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Abstract

There are various methods for measuring the extent of poverty and needs across
geographical areas. Some of these measures are simple and applicable to any data,
while others are based on rigorous theoretical foundations where their robustness
depends on the underlying assumptions. Some require small aggregate data measured
at an area level, while others require extensive data measured at an individual level
which are often difficult to obtain in practice. First, we review and discuss several
methods to construct poverty and need indices across several geographical areas. Then
we discuss their limitations and develop strategies that can accommodate some of these
limitations to improve the current state of estimation methods of small areas. Specifically
we suggest data reduction methods for multivariate and correlated data prevalent in most
empirical situations. We also consider parametric and non-parametric estimation to
obtain these indices including small area estimation techniques. Simulation study on
some selected procedures will validate these estimation and making inferences across
small areas using these indices. The discrepancies or similarities of the empirical
interpretations of employing various approaches will be demonstrated using data from

the province of Manitoba to study variation in needs and poverty across small areas.
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Table of Notations

g (G) - Gini’s coefficient from the observed (random) sample.

8 poor (G opr) - Gini’s coefficient from the observed (random) sample of households

whose income is below the poverty line.

8usx (G4, ) - Gini’s distance from the observed (random) sample of households.

n - Sample size of the entire area under consideration.

N - Population size of the entire area under consideration.

T - Total number of small areas contained in a given large area.

n; - Sample size of ith small area, where i=/, ..., 7.

N; - Population size of the ith small area, i=/, ..., T.

s; - Set of samples in area i, i=1, ..., T.

s - The entire sample.

PG - Poverty gap.

VA - Poverty line.

q - Number of households whose income below the poverty line from the
sample.

H - Head count ratio.

P - Sen’s index of poverty measure.

P, - Foster, Greer and Thorbecke (FGT) measures of poverty.

% (X) - Mean of an auxiliary variable X from the observed (random) sample.

y (Y) - Mean of a characteristic Y from the observed (random) sample.

% (X)) - Mean of an auxiliary variable X from the observed (random) sample in
the ith small area.

y; (17‘. ) - Mean of a characteristic Y from the observed (random) sample in the ith
small area.

%, (X,) - Mean of the auxiliary variable X from the observed (random) sample in

the Ath stratum.
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- Mean for a variable of interest Y from the observed (random) sample in

the hth stratum.

- Observed vector of k auxiliary variables from unit j in area i.

- Observed vector of a characteristic Y.

- n x k matrix of the auxiliary variables.
- Population mean of the variable X.

- Population mean for the variable Y.

- Population mean of the auxiliary variable X in the ith small area.

- Population mean for the variable of interest Y in the ith small area.

- Population mean of the auxiliary variable X in the hth stratum and ith

small area.

- Population mean for the variable of interest Y in the Ath stratum and ith

small area.

- Population mean of the auxiliary variable X in the Ath stratum.

- Population mean for the variable of interest Y in the Ath stratum.
- Jackknife estimator for a parameter JJ.
- Bootstrap estimator for a parameter J.

- Estimator of ¢ after the ith sample point is deleted.

- ith jackknife pseudo-value.
- Lower confidence limit of a parameter .

- Upper confidence limit of a parameter oJ.

- Per cent gain in relative bias.

- Regional Health Authority.

- Multiple Linear Model.

- Variance components model,

- Model based on Ecological level data.
- Principal component.

- Factor analysis.



Chapter 1

Introduction

Estimating poverty and need levels has become a major issue throughout the world as
planners base policy initiatives on need. Various methodological techniques of measuring
the extent of poverty and needs for “small areas” are reviewed and discussed in this
thesis. This chapter will give background and definitions of the terms used throughout

this paper.



1.1 Background

By all conventional measures, a large number of developing countries fared poorly in
their economic and social conditions (Wondmagegnehu, 1995). The nature of poverty,
needs and other related factors have not received due consideration in understanding the
reasons for the variation in poverty and needs level. Most attempts made to alleviate

needs and poverty have been treating in symptoms rather than removing the causes.

We define “needs” to refer to needs of any kind broadly applicable to education, income,
health care, pharma care, societal care and others. Also, we define “small area” to refer
to any area contained within a larger jurisdiction. For example, in the study of small area
variation across the areas of Manitoba, a small area can be defined as each of the 12
regional health authorities (RHA). The issue may be to make resource allocations based
on needs varying across the RHAs. The methodological problem is how to measure

"needs"?

The first step is to measure the small area rates that will be used as indicators of needs.
Then we consider which rate is appropriate and how it should be measured to best
evaluate them. Estimating poverty or individual needs levels has become a major issue
throughout the world because the planning of policy initiatives is ideally based on needs.
There are various methodological techniques for measuring the extent of poverty and
needs; some are simple to apply to any data while others build on rigorous theoretical

foundations that depend on the type of data available.



1.2 Objectives

Wondmagegnehu (1995) reviewed several techniques to evaluate the level of poverty and
individual needs across the geographical areas of Ethiopia. However, most of these
techniques are simplistic and limited in the sense that they cannot deal with practical
situations where there are many factors influencing needs, all of which are inter-
correlated. The causes of poverty are also the causes of inequality in the distribution of
income. The poor are poor because of their limited amount of human capital
characterised by malnutrition, disease and illiteracy, impairing their capacity to earn a
sufficient income. It is known that poverty and needs are defined in terms of many
broad indicators of economic resources and basic needs required to survive, which
include education, health care, income level and others (Wondmagegnehu and Carriere,
1997). For example, it is known that income level is closely related to education level.
Taking only one of these factors is insufficient in attempting to summarise the areas’
overall well-being. This thesis will review and discuss commonly used techniques of
measuring the needs. We will then expand these to accommodate multivariate and inter-
correlated data and we consider estimating small area rates while incorporating various

levels of education, employment, income and resource availability.



1.3 Definition

1.3.1 Poverty and Needs

There is no clear-cut definition of poverty or needs and defining it is not an easy task.
There is always some disagreement over what factors constitute poverty, poor health or
poor living conditions. The poverty level measured by income, as well as the minimum
basic needs required, differs from one country to another or from one place to another

even within the same country.

Poverty can be specifically defined as a situational syndrome in which the following are
combined: malnutrition, lack of resources, precarious living conditions, unemployment
and others. Needs on the other hand have been defined in a more general sense as a value
criterion of minimum adequate levels of welfare to keep the absolutely essential basic
requirements of a household. Such criteria consequently imply a reference to some norm
of basic needs and their satisfaction that makes it possible to distinguish between those

who are poor and those who are not.

There are two different approaches to defining poverty and needs: absolute and relative
measures. If poverty is defined in terms of the amount of household income and in terms
of expenditure on the minimum essentials of food, clothes and other basic needs, such an
approach to defining poverty is called an absolute measure. A household, under this
definition, is then said to be poor if its total consumption is below a specified amount.

Poverty is most often defined in relative terms when one’s level of poverty depends upon



the income of others in the community. If the income of a certain family is 10 percent
lower than the average income of a given community, the family may consider itself poor
even though their income level is above the poverty line. Therefore, in a relative sense of
defining poverty, one might categorize a household as poor if the household’s income is

below a certain percent of average household income.

If an absolute standard is considered, rising real living standards will push more and more
families above the poverty level. If, however, the relative standard is used, the war on
poverty would be unwinable. If both rich and poor families receive equal percentage
increases in income, the poor will not have improved their relative position. Therefore,
poverty and inequality can be eliminated only by equalizing the distribution of household
income. It is the relative measure of needs that we seek to estimate and make inferences

about in this thesis.

1.3.1 Small Area

In recent years, the demand for small area statistics has greatly increased. This is due,
among other things, to the growing use of statistical data in formulating policies and
programs, to allocations of government funds and other services to small areas based on
data obtained from large areas. These have increasingly created a need for small area
statistics in recent decades. As a result, the construction and inference of reliable small
area statistics has emerged in recent years as a major new research area. The term small

area and local area are commonly used to denote a geographically contained area, for



example, a county, a municipality, a census division or any subgroup sharing common
characteristics. However, this term is broadly used to describe a small domain or small
sub-population such as those defined by income quintiles, education level or a specific

age-sex-race combination within a large geographical area (Ghosh and Rao, 1994).

1.4 Thesis Overview

Chapter 2 reviews the literature that determines inequality and poverty measures based on
a single characteristic of interest for small areas. Small area estimation of a parameter
using design and model based approaches is also discussed. In chapter 3, we discuss
variance estimation and inference techniques of the measures summarised in chapter 2.
Three different approaches to variance estimation are considered. These include the
standard non-parametric, jackknife and bootstrap methods. Chapter 4 validates the
inference procedures of the methods discussed in earlier chapters through a simulation
study. Socio-economic data from the province of Manitoba will be used to compare

these various approaches to estimation of small area rates.



Chapter 2

Review of Literature

There are various ways to measure poverty and needs indices. We first review currently
available measures for small area rates to investigate the extent of their poverty and

income inequality. Then, we review small area estimation methods for small area rates

from design and model based approaches.



2.1 Methods of Estimation for Small Area Rates

In this section we review methods of estimating the extent of poverty and needs. These

are mainly based on non-parametric techniques, which are simple and intuitive.
2.1.1 Gini’s coefficient

Gini’s coefficient is a very convenient summary measure of the relative degree of
inequality of a characteristic such as income in an area. For the characteristic X in the

random sample of size n, Gini’s coefficient can be determined from the formula given

by:

n(n l)Xzle -X I @D

i=l  j>i

where X =Z X, / n is the mean of the random sample.

i=l

This coefficient measures the degree of variation of a characteristic of interest, such as
income, which is perceived as the influencing factor of need. The Gini’s coefficients are
aggregate inequality measures and can vary anywhere from O (perfect equality) to |
(gross inequality). In fact, the Gini’s coefficient for areas with highly unequal income
distributions typically lies between 0.50 and 0.70, while for areas with relatively

equitable distributions it is on the order of 0.20 to 0.35 (Todaro, 1990).



Another method of computing Gini’s coefficient is using the Lorenze curve. The
Lorenze curve is a graphical method used to analyse the distribution of income for a
group of individuals. It shows the actual quantitative relationship between the percentage
of income recipients and the percentage of total income they received during a given
year. In Figure 1, the bottom 10% of the population receive only 1.8% of the total
income, the bottom 20% is receiving 5% of the total income and middle 50% is receiving

19.8% of the total income and so on.

Figure 1: Lorenze curve of per cent income by per cent population
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The greater the degree of inequality, the more “bend” and the closer to the bottom
horizontal axis the Lorenze curve will be (Todaro, 1990). The extreme case of inequality

would be represented by the Lorenze curve bounded by the bottom horizontal and the



right hand vertical axis. Since most countries couldn’t exhibit perfect equality or extreme
inequality of income distribution, the Lorenze curve will lie below the diagonal of the

square figure.

Gini’s coefficient, in this case, is obtained by calculating the ratio of the area between the
diagonal and the Lorenze curve by the total area of the bottom triangle in which the curve
lies. In Figure 1, Gini’s coefficient is the ratio of an area between the line and curve to

the total area of the triangle formed by connecting the points A, B and C.

Area between the line and curve
Area of triangle ABC

G =

One major drawback of Gini’s coefficient is that we cannot use it to measure inequality if
the characteristic of interest has mean near zero. It is primarily constructed for positive
values such as income. Addition or subtraction of a constant number to all values to

make them positive would affect this measure of inequality (Dagum, 1983).

Alternately, Gini’s distance can overcome this drawback of the Gini coefficient. For the

Xi's , we described earlier, Gini’s distance is given by

G i =zn;ilxi—xi|/[zj (2.2)

i=l j>i
It measures the average absolute distance between any two data points. Gini’s distance
no longer has the property of being contained within a (0,1) boundary. However, it has

the property of being more broadly applicable to all data types.

