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Abstract

Many methods exist for simulating the nonadiabatic dynamics of mixed quantum-classical

systems, some of which are more accurate than others. Some of the most accurate methods

are based on solving the quantum-classical Liouville equation (QCLE) represented in the

adiabatic basis, in terms of an ensemble of surface-hopping trajectories. However, long-time

dynamics simulations of observables using these methods are computationally demanding

as very large numbers of trajectories are required for convergence. Motivated by the

need for more efficient approaches, more approximate methods were previously developed,

but starting from a representation of the QCLE in the so-called mapping basis. These

methods, known as the Poisson Bracket Mapping Equation (PBME) and Forward-Backward

Trajectory Solution (FBTS), treat both the quantum and classical degrees of freedom in

terms of continuous variables that evolve according to classical-like equations of motion.

Owing to the approximate nature of these methods, it is necessary to understand the

conditions under which they are valid. In this thesis, three studies were conducted to shed

light on this matter. The first study was concerned with the laying down and testing of

a formalism for calculating nonlinear spectroscopic signals efficiently using PBME and

FBTS dynamics. In particular, expressions for simulating a time-integrated pump-probe

transient absorption (TA) signal were first derived based on the so-called equation-of-motion

phase-matching approach and then used to calculate the TA signal in a reduced model of
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a condensed phase photo-induced electron transfer (PIET) reaction. In the second study,

calculations of TA signals were carried out for a more complex PIET model, in which the

PIET takes place in a complex with an inner sphere vibrational mode. The details of

how PBME and FBTS can be implemented for vibronic systems were worked out for two

cases: one in which the vibrational mode is quantized and the other in which it is treated

classically. In the third study, PBME simulations of a realistic model of a proton transfer

(PT) reaction in a phenol-trimethylamine complex dissolved in a polar nanocluster are

performed and analyzed. Expressions for calculating free energies as a function of both

a classical and quantum reaction coordinate are derived and then evaluated for the PT

reaction. The results of these studies collectively demonstrate that it is possible to extract

useful information from PBME/FBTS simulations of nonlinear spectroscopic signals and

about the dynamical behaviour of more realistic systems. However, great care must be

taken in choosing which systems/conditions to apply these methods to. Beyond the limits

of their underlying approximations, PBME/FBTS can yield highly inaccurate results and

even portray a very different qualitative picture of a system’s dynamical behaviour.
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Chapter 1

Introduction

Understanding dynamical phenomena occurring in chemical and biological systems often

requires an in-depth understanding of the underlying molecular dynamics. The widely

accepted theory for explaining the dynamics of the microscopic world is quantum mechanics.

Therefore, to study microscopic processes, one must consider the quantum mechanical

nature of the systems in which they occur. To this end, the use of quantum dynamics

simulations in interpreting experimental data, determining mechanisms, and guiding new

experiments is necessary. However, when studying molecular systems with many degrees of

freedom (DOF), such simulations are computationally intractable. One commonly employed

way of circumventing this issue is to decompose a large system into two parts: a subsystem,

which is the primary object of study (e.g. key proton(s) and/or electron(s) in a charge

transfer reaction, key chromophores involved in a vibrational/electronic energy transfer

process, excitons in a light harvesting system, etc.) and an environment (or bath), which

contains the remaining degrees of freedom in the system (e.g., the rest of a molecule,

protein, solvent, etc.). When a system is partitioned in this way, the challenge is to develop

methods for simulating the dynamics of a subsystem while coupled to its environment (such
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a subsystem is commonly referred to as an open quantum system). This topic has been the

subject of intensive research for many years in the chemical physics community.[1–3].

The concept of partitioning a system into different sets of DOF is at the heart of quantum

chemistry. The Born–Oppenheimer (BO) approximation, which assumes a time/energy

scale separation between the motion of nuclei and electrons, greatly simplifies quantum

chemical calculations of molecular energies and wave functions. Within this approximation,

the Schrödinger equation can be solved for the electronic DOF for a fixed configuration of

the nuclei to obtain the electronic energies and wave functions. If the process is repeated

by varying the positions of the nuclei in small steps, one can obtain the electronic energies

as a function of the nuclear positions or the potential energy surfaces (PESs). Given the

assumption of an energy scale separation between the nuclei and electrons, the system is

restricted to evolve on a single PES, i.e., the electrons do not have enough energy to hop

to another electronic PES because the energy gap between the PESs is relatively large.

This is known as adiabatic dynamics. However, when the energy scales become comparable,

the BO approximation may break down and the electrons can hop between different PESs.

This nonadiabatic dynamics typically occurs in the vicinity of avoided crossings and conical

intersections between PESs.

In general, adiabatic dynamics arises whenever one set of DOF changes slowly compared

to another set, similar to the motions of nuclei and electrons in the BO approximation.

For example, if one is able to partition a system into a subsystem containing very fast

DOF of interest and an environment containing very slow DOF, then the dynamics of

the environmental DOF will be governed by a single PES corresponding to the subsys-

tem. However, when the time scales of motion of the subsystem and environmental DOF

become comparable, motion on a single PES is no longer sufficient to accurately capture

the dynamics of the slower DOF. Many important processes in chemistry and biology
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involve this nonadiabatic dynamics. Examples include intersystem crossings and internal

conversions in photochemistry, electron transfer reactions in electrochemistry, ion–molecule

reactions, reactions at metal surfaces, photo-induced dynamics of molecules adsorbed to

semiconductor substrates (as in a photovoltaic cell), photo-induced dynamics in quantum

dots, etc. Due to the ubiquity of nonadiabatic dynamics in chemistry and biology, a

great deal of effort has been devoted to developing simulation methods that are capable of

taking nonadiabatic effects into account. The most accurate methods, such as the multi-

configuration time-dependent Hartree (MC-TDH) method[4–6], treat both the subsystem

and environment fully quantum mechanically, but are highly computationally demanding

and therefore restricted to molecular systems with tens of degrees of freedom [7, 8]. Less

computationally demanding methods include path integral-based methods such as centroid

molecular dynamics (CMD) [9–13], ring polymer molecular dynamics (RPMD) [14, 15], and

the Feynman-Kleinert quasi-classical Wigner method [16, 17], and semiclassical methods

such as the semiclassical initial value representation (SC-IVR) [18–23], linearized semiclas-

sical initial value representation (LSC-IVR) [24–27], and forward-backward initial value

representation (FB-IVR) [28, 29], which impart partial quantum mechanical character to

both the subsystem and environmental DOF. Of particular interest to this thesis, mixed

quantum-classical methods treat the subsystem quantum mechanically and the environment

classically. We will discuss these methods next.

1.1 Mixed Quantum-Classical Dynamics Methods

Over the years, many mixed quantum-classical methods have been proposed for simulating

nonadiabatic dynamics, which essentially differ in the way they couple the quantum and

classical DOF. [30–45] The two most widely used methods are mean-field (or Ehrenfest)

and fewest switches surface-hopping (FSSH) dynamics.[39, 46–58] Mean-field dynamics is

3



based on the assumption that the environmental motions are governed by a single effective

PES, which is a weighted average over the adiabatic PESs of the subsystem. On the

other hand, surface-hopping methods evolve the environmental DOF on a single adiabatic

PES at any given time, with instantaneous hops to other PESs at times when the BO

approximation breaks down. However, both methods suffer from several drawbacks. Both

methods do not correctly describe the “quantum backreaction”, i.e., the effect due to the

subsystem-environment coupling where a change in the environmental DOF modifies the

subsystem Hamiltonian, which in turn modifies the forces governing the motion of the

environmental DOF. Mean-field dynamics is not capable of capturing decoherence, while

FSSH can do so after incorporating some ad hoc corrections.[56, 58] Both of these methods

struggle with satisfying detailed balance. Due to the incorrect nature of the energy transfer

between the subsystem and environment, it is possible for the subsystem to approach

unrealistically high temperatures in mean-field dynamics [59]; in such cases, one can employ

quantum correction factors that modify the dynamics in such a way that detailed balance

is enforced [60]. In FSSH, it is possible to satisfy detailed balance in certain limits if the

so-called frustrated hops are allowed. [61]

Other mixed quantum-classical methods have been developed, which are based on

solutions of the quantum-classical Liouville equation (QCLE). [31, 33–36, 40, 62–73] The

QCLE may be rigorously derived from the quantum Liouville equation in the limit that

the environmental DOF are much heavier than the subsystem DOF and, as a result, its

solution provides one of the most accurate methods for simulating mixed quantum-classical

dynamics.[33] When the QCLE is represented in the adiabatic basis (i.e., set of eigenstates of

the system Hamiltonian), its solution can be obtained from an ensemble of surface-hopping

trajectories using the sequential short-time propagation (SSTP) algorithm [67, 68] or the

Trotter-based quantum-classical algorithm (TBQC) [68, 69], which rely on the momentum
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jump approximation. [68, 74] Unfortunately, simulating the dynamics of a system out to

long times using these algorithms has proven to be very challenging. This is due to the

rapidly growing statistical error associated with the Monte Carlo sampling of nonadiabatic

transitions, which necessitates very large numbers of trajectories to obtain converged

expectation values. Although filtering schemes have been developed to impede this growth,

they can introduce errors in the results if they are not implemented carefully.[68, 75–77]

Motivated by the need to circumvent the issues inherent to the SSTP and TBQC

algorithms, two more approximate solutions of the QCLE were developed, the Poisson

Bracket Mapping Equation (PBME) solution [70, 71, 78] and the Forward-Backward

trajectory solution (FBTS) [40, 72]. The PBME and FBTS methods rely on representing

the QCLE in the mapping basis [23, 79, 80] and the solution to the QCLE in the coherent

state basis [81], respectively, which results in a representation of the quantum DOF in

terms of continuous variables. These approaches yield relatively simple algorithms, in which

the dynamics of both the quantum and classical (DOF) evolve according to classical-like

equations of motion.

It is important to stress that to arrive at these simple algorithms, rather uncontrolled

approximations are made that limit the situations in which these methods may be used.

Consequently, they must be tested on a wide array of systems under a range of conditions

to determine their domains of validity. The PBME method has been shown to accurately

reproduce exact results for the spin-boson model.[70, 78, 82] However, for other systems,

the PBME method has been shown to give rise to inaccurate or unphysical results [71, 83],

which has been attributed to the dynamics taking the quantum variables outside of their

physical space [71]. Several attempts have been made to improve the performance of PBME,

either by combining it with another method or by modifying the PBME equations. An

example of the first type exploits the fact that PBME can be accurate for simulating the
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short-time dynamics of the typically short-lived memory kernel in the generalized quantum

master equation [73], while examples of the second type add approximate correction factors

to the PBME in an attempt to improve its accuracy [84, 85]. The dynamics prescribed by

FBTS has been shown to yield accurate results in several cases (even more accurate than

PBME), but struggles in others.[40, 72, 86] In general, both PBME and FBTS struggle to

reproduce the exact results under conditions of strong subsystem-environment coupling

and when there is an asymmetry in the energies of the quantum subsystem states. This

is due to the fact that the dynamics prescribed by both PBME and FBTS is mean-field

in nature. It should be noted that the FBTS method can be improved by systematically

relaxing its underlying approximation (known as the jump-FBTS method), albeit at a great

computational expense.[72]

1.2 Theoretical Study of Charge Transfer Processes

In this thesis, we gauge the abilities of the PBME and FBTS approaches for quantitatively

and qualitatively capturing the dynamics of two types of condensed phase charge transfer

processes, which are discussed in the following subsections.

