sigmoidal character-

istic curve for the effector response and because of this, the low pressure and the high

pressure baroreceptors interact in a highly nonlinear way. Finally, a first order trans-

fer function is included to simulate the time required for this particular mechanism

to occur.

Figure 3.6: Block diagram for the control of systemic resistance. Adopted from [140]

The systemic resistance (Rs1) control can be represented by figure 3.6 as shown above

and the set of equations are as follows,

dRs1

dt
=
σR −Rs1

τR
(3.42)

σR =
Rs1max +Rs1min · exp(XR/KR)

1 + exp(XR/KR)
(3.43)

KR =
∆σR

4
(3.44)

XR = GaR · (Psa − Psan) +GcR · (Pra − Pran) (3.45)

Rs1min = σRn −∆σR/2 (3.46)

Rs1max = Rs1min + ∆σR · (1− δ(t)) · ε(t) (3.47)

In the above set of equations, τR is the time constant of the systemic resistance feed-

back mechanism, σR is the sigmoidal static characteristic, KR is a parameter which

determines the slope of the sigmoidal characteristic at its central poin, XR is a lin-

ear combination of pressure changes at the level of high pressure(arterial) and low

pressure(cardiopulmonary) baroreceptors, σRn is the central value of the sigmoidal

characteristic, ∆σR is the amplitude of the sigmoidal characteristic, GaR and GcR

are the maximum open loop gains of the arterial and cardiopulmonary barorecep-

tor mechanisms respectively, Rs1min is the lower threshold of the resistance control

baroreceptor mechanism and Rs1max is the upper threshold of the resistance control
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baroreceptor mechanism. The variable ε(t) is always maintained at 1 during a stan-

dard bicarbonate dialysis, which means it has no effect on the systemic resistance. In

our research work, only a standard bicarbonate dialysis is considered.

Heart period (T ) or the heart rate control can be represented with a set of equations

similar to the systemic resistance control as shown below,

dT

dt
=
σT − T
τT

(3.48)

σT =
Tmin + Tmax · exp(XT/KT )

1 + exp(XT/KT )
(3.49)

KT =
∆σT

4
(3.50)

XT = GaT · (Psa − Psan) +GcT · (Pra − Pran) (3.51)

Tmax = σTn + ∆σT/2 (3.52)

Tmin = Tmax −∆σT · (1− δ(t)) (3.53)

The control of venous capacity or systemic venous unstressed volume (Vusv) is repre-

sented by the following equations,

dVusv
dt

=
σV − Vusv

τV
(3.54)

σV =
Vusv min + Vusv max · exp(XV /KV )

1 + exp(XV /KV )
(3.55)

KV =
∆σV

4
(3.56)

XV = GaV · (Psa − Psan) +GcV · (Pra − Pran) (3.57)

Vusv max = σV n + ∆σV /2 (3.58)

Vusv min = Vusv max −∆σV · (1− δ(t)) (3.59)

During the sympathoinhibitory phase, the heart period and venous unstressed volume

were presumed to be driven to the upper saturation limit and the explanations of the

notations used are very similar to the systemic resistance control. These three reflex

mechanisms will help us get a reasonable replication of the actual cardiovascular reflex

mechanisms taking place in a human body.
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3.2.3 Hemodialyzer subsystem model

a. Simple model: Linear equations giving exit concentration

The mass flux (Js) of a solute can be computed by the equations given in ([122]), if the

dialysance of that solute (Dias) through the hemodialyzer membrane is known. This

will enable the computation of the solute concentrations at the exit of the hemodia-

lyzer at any given time instant.

Js = [Dias · (1−Quf/Qe,s) +Quf ] · Cex
s −Dias · (1−Quf/Qe,s) · Cd

s (3.60)

Qe,s = Qb · [Fp · (1−H) + Fr · γs ·RD
s ] (3.61)

Here, Cd
s is the concentration of a solute in dialysate, Qe,s is the effective blood flow

rate of solute (s) in the dialyzer, Fp and Fr are the fractions of plasma and RBCs

respectively, γs is the fraction of RBC water that participates in the transfer during

a single pass in the hemodialyzer, RD
s is the Donnan ratio of solute (s) and H is the

hematocrit. However, the dialysance of a solute is constant, only if the blood flow

rate, and dialysate flow rate and the membrane properties are held constant. In a

practical setting, the membrane for HD is chosen before hand, but the blood flow

rate and dialysate flow rate are varied continuously to achieve the desired levels of

treatment. So, the author’s assumption of constant dialysance [140] might not hold,

if one is interested in looking at the feedback control of blood and dialysate flow rates.

Figure 3.7: Concentration profile diagram for counter current flow of blood and
dialysate in a hemodialyzer

In figure 3.7, the direction of flow of blood and dialysate are considered to be in

counter-current fashion like in a standard hollow fibre dialyzer. For simplicity, let us

name the hemodialyzer inlet solute concentration of the solutes on the blood side as

CBi and the exit concentration after a single pass through the hemodialyzer as CBo.
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Similarly, the hemodialyzer inlet and exit solute concentration of the solutes on the

dialysate side are CDi and CDo respectively. It is clearly evident from figure 3.7, that

the toxins are transferred into the dialysate because of the concentration gradient and

so their concentration drops during a single pass. Quite interestingly, the dialysance

of a solute can be derived just based on flow rates (blood Qb and dialysate Qd) and

the membrane characteristics (K0A: Mass transfer coefficient times the surface area

of the membrane) using a log mean concentration difference approach as shown in

this author’s work [99] dedicated to designing and modelling a portable hemodialysis

system. The dialysance equations have been adopted from [99], and the readers

can look into the derivations if they are curious to understand the mathematical

fundamentals. The equation for the dialysance of a solute (Dias) is given below,

Dias = Qb ×
e
K0A

(
1−Qb

Qd

)
Qb − 1

e
K0A

(
1−Qb

Qd

)
Qb − Qb

Qd

(3.62)

Eq. (3.62) can be subsituted into Eq. (3.60), and this enables us to arrive at a control

relevant model of the hemodialyzer mass flux equation, where Qb, Qd and Cd
s can be

varied continuously to achieve treatment targets. The power of Eq. (3.62) lies in the

fact that the dialysance can be computed without the concentrations of solutes in

blood and dialysate.

b. Complex model: Partial differential equations giving spatio-temporal
concentration profile

If the reader is interested in studying the intricate mass transfer dynamics within a

hemodialyzer, the mathematical model should be derived in such a way which in-

cludes solute transfer, hemodialyzer design specifications, parameters of the hollow

fibres and the properties of the process and service fluids as done by these authors [16].

Although there are several geometries and flow configurations, the hemodialyzer is

considered to be of cylindrical geometry, having a lot of hollow semi permeable mem-

brane fibres within the cylindrical structure. This arrangement is widely used in

commercial hemodialyzers because of a low priming volume of blood while offering

a large surface area for bidirectional mass transfer. Pressure gradients develop on

both the blood and dialysate channels in a hollow fibre type hemodialyzer and local

convection becomes unavoidable even if the net zero filtration is achieved. Blood nor-

mally flows through the tube side (along z direction) and the dialysate fluid flows in a

direction opposite to blood (along −z direction) in the void space between the fibres,
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for higher mass transfer efficiency. A single hollow fibre of the hemodialyzer is shown

in figure 3.8. The authors start by writing down the continuity equation for a solute.

Continuity equation in cylindrical coordinates are utilized because the geometry of

the hemodialyzer is also cylindrical and one can obtain a natural easy representation

of the phenomena considering the nature of this problem. Additionally, both diffusion

(Fick’s law) and convection (Darcy’s law) equations are plugged into the derivations.

(a) Hollow fibre dialyzer (Perfusate
= Blood)

(b) A single hollow fibre

Figure 3.8: Represenation of hollow filber hemodialyzer used in HD. Taken from [16]

The final equations for computing the spatio temporal concentrations of solutes in

the hemodialyzer are presented here, but the reader is encouraged to look into the

fundamental intermediate steps in derivations [16] to get a clear picture.

∂CsB(t, z)

∂t
= − 1

(1−H)

∂(CszB.ub)

∂z
− 2.CsB
Rm(1−H)

[
Ds

d
+ fs

]
+

2.CsD.Ds

Rm(1−H)d
(3.63)

∂CsD(t, z)

∂t
=

R2

(R2 −R2
m.N)

∂(CszD.ud)

∂z
+

2.CsB.R

R2 −R2
m.N

[
Ds

d
+ fs

]
− 2.CsD.R.Ds

(R2 −R2
m.N)d

(3.64)

In the equations given above, CsB is the concentration of solute (s) in Blood, CsD is

the concentration of solute (s) in Dialysate, H is the hematocrit, Rm is the radius

of the fibre, R is the radius of the dialyzer, Ds is the diffusivity coefficient of so-

lute (s) through the membrane, d is the membrane thickness, N is the total number

of fibres, fs is the filtration rate of solute (s), ub is the velocity of blood and ud is

the velocity of dialysate. These simultaneous partial differential equations could be

solved using the method of characteristics, but we resorted to leverage the power of
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a computer. To solve this problem numerically using the easily implementable finite

difference method, the first step would be to discretize these equations along one vari-

able (z) so that they become a set of ordinary differential equations with respect to

the other variable (t). There are different discretization schemes (forward, backward,

central) available in literature [26], but we are most interested in putting all these

equations in feedback control application and so we resorted to a backward discretiza-

tion scheme which skips the requirement of future state values. Therefore, the above

set of equations were discretized along the spatial direction using backward difference

approximation formula to convert them into a set of simultaneous ordinary differen-

tial equations with time as the independent variable. Finally, the discretized partial

differential equations were solved numerically for predicting the exit concentrations

of different solutes in the hemodialyzer by supplying the necessary initial conditions

and inlet conditions (z = 0 and z = L) at every time instant. A visual representation

of the discretization along z direction is presented in figure 3.9. Discretization along

z direction results in the concept of imaginary stages in the hemodialyzer, and any-

thing leaving a stage (n) takes the superscipt (n). Depending on the number of stages

in the hemodialyzer, the number of ordinary differential equations on the blood and

dialysate side (2 ODEs for 1 stage for 1 solute) could be easily determined.

Figure 3.9: Representation of stages : Discretization along z direction

The discretized simultaneous ordinary differential equations are given below,

dCn
sB

dt
= − ub

(1−H)

[
Cn
sB − Cn−1

sB

δz

]
− 2.Cn

sB

Rm(1−H)

[
Ds

d
+
fs
nz

]
+

2.Cn
sD.Ds

Rm(1−H)d
(3.65)

dCn
sD

dt
=

udR
2

(R2 −R2
m.N)

[
Cn+1
sD − Cn

sD

δz

]
+

2.Cn
sB.R

R2 −R2
m.N

[
Ds

d
+
fs
nz

]
− 2.Cn

sD.R.Ds

(R2 −R2
m.N)d

(3.66)

Here, nz is the total number of stages (all other notations explained previously).
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3.2.4 Model simulation and validation

In this section, the simulation results of the HD system with both the simple and the

complex model of the hemodialyzer will be presented to the reader. The individual

model blocks representing each of the HD subsystems have been written down as

function blocks in python for execution. Then the equations are solved together for

the set initial conditions for the specified simulation time. Provisions have been made

to numerically integrated the ordinary differential equations with a custom written

‘Runge Kutta fourth order (RK4)’ block or ‘odeint’ imported from the Scientific

Python (SciPy) library with python default tolerance settings. Some blocks with red

coloured text will be discussed in detail in the upcoming chapters. Figure 3.10, gives

the reader a crude idea of how information flows in the python code for solving the

simultaneous ordinary differential equations of the HD system.

Figure 3.10: Python work flow

a. Simulation results: HD system with simple model of hemodialyzer

CKD patients have been classified into different classes for the purpose of this simula-

tion. The different classes of patients include ones with good hemodynamic stability

(Class 1), ones which exhibit mild hypotension (Class 2), and ones with severe clini-

cal complications (Class 3) during HD treatment. The model was able to explain the

hemodynamics of all these classes of patients which the clinical practitioner might
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encounter in a HD clinical setting. The simulations were carried out for a total treat-

ment time of 4 hours, where the ideal 70 kg patient lost 3 kilograms of overloaded

fluid and the results were compared with previously available clinical data (marked

with red crosses in figure 3.12, 3.13) from literature [14], [32]. The values of all other

parameters of the HD system have been taken from literature [140].

Figure 3.11: Simulated hemodynamic variables of Class 1 patient: No hypotension

Percentage changes of the most important hemodynamic variables namely, Mean Ar-

terial Pressure (MAP), Heart Rate (HR), Total Systemic Resistance (TSR), Cardiac

Output (CO), are presented for the 3 patient classes. In figure 3.11, one can see that

a Class 1 patient can handle the removal of 3 litres of fluid within the treatment

time without a considerable change in MAP or HR. Good hemodynamic stability

is because of vasoconstriction (increasing TSR) and CO falls significantly because

of ultrafiltration in HD. Figure 3.12 shows that for Class 2 patients, there is a re-

duction in MAP and an increase in HR in the second half of the treatment as TSR

reaches saturation midway, leading to a mild hypotension. Normally, ESRD patients

(Class 3) are characterized by poor hemodynamic stability and vascular refilling be-

cause of uremia, resulting in the sympathoinhibitory phase and in the exhaustion

of both baroflex mechanisms (high pressure and low pressure) towards the end of

HD. Figure 3.13 replicates this phenomenon well and one can see a drastic drop in all
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hemodynamic variables leading to syncope (fainting), for the same treatment settings.

Figure 3.12: Simulated hemodynamic variables of Class 2 patient: Mild hypotension

Figure 3.13: Simulated hemodynamic variables of Class 3 patient: Severe hypotension
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b. Simulation results: HD system with complex model of hemodialyzer

In this section, the efficacy of the PDE mass transfer model of the hemodialyzer shall

be tested. The hemodialyzer PDE equations were solved repeatedly for the same

initial and boundary conditions but by changing the number of stages (nz) at each

trial. It is evident from figure 3.14 that, if the hemodialyzer is split into 15 or more

stages, the Root Mean Square Errors (RMSE) of the solute concentration predictions

on the blood and dialysate side were almost zero. Therefore, 15 (computationally

effective but accurate) was set as the number of discretization stages.

(a) Blood side (b) Dialysate side

Figure 3.14: Determination of number of stages

Then the PDE model of hemodialyzer was plugged into Eq. (3.10) and slight modifi-

cations were done to the structure of Eq. (3.10) (following [1]). Then the simulation

results were compared with raw clinical data and the model from Ziolko’s work [158].

(a) Urea (b) Creatinine

Figure 3.15: Clinical vs Model predicted results - Patient concentration profile
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The simulation settings and the parameter values of the hemodialyzer are outlined in

table 3.2 and they were adopted from literature [16], [158].

Table 3.2: Simulation settings for a HD system with the complex model of hemodia-
lyzer

S.No Symbol Name Range/Value Unit

1 DW Dry weight 58 kg
2 Vtot Total fluid distribution 0.03364 m3

3 Vex Extracellular volume 0.011213 m3

3 Vic Intracellular volume 0.022426 m3

4 Qb Blood flow rate 250 ml/min
5 Qd Dialysate flow rate 500 ml/min
6 Quf Ultrafiltration rate 0 - 35 ml/min
7 Gs Generation rate of solute(s) 0 mmol/(Litre ·min)
8 Rgas Universal gas constant 45 · 10−6 L · atm/(mol ·K)
9 Tabs Absolute temperature 298 K
10 H Hematocrit 0.44
11 Rm Radius of fibre 45 · 10−3 m
12 R Radius of dialyzer 220 · 10−6 m
13 Durea Diffusivity coefficient of urea 10−11 m2/sec
14 Dcreatinine Diffusivity coefficient of creatinine 0.365 ·Durea

s m2/sec
15 d Membrane thickness 8 · 10−6 m
16 N Number of fibres 12000
17 nz Number of stages 15

As it can be observed from figure 3.15, our HD system model with complex model of

the hemodialyzer was able to satisfactorily explain the clinical data and it is at par

with Ziolko’s model for both urea and creatinine. Error bars were drawn with Ab-

solute Percentage Errors (APE) in successive clinical measurements (at the primary

tube) of urea (APE = 7) and creatinine(APE = 11) [73]. Both the models were well

within errors bars with our model (RMSE = 25.17) slightly performing better than

Ziolko’s model (RMSE = 34.36) for creatinine. Our goal here was not to choose a su-

perior model but to showcase to the reader that the complex HD system model could

also replicate actual clinical data with acceptable levels of accuracy. The spatiotem-

poral concentration profile distribution of urea and creatinine (figure 3.16, 3.17) can

be obtained by plotting the concentrations at all stages across the hemodialyzer in

three-dimensional plots. During HD, blood enters at stage 1 always and loses toxins

to the dialysate before leaving the dialyzer at stage 15. It can be observed that the

dialysate always enters at stage 15 with zero concentrations of toxins and picks up

toxins from the blood along the length of the hemodialyzer. One other factor which
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could not be ignored in the plots is the dropping concentration gradient which drives

the mass transfer process. This is because of the continuous purification of blood

during HD thereby resulting in a fall in the concentration of toxins in the blood and

also the total concentration gradient (CBi − CDi).

(a) Blood side (b) Dialysate side

Figure 3.16: Spatiotemporal concentration profile of urea - Hemodialyzer concentra-
tion profile

(a) Blood side (b) Dialysate side

Figure 3.17: Spatiotemporal concentration profile of creatinine - Hemodialyzer con-
centration profile

c. Leveraging the power of the HD system model: Does UFR play an
important role in decreasing the concentration of solutes?