10



2.1.2 Poverty Line

Poverty lines are those cut-off lines in the economic welfare dimension of populations,
across any geographical region, below which households or individuals are considered
poor. Therefore, these are used to identify the poor using absolute terms. Income and
total expenditure on consumables may be considered as indicators that combine different
dimensions of the standard of living and are used to draw a poverty line. However,
poverty lines do not provide any information on how far below the line most poor people
are. It is important to know about the distribution of the poor who fall below the line to
have a full understanding of poverty for various strategic purposes. Therefore, drawing
poverty lines in terms of income or total expenditure implies simply the setting of norms

for the minimum quantum of resources required.

Using poverty lines computed at the national level is not recommended when trying to
distinguish poor households in different small areas or domains. It is necessary to draw
sets of lines for different groups or areas, when the standards are not directly comparable
from area to area. The most common and simplest method of obtaining a low income cut
off for a population in a given area is by computing half of the median family income

(Shao and Rao, 1993).

11



2.1.3 Sen’s Index

When a needs index is designed to measure the extent and severity of poverty in any

geographical area, the following two problems must be considered:

i. Identifying the poor in the total population, and

it. Constructing an index of poverty using the available information on the poor.

The first problem involves the choice of a criterion for selecting or setting a “poverty
line” in terms of the level of income, and then selecting those who fall below the poverty
line. In the literature on poverty and needs measures, many are concerned with (i), but

relatively little work has been done to resolve (ii) with which Sen (1976) was concerned.

Thus, most widely used measures of poverty to satisfy (ii) are developed to have the

following properties:

l. (Monotonocity) Other things remaining the same, a reduction in income of a

person below a poverty line must increase the poverty measures,

2. (Transfer) Other things remaining the same, a pure transfer of income from a

person below the poverty line to any one who is above the poverty line must

increase the poverty measure.

12



The first and perhaps the most simple measure of poverty is the head-count ratio (H). It
simply takes the ratio of the poor, q, who are defined in a certain way and the total
sample in a community of size n. While the head count ratio identifies the number of
poor, it ignores how poor the poor really are, and therefore has the absurd property that it
remains unchanged when a previously poor individual becomes poorer. It has been noted
in the literature on poverty profiles that this measure is insensitive to decreases in the
income of a household below the poverty line, i.e. to the deepening of poverty, and to the
transfer of income among the poor, as well as to the transfers from the poor to the non-

poor.

The head-count ratio is a crude measure and has as its main drawback that it does not
satisfy the properties of monotonocity and transfer. Similar concerns apply to study
persons hospitalized or persons discharged to investigate, for example, quality of care

between hospitals.

The other common measure of poverty is called the “Poverty-Gap”. It is defined as the
aggregate short-fall of the income of those whose income level is below the poverty line.
This measure gives a description of the depth of poverty, because it depends on the
distance of the poor below the poverty line. The Poverty-Gap ratio is mathematically

defined as

13



(2.3)

where Z represents the poverty line, X; total annual income of a household and n the total

number of persons or households considered and g the number of persons or households

whose income level is below the poverty line.

The main motivation of Sen (1976) in developing a new poverty measure is by
recognising the violation of the monotonocity and transfer conditions in the poverty
measures discussed above. For a large ¢, Sen derived a new poverty measure which is

called Sen’s Index given by

P=H|M+( —M)Gm,] (2.4)

where G,,,, is the Gini’s coefficient of the income distribution of the poor, H is the head-

r

count ratio and M is the income-gap ratio which tells us the percentage of their mean

4
short-fall from the poverty line and is given by M=(/q)Y(Z-X,)/Z==PG.
q

i=l

14



2.1. 4 Foster-Greer-Thorbecke (FGT) Measures of Poverty

This measure of poverty is proposed by Foster, Greer and Thorbecke (1984). The FGT
class of poverty measures include both, the head-count ratio and the poverty-gap index.
This measure is sensitive to the distribution of the poor through the choice of a non
negative parameter o, 0< o <2 ; the greater the weight of o given to the index the greater
the sensitivity of the distribution of the poor. If the total population size is given by n,
and g is the number of poor individuals, then the FGT class poverty measures may be

written as:

P, =

3 |-

q X, @
2. (l - 7) . 2.5)

There are three cases of the FGT measure considered here:

1. When a =0, the FGT measure is reduced to the head count ratio H = g/n given as the

proportion of the population whose standard of living is below the poverty line.

2. When o = I, the FGT measure is reduced to the poverty-gap ratio (PG) in the

population, expressed as a proportion of the poverty line.

3. When o = 2, unlike the above two cases the measure is sensitive to the distribution of

income among the poor. It also satisfies the main axioms of a desirable poverty

measure in Sen (1976), monotonocity and transfer.

15



2.2 Small Area Estimation Methods for Small Area Rates

In this section we discuss and summarize techniques for estimating small area rates. Two
different small area estimation approaches for small area means are considered: the

survey mean estimator and the model based approach.

2.2.1 Survey Mean Estimator for Small Areas

Consider a survey where a characteristic is observed from a sample in a small area.
Survey estimates for data from a small area of interest contained in a large domain is one
method of estimating small area parameters. When using small sample from a large
domain, the standard method of survey estimation breaks down because the small sample
size yields very large standard error. Even though sample size in the small area is large
enough, the coverage of the total population of the given area is inadequate to apply the
survey estimates (Johnson, 1993). Rao (1986) and Ghosh and Rao (1994) proposed an
estimation strategy by *“ borrowing strength” from other related small areas to increase
the sample size and proper coverage for the purpose of improving the efficiency of the

estimator.

Suppose N; is the population size of the ith small area and y; is the parameter of interest,

and the characteristic of interest is measured in ¥; from person j in area i. The usual

survey estimates, assuming simple random sampling , are given by

16



Yi=—2> 7, 2.6)

1
n; jes,
where s; is the set of samples from small area i and n; is the size of s5; . The variance of 17:
is of order n' which gives a large standard error for small sample size. The simplest
synthetic estimator of £, proposed by Rao (1986) with variance of order n™ (Zn,. = n)
is
= 1
r,==> Y, 2.7)
n .
where s is the entire sample. This estimator becomes an efficient and unbiased estimator

if all of the small areas are similar. If an auxiliary or concomitant data,

X=(X;,X;,..X,), is available with known mean M;of X, the best synthetic
estimator, if the assumption R=4,/M ,=R=[1/M satisfied, is the ratio estimator given

by

— Y
Yi(run'a )=(_—_-]Mi (2.8)

where ¥ =—1-Z ZY,.]. and X =lz EX ; are the means from the total combined
n n

i=l jes, i=l jes;

sample, and n is the size of the combined sample.

The two estimators given in (2.7) and (2.8) are obtained by assuming homogeneity within

small areas. This assumption can be relaxed by considering homogeneity within post-
strata, i.e. M, =4, for h=1, 2, .., Land i= 1, 2, ..., T. Let Y,; be the observation from

person j in stratum k and area £, the usual post-stratified estimator can be written as

17



(2.9)

_ T T
where Y, = Y. n. and n,, is the sample size of area i in stratum h. An
h hi hi hi P
i=1

i=ljes,
alternative approach to synthetic estimators for small area means proposed by Ghosh and

Rao (1994) is given by

— M. =
Y™ = "' 11' (2.10)
zh: ( M,

k-

where M, is the mean of the auxiliary information in the hth stratum and ith small area,

M, the mean of the auxiliary information in the hth stratum, and ¥, is a direct ratio

estimate of the mean for stratum # in the population given by

- (7
Y,,=( ra )M " (2.11)

where ¥, and X, are the usual design estimators of small area means and M, is the
mean of the auxiliary information in stratum h. A composite estimator obtained from
design and synthetic estimators can be considered as an alternative small area means
estimator. This estimator is written as

Y, =w, ¥, +(1-w,)Y,"™  where 0Sw;i< 1. (2.12)
Several methods have been proposed to estimate w; . The optimal weight suggested by
Ghosh and Rao (1994) assuming cov (Y—, des Y, " )50 is

MSE (Y,™)
MSE (Y,"" )+ MSE (Y,% )

w, (opt )= (2.13)

18



The small area mean estimators discussed above are designed to increase the efficiency
of the estimate by merging samples from similar small areas to increase the sample size

and the coverage of the sample.

2.2.2 Model Based Approach to Estimation of Small Area Rates

Consider a general mixed effects model for y=(¥i,¥5,....¥;) withy, =T, 1, Y
given by

y=Xf+Zv+¢ (2.14)
where X and Z are known design matrices linking to a k vector of unknown parameters

for fixed effects B and a q vector parameters of random effects V. The V and € are

mutually independent random vectors with zero means and covariance matrices G and R
respectively. A general BLUP method shown by Henderson (1975) for the overall mean

of the form

u=k’'p+m’v (2.15)
is obtained by 2 =k'B+m 'GZ’'D'(y—x'f ), where D=R +ZG Z’ represents

the covariance matrix of y, B=(XD'X)" (X'D"'y), and k and m are known

vectors. Prasad and Rao (1990), based on Henderson’s method, discussed a small area
BLUP of (2.15) by considering three special cases of a general mixed effects model. The

three special cases discussed are the variance component model (or nested error



regression model). the random regression coefficients model and the model based on

ecological level data.
2.2.2.1. Variance Components Model

This model is originally proposed by Battese and Fuller (1981) for the purpose of

predicting mean corn per hectare for =12 counties (small areas), and is given by

Y,=x_ B+v,+e; ;i=2, .. Tand j=I 2, ... n (2.16)

q

where Y, is the characteristic of interest for the jth sampled unit in the ith small area,

x; =(X . G ¢ ) is a vector corresponding to k auxiliary variables, g =(5,....5,)
is a vector of k unknown parameters and n; is the number of sampled units observed in

the ith small area. The random error v;’s are assumed to be iid N(0,07 )and independent

of e;'s which are assumed to be iid N(0,0’f). The main interest here is to find an

estimate for the ith small area mean given by

g, =M'B+v, i=12..T 2.17)
assuming that M,.' =(M,,....M;) is known. The BLUP of (2.17) derived by Prasad and
Rao (1990) is given by

g, =Mf+y,(6-X/F) (2.18)
where X, =(X,,X,,....X,) represents the sample mean of Xj's for the ith small area,

with g? = (ai'ai)and Y., = af(o‘i +0? n‘,‘l)‘l.
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2.2.2.2. Random Regression Coefficients Model

The random regression coefficient model, in the context of small area estimation, is given
by
Yii =x1{jﬁi +e; 2.19)
where g.=g8+v, , j=1,2, .., n;, i=l, 2, ..., T with ith small area mean given by
p=Mp =M[(B+v,) (2.20)

The BLUP of (2.20) for a small area population mean for the case of one covariate is the

-1 -1
— 2 2 2 2
yl_av[av +o-e (Z xil'J J ’

same as (2.18) with

and Bis simplified to

po{r (s 2] Yf3r]

2.2.2.3. Model using Ecological Level Data

The model based on ecological level data, first considered by Fay and Herriot (1979), is
given by

Y=pu,+e, and u,=X]B+v, 2.21)
where the e¢;s and v;s are independent with N(O, B;) and N(0, A) respectively, and

X;=(X,,X,,....X;)is a mean vector of k auxiliary variables. The BLUP of L, derived

by Prasad and Rao (1990) is written as
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g =Xg+-4 (F—X‘fp") (2.22)

where assuming B; is known, ﬁ:(f’D“Y l(Y'D“Y—), D =diag (A+B.) .

ISisT

X=(X,,..X;) and ¥ =(%,,....7;).