1.2.1 Photo-induced Electron Transfer Reactions

Photo-induced electron transfer (PIET) is a multi-step process, which can be described

by a light-induced excitation of a donor chromophore from its ground electronic state to

an excited state, followed by the transfer of an electron from the excited donor state to

an excited acceptor state. The study of PIET reactions is of great importance because

it is closely related to electronic energy transfer in photosynthetic systems [87–90] and it

occurs in photovoltaic materials used to harvest solar energy [91–95]. Detailed information

about the PIET dynamics and the participating vibrational modes may be obtained using
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a combination of time-resolved transient absorption (TA) pump-probe spectroscopy and

theoretical modelling. This is particularly important in the case of complex systems, where

the kinetics of the electron transfer is rarely captured by a single, simple exponential decay

in the TA signal, but rather displays non-trivial oscillatory features due to the coupling

between the donor–acceptor complex and its environment. [96–98]. Thus, simulations of the

TA signals can aid in the interpretation of the various features observed in the experimental

TA signals by identifying the factors that influence the reaction dynamics, e.g., coupled

vibrational motions, vibronic coherences, environmental factors.

Theoretical methods for simulating nonlinear spectroscopic signals, such as a TA

signal, generally fall into two categories: perturbative and nonperturbative approaches.

In the perturbative approach, a desired spectroscopic signal may be obtained directly via

calculations of optical response functions (ORFs), which capture the system’s field-free

dynamics at a particular order of the applied field in terms of multi-time dipole moment

correlation functions. Unfortunately, exact quantum mechanical calculations of ORFs

are feasible only in the case of very simple models. [99, 100] As the complexity of the

system grows, ORFs cannot be evaluated efficiently, even with some semiclassical treatments

[101–108]. Instead, mixed quantum-classical methods have provided viable alternatives

for computing ORFs.[109–112] Using such methods, one often evaluates ORFs based on

equilibrium classical molecular dynamics simulations of the photo-inactive DOF on the

PES corresponding to the chromophore’s ground state. However, when nonequilibrium

solvation dynamics and nonradiative nonadiabatic transitions between multiple PESs are

important, other methods based on the QCLE approach may be used.[111, 112] On the

other hand, in the nonperturbative approach, one calculates the total polarization of a

system by simulating its dynamics subject to the applied radiation fields. Then, the

contribution corresponding to the desired spectroscopic signal is extracted by using its
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specific phase-matching condition.[113] Methods based on this approach have proven to be

viable options for calculating a variety of nonlinear spectroscopic signals in model systems,

but in the case of complex systems, the calculations become computationally expensive

because, in general, a large number of simulations are needed to extract the desired signal.

[113–122]

In this thesis, we adopt the equation-of-motion phase-matching approach (EOM-PMA),

developed by Gelin et al. [123, 124], for calculating TA signals of PIET reactions. The

EOM-PMA combines features from both the perturbative and non-perturbative approaches,

and is therefore capable of calculating the time-dependent polarization of a system in any

phase-matching direction in response to weak laser fields of arbitrary shape and width. In

addition, it can be combined with any EOM to propagate a system’s density matrix or

dipole moment. In Chapter 3, we show how the EOM-PMA can be coupled with the PBME

and FBTS methods to tackle larger, complex systems.

1.2.2 Proton Transfer Reactions in Nanoclusters

Proton transfer (PT) reactions constitute another class of reactions of great importance

in chemical and biological processes.[125, 126] PT reactions are involved in acid-base and

enzymatic reactions [127–129], and in technological applications including photostabilizers

[130], information storage devices [131], and fuel cells [132–134]. Simulation of PT in

condensed phases is challenging because quantum effects such as zero point energy and

tunnelling are important. For this reason, various quantum dynamical methods includ-

ing path integral-based methods [135–138], semiclassical methods [139, 140], and mixed

quantum-classical methods [68, 135, 141–144] have been used to simulate condensed phase

PT reactions.

In nanoscale environments such as those encountered in nanoclusters, aerosols, and
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nanomaterials, the thermodynamics, kinetics, and mechanisms of PT reactions can change

significantly with respect to bulk environments because of the competition between bulk

and surface forces. Therefore, an explicit treatment of the nanoscale environment is required

for a proper understanding of the PT reaction. Such an understanding could lead to the

development of new materials, whose size and composition could be tuned to enhance

or inhibit the PT reactions. Over the years, numerous studies of PT in nanoclusters

[138, 145–159] and nanoconfined environments [160–163] have been carried out. The main

difference between PT in a nanocluster versus in a nanoconfined system is the possibility

for the nanocluster to deform along the PT reaction, while this possibility does not exist

in a nanoconfined system. In both cases, theoretical studies of PT in a nanosolvated

phenol-trimethylamine complex have shown that the complex tends to reside in the center

of the cluster when the complex is in its ionic form, while it tends to reside at the surface

when it is in its covalent form.[155, 159, 163]

Information about the kinetics and thermodynamics of a PT reaction may be obtained

by examining the free energy of the system along an appropriate reaction coordinate. A

reaction coordinate is defined as a variable or function of variables that monitors the progress

of a transformation from reactants to products, e.g., bond length would be used to monitor

the dissociation of a diatomic molecule. For a PT reaction in a hydrogen-bonded complex,

the shape of the free energy profile will depend on the strength of the hydrogen bond. In

the case of a weak hydrogen bond, one expects a double-welled profile with a relatively

high barrier, with each well corresponding to the covalent and ionic forms of the complex,

respectively. In contrast, in the case of a strong hydrogen bond, one expects a single-welled

profile or one with a relatively low barrier. A “good” reaction coordinate should be able to

capture these features. Potential reaction coordinates include the proton position within

the complex and, in cases where the proton is strongly coupled to its environment, the
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solvent polarization (a collective coordinate that depends on the solvent configuration).

In a mixed quantum-classical treatment, the proton position would be treated quantum

mechanically, while the solvent would be treated classically.

1.3 Objectives and Outline

The main objective of this thesis is to test the accuracy of the PBME and FBTS methods for

modeling quantum processes in classical environments, namely condensed phase PIET and

PT in a polar nanocluster. These processes were deliberately chosen as we were interested

in testing, for the first time, to which extent these methods can qualitatively/quantitatively

capture the expected behaviours in one or more of the following situations: strong subsystem-

bath coupling, a complex, many-body, explicitly atomistic model of a system, a highly

anharmonic subsystem, the presence of a time-dependent field-matter interaction, when

calculating nonlinear spectroscopic signals, and when calculating free energy profiles. In

doing so, one may gain insight into the factors that can cause these approximate solutions of

the QCLE to break down. More specifically, we will investigate how well PBME and FBTS

perform (i) when coupled to the EOM-PMA for efficiently simulating the TA pump-probe

spectra of a model ET complex, both with and without an inner sphere vibrational mode,

in a harmonic bath, (ii) for capturing the solvation dynamics of a nanocluster of polar

molecules surrounding a PT complex, and (iii) for calculating the free energy profile as a

function of a quantum reaction coordinate for this PT reaction.

The following is a description of the topics covered in each chapter:

• In Chapter 2, the QCLE and its approximate solutions are presented and discussed.

The details for integrating the PBME and FBTS equations of motion are also provided.

• In Chapter 3, the derivations of the PBME-PMA and FBTS-PMA methods are
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presented. Also, the machinery for calculating nonlinear spectroscopic signals is laid

out and demonstrated with a calculation of the time-integrated pump-probe TA signal

of a PIET in a model ET complex coupled a harmonic bath. The accuracies of the

PBME-PMA and FBTS-PMA methods are assessed by comparing to numerically

exact quantum results.

• In Chapter 4, we consider another version of the model ET complex, in which the

electronic subsystem is coupled to an inner sphere vibrational mode. We present

the theoretical details for implementing the PBME and FBTS dynamics in the cases

where the vibrational mode is treated classically and quantum mechanically. Again,

we calculate the time-integrated pump-probe TA signals using the PBME-PMA and

FBTS-PMA methods and, by comparing to the numerically exact quantum results,

comment on their accuracies and on how a classical versus quantum treatment of the

vibrational mode affects the results.

• In Chapter 5, we examine how well PBME dynamics captures the solvation dynamics

(by analyzing various properties of the solvent) in a realistic model of a PT reaction in

a hydrogen-bonded complex dissolved in a nanocluster of methyl chloride molecules.

We then formulate general expressions for calculating free energy profiles along an

arbitrary reaction coordinate using the PBME approach. Cases in which the reaction

coordinate is quantum mechanical and classical in nature are presented, and PBME

simulations are used to calculate the free energy profiles of the PT reaction employing

both reaction coordinates. Differences due to the nature of the reaction coordinate

and the viability of PBME dynamics for calculating free energy profiles are discussed.

• Chapter 6 presents concluding remarks for the work presented in this thesis, as well

as some perspectives and suggestions for future work.
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Chapter 2

Approximate Solutions of the

Quantum-Classical Liouville

Equation

2.1 Quantum Dynamics

In quantum mechanics, the state of a closed system can be described by its wave function,

which can be mathematically represented by a state vector |ψ〉. All of the information

about a system is contained in its wave function and the possible results of a physical

measurement are associated with the eigenvalues of the operator, Ô, corresponding to an

observable of interest. If one desires to study the dynamic behaviour of a system, either the

wave function or the operator can be represented as a function of time. This gives rise to

two different representations for formulating the dynamics of a quantum system. In the

first case, when the time dependence is included in the state vector, the representation is

known as the Schrödinger picture. Here, the time evolution is given by |ψ(t)〉 = Û |ψ(t0)〉,
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where Û is a time evolution operator. On the other hand, if the operator depends on time,

the representation is known as the Heisenberg picture. Here, the time evolution is given by

d

dt
Ô(t) =

i

~

[

Ĥ, Ô(t)
]

, (2.1)

where Ĥ is the Hamiltonian of the system and [·, ·] denotes the commutator of two operators.