During HD, hemodynamic stability is disturbed because overloaded fluid is removed

at a much faster rate than the native human kidneys. The rate of vascular refilling
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is often not able to compensate the swift decrease in body fluids by ultra filtra-

tion, thus resulting in hypovolemia. If the patient has a severe hypovolemic episode,

treatment is stopped temporarily and this often results in inadequate HD. Several

articles show the impact of profiling of UFR for better cardiovascular stability of the

patients undergoing HD. To understand the significance of UFR in the final blood

concentration of urea, it was assumed that 3 litres of fluid were removed from the

patient approximately following different profiles (zero, constant, linearly decreasing,

exponentially decreasing, step, pulse). It was noted that the final concentration is

more or less closer to each other irrespective of the UFR profile chosen. The slight

differences are due to manual errors in UFR profile design. By removing fluid from

the patient, both mass and volume are removed, hence the concentration (ratio of

mass and volume) remains the same while the total mass of the solute in the system

decreases. The simple model-based simulation results (figure 3.18) confirm that the

change in extracellular solute concentration is primarily because of diffusion across

the semipermeable membrane and not because of UFR. So UFR should be seen as

a variable which is free to be manipulated for achieving good weight management in

HD.

(a) Final concentration plot (b) Extracellular volume plot

Figure 3.18: Comparison of UFR profiles

The above example was introduced to the reader to appreciate the benefits of having

a mathematical model, based on first principles, of the physiological process (HD in

our case) in hand. The user could answer some research questions and get a good

understanding without in-vivo clinical experiments. Even from a systems engineering

perspective, only a researcher with an indepth knowledge of the underlying phenom-

ena can design better strategies to enhance the efficiency of a process.
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3.2.5 Summary of the HD system model

There are several models in literature for representing the different subsystems in a

HD system, but the work of Ursino and Innocenti [137] is the first attempt to put all

HD subsystem dynamics (solute kinetics, fluid exchange, cardiovascular dynamics and

mass transport in a hemodialyzer) equations in one single framework. Although this

model has few limitations as outlined in [110], it offers the researcher an advantage to

study the cardiovascular response (MAP, HP) of different classes of patients to differ-

ent HD treatment settings. Our main objective in this research work is to build a com-

prehensive framework for HD treatment control, optimization and individualisation.

As a first step, we plugged in the equation for dialysance based on flow rates of the pro-

cess streams into the simple model, to make it control relevant. The ordinary differen-

tial equations (3.9), (3.10), (3.17), (3.18), (3.19), (3.30), (3.31), (3.32), (3.33), (3.34),

(3.37), (3.42), (3.48), (3.54) and their necessary algebraic equations constitute the

HD system model used in the coming chapters. Here, the algebraic equations can

be substituted into the ODEs and so the HD system model is a Differential Alge-

braic Equations (DAE) system of index 0. A brief summary of the HD system model

equations is shown in figure 3.19.

Figure 3.19: Summary of the chosen HD system mathematical model
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If one opts to use the PDE equations in the hemodialyzer instead of the simple model,

there will be 2 ODEs (one for blood side and one for dialysate side) for 1 solute for

each stage. We have split the hemodialyzer into 15 stages and we need to study

the dynamics of 3 solutes. Therefore, we will end up with 2 × 3 × 15 = 90 extra

ODEs just for the hemodialyzer alone. This might come as addition burden during

state estimation and feedback control. Furthermore, only the exit concentrations are

necessary to compute the adequacy of the HD treatment. Thus, only the simple

model with 18 states will be considered for the future course of this research work.

3.3 Summary

In the beginning of this chapter, the guide to kinetic modelling as developed by the

first few researchers who attempted to model the HD process kinetics was presented

along with an example derivation and analytical solution of Single Pool Fixed Volume

(SPFV) model. With the needs of the HD investigators and clinicians growing, the

models grew more and more complex and getting an analytical solution with the help

of a pen and paper would be cumbersome and resorting to numerical integration with

the help of a computer would be the ideal choice. After getting into the context

of modelling, the reader was introduced to all the fundamental mathematical model

equations of different subsystems (Patient, hemodialyzer) of the HD system used

in the course of this research work. It was proven by simulations that the chosen

HD system model can represent the hemodynamics of different classes of patients.

Furthermore, partial differential equations representing the mass transfer phenomena

in a hemodialyzer were also explored and the performance was tested against actual

clinical data from literature.
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Chapter 4

Simultaneous state and parameter
estimation of the hemodialysis
system

Across the globe, every individual differs from every other individual and this bio-

variability feature makes us the most unique among several millions of species which

dwell on planet Earth. Although biovaribility is speculated to be because of genetic

plasticity, it is often quite interesting to note that even two identical twins behave

completely different in different scenarios. The difference is due to the fact that biolog-

ical processes are inherently variable. Technically, HD treatment is a biotechnological

process which disturbs the patient’s homeostasis in a short period of time with an

objective of reaching treatment targets. Therefore, in HD treatments too each patient

can behave differently to the same HD treatment setting. These complex variations

can be quantified only with the help of a mathematical model. We have adopted a

comprehensive mathematical model from literature to represent the HD system and

that model has the capacity to replicate the most important hemodynamic variables

of different classes of patients routinely encountered in a HD treatment centre. Al-

though some test simulations for different classes of patients where shown in chapter 2,

the model was simulated by making meaningful changes in physiological parameters

instead of trying to find the best fit (by minimizing an error criterion function) be-

tween the clinical data and model results [140]. This chapter kicks off by explaining

the initial attempts taken by the author to address the model individualization prob-

lem. Then later in this chapter, a framework for the simultaneous estimation of states

and parameters based on the HD system model will be discussed in detail and the

inferences made by the author are backed by extensive simulation results.

70



4.1 Initial attempts towards building an individu-

alized virtual patient simulator

Our goal in this chapter was to individualize the HD system model (presented in

chapter 2) which was adopted from literature, and can be used to represent the

hemodynamics of different classes of patients by changing a few physiological param-

eter values. In the context of modelling, each patient’s characteristics and behaviour

can be represented by a unique set of parameter values pertaining to that particular

patient. There are some sets of nominal parameter values given in literature [51], but

every patient might not fit perfectly into the nominal value range and deviation from

the nominal behaviour is not totally unavoidable. So to make this HD system model

more user friendly and as a tool for optimal control of HD, an algorithm for iden-

tifying the state and parameter values of the patient based on clinical measurement

data has to be devised. To achieve our goal, all variables of the HD system model are

categorized into different groups as shown in table 4.1.

Table 4.1: Summary of model variables of the chosen HD system model with a simple
model of the hemodialyzer

S.No Description Notation List

1 States x
Vpl, Vis, Vic, M

ex
U , M ic

U , M ex
Na, M

ic
Na, M

ex
K ,

M ic
K , Psa, Pra, Ppa, Ppv, Pla, δ, Rs1, T , Vusv

2 Manipulated variables u Quf , C
D
Na, Qb, Qd, Qinf , C inf

Na

3 Parameters - Patient specific θp

Csa, Csv, Cpa, Cpv, Cra, Cla, Rs2, Rs3, Rsv,
Rpa, Rpv, La, Lv, H, Vusa, Vupa, Vupv, Vura,
Vula, kl, kr, Pla0, Pra0, M ic

eq, M
ex
eq , Cpln

p , C isn
p ,

Eis, Pisn, ∆σR, τR, GaR, GcR, ∆σT , τT , GaT ,
GcT , ∆σV , τV , GaV , GcV , Plat, σRn, σTn, σV n

4 Parameters - Known θk

Kc
U , Kc

Na, K
c
K , βU , βNa, βK , Kf , C

inf
U , C inf

K ,
CD
U , CD

K , Fp, Fr, γU , γNa, γK , RD
U , RD

Na, R
D
K ,

τδ, Gδ, τε, Gε

A first glance at table 4.1 will reveal that the HD system model has 18 state variables

(Nx = 18). The reader can look into chapter 2, to get an understanding of how

the ordinary differential equation representing each state variable was developed.

Furthermore, the author has identified 42 patient-specific parameters (Nθp = 42,

excluding last three for proposed approach) which characterize an individual patient.

The classification and grouping of patient-specific and known parameters shown here
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is not unique. However, all parameters pertaining to the cardiovascular system were

grouped into patient-specific parameters as these values differ for every individual.

The list of parameters which describe the intercompartmental mass transfer dynamics

of solutes were assumed to be known apriori and grouped under known parameters

(θk). These parameters were fixed at their nominal values taken from literature. A

dynamic system is said to be observable, if the initial states of the system can be

uniquely determined from the knowledge of the available measurements over a finite

time interval. This holds well for a linear time invariant system. But in our case,

we have a nonlinear model to represent the HD system. Moreover, individualisation

of the model can occur only if we estimate both the states and the patient-specific

parameters. Firstly, we started by testing the observability of the system and then

we examined if more variables (patient-specific parameters) can be estimated along

with the states of the system with the available clinical measurement data.

Initially for testing the system observability, an observability matrix as described

in Eq. (2.6) was built by using the linearized system matrices. The observability

matrix built was severely ill-conditioned and the rank computation of the matrix

ran into numerical issues (in MATLAB and Python). This was due to the fact

that many entries in the observability matrix were below the numerical machine

tolerance values and so the algorithms rounded off the entries to zero when the entries

themselves are not perfect zeroes. In addition to that, the results might not be reliable

because of the computation of higher powers of the ill-conditioned system matrix (A)

while constructing the observability matrix. This comes as a serious consequence and

resulted in a reduced rank of 2 for the observability matrix always. Increasing the

number of measurements had no impact on the system observability.

(a) One measurement is available (b) Two measurements are available

Figure 4.1: Observability analysis of the HD system using PBH test
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Then, we resorted to the Popov-Belevitch-Hautus (PBH) observability theory, which

was found to be more numerically robust than the Kalman’s observability matrix

rank testing condition for our HD system model as it skipped the higher order matrix

computation step. Since the HD system equations are nonlinear, the model should

be linearized before PBH test could be applied. In literature, it is recommended

that instead of linearizing the system at a single point, it should be linearized at

different points along a typical treatment setting or operating trajectory [22]. In our

case, the total number of states of the HD system model are 18. During PBH test,

for the system to be observable, each of the nodes or eigen values of the linearized

system matrix (A(t)) should have a rank of 18. The results from the PBH test are

summarized below.

• Availability of one measurement (Psa only): We observe in figure 4.1(a) that the

rank of some of the eigen values fluctuates between 17 and 18 during simulation

time and so some of the states of the system are unobservable. This means that

all states of the system cannot be recovered from just one measurement in finite

time.

• Availability of two measurements (Psa, T ): We see in figure 4.1(b) that the

rank of all eigen values or nodes of the system are 18 during simulation time

and so the system is observable. This means that all states of the system can

be recovered from two measurements in finite time.

For any two measurements chosen from the set of 18 states, the system was observable.

However, with just one measurement, the system was unobservable. Mean Arterial

Pressure (MAP) and Heart Period (HP) or Heart Rate (HR) are two non-invasive

clinical measurements which are generally available during HD treatments and so

they were considered as available measurements for our analysis. Other states like

the extracellular concentrations of urea, sodium and potassium could be considered

as measurements but they are only available by blood sampling and the frequency of

these states being measured is aberrant. Furthermore, these measurements are not

available in a continuous fashion in clinical settings and for state estimation we need

a continuous supply of sensor information. We understood that we needed atleast

two measurements to estimate the initial states of the HD system model uniquely

from measurement data, and it would be much better if the measurements were

non-invasive. Although PBH test might have emerged to be a more numerically

robust approach than the Kalman test condition to check the observability of our

HD system, we designed a nonlinear state estimator (Extended Kalman Filter) to
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estimate the states based on two measurements (MAP and HP) and verified the

system observability results. If the readers are curious to skim through the Extended

Kalman filter (EKF) results, they can quickly jump to chapter 4.

In the most practical scenario, some of the initial states of the patient and the patient-

specific parameters are unknown. Hence, one has to estimate both the initial states

and parameters simultaneously to identify the individualized virtual patient simu-

lator if we do not have any blood sampling results in hand before HD treatment.

As we know that our original system is observable if we have two clinical measure-

ments (MAP and HP), we augmented the state vector with parameters (θp) to be

estimated. For consistent estimation, the observability of the augmented system has

to be ensured. We saw that the system was becoming unobservable when a parameter

is added as an additional state as depicted in figure 4.2(a) by the rank fluctuations

between 18 and 19 for some of the eigen values. The total number of state variables

will be 19 because of augmentation, and the first sensitive parameter according to

orthogonalization algorithm was the newly augmented state. The system could be

made observable again, by increasing the number of measurements to three. Then,

when the second sensitive parameter was added, four measurements were needed to

make the system observable. This trend (typical linear system behaviour) continued

for every new augmented state and the practical limitation now would be measuring

the number of outputs required to make the system observable. The three measure-

ments considered in figure 4.2(b) were plasma volume (Vpl), MAP (Psa) and HP (T ).

Vpl cannot be obtained directly, but it can be obtained by measuring the hematocrit

level at the start of dialysis and at any particular time during HD.

(a) Two measurements are available (b) Three measurements are available

Figure 4.2: Observability analysis using PBH test for the augmented system with all
states and the first sensitive parameter
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Then a simulation study was conducted to check if the observations from the PBH test

were accurate. Initially, we started with one augmented state and at every trail one

additional parameter was added as an augmented state. An initial offset of 5% was

added to every parameter (augmented state) and all the original states were initialized

with a 3% offset. Based on the understanding we had from PBH test, we regarded that

the user will be only able to estimate one extra parameter in addition to the original

states of the HD system from three measurements. To our surprise, we were able to

estimate more parameters than suggested by the PBH test. The results were the same,

even in the case of noiseless and noisy measurements. The estimation problem was

formulated as a nonlinear least squares problem, and the solution trajectory values of

the augmented states at every iteration of the optimization solver for a 3 parameter

case are shown in figure 4.3. The blue solid lines indicate the upper and lower bounds

of the augmented states. We observe that all the augmented states converge to the

true values before the end of the simulation.

(a) First augmented state (σTn) (b) Second augmented state (σV n)

(c) Third augmented state (Pra0)

Figure 4.3: Estimation of top three sensitive parameters using three measurements
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The simulation results cannot be well explained by PBH system observability test,

which suggested that one could only estimate one extra parameter along with the

states from 3 measurements and so we resorted to other modified nonlinear system

observability tests in our proposed approach, as elaborated in the next section. Also

in clinical practice, the number of non-invasive measurements are scarce and the

number of data points are limited and so only MAP and HP are considered as avail-

able measurements in the user’s hand in the upcoming sections in chapter 3, and in

chapter 4.

4.2 Proposed method

In this section, we propose a systematic procedure that can be used for the iden-

tification of the individualised patient model while ensuring that the entire system

under consideration is theoretically observable. In practice, it would be hard for the

modeller to determine the accurate values of the states and parameters of the HD

system without any experimental analysis, and many of the states and parameters

cannot be measured directly. We see that the original HD system is observable with

just two measurements (MAP and HP) and this signifies that the original states can

be recovered. However, we were not able to theoretically justify and quantify the

number of parameters which could be estimated along with the original states of the

HD system with the aid of PBH test. In our proposed approach, we aim to esti-

mate the patient-specific parameters by augmenting them as additional states of the

system [145]. It is mandatory to ensure that the newly augmented states are also

observable.

Our proposed approach (figure 4.4) works towards checking the observability of the

augmented system through sensitivity analysis followed by singular value decompo-

sition. This enables the construction of the sensitivity matrix which is an equivalent

form of the system observability matrix. Rank deficiency is examined by SVD anal-

ysis instead of using the rank computation algorithm in Python, which runs into

numerical tolerance issues. In case of rank deficiency, the modeller has to identify

the list of observable variables, thereby eliminating the list of unobservable variables

by a forward sequential variable selection algorithm. The sequential variable selec-

tion method used in our approach is ‘orthogonalization’ and it takes into account the

overall magnitude of the local sensitivities and the possible correlations between the

original and the newly augmented states of the HD system. The orthogonalization

method ranks the variables in the order of their importance. The cut-off value for the
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orthogonalization algorithm is not based on a rigorous approach, instead the cut-off

value is given in such a way which will ensure the selection of the largest possible

observable subset of variables from the total list of variables. Our method gives the

user a more robust estimability potential based classification of model variables and

provides more insights into the HD system model, the quality of the available clinical

data and measurements. During this method, the user will arrive at the largest subset

of observable variables that could be estimated accurately from the available mea-

surement data and the user will find if additional data collection (new data collection

experiments or additional sensor information) is necessary to make the variables more

estimable. Our ultimate goal is to use a scientific approach towards finding the largest

optimal subset of observable model variables that guarantee full model reliability.

Figure 4.4: Proposed method for simultaneous state and parameter estimation

The proposed observability analysis framework aims at identifying the optimal vari-

ables of model variables from synthetic clinical data through a nonlinear optimization

algorithm. For the steps outlined in the observability analysis framework, the user

will need the vector of nominal values of the model variables, commonly assigned with

the aid of prior information about the process under consideration. If the user does

not have access to the nominal values of the model variables, then the nominal values

of all variables can be simply obtained by running an optimization algorithm before

starting the observability analysis [42]. Although there is a vast array of approaches

for identifying the parameter values of a complex chemical process in literature, non-
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linear optimization techniques have been widely employed owing to their efficiency

and accuracy, [75], [113]. After analyzing the observability of the model, we have

employed a Sequential Coordinate Block Descent (SCBD) framework for the nonlin-

ear least squares estimation of decision variables. The total number of variables were

split into blocks, thereby reducing the large optimization problem into a sequence

of subroutines that can be run sequentially to arrive at the optimal solutions. As a

consequence of SCBD, the variable importance ranking by orthogonalization can be

infused into the coordinate selection rule, eliminating the need to identify the thresh-

old values or cut-off values for determining the number of decision variables from the

largest optimal subset of variables. The coordinate blocks will be filled with the top

sensitive and least correlated variables first, and the last coordinate block will have

the least sensitive variables. Finally, the estimated model is put to test. If the user is

satisfied with the results, the method ends. However, if the user is not satisfied with

the model prediction results, the observability analysis framework is repeated with

the estimated values of variables and the entire process is repeated until the model

prediction results are user satisfactory. A flow diagram of the proposed procedure

is shown in figure 4.4. The key steps involved in this procedure for the practical

implementation of the proposed method will be elaborated next.