One of the fundamental problems of the BLUPs given above is that they depend on the
variance components, which are unknown. The common practice is to determine the
BLUP of the ith small area means by replacing these variance components by
asymptotically consistent estimators which are briefly discussed by Prasad and Rao
(1990). They also discussed the second order mean square estimation of small area mean

estimators from the models considered above.

For the variance components model, the MSE approximation given by Prasad and Rao
(1990), fori=1, 2, ..., T, is expressed as

MSE(ﬁJ:g”(O'l) +£,(07) +2g,(07). (2.23)

Here, 0’ =(07,07) and the estimators of the two variance components are given by

G2 =-T-k+A)3 S 6} and 52=(n.) 3 5 a3 - (n—k)d‘f] for T

i=1 j=1 i=t j=t

areas and k auxiliary variables, A = 0 if the variance component model has no intercept

T —
and A = 1 otherwise, and n,=n— trl:(X'X)" Sn X, X ,.':l. Furthermore, {¢, } and

i=l

{z’iu} are residuals from the ordinary least square regression of
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-7 }on { i X, . ,,k - }and } on { ,,l > o ,,k} respectively.

Note that we define §, = max (5, ,O) for a variance component 6;, which is required to

be non-negative.

The three terms given in the above MSE approximation of (2.23) are respectively given
by,

8 (Gz)z (L-7)o?

82 (62)= (Mi — 7 Yi)’ (X'V“l X)-l (M,. -7 Yi)’ and

g:02)=n (o2 + o2 ) ot var(62 ) ol var(62) - 202 02 cov(5?, 62)]
where, assuming normality for the two residuals, var(5'3)= 2(n—t~k+A)' 67

var(o'"f)= 2n [(n—-T—k+z1)(T—l)(n—k)0‘f +2n.0l0! + n..O':J,

cov(§2,62)=~(T - A)n:* var(6?), and n.=tr(MZZ')? with M =I-X(X'X)"'X’.

For the random regression coefficients model, Prasad and Rao (1990) gave the MSE

expression for the case of k=1 as in (2.23)with

gu(c)=X,(1-y)o}
g (0H)=X,(1-7»Er)' 6> and

~1 -3
gy (0?)= (ZX,I] I:O'f+of[ZX;} } (ajvar(&f)+0'fvar(&f)—20'30'3cov(6f,6f))

i

Furthermore, under normality of {v;} and {e;}

var(§2)=2(n-T) ' o}

var(8)=27fin - )(T = )(n ~T)'0* + 270202 + R..o?] and
cov(G2,6)=—(T - 1)A'var (§})
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-1

where 7., = (MZZ) and 7. =22X; - [Ei(xlx';)z J(ZZX;) .

For the case of a model using ecological level data, the proposed MSE estimator is given
by,

MSE (&)= g, (A) + gz (A) + 25 (4) (2.24)
where

g.(4)= 4B (A+B)
gy A)=B(A+B VX, XV'X)'X,, and
83 (A)= Bil (A + Bi)—3 var ;{)

and under normality of {v,}and {¢,}, 4 = (T—k)™ [ZT" Q- zr"Bi(l -X/(xx)" Z)] ,
i=1

varli)=21( #0243+ Saipr), 4T~ Xf o (R R KT
i=1 i=1

The MSE(4,) is then estimated by replacing 6, with é,.in equations (2.23) and (2.24).

For a detailed explanation about the small area estimators for a model based approach

and their MSE estimator, refer to Prasad and Rao (1990) and Ghosh and Rao (1994).
2.3 Summary and Discussion

This chapter reviewed several methods of small area estimations. All have certain
limitations and we discuss and identify them here. Gini’s coefficient, Poverty Gap, Sen's

Index and the FGT measure have all specifically been relevant only to income data,

24



requiring positive values. Further, the major limitation of these poverty and need
measures is that they focus on one variable, specifically income of a household or
number of person below the poverty line. Income is not the only variable that determines
the magnitude or extent of an individual’s level of need. There are also such other
correlated variables as level of education, unemployment rate, number of students
attending school, number of hospitals and physicians in an area, which may have greater
impact on the need level for that area than its income alone would explain. Although we
did not review here, there are methods that have attempted to eliminate confounding
effects in an effort to compare the need level of one small area to another small area.
Carriere and Roos (1994, 1997) discussed techniques for comparing the small area
variations in health care utilization by adjusting the rate for age\sex distributions across
small areas. High rate of utilization would indicate an area with high discretionary
practices among physicians, serious problems for the given condition, or requiring more
need for health care resources. However, the traditional age\gender standardisation is
incapable of adjusting for variables which are on a continuous scale. Although such a
method is intuitive and easy to comprehend, a method is desired which will offset the
limitations experienced by the current techniques while highlighting their strength. The
small area estimation strategies we reviewed are found on certain distributional
assumptions. In the next chapters we investigate the distributional properties of these

techniques.



Chapter 3

Variance Estimation and Inference

We discuss inferential procedures following variance estimations of need indices using
various strategies. Variance estimation strategies, using standard, jackknife and bootstrap
methods, will be considered. Inference on the small area rates will be discussed on

asymptotic, bootstrap-t and percentile methods.
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3.1 Variance Estimation

In this section we derive the variance expressions for Gini’s coefficient and Gini’s
distance. We then discuss variance estimation techniques using jackknife and bootstrap
methods which are often applied when the form of the parameter estimator is
complicated. First, we consider the standard non-parametric variance estimation of
Gini’s coefficient and Gini’s distance. Secondly, we discuss the jackknife variance
estimator of these estimators. Finally, we discuss the variance approximation using the

bootstrap technique.
3.1.1 Standard Method

In this section we derive the approximate variance estimator for Gini’s distance and

Gini’s coefficient. For n observed values X,, i=1,2, ..., n, the Gini’s distance given in

equation (2.2) can also be expressed as:

1 5 _n
CEMrz:';?;‘:f];ﬁEljzll)(f"}(A

i=l j=I

l n n

CED LK

i=1 j=1

where Y, =|X,- -X,| - Thus, the variance expression for Gini’s distance is derived as
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i=lj

Var(G,,) = . ( Var(zz, J

permrcl ZVar(ZY) + (n_ )zz chv( s

i=l j'>j=i

'l (n l)- 22 (Y’l) + 22 ZCOV( U

i=1 j=i i=1j>j=i

(3.1

where Var(Y;) is the population variance of a variable Yj;, Cov(Y},¥;)is the population

covariance between Y;; and Y}f . The variance expression in (3.1) can be rewritten as

Var(G,,) = -1—C, 3.2)
n

where C, = EZVar(Y ) + Cov( i+Yy) . Then, Var(G,,,) is
n(n —1) = (—)Z.u

>j#i

estimated by replacing él for C,, where é =

2;; Y, (n 1)22 ZY}' ’

i=l j'>j=i

2 N =¢ = I 1 & — —
5,2 2~ B F= 38 and sy =3 - TN - )

R

NI—-

;. If nis large, X should not differ
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Under this assumption, we have R-R converging in distribution to
Therefore,

E(R-R)=
and

MSE(R)=Var(R) = # Var(¥ — RX)

= # (Var(f) —2RCov(X,Y) + R? Var(}?))

Therefore, the ratio estimate R, for a large sample size n, can be assumed unbiased and

asymptotically normal (Cochran, 1977). In general the following formula can be derived
from Var(R)to express the sampling variance of Gini’s coefficient which is valid for

large sample sizes n.

1

yeYe (C - 2RC, + R*C,) (3.3)

Var(G)=

where R=E(R), C, is as defined earlier, C,= (2 l)z"“icov(x,.,|x,.—X,.|) and
nin=1yiztjs

C,=Var(X). The expression R=Y/X is a ratio of sample means for two random

variables. Assuming an ignorable sampling fraction, we estimate (3.3) by

var(G)=:Ml—f2((3l ~2RC, + R? é,) (3.4)
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~

where é‘z zzzy Z Z,M G = Z(Xi—}?)z ,

n(n—l) i=lj=i 1)- i=lj'>j=i n_]-i

&, =—2-3 3 covlx..|x,-x)).Covlx,.|x,- Xl):n(n l)ii(xf-f)(l’r?)

n(n-1) 3 j>i i=1j>i

and Y—n(n I)ZZ i -

i=1 j>i

3.1.2 Jackknife Method

The jackknife method was initially introduced for the purpose of estimating and reducing
the bias of an estimator. However, it has become a major tool after Tukey (1958)
observed that the jackknife method could also be used to estimate the variance for any
estimator of a characteristic. The jackknife method reduces the bias in the estimator and
gives its variance estimate by deleting one datum each time from the original data set and

recalculating the estimates based on the rest of the data (Shao and Tu, 1995).

We are interested in estimating a parameter and variance of & based on a given data
set consisting of an identically and independently distributed sample X, X5, ..., X, of size

n taken from a distribution function F having observed values (X;=x,, ..., X,=x,). Let
$=d (x, x50 %, )

SCi)_ A
B = 0 (%)X, e Xy 2 X1 reeen x,)
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be estimators of ¥ from the complete sample set of n elements and from a data set
obtained after deleting the ith observation, respectively. The ordinary jackknife estimator
and its variance estimator for ¢ are given by
a I a
B ==3 b
n i=l

and

n

Var , (é)="'1$[ @C-50F
) (3.5)

=n(nl_1)‘_z:‘,l (’5(.')- 3 J )z

where ,9(-)=l§"; A9 and z§(,.)=nz§—(n—l)z§(“), which Tukey (1958) defined as the

n i=l

jackknife pseudo-values.

The jackknife method requires repeatedly computing the statistic n times, for which it is
less dependent on model assumptions (Shao and Tu, 1995). The jackknife method in
some cases can explicitly be a function of the data points x;, x3, ..., x,. However, the
jackknife method of variance estimation has been especially useful when we have a

complicated form of an estimator.
3.1.3. Bootstrap Method

An alternative method of variance estimation is the bootstrap technique. The theoretical

framework of the bootstrap approach to an estimator é=é(xl ,xz....,xn) is defined by
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replacing F with F,an empirical probability distribution (Efron, 1982). Suppose that the
data X = (X, X3, ..., Xp) are identically and independently distributed from F, we obtain

the bootstrap estimator of the variance of 6 by

var, =[[6-,@F [T £:.)

i=l

=var£§(Xl',..., XX, X,,]

where {Xl yeeer X n} is a random sample drawn with replacement from the observed

values X = (X, X,, ..., X;;) which is called a bootstrap sample.

The simplest and the most common method used to approximate var, is the Monte Carlo

approximation. The distribution F used to generate the bootstrap data set can be any
estimator (parametric or non-parametric ) of F based on X, X5, ..., X, ( Shao and Tu,

1995). The simplest and most commonly used non-parametric estimator of F is defined

by
ﬁ'(x)=—'ll-i I1{X,<x}
i=l
where I(A) is an indicator function of the set A. In order to carry out the estimation of the
variance using the Monte Carlo method, we draw a bootstrap sample {X i oeees X ,,,,}
b=1, 2, ..., B, independently from F ; compute 6° =é(X,',, ,...,X,:,,), conditional on (X;,

X3, ..., X;;) and obtain a Monte Carlo approximation of var, by

var,,:%i G°-6,) (3.6)

b=l
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B ~
where 8, =-l—1;-2 8® . In general, bootstrap and jackknife variance estimators are used
b=l

when the estimator of a parameter of interest is complicated and deriving the exact form

of the variance is difficult or cannot be written explicitly.