This approach has a direct analogy to classical physics, viz., if the operators are replaced

by their classical analogues and the commutator by the Poisson bracket, the resulting

equation is the classical Liouville equation. There is an additional intermediate picture,

known as the Dirac or interaction picture, in which both the state vectors and operators are

time-dependent. In this picture, the Hamiltonian is divided in two parts, one that is exactly

solvable and another that is regarded as a perturbation. For all pictures, the expectation

values of observables will be the same, but one chooses a given picture depending on the

application at hand.

In the case of an open system, an ensemble of different states is required to describe

the system in general, i.e., there is no single |ψ〉 that can describe it. In such cases, it is

necessary to introduce a density operator, ρ̂. For an ensemble of states, {|ψi〉}, the density

operator has the following form:

ρ̂ =
∑

i

pi|ψi〉〈ψi|, (2.2)

where pi is the probability for the system to be in state |ψi〉, and consequently has the

property
∑

i pi = 1. Using the density matrix formalism, an expectation value of an operator

can be calculated using

〈O〉 = Tr(ρ̂Ô), (2.3)

where Tr denotes a trace operation. For a time-dependent system, one can express the
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time dependence either through the density operator or the operator corresponding to the

observable. If the density matrix evolves in time, the evolution is given by the von Neumann

equation or quantum Liouville equation,

i~
∂ρ̂(t)

∂t
= −

[

Ĥ, ρ̂(t)
]

. (2.4)

The quantum Liouville equation is the quantum analogue of the classical Liouville equation

which describes the time evolution of the phase space distribution function in classical

physics. Alternatively, one may calculate the expectation value in Eq. 2.3 by evolving Ô(t),

which can be done by solving the quantum Heisenberg equation in Eq. 2.1.

In some very simple cases, it is possible to find analytical and numerical solutions

for the time evolution of a quantum system. However, due to the exponential scaling of

computational cost with increasing system size, it is necessary to find approximate solutions

to the dynamics of a system. Although approximate phenomenological methods are widely

used, the best approach is to use approximate methods that can be derived from the exact

quantum equations of motion. In doing so, the details of the approximations are known

and, thus, one may be able to restrict a method to certain systems/conditions and/or more

easily develop ways to improve the solutions when needed. The quantum-classical Liouville

equation (QCLE) is one such approximate equation of motion, as it can be rigorously

derived from the quantum Liouville equation. In the following sections, the QCLE is

presented and the derivations of two approximate solutions of the QCLE, namely the

Poisson Bracket Mapping Equation (PBME) solution and the Forward-Backward Trajectory

Solution (FBTS), are outlined. The final section of the chapter is dedicated to outlining

the algorithms used to integrate the equations of motion for these solutions.
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2.2 The Quantum-Classical Liouville Equation

The QCLE prescribes the dynamics of the density operator, ρ, of a quantum subsystem

coupled to a classical environment (or bath). It is given by [31, 33, 164–169]

d

dt
ρ̂W (R,P, t) = − i

~

[

ĤW , ρ̂W (t)
]

+
1

2

(

{ĤW , ρ̂W (t} − {ρ̂W (t), ĤW }
)

, (2.5)

where the Hamiltonian, ĤW , is given by the sum of the subsystem Hamiltonian, ĥs(r̂, p̂),

the environmental Hamiltonian, He(R,P ), and a subsystem-environment coupling term,

V̂c(r̂, R); R and P denote the positions and momenta of the environmental DOF, respectively;

r̂ and p̂ denote the subsystem position and momentum operators, respectively. In the above

equation, the subscript W denotes a partial Wigner transform [170] over the bath DOF,

which results in a phase space description of the bath DOF while retaining the operator

characters of the subsystem operators (which act in the Hilbert space of the subsystem).

This mixed quantum-classical evolution equation can be obtained after truncating the

quantum Liouville equation (in the partial Wigner representation) at linear order in the

smallness parameter
√

m/M , where m and M denote the masses of the subsystem and

bath particles, respectively. Such a truncation is justified when the bath DOF are much

heavier than the subsystem DOF. For example, the QCLE can be used to model the

formation/breaking of bonds (which involve a rearrangement of electrons) in a molecule

surrounded by a solvent. In this case, key electronic DOF associated with the bond would

be treated quantum mechanically, while the remaining DOF in the system would be treated

classically.

Equation 2.5 evolves the density operator in time (i.e., Schrödinger picture), but in

many cases it is more convenient to evolve an operator (i.e., Heisenberg picture). In this
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case, the QCLE is given by

d

dt
ÔW (R,P, t) =

i

~

[

ĤW , ÔW (t)
]

− 1

2

(

{ĤW , ÔW (t} − {ÔW (t), ĤW }
)

. (2.6)

It should be noted that this equation has the same form as Eq. 2.4, except that the RHS

differs by a factor of -1.

The QCLE may be expressed in terms of the quantum-classical Liouville operator, iL̂,

defined by

∂

∂t
ρ̂W (R,P, t) ≡ −iL̂ρ̂W (t). (2.7)

In this form, one sees that the formal solution of the QCLE is

ρ̂W (R,P, t) = e−iL̂tρ̂W (R,P, 0). (2.8)

In practice, it is not easy to find a numerical solution. When the QCLE is cast in the

adiabatic basis, one can solve it in terms of an ensemble of surface-hopping trajectories

using the sequential short-time propagation (SSTP) [67, 68] or Trotter-based quantum-

classical (TBQC) algorithms [69] after the momentum jump approximation is made [68, 74].

According to these algorithms, the classical DOF can hop between different adiabatic PESs,

including the averages of two adiabatic PESs. It is the hops to and from these average

surfaces that lead to the decoherence of the quantum subsystem, an important property that

is not rigorously accounted for in FSSH [32, 46, 171] (as the jumps occur only between single

adiabatic PESs). Both SSTP and TBQC have been shown to provide accurate solutions

of the QCLE (with TBQC being somewhat more accurate than SSTP) for a number of

relatively simple systems. While these solutions are rather accurate, these algorithms are

restricted to relatively short times on the order of hundreds of femtoseconds, i.e., beyond

these times the solutions become numerically unstable. This is due to the rapid growth of
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statistical weights (attached to each trajectory) associated with the Monte Carlo sampling

of nonadiabatic transitions between the various adiabatic PESs involved in the dynamics.

As a result, extremely large ensembles of trajectories are required to obtain converged

solutions at longer times, making these solutions prohibitively expensive for simulating long

time dynamics. Thus, the development of more efficient methods of solving the QCLE is an

active area of research. One way to accomplish this is by developing more approximate

solutions. In the following two sections, two such solutions are described, viz., PBME and

FBTS.

2.3 Poisson Bracket Mapping Equation

2.3.1 Derivation of the PBME

The starting point to derive the Poisson Bracket Mapping Equation (PBME) solution

[70] is to cast the QCLE in the mapping basis [79, 82, 172–174]. In this approach, the

states of the quantum subsystem are ultimately exactly mapped onto a set of continuous

variables. To accomplish this, one first maps the N level quantum subsystem onto a set of N

quantum harmonic oscillators, such that the mapped wave function is a product of harmonic

oscillator wave functions. The harmonic oscillator wave functions are restricted to be in

their ground states, with the exception of the λth oscillator (to which the λth subsystem

state was mapped) which is in its first excited state, i.e., |λ〉 → |mλ〉 = |01, ...1λ, ...0N 〉. The

{|λ〉} states form the subsystem basis, which are the solutions of the eigenvalue problem,

ĥs|λ〉 = ελ|λ〉, where ĥs is the subsystem Hamiltonian given by

ĥs =
p̂2

2m
+ V̂ (r̂). (2.9)
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In the subsystem and mapping bases, the matrix elements of an operator may be written

as Oλλ′

W = 〈λ|ÔW |λ′〉 = 〈mλ|Ôm|mλ′〉. In the second equality, the mapping analogue of an

operator is defined as

Ôm(R,P ) =
∑

λλ′

Ôλλ′

W (R,P )â†λâλ′ , (2.10)

where the mapping annihilation and creation operators are given by

âλ =

√

1

2~
(r̂λ + ip̂λ), â†λ =

√

1

2~
(r̂λ − ip̂λ), (2.11)

and satisfy the commutation relation
[

âλ, â
†
λ′

]

= δλ,λ′ .

At this point, one can represent the QCLE (Eq. 2.7) in the subsystem basis to yield

∂

∂t
〈λ|ρ̂W (R,P, t)|λ′〉 = −i〈λ|L̂ρ̂W (t)|λ′〉. (2.12)

Owing to the equivalence between matrix elements in the subsystem and the mapping basis,

this equation can also be expressed as

∂

∂t
〈mλ|ρ̂m(R,P, t)|mλ′〉 = −i〈mλ|L̂mρ̂m(t)|mλ′〉. (2.13)

Thus, the mapping analogue of the QCLE is

∂

∂t
ρ̂m(R,P, t) = −iL̂mρ̂m(t). (2.14)

To achieve a continuous phase space representation of the subsystem DOF, one performs
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a Wigner transform over the subsystem DOF of Eq. 2.14:

∂

∂t
ρm(x,X, t) =− 2

~
Hm sin

(

~Λm

2

)

ρm(t)

+
∂Hm

∂R
cos

(

~Λm

2

)

· ∂ρm(t)

∂P
− P

M
· ∂ρm(t)

∂R
, (2.15)

where x = (r, p) are the mapping variables of the quantum subsystem, X = (R,P ) are

the positions and momenta of the environmental DOF, Λm =
←−∇p ·

−→∇r −
←−∇r ·

−→∇p (where

the arrows indicate the direction in which the gradient operators act), and the mapping

Hamiltonian, Hm, is given by

Hm(x,X) =
P 2

2M
+ V (R) +

hλλ
′

2~
(rλrλ′ + pλpλ′ − ~δλ,λ′), (2.16)

with hλλ
′

= 〈λ|ĥs + V̂c(r̂, R)|λ′〉. In this representation, the mapping analogue of any

operator ÔW (X) is given by

Om(x,X) =
∑

λλ′

Oλλ′

W (X)cλλ′(x), (2.17)

where

cλλ′(x) =
1

2~
[rλrλ′ + pλpλ′ + i(rλpλ′ − rλ′pλ)− ~δλλ′ ]. (2.18)

Given the following relations involving any Om,

HmΛmOm =
1

~

∑

λλ′

hλλ
′

(

pλ
∂

∂rλ′

− rλ
∂

∂pλ′

)

Om, (2.19)

HmΛ2
mOm =

1

~

∑

λλ′

hλλ
′

(

∂

∂rλ′

∂

∂rλ
+

∂

∂pλ′

∂

∂pλ

)

Om, (2.20)

HmΛn
mOm = 0 for n ≥ 3 (2.21)

19



it is possible to show that the QCLE in the mapping basis becomes

∂

∂t
ρm(x,X, t) =

1

~

∑

λλ′

hλλ
′

(

rλ
∂

∂pλ′

− pλ
∂

∂rλ′

)