4.2.1 Augmentation of the HD system model

We form an augmented HD system model by including the list of patient-specific pa-

rameters (θp) as additional states of the system (exactly in the same order mentioned

in table 4.1) with zero dynamics, thereby forming a new augmented state vector.

There arises some practical difficulties with this kind of system augmentation. The

augmented system model becomes more nonlinear. This resulted in the under perfor-

mance of PBH test and showed the deviation from a typical linear system as pointed

out earlier. The last three θp parameters denoted by σRn, σTn and σV n are assumed

to be equal to the initial state values of Rs1, T , Vusv respectively and so they were

removed from θp list. Now, our HD system model has 18 original states and 42

patient-specific parameters. After augmentation, the new state vector (Xa) will be of

size 60 (Xa = [x θp]
T ∈ RNx+Nθp ∈ RNXa ∈ R60).

4.2.2 Nominal values of variables

Nominal values of all variables (Xa, θk) for a 70 kilogram patient belonging to any

particular class (Class 1: Healthy, Class 2: Mild IDH and Class 3: Severe IDH) can

be adopted from literature [110], [140]. The nominal values of patient variables of
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any other body weight can be generated by weight scaling [140]. The list of model

variables for which the nominal values can be generated by weight scaling includes the

parameters associated with vascular compliances, elastance and unstressed volumes.

For model applications, where the nominal values of variables are not available in

literature, they can be estimated utilizing available experimental data [42].

4.2.3 Observability analysis framework

Once the user has identified the nominal values of all variables, observability analysis

on the HD system model is commenced. Our model is nonlinear and the augmen-

tation of the patient-specific parameters as extra states increases the nonlinearity

further because of the position of the patient-specific parameters in the mathematical

structure of the original HD system ODE equations. The nonlinear control theories

were understood satisfactorily only in the late 20th century after the rise of compu-

tational power and resources. Generally, nonlinear system observability test includes

the computation of Lie-derivatives and Lie-brackets. This step often puts the com-

puting resources to a toss and is very cumbersome, occupying a huge amount of

memory. We resort to a modified observability test based on sensitivity analysis as

this approach has been found to answer the nonlinear biological system observability

in literature [133], with a fair degree of accuracy. The minor details involved in each

of the substeps of the observability analysis framework are outlined next.

a. Sensitivity analysis

The sensitivity equations (Eq. (2.9) to Eq. (2.12)) should be solved in parallel to the

original HD system equations. There will be one sensitivity equation for each state of

the augmented system (as shown in Eq. (2.10)), and the total number of sensitivity

equations will be equal to NXa . Then, the sensitivity matrix is constructed. The

sensitivity matrix can be thought of as a series of snapshot entries of the sensitivity

dynamics that have been stacked vertically for each time instant [133]. In our case,

we assumed that we have two clinical measurements (MAP and HP) in hand. So

at each time instant, there will two rows of sensitivity dynamics entries, which each

row corresponding to one measurement. To scale this approach well for a system like

ours with a large number of variables, one has to ensure very accurate computation

of the original model and sensitivity ODE equations leading to the construction of

a numerically accurate and precise sensitivity matrix thereby minimizing potential

errors in the computation of the singular values in the next step. To achieve this,

the model was formulated in CasADi framework [4] for the accurate computation of
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Jacobians and the numerical integration of all ODEs is done using ‘odeint’ imported

from the Scientific Python (SciPy) library with the lowest possible absolute (atol =

3× 10−14) and relative (rtol = 3× 10−14) tolerances for maximum accuracy. Finally,

the constructed sensitivity matrix is scaled as outlined in Eq. (2.14) and used for

further analysis.

b. SVD analysis

Usually for a nonlinear system, the conditioning number of the sensitivity matrix

might be very high making it very hard to accurately compute the rank of the matrix.

During the analysis of Patient 4’s (a typical ESRD patient) data in table 4.4, the

conditioning number of the sensitivity matrix was 1.2 × 1016. The steps involved in

the detection of rank deficiency are given below.

• Locating zero singular values is an important part of the process of finding the

observability [133]. Presence of any potential zero singular values indicate the

lack of observability.

• Plot the observability signature graph.

– Plot singular values in log scale. A drop of 3.5 decibels or higher on log

scale indicates the presence of singular values that can be considered to be

a zero.

– Plot the right singular vectors corresponding to the identified potential

zero singular values.

The observability signature graph will help the user identify the total number of non

zero singular values, which can be taken as the rank of the sensitivity matrix. Plotting

the right singular vectors corresponding to the potential zero singular values will help

the user to get an understanding of the null space of the sensitivity matrix.

c. Orthogonalization

For our HD system model, there are 60 variables to be estimated but we have only

two measurements. One of the goals of this approach is to identify the largest subset

of uncorrelated variables that can be estimated from the two available clinical mea-

surements. In this work, the author resorts to orthogonalization algorithm, which is

found to be superior to the SVD null space detection [123], for the forward selection

of all the observable variables in a sequential manner. The scaled sensitivity matrix is
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fed to this algorithm (as shown in figure 4.7) and the set number of iterations of the

orthogonalization algorithm is equal to the number of non zero singular values from

the previous step, but the algorithm could exit if other terminating conditions are

satisfied. The Euclidean norm of a column indicates the degree of sensitivity, and the

extent of linear dependence between two columns indicates the similarity of the effects

of model variables [75]. At the very first step, the column with the highest 2 norm (as

2 norm is not sensitive to the direction of change) value from the scaled sensitivity

matrix (corresponding to the most sensitive Xa) is selected and then an orthogonal

projection is done to remove the effect of the selected column and a residual matrix is

obtained. From the second iteration to algorithm termination, the column selection

based on highest two norm is done on the residual matrix.

Figure 4.5: Orthogonalization method work flow

The cut-off value prescribed for the orthogonalization is 1× 10−5. The significance of

setting a cut-off value is to break the algorithm if the highest two norm value of the

remaining columns is lesser than the supplied cut-off value. The cut-off is set based on

the nature of the system model with different authors using different cut-off values for

their systems [85], [154]. In our work, the cut off value was set to ensure the selection

of maximum number of observable variables from the total list of variables in the

orthogonalization routine. The subset of variables returned by the orthogonalization

algorithm shall become the decision variable set in the next optimization step.
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4.2.4 Optimization problem formulation for simultaneous es-
timation of states and parameters

To carry out the estimation of variables, a nonlinear least squares problem was for-

mulated. In the nonlinear least squares problem shown here, we have a model and

actual (or synthetic) clinical measurement data points (MAP and HP). The idea is to

run the model with different values of the decision variables to arrive at the optimal

values of those variables which produces the least error of prediction. The prediction

error is the difference between the actual (or synthetic) measurements and the model

predicted values. The objective is to minimize the sum of squared prediction errors

for both the measurements. The decision variables includes the set of states and the

parameters of the HD system model, which are deemed to be observable following

the results of the proposed observability analysis framework. All the other variables

which turn out to be unobservable, are removed from the decision variable set and

are fixed at their nominal values from literature. The mathematical description of

the nonlinear least squares problem, for our application, is shown below.

min
D

J =
1

2

t∑
i=1

(ymi − ˆymi)
2 ∀m = 1, 2, ..., Ny (4.1)

st.
˙̂
Xa(t) = f(X̂a(t), u(t), θk(t)) (4.2)

ŷ(t) = h(X̂a(t), u(t), θk(t)) (4.3)

X̂c
a = ˆXnom

a ∀c /∈ {Ō} (4.4)

D = {X̂r
a} ∀r ∈ {Ō} (4.5)

LB(X̂r
a) ≤ X̂r

a ≤ UB(X̂r
a) (4.6)

Table 4.2: Description of notations involved in the optimization problem formulation

S.No Notation Description

1 ym True output value
2 ŷ Model predicted output value
3 t Total number of measurements
4 D Set of all decision variables
5 θk Constant parameters of the HD system model
6 Ō A set containing the orthogonalization rank index
7 nom Nominal value of a variable

8 LB(X̂r
a) Lower Bound of a decision variable

9 UB(X̂r
a) Upper Bound of a decision variable
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a. Analysis of convexity

Norms are convex functions and the square of a norm is also a convex function.

In general, a least squares problem is convex and it has a unique solution if the

constraints are all convex too. But in the case of a HD system model, the constraints

are non linear and non convex because the model itself appears in the constraints.

Because of non convexity, one cannot find the global optimal solutions easily and

one has to resort to global optimization algorithms, which are computationally very

demanding, to find the true solutions for large scale problems. The initial guess given

to kick start the optimization problem also affects the solution. In our case, the

initial guess of all the decision variables were taken from literature and used with

minor modifications. In our method, we propose to use a coordinate block descent

algorithm instead of a global optimization algorithm to arrive at optimal solutions.

b. Optimization solution strategy: Sequential Coordinate Block Descent
(SCBD)

Coordinate descent is an optimization algorithm that successively minimizes along

coordinate directions to find the minimum of a function. At each iteration, the al-

gorithm determines a coordinate or coordinate block through a coordinate selection

rule, then exactly or inexactly minimizes over the corresponding coordinate hyper-

plane while fixing all other coordinates or coordinate blocks [152]. At every iteration,

a line search along that particular coordinate direction can be conducted to find the

optimal step size. One more advantage of this algorithm is that it can be applied in

both differentiable and derivative free contexts.

In our test simulations, we discovered that splitting the original optimization problem

into smaller sub problems was able to give us a better optimal solution. In addition

to that, because the problems are solved sequentially in CBD, the chances of get-

ting stuck in a local optimal solution could be minimized as the solver perturbs the

previous solution by a small magnitude at the start of the next iteration, and if in

case there is a decrease in cost function the solver will drive to a better, new optimal

solution. Also, we had to find a way to infuse the order of the sensitivity ranking into

the optimization algorithm and the sensitivity ranking from the orthogonalization

algorithm can be naturally supplied as the coordinate selection rule in SCBD. The

SCBD framework seemed to work well based on test simulations for our HD system

model, and so it was adopted for this work. But the reader should not comprehend

that this kind of a solution strategy will work for all problems.
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The SCBD optimisation procedure can be executed by following the steps outlined

below.

1. Optimization in done a scaled domain so the movement is uniform along each

direction and equal importance is given to both the measurements. This step

is very important because the magnitude of both the measurement differ a lot

and also there is huge difference in the magnitude of the decision variables.

• Measurement data was scaled using the upper and lower bounds from their

own data set.

2. Initial guess of all variables for different classes of patients are adopted from

literature. Weight scaling is done wherever necessary and the initial guess values

are supplied to the optimization solver.

3. Specify reasonable bounds for all variables.

• The lower and upper body weight limits were assumed to be 60 and 100 re-

spectively. So the lower and upper bounds for the weight scaled parameters

can be generated from the nominal values of a 70 kilogram patient.

• All the cardiovascular reflex parameters were assumed to vary between 0.2

to 3.5 times the nominal values.

• For all the other parameters which are not included in the above cate-

gories, the variation is assumed to be ±10% from the nominal values in

literature [140].

• The bounds for the original state variables of the model are given below.

Table 4.3: Bounds for the state variables of the HD system model

Vpl Vis Vic Cex
U C ic

U Cex
Na C ic

Na Cex
K C ic

K Psa Pra Ppa Ppv Pla δ Rs1 T Vusv
LB 3375 9675 21750 10 10 137 5 4 137 95 3.8 16.15 6.65 6.175 0 0.693 0.79 2486
UB 5625 16125 36250 50 50 150 20 7 150 105 4.2 17.85 7.35 6.825 0 0.766 0.87 4142.85

Unit ml ml ml mmol
L

mmol
L

mmol
L

mmol
L

mmol
L

mmol
L

mmHg mmHg mmHg mmHg mmHg
No
unit

mmol·s
ml

s ml

The first three states deserve special attention. The total fluid distribu-

tion volume (in litres) is assumed to be 0.58 times the body weight (in

kilogram). The ratio of the extracellular to the intracellular fluid volume

is taken to be 3:5 [158]. The patient is assumed to contain 75 millilitres of
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blood per kilogram of body weight.

4. The nonlinear least squares problem is solved in SCBD framework.

• In our case, we had 60 variables in total and each of the coordinate block is

taken to be of size 10 variables. In total, there will be 6 coordinate blocks

in total. For instance, if the orthogonalization algorithm finds 10 unob-

servable variables, then these variables will be removed from the decision

variable set and there will be only 5 coordinate blocks in the optimization

problem.

• For example, first coordinate block = top 10 sensitive variables as per

orthogonalization ranking, second coordinate block = next 10 sensitive

variables and so on.

• Minimization of the multivariate cost function (J) takes place along one

particular coordinate block direction at a time.

5. When the value of the objective function changes in a magnitude smaller than

ε (Jt−1 − Jt < ε), exit the loop. In our work, ε = 5× 10−4.

c. Selection of optimization solver

The numerical integration of the model equations and the optimization algorithms

were implemented in Python using the ‘SciPy’ library. Least squares module (with

3 solver options) was imported from ‘scipy.optimize’ library. ‘TRF’ solver was used,

when solving the optimization sub-routines because of its ability to work with con-

strained, large nonconvex problems. TRF (trust-region optimization method incorpo-

rated in the interior reflective Newton algorithm) is a simple, yet powerful approach to

solve bound constrained nonlinear minimization problems. It is an algorithm of choice

if one has a nonconvex problem with only bounds or with only linear equalities [29].

The trust region method has a different approach than the general gradient descent

methods. Let’s assume f(x) is the objective function, with x as a vector of decision

variables, in which each decision variable is constrained by lower and upper bounds.

The trust region algorithm approximates f(x) with a quadratic function q(s), which

reflects the behaviour of f(x) in a neighbourhood ∆, which is called the trust region

around the current point xk. The trust region sub problem of the method is to com-

pute a trail step s by minimizing the area ∆. If f(xk + s) < f(xk), the current point

is updated to be xk + s. This is a successful step and the trust region ∆ can remain
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the same for the next step. Otherwise, if the step turns out to be unsuccessful, and

xk+1 = xk, the trust region will be reduced for the next step. The idea of interior

reflective method is to generate iterations xk which is within the interior F , defined

by the lower and upper bound constraints, using a reflective line search and to en-

sure convergence locally and globally. Since the interior F is bounded by constraints,

an iteration will be reflected into the interior if that iteration lies on the boundary,

and hence the name reflective line search. These enhancements help to avoid mak-

ing steps directly into bounds and efficiently explore the whole space of variables.

To obey the theoretical requirements, the algorithm keeps iterations strictly feasible.

The TRF algorithm is written in MINPACK, a library of FORTRAN subroutines

which efficiently solves the least squares minimisation of a residual of a set of linear

or nonlinear equations. Dogleg (‘Dogbox’) algorithm with rectangular trust regions

is typically used for solving small problems with bounds and it is not recommended

for problems with rank deficient Jacobians. Levenberg-Marquardt (‘LM’) algorithm

is the most efficient for small unconstrained problems, but does not handle bounds

and so TRF was the author’s choice for solving the SCBD optimization sub-routines.

4.2.5 Validation of identified model

Inputs of different profiles and magnitudes were used for validation and the perfor-

mance of the identified model is studied using the Mean Square Error (MSE) criteria.

The MSE is given by the following expression,

MSE =
1

n

n∑
i=1

(yi − ŷi)2 (4.7)

Here, n is the total number of data points, yi is the true output and ŷi is the estimated

output from the model.

4.3 Design of simulation experiments

The fundamental raw material for our approach to be tested is a good data set.

Due to the limitation of a vast array of HD data sets, simulation experiments have

been designed to test and validate our proposed approach designed for identifying the

individualized virtual patient simulator model. Existing clinical data of 7 different

patients was taken from literature [30], and it has been enhanced with additional

features pertaining to cardiovascular stability. The original data did not classify the

patients according to their cardiovascular health. Patients 1, 3, 5, 7 were assumed to

be hemodynamically stable patients with patient 1 displaying mild symptoms of IDH.
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Patients 2, 4, 6 were prone to severe IDH, possess weak hemodynamic stability, and

represent the ESRD patient group. We had to make this kind of a random assignment

of cardiovascular health to the adopted patient data set because there were not many

HD data sets in literature with hemodynamic data. Table 4.4 contains the data

entries (body weight, cardiovascular health, initial blood concentration of urea and

sodium and the bounds of DSC) for 7 patients as shown below.

Table 4.4: HD treatment settings for 7 different patients for synthetic clinical data
generation. Data adopted from [30]

Patient
Index

Body
weight
(kg)

Cardiovascular
health

Initial urea
concentration

(mmol/L)

Initial sodium
concentration

in plasma
(mEq/L)

Dialysate Sodium
Concentration (DSC)

(mEq/L)

1 72 H (Class 2) 24.5 140 143-152
2 74.6 U (Class 3) 32.5 140 147-152
3 90.3 H (Class 1) 20 140 145-152
4 70.8 U (Class 3) 26.8 142 148-155
5 76 H (Class 1) 36 143 140-149
6 75.8 U (Class 3) 30.2 142 145-152
7 76.4 H (Class 1) 29.5 140 144-153

Some of the characteristics of the chosen data set would attract the reader’s special

attention. There are 5 men and 2 women in the patient pool, with a mean age

of 62.0 ± 9.0 years and a mean dry body weight of 76.5 ± 6.4 kg. The residual

renal function and residual diuresis of all the patients are 0 ml/min and 0 ml/24 h

respectively. The systolic blood pressure at the beginning of the treatment session is

100 ± 5 mmHg.