3.2. Method of Inference

We discuss methods of inferences for any real valued parameter = oJ(F )based on the
asymptotic method and bootstrap technique. The confidence intervals for the poverty and
need indices can be constructed using asymptotic or bootstrap techniques (percentile and

bootstrap - ¢ methods).
3.2.1 Asymptotic Method

We discuss a testing procedure for comparing poverty and need indices for two or more
small areas and the construction of confidence intervals from the asymptotic normal
distribution theory. The null hypothesis

H, : 8,=0,=..=0,=9

m o

states that the indices in m different areas are the same as the entire area, denoted by 4, .

The test statistic proposed by Carriere and Roos (1994, 1997) can be used to test this

hypothesis, and is given by

3.7

<
8

3
n
M
/N
A >
|
) || S
(%
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If the overall need index &, is unknown, an appropriate estimator is taken to make the

inference and the statistics T2 has an approximate chi-square distribution with (m-1)

degrees of freedom, for large samples for each of the small areas.

Under similar assumptions, a 100(1 - &) % confidence interval for the poverty and need

indices can be approximated by:

3iZa,2 1/ var(®

For extremely skewed data, Carriere and Roos (1994, 1997) suggested a log
transformation on the estimated rates before constructing confidence intervals for the

rates.

3.2.2 Percentile Method

Let @':ﬁ(ﬁ' ) be a bootstrap estimator of a parameter ¢ and J an estimator from the
original data. Define
e 1

R(t)-zProb.{z? <t|
to be a probability distribution function for the bootstrap distribution of D", If the Monte
Carlo method is used to determine the bootstrap distribution, then R(z) is approximated by
Rity=# {B*<t}/B (Efron, 1982). Fora given a,

8,=R'(@) and 8, =R”'(-).

Then the 100 (1 - 2a) % central percentile confidence interval for ¥ is given by
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3.2.3 The bootstrap - ¢ method

Let {X Lo X }denotes an identically and independently distributed sample from F , an

estimator of F (parametric or nonparametric). The bootstrap - t method of constructing

confidence interval depends on a statistic

.
Wll = .S
(o}

n

where &, is an estimator of ¥ and &2 is a variance estimator for d, . Assume that G,
is the distribution of ¥ ,, which is unknown in most cases. It is most often estimated by

the bootstrap estimator defined by

G, (x)=Prob_ {y/n Sx}

where ¥ =(z§;—z§)/o"; ,and & and &, are the bootstrap analogues of &, and &, ,
respectively. Then, the 100 (I - 2a) % confidence bound for 6 using this method is

given by

|59
where & L=z§}l -6,G;'(l~a) and 13‘,,‘, =1§}, —-6,G;' () which will be called the bootstrap

- t lower and upper confidence bound (Shao and Tu, 1995).
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Chapter 4

Simulation and Data Analysis

This chapter presents the analysis of simulated income data using poverty and needs
measures. The summary measures of poverty and need indices discussed in chapter 2,
the variance estimation of these estimated indices and the inference procedures described
in chapter 3 are to be verified. We also discuss data reduction methods for reducing large
numbers of variables to smaller numbers without loosing much information. The data
from the Canada Census in 1991 will illustrate small area analysis of health care

utilizations for 12 Regional Health Authorities (RHA) in the province of Manitoba.
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4.1 Simulation Study

The purpose of the simulation is to validate and recommend an appropriate inference
procedure for small area measures of needs. One thousand simulated samples were used
in a study of income data of sizes 20, 40 and 100 independently generated from a log-
normal distribution based on an average income of $23,800.00 and standard deviation of
$3735.60. The average income and standard deviation used for the simulation study is
obtained from the Canada Census data for the province of Alberta. The results presented
in the simulation study include summary measures of estimators for 6 poverty and need
indices. It also presents a gain in per cent of relative bias for empirical, bootstrap and
jackknife methods of variance estimation compared to the theoretical variance of Gini’s
distance and Gini’s coefficient. Finally, we present the confidence intervals for both

need indices.

Table 1 reports the summary measures (Minimum, Median, Mean and Maximum of
poverty and need indices) based on standard, bootstrap and jackknife methods. All
poverty indices, other than Gini’s coefficient and Gini’s distance, depend mainly on the
poverty line, which is estimated as one-half of the estimated median family income.
These measures are determined from the one thousand simulated income data using the
methods discussed in Chapter 2. The estimators obtained from the bootstrap and
jackknife methods are also included. It can be seen from Table 1 that the range of all
indices becomes narrower as the sample size increases from 20 to 100. In particular, the
"mean” column denotes the estimate of the respective need index. All seem very similar

with no substantial discrepancies.
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Table 2: Per cent bias of the variance from standard method relative to variance

estimates obtained from empirical, jackknife and bootstrap methods.

Indices Empirical Method Bootstrap Method Jackknife Method
Sample size Sample size Sample size
20 40 100 20 40 100 20 40 100
Gini’s distance 16.24 3.06 -1.77 8.73 -1.66 -3.88 | 16.24 306 | -1.77
Gini’s coefficient 2244 | 20.20 18.71 3453 | 2936 | 22.82 6.81 | 11.80| 15.10

Table 2 report the per cent relative bias of the empirical, jackknife and bootstrap
estimates of variance over the theoretical (standard) variance estimate of the two need
indices, namely Gini’s distance and Gini’s coefficient. The per cent in relative bias (RB)
is obtained from the expression given by

[Var (z§)— E(Var (ﬁ)):l

RB = = ~x 100 % .
Var (8)

Here, E (Var (19)) represents an average of the theoretical (standard) variance estimates of

the two indices derived in section 3.2.1 and Var(z§) is an estimate for variance obtained

from the empirical, jackknife and bootstrap methods, where all are determined from the

one thousand simulated data.
It is seen from Table 2 that the bias of Gini’s distance decreases as the sample size of the

data increases. The variance estimate obtained from the empirical, bootstrap and

jackknife overestimates the theoretical variance in small samples. As the sample size
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increases, the relative bias in estimating these indices becomes smaller approaching
essentially zero. On the other hand the variance for Gini’s coefficient performed
unsatisfactorily, suggesting that the first order approximation was unsatisfactory, no

matter which methods were used.

Table 3: 95% Confidence intervals for the poverty and need indices using the

asymptotic, percentile and bootstrap-t methods.

Sample Size
Need Method 20 40 100
indices L U L U L U
Asymptotic 10362.74 35624.86 | 13736.20 | 32178.06 | 17008.21 | 29009.13
Gini's Distance | Percentile 1164545 37910.09 | 14749.93 | 32762.63 | 17594.89 | 29245.25

Bootstrap-t 10680.10 | 35624.86 | 1307098 | 31231.97 | 16652.47 | 28528.18

Asymptotic 0.21170 0.50185 | 0.26940 | 0.46731 0.31572 1 043854
Gini’s Coeff Percentile 0.24357 047642 | 0.28810 045118 0.32215 0.43056
Bootstrap-t 0.20890 049671 | 0.26982 | 046385 | 0.31584 | 0.43850

Tables 3 gives confidence limits for the need indices. The lower and upper confidence
bound of poverty indices (based on the nominal error rate of 2.5% in each tail) is
computed. Three different methods of constructing confidence intervals, asymptotic,

percentile and bootstrap-t method, are applied.

As can be seen in Table 3, the confidence bounds obtained from the asymptotic method
are very similar to those determined from the other two methods. The percentile method
tends gave much narrower confidence intervals than the bootstrap-z method and the

asymptotic results. As the sample size increases, the confidence intervals from the three
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methods were very similar with no discernible discrepancies of the coverage
probabilities. Therefore, we suggest that the asymptotic approach discussed in section

3.2.1 may be an appropriate method to construct confidence interval of the indices.

A method commonly used to determine the accuracy of an approximation to a
distribution is to compare the coverage probabilities. However, as we do not know the
population quantities of a Gini’s distance and Gini’s coefficient, we did not consider such

comparison.

4.2 Data Reduction Strategies

The main objective in this section is to reduce the dimension of the data to a univariate
data without losing much information to consider the simple methods discussed in
chapter 2. The success of data reduction will be determined by how much variance can
be explained or captured by this univariate data. Then we propose that this new variable,
which is a function of all relevant multivariables, can be used to give a need index for the
areas. We plan to explore how the various adjusted index measures perform in capturing

and comparing the needs across small areas.

4.2.1 Principal Component Method

For a p-variate data matrix X = (X, X3, ..., Xp ) with correlation matrix p, we consider

principal component (PC) analysis to reduce the dimension by explaining the total
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variation of X’s through a few underlying uncorrelated variables which are linear

combinations of the original variables (Johnson and Wichern, 1992). Principal

components depends mainly on the correlation matrix @ (or covariance matrix 2 ). Let
the original variables X have a correlation matrix p with an eigen-value vector A with

Ai2As2....2A,>0 and its corresponding eigenvectors Y = (€, ©,,..., €,) and consider the

following linear combinations:

Y=vX

such that, Var(Y,)=€pe,=1 Cov(Y,,Y,)=e/pe,=0 ,forik.

Therefore, the principal components are those uncorrelated linear combinations Y}, Y, ...,
Y,. The first principal component has the largest variance. The variance explained by the
kth principal component is given by

Ay

P
24,
i=l

, k=12, ...,p

The PC method is successful if it can reduce the p multi-variables down to a very few,
while these variables can explain a substantial amount of variance. What we anticipate is
that the PC method may be able to reduce the dimension of socio-economic and health
relevant variables to one variable that explains a very high proportion of the variance.
Our approach will work if the first PC explains most of the variance so that no real loss
of information occurs. The first PC can be used to compute a needs measure using the

indices discussed in chapter 2.
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4.2.2 Factor Analysis Method

Similarly, if one can postulate a common factor model for X, then factor analysis can be
used to postulate X as being linearly dependent upon a few unobservable random

variables F, F>, ..., Fy, referred to as a common factors, with p additional sources of

variation i, €3, ..., & . The factor model is given by

X=U+LF +¢
where L is the matrix of factor loading, [ is the general mean vector and the covariance

matrix of X is given by X. The first factor is one that explains the variance in X most.

Similarly as in PC approach the success using factor analysis depends on how good the
first few factors are in capturing and explaining the variance in X. Furthermore, the
success of the factor analysis method depends on whether such a model is tenable. In the
absence of such assumptions, the PC method of data reduction may be more robust.

Similarly, the first factor can be used to compute a need measure.

4.2.3 Multiple Linear Model Method

This method is applicable when a clear dose-response relationship can be found (i.e. one
response variable is identified as a dependent variable against several explanatory
variables) as in

y=XB+¢. @.1)
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We may predict the value for ¥, ¥, for the responses explained or predicted by a set of

explanatory variables, according to the model (4.1).

These predicted values can be used to give weighted average values for each area, In
health services research, these values have been commonly used to give the measures of

needs (Roos et. al. 1996a, 1996b).

4.3 Numerical Example: The Case of Manitoba

We compare various approaches for small area analyses. The purpose of this section
includes studying the effect of employing various data reduction technique of a large
number of variables into univariate data and applying needs index measures to the
reduced one-dimensional data. These will be illustrated using the Manitoba data to
estimate the average health status across 12 Regional Health Authorities (RHA). In the
estimation of health statuses across small areas we also consider three different model
based approaches. The auxiliary data in this example have six socio-economic variables,
namely the per cent of unemployment among ages 15 to 24 and 45 to 54, the per cent
female householders, the per cent of high school graduates among 25 to 34 year olds, the
per cent women in the labour force, and the dwelling value all available for each of 241
municipalities (n = 241). Because the data were available in a standardized rate, the only
appropriate measure of inequality is the Gini’s distance. The sample size for RHA ranges

from | to 43 municipalities.