ρm(t)

+

(

∂Hm

∂R

∂

∂P
− P

M

∂

∂R

)

ρm(t)

− ~

8

∑

λλ′

∂hλλ
′

∂R

(

∂

∂rλ′

∂

∂rλ
+

∂

∂pλ′

∂

∂pλ

)

∂

∂P
ρm(t). (2.22)

This equation is composed of three terms: the first one describes the evolution of the

quantum subsystem in the mapping phase space, the second term describes the evolution

of the environmental DOF with forces that depend on the mapping variables, and the

third term represents the higher order correlations between the quantum subsystem and its

environment. Finally, noting that the first two terms correspond to a Poisson bracket in

the mapping-bath phase space of the system, Eq. 2.22 can be rewritten in the following

compact way:

∂

∂t
ρm(x,X, t) ={Hm, ρm}x,X −

~

8

∑

λλ′

∂hλλ
′

∂R

(

∂

∂rλ′

∂

∂rλ
+

∂

∂pλ′

∂

∂pλ

)

∂

∂P
ρm(t)

≡
(

−iL0m − iL′m
)

ρm(t). (2.23)

The operator iL0m gives rise to the Poisson bracket, which generates a classical-like evolution

of the subsystem and bath DOF in terms independent Newtonian trajectories. The force

field that the bath DOF experience depends on the matrix elements of the coupling potential,

which change continuously as the mapping variables evolve. The operator iL′m, which

contains higher order derivatives, is more complex because it generates “entanglement”

between trajectories; thus, its effect can only be accounted for by generating an ensemble

of entangled trajectories [71]. It should be noted that the mapping QCLE can be derived
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for an operator using the same procedure, yielding a RHS that differs by a factor of -1 from

that in Eq. 2.23.

Because no approximation has been made to arrive at Eq. 2.22, the mapping QCLE is

equivalent to the QCLE. However, the complex nature of the iL′m term greatly complicates

the solution of Eq. 2.22 and, therefore, one conceivable approximation is to simply drop

this term. After doing so, one arrives at the PBME:

∂

∂t
ρm(x,X, t) ≈ −iL0mρm(t) = {Hm, ρm(t)}x,X . (2.24)

The resulting equation now only contains a Poisson bracket on its RHS and, thus, can be

solved using the method of characteristics. This gives rise to the following set of ordinary

differential equations: [70, 78]

drλ(t)

dt
=
∂Hm

∂pλ
=

1

~

∑

λ′

hλλ′ (R(t)) pλ′(t),

dpλ(t)

dt
= −∂Hm

∂rλ
= −1

~

∑

λ′

hλλ′ (R(t)) rλ′(t),

dR(t)

dt
=

∂Hm

∂P (t)
=
P (t)

M
,
dP (t)

dt
= − ∂Hm

∂R(t)
.

(2.25)

As can be seen, Eqs. 2.25 are Newtonian equations of motion for both the quantum mapping

and classical phase space variables.

In the mapping formalism, one can show that the expectation value of a time-dependent

operator is given by[70, 78]

O(t) =

∫

dxdXOm(x,X, t)ρ̃m(x,X), (2.26)
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where

ρ̃m(x,X) =
1

(2π~)n

∑

λλ′

gλλ′(x)ρλ
′λ

W (X), (2.27)

and

gλλ′(x) =
2n+1

~
e−x

2/~[rλrλ′ − i(rλpλ′ − rλ′pλ) + pλpλ′ − ~

2
δλλ′ ]. (2.28)

2.3.2 Instabilities in PBME Dynamics

Instabilities in PBME dynamics can arise due to the form of the last term of Hm in Eq. 2.16.

More specifically, the potential can “invert” if this term becomes negative. Kelly et al. [71]

proposed a way to partially tame these instabilities by considering an alternative (yet

equivalent) form of Hm, which will now be discussed.

It is possible to arrive at an equivalent form of an operator, as long as it is confined to

the physical mapping space. Starting from the fact that

〈mλ|
∑

ν

â†ν âν |mλ′〉 = 〈mλ|mλ′〉, (2.29)

where
∑

ν â
†
ν âν is an identity operator in the mapping space, one can use the definition of

gλλ′ (see Eq. 2.28) to write the right side of Eq. 2.29 as,

〈mλ|mλ′〉 =
∫

dx gλλ′(x). (2.30)

Inserting complete sets of coordinate states and taking Wigner transforms of the left side

of Eq. 2.29, leads to the following equivalent form of Eq. 2.29:

∫

dx gλλ′(x)
∑

ν

cνν(x) =

∫

dx gλλ′(x). (2.31)
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This form reveals that

∑

λ

cλλ(x) =
1

2~

∑

λ

(r2λ + p2λ − ~) = 1, (2.32)

as long as it lies under the gλλ′(x) integral. This identity has consequences on the form of

operators in the mapping basis. In the subsystem basis, one may always write the matrix

elements of an operator as a sum of its trace and traceless contributions:

Bλλ′

W (X) = δλλ′Tr (BW )/N +B
λλ′

W (X), (2.33)

where B
λλ′

W denotes the traceless contribution. If one then inserts this result into Eq. 2.17,

one finds the following expression for Bm:

Bm(x,X) = Tr (BW )/N +
∑

λλ′

B
λλ′

W (X)cλλ′(x), (2.34)

where cλλ′(x) is the traceless version of cλλ′(x) in Eq. 2.18, and has the following form:

cλλ′(x) =
1

2~
[rλrλ′ + pλpλ′ + i(rλpλ′ − rλ′pλ)] . (2.35)

Equation 2.34 holds only as long as Bm lies under a gλλ′ integral, i.e., is projected onto the

physical space. It should be emphasized that both forms of Bm are equivalent, as long as

the operator lies under the gλλ′ integral.

One can express Hm in a similar way (assuming that it lies under the gλλ′ integral):

Hm(x,X) =
P 2

2M
+ V0(R) +

1

2~

∑

λλ′

h
λλ′

(R)(rλrλ′ + pλpλ′), (2.36)

where h
λλ′

is the traceless version of hλλ
′

, and V0(R) = V (R)+Tr (h)/N . The two forms of
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Hm will generate equivalent results under QCLE dynamics, as QCLE dynamics restricts the

system to the physical space [71]. However, the results generated by these two forms will

not be equivalent under PBME dynamics (an approximation to QCLE dynamics) because

it takes the system out of the physical space. Thus, dynamical instabilities can arise that

depend on the form of Hm. Previous studies have shown that it is possible to minimize

these instabilities when the form of Hm in Eq. 2.36 is used. [71] Nonetheless, even if the

occurrence of inverted potentials is suppressed at early times, they may still arise at later

times due to the approximate nature of PBME dynamics.

2.4 Forward-Backward Trajectory Solution

We now present a summary of the derivation of the Forward-Backward Trajectory Solution

(FBTS), another approximate solution of the QCLE (see Refs. [40], [72], and [86] for all

the details). To arrive at this solution, one first writes the QCLE (i.e., Eq. 2.5) in terms of

forward and backward operators [175]:

∂

∂t
ρ̂W (X, t) = − i

~

(−→HΛρ̂W (t)− ρ̂W (t)
←−HΛ

)

, (2.37)

where the forward operator

−→HΛ = ĤW

(

1 +
~Λ

2i

)

, (2.38)

and the backward operator

←−HΛ =

(

1 +
~Λ

2i

)

ĤW . (2.39)

The formal solution of Eq. 2.37 may be written as

ρ̂W (X, t) = S
(

e−i
−→
HΛt/~ρ̂W (X)ei

←−
HΛt/~

)

, (2.40)
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where S is an operator that specifies the order in which the forward and backward evolution

operators act on ρ̂W (X). Similarly, for an arbitrary operator Â(X), the solution can be

written in the same form (except for a change in sign):

ÂW (X, t) = S
(

ei
−→
HΛt/~ÂW (X)e−i

←−
HΛt/~

)

. (2.41)

This equation is the starting point for the derivation of the FBTS.

The next step involves representing ÂW (X, t) in the mapping basis (as done in the

previous section):

Âλλ′

W (X, t) = 〈λ|S
(

ei
−→
HΛt/~ÂW (X)e−i

←−
HΛt/~

)

|λ′〉

= 〈mλ|S
(

ei
−→
HΛ,mt/~Âm(X)e−i

←−
HΛ,mt/~

)

|mλ′〉. (2.42)

Thus, we see that the formal solution of the QCLE in the mapping basis is

Âm(X, t) = S
(

ei
−→
HΛ,mt/~Âm(X)e−i

←−
HΛ,mt/~

)

. (2.43)

At this point, instead of applying a Wigner transform over the mapping space, a coherent

state basis |z〉 = |z1, z2 . . . zN 〉 is introduced in the mapping space. This set of coherent

states has eigenvalues z = (q + ip)/
√
2~, where q = (q1, . . . , qN ) and p = (p1, . . . , pN ) are

the average positions and momenta of the harmonic oscillators in state |z〉, respectively,

e.g., q = 〈z|q̂|z〉. In this basis, the resolution of identity is given by

I =

∫

d2z

πN
|z〉〈z|. (2.44)

One can then express the forward and backward evolution operators in Eq. 2.42 as a

concatenation of M short-time evolution segments with ∆ti = ti − ti−1 = τ (for all i with
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t0 = 0, tM = t, and Mτ = t), where for each segment two sets of coherent state variables

are introduced using the resolution of identity. In this way, the matrix elements of ÂW (X, t)

may be expressed in terms of the coherent state basis as [40, 72]

Aλλ′

W (X, t) =
∑

µµ′

∫ M
∏

i=1

d2zi
πn

d2z′i
πn
〈mλ|z1〉〈z′1|mλ′〉

×
(

〈z1(t1)|z2〉ei∆t2Le(Xt1
,z2,z′2)/2 (〈z2| . . .

×Aµµ′

W (Xt1) . . . |z′2〉
)

〈z′2|z′1(t1)〉
)

. (2.45)

Here, the effective evolution operator iLe(X, z, z′) is given by

iLe(X, z, z′) =
P

M
· ∂
∂R
− ∂Ve(X, z, z

′)

∂R
· ∂
∂P

, (2.46)

where

Ve(X, z, z
′) = [Vcl(R, z) + Vcl(R, z

′)]/2, (2.47)

and

Vcl(R, z) = V (R)− Trsĥ(R) +
∑

λλ′

V λλ′

c (R)z∗λzλ′ . (2.48)

In contrast to the actions of the forward and backward operators, this single operator acts

according to eiLe(X,z,z′)τ ÂW (X) = ÂW (Xτ ).