4.3.1 Generation of synthetic clinical data

Firstly, the nominal values of all variables of the patient are generated. There are

some blood concentration results of solutes in table 4.4 which could be factored in

while generating the concentration values. The extracellular and intracellular concen-

trations of other solutes are assigned in a way that ensures osmotic equilibrium before

the start of the HD treatment session. Weight scale factor is multiplied to the vari-

ables which are dependant on the patient’s body weight. Then based on the class of

the patient, the corresponding cardiovascular reflex parameters from literature [140]

are chosen as nominal values. Then suitable random noise sequences (high noise of

20% standard deviation and zero mean for all cardiovascular reflex parameters and

low noise of 2% standard deviation and zero mean for all other variables) are added
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to all variables to generate a completely new ideal patient. As the variables were of

different magnitudes, they were scaled (with the help of the lower and upper bounds

mentioned in subsection 3.2.4.b.) before adding the noise sequences and then they

were unscaled to get the true values. True MAP, HP data (synthetic clinical data)

was collected at a sampling time of 1 minute, by simulating the model with the true

values of variables. Then these true values of the variables of that particular patient

were treated as unknown values (no prior information) and our proposed approach

is employed to arrive at the optimal values starting from the nominal values of all

variables which will closely the ideal patient’s hemodynamic behaviour. All patients

came to the treatment centre with a fluid overloaded state and we assumed that 3

litres of fluid were removed by ultrafiltration from each patient for reaching the weight

targets. Each of the HD treatment sessions ran for 4 hours. In table 4.1, the author

identified 6 manipulated variables that can perturb the HD system. Only the first

two (UFR and DSC) will be used for this chapter’s analysis and the others shall be

fixed at the nominal operating values outlined in literature. All θk parameters shall

be held at the nominal values mentioned in literature [140].

4.3.2 Building of test cases

We have created 4 different case settings to test the efficiency of our proposed ap-

proach. All these cases will use only two available clinical measurements (MAP and

HP) for the identification of the individualized virtual patient simulator.

• Case 1:

– Noise free measurements

– Coordinate selection rule = Random

– Block size = 10

• Case 2:

– Noise free measurements

– Proposed observability analysis method’s information infused

– Coordinate selection rule = Orthogonalization ranking order

– Block size = 10
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• Case 3:

– Noise (Mean = 0, Standard deviation = 0.1) corrupted measurements

– Coordinate selection rule = Random

– Block size = 10

• Case 4:

– Noise (Mean = 0, Standard deviation = 0.1) corrupted measurements

– Proposed observability analysis method’s information infused

– Coordinate selection rule = Orthogonalization ranking order

– Block size = 10

4.4 Simulation results and discussion

In this section, the results obtained from simulation experiments for the four different

case settings will be presented to the reader. We have three different classes of

patients who come to the HD treatment centre and so one representative patient

shall be selected from each patient class and the results of our proposed approach

will be applied on that particular patient data and explained with supporting figure

plots wherever necessary. As this thesis work is dedicated to the better treatment

management of ESRD patients, let us start by analyzing the results for a patient

belonging to class 3 (ESRD) patient with weak hemodynamic stability) first in much

detail. Tables 4.5, 4.6 contain the optimization and model validation results and quite

often the reader will be directed here while explaining the results for the different

classes of patients.

Table 4.5: Optimization results summary - Case 1 & 2

Patient
Index

Initial
cost

Case 1 Case 2

Final
cost

Training
MSE

Validation
MSE

Final
cost

Training
MSE

Validation
MSE

M1 M2 M1 M2 M1 M2 M1 M2
1 142.59 0.604 0.035 2.55E-05 0.033 3.48E-05 0.235 0.016 8.16E-06 0.019 1.02E-05
2 674.56 0.744 0.363 7.71E-05 1.302 2.91E-04 0.352 0.043 1.88E-05 0.04 1.96E-05
3 76.59 0.113 5.91E-04 8.90E-08 9.99E-04 2.31E-07 0.057 2.69E-04 4.95E-08 8.55E-04 1.59E-07
4 54.111 3.618 20.897 6.63E-04 52.044 1.22E-03 0.7 4.175 1.14E-04 6.102 3.66E-04
5 11.72 0.007 6.66E-05 9.04E-09 0.007 8.97E-07 0.002 2.25E-05 3.14E-09 0.001 1.39E-07
6 65.703 2.346 8.551 2.85E-05 32.31 2.53E-04 0.226 0.648 4.20E-06 2.809 1.85E-05
7 38.45 0.021 8.56E-05 9.62E-09 0.003 3.05E-07 0.002 8.80E-06 1.24E-09 3.12E-04 4.13E-08
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Table 4.6: Optimization results summary - Case 3 & 4

Patient
Index

Initial
cost

Case 3 Case 4

Final
cost

Training
MSE

Validation
MSE

Final
cost

Training
MSE

Validation
MSE

M1 M2 M1 M2 M1 M2 M1 M2
1 100.23 1.816 0.16 1.00E-04 0.569 2.81E-04 2.119 0.191 1.15E-04 0.522 2.75E-04
2 503.49 1.88 0.418 8.42E-05 0.758 1.43E-04 3.282 0.9469 2.07E-04 0.79 1.46E-04
3 42.09 1.481 0.013 2.70E-06 0.108 1.70E-05 1.323 0.011 2.43E-06 0.088 1.46E-05
4 28.65 3.074 27.642 1.39E-03 32.217 2.23E-03 1.749 13.349 1.12E-03 20.644 1.34E-03
5 8.2 1.35 0.022 3.64E-06 0.201 2.81E-05 1.35 0.021 3.63E-06 0.2 2.79E-05
6 38.26 4.447 29.988 8.31E-05 46.169 1.47E-04 1.998 10.155 6.61E-05 13.231 6.67E-05
7 22.88 1.478 0.009 1.51E-06 0.103 1.30E-05 1.342 0.008 1.40E-06 0.094 1.30E-05

The tables presented above contain the initial (initial cost) and final (final cost) values

of the objective function, computed at the starting and ending of the optimization

routine respectively. In addition to that, the MSE between the true data set and the

estimated data set is presented for both the training and validation profiles. The input

profiles which were used to train the virtual simulator were called as training profiles,

and the input profiles which were not exposed to the model during training are called

as validation profiles. The use of a validation profile here is to test performance of

the estimated HD system model under completely new treatment settings. By this

way, the user can be assured that the estimated patient simulator will work under

a wide range of settings. Different profiles (constant, step) of manipulated inputs

were chosen for validation because our ultimate goal was to embed this nonlinear

model into a controller and the optimal trajectory computed by the model predictive

controller could take any profile as long as the input and process constraints are

satisfied.

4.4.1 Class 3 patient: Severe IDH & weak hemodynamic sta-
bility

Let us first discuss the results for a class 3 patient from table 4.4, following the

complete workflow of our proposed approach. The representative patient chosen for

explaining the results is patient 4. The body weight of patient 4 is 70.8 kg and if

3 litres of overloaded fluid are removed in a 4 hour treatment time, then the final

dry body weight would be 67.8 kg. The nominal values of all the variables of the

mathematical model was calculated using the initial body weight. The weight scale

factor in this case would be 70.8/70. This factor was multiplied to all variables

pertaining to body vascular compliances, elastances and unstressed volumes. The

total fluid distribution volume can be calculated by using the simple formula from

literature [158], and it would be 0.58×70.8×1000 ml which is equal to 41064 ml. We
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have assumed that the ratio of the extracellular to the intracellular fluid is 3:5 and

so the initial fluid compartment volumes can be computed accordingly. The nominal

values of other variables were directly adopted from literature [140]. Then we would

have generated the nominal values of all the variables in the augmented state vector

and we need this to start the observability analysis of the HD system model. The

following figure 4.6 represents the input output data set used for training the HD

system model to make it an individualized virtual patient simulator. Clearly, there is

a difference between the true values (yellow trajectory) and the nominal values (blue

trajectory) of variables used to simulate the model as the trajectories are completely

different. Our objective is to test if our proposed method will help identify the

optimal values of variables that will closely resemble the true patient’s hemodynamic

behaviour.

Figure 4.6: Comparison of simulations with nominal (blue) and true (yellow) values
of states and parameters

As the first substep in the observability analysis framework, sensitivity analysis shall

be done around the nominal values of the variables by solving the sensitivity equations

in parallel with the original model equations. The sensitivity dynamics seeds from

the original model equations. The authors of the adopted mathematical model have

attempted sensitivity analysis investigation of the model by manually perturbing a

few parameters of the model, collecting the hemodynamic data at intervals of 1 hour,
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and analyzing them [139]. But our approach of solving the sensitivity equations of all

variables together accounts for both the direct and indirect (interactions) impact of

the variables on the measurement data and gives a more comprehensive understanding

of the physiological phenomena. After solving the model and sensitivity ODEs (with a

sampling time of 1 minute), the user can construct the sensitivity matrix as expressed

in Eq. (2.12). For clarity, the relative sensitivity trajectories of the top 10 most

sensitive states with respect to both measurements (MAP and HP) are plotted in

figure 4.7.

(a) Measurement 1 (MAP) to top 10 states (b) Measurement 2 (HP) to top 10 states

Figure 4.7: Relative sensitivity trajectories of measurements for Patient 4

At the initial few times instants, the reader will observe that the relative sensitivities

of most of the states fluctuate much faster, indicating that the initial states affect

the model to a greater extent and that reasonable initial states are to be supplied

for fair model prediction. However, the relative sensitivity of only one state (X0
a)

goes beyond 1.0. Most of the other relative sensitivities are below 0.5, indicating

an acceptable level of robustness of the model. The plot shows that the relative

sensitivities continue to grow or decrease for all the states throughout the entire

treatment session. Towards the end of the treatment, the reader will observe that

none of the relative sensitivities are above 1.0, pointing out that none of the states

affect the model outputs by more than the actual change in state values (in terms

of percentage). If the reader examines figure 4.7 carefully, X0
a and X43

a emerges

out as the states to which both measurements are most sensitive. X0
a and X43

a in

our case, denote the plasma volume and the plasma protein concentration of the

patient. HD removes overloaded fluid directly from the circulatory system and there

is a drop in blood plasma volume. All the cardiovascular compensatory responses
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(vasoconstriction and the rising of heart rate) are triggered because of the drop in

the arterial pressure. Arterial pressure drop is directly proportional to the drop in

plasma volume. There is no wonder that blood plasma comes out as the state to

which MAP and HP are most sensitive. Plasma protein concentration is responsible

for vascular refilling. If fluid from plasma is removed at a faster rate than vascular

refilling, then there is a drop in blood pressure and a rise in heart rate until the reflex

mechanisms reach their saturation limits.

Then the next step in our work flow is to do the SVD analysis on the sensitivity

matrix. This will enable us to plot the observability signature graph (figure 4.8).

The singular values are plotted on the upper half of the image and the right singular

vectors corresponding to any potential zero singular values are plotted on the bottom

half of the image. The right singular vectors corresponding to the zero singular values

provides detailed insights into the variables of the model which are linearly related

and cause the overall system to be unobservable. In supporting literature [133], any

drop of more than 3.5 decibels on the log scale of singular values can be taken as

a clear sign of unobservability. We encounter a drop of 4.6 decibels after the 52nd

singular value. This indicates that the rank of the sensitivity matrix is 52 and there

are 52 observable variables out of the total 60 variables. The user has to identify the

8 unobservable states (or nodes) in the HD system during the optimization routine.

Figure 4.8: Observability signature graph: SVD analysis of the sensitivity matrix for
Patient 4
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Looking at the right singular vectors plot corresponding to all the identified zero sin-

gular values, give us an idea of all the variables which are involved in total correlation

and does not give any information about pairwise correlation between two variables.

X11
a , X12

a , X13
a , X14

a , X32
a , X33

a , X34
a , X35

a , X36
a , X39

a , X54
a , X59

a are the variables in-

volved in total correlation. States with indices 11 to 13 refer to the cardiovascular

pressure states and states with indices 32 to 36 refer to the unstressed volumes of

the vascular compartments. States with indices 14, 54 are always zero at the begin-

ning of the simulation and has no impact on the measurements. The reader should

understand that there are only 8 unobservable variables among these 12 variables.

We could remove all these 12 variables from the total variable list, but our goal is

to obtain the largest subset of observable variables. This is why we resorted to a

sequential selection algorithm which would forward select the variables one by one

until the terminating conditions are satisfied.

Figure 4.9: Euclidean norm of the ranked variables by orthogonalization

We know there are 52 observable variables from the previous step and so the iter-

ation counter for the orthogonalization algorithm is set at 52. The algorithm runs

selecting one variable at a time starting from the most sensitive and least correlated

variable to the least sensitive and most correlated variable. The 52 variables returned

by the algorithm are automatically arranged in the decreasing order of sensitivities

(estimability potential based on the two available measurements in hand) as shown in

table 4.7. The reader can notice that most of the cardio vascular reflex variables come

up in the ranking as reasoned by the original authors of the HD system model [139].
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The eight variables removed by the orthogonalization algorithm include X6
a , X10

a ,

X13
a , X14

a , X29
a , X31

a , X54
a and X59

a . The algorithm has clearly removed all the vari-

ables which had zero impact on the measurements namely, X14
a and X54

a . We can

observe from figure 4.9 that a substantial number of variables show sensitivity values

closer to zero. This clearly indicates that the model is over-parameterized. However,

commenting on this aspect of the model is beyond the scope of this research work

and we assume that all the variables (as introduced by the original authors of the HD

system model) are necessary to reproduce the actual physiological phenomenon. The

subset of observable variables returned by the orthogonalization algorithm becomes

the the decision variable set in the optimization routine.

Table 4.7: Ranking of uncorrelated variables by orthogonalization algorithm for Pa-
tient 4

Identifier Ranking based on estimability potential

Notation

Vpl, C
pln
p , kr, Psa, T , Vusv, GaT , Rs1, M ic

K , GcR, Ppv, ∆σV , Csv, Vic, Ppa,
∆σT , M ex

Na, kl, GcV , Eis, ∆σR, Csa, GaV , τT , M ex
U , GaR, τR, τV , Lv, Rs2,

Pra0, Vusa, Vis, Pla0, Cpv, Vupa, Vupv, Pisn, Cra, Cla, C
isn
p , Cpa, Rsv, Rs3,

M ic
U , M ex

eq , Rpa, Vura, Vula, M
ic
eq, M

ex
K , Rpv

Index
0, 43, 38, 9, 16, 17, 53, 15, 8, 50, 12, 55, 19, 2, 11, 51, 5, 37, 58, 45, 47,
18, 57, 52, 3, 49, 48, 56, 30, 24, 40, 32, 1, 39, 21, 33, 34, 46, 22, 23, 44,
20, 26, 25, 4, 42, 27, 35, 36, 41, 7, 28

The rank index and the list of observable variables are passed on to the optimization

block where the nonlinear least squares problem is solved in Sequential Coordinate

Block Descent (SCBD) framework with an objective to identify the optimal values

for all observable variables returned by the orthogonalization algorithm. In SCBD

framework design, each coordinate block should accommodate a maximum of 10 vari-

ables and the rank index array is supplied as the coordinate selection rule. Therefore,

the coordinate blocks are filled in the order of the orthogonalization ranking and the

list of variables in each coordinate block (for cases 2 and 4) is shown below.

1. First block = [Vpl, C
pln
p , kr, Psa, T , Vusv, GaT , Rs1, M ic

K , GcR]

2. Second block = [Ppv, ∆σV , Csv, Vic, Ppa, ∆σT , M ex
Na, kl, GcV , Eis]

3. Third block = [∆σR, Csa, GaV , τT , M ex
U , GaR, τR, τV , Lv, Rs2]

4. Fourth block = [Pra0, Vusa, Vis, Pla0, Cpv, Vupa, Vupv, Pisn, Cra, Cla]
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5. Fifth block = [C isn
p , Cpa, Rsv, Rs3, M ic

U , M ex
eq , Rpa, Vura, Vula, M

ic
eq]

6. Sixth block = [M ex
K , Rpv]

For cases 1 and 3, all the 60 variables are taken as the decision variable set. The

unobservable variables are not removed. Furthermore, the coordinate blocks are filled

in random order and the orthogonalization ranking information has no role to play

in cases 1 and 3. This will help us compare the results obtained from different case

settings and justify if our proposed method was a good step towards solving the

model individualization problem. Let us examine the raw (synthetic) clinical data

of Patient 4 plotted in figure 4.10. MAP and HP measurements are always prone to

measurement errors and so errorbars of 5% were drawn over the reading given by the

clinician (over the model simulated data in our case), indicating that the true value of

the measurements could be anywhere within the range. MAP is the most important

physiological variable which directly correlates with the hemodynamic stability of the

patient and HP (or HR) is an indicator pointing out if the patient’s cardiovascular

reflex mechanism has been triggered or not.

Figure 4.10: Patient 4: Training (Case 1: MSEM1 = 20.897, MSEM2 = 6.63E-04,
Case 2: MSEM1 = 4.175, MSEM2 = 1.14E-04)

In figure 4.10, we observe that Patient 4’s MAP drops ever since the treatment started

and displays symptoms of severe IDH right in the middle of the second hour of

treatment. It takes almost an hour for the patient to come back to normalcy if the

HD treatment is continued. In clinical practice, if severe IDH occurs, the treatment

is stopped and the patient is kept in Trendelenburg position for a while. IDH could

be due to a lot of complex physiological factors, but IDH in a hemodialysis context

mainly occurs because a uremic patient’s reflex mechanism fails to cope with the rapid
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reduction in plasma volume by HD. There is a steady decrease in heart period too,

indicating that the heart rate of the patient rises until the saturation level of the reflex

mechanism. The model is trained on this data set and we clearly see that the model

simulations (for MAP and HP) with the nominal values of variables are nowhere close

to capturing the actual hemodynamics of the patient. SCBD optimization is observed

to improve the prediction results substantially. Although the initial guess given to

the optimization solver in both cases 1 and 2 is the same (initial cost = 54.111),

in the absence of measurement noise, case 2 (final cost = 0.7) with our proposed

method has reached a better optimal solution than case 1 (final cost = 3.618) with

no observability analysis information. Case 2 succeeds in capturing the severe IDH

dynamics, while Case 1 fails. Furthermore, the model simulations with the estimated

values of variables from case 2 always stay within the error bounds. Also, case 2

model predicts both MAP and HP with a lesser MSE as outlined in figure 4.10. A

clear distinction between the two cases emanates even at the training stage.