One RHA was removed from the analysis because it contains only one municipality, and
therefore we deal with the remaining 11 RHAs. We apply the data reduction techniques
to reduce the dimension of the multivariables into one. The first principal component and
the first factor explained 38.20% of the variance in the socio-economic variables. We use
these first PC and first factor to compute the Gini’s distance. Later in this section,
comparisons will be made between the small area rates using the data reduction methods
and those based on much fuller model based approaches. We have an overall Gini’s
distance of 1.5370 and 1.0151 obtained from the first principal component and first factor

score, respectively, with the corresponding standard error estimates of 0.4970 and 0.9887.

Table 4: Gini’s distance for the province of Manitoba using the first Principal

Component.

RHA | Gini 95% C.I. | 95% C.1. | Standard
Code | distance | Lower L | Upper L | Error.
1.0095 0.6750 | 1.5096 0.2073

1.5918 1.0656 | 2.3777 0.3259
1.3255 0.5619 | 3.1269 0.5804
1.5008 1.0755 | 2.0942 0.2551
1.9076 1.6133 [ 2.2557 0.1631
1.1080 0.8304 | 14785 0.1631
2.4275 1.7878 | 3.2960 0.3788
3.2748 1.6002 | 6.7020 1.1966
1.4931 0.9671 2.3051 0.3308
0.7191 0.5492 | 0.9415 0.0989
0.8037 0.4727 1.3666 0.2177

32 0FmoangEs

Over 1.5370
all
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Tables 4 and 5 summarizes the estimation results across the 11 RHAs. The confidence
intervals for Gini’s distance are obtained using the formula z%xp{iZa,/2 var,(z§)}
(Carriere and Roos, 1994, 1997) where var, (z§) represents the standard error estimate of

In() and approximated by var(z§)/ 3 using a first order Taylor approximation. As the

goal in small area analyses is to investigate the needs level and their variation across
small areas, the Gini's distance score for each RHA against the overall measure will be

examined.

Table 5: Gini’s distance for each RHA using the first factor score.

RHA | Gini 95% C.I. | 95% C.1. | Standard
Code | distance | Lower L | Upper L | Error.

A 0.6667 04458 | 0.9971 0.1369
BN 1.0513 0.7038 1.5704 0.2153
BS 0.8755 03711 2.0652 0.3833

C 0.9912 0.7104 1.3832 0.1685

D 1.2599 1.0655 1.4898 0.1077

E 0.7318 0.5484 | 0.9765 0.1077
FB 1.6033 1.1808 | 2.1769 0.2502

G 2.1629 1.0569 | 4.4265 0.7903
GM 0.9861 0.6388 1.5224 0.2185
GS 0.4749 0.3627 | 0.6218 0.0653

K 0.5309 03122 | 0.9026 0.1438

Over | Loist

Gini’s distance across the small areas appear quite diverse (T*=66.77 and 106.16 for the

first PC and first factor score analysis, respectively). It is seen in both Tables 4 and 5 that
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both approaches led to the same conclusion. That is, the Gini’s distance for three RHAs
(D, FB and G) are greater than the overall indicating a greater disparity across the areas
in their socio-economic conditions, while those of four RHAs (A, E, GS, and K) are
smaller than the overall. The remaining four RHAs (BN, BS, C and GM) are similar to

the overall.

Patterns of health care utilization may need to be assessed with detailed knowledge of
socio-economic characteristics. Socio-economic status is an important determinant of
health status and there is a broad range of conditions that can adversely affect the health
of various segments of the population. We consider the more detailed model based
approach for estimation of small area means summarized in chapter 2 in this data set. We
will compare the results with those based on simple indices. Recall that, in using the
simple indices, there was no dependent variable to be explained by the set of socio-
economic variables, as in the model-based approaches. The dependent variable here is a
composite measure of general health status for the municipalities (Mustard and Frohlich,
1995). The larger the score on health status, the poorer the municipality. Three different
techniques, Multiple Linear (MLM), Variance Components (VCM) and models based on
Ecological Level (EL) data, are considered to fit the model of the dependent data on the
six socio-economic data, as described earlier. Table 6 shows the mean estimate of health

status obtained from these models and their corresponding standard errors for each RHA.
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Table 6: Model based small area estimation for health status and the standard error of

these estimators for RHA’s for the province of Manitoba.

Small Area Mean Estimators Estimated Standard Error
RHA MLM VCM EL model MLM VCM EL model
A 0.3841 04132 0.4518 0.1108 0.1264 0.8663
BN 1.1229 0.9284 0.9303 0.1317 0.1805 1.6582
BS 0.3978 0.0858 0.0209 0.0868 0.2058 0.4275
C 0.6418 0.5352 0.5557 0.1180 0.1456 1.0404
D 0.9703 1.2032 1.5334 0.1153 0.2353 1.1766
E 0.7485 0.5390 0.5397 0.1170 0.1456 0.9663
FB 1.7954 2.1553 24119 0.1801 0.1994 1.6061
G -0.1193 -0.3255 -0.3607 0.1071 0.2886 0.2686
GM 0.5168 0.4166 0.4350 0.1224 0.1199 1.0068
GS 0.2543 0.4433 0.5181 0.1059 0.1301 0.5580
K -0.0442 -0.3860 -0.4623 0.1314 0.1996 0.2521
T’ 160.48 117.67 34.06

It can be seen from Table 6 that there is a significant variation in small area need

inequality across the RHAs. Specifically, the RHA FB was found to be the one that is in

need to improve its need level (health status) which has similar to the earlier findings

with or without considering the composite score on health status. The results reported in

Table 6 also shows that the standard errors of small area estimates obtained from the

model based on ecological level data are significantly larger than those from the multiple

linear and variance component models due to using summarized information. The model

based estimates of needs from the multiple linear and variance component models give

smaller standard errors because they use individual level data from each of the 241
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municipalities. However, the overall ranking of RHAs in the order of their needs level
was somewhat consistent. Table 7 reports that there is a strong linear relationship of the
small area estimates of needs obtained from each model. The scatter plots given in
Figures 2 also support this finding. Figure 2 shows scatter plots of the inequality
estimates obtained from data reduced into one variable using principal component and
factor analysis, and the model based small area needs estimates. The Gini’s distance
score of RHA G did not appear to correlate very well with the model based small area
estimates due to small sample size: there are only three municipalities in this RHA.
Other than this RHA, their rank order appears to be consistent with RHA coded FB the

poorest and GS and K the healthiest.

Table 7: Pearson’s coefficient of correlation of the health status estimates for 1 1 RHAs.

Ecological Variance Multiple Principal
level Com. Linear Com.
Variance com. 0.9959
Multiple Linear 0.9435 0.9645
Principal Com. 0.2254 (0.8590) 0.2106 (0.8656) | 0.2008 (0.9042)
Factor Analysis 0.2254 (0.8590) 0.2106 (0.8656) | 0.2007 (0.9042) 0.9999

* The numbers in parentheses iadicate the correlation upon removing RHA G.
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Figure 2: Scatter plots of inequality measures and model based small area estimates
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4.4 Conclusion

Proxies of poverty or needs, such as health care and education resources are believed to
supplement the profile for the standard of living of a household in a given area. In
general, poverty and needs are defined in terms of adequacy of income, or more
generally, of disposable resources, to support a minimum standard of decent living
(Foday, 1995). Such techniques for defining poverty and needs are focused mainly on
income, consumption and expenditure. In this thesis we stressed that income is not the
only factor to consider in the study of the state of poverty. The impact of other factors
such as level of education, state of health, the demographic structure, are all crucial
determinants of poverty and needs. This thesis discussed methodological approaches for
incorporating these factors into measures of needs analysis. One of the methods
advocates multivariate data reduction strategy to reduce the dimension of variables, if
possible to one dimension, without losing much information contained in the data.
Therefore, depending on data availability, one may take this one-dimensional variable to

determine the extent and severity of poverty and need for a given area.

We presented methods of variance estimation and inference procedures for Gini’s
distance and Gini’s coefficient. The per cent in relative bias is used to compare the
standard variance estimate with those estimates obtained using empirical, jackknife and
bootstrap methods based on one thousand simulated income data. The results reported in
Table 3 shows that the per cent in relative bias of Gini's distance is close to zero for large

sample size. Whereas, the variance estimate of Gini’s coefficient from the standard
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method is not satisfactory, which indicates that Taylor’s first order approximation does

not provide precise estimate of variance.

Different methods of small area estimation and their variance estimation strategies along
with inference methods have been reviewed in this thesis. Such indirect estimation
includes design based, synthetic, composite and model based estimators. Based on these
small area estimation strategies, the health status data collected in the province of
Manitoba have been utilized to investigate the level of needs for the RHAs. There are
broad range of conditions that can adversely affect needs (health status) of various
segments of the population in a given area. In this thesis we compared the interpretations
of needs across Manitoba RHAs based on various approaches. Unless the sample size is
too small, the overall explanation seem consistent whether one uses model based

approaches or simple index measures.
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APPENDIX
A.1 Simulation Program (in C language)

/********************tt**t***************t****************************

* The following program is used to calculate the value for poverty and*
* need indices with their corresponding standard errors using a *

* standard, Jackknife and bootstrap method.It also uses to find The *

* relative bias of MSE’'s for two need indices, namely gini_distance *
*

and gini-coefficient.
*********************************************************************/

#include <stdio.h>
#include <math.h>
#include <string.h>
#include <time.h>
#include <stdlib.h>

#define sim_size 1000
#define size 20

#define boot_size 200
#define RANDMAX 32767

double gini_coef(double [], int);

double sens_index(double (], int);

double poverty_gap(double [], int);

double fgt_measure(double (1, int);

double income_gap(double [], int);

double gini_less_pov(double [], int);

int count_less(double [], int);

double pov_line(double (], int);

void arrange(double []., int);

double average(double [], int);

double pseudo(double, double, int);

void create_matrix(double [], double [][size-1]);
void bootstrap_sample(double (], double [}, int, int):
double variance(double [], int);

double var_gini_distance(double [], int);

double var_gini_coef (double [}, int);

double gini_distance(double [], int);

void generate_data(double (], int, int);

main ()
{ /*Begining of the main program*/

int numl, num2, num3, num4, num5, num, ind;

unsigned int seed;

double *pov_lin, *gini_c, *sen_in, *pov_gp, *fgt_m;

double jack_var_pl, jack_var_gini, jack_var_sen, jack_var_pg,
jack_var_fgt;

double *arrayofy, *row_matrix, matrix(size] [size-1] ;

56



double *pl_pseudo, *gini_pseudo, *sen_pseudo, *pg_pseudo, *fgt_pseudo;
double *pl_data, *gini_data, *sen_data, *pg_data, *fgt_data;
double *arrayindex, *pl_boot, *gini_boot, *sen_boot, *pg_boot,
*fgt_boot;

double *pl_bootstrap, *gini_bootstrap;

double *pg_bootstrap, *sen_bootstrap, *fgt_bootstrap:;

double var_pl_boot, var_gini_boot, var_pg boot, var_sen_boot,
var_fgt_boot;

double *pl_jackknife, *gini_jackknife;

double *sen_jackknife, *pg_jackknife, *fgt_jackknife;

double pl_sim_data, gini_sim_data, sen_sim data, pg_sim_data,
fgt_sim data;

double var_pl_data, var_gini_data, var_sen_data, var_pg_data,
var_fgt_data:;

double pl_sim_jack, gini_sim_ jack, sen_sim jack, pg_sim_jack,
fgt_sim jack;

double pl_sim boot, gini_sim boot, pg_sim_boot, sen_sim_boot,
fgt_sim_boot;

double *gini_dist_var, *pov_gap_var, *gini_coef_var;

double *gini_dist_data, *gini_dist_jackknife, *gini_di,
*gini_dist_pseudo;

double *gini_dist_boot, *gini_dist_bootstrap, ginidist_sim_data;
double var_ginidist_data, ginidist_sim_jack, jack_var_ginidist;
double ginidist_sim_boot, var_ginidist_boot;