At this point, one has to make an approximation to arrive at a continuous trajectory

picture of the dynamics. If the phase space coordinates of the two coherent states involved

in the overlap integrals in Eq. 2.45 are substantially different, then one can assume that

〈z1(t1)|z2〉 ≈ πNδ(z2 − z1(t1)) and 〈z′2|z′1(t1)〉 ≈ πNδ(z′2 − z′1(t1)), for example. Next,

integrating over the coherent state variables zi and z′i for {i, i′} ≥ 2 and applying the
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effective evolution operator leads to

Aλλ′

W (X, t) =
∑

µµ′

∫

d2z1
πN

d2z′1
πN
〈mλ|z1〉〈z′1|mλ′〉

×
(

〈z1(t1)|mµ〉Aµµ′

W (Xt)〈mµ′ |z′1(t)〉
)

. (2.49)

Finally, evaluating the overlap integrals using 〈mλ|z〉 = zλe
−|z|2/2, expressing the above

equation in terms of x = (q, p) variables, and using the fact that
∑

ν(q
2
ν + p2ν) is conserved

under coherent state dynamics, gives

Aλλ′

W (X, t) =
∑

µµ′

∫

dxdx′φ(x)φ(x′)

× 1

2~
(qλ + ipλ)(q

′
λ′ − ip′λ′)A

µµ′

W (Xt)

× 1

2~
(qµ(t)− ipµ(t))(q′µ′(t) + ip′µ′(t)), (2.50)

where φ(x) = (2π~)−Ne−
∑

ν(q
2
ν+p2ν)/2~. The coupled evolution of the environmental and

coherent state variables is dictated by the following set of coupled differential equations:

dqµ
dt

=
∂Hcl(X,x)

∂pµ
,

dpµ
dt

= −∂Hcl(X,x)

∂qµ
,

dqµ′

dt
=
∂Hcl(X,x

′)

∂pµ′

,
dpµ′

dt
= −∂Hcl(X,x

′)

∂qµ′

,

dR

dt
=

P

M
,

dP

dt
= −∂He(X,x, x

′)

∂R
, (2.51)

where

He(X,x, x
′) =

1

2
[Hcl(X,x) +Hcl(X,x

′)], (2.52)

with

Hcl(X,x) = He(X)− Trsĥ(R) +
1

2~

∑

λλ′

hλλ
′

(qλ′qλ + pλpλ′). (2.53)

27



Solving these equations yields a simple dynamics, in which the forward and backward

trajectories of the coherent state variables are propagated forward in time, while the

environmental coordinates evolve on a mean potential that depends on these two sets of

trajectories. Finally, the expectation value of an observable Â(t) is given by

A(t) =
∑

λλ′

∫

dXAλλ′

W (X, t)ρλ
′λ

W (X), (2.54)

where Aλλ′

W (X, t) is given by Eq. (2.50).

2.5 Numerical Integration of Equations of Motion

Standard molecular dynamics integrators can be used to solve the PBME and FBTS

equations of motion (Eqs. 2.25 and 2.51, respectively). For instance, one may use a

velocity-Verlet-type algorithm for integrating the PBME equations of motion as follows:

P (∆t/2) = P (0) +
∆t

2
F(0)

pλ(∆t/2) = pλ(0)−
∆t

2}

∑

λ′

hλλ
′

(R(0))rλ′(0)

R(∆t) = R(0) + ∆t
P (∆t/2)

M

rλ(∆t) = rλ(0) +
∆t

}

∑

λ′

hλλ
′

(R(∆t))pλ′(∆t/2)

pλ(∆t) = pλ(∆t/2)−
∆t

2}

∑

λ′

hλλ
′

(R(∆t))rλ′(∆t)

P (∆t) = P (∆t/2) +
∆t

2
F(∆t),

(2.55)

where the PBME force is given by

F = −∂Hm

∂R
. (2.56)

28



The algorithm for integrating the FBTS equations of motion is similar to that in Eq. 2.55,

with the one set of mapping variables replaced by now two sets of coherent state variables

and the FBTS force is given by

F = −∂He

∂R
. (2.57)

It should be noted that the classical variables typically evolve on a much longer time scale

than the quantum subsystem variables. Therefore, very small time steps must be used to

resolve the rapid fluctuations in the quantum variables and to conserve energy. For the

systems studied in this thesis, we have found that this integrator performs best with time

steps of ∆t ≈ 10−2 to 10−1 fs, which can make it computationally expensive to simulate

large systems.

To alleviate this problem, Kelly et. al[71] designed an integrator which admits larger

time steps by taking advantage of the separation of time scales between the quantum and

classical DOF and using the exact solution of the subsystem equations of motion with the

classical positions held fixed. This integration algorithm goes as follows:

R(∆t/2) = R(0) +
∆t

2

P (∆t/2)

M

rλ(∆t) =
∑

µλ′

Cλµ(R)C
−1
µλ′(R)[cos(ωµ∆t)rλ′(0) + sin(ωµ∆t)pλ′(0)]

pλ(∆t) =
∑

µλ′

Cλµ(R)C
−1
µλ′(R)[cos(ωµ∆t)pλ′(0)− sin(ωµ∆t)rλ′(0)]

P (∆t) = P (0)− ∂V0(R)

∂R
∆t−

∑

λ

∆t

2}

∂Eλ(R)

∂R
(r̃λ(0)

2 + p̃λ(0)
2 − 1)

R(∆t) = R(∆t/2) +
∆t

2

P (∆t)

M
,

(2.58)

where V0(R) = V (R) + (Tr ĥ)/N , the columns of the matrix C contain the eigenvectors

of the traceless h(R), Eµ are the eigenvalues of h(R), ωµ(R) = Eµ(R)/}, and the tilded
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mapping variables are given by

r̃λ = C−1λλ′rλ′ , p̃λ = C−1λλ′pλ′ . (2.59)

For the systems we have studied, this integrator can use time steps that are ≈ 20 times

larger than those used by the velocity-Verlet-type algorithm. Hence, this integrator could

prove to be useful for simulating larger systems.

To conclude this chapter, it is important to mention that both PBME and FBTS

have been previously applied to a variety of models, yielding reliable results mainly under

conditions of weak subsystem–bath coupling [38, 71, 72, 78, 83, 179]. The validity of these

approximations will be further considered over the course of the following three chapters,

where three new models with varying subsystem–bath coupling strengths are investigated.
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Chapter 3

Simulation of Nonlinear Optical Signals

via Approximate Solutions of the

Quantum-Classical Liouville Equation:

Application to the Pump-Probe

Spectroscopy of a Condensed Phase

Electron Transfer Reaction

3.1 Abstract

The equation-of-motion phase-matching approach provides an efficient way for calculating a

system’s time-dependent polarization in any phase-matching direction subject to weak laser

fields of arbitrary shape. Within this approach, we employ two approximate solutions of the

quantum-classical Liouville equation (QCLE), for simulating the laser-induced dynamics of

a quantum subsystem in a classical environment. We illustrate this approach by calculating
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the transient absorption (TA) pump-probe signal in a model photo-induced electron transfer

(PIET) reaction. The results are found to be in reasonable agreement with the exact results,

which is promising for applications to realistic systems.

3.2 Introduction

Nonlinear spectroscopies constitute a powerful set of techniques which can yield detailed

information about molecular structure and dynamics [109, 176, 177]. However, the infor-

mation contained in nonlinear signals is often manifested in indirect ways, making their

interpretation difficult. Theory and simulation have proven to be indispensable in under-

standing these signals, but they must be both accurate for reliable interpretations and

efficient for tackling systems with many degrees of freedom (DOF).

Theoretical methods for calculating nonlinear spectra fall into two main categories:

perturbative and nonperturbative approaches. In the perturbative approach, a desired

spectroscopic signal may be obtained directly via calculations of optical response functions

(ORFs), which capture the system’s field-free dynamics at a particular order of the applied

field in terms of multi-time dipole moment correlation functions. Unfortunately, exact

quantum mechanical calculations of ORFs are only feasible in the case of very simple

models [99, 100], so as the complexity of the system grows, ORFs can no longer be

efficiently evaluated even using some semiclassical treatments [101–108]. Mixed quantum-

classical methods, which are based on treating a small subset of photo-active DOF (i.e.,

the chromophore) quantum mechanically while the remaining photo-inactive DOF (i.e., the

bath) are treated in a classical-like manner, represent attractive alternatives for computing

ORFs[109–112]. Such applications have often been based on equilibrium classical molecular

dynamics simulations of the photo-inactive DOF on the potential energy surface (PES)

corresponding to the chromophore’s ground state. In order to tackle situations where
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nonequilibrium solvation dynamics on and nonradiative nonadiabatic transitions between

multiple PESs are important, methods based on the QCLE in the adiabatic basis have been

developed [111, 112]. In the nonperturbative approach, one calculates the total polarization

of a system by simulating its dynamics subject to the applied radiation fields, and then

extracts the contribution corresponding to a spectroscopic signal using its specific phase-

matching condition [113]. Methods based on this approach have proven to be viable options

for calculating a variety of nonlinear spectroscopic signals in model systems, but in the case

of complex systems, the calculations become computationally intensive since, in general,

numerous simulations are needed to extract the desired signal [113–122].

More recently, the equation-of-motion phase-matching approach (EOM-PMA), which

combines features of both perturbative and non-perturbative approaches, was developed by

Gelin et al.[123, 124] EOM-PMA is capable of efficiently simulating the time-dependent

polarization of a system in any phase-matching direction in response to weak laser fields of

arbitrary shape and width. One of the highlights of this method is that it can incorporate

any EOM for propagating the system’s density matrix or dipole moment. Therefore, in

principle, EOM-PMA can be coupled with a semiclassical or mixed quantum-classical

dynamical method for tackling larger, complex systems.

In this Chapter, we take a mixed quantum-classical approach for evolving a quantum

subsystem that interacts with Np laser fields and is coupled to classical environment. Since

photo-induced dynamics is inherently nonadiabatic in nature, it is important that the mixed

quantum-classical method correctly describe the effect of the time-dependent fields on the

photoactive quantum DOF and the coupling between the quantum and classical DOF. Here,

we consider methods based on the QCLE because, in the adiabatic representation, they are

capable of capturing nonequilibrium solvation dynamics on multiple adiabatic PESs, as well

as both the radiative and non-radiative nonadiabatic transitions between them [83, 111, 112].
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These features are particularly important when modeling the nonlinear spectra of systems

that exhibit strong subsystem-bath coupling or whose spectra are inherently sensitive to

the bath dynamics. In such cases, the ground- and excited-state PESs may be significantly

different, and hence a ground-state adiabatic treatment of the dynamics may not be justified.