Figure 4.11: Patient 4: Validation (Case 1: MSEM1 = 52.044, MSEM2 = 1.22E-03,
Case 2: MSEM1 = 6.102, MSEM2 = 3.66E-04)

Now, the estimated values of variables from both the cases are tested by supplying

a random treatment profile which is meaningful and could be used in a actual HD

treatment setting. Constant UFR (0.2083 ml/s, which ensures 3 litres fluid removal)

and DSC (142 mEq/l, which ensures the exit concentration of sodium in the blood

plasma to be within physiologically acceptable ranges) are given as validation profiles.

From figure 4.11, the reader can observe that the nominal values of variables from

literature predicts the occurrence of severe IDH with a considerable time lag and

cannot capture the actual cardiovascular behaviour of Patient 4 under HD. Case 1
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model predicts the severe IDH late as well and over predicts HP. The main motto

of using a model to predict hemodynamic behaviour is to capture the occurrence of

clinical complications well ahead of time so that clinical practitioners (or the optimal

model-based controller in chapter 4) can take necessary precautions. Case 2 model

outperforms other candidates, under predicting only one data point in terms of MAP,

and the predictions closely resemble the actual patient’s behaviour. Furthermore, the

increase (from the training scenario) in MSE of prediction is lesser in case 2 than

case 1 and this signifies that the case 2 model is fairly robust and gives reasonable

predictions even for HD treatment settings which are completely different than the

input profiles in the training data set. Case 2 model shines out as a clear better

performer and in the absence of noise our proposed method improves the identified

grey box model prediction results.

Figure 4.12: Patient 4: Training (Case 3: MSEM1 = 27.642, MSEM2 = 1.39E-03,
Case 4: MSEM1 = 13.349, MSEM2 = 1.12E-03)

The test would be incomplete, if the proposed method is not put under a scenario

which resembles the actual clinical setting. Clinical measurements are noisy and so

random noise sequences were added to corrupt both the measurements. The same

routines were repeated, but the cases were renumbered to differentiate them from the

noise free counterparts. Although the optimatization solvers started from the same

point (initial cost = 28.65), case 4 with our proposed method (final cost = 1.749)

slightly outperforms case 3 with no observability analysis information (final cost =

3.074) by finding a better optimal solution of all the variables (characterized by lower

MSE of prediction for both measurements in case 4). From figure 4.12, the reader can

clearly see that case 4 captures most of the hemodynamics of Patient 4, including the
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sudden drop in MAP in the middle of the second hour of treatment. Case 3 model

and the model with nominal values of variables do not seem to replicate the actual

patient’s hemodynamic behaviour well. Then the identified models from cases 3 and 4

were put to validation tests. The reader can observe a similar kind of performance (as

shown in figure 4.13) as seen in the absence of noise, with the case 4 model predicting

severe IDH fairly close to the true model with a lesser MSE among the two cases,

while the case 3 model predicts the pressure drop with a substantial lag and the model

with nominal values of variables completely fails to capture the pressure drop towards

the end of the treatment. The simulation results support the fact that our proposed

method succeeds in identifying the individualized virtual patient simulator model of a

class 3 patient, while offering robustness even in the presence of measurement noises

and changing treatment conditions. The reader is prompted to understand that the

fixing of unobservables variables at nominal values could restrict the other observable

variables from reaching their true values, but we are more focussed on identifying the

optimal values of variables which closely capture the true dynamics.

Figure 4.13: Patient 4: Validation (Case 3: MSEM1 = 32.217, MSEM2 = 2.233E-03,
Case 4: MSEM1 = 20.644, MSEM2 = 1.34E-03)

4.4.2 Class 2 patient: Mild IDH & acceptable hemodynamic
stability

In this section, the proposed method shall be tested on a class 2 patient from the

table 4.4 data set. The representative sample for class 2 patients with acceptable

levels of hemodynamic stability is patient 1. The true values of the cardiovascular

reflex variables of patient 1 were generated in such a way that Patient 1 displays signs

of mild IDH, which develops after the commencement of HD and continues until the
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end of the treatment. However, patient 1’s reflex was responsive enough to prevent

sudden MAP drops which result in syncope. All steps of the proposed method will

not be explained in much detail like it was done for the class 3 patient example, but

the result highlights and the inferences made by the author will be presented.

Figure 4.14: Patient 1: Training (Case 1: MSEM1 = 0.035, MSEM2 = 2.55E-05,
Case 2: MSEM1 = 0.016, MSEM2 = 8.16E-06)

Figure 4.15: Patient 1: Validation (Case 1: MSEM1 = 0.033, MSEM2 = 3.48E-05,
Case 2: MSEM1 = 0.019, MSEM2 = 1.02E-05)

Firstly, let us look at cases 1 and 2 with noise free measurements. Looking at fig-

ure 4.14, the reader will immediately notice that the model simulated with the esti-

mated values of variables from both the cases do a fairly good job in capturing the

hemodynamics of the actual patient. But the model simulated with the nominal val-

ues of the variables of a class 2 patient from literature, clearly has an offset (within
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error bounds for MAP and out of error bounds for HP). Although the initial guess

given to both cases was the same (initial cost = 142.59), the solver has found a better

optimal solution in case 2 (final cost = 0.235) than in case 1 (final cost = 0.604). In

terms of MSE of prediction, case 2 model offers superior predictions of both MAP and

HP. During model validation, both case 1 and case 2 models succeed in predicting

the hemodynamics of patient 1 even when introduced to arbitrary treatment inputs.

There was an interesting revelation when the same routines were repeated with noisy

measurements. The cost was 100.23, but it fell down to 1.816 for case 3 and 2.119

for case 4 after SCBD optimization. One cannot vaguely conclude that the proposed

approach did not work better here. Instead, if we analyze the MSE prediction er-

rors during training and validation, we see that case 3 has lesser MSE than case 4.

However, in validation, the MSE of case 3 model predictions gets higher than the

prediction errors of the case 4 model (for both MAP and HP). This clearly indicates

that there are signs of overfitting in case 3. Even though a good solution was found in

case 3, the identified model failed to maintain consistency during validation. As case

3 involves finding the optimal solution of all 60 variables, the solver has more degrees

of freedom to drive the system to a solution which unknowingly extracts some of the

residual variation or noises in the data as if that variation represented the underlying

true model structure during the training stage. In a simpler sense, the case 3 model

has more variables than can be justified by the available data, and it has failed to pre-

dict future observations more reliably than the case 4 model, as indicated by higher

MSE than case 4, during the validation stage.

Figure 4.16: Patient 1: Training (Case 3: MSEM1 = 0.16, MSEM2 = 1.00E-04, Case
4: MSEM1 = 0.191, MSEM2 = 1.15E-04)
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Figure 4.17: Patient 1: Validation (Case 3: MSEM1 = 0.569, MSEM2 = 2.81E-04,
Case 4: MSEM1 = 0.522, MSEM2 = 2.75E-04)

4.4.3 Class 1 patient: No IDH & good hemodynamic stabil-
ity

Finally, to be convinced with the inferences made from the previous examples, the

proposed approach is also tested on a class 1 patient. From the random generation

of true values of variables, patient 7 fell into the category of an individual who could

handle different treatment settings of HD with good cardiovascular stability. The

cardiovascular reflex mechanisms of patient 7 are able to maintain the hemodynamic

variables without any considerable changes. Most of the patients on HD treatment

regime do not exhibit this kind of ideal hemodynamic pattern.

Figure 4.18: Patient 7: Training (Case 1: MSEM1 = 8.56E-05, MSEM2 = 9.62E-09,
Case 2: MSEM1 = 8.80E-06, MSEM2 = 1.24E-09)
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Figure 4.19: Patient 7: Validation (Case 1: MSEM1 = 0.003, MSEM2 = 3.05E-07,
Case 2: MSEM1 = 3.12E-04, MSEM2 = 4.13E-08)

The trajectories obtained from the model with nominal values of variables and the

estimated values of variables from both cases 1 and 2 are all within error bounds and

explain the hemodynamics of patient 7 well both during training and validation. The

results indicate that even the nominal values of variables can be used to simulate

the hemodynamic behaviour of a class 1 patient. However, in the absence of noise,

the final solution obtained from case 2 (final cost = 0.002) is better than case 1

(final cost = 0.021) and the nominal values (initial cost = 38.45). Moreover, if the

reader looks at the training (figure 4.20 and validation (fig 4.21) test results when the

measurements are noise corrupted, the same observations hold true.

Figure 4.20: Patient 7: Training (Case 3: MSEM1 = 0.009, MSEM2 = 1.51E-06,
Case 4: MSEM1 = 0.008, MSEM2 = 1.40E-06)
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Figure 4.21: Patient 7: Validation (Case 3: MSEM1 = 0.103, MSEM2 = 1.30E-05,
Case 4: MSEM1 = 0.094, MSEM2 = 1.30E-05)

4.5 Summary

In this chapter, the reader was initially educated about the initial attempts taken

by the author in tackling the individualized model identification problem. Then the

proposed method for nonlinear system observability was explained and tested on syn-

thetic clinical data of different classes of patients. Our understanding after extensive

simulations is that observability indeed has a crucial role to play in identifying the

best model candidate. Furthermore, observability dictates the maximum extent of

information that can be extracted from the available data. A brief summary of the

simulation results is shown in table 4.8 and the claim is that the individualized vir-

tual patient simulator built through our proposed method works fairly robust under

different HD treatment settings and in the presence of measurement uncertainties for

any patient class and could be used as an embedded model in an optimal control

framework.

Table 4.8: Summary of chapter 4 analysis

Patient
class

Nominal
values

Cases without
proposed method

Cases with
proposed method

No Noise With noise
No Noise
(Case 1)

With noise
(Case 3)

No Noise
(Case 2)

With noise
(Case 4)

Class 1
Works but
not best

Works but
not best

Works but
not best

Works but
not best

Works and
best

Works and
best

Class 2 Fails Fails
Works but
not best

Works but
not best

Works and
best

Works and
best

Class 3 Fails Fails Fails Fails
Works and

best
Works and

best
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Chapter 5

Towards optimal control of the
hemodialysis system

Ever since civilization started, human beings have been trying to establish power

and take control of the things happening in their surroundings. In engineering, al-

though control is a term used to denote feedback control (which involves the reception

and transmission of process information), today’s usage of the term contains a much

broader perspective. For example, it can refer to the control of man-made machines,

artificial devices, regulation of activities in a social sphere, such as cost and busi-

ness process optimizations, the control of a country’s economy by means of legislative

policies. The original authors of the adopted HD system model envisioned the model

being used for the identification of patient-specific parameters and optimal control of

ultrafiltration rate and sodium profile in the dialysate. The main issue in delivering

an optimal HD treatment for CKD patients is the efficient management of overloaded

fluid volume. Removing too much of fluid can result in an acute depletion of intravas-

cular volume or blood plasma volume causing Intradialytic Hypotension (IDH), while

removing too little can result in chronic volume expansion, hypertension, left ven-

tricular hypertrophy and increased cardiovascular morbidity. In addition, stability of

the patient is the most important factor above all. In the earlier days, HD practice

was based on quantifying the fluid amount to be removed and prescribing a fluid

removal rate, choice of dialyzer, blood and dialysate flow rates, dialysate sodium

concentration and the temperature of the dialysate. The above parameters are not

modified until a HD complication occurs. If there are hypotensive episodes, the clin-

icians would react by manually adjusting the prescription and by post-event medical

care. Although there have been several instances of application of feedback control
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in HD, there are only a few research works based on a comprehensive dynamic model

of all the components (patient and hemodialyzer) of the HD system based on first

principles. Therefore, in cases where dynamic models are not employed, the clinicians

do not get insights into the hemodynamic perturbations caused by HD. The author

is thus motivated in this chapter to develop strategies to identify individualised op-

timal treatment plans, taking the patient’s anthropometric physiological data into

consideration, with the help of advanced process control techniques.

5.1 Application of traditional bio-feedback control

techniques in HD

The bio-feedback concept is analogous to a feedback control system in systems engi-

neering except that the controlled and measured variables are physiological variables

of an actual patient. We can just call the bio-feedback system as a closed loop control

system of biological variables. The closed-loop system has controllers, sensors and a

range of actuators through which they can directly or indirectly act on the physio-

logical variables. There are different commercial feedback control products, trying to

address the feedback control of blood volume, pressure and temperature, which one

can buy and utilize today. There has been a gradual increase in the global average

age of HD patients, alarming conditions of diabetes and other pathological condi-

tions, and this decreased the patient’s tolerance to HD. Also on the other hand, there

has been a huge ask in the reduction of the HD treatment time. When treatments

are shortened, the traditional management of HD treatments no longer holds good

as there are a lot of complex physiological factors that could cause cardiovascular

instability in patients and quite usually uremic patients are prone to cardiovascular

stress. Advancement of continuous (invasive and noninvasive) monitoring techniques

in HD, for measuring blood volume, heart rate, blood pressure and solute concen-

trations, would be the initial step towards building better feedback control systems.

Development of continuous monitoring techniques is beyond the scope of this research

work, but the readers are motivated to look at a few research works [11], [60], to get

an understanding of the progress made in that genre.

The second step would be the testing and practical implementation of the built feed-

back control system. HD is undoubtedly a perfect example representing both a servo-

control problem where the treatment objectives can be considered as set points spec-

ified to the controller and a regulatory control problem with an ambition to keep

the patient in equilibrium and reduce any treatment abnormalities. Some of the set
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points could be static but some are dynamic. In current clinical practice, there are

three commercial routine feedback technologies from manufacturers for application

in HD. They include blood volume feedback, blood temperature feedback and blood

pressure feedback systems. However, the development of a comprehensive feedback

controller is not very because the designer needs to understand the significance of all

physiological variables to be controlled with a deep comprehension of the HD process

dynamics. Let us understand the working of a blood volume tracking system with

the help of a few test simulations in the next section and later dive into the optimal

control framework for HD.

5.1.1 Simulation results and discussion

The blood volume dynamics have been investigated by a lot of researchers exten-

sively and several factors have been found to influence the blood volume changes

during the HD sessions [128]. Out of the several factors identified, ultrafiltration rate

and dialysate sodium concentration emerge as the most important influential factors

affecting the blood volume changes. The cardiovascular stability of the patient and

the occurrence of hypovolemia are primarily based on these two dialysis variables.

Furthermore, profiling of ultrafiltration has been found to significantly reduce HD

induced complications by ensuring a stable blood behaviour, although there could be

a few possible exceptions. Then it was discovered that different patients have differ-

ent plasma refilling capacities and a feedback control module based on ultrafiltration

alone could not adapt well to the tune of plasma water removal as ultrafiltration is

of several orders higher in magnitude than the plasma refilling rate.

The body weight targets at the end of dialysis cannot be achieved just by specifying

the ultrafiltration volume. There was a need to identify a variable that would be

able to mobilize fluid across different body compartments, thereby compensating for

the rapid reduction in the circulating plasma volume by ultrafiltration. Dialysate

sodium concentration (DSC) was found to be the perfect fit for this job based on

extensive clinical studies. The investigators realized that by elevating the extracelllu-

lar sodium concentration during dialysis, more fluid can be internally mobilized from

the intracellular compartment to the extracellular compartment (flow of water due to

osmosis). This helps in achieving the desired body weight targets by the end of the

treatment. DSC not only increases plasma refilling but also triggers the activity of the

autonomic nervous system, inducing a slightly better hemodynamic reflex response

behaviour in patients. The Blood Volume Tracking (BVT) control system was born

out of collaborative research efforts from the Gambro-Hospal research groups [118].
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It was indeed a great improvement from the traditional hemodialysis treatment de-

livery. The blood volume control system was capable of manipulating UFR and DSC

based on the supplied blood volume trends (volemia).

The core of the BVT system has Proportional Integral Derivative (PID) controllers

and so two parallel PID controllers were designed to duplicate the performance of

an actual BVT system. This study would reveal to us if we could really benefit

from implementing feedback control. There are complex interactions between the

controlled and manipulated variables, but they are assumed to be independent of each

other and so parallel PIDs are used to control each state variable. The parameters of

the two PIDs are given in the table 5.1. A patient of 70 kg and a treatment time of

240 minutes are considered for this trail and the ideal profiles (dotted red line) for the

extracellular volume - UFR (U1) pair and the extracellular sodium concentration -

DSC (U2) were designed based on clinical heuristics. A step-wise profile, which closely

results in an exponential reduction in blood volume, was used for ultrafiltration rate

for the removal of 3 litres of overloaded fluid (corresponding to a 3 kg body weight

reduction) from the patient. The dialysate sodium concentration profile was designed

in such a way that the peak is reached within the first half of the treatment and the

second half is just for regulating the extracellular sodium concentration to be within

safe limits. The initial value of the concentration of all solutes was set in a way such

that the osmotic potential is zero at the beginning of the treatment. The performance

of the BVT, in the presence of initial state estimation errors, was showcased with the

help of two simulation settings.