FILE *out, *dataQl, *data02, *datal03, *datald4;

arrayofy = malloc(size*sizeof (double));

pl_data = malloc(sim _size*sizeof (double));
gini_data = malloc(sim_size*sizeof (double));
sen_data = malloc(sim_size*sizeof(double));
pg_data = malloc(sim size*sizeof (double));
fgt_data = malloc(sim_size*sizeof (double));
pl_jackknife = malloc(sim_size*sizeof (double)):;
gini_jackknife = malloc(sim_size*sizeof (double));
sen_jackknife = malloc(sim_size*sizeof (double));
fgt_jackknife = malloc(sim_size*sizeof (double));
pg_jackknife = malloc(sim_size*sizeof (double));
pl_bootstrap = malloc(sim_size*sizeof (double));
gini_bootstrap = malloc(sim_size*sizeof (double}) ;
sen_bootstrap = malloc(sim_size*sizeof (double));
pg_bootstrap = malloc(sim_size*sizeof(double));
fgt_bootstrap = malloc(sim_size*sizeof (double));
gini_dist_var = malloc(sim_size*sizeof(double));
pov_gap_var = malloc(sim_size*sizeof (double));
gini_coef_var = malloc(sim_size*sizeof (double));
gini_dist_data = malloc(sim_size*sizeof (double));
gini_dist_jackknife = malloc(sim_size*sizeof (double));
gini_dist_bootstrap = malloc(sim_size*sizeof (double));

data0l = fopen("out20_data", "w");
data02 = fopen("out20_jack", "w");
data03 = fopen("out20_boot", "w");
data04 = fopen("out20_var", "w");

fprintf(data0l, "THE FOLLOWING OUTPUT IS INDIVIDUAL MEASURES OF INDICES
FROM THE ORIGINAL DATA \n");
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fprintf(data0l, "CONSISTING OF %$4d INCOME DATA FOR EACH SIMULATION
\n\n", size);

fprintf(data0l, "Simu. No. Pov. Line Gini-Dist Gini-cocef pov-gap
sen’s-index fgt-meas \n");

fprintf(data02, "THE FOLLOWING OUTPUT IS INDIVIDUAL MEASURES OF INDICES
FROM THE JACKKNIFE METHOD\n");

fprintf(datal02, "CONSISTING OF %4d INCOME DATA FOR EACH SIMULATION
\n\n", size);

fprintf(data02, "Simu. No. Pov. Line Gini-Dist Gini-coef pov-gap
sen’s-index fgt-meas \n");

fprintf(datal03, "THE FOLLOWING OUTPUT IS INDIVIDUAL MEASURES OF INDICES
FROM THE BOOTSTRAP METHOD\n");

fprintf(data03, "CONSISTING OF %4d INCOME DATA FOR EACH SIMULATION
\n\n", size);

fprintf(data03, "Simu. No. Pov. Line Gini-Dist Gini-coef pov-gap
sen’s-index fgt-meas \n");

fprintf(data04, "THE FOLLOWING RESULTS REPRESENTS VARIANCE OF THE Two
INDICES \n");

fprintf(datat4, "CONSISTING OF %4d INCOME DATA FOR EACH SIMULATION
\n\n", size):;

fprintf (datal4, "Simul. No. Gini-Distance Gini-Coefficient
\n");
for (numS = 1; num5S <= sim_size; numS++)

{

generate_data(arrayofy, size, numS);

var_gini_distance(arrayofy, size);
var_gini_coef (arrayofy, size);

gini_dist_var [num5-1]
gini_coef_var[num5-1]

pl_data[num5-1] = pov_line(arrayofy, size);
gini_data[num5-1] = gini_coef (arrayofy, size);
gini_dist_data[num5-1]) = gini_distance (arrayofy, size);
sen_data[num5-1] = sens_index(arrayofy, size):;
pg_data(numS-1] = poverty_gap(arrayofy, size);
fgt_data[numS5-1] = f£gt_measure(arrayofy, size):;

row_matrix = malloc{(size-1)*sizeof (double));
pov_lin = malloc(size*sizeof (double));

gini_c = malloc(size*sizeof(double));

gini_di = malloc(size*sizeof (double));

sen_in = malloc{size*sizeof(double)) ;

pov_gp = malloc(size*sizeof(double));

fgt_m = malloc(size*sizeof{double));

create_matrix{arrayofy, matrix);

for (numl=0; numl< size; numl++)

{
for(num2=0; num2 < size-1; num2++)
{
row_matrix[num2] = matrix[numl] (num2];
}
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pov_lin[numl] = pov_line(row_matrix, size-1);

gini_c[numl] = gini_coef(row_matrix, size-1);
gini_di[numl] = gini_distance(row_matrix, size-1);
sen_in{numl] = sens_index(row_matrix, size-1);
pov_gpl(numl] = poverty gap(row_matrix, size-1);
fgt_m(numl] = fgt_measure(row_matrix, size-1);

}
free(row_matrix);

pl_pseudo = malloc(size*sizeof (double));
gini_pseudo = malloc{size*sizeof (double));
gini_dist_pseudo = malloc(size*sizeof (double));
sen_pseudo = malloc(size*sizeof(double));
pg_pseudo = malloc(size*sizeof (double));
fgt_pseudo = malloc(size*sizeof (double));

/*THE FOLLOWING LOQOP USES TO FIND PSUEDO VALUES FOR POVERTY
INDICES*/

for (num3=0; num3 < size; num3++)
{

pl_pseudoinum3] = pseudo(pl_data[num5-1], pov_lin[(num3]}, size);

gini_pseudo[num3] = pseudo(gini_data[num5-1], gini_c[num3],
size);

gini_dist_pseudo[num3] = pseudo(gini_dist_data[num5-1],
gini_di(num3], size);

sen_pseudo[num3] = pseudo(sen_datalnum5-1], sen_in{num3],
size);

pg_pseudo[num3] = pseudo(pg_datal[num5-1], pov_gpl[num3], size);

fgt_pseudo(num3] = pseudo(fgt_data[num5-1], fgt_minum3], size);

}

free(pov_lin);
free(gini_c);
free(gini_di);
free(sen_in) ;
free(pov_gp) ;
free(fgt_m) ;

pl_jackknife[num5-1] = average(pl_pseudo, size);

gini_jackknife[numS5-1] = average(gini_pseudo, size);
gini_dist_jackknife[numS-1] = average(gini_dist_pseudo, size);
sen_jackknife[numS5-1] = average(sen_pseudo, size);
pg_jackknife[numS-1] = average(pg_pseudo, size);

fgt_jackknife[num5-1] = average(fgt_pseudo, size);

free(pl_pseudo) ;
free(gini_pseudo);
free(gini_dist_pseudo) ;
free(sen_pseudo);
free(pg_pseudo) ;
free(fgt_pseudo) ;

/* THE FOLLOWING PART DOES COMPUTATION USING BOOTSTRAP METHOD */
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arrayindex = malloc(size*sizeof(double));

pl_boot = malloc(boot_size*sizeof (double));
gini_boot = malloc(boot_size*sizeof (double));
gini_dist_boot = malloc({boot_size*sizeof (double));
sen_boot = malloc (boot_size*sizeof (double));
pg_boot = malloc(boot_size*sizeof(double));
fgt_boot = malloc{boot_size*sizeof (double));

for (numd4=1; numé <= boot_size; numd++)

{
seed = rand();
bootstrap_sample(arrayofy, arrayindex, size, seed);
pl_boot[num4-1] = pov_line(arrayindex, size);
gini_boot [num4-1] = gini_coef(arrayindex, size);
gini_dist_boot[num4-1] = gini_distance(arrayindex, size):;
sen_boot[num4-1] = sens_index(arrayindex, size);
pg_boot[num4-1] = poverty_gap(arrayindex, size);
fgt_boot[numd4-1] = fgt_measure(arrayindex, size);

}

free(arrayindex) ;
/*ESTIMATION OF POVERTY AND NEED INDICES USING BOOTSTRAP METHOD*/

pl_bootstrap[num5-1] = average(pl_boot, boot_size);

gini_bootstrap[numS-1] = average(gini_boot, boot_size);
gini_dist_bootstrap[num5-1] = average(gini_dist_boot, boot_size);
pg_bootstrap(num5-1] = average(pg_boot, boot_size);

average (sen_boot, boot_size);
average (fgt_boot, boot_size):;

sen_bootstrap [num5-1]
fgt_bootstrap [num5-1]

won

free(pl_boot) ;
free(gini_boot) ;
free(gini_dist_boot) ;
free(sen_boot) ;
free(pg_boct) ;
free(fgt_boot):

fprintf(data0l, "%44d %13.2f %$12.2f %9.5f", numS, pl_data[num5-1],
gini_dist_data[num5-1], gini_data([num5-1]);

fprintf(data0l, "%11.5f %$9.5f %9.5f \n", pg_data(num5-1],
sen_data[num5-1], fgt_datal[num5-1]});

fprintf(data02, "%4d %$13.2f %12.2f %9.5f£", numS, pl_jackknife[num5-
1], gini_dist_jackknife[num5-1], gini_jackknife[num5-1]);

fprintf(data02, "%$11.5f %9.5f %9.5f \n", pg_jackknife[num5-1],
sen_jackknife[num5-1], fgt_jackknife[num5-1]);

fprintf(data03, "%4d %13.2f %12.2f %$9.5f", num5, pl_bootstrap(num5-
1], gini_dist_bootstrap(numS-1], gini_bootstrap[num5-1]);

fprintf(data03, "%$11.5f %9.5f %9.5f \n", pg_bootstrap[num5-1],
sen_bootstrap[nums-1], fgt_bootstrapinum5-1]);

fprintf (data04, "%5d %20.2f %16.5f£f \n", numS, gini_dist_var[numS-1],
gini_coef_var{num5-11);
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}

pl_sim_data = average(pl_data, sim size);

gini_sim data = average(gini_data, sim_size);
ginidist_sim data = average(gini_dist_data, sim_size);
sen_sim_data = average(sen_data, sim_size);
pg_sim_data = average(pg_data, sim_size);

fgt_sim_data = average(fgt_data, sim_size);

var_gini_data = variance(gini_data, sim_size);
var_ginidist_data = variance(gini_dist_data, sim_size);

pl_sim_jack = average(pl_jackknife, sim_size);

gini_sim _jack = average(gini_jackknife, sim_size);
ginidist_sim jack = average(gini_dist_jackknife, sim_size);
sen_sim_jack = average(sen_jackknife, sim_size);
pPg_sim_jack = average(pg_jackknife, sim_size);

fgt_sim_jack = average(fgt_jackknife, sim_size);

jack_var_gini = variance(gini_jackknife, sim_size);
jack_var_ginidist = variance(gini_dist_jackknife, sim_size);

pl_sim_boot = average(pl_bootstrap, sim_size);
gini_sim_boot = average(gini_bootstrap, sim_size);
ginidist_sim_boot = average(gini_dist_bootstrap, sim_size);
sen_sim_boot = average(sen_bootstrap, sim_size);
pg_sim_boot = average(pg_bootstrap, sim_size);

fgt_sim_boot = average(fgt_bootstrap, sim_size);

var_gini_boot = variance(gini_bootstrap, sim_size);
var_ginidist_boot = variance(gini_dist_bootstrap, sim_size);

out = fopen("out01l_20", "w");

fprintf (out, "THE FOLLOWING RESULT GIVES VALUES OF NEED INDICES AND
\n") ;

fprintf(out, " THEIR VARIANCE FROM THE ORIGINAL DATA OF %d SIMULATION
SIZE \n\n", sim_size);

fprintf(out, " Poverty Line of the original data = $%.2f \n",
pl_sim_data) ;

fprintf(out, " Gini_Coefficient of the original data = $7.5f \n",
gini_sim_data);

fprintf (out, " Gini_distance of the original data = %7.5f \n",
ginidist_sim_data);

fprintf(out, " Sen’s Index of the original data = %7.5f \n",
sen_sim_data);
fprintf(out, " Poverty Gap of the original data = %7.5f \n",

pg_sim_data) ;
fprintf(out, " FGT Measure of the original data
fgt_sim_data)