Unfortunately, in the case of complex systems, solving the QCLE in the adiabatic basis is

computationally demanding due to the large number of trajectories required to average out

the highly oscillatory terms which enter into the calculation of an observable [68]. Driven

by the desire to develop more efficient algorithms for solving the QCLE, the mapping basis

[23, 79, 80, 178] has been used to represent the discrete quantum DOF in the QCLE in

terms of continuous variables, so that all DOF are represented as continuous variables

[70, 71, 78]. If one neglects the higher order correlations between the subsystem and the

bath, the QCLE in the mapping basis reduces to the Poisson Bracket Mapping Equation

(PBME) [70, 78], which is a simple evolution equation that can be solved by propagating

both the quantum and classical DOF under a Newtonian-like dynamics. Although the

PBME has been shown to be accurate for some model systems [70, 78, 179], it can lead to

instabilities for others [71, 83]. Recently, the mapping basis has been used as a starting

point along with the coherent state basis [81] to derive another approximate solution of the

QCLE in terms of forward-backward propagators [40]. The result is a set of equation of

motions that retain the simplicity of PBME, with a better description of the nonadiabatic

dynamics, at the cost of doubling the set of variables that describe the quantum DOF

(to be propagated in forward and backward trajectories). This method, known as the

forward-backward trajectory solution (FBTS), has been tested on a host of simple model

systems including the two-level symmetric and asymmetric spin-boson models, exhibiting a

range of agreements with the numerically exact quantum results from moderate to excellent

[72].
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To advance the testing of these techniques and the development of more efficient methods

for simulating nonlinear optical signals, in this Chapter we present a way to compute the

time-dependent nonlinear polarization of a system induced by Np weak pulses, within the

context of the EOM-PMA, using the PBME and FBTS approaches. In particular, we

demonstrate its implementation for calculating the TA pump-probe signal in a three-state

model of a condensed phase PIET reaction. Although more efficient methods for calculating

pump-probe signals exist (which can even treat strong pump pulses) [180, 181], our aim

here is to simply illustrate this general approach, using a pump-probe signal as an example,

and then to compare our results to the numerically exact quantum results reported in

Ref. [118] in order to probe the effectiveness of these implementations.

3.3 Mixed Quantum-Classical Liouville Evolution of a Sys-

tem Interacting with Multiple Laser Pulses

We start by considering a quantum subsystem driven by a classical electric field that is

coupled to a classical environment, described by the following time-dependent Hamiltonian:

Ĥ (t) =
P2

2M
+ Ve(R) +

p̂2

2m
+ V̂s(q̂) + V̂c(q̂,R) + Ŵ (q̂, t) ≡ ĤM (q̂, p̂,R,P) + Ŵ (q̂, t)

≡ He(R,P) + ĥs(q̂, p̂) + V̂c(q̂,R) + Ŵ (q̂, t)

≡ He(R,P) + ĥ(R, t) (3.1)

where m, q̂, and p̂ are the vectors of masses, positions, and momenta, respectively, of

the n photoactive quantum DOF; M, R, and P are the vectors of masses, positions,

and momenta, respectively, of the N photoinactive classical DOF; ĤM = Ĥ − Ŵ is the

material Hamiltonian; He =
P2

2M +Ve and ĥs =
p̂2

2m + V̂s are the environment and subsystem

Hamiltonians, respectively; V̂c is the subystem-environment coupling potential energy and
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ĥ = ĥs+ V̂c+Ŵ [in what follows, operators are capped (e.g., Â) and all vectors except those

corresponding to positions and momenta will be boldfaced (e.g., A)]. The field-subsystem

interaction term, Ŵ (q̂, t), is assumed to be given by

Ŵ (q̂, t) = −µ̂ (q̂) ·E (t) , (3.2)

where µ̂(q̂) is the subsystem’s dipole moment operator, and the incident electric field is

expressed as a sum of Np coherent laser pulses:

E (t) =

Np
∑

α=1

Aαfα (t− tα) exp {i [kαr− ωα (t− tα)]}+ c.c. (3.3)

where each laser pulse is characterized by its wave vector kα, leading frequency ωα, and

pulse envelope fα (t− tα), and Aα is the product of the polarization vector and the overall

amplitude of the pulse. The envelope function is taken to be a Gaussian centered at time

tα:

fα (t− tα) =
√

4 ln 2

πτ2α
exp

(

−4 ln 2(t− tα)
2

τ2α

)

, (3.4)

where τα is the full-width at half-maximum of the pulse.

Our interest lies in the quantum-classical dynamics of an observable, which can be

described in terms of the partial Wigner transform [170] of its corresponding operator, Â(t),

over the environmental DOF:

ÂW (X, t) =

∫

dZeiP ·Z/~〈R− Z/2|Â(t)|R+ Z/2〉, (3.5)

where X = (R,P ). The expectation value of an observable ÂW is then given by

A(t) = Trs

∫

dXÂW (X, t)ρ̂W (X), (3.6)
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where Trs denotes a trace over the subsystem DOF and ρ̂W , the partial Wigner transform

of the density operator, is given by:

ρ̂W (X) =

(

1

2π~

)N ∫

dZeiP ·Z/~〈R− Z/2|ρ̂|R+ Z/2〉. (3.7)

If m/M � 1, the quantum-classical Liouville equation (QCLE) can be used to accurately

describe the dynamics of ÂW (X, t) to first order in
√

m/M [33, 182]:

∂

∂t
ÂW (X, t) =

i

~

[

ĤW (X, t) , ÂW (X, t)
]

−1

2

({

ĤW (X, t) , ÂW (X, t)
}

−
{

ÂW (X, t) , ĤW (X, t)
})

. (3.8)

Here, [· · · ] is the commutator and {· · · } is the Poisson bracket given by

{

ÂW (X, t) , B̂W (X, t)
}

= ÂW (X, t)
(←−∇P

−→∇R −
←−∇R
−→∇P

)

B̂W (X, t) , (3.9)

where
−→∇R/P and

←−∇R/P correspond to taking the gradient with respect to R/P of the term

to the right and left, respectively.

3.3.1 Quantum-Classical Dynamics via the PBME Solution

In this section, we provide a summary of the main theoretical results leading to the PBME

solution and for calculating expectation values of operators in the mapping basis. More

details are provided in Refs. [70] and [78].
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In the mapping basis, the QCLE takes the following form [70]:

∂

∂t
Am (X,x, t) =

1

~

∑

λλ′

hλλ
′

(

pλ
∂

∂rλ′

− rλ
∂

∂pλ′

)

Am (t) +

(

P

M

∂

∂R
− ∂Hm

∂R

∂

∂P

)

Am (t)

+
~

8

∑

λλ′

∂hλλ
′

∂R

(

∂

∂rλ′

∂

∂rλ
+

∂

∂pλ′

∂

∂pλ

)

∂

∂P
Am (t)

≡ −{Hm(t), Am(t)}X,x

+
~

8

∑

λλ′

∂hλλ
′

∂R

(

∂

∂rλ′

∂

∂rλ
+

∂

∂pλ′

∂

∂pλ

)

∂

∂P
Am (t) , (3.10)

where Am, the mapping analogue of the operator ÂW (X), is given by

Am(x,X) =
∑

λλ′

Aλλ′

W (X)cλλ′(x), (3.11)

and x = (r, p) = (r1, . . . , rn, p1, . . . , pn) denotes the positions and momenta of the subsystem

mapping variables and the subscripts/superscripts λλ′ denote a representation in the

subsystem basis, {|λ〉;λ = 1, . . . , n}, which is defined by the eigenvalue problem ĥs|λ〉 =

ελ|λ〉. Here, cλλ′(x) is given by [78]

cλλ′(x) =
1

2~
[rλrλ′ + pλpλ′ + i(rλpλ′ − rλ′pλ)− ~δλλ′ ]. (3.12)

As a result, the mapping Hamiltonian is given by

Hm(x,X) = He(X) +
1

2~

∑

λλ′

hλλ
′

(R, t) (rλrλ′ + pλpλ′ − ~δλλ′) , (3.13)

where

hλλ
′

(R, t) = 〈λ|p̂2/2m+ V̂s(q̂) + V̂c(q̂, R) + Ŵ (q̂, t)|λ′〉

= ελδλλ′ + V λλ′

c (R) +W λλ′

(t), (3.14)
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with W λλ′

(t) = −µ̂λλ′ ·E (t) and it has been assumed that hλλ
′

= hλ
′λ.

If the last term of Eq. (3.10) is dropped to arrive at the PBME, Am(t) may be obtained

by solving the following set of Hamiltonian equations of motion [70]:

drλ
dt

=
∂Hm

∂pλ
=

1

~

∑

λ′

hλλ′ (R(t), t) pλ′(t)

dpλ
dt

= −∂Hm

∂rλ
= −1

~

∑

λ′

hλλ′ (R(t), t) rλ′(t)

dR(t)

dt
=

∂Hm

∂P (t)
=
P (t)

M
,
dP (t)

dt
= − ∂H

∂R(t)
(3.15)

Thus, the mapping and bath variables can be easily propagated in terms of Newtonian

trajectories.

In the mapping basis, the expectation value of an observable Â(t) may be written as[70]

A(t) =

∫

dxdXAm(x,X, t)ρ̃m(x,X), (3.16)

where

ρ̃m(x,X) =
1

(2π~)N

∑

λλ′

gλλ′(x)ρλ
′λ

W (X). (3.17)

Here, gλλ′(x) is given by [78]

gλλ′(x) =
2n+1

~
e−x

2/~[rλrλ′ − i(rλpλ′ − rλ′pλ) + pλpλ′ − ~

2
δλλ′ ]. (3.18)

3.3.2 Quantum-Classical Dynamics via the FBTS

In this section, we provide a summary of the main theoretical results leading to the FBTS

of the QCLE in terms of the coherent state basis. The full details are given in Ref. [40].

The matrix elements of ÂW (X, t) in the subsystem basis may be expressed in terms of
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the coherent state basis as

Aλλ′

W (X, t) =
∑

µµ′

∫ M
∏

i=1

d2zi
πn

d2z′i
πn
〈mλ|z1〉〈z′1|mλ′〉

×
(

〈z1(t1)|z2〉ei∆t2Le(Xt1
,z2,z′2)/2 (〈z2| . . .

×Aµµ′

W (Xt1) . . . |z′2〉
)

〈z′2|z′1(t1)〉
)

, (3.19)

where |mλ〉 is the eigenstate of n fictitious harmonic oscillators (with occupation numbers

0 or 1 such that |mλ〉 = |01, . . . , 1λ, . . . , 0n〉), |zi〉 is the n-dimensional coherent state [81]

at time step i with eigenvalue z = (q + ip)/
√
2~, and ∆ti = ti − ti−1 = τ for all i with

t0 = 0 and tM = t. Here, q = (q1, . . . , qn) and p = (p1, . . . , pn) are the average positions

and momenta of the harmonic oscillators in the state |z〉, respectively; e.g., q = 〈z|q̂|z〉.