Figure 5.1: PID case 1: When initial states are 5% higher
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Table 5.1: PID tuning parameters

Parameters PID 1 (UFR control) PID 2 (DSC control)

States feedback Plasma Volume or Blood Volume Extracellular sodium concentration
Gain -0.045 5
Integration time (min) 40 60
Derivative time (min) 5 10

The nominal values of all the variables of the HD system model were taken from

literature [140]. It was ensured that the PID controllers would compute realizable

values for both the manipulated variables (from Eq. (2.23)) by supplying suitable

saturation limits. The extracellular volume which is the sum of the interstitial fluid

volume and the blood plasma is shown in the plots as we have considered only two

compartments with respect to the concentration of solutes. If we look at figures 5.1

and 5.2, we can observe that the final targets (extracellular volume and extracellular

sodium concentration) could be achieved, although there are errors in the initial

state values only when a closed loop system (BVT) is employed. The ideal treatment

trajectories, if followed in an open loop scheme, fail to reach the final targets and

ends with an offset resulting in over (initial states are lower) or under (initial states

are higher) treatments.

Figure 5.2: PID case 2: When initial states are 5% lower

The results clearly show that feedback control is quintessential in reaching treatment

targets in the presence of errors (or disturbances). The PID controllers have com-
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puted the trajectories (away from ideal profiles) that would be necessary to reach

the final targets, based on the feedback information (or error between the desired

and the actual values). For the purpose of feedback, the controlled variables should

be continuously measured with the help of sensors. The main advantage of a BVT

system is that the user does not need a comprehensive dynamic model of the system

in this kind of feedback implementation. A simple understanding of the relationship

between the input-output pair is sufficient [11]. Following exponential volemia trajec-

tories have been tested in actual clinical practice and it was found that it has reduced

the occurrence of HD induced complications. Then a question arises if this BVT

system will always ensure cardiovascular stability and safety of the patient. To study

this, we experimented the ideal treatment profiles on different classes of HD patients

(as categorized in chapter 3). The same simulation settings from the previous study

in this section have been adopted here and it was assumed that treatment targets

were met in all cases.

Figure 5.3: Class 1 patient under treatment in a BVT system

Figure 5.3 depicts that a class 1 patient can handle this profiled HD treatment without

any substantial drop or increase in blood pressure and heart rate. Therefore, the BVT

system could be sufficient for those patients with an excellent cardiovascular reflex

mechanism. However, a class 2 patient exhibits mild signs of IDH in the middle of the

treatment as shown in figure 5.4. The patient’s reflex system works acceptable enough

to bring the patient back to hemodynamic stability towards the last hour of HD, when

both the manipulated inputs are maintained closer to their lower levels. We can
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observe from figure 5.5 that even when the BVT system reaches all treatment targets

following an ideal reference trajectory based on clinical heuristics, there would be a

class of ESRD patients who experience sudden and severe IDH during the treatment.

The patient’s reflex could not compensate with the rapid reduction in plasma volume

and so the patient experienced syncope and took almost 25 minutes to return to

normalcy. If such complications occur, the treatments have to be manually stopped

and carried out in a semi-automated fashion.

Figure 5.4: Class 2 patient under treatment in a BVT system

Figure 5.5: Class 3 patient under treatment in a BVT system
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We understand from our simulations that a BVT system is in general much robust

to external noises and to internal system abnormalities, because the deviations from

the desired values are first measured and then compensated for by the action of the

controller on the manipulated inputs. However, the BVT system does not guarantee

safety of the patient always and there is a need for a more advanced comprehensive

control strategy which would work on all different classes of patients.

5.2 Layout of the feedback control system for ap-

plication in HD

Modern dialysis has undergone major developments since the earlier days when feed-

back control in HD just meant control of flow and pressure. In the view of clin-

icians, the arrival of the bicarbonate dialysate and volumetric control of ultrafil-

tration seemed like major advancements in their potential to deliver more reliable

treatments to the patients who come to the HD treatment centre. However, Intradi-

alytic Hypotension (IDH) still occurs in 30% of the HD patient population leading

to inadequate treatments [159]. This calls the need for a a new strategy which will

involve the use of more online information regarding the condition of the patient dur-

ing the treatment. The clinical information that can be used for enhanced treatment

includes blood volume, hemodynamic variables, therapy adequacy and blood access

monitoring. The researchers in HD have reached a consensus that the treatments

have to be tailored for every individual according to their personal clinical needs set

by their doctors.

Semi-automated treatments by manual adjustment of the dialysis machine variables

like Ultrafiltration Rate (UFR) and Dialysate Sodium Concentration (DSC) are be-

coming increasingly difficult because of the complex dynamic interactions between

different hemodynamic variables and the perturbations induced by HD. This prompts

a necessity for the dialysis machine variables to be adjusted continuously rather than

maintaining constant, predefined settings by the clinical practitioner. On those lines,

this chapter is an attempt by the authors to develop a comprehensive optimal con-

trol framework, with the objective of providing completely automated treatments for

actual clinical realization in the near future, and in this section, the overall layout of

our proposed optimal control framework, as shown in figure 5.6, for potential practi-

cal implementation in an actual HD treatment setting will be explained. The most

important components namely, the observer (Extended Kalman Filter (EKF)) and

the nonlinear controller (Shrinking Horizon Batch Zone Nonlinear Model Predictive
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Controller (SHBZNMPC)), will be elucidated in much detail in separate sections later.

Figure 5.6: Block diagram of the proposed feedback control system with process and
sensor noise

The feedback control system, shown above in figure 5.6, is a gross layout and does

not include all the micro components in the system. The HD control system is a

network of several components and configurations that will drive the system to the

desired target state while maintaining the stability of the patient. Most of the feed-

back control systems might have a similar layout, however, some features could be

ignored or added depending on the user’s requirements. The plant in our case, is

the patient who is undergoing the HD treatment. The patient is the most important

physical component in the HD control system. It is the patient’s output (total body

water, toxin concentrations and many more) which are to be guided to physiological

targets. This research work is completely a simulation study and so a dynamic math-

ematical model of the plant (refer chapter 3 for all dynamic equations of the plant)

is quintessential for understanding and designing an advanced feedback control strat-

egy. The dialysis machine is the actuator which receives the control signal from the

controller and executes it on the patient to force the patient to reach the specified

targets.

There are several disturbances which are external to the HD control system and the

model structure (poor patient lifestyle leading to abnormal physiological changes than

usual, infusion before treatment) and they affect the process. All these disturbances

have been grouped under process noise (ω) in our design. Although, the nature of

noise is purely stochastic, it is considered to be of additive nature in our design.

The actual response of the patient has to be measured to know the impact of the

controller’s actions and also for comparing the actual states with the desired state.
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The outputs of the plant are measured with the help of sensors. A sensor is a device

which is used for measuring the actual system output and the measured states are

not always accurate and identical with the true states. To replicate the inherent

uncertainty in the measurements, sensor noise (ν) of additive nature is considered.

The process (N(0, 0.0052)) and sensor (N(0, 0.0252)) noise are white noise signals and

they are drawn from normal distributions of zero mean and the variances mentioned.

To compute the optimal treatment profiles (u), the dynamic model in the controller,

which has several states to predict the physiological condition of the plant, has to

be run many times. To do so, the controller needs the initial states of the plant at

every sampling instant. In real practice, it is quite not practical or it is impossible to

measure all the actual dynamic states of the plant and so a state estimation algorithm

which will work with the available noninvasive clinical measurements (MAP and HP)

to reconstruct the dynamic state vector (x̂) is used. The state estimation algorithm

used in our design is an Extended Kalman Filter.

The controller is the heart of the HD control system and it takes in all information

from the state estimator and the clinical practitioners (targets and constraints) and

computes the optimal values of all manipulated variables based on the embedded

replica dynamic model of the plant. The controller used here is a Shrinking Hori-

zon Batch Zone Nonlinear Model Predictive Controller (SHBZNMPC) and it uses

an optimization-based approach (minimizing an objective function) to arrive at the

optimal input sequences for all manipulated variables. The computed optimal inputs

are fed to the dialysis machine which acts on the patient in turn. This loop is contin-

ued until the end of the treatment. In the next few sections, the design of the state

estimator and the controller for this particular application will be elaborated in much

detail with test simulation results.

5.3 Design of a nonlinear state estimator for appli-

cation in HD: Extended Kalman Filter (EKF)

In control theory, the Extended Kalman Filter (EKF) is the nonlinear version of the

well-known Kalman Filter. It works by successively linearizing the system around

the current estimate of the states and its covariance. The mathematical equations

related to the design of the EKF were outlined in chapter 2 and the reader could

look back at the list of equations whenever necessary. Also on the other hand, the

EKF would be sufficient to verify the results of the PBH observability test mentioned

in the first half of chapter 4. In chapter 4, we discovered that any 2 measurements
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will make the HD system model observable. The 18 states of the original system

model include the volumes of the body compartments, the concentration of solutes

in each of the body compartments, the pressures of the vascular compartments and

the short-term baroflex regulation states. Although a blood sample is taken before

starting the treatment to find the solute concentrations in the blood plasma, the Mean

arterial Pressure (MAP), from the pressures of the vascular compartments, and the

Heart Period (HP) or Heart Rate (HR), from the internal reflex mechanism states, are

the two easily available noninvasive clinical measurements during HD. Because these

measurements are available in discrete time intervals, a discrete time EKF would be

a good choice for this purpose. The design settings of the discrete time EKF are

described below:

• The state covariance matrix (P ) matrix was initialized as explained in Eq. (2.17).

In that initial guess equation, x0 is the vector of actual initial state values and

x̂0 is the user specified vector of the guess values of states.

• x0 is fixed at the nominal values available in literature [140]. The offset in the

initial guess is assumed to be 5%.

• The parameters of the original system model are fixed at the nominal values

from literature for the initial test case and then they are fixed at the true values

of each patient when they are tested on the patient data set from chapter 4.

• The process covariance matrix (Q) and the measurement covariance (R) ma-

trices are diagonal matrices of their respective covariances. The process covari-

ance is assumed to be 0.0001 and the measurement covariance is assumed to be

0.00001 for our initial test case and later on they will be increased to 0.005 and

0.00005 respectively when the EKF design is tested on the patient data set in

table 4.4.

• The simulation time is set to 4 hours.

• It is assumed that the measurements were noise free in our initial test case and

then additive noise, drawn from a normal distribution N(0, 0.00052), is added

to the measurements (noise corruption = multiplying the noise values with the

true values and then adding them to the true values).

• New measurements of the hemodynamic variables are available every minute

and so ∆T = 60 seconds.
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5.3.1 Simulation results and discussion

The designed EKF was tested on multiple case settings so that it could be confidently

embedded into the optimal control framework for the observation of states with an

acceptable level of accuracy. All the simulations were done in Python writing the

individual blocks of the EKF method in separate functions. To answer the question

of system observability, the performance of the EKF is tested with the availability

of both one and two clinical measurements. This shall be our first test case. Like

mentioned earlier, an initial offset error of 5% was assumed in the guess values of

the states. In figure 5.7, the blue line is the true state trajectory, the yellow line is

the EKF estimated state trajectory and the green line is the open loop simulation

with the wrong initial states. The EKF and the open loop will start at the same

initial point. In our simulations, the Root Mean Square Error (RMSE) will be used

to evaluate the performance of the EKF and the error trajectories of the individual

states are plotted by computing the Root Square Error (RSE) at a particular time

instant (t). The squared errors were scaled and then used in the equations.

RMSEx(t) =

√∑Nx
k=1(x̂k (t)− xk (t))2

Nx

(5.1)

RSEx(t) =

√√√√ Nx∑
k=1

(x̂k (t)− xk (t))2 (5.2)

Figure 5.7: Extended Kalman filter (EKF) with 1 measurement (MAP)
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The simulation time was set to 4 hours because the EKF will be run in parallel to

the controller if implemented in a real clinical setting. For practical realization, the

EKF should also converge within the standard treatment time of 4 hours. However,

running the EKF for a longer duration would allow us to comment on the convergence

results better. In our test cases, the performance of the EKFs will be evaluated within

the treatment time of 4 hours. In the case where only one measurement (MAP) is

available, the reader can easily observe from figure 5.7 that the EKF fails to recover

the true state information. Most of the EKF estimated states trajectories are found

to diverge away from the true state trajectories. Also if one looks at the RSE plots

of states (figure 5.8), most of the estimated errors at the end of 4 hours are well away

from zero with the exception of only a few states (X7, X10, X15, X17).

Table 5.2: Tuned diagonal elements of the initial guess of the process covariance
matrix obtained from Eq. 2.17

Position index 1,1 2,2 3,3 4,4 6,6 7,7 rest
Value 50 1E8 100 300 1E7 75000 500

The diagonal entries of the initial guess of the process covariance matrix were fine-

tuned to check if the true states were actually recoverable from 1 measurement, but

the attempt was a failure and so we infer that the system is unobservable when we

have only one measurement. Only the final tuning settings are shown, but a rigorous

effort (multiple tries) was made while fixing the diagonal entries of the P matrix.

Figure 5.8: Observer RSE dynamics with 1 measurement (MAP)
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Now, let us look at the case (figure 5.9) where we have two measurements (MAP and

HP) in hand. The reader will easily observe from the figure that most of the states

have reached the true state values within the 4 hour treatment time with an exception

of only state (mass of urea in the extracellular pool). But the RSE trajectory of that

particular state displays an asymptotic behaviour and so it can be considered as an

observable state as well. The same tuning employed for the previous case (given in

table 5.2) has been used here and we can see an aggressive EKF performance.

Figure 5.9: Extended Kalman filter (EKF) with 2 measurements (MAP, HP)

Figure 5.10: Observer RSE dynamics with 2 measurements (MAP, HP)
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The aggressive EKF performance seen in figure 5.9 comes as a favourable feature for

our case because in the HD control system design we expect the EKF to converge

faster to ensure that the controller can implement moves based on the state feedback

and drive the system to the desired target by the end of the treatment session. But

all our states have a physiological meaning and so we supplied suitable saturation

limits so that the results would be meaningful. For instance, the states pertaining to

the mass and volume cannot go negative.

(a) One measurement (MAP) (b) Two measurements (MAP, HP)

Figure 5.11: Comparison of estimation performance with the help of normalized
RMSE dynamics

Finally, to get a conclusion based on our simulation results, we look at the overall

normalized RMSE plots. For a state observer to be estimably stable [112], the observer

error dynamics should follow an asymptotic decaying trajectory. This means that the

state estimation error will decay to zero over the extended finite time horizon. In

figure 5.11, we observe that in the case where we have only one measurement, the

EKF is not able to achieve asymptotic error tracking while in the case where we

have two measurements, the estimation error falls rapidly from the initial values and

gradually keeps decreasing towards the end of the treatment. With the results from

the PBH test and from the EKF estimations (1 & 2 measurements), we conclude

that the system is observable with two measurements and the observer will be able

to reconstruct the full state vector from these two measurements with an acceptable

range of accuracy.

Then we applied the designed EKF for two measurements, to the synthetic clinical

patient information from 4.4. The same EKF design settings were used for all patients.

This would enable us to analyse if our original design is flexible enough to work across
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different patients in the data set. The nominal values of the state variables (adopted

from literature) were given as the initial guess for both the EKF and the open-loop

simulations. We clearly see that the RMSE of estimation falls rapidly, than the open-

loop simulations, when an EKF is employed for state estimation. For patients 2, 3,

5, 6 and 7 the EKF results are noticed to converge within the end of the treatment.

However, for patients 1 and 4, the state estimation errors have still not converged by

the end of the treatment. The user will be able to arrive at better designed EKFs

for patients 1 and 4 if the EKF parameters are tuned. Although tuning the EKF

for each patient would guarantee even better estimation results, the large number of

patients on HD makes it cumbersome for the user to design the EKF individually for

every patient. It would be ideal to adopt a EKF design that will work across different

patients for user-friendly practical realization.

(a) Patient 1 (b) Patient 2 (c) Patient 3

(d) Patient 4 (e) Patient 5 (f) Patient 6

(g) Patient 7

Figure 5.12: Estimation performance of EKF for different patients in table 4.4 in the
presence of process and measurement noises (both N(0, 0.00052))
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5.4 Design of a nonlinear Batch Zone Nonlinear

Model Predictive Controller (BZNMPC) for

application in HD

Model Predictive Control (MPC) as a control strategy emerged as a commercial

advanced process control package in the later half of the 20th century. The term

MPC does not mean a single control methodology, but rather it could refer to any

control strategy which extensively uses a model of the process to compute the optimal

control inputs by minimizing an objective function. Usually, a MPC consists of two

segments, the system model block and the optimizer block. In our case, the prime

agenda of a MPC would be to use a dynamic model of the HD system to predict the

hemodynamic variables like MAP and HP and optimize the future system dynamics.

At each sampling time, the MPC will solve an open-loop control problem over a finite

time interval by taking all process and physiological constraints (both current and

future) into account. The optimizer block strives to select the control inputs which

have the least objective function value. The objective function is designed by the user

and it is completely problem-specific there is no set standard. Only the first value in

the optimal control sequence is implemented while the rest is discarded and the same

procedure is repeated for the following control intervals. It might look as an open-

loop control strategy, but it is converted to a closed-loop strategy by featuring in the

measurements as the current state values. In HD, MPC control strategy gives the

user a more natural way of formulating the optimal control problem in time domain

and allows the user to explicitly specific the physiological and process constraints of

HD [60]. For an indepth understanding of the MPC control algorithm, the reader is

motivated to look at excellent literature sources [112].