$7.5f \n\n\n",

~e

fprintf (out, "Variance of gini coef from the data = %15.11f \n",
var_gini_data) ;
fprintf (out, "Variance of gini dist from the data = %15.11f \n-",

var_ginidist_data);
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fprintf(out, "THE FOLLOWING RESULT GIVES VALUES FROM THE JACK METHOD
\n\n");

fprintf(out, " poverty Line from Jack = $%.2f \n", pl_sim_jack);
fprintf(out, " Gini-Coeff from jack = %7.5f \n", gini_sim_jack);
fprintf(out, " Gini-dist from jack = %7.5f \n", ginidist_sim_jack);
fprintf(out, " Poverty Gap from jackknife = %7.5f \n", pg_sim_jack);
fprintf(out, " Sens Index from jack = %7.5f \n", sen_sim_jack);
fprintf(out, " FGT Measure from jack = %$7.5f \n\n\n", fgt_sim_jack);

fprintf(out, " Variance of Gini Coeff from jack = %15.11f \n",
jack_var_gini) ;

fprintf(out, " Variance of Gini dist from jack = %15.11f \n",
jack_var_ginidist);

fprintf(out, "THE FOLLOWING RESULT GIVES VALUES FROM THE BOOT METHOD
\n\n");

fprintf(out, " poverty Line from bootstrap = $%.2f \n", pl_sim_boot);
fprintf(out, " Gini-Coeff from bootstrap = %7.5f \n", gini_sim_boot);
fprintf(out, " Gini-dist from bootstrap = %7.5f \n",

ginidist_sim boot);

fprintf(out, " Poverty Gap from bootstrap = %7.5f \n", pg_sim_boot);
fprintf(out, " Sens Index from bootstrap = %7.5f \n", sen_sim_boot);
fprintf(out, " FGT Measure from bootstrap = %7.5f \n\n\n",
fgt_sim_boot);

fprintf(out, " Variance of Gini Coeff from bootstrap = $%15.11f \n",
var_gini_boot);

fprintf(out, " Variance of Gini dist from bootstrap = %15.11f \n",
var_ginidist_boot);
fprintf(out, " Theoretical variance for Gini-coeff. = %7.5f \n",

average(gini_coef_var, sim_size));
fprintf(out, " Theoretical variance for Gini-dist. = %$12.2f \n",
average(gini_dist_var, sim_size));

}/* End of the main program*/

/* CREATE A MATRIX OF ORDER K BY K-1 FROM AN ARRAY OF SIZE K, WHERE iTH
ROW

IS OBTAINED BY DELETING THE iTH ELEMENT OF THE ARRAY, WHICH IS USED
FOR

JACKKNIFE METHOD */

void create_matrix(double a[], double result[size][size-1])

{

int i, 3j;

for (i=0; i<= size - 1; i++)
{
for(j=0; j<size-1; j++)
{
if (3 < i)
result[i][j] = al3jl;
else
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result{i] [j] = alj+1];

/*IT CALCULATES GINI-COEFFICIENT OF A GIVEN ARRAY*/
double gini_ccef(double a(], int step)

{

int i, j, k, count;
double sum_var, gini, sumofy, sumofx;

sumofy = 0;
sumofx = 0;
for (i=0; i <= step-2; i++)
{
for ( j=i+1l; j<=step-1l; j++)
{
sumofy += fabs(a[il -aljl)-;
}
sumofx +=a(il;
}
sumofx += a[step -1];
gini = sumofy/( (double) step * sumofx) ;

return gini;

}

/*This function calculates Gini-distance of a given array of numbers*/
double gini_distance(double b[], int step)

{

int i, j, count;
double sum, gini_dis;

sum = 0;
count = 0;
for (i = 0; 1 < step-1; i++)
{
for (j = 1 + 1; j <= step-1l; j++)
{
sum += fabs(b(i] - b[3jl):
count += 1;
}
}
gini_dis = sum/ (double) count;

return gini_dis;
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}

/*THIS FUNCTION CALCULATES SEN’'S INDEX OF AN ARRAY*/
double sens_index(double c{], int step)

{
int count;
double sen, h_ratio, in_gap., gini_less;
count = count_less(c, step):
h_ratio = (double) count/(double) step;
in_gap = income_gap(c, step):;
gini_less = gini_less_pov(c, step):;
sen = h_ratio*(in_gap + (1.0 - in_gap)*gini_less);

return sen;

}

/*THIS USES TO OBTAIN POVERTY GAP OF A GIVEN ARRAY*/

double poverty_ gap(double e[], int step)

{
int i, count;
double poverty_line, sum_pg, p_dap;
arrange (e, step);
count = count_less(e, step):
poverty_line = pov_line(e, step):
sum_pg = 0;
for (i=0; i <= count - 1; i++)

sum_pg += (poverty_line - e[i]) / poverty_line;

p_gap = sum_pg / (double) step;
return p_gap;

}

/ *COMPUTES FGT MEASURE OF AN INCOME DATA*/
double fgt_measure(double £[], int step)

{
int i, count;
double poverty_line, sum_fgt, fgt_index;

arrange (£, step);
poverty_line = pov_line(f, step):
count = count_less({f, step):
sum_£fgt = 0;
for (i=0; i <= count - 1; i++)
sum_fgt += pow((poverty_line - £[i]) / poverty_line,

2.0)



fgt_index = sum_£fgt / (double) step;
return f£gt_index;

}

/*THIS FUNCTION IS USED TO CALCULATE VARINCE OF GINI-DISTANCE FOR A
GIVE ARRAY*/

double var_gini_distance(double a{], int step)
{
int i, j, k;

double sum_var, sum_av, sum_sq, mean{size], var([size], sum_cov;
double var_dist, sum_sg cov, constl, const2;

sum_var = 0;
for(i=0; i<step; i++)
{

sum_av = 0;
sum_sqg = 0;
for(j=0; j<step; j++)
{
sum_av += fabs(afi] - aljl);
sum_sqg += pow(al[i]l - a(jl, 2.0);
}
mean([i] = sum_av / (double) step ;
var(i] = pow(step - 1.0, -1.0)*(sum_sq - step*pow(mean(i], 2.0));
sum_var += var(i];

}

sum_cov = 0;
for(i=0; i<step; i++)
{
for(j=i+1; j<step; j++)
(
sum_sq _cov = 0;
if (1 t= 3)
{
for(k=0; k<step; k++)
sum_sq _cov += (fabs(ali] - alk]}) -
mean([i]) *(fabs(al(j] -

alk]) - mean(jl):
sum_cov += sum_sqg_cov / {(double) step;
}
}
}
constl = pow(step * pow(step - 1, 2.0), -1.0);
const2 = 4*pow(step * pow(step - 1, 2.0), -1.0);

var_dist = constl*sum_var + const2*sum_cov;

return var_dist;
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/*THIS PART OF THE PROGRAM IS USED TO CALCULATE VARINCE OF A GINI-

COEFFICIENT*/

double var_gini_coef (double a[], int step)
{
int i, j, count;
double meanofx, meanofy,
double var_x, varl,
double coefl, coef2,

bl(size*(size - 1))}/21;
ratio, sumsgxy, covar, devofx,
var_coef;

variance(a, step);
var_gini_distance(a,

var_x =

varl = step) ;

0

count ;
0; i<step; i++)

for (i

{

for(j = i+1;
{

bl{count] =
count += 1;

j<step; Jj++)

fabs(af{i] - aljl);

}

average(a,
average (b,

step) ;
count) ;

meanofx
meanofy =

0;
i<step;

sumsqgxy =
for ( i=0;

{

i++)

devofx = al[i]
for ( j=i+1;
{
devofy = fabs(al[i] - aljil)
sumsqgxy += devofx*devofy;

- meanofx;
j<step; j++)

- meanofy;

covar = sumsqgxy/ (double) count;

ratio = meanofy / meanofx;

coefl pow(4.0*step*meanofx*meanofx, -1.0);
coef2 varl - 2.0*ratio*covar*(2.0/(step*(step - 1)))
2.0) *var_x;

var_coef = coefl*coef2;

return var_coef;

}

devofy;

+ pow(ratio,

/*THIS FUNCTION COMPUTES VARIANCE OF A GIVEN ARRAY OF NUMBERS*/
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double variance(double a[], int step)

{
int 1i;
double est, sum, var;
est = average(a, step);
sum = 0.0;
for (i=0; i<step; i++)
sum += pow({a[i] - est, 2.0);
var = sum / (double) (step - 1);
return var;
}

/*CALCULATES AVERAGE VALUE*/
double average(double c[}], int step)
{
int i;
double sum_av, aver;
sum_av = 0;
for ( i=0; i<= step - 1; i++)
sum_av += c[i};
aver = sum_av / (double) step ;
return aver;
}
/ *COMPUTES PSEUDO VALUE*/

double pseudo(double zl, double z2, int z3)

{
double value;

value = 2z3*z1 - (z3 -~ 1)*z2;

return value;

/*COMPUTES INCOME GAP OF A GIVEN INCOME DATA WHICH WE USE IT FOR
SEN'S INDEX*/

double income_gap (double c[], int step)

{

int i, count;
double poverty_line, sum, inc_gap;
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poverty_line = pov_line(c, step);
count = count_less(c, step):
arrange(c, step):;

sum = 0;
for(i=0; i<= count-1; i++)
(

sum += (poverty_line - c{i])/poverty_line;

}
inc_gap = (1.0/(double) count )*sum;

return inc_gap;

/ *CALCULATES GINI-COEFFICIENT FOR THOSE INCOME DATA BELOW THE POVERTY
LINE,
AGAIN USED FOR SEN’'S INDEX*/

double gini_less_pov(double c[], int step)

int i, j, count;

double sum_den, sum_num, gin_less;

arrange(c, step):
count = count_less(c, step):
sum_den = 0;
sum_num = 0;
for( i=0; i<= count - 2; i++)
{
for(j = i+l1l; j<= count - 1; j++)
{
sum_num += fabs(c[i] - c[jl):
}
sum_den += c[il;
}

sum_den += c[count - 1];
gin_less = sum_num / ((double) count*sum_den);

return gin_less;

/*THIS FUNCTION COUNTS THE NUMBER OF INCOME DATA BELOW THE POVERTY
LINE*/
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int count_less(double cl(], int step)

{
int i, count;
double poverty_line;

poverty_line = pov_line(cl, step):;
count = 0;
for(i=0; i <= step - 1; i++)
if (cl{i] < poverty line)
count += 1;

return count;

/*THIS IS USED TO OBTAIN POVERTY LINE*/
double pov_line(double c2[], int step)
{

double median;

int j;

arrange(c2, step);

if (step % 2 == 0 )
median = (c2([step/2] + c2[step/2 + 1]1)/2.0;
else

median = c2([(step + 1)/21;

return median/2.0;

/*THIS FUNCTION ARRANGES THE GIVEN ARRAY OF DATA IN ASSENDING ORDER*/
void arrange(double d[], int step)
{

int i, k;
double hold;

for (i=0; i<=step-1; i++)
{
for(k=0; k<=step-2; k++)
{
if( dlk] > dlk+1})
{
hold d(kl;
d[k] dlk+1];
d(k+1] = hold;
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}

/*THE PURPOSE OF THIS FUNCTION IS TO SELECT BOOTSTRAP SAMPLE AND PASS
IT
FOR THE PURPOSE OF DETERMINING BOOTSTRAP ESTIMATES*/

void bootstrap_sample (double a(], double b(], int step, int n)

{
int i, ind;
unsigned int m;

m=n;
srand (m) ;
for (i=0; i < step; i++)
{
ind = rand() % step;
b{i] = alind};
}

}

/*THIS IS USED TO GENERATE INCOME DATA FOR EACH SIMULATION PROCESS*/
void generate_data(double a(l, int con, int seed)

{
unsigned int m;
int k;
double ul, u2, st_norm, norm, mean, std;

mean = 10.07;
std = 0.70;
m = seed;
srand(m) ;
for (k = 1; k <= con; k++)
{
ul (double) (1.0 + rand() % RANDMAX)/(1.0 + RANDMAX);
u2 (double) (1.0 + rand() % RANDMAX)/(1.0 + RANDMAX):
st_norm = sqgrt(~2*log(ul))*cos(2*3.14*u2);
norm = mean + std*st_norm;
alk-1] = exp(norm);

]
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A.2 Analysis Program (S-plus)

This program is an Splus program used to calculate model based small
area rates of needs (health status) and their corresponding MSE
estimates on the health status data for the RHAs in the province of
Manitoba. Two model based approaches, VCM and model based on EL data,
is applied in this program.