The effective evolution operator iLe(X, z, z′) is given by

iLe(X, z, z′) =
P

M
· ∂
∂R
− ∂Ve(X, z, z

′)

∂R
· ∂
∂P

, (3.20)

where Ve(X, z, z
′) = [Vcl(R, z)+Vcl(R, z

′)]/2 and Vcl(R, z) = Ve(R)−Trsĥ(R)+V λλ′

c (R)z∗λzλ′ .

Consequently, eiLe(X,z,z′)τ ÂW (X) = ÂW (Xτ ).

If the phase space coordinates of two coherent states are substantially different, then

one can assume that 〈z1(t1)|z2〉 ≈ πnδ(z2 − z1(t1)) and 〈z′2|z′1(t1)〉 ≈ πnδ(z′2 − z′1(t1)), for

example. Then, performing the integrals over the coherent state variables zi and z′i for

{i, i′} ≥ 2 and applying the effective evolution operator to the coherent state and bath

phase space variables leads to

Aλλ′

W (X, t) =
∑

µµ′

∫

d2z1
πn

d2z′1
πn
〈mλ|z1〉〈z′1|mλ′〉

×
(

〈z1(t1)|mµ〉Aµµ′

W (Xt)〈mµ′ |z′1(t)〉
)

. (3.21)
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Evaluating the overlaps using 〈mλ|z〉 = zλe
−|z|2/2, expressing the above equation in terms

of x = (q, p) variables, and using the fact that
∑

ν(q
2
ν + p2ν) is conserved under coherent

state dynamics, gives

Aλλ′

W (X, t) =
∑

µµ′

∫

dxdx′φ(x)φ(x′)

× 1

2~
(qλ + ipλ)(q

′
λ′ − ip′λ′)A

µµ′

W (Xt)

× 1

2~
(qµ(t)− ipµ(t))(q′µ′(t) + ip′µ′(t)), (3.22)

where φ(x) = (2π~)−ne−
∑

ν(q
2
ν+p2ν)/2~. The coupled evolution of the bath and coherent state

variables are dictated by the following equations of motion:

dqµ
dt

=
∂Hcl(R,P, q, p)

∂pµ
,

dpµ
dt

= −∂Hcl(R,P, q, p)

∂qµ
,

dqµ′

dt
=
∂Hcl(R,P, q

′, p′)

∂pµ′

,
dpµ′

dt
= −∂Hcl(R,P, q

′, p′)

∂qµ′

,

dR

dt
=

P

M
,

dP

dt
= −∂He(R,P, q, p, q

′, p′)

∂R
, (3.23)

where

He(R,P, q, p, q
′, p′) =

1

2
[Hcl(R,P, q, p) +Hcl(R,P, q

′, p′)], (3.24)

with

Hcl(X,x) = He(X)− Trsĥ(R) +
1

2~

∑

λλ′

hλλ
′

(qλ′qλ + pλpλ′). (3.25)

Solving these equations yields a simple dynamics in which the forward and backward

trajectories of the coherent state variables are propagated forward in time, while the bath

coordinates evolve on the mean potential that depends on these two sets of trajectories.
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Finally, the expectation value of an observable Â(t) is given by

A(t) =
∑

λλ′

∫

dXAλλ′

W (X, t)ρλ
′λ

W (X), (3.26)

where Aλλ′

W (X, t) is given by Eq. (3.22).

3.3.3 Nonlinear Optical Response via the Equation-of-Motion Phase-

Matching Approach

In order to calculate the components of the N th order polarization corresponding to a

specific phase-matching condition, we adopt the EOM-PMA [123, 124] coupled with the

PBME solution and FBTS. In this approach, one directly calculates these components in

the spirit of the perturbative approach, avoiding the decomposition of the total polarization

as in the nonperturbative approach. As a result, EOM-PMA is computationally more

efficient than the nonperturbative approach, yet maintains the attractive features of this

approach (i.e., allows for arbitrary pulse shapes/durations and pulse overlap). However, as

in the perturbative approach, EOM-PMA is restricted to weak fields.

According to the PBME [using Eq. (3.16)] and FBTS [using Eqs. (3.22) and (3.26)]

approaches, the total polarization (i.e., expectation value of the dipole moment operator)

may be calculated via

P (t) =

∫

dxdXµm(x,X, t)ρ̃m(x,X) ≡ 〈µ(t)〉PBME , (3.27)
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and

P (t) =
∑

µµ′λλ′

∫

dXdxdx′φ(x)φ(x′)ρλ
′λ

W (X)

× 1

2~
(qλ + ipλ)(q

′
λ′ − ip′λ′)µ

µµ′

W (Xt)

× 1

2~
(qµ(t)− ipµ(t))(q′µ′(t) + ip′µ′(t))

≡ 〈µ(t)〉FBTS , (3.28)

respectively. The total polarization contains contributions from all possible wave vectors

k =

Np
∑

α=1

lαkα, (3.29)

where lα can be any integer. However, in nonlinear spectroscopic experiments, different

signals are often distinguished by the direction of the wave vector of the emitted radiation.

Thus, one needs to extract the component of P (t) corresponding to a signal with a particular

k:

Pk(t) = Pk(t) exp {ikr}+ c.c. (3.30)

According to EOM-PMA, the component Pk(t) proportional to exp {±ikr} may be calcu-

lated via

Pk(t) ≈ 〈µΣ(t)〉PBME/FBTS , (3.31)

where

µΣ(t) =

Np
∑

n=0

(−1)n+1 µn(t), (3.32)

with

µn (t) =
∑

|g|2=n

µ
gα1

,gα2
,...,gαNP (g, t) n = 0, 1, 2, . . . , Np (3.33)
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Here, g = (g1, g2, . . . , gNP
) where gα can equal either 0 (field switched off) or 1 (field

switched on). The time evolution of µ
gα1

,gα2
,...,gαNP (g, t) may be simulated by solving

Eqs. (3.15) and Eqs. (3.23) in the cases of PBME and FBTS, respectively, under the

influence of a complex field given by

E (g, t) =

NP
∑

α=1

gαAαfα (t− tα) exp {−iωα (t− tα)} . (3.34)

3.3.4 Simulation of Pump-Probe Signal

The approach explained above can be applied to simulate any type of Np−pulse experiment.

Here, we focus on the simulation of TA pump-probe signals. To this end, we consider

the interaction of a material system with three laser pulses (i.e., NP = 3): two identical

super-imposed pulses centered at time t1 (constituting the pump pulse) and a third pulse

centered at time t3 (constituting the probe pulse). The pump-probe signal radiates in the

kPP = −k1 + k2 + k3 = k3 (since k1 = k2) direction and, therefore, we wish to extract the

component of P (t) that is proportional to exp {±ik3r} (i.e., Pk3(t)). In order to perform

this extraction, we rewrite the real electric field (see Eq. (3.3)) as follows:

E (t) =

3
∑

α=1

(

υ+α (t) exp {+ikαr}+ υ−α (t) exp {−ikαr}
)

, (3.35)

where

υ±α (t) = Aαf (t− tα) exp{∓iωα (t− tα)}. (3.36)

Since the first two pulses propagate in the −k1 and +k1 directions, respectively, and the

third pulse propagates in the k3 direction, we see that (by comparing with Eq. (3.35)) the
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complex field in Eq. (3.34) which performs the required extraction may be written as

E (g, t) = g1υ
−
1 + g2υ

+
2 + g3υ

+
3 . (3.37)

Next, we write the expression for µΣ(t) explicitly as

µΣ(t) = −µ0(t) + µ1(t)− µ2(t) + µ3(t), (3.38)

where, using Eq. (3.33), the µn(t)’s may be written more explicitly as

µ0(t) = µ0,0,0(0, t)

µ1(t) = µ1,0,0(1, t) + µ0,1,0(1,t) + µ0,0,1(1, t)

µ2(t) = µ1,1,0(2, t) + µ1,0,1(2,t) + µ0,1,1(2, t)

µ3(t) = µ1,1,1(3, t). (3.39)

In writing these equations, we have considered all combinations of gα’s (i.e., combinations

of pulses on and off) that satisfy |g|2 = n. Thus, in total, there are 2NP µ
gα1

,gα2
,gα3

m ’s

that must be propagated. However, if the system has no permanent dipole moment, then

µ0,0,0 = 0 and the number of propagations reduces to 2NP − 1. It should be noted that one

can further reduce the number of propagations by invoking the rotating wave approximation

for the field-matter interaction [124].

In the end, we calculate the time-integrated TA pump-probe signal, which is given by

[114]

I (t3 − t1) =
+∞
∫

−∞

dtĖ3 (t; t3)P ′k3
(t; t3 − t1) , (3.40)

where P ′k3
is the difference between the polarizations with and without excitation by the
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pump pulse, i.e., Ppump on
k3

− Ppump off
k3

. If the rotating-wave and slowly-varying amplitude

approximations are applied, then the signal becomes [114]

I (t3 − t1) = Im

+∞
∫

−∞

dtE3 (t; t3) (P ′k3
)∗ (t; t3 − t1) . (3.41)

Because this method is limited to weak fields, we have chosen a field strength such that the

population does not exceed a few percent.

3.4 Application to a Model PIET Reaction

3.4.1 Model Details

We apply the techniques described above for simulating the time-dependent TA pump-probe

signal in a model developed in Ref. [118] for a PIET reaction in the condensed phase.

In Ref. [118], the pump-probe signal is computed using a nonperturbative approach for

describing nonlinear optical response and the self-consistent hybrid (SCH) method [183]

for simulating the quantum dynamics of the system, which is in principle numerically

exact. The model subsystem is composed of three electronic states: a ground state |g〉,

a photoinduced excited state |d〉 corresponding to the donor of the ET reaction, and an

optically dark charge transfer state |a〉 corresponding to the acceptor of the ET reaction.

The model bath (which mimics the effect of a polar solvent on the ET reaction) is composed

of a collection of independent harmonic oscillators that are linearly coupled to the acceptor

state of the subsystem. Within our mixed quantum-classical approach, the subsystem is

treated quantum mechanically, whereas the oscillator bath is treated classically.
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The Hamiltonian of this system is given by

Ĥ(t) = |g〉εg〈g|+ |d〉εd〈d|+ |a〉εa〈a|+∆(|d〉〈a|+ |a〉〈d|)

+
1

2

N
∑

j=1



P 2
j + ω2

j

(

Rj + |a〉
2cj
ω2
j

〈a|
)2


− µ̂ ·E (t) , (3.42)

where εg, εd, and εa are the energies of the ground, excited donor, and excited acceptor

electronic states, respectively, ∆ is the donor-acceptor electronic coupling, Rj and Pj are

the mass-weighted coordinate and momentum, respectively, of the jth bath mode with

frequency ωj and coupling constant cj , and Np = 3 in E (t). The dipole moment operator

of the subsystem couples states |g〉 and |d〉 and is given by

µ̂ = |g〉µgd〈d|+ |d〉µdg〈g|, (3.43)

where µgd = µdg is the electronic transition dipole moment. In the subsystem basis

{|g〉, |d〉, |a〉}, Ĥ(t) has the following matrix form:

Ĥ(t) =













εg −µgdE (t) 0

−µdgE (t) εd ∆

0 ∆ εa + 2
∑

j Rjcj + 2
∑

j

c2j
ω2
j













+HeI,

≡ ĥ(R) +HeI, (3.44)

where He =
1
2

∑

j(P
2
j + ω2

jR
2
j ) and I is the identity matrix.