There are several drawbacks of using a traditional MPC in HD because of its ag-

gressiveness when using the same design (tuning parameters) for several groups of

patients. Moreover, when controlling around a set point, the controller will make

aggressive moves around the set point because of the inherent integral action and

also makes extra moves to keep the system closer to the set point. The global patient

pool of HD is increasing at an alarming rate and it might not be ideal to sit and tune

the controller repeatedly for every patient before the start of the treatment. Each pa-

tient will have a different hemodynamic response to the treatment and the controller

should be intelligent enough to work across different patients. In addition to that,

the clinical targets encountered in HD settings are not strict set points but rather

are acceptable physiological ranges. When there are no strict clinical set points, Zone
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MPC (ZMPC) would the perfect fit for the problem and this technology is quickly

emerging in medical field as a potential advanced control strategy of choice (diabetes,

anemia management) [95]. It has also been successfully applied to high precision

agricultural systems for soil moisture regulation [92]. ZMPC is realized by setting

upper and lower bounds for the outputs rather than strict point values of targets.

Zone control is essentially a MPC strategy where all the constraints are softened by

the introduction of slack variables and then penalizing the slack variables in the ob-

jective function. The basic formulation of a ZMPC is given in chapter 2 and it can

be modified to fit our problem statement as given below.

min
ˆx(i), ε, ∆u

Np∑
i=1

Q · ε2s +

Np−1∑
i=0

R ·∆u2
i + P · y2

f +Qf · ε2f (5.3a)

s.t. ˆxi+1 = f(x̂i, ui) i = 1, 2, .., Np (5.3b)

ŷi = h(x̂i, ui) i = 1, 2, .., Np (5.3c)

xmin ≤ x̂i ≤ xmax i = 1, 2, .., Np (5.3d)

umin ≤ ui ≤ umax i = 0, 1, .., Np − 1 (5.3e)

∆umin ≤ ∆ui ≤ ∆umax i = 0, 1, .., Np − 1 (5.3f)

BL − εLk ≤ ŷi ≤ BU + εUk k = s (or) f (5.3g)

ε = {εs, εf} (5.3h)

εs ≥ 0, εf ≥ 0 (5.3i)

Here, εs denotes the list of slack variables for the state (or outputs) constraints and

appear in the stage cost formulation and εf denotes the list of slack variables for the

terminal states (or outputs) and appears in the terminal cost formulation. All the

slack variables used in the problem formulation are non negative. Q amd Qf are the

penalty matrices for the slack variables in stage cost and terminal cost formulation

respectively. P matrix penalizes the terminal states (or outputs) and R is the penalty

matrix for the rate of change of input. The diagonal entries of all the penalty matrices

are tuned according to the user’s requirements.

Let us recall the main objectives of a HD treatment, based on our understanding of

the problem statement from chapter 1. We can deduce the following objectives from

the basic functions of the kidneys and our clinical acumen of HD treatments.

• Weight (or) fluid management: Removal of the overloaded fluid in the patient’s

body.
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• Toxin management (balance): Removal of toxic substances from the patient’s

body.

• Electrolyte balance: Regulation of blood sodium and potassium levels within

physiological limits.

• Hemodynamic stability: Regulation of blood pressure within tight bounds.

• Optimal minimum time: The minimum time taken to reach all the objectives

of the treatment.

Figure 5.13: Conflicting objectives posed by the HD problem statement

We can observe from figure 5.13 that each of these objectives are interconnected and

achieving one occurs at the cost of the other. For instance, a quick treatment would

induce a rapid reduction in the circulating volume and results in a considerable drop in

MAP. The quick removal of urea in the hemodialyzer in the first half of the treatment

causes a drop in the extracellular osmolarity and this results in the transfer of fluid

to intracellular fluid space due to osmosis. This aggravates the risk of cardiovascular

instability. UFR on the other hand, does not influence the concentrations of any

of the solutes but plays a crucial role in weight management. The volume of fluid
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removed during UF is directly drawn from the circulating blood volume and affects

the hemodynamic stability of the patient. In our particular problem application, we

see that there are more objective (or outputs) than degrees of freedom (or inputs).

Zone MPC works well in striking a balance in problems with conflicting objectives

and this supports our choice of Zone MPC for HD application.

In HD, clinicians are more interested in the terminal states of the patient, which

means that the patient should reach the given HD targets by the end of the treatment.

The only exception to this is the blood pressure (MAP), which should be within safe

limits at all times. Moreover, as the final time is fixed, our ZMPC problem essentially

becomes an end point optimization problem. Putting all this together, HD is a batch

problem where the patients have to reach some clinical targets by the end of the

treatment. A more natural way for tackling the end point optimization problem is

the conversion of the classical MPC receding horizon approach to shrinking horizon

as shown in figure 5.14, to reinstate to the controller that the targets have to be

reached at the final time no matter whatever trajectory the states take as long as they

satisfy the safety and process constraints. The control interval is 600 seconds, which

is sufficiently large enough for the optimal control problem to be solved and ideal

enough to reduce excessive wear and tear on the actuators in the dialysis machine. If

the total simulation time is 4 hours, the prediction horizon at the initial time would be

24. Then it decreases by one after every iteration as shown in figure 5.14. In addition

to all this, the ZMPC has the nonlinear dynamic model of the plant embedded into

it. All these put together, our ZMPC can be called as a Shrinking Horizon Batch

Zone Nonlinear Model Predictive Controller (SHBZNMPC) or simply Batch ZNMPC

(BZNMPC).

Figure 5.14: Shrinking horizon: Progression of the prediction horizon
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Table 5.3: Realization of the BZNMPC problem for application in HD

S.No Goal Realization Mathematical formulation
Penalty
matrix

Penalty
value

Zone bounds (if any)
Lower Upper

1
Toxin

management
Terminal cost

(set point)
M ex

U − 0.3× UC × (Vpl + V is) P 1E3 0.3× UC 0.3× UC

2
Weight

management

Terminal cost
(zone)

Vpl + V is+ Vic Qf 1E3 Vtotal(t0)− 3500 Vtotal(t0)− 3000

Terminal cost
(zone)

Vic Qf 1E3 Vic(t0)− 1000 Vic(t0)− 500

3
Electrolyte

balance

Terminal cost
(set point)

M ex
Na − 0.1425× (Vpl + V is) P 1E4 0.1425 0.1425

Terminal cost
(zone)

Cex
Na Qf 1E2 0.140 0.145

Terminal cost
(zone)

Cex
K Qf 1E2 0.0036 0.0052

4
Hemodynamic

stability
Stage cost

(zone)
Psa Q 1E8 90 100

5
Optimal

treatment
time

Renumeration
Fixed the final time at different values starting from 2 hours (2, 2.5, 3, 3.5, 4)

and the BZNMPC problem was solved repeatedly.

There are a few problems with a general ZMPC formulation too. The cost function is

designed in such a way that there will be no penalties when it is within the specified

zone. Most of the time, the optimal solution will allow the system to settle at either

the upper or lower zone boundaries. This comes as an undesirable feature as the

presence of plant model mismatch and other noises will often maneuver the system

out of the desired zone region. To overcome this, a mixture of setpoints are also used

in the terminal cost formulation. For instance, the extracellular urea concentration

at the end of the treatment should have been reduced by 70% (atleast 65% according

to National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) which

corresponds to a ‘KT/V’ factor of 1.2). The extracellular sodium concentration should

be within the zone bounds and also close to 142.5 mmol/litre. So to realize this, it is

included both as a set point (middle point of the zone boundaries) and as a target zone.

This ensures that the extracellular sodium concentration will stay within bounds and

not fluctuate often to noises. The blood pressure stability is enforced by including the

MAP within zone bounds by supplying very high penalties for violation. By definition,

an increase or decrease of 10 mmHg from the initial blood pressure value is a HD

complication. In our data set, it was assumed that the initial MAP of all the patients

was 100 mmHg. This justifies the selection of 90 and 110 mmHg as the bounds

for MAP. Moreover, high penalty for leaving the MAP safe zone will prevent the

controller from choosing input trajectories that could cause rapid pressure changes.

The bounds mentioned in table 5.3 are not rigid and the user is free to construct any

of the bounds based on their problem requirements and the data set in hand. The

method in which the optimal minimum treatment time was found is discussed more

in detail in a separate section.
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Finally, the reader is presented with the configuration of manipulated inputs con-

sidered in our BZNMPC problem in table 5.4. Most of the bounds were adopted

from other works in literature [60], [156]. Infusion fluid has not been explored as

a degree of freedom before and so it was set at logical bounds with a high penalty

for utilization. In clinical practice, saline injection is administered when there is a

occurrence of severe IDH or in other treatment modalities. Hypertonic saline solu-

tions are available in 10% or 20% concentrations commercially. We have employed

a 10% hypertonic solution as the infusion fluid and the concentration of it has been

adopted from Lavoisier Chemical’s Material Safety Data Sheet (MSDS). No strict

state constraints are enforced in the problem formulation. The lower bounds of all

states were set at 0 and the upper bounds were at infinity. The introduction of slack

variables and the presence of the model itself in the constraints make sure that the

model predictions are meaningful.

Table 5.4: Configuration of manipulated inputs in BZNMPC

S.No Manipulated variable Unit
Bounds

Rate of change
bounds

Penalty for
rate of change

Lower Upper Lower Upper
1 Ultrafiltration Rate (UFR) ml/s 0 0.3472 -0.05 0.05 1E3
2 Dialysate Sodium Concentration (DSC) mmol/ml 0.130 0.165 -0.01 0.01 1E3
3 Blood flow rate ml/min 0.3472 400 -25 25 1
4 Dialysate flow rate ml/min 400 800 -25 25 1
5 Infusion Rate (IR) ml/s 0 0.05 −∞ +∞ 1E5
6 Infusion Fluid Concentration (IFC) mmol/ml 1.711 1.711 0 0 1E3

5.5 BZNMPC: Simulation results and discussion

Before starting the control experiments, the controllability of the system was checked

using the PBH test and the system was found to be stabilizable. In this section, the

results obtained by applying the BZNMPC algorithm to the patients (in table 4.4) are

explained. A weight reduction of atleast 3 kilograms was targeted during HD. A URR

of atleast 65% was targeted and the extracellular sodium concentration at the end of

the treatment was targeted to be within acceptable physiological ranges [110]. The

BZNMPC and the EKF work at the same sampling interval of 600 seconds. Clinical

measurements (MAP and HP) are taken every 600 seconds. The identified model for

each of the patients in chapter 4 was set as the embedded model in the controller and

the estimator. The variables of the plant model were set at the true values. This by

default, introduces plant model mismatch, although the estimation performance of

the identified model closely resembled the true patient behaviour. The process noise

(N(0, 0.0052)) and measurement noise (N(0, 0.0252)) are white noise sequences and

126



they are drawn from normal distributions. They are assumed to be of additive nature.

In HD clinical protocol, a blood sampling is done to get an idea of the blood urea

levels, other solute levels before dialysis and so it was assumed that the concentrations

of all solutes were known before the treatment started. The nominal values used for

each patient in chapter 4’s analysis were supplied as the initial guess to the EKF.

The EKF reconstructs the full state vector based on new measurements, and supplies

it as the current state to the BZNMPC. The controller then uses this as the starting

point and computes the optimal value of inputs based on an optimization framework.

The user has to specify the type of dialyzer used for HD and we have considered

K0A to be 900 ml/min in our simulation study. This closely matches with Xenium

H11 polyethersulfone membrane dialyzer from Baxter International Incorporation.

The K0A values can be set at the values mentioned in the manufacturer’s design

specification sheet.

Different methods were attempted and finally the mathematical models were imple-

mented in CasADi framework [4] and the numerical integration was solved by using

Orthogonal Collocation on Finite Elements (OCFE) with 3 collocation points for ev-

ery sampling interval. The OCFE method minimises the difference between the La-

grange interpolation and the actual solution at predetermined collocation points [156].

The OCFE method is used to simulate the HD process and solve the optimal control

problem based on the embedded mathematical model. IPOPT solver was used to

solve the optimal control problem as the nature of the problem was very sparse and

large. According to the founders of CasADi, IPOPT works best for very large and

sparse Non Linear Programming (NLP) problems. The tolerance for the problem was

set at 1 × 10−4 and the maximum number of iterations for each iteration was set at

5000. The BZNMPC optimal control framework was realized by using the ‘MPC-

Tools’ open source package developed in the research group of James B. Rawlings.

‘MPCTools’ works with CasADi in the back-end. The summary of the results from

the BZNMPC simulations are outlined in table 5.5. The reader should look into the

table results in parallel when reading the next three subsections.

Table 5.5: Summary of BZNMPC results

Patient
index

Target
UFV
(mL)

Actual
UFV
(mL)

Target blood
urea levels
(mmol/L)

Actual final blood
urea concentration

(mmol/L)

Target blood
sodium levels

(mmol/L)

Actual final blood
sodium concentration

(mmol/L)

Optimal minimum
treatment time

(hours)
1 3000 to 3500 3600.44 8.58 7.16 140 to 145 141.57 3
2 3000 to 3500 3623.32 11.38 8.18 140 to 145 141.66 3.5
3 3000 to 3500 3683.99 7 6.99 140 to 145 141.77 3
4 3000 to 3500 3600.91 9.38 6.16 140 to 145 141.66 3.5
5 3000 to 3500 3624.82 12.6 12.6 140 to 145 144.39 3
6 3000 to 3500 3628.23 10.57 9.71 140 to 145 142.88 3.5
7 3000 to 3500 3619.57 10.33 9.63 140 to 145 142.34 3
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5.5.1 Class 3 patient: Severe IDH & weak hemodynamic sta-
bility

To make our case study more interesting let us create a hypothetical clinical case

as mentioned below. The reader should note that if a trajectory is within the green

shaded area, it is within the specified zone targets.

Hypothetical control problem A ESRD patient (Patient 4) enters the clinic

with an increase of roughly around 3 kilograms in body weight from the previous

hemodialysis treatment because of poor lifestyle (eating and drinking) choices. Pa-

tient 4’s kidneys have completely failed to work and the patient has been in the queue

for a very long time for kidney transplantation. Meanwhile, HD being the life saving

therapy for patient 4, patient 4’s nephrologist wants 3 litres of overloaded fluid to

be removed and a reduction of atleast 65% in his blood urea concentration and his

blood sodium and potassium levels to be within 140 to 145 mmol/litres and 3.6 to

5.2 mmol/litres respectively, so that the patient can be assured to be at homeostasis

while exiting the treatment centre. Patient 4’s medical records say his cardiovascu-

lar stability during hemodialysis treatment is very poor and the nurses had to stop

the treatment several times and then restart after keeping him in the Trendelenburg

position position (TP) for a while (or by administering hypertonic saline injections).

How do we help Patient 4 get a continuous safe treatment so that he does not have to

spend long hours in the treatment center and the clinical care givers and the patient

can be at less risk?

Figure 5.15: Patient 4: Treatment objectives (3.5 h)
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The hypothetical problem posted involves solving our original BZNMPC problem. All

factual information mentioned in the problem statement has been formulated as target

zones and constraints in the BZNMPC problem. The optimal profiles calculated for

each of the inputs will be the optimal tailored HD treatment for patient 4. We observe

from figure 5.15 that, all the treatment objectives are met. Let us understand the

objectives one after the other. The images on the first row cater to the weight

management objective. The total volume removed by UF from patient 4 is 3600.91

ml. This is 2.8% higher than the lower bound (3500 ml) supplied to the BZNMPC.

As long as the BZNMPC meets all treatment targets it could be taken as a successful

treatment. Under treating the patient could be worse than over treatment. The

hemodynamic stability of patient 4 is not disturbed by removing slightly more fluid

than required. The potential cause of over treatment could be plant model mismatch,

EKF estimation errors and the process noise itself. The second zone imposed on the

intracellular volume keeps a check on the amount of fluid that can be inter transferred

between the compartments. There are higher chances of DDS if the intracellular

volume is excessively removed during HD.

Figure 5.16: Patient 4: Optimal treatment profiles from the BZNMPC (3.5 h)

DSC profiling increases the extracellular osmolarity and pulls more fluid out of the

intracellular pool during the first half of the treatment. In the second half, the ex-

tracellular sodium concentration has to be brought back to physiological limits and

so DSC runs at the lower bounds. The blood and dialysate flow rates were optimally

adjusted to reach the urea targets before the end of the treatment. The dialysate has
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constant concentration of potassium and so the extracellular potassium concentration

is driven closer to the potassium levels in the dialysate. An interesting observation

is that this particular patient 4, whose cardiovascular stability has always been no-

torious, has successively survived the treatment without a considerable drop of MAP

more than 10 mm Hg. Few points outside the MAP zone could be potentially because

of measurement errors and there is no evidence of rapid blood pressure drop. The

heart rate of the patient rises right after the commencement of treatment, indicating

that the patient’s reflex mechanism is working hard to maintain the hemodynamic

stability. The concentration of the infusion fluid was fixed and so the controller can

only determine whether to use the infusion fluid or not through U5. However, the user

can set the concentration of the infusion fluid equal to 10% or 20% concentration. The

mixed use of set point based tracking and zone control has succeeded in maintaining

the sodium levels close to the midpoint between the upper and lower zone boundaries.

We can see observe from figure 5.15 that all the treatment objectives have been met,

while satisfying all constraints and so the optimal treatment profiles given by the

BZNMPC (shown in figure 5.16) can be considered as the chosen treatment regime

for patient 4. The simulations were started by fixing the treatment time as 4 hours

and as it was successful the treatment time was reduced by 30 minutes to 3.5 hours.

The results presented above are for a total treatment time of 3.5 hours.

Figure 5.17: Patient 4: Failed - Treatment objectives (3 h)

After the successful trial, let us again reduce the treatment time to 3 hours and then

resolve the BZNMPC problem again. We observe from figure 5.17 that, all the treat-
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ment objectives are met except MAP stability for a 3 hour treatment. The patient’s

MAP starts falling rapidly right after the second hour of treatment. This kind of

a rapid pressure drop is not favourable in the context of HD and so we deem this

scenario as a fail. Only if all the objectives are met, the corresponding treatment

regime is chosen to be successful. Therefore, the treatment profile (figure 5.18) com-

puted for the 3 hour case is rejected and a 3 hour treatment is not possible for this

patient if the clinician wants to meet all the treatment objectives without compro-

mising on anything. The treatment were repeated for 2.5 and 2 hours and the results

of the treatment were recorded. This will help us comment on the minimum optimal

treatment time.