I A A W

Tarea<-11
Tvariable<-6

X10<-matrix(0, 242, 7)

for(i in 1:242)
{
for(j in 4:9)
{
X10[i,j-3]<-dat.data(i,j]
}
for(j in 18:18)
{
X10([{i,71<-dat.dataf{i,jl
}
}
dimnames (X10) <-1list (NULL, c("UNMR15N", "UNMR45n", "fparenn®, "EDHp2SN",
"LFWOMPN", "DWoosnn", "assoc."))

meanX10<-matrix(0, 11, 6)
for(i in 1:12)
{
for(j in 1:6)
{
if(i < 8)
meanX10{i, jl<-mean(X10(X10[ ,71==1i,3j])
else if(i > 8)
meanX10[i-1,jl<-mean(X10(X10{ ,71==1i,31)

}

nsize<-read("samplesize®, T, 11)
meanofy<-read("mean_y", T, 11)

Xll<-matrix (0, 242, 6)
for(i in 1:242)
{
for(j in 1:6)
X11([i,3j]<-X10([1,3]
}

X12<-solve(t(X11l)%$*%X11l)
newmatlO<-matrix(0,6,6)
for(i in 1:11)

{
a<-matrix(meanX10[i,],6,1)
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b<-matrix(meanx10[i,1,1,6)
ab<-nsize[i] * (a%*%b)
newmatlO<-newmatlO0 + ab

}

X13<-X12%*$newmatlO

tracelO<-0
for(i in 1:6)
tracellO<-tracel0 + X13(i,i]

nstarl0<-242 -~ tracell

ntotallO<-0

for(i in 1:11)
ntotallO<-ntotall0 + nsizel(i]

Xl4<-matrix(0, 242, 8)
for(i in 1:242)

{
for(j in 1:8)
{
if(j == 1)
X14([i,jl<-dat.datali, 3]
else
X14(i,jl<-X10(1i,3-1]
}
}

dimnames (X14)<-1ist {NULL, c("healf9", "UNMR1SN", "UNMR45n", "fparenn”,
"EDHP25N", "LFWOMPN", "DWoosdn", "assoc."))

Xl0dat.data<-data.frame(X14)

£itl0.lm<-lm(healf9 ~ UNMRISN + UNMR45n + fparenn + EDHP25N + LFWOMPN +
DWoosdn, data = Xl10dat.data)

sumresl0<-0
for(i in 1:242)
sumresll<-sumresl0 + resid(£fitl0.1lm) [i]"2

sigmall<- (1.0/(ntotall0 - Tarea - Tvariable + 1)) *sumresl0

sumlO<-c(rep(0,11))
for(i in 1:11)
{
for(j in 1:6)
suml0[il<-suml0[i] + coefficients(fitl10.1lm) [(j+1]*meanxX10{i, ]
}

Xdiffl0<-matrix(0, 242, 8)
for(i in 1:242)
{
for(j in 1:1)
{
if( X14(1i,8] < 8 )
Xdiff10{i,jl<-X14([i,j] - meanofy[X14(i,8]]
else if (X14([i, 8] == 8)
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Xdiffio0[i,j1<-0
else

Xdiff10({i,j}<-X14[1i,j] - meanofy(X14([i,8] - 1]
}

for(j in 2:7)
{
if(X14(i,8] < 8)
Xdiffl10(i,jl<-X14[i,j] - meanX10[X14([i,b8],j-1]
else if(X14(i,8] == 8)
Xdiff10[i,j1<-0
else
Xdiff10(i,jl<-X14[i,j] - meanX10[X14([i,8] - 1,j-1]
}
for(j in 8:8)
Xdiff1l0([i,jl<-X14[i,]]
}

dimnames (Xdiff10)<-1ist (NULL, c("healf9dif", "UNMR1SNdif",
"UNMR45ndif", "fparenndif", "EDHP25Ndif", "LFWOMPNdif", "Dwoosdndif",
*assoc."))

Xdiffl0.data<-data.frame(Xdif£10)

fitll.Im<-1lm(healf9dif ~ UNMR15Ndif + UNMR4Sndif + fparenndif +
EDHP25Ndif + LFWOMPNAdif + Dwoosdndif, data = Xdiff1l0.data)

sumresll<-0
for(i in 1:242)
sumresll<-sumresll + resid(fitll.lm) [1i]"2

sigma02<-(nstarl0 ~(-1)) *(sumresll - (ntotall0 - Tvariable)*sigma0l)
if(sigma02 < 0)
sigma02<-0

gammalO<-c(rep(0,11))
for(i in 1:11)
{
gammall[i]<-sigma02/ (sigmall/nsize[i] + sigmal2)
}

areameanlO<-c{rep(0,11))
for(i in 1:11)
{
areameanl0[il<-suml0[i] + gammalO[i] * (meanofy(i] - sumlO([i}])
}

count01l<-0
count02<-1
Z10<-matrix(0, 241, 11)
for(j in 1:11)
{
countll<-count0l + nsizelj]
for(i in count02:count0l)
{
210{i,3j1<-1
}
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count02<-count02 + nsize(j]

}

Gl0<-s5igmaQ2* (Z10%*%$t(Z10))
R1lO0<-matrix(0, 241, 241)
for(i in 1:241)
{
R10([i,i}<-sigmall
}

V10<-R10 + G10
XtemlO<-matrix (0, 241, 6)
for(j in 1:6)
{
for(i in 1:140)
XtemlO([i,j]<-X10(i, ]l
for(i in 142:242)
XtemlO[i-1,3j]1<-X10(41i,3]
}

XVX10<-solve(t(XtemlQ) $*$V10%*%XtemlO)

newmatlO<-matrix (0, 6, 6)
nsgtotalll<-0
for(i in 1:11)
{
a<-matrix(meanx10(i, 1, 6, 1)
b<-matrix(meanxX10([(i, ], 1., 6)
ab<- (nsize[i]"3) *(a%*%b)
newmatlO<-newmatl0 + ab
nsgtotallO<-nsqgtotalll + (nsize(i]~"2)
}

newmatll<-solve(t (Xteml0)%$*$Xteml0) $*%newmatlio
tracell<-0
for(i in 1:6)

tracell<-tracell + newmatll([i,il}

ndbstarlO<-nsqgtotallQ - tracell

varsigmalO<-2*(sigma01~2)*(1.0/(ntotall0 - Tarea - Tvariable + 1))
const0l<-(1l/(ntotall0 - Tvariable - Tarea +1))}*(Tarea-1)"2*sigma0l~2
const02<-2*nstarl0*sigma0l*sigmal2 + ndbstarl0*sigmal2
varsigmall<-(2/nstarl0~2) * (const0l + const02)

covarl0<- -(Tarea-1)*(1.0/nstarl0) *varsigmalO

mselO<-c(rep(0,11))
for(i in 1:11)
{
g0l<-(1 - gammalO[i]) *sigma02
g02<- (meanX10[i,] -
gammalO{i] *meanX10[i,]) $*$XVX10%*%t (meanxX10({i,] -
gammalO[i] *meanX10(i, 1)
const03<-(1.0/nsize[i]"~2)*(sigmal2 + sigmall/nsize[i])~(-3)
const04<-(sigma01~2) *varsigmall + (sigma02~2) *varsigmalO -
2*sigmall*sigmal2*covarl0
g03<~-const03*const04
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mselO[i]<-g0l + g02 + 2*g03
}

meanXY¥<-matrix(0, 11, 7)
for(i in 1:11)

{
for(j in 1:7)
{
if(j == 1)
meanXY (i, jl<-meanofy{i}
else
meanXY[i,jl<-meanX10[i,3j-1]
}
}

dimnames (meanXY) <-list (NULL, c("meanhealf9", "meanUNMR15N",
"meanUNMR45n", "meanfparenn”, "meanEDHp25N", "meanLFWOMPN",
"meanDWoosnn") )

meanXY.data<-data. frame (meanXY)

fitmean.lm<-lm(meanhealf9 ~ meanUNMR1SN + meanUNMR45n + meanfparenn +
meanEDHp25N + meanLFWOMPN + meanDWoosnn, data = meanXY.data)

fayvar<-c(rep(0,11))
for(i in 1:12)
{
if(i < 8)
fayvar(il<-var(dat.data[dat.data{ ,18]==i,3])
else if (i > 8)
fayvar({i-l]<-var(dat.data(dat.data[ ,18]==1i,3])
}

faysuml<-0
faysum2<-0
XXinv<-t (meanx1l0) %*%meanx10
for(i in 1:11)
{
faysuml<-faysuml + resid(fitmean.lm)[i]~2
faysum2<-faysum2 + fayvar([i]* (1 -
meanX10([i, ]%*$XXinv$*%t (meanxX10[i,]))
}

A<-(Tarea - 1)"(-1)*(faysuml - faysum2)
if(a < 0)
A<-0Q

Vfay<-matrix(0, 11, 11)

for(i in 1:11)
VEay([i,i]<-A + fayvar(i]

faybeta<-solve((t (meanX1l0) $*%solve(Vfay)$*$meanx10) ) %*%t (meanX10)%$*%
solve(Vfay) $*%t (meanofy)

faymean<-c(rep(0,11))
for(i in 1:11)

75



{
faymean{i}<-meanx10{i, ]%$*%faybeta +(A/(A + fayvar([i]))*(meanofy[i]

meanXl10([i, |$*s$faybeta)
}

faysum3<-0
faysumd4<-0
for(i in 1:11) ‘
{
faysum3<-faysum3 + 2*A*fayvar(i]/Tarea
faysumd<-~faysumd4 + (fayvar([i]~2)/Tarea
}

varA<-2* (Tarea”~(-1))*(A~2 + faysum3 + faysum4)

faymse<-c(rep(0,11))
for(i in 1:11)
{
faygl<-A*fayvar(i] *((A + fayvar(il)~(-1))
cl<-(fayvar[i]°2)*((A + fayvar{i])~(-2))
fayg2<-
cl*meanX10[1i, ]$*%solve(t(meanX10)%*¥solve (Vfay) ¥ *¥meanX10) $*$t (meanx10 [
il])
fayg3<-(fayvar{i]~2)*((A + fayvar(i])~(-3))*vara
faymse(i) <-faygl + fayg2 + 2*fayg3l
}
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