Figure 5.18: Patient 4: Failed - Optimal treatment profiles from the BZNMPC (3 h)

5.5.2 Class 2 patient: Mild IDH & acceptable hemodynamic
stability

Let us look into the BZNMPC results obtained for a class 2 patient in this section.

Patient 1 is the representative of the CKD patient group who exhibit mild hypotension

during HD. At first, the BZNMPC problem wa solved for a treatment time of 4 hours

and after every successful treatment the treatment time was reduced by 30 minutes.

The first glance at figure 5.19 indicated that all treatment objectives have been met

for this patient in 3 hours in contrast to a standard 4 hour treatment. However, there

are signs of mild pressure drop toward the end of the treatment. This is coupled with

a gradual increase in heart rate towards the end of the treatment. The actual volume

removed by the controller is 100.44 ml more than the specified lower bound, possibly
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because of process disturbances and a EKF estimate offset. The bounds could be

adjusted for reducing the amount of fluid removed by ultrafiltration. However, in our

design we tried to keep all settings of the BZNMPC across different patient groups

uniform to comment on the robustness of the BZNMPC tuning parameters selected.

Figure 5.19: Patient 1: Treatment objectives (3 h)

We can associate the BZNMPC’s ability to run at UF rates closer to the upper

bounds, as portrayed in figure 5.20, to the increased cardiovascular stability of a class

2 patient when compared with a class 3 patient.

Figure 5.20: Patient 1: Optimal treatment profiles from the BZNMPC (3 h)
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5.5.3 Class 1 patient: No IDH & good hemodynamic stabil-
ity

As the final class candidate, let us examine the results from the BZNMPC for a class

1 patient. Patient 7’s results are presented here. However, the other patients (3 & 5)

in this category displayed similar behaviour. One can observe from figure 5.21 that

all the targets could be met without the patient undergoing signs of hemodynamic

instability. Though is a slight extra removal of fluid by ultrafiltration, the patient’s

heart rate remains flat indicating that this patient can handle a fluid removal of upto

3.6 litres at ease without experiencing any complications. One other reason for the

extra removal of total fluid volume, in addition to the process disturbance, for all the

test cases revealing a similar behaviour could be because of the fact that the same

EKF settings were used for state estimation.

Figure 5.21: Patient 7: Treatment objectives (3 h)

The superior feature of our approach in determining the optimal profiles in compar-

ison with other research works in literature [30], [138] is that the BZNMPC has the

independence to choose any profile trajectory between the lower and upper bounds of

inputs. In the cited literature, the DSC profiles were forced along a polynomial curve

to help the controller choose a DSC profile which will have a peak at the first half of

the treatment. In our design, we plugged in the cardiovascular predictive capability

into the model and let the controller choose the optimal trajectory of inputs. The

BZNMPC has naturally chosen higher UF rates for class 1 and class 2 patients, while

for class 3 patients the UF profile looks like a decreasing step towards the end of
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the treatment. This shows that the controller has the acumen to visualize that a

class 3 patient will experience more frequent pressure drops in the last hour of HD

treatment. The optimal treatment profiles for a class 1 patient (patient 7) are shown

in figure 5.22. These treatment profiles are the personalized HD therapy regimes for

patient 7.

Figure 5.22: Patient 7: Optimal treatment profiles from the BZNMPC (3 h)

5.6 Determination of optimal HD treatment time

As a final exercise for this chapter, the results from the BZNMPC results were plotted

in a chart with the different treatment objectives of HD as shown in figure 5.23. The

objectives of the HD treatment include Toxin Management (TM), Weight Manage-

ment (WM), Electrolyte Balance (EB), Safety Constraints (SC). The HD treatment

times could be anywhere between 2 to 6 hours [40]. Our goal in this section is to

find the minimum optimal treatment time in which all treatment objectives would

be met without any compromise. All the objectives are given equal importance when

determining the success or failure of a BZNMPC computed treatment profile regime.

If a particular objective is met during HD it is marked in green and if it is not satisfied

the box is coloured red. Our trials taught us that all the treatment objectives were

met for any treatment time above 4 hours and so they were omitted for clarity. The

longer the dialysis, the more stable the patient will be and the dialyzer has enough

time to clear all toxins and regulate the electrolytes within tight limits with ease. The

BZNMPC simulations were repeated for every patient recursively only by changing
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the final treatment time at every iteration. We see that all patients were able to

handle a treatment time reduction of 30 minutes from the standard 4 hour dialysis.

The hemodynamically unstable patients in the data set (Patients 2, 4, 6) displayed

signs of safety constraints violation (MAP decreased by more than 10 mmHg) when

subjected to a 3 hour HD removing roughly around 3.5 litres of overloaded fluid.

However, all patients with acceptable and good cardiovascular stability (Patients 1,

3, 5, 7) were able to handle upto a reduction of 1 hour in the standard treatment time

of 4 hours, while meeting all treatment objectives. Even at 2.5 (and 2) hours HD, the

healthy patients did not exhibit signs of cardiovascular instability. The limiting fac-

tors preventing the healthy patients from undergoing successful 2.5 hour treatments

are purely because of mass transfer (only toxin management and electrolyte balance

are not met). We chose a low flux membrane from Baxter for all our simulations

but if the simulations were repeated with the membrane characteristics of a high flux

dialyzer allowing more clearance of solutes, the 2.5 hour target could be reached for

healthy patients.

Figure 5.23: Chart for finding the optimal treatment time based on re-numeration

In addition to the above analysis, the bounds on inputs like ultrafiltration rate have

also influenced the 2 hour treatment results for healthy patients. The upper bound for

UFR (1.25 L/h) was taken from literature [60]. In addition to the choice of dialyzer,

the relaxing of upper bounds could enable 2 hour HD treatments for patients with

excellent cardio vascular stability (Class 1). Although the re-numeration method

is a more crude approach to find the optimal minimum time for each patient, our

comprehensive control framework with the nonlinear system model has given more

insights into process dynamics. Based completely on our simulation settings and

results from our data set, we conclude that BZNMPC is able to reduce the treatment
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time by 30 minutes for a class 3 patient and by an hour for a patient belonging to

classes 1 and 2.

5.7 Summary

In this chapter, the reader was first explained about the working of a commercially

available feedback control strategy called Blood Volume Tracking (BVT) system,

which consists of PID controllers. PID could be the gold standard for process indus-

tries but as the subjects involved in HD are live human beings, the problem statement

calls for a comprehensive optimal control framework that would have the ability to

compute optimal treatments taking the patient’s safety and other treatment objec-

tives into factor. To make the process of renal replacement therapy more physiological,

a more accurate and complete monitoring and adaptive control of the dialysis machine

parameters are required. Our proposed framework for optimal control of HD consists

of a Batch Zone Nonlinear Model Predictive Controller (BZNMPC), embedded with

a dynamic nonlinear model of the HD system, along with an Extended Kalman Fil-

ter (EKF) for state estimation from noninvasive clinical measurements (MAP and

HP). The tuning parameters of the BZNMPC and EKF were left unchanged during

the entire simulation study. The designed optimal control framework was tested on

synthetic clinical data and the BZNMPC was able to successfully compute optimal

treatment profiles which were continuous and safe even for a class 3 patient (char-

acterized by weak hemodynamic stability) in the presence of disturbances (process

noise and plant model mismatch) and measurement uncertainties. Finally, the min-

imum optimal HD treatment times were computed based on a sequential simulation

approach.

The reader might have understood by this chapter that automatic control of HD,

based on advanced model-based process control strategies, has the potential to de-

liver better treatments to the galloping number of ESRD patients who are increasingly

being diagnosed with complicated co-morbid conditions. The mission of introducing

automation control is not very easy from an engineering and medical point of view, as

the knowledge base about advanced process control application in HD is only boom-

ing. Moreover, the advanced feed control strategies are primarily designed by control

engineers. Traditional medical practitioners may be demeaned by such a complex en-

gineering intervention in HD. However, the success of personalized precision medicine

in HD would be largely due to a synergy between medicine and engineering.
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Chapter 6

Conclusions

6.1 Conclusion

In this chapter, the author concludes all of the research investigations that has been

done in this thesis, which includes the design of new strategies to improve the safety,

quality and efficiency of the hemodialysis treatments delivered today, with the applica-

tion of well understood systems and control engineering principles. The prime agenda

was to build new strategies to improve today’s hemodialysis treatments, backed by

fundamental scientific principles and with a huge potential of practical implemen-

tation. This work contains the design and application of an individualized virtual

patient simulator that can be embedded in an optimal control framework in hemodial-

ysis (HD) with the objective of achieving safe and continuous HD treatments even for

an End Stage Renal Disease (ESRD) patient, characterized by poor cardiovascular

stability (severe intradialytic hypotension and poor vascular refilling). The proposed

approaches were tested on synthetic clinical data generated from the original nonlin-

ear HD system model and with the help of extensive simulation experiments. The

main body of the thesis consisted of three main parts as outlined below.

The first part (chapter 3) primarily was an attempt to identify the most compre-

hensive model available in literature to represent all the components (patient and

hemodialyzer) and intricate physiological phenomena happening in a HD system.

The adopted model not only had the ability to simulate the solute, fluid kinetics and

bidirectional mass transfer dynamics of solutes across the hemodialyzer membrane,

but also it had the inherent feature to predict the hemodynamics of different classes

of patients who are typically encountered in a practical HD clinical setting. A few
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modifications were done to the some of the equation parameters of the HD system

model to make it more control application friendly.

The second part (chapter 4) revolved around the customization of the adopted math-

ematical model of HD system with the objective of converting it into a tailor-made

virtual patient simulator that could closely predict the hemodynamics of the actual

patient under consideration. This was essentially realised by formulating a simultane-

ous state and parameter estimation problem as a nonlinear least squares full informa-

tion estimation problem. Our proposed approach to solve the resulting simultaneous

state and parameter estimation problem included all information from a modified

sensitivity-based observability analysis and a sequential optimization based solution

strategy. We understood from our simulations that system observability played a

quintessential role in arriving at meaningful estimations of the states and parame-

ters and governed the maximum extent of information that could be recovered from

available measurement data. Based on experiments, our proposed approach turned

out to be successful in identifying the custom virtual patient simulator, although the

available non invasive clinical measurements were noisy. Furthermore, the custom

virtual patient simulator predicted the actual patient hemodynamics (Mean Arterial

Pressure (MAP) and Heart Period (HP)) reasonably well for all different classes of

HD patients, even for a wide range of HD treatment profile settings.

Fundamentally, HD causes an external perturbation of the patient from the initial

physiological steady state and the patients have to be brought back to homeostasis

before exiting the treatment centre. The quick removal of overloaded fluid and extra-

corporeal cleansing of blood induces clinical complications in patients undergoing HD.

The third part (chapter 5) focused on the development and application of an advanced

feedback control strategy based on the hemodynamic responses of the patients un-

dergoing treatment. The custom virtual patient simulator (identified from chapter 4)

was proposed to be used as the embedded model of the patient in the controller and

a computer-controlled HD system was developed that would help meet all treatment

objectives while ensuring superior patient safety. The designed computer-controlled

HD system was validated through simulation experiments and its performance was

demonstrated with the help of test cases. This was the first step towards developing

a new feedback control strategy, based on a identified grey box patient model, ca-

pable of preventing clinical complications, like Intradialytic Hypotension (IDH) and

Dialysis Disequilibrium syndrome (DDS), which are usually encountered in HD.
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6.2 Major findings of this current work

The main contributions and findings of this research work are summarized with

greater detail in this section.

• Chapter 3: In this chapter, the existing models available in literature for rep-

resenting the different components of the HD system was studied. Both simple

equations and complex Partial Differential Equations (PDEs) to represent the

bidirectional mass transfer process taking place in a hemodialyzer were explored

and validated against actual clinical data from literature. The PDEs were re-

alized in a control application framework but only the simple equations were

chosen to represent the hemodialyzer, owing to the computational simplicity

and the requirements set by the problem statement of this research work. Mod-

ifications were done to the way the dialysance of solutes were computed in the

simple equations, based on a log mean concentration difference approach for

counter current flow of process and service fluid streams. This enabled the

model to have more degrees of freedom (6 manipulated variables) namely, Ul-

trafitration Rate (UFR), Dialysated Sodium Concentration (DSC), blood flow

rate, dialysate flow rate, Infusion Rate (IR), Concentration of the infusion fluid,

that could be adjusted by the clinicians or the dialysis machine during the course

of the treatment.

• Chapter 4: Here, our proposed method converted the adopted model from

literature to represent the HD system, to an individualized virtual patient sim-

ulator through a grey box model identification approach, in terms of system

identification. In this chapter, we found that we needed atleast two clinical

measurements (MAP and HP considered as they are available non-invasively)

to make the original HD system model fully observable. We then augmented the

system with patient-specific parameters, considering them as additional states

of the system with zero dynamics. For consistent estimation, observability of

the augmented system has to be ensured. The augmented system was highly

nonlinear and so a modified observability test was conducted to pick the largest

subset of observable variables. Then a Sequential Coordinate Block Descent

(SCBD) optimization framework was employed to solve the full information

state estimation problem formulated in a nonlinear least squares sense and to

efficiently integrate the information from the observability analysis procedure.

The model thus identified worked for all different classes of HD patients and

proved its practical implementation potential.
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• Chapter 5: The most important contributions of this chapter include the re-

alization and validation of a model-based feedback control strategy. The HD

treatment had conflicting objectives and so zone control was the ideal choice.

We formulated and tested a Batch Zone Nonlinear Model Predictive Controller

(BZNMPC) with a built in nonlinear state estimator (Extended Kalman Filter

(EKF)), with feedback implementation which takes the treatment objectives

and safety constraints into consideration. The clinicians were more interested

in the physiological conditions of the patient only towards the end of the treat-

ment rather than focussing on the treatment objectives at every time instant,

with the only exception of the patient’s safety conditions which were monitored

throughout the treatment sessions. Therefore, the BZNMPC was built in a

shrinking horizon framework for end point treatment optimization. The BZN-

MPC was experimentally tested in the presence of measurement noise and model

uncertainty, and it succeeded in meeting the clinical treatment objectives, while

ensuring continuous optimal treatments that satisfied all the process, safety and

input constraints. The virtual treatment simulation results demonstrated that

this kind of feedback control strategy is practically applicable and feasible for

all different classes of patients. Finally, the optimal treatment time for each pa-

tient in a data set from literature was computed by following a re-numeration

based approach.

6.3 Future research directions

The reader is navigated through the possible research extensions of this thesis work

in this section. The suggestions outlined below are completely based on the results

and inferences from this research work.

• Chapter 3:

– Although the adopted model from literature for this research work had

several assumptions and simplifications, it quantified all HD induced dy-

namics with an acceptable level of accuracy for this research work. Future

analysis could be done with even more comprehensive models in litera-

ture [110], that give the user the capacity to understand the dynamics

of several other solutes, along with pulsatile blood pressure curves and

dialysate temperature dynamics.

– The PDE model of mass transfer of the hemodialyzer was built by utilizing
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all the design specifications and characteristics of a hemodialyzer. Some-

times the hemodialyzer used for a particular patient could be over specified

or under specified. Thus the PDE model of hemodialyzer could be inte-

grated into the HD system model, and by treating the hemodialyzer design

specification parameters as decision variables, the most optimal choice of

hemodialyzer can be selected from a wide range of commercially available

options.

• Chapter 4:

– The results from the sensitivity analysis can be used to re-parameterize

the model equations and the observability results could be validated us-

ing nonlinear system observability test involving the computation of Lie-

derivatives to get a sense of global system observability.

– Treatment data from multiple sessions (3 to 4) over a week, can be used to

identify the patient-specific parameters of the model and a clinical track

record of the patient-specific parameters could be maintained.

Figure 6.1: Assimilation of patient’s clinical data from multiple HD treatments
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– A combination of a global optimization solver and a local gradient based

solver can be used when searching for the optimal values of the decision

variables during the individualized model identification problem. Further-

more, improvements could be brought about in the optimization solution

strategy itself.

• Chapter 5:

– The designed computer-controlled system was tested on a small number of

patients from a data set in literature. Only additive noises (process and

sensor) and plant model mismatch was included in the formulation of the

stochastic controllers in this research work. Inclusion of patient-specific

parameter uncertainty in the optimal control problem formulation would

be the most appropriate way to obtain a robust controller. Then, actual

clinical studies could be conducted on a large population of patients, with

different physiological characteristics, in a practical HD setting.

– As our original system model is nonlinear, a rigorous optimal estimator

like a ’Nonlinear Moving Horizon estimator (NMHE)’, which is more ro-

bust and accurate than a EKF, could be tested in future studies for state

estimation also because of its ability to enforce physiological bounds on

state variables.

– Optimal treatment time was found out by using a re-numeration based

approach in chapter 5. In future, it could be computed more efficiently by

formulating a Mixed Integer Nonlinear Program (MINLP) with final treat-

ment time as an added decision variable in the optimal control problem

solved in this work.

– The conventional HD schedule of 3 to 4 times a week has been used as

the standard modality to treat ESRD patient. However, the optimal HD

schedule that suits each patient may be different. Reduced dialysis-induced

myocardial stunning with frequent HD, compared to conventional HD, was

reported and improvements in hyperphosphatemia and blood pressure con-

trol were also reported with frequent HD. With all the above information,

the next step could be the optimal HD treatment scheduling for a single

patient (over a week) and it could be possibly extended to the resource

optimization of a complete HD treatment facility.
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