The coupling between the subsystem and oscillator bath is characterized by a spectral

density J (ω) = π
2

∑

j

c2j
ωj
δ (ω − ωj), which is chosen to be Debye in form [184]:

J (ω) =
λD
2

∑

j

ωωD

ω2 + ω2
D

, (3.45)
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where λD is the bath reorganization energy and ωD is the characteristic frequency. Us-

ing the bath discretization procedure described in Ref. [183], one can show that cj =
√

λD tan−1(ωmax/ωD)/(πN)ωj and ωj = tan(j tan−1(ωmax/ωD)/N)ωD, where ωmax is the

maximum frequency of the spectral density and N is the number of oscillators [185].

The initial density matrix is assumed to be uncorrelated, with the subsystem in its

ground state and the bath in thermal equilibrium:

ρW (0) = ρs (0) ρe (X) , (3.46)

where the subsystem density matrix, ρs(0), is

ρs(0) =













1 0 0

0 0 0

0 0 0













, (3.47)

and the Wigner distribution of the bath, ρe (X), is [186]

ρe (X) =
N
∏

j=1

βωj

2πu
′′

j

exp

[

− β

u
′′

j

{

P 2
j

2
+

1

2
ω2
jR

2
j

}]

, (3.48)

with u
′′

j = uj cothuj and uj =
β~ωj

2 .
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3.4.2 PBME Equations

From Eq. (3.13), the mapping form of the Hamiltonian is given by

Hm(t) =
1

2

N
∑

j=1

(

P 2
j + ω2

jR
2
j

)

+
εg
2~

(

r2g + p2g − ~
)

+
εd
2~

(

r2d + p2d − ~
)

+
1

2~



εa +
∑

j

2Rjcj +
∑

j

2c2j
ω2
j





(

r2a + p2a − ~
)

+
∆

~
(rdra + pdpa)

−1

~
[(µgd + µdg)E (t) (rgrd + pgpd)] . (3.49)

With the aid of Eqs. (3.16)−(3.18) and Eq. (3.31), we can compute the polarization

component Pk(t) via

Pk(t) =
∫

dxdXµΣm(x, t)ρ̃sm (x) ρe (X), (3.50)

where, according to Eq. (3.17),

ρ̃sm (x) =
2

~4π3

(

r2g + p2g −
~

2

)

e−x
2/~, (3.51)

with x2 = x·x =
∑

λ

(

r2λ + p2λ
)

. The expectation value in Eq. (3.50) is determined by sampling

the initial bath and mapping variables from their appropriate Gaussian distributions,

reweighting by 2
~4π3

(

r2g + p2g − ~

2

)

, and, in order to compute µΣm(x, t), simulating the time

evolution of the mapping variables in

µ
ga1 ,ga2 ,ga3
m (x,g, t) =

µgd
~

[rg(g, t)rd(g, t) + pg(g, t)pd(g, t)] , (3.52)

according to Eqs. (3.15) with the Hamiltonian in Eq. (3.49).
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3.4.3 FBTS Equations

Using Eqs. (3.22), (3.26), and (3.31), the polarization component can be computed via

Pk(t) =

∫

dX µΣ(x, x′, t)ρe(X)

=
1

4~2

∫

dXdxdx′ φ(x)φ(x′)(qg + ipg)(q
′
g − ip′g)ρe(X)

×
∑

µµ′

µΣµµ′(qµ(t)− ipµ(t))(q′µ′(t) + ip′µ′(t))

≡ 1

4~2

∫

dXdxdx′ ρ̃s(x, x
′)ρe(X)µΣ(x, x′, t), (3.53)

where

ρ̃s(x, x
′) = φ(x)φ(x′)(qg + ipg)(q

′
g − ip′g), (3.54)

and

µΣ(x, x′, t) =
∑

µµ′

µΣµµ′(qµ(t)− ipµ(t))(q′µ′(t) + ip′µ′(t)). (3.55)

The computation of µΣ(x, x′, t) is accomplished by simulating the time evolution of the

coherent state variables in the individual µgα1
,gα2

,gα3 (x, x′,g, t)’s according to

µgα1
,gα2

,gα3 (x, x′,g, t) = µgd{(qg(g, t)− ipg(g, t))(q′d(g, t) + ip′d(g, t))

+(qd(g, t)− ipd(g, t))(q′g(g, t) + ip′g(g, t))}. (3.56)

The expectation value in Eq. (3.53) is finally obtained by sampling the initial bath and

coherent state variables from their appropriate Gaussian distributions, φ(x) and φ(x′),

reweighting by 1
4~2

(qg + ipg)(q
′
g − ip′g), and simulating the time evolutions of the coherent

state variables {q(t), p(t), q′(t), and p′(t)} according to Eqs. (3.23) with the Hamiltonian

in Eq. (3.25) and the definitions of He(X) and ĥ given by Eq. (3.44).
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3.4.4 Results and Discussion

We now present the results of the TA pump-probe signal, which probes the population

dynamics of the donor state in the model described above. The model parameters, taken

from Ref. [118], are as follows. The electronic energies of the ground, excited donor,

and excited acceptor states are εg = 0 cm−1, εd = 13000 cm−1, and εa = 13000 cm−1,

respectively, and the donor-acceptor coupling is ∆ = 50 cm−1. The characteristic frequency

and reorganization energy of the bath, dictated by the Debye spectral density in Eq. (3.45),

are ωD = 50 cm−1 and λD = 500 cm−1, respectively. The number of harmonic oscillators

needed to represent the condensed phase environment is N = 20 and the temperature is

T = 300 K. All laser pulses have a carrier frequency of ω1 = ω2 = ω3 = 13000 cm−1 (in

resonance with the electronic transition) and a duration of τ1 = τ2 = τ3 = 50 fs. The first

two laser pulses, which constitute the pump, have a strength of µgd|Aα|
√

4 ln 2/(πτ2α) = 50

cm−1, while the probe pulse is taken to be significantly weaker (such that the results

are independent of the strength of the probe). In all of our simulations, we have used

dimensionless variables and parameters with time scaled by ωD. The dimensionless time

step used for integrating the equations of motion (using the algorithm in Ref. [83]) is

∆t = 5× 10−5. Converged results were obtained with 2× 105 trajectories. As in Ref. [118],

the magnitude of the TA signal was rescaled to coincide with that of the population of the

photo-excited donor state (results not shown), and is therefore measured in arbitrary units.

Figure 3.1 shows our results for the time-integrated TA pump-probe signal, calculated

using Eq. (3.41), in the case of no ET (i.e., ∆ = 0 cm−1) as a function of the delay time

between the pump and probe pulses. In this case, the ET complex is not coupled to

the bath. As can be seen, the profiles calculated via the PBME and FBTS methods are

in excellent agreement with the exact result, with the TA signal increasing to a plateau

following excitation by the pump pulse. This agreement is expected because the PBME
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improves. This behaviour can be traced back to the fact that the underlying approximations

in PBME/FBTS improve as the strength of the subsystem-bath coupling decreases.

3.5 Concluding Remarks

In this Chapter, we presented an approach for calculating nonlinear spectroscopic signals that

is based on combining EOM-PMA with the PBME and FBTS methods, two approximate

solutions of the QCLE, which give rise to a simple phase-space-like evolution for both the

quantum photoactive and classical photoinactive DOF subject to Np laser pulses. Within

the EOM-PMA, one avoids the computationally intensive calculation of multi-time ORFs

and directly calculates the desired component of the N th order polarization in a specific

phase-matching direction, which can make it more efficient than both perturbative and

nonperturbative methods. In practice, the simulations involve generating ensembles of

2NP − 1 short trajectories of the chromophore’s dipole moment (with the initial conditions

of the quantum and classical variables sampled from their corresponding equilibrium

distributions) for each set of values of the pulse delays. Although EOM-PMA is restricted

to weak fields, it allows for arbitrary pulse shapes/durations and accounts for pulse overlap

effects.

The use of the PBME and FBTS methods within the EOM-PMA was demonstrated

by calculating TA pump-probe signals for a model condensed phase PIET reaction. By

comparing with the numerically exact results for the TA signals, we were able to evaluate

the performance of these mixed quantum-classical approaches. Taking into consideration

the fact that the subsystem-bath coupling is relatively strong, we find that our results

are in reasonable agreement with the exact results, with FBTS performing slightly better

than PBME. In general, both methods would work best in low subsystem-bath coupling

situations (i.e., λDβ ≤ 1), since their underlying approximations improve as the strength
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of the subsystem-bath coupling decreases. Given the simplicity of their algorithms and

their improved convergence properties (relative to QCLE-based surface-hopping), PBME

and FBTS can provide effective alternatives to surface-hopping methods in EOM-PMA

simulations of multidimensional vibrational/electronic spectra of realistic mixed quantum-

classical chemical and biological systems.
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Chapter 4

Mixed Quantum-Classical Simulations of

Transient Absorption Pump-Probe

Signals for a Photo-Induced Electron

Transfer Reaction Coupled to an

Inner-Sphere Vibrational Mode

4.1 Abstract

In the previous chapter, we demonstrated the ability of two approximate solutions of the

quantum-classical Liouville equation (QCLE) for qualitatively capturing the electronic

dynamics in the pump-probe transient absorption (TA) signal of a model of a condensed

phase photo-induced electron transfer reaction whose ground and excited donor states have

the same equilibrium geometry. However, the question remains as to the ability of these

solutions for treating the more complex situation in which the electronic states are coupled
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to a low-frequency inner-sphere harmonic vibrational mode (representing an intramolecular

mode of the donor-acceptor complex) that shifts their equilibrium geometries with respect

to each other and thereby gives rise to signatures of vibrational dynamics in the TA signal.

Thus, in this chapter, we investigate this situation by treating the vibrational mode both

quantum mechanically and classically within the context of the approximate Poisson Bracket

Mapping Equation (PBME) and Forward-Backward Trajectory solutions (FBTS) of the

QCLE. Depending on the definition of the quantum subsystem, both PBME and FBTS are

capable of qualitatively capturing several of the main features in the exact TA signal and

quantitatively capturing the characteristic timescale of the vibrational dynamics, despite

the moderately strong subsystem-bath coupling in this model. Particularly, we find that

treating the vibrational mode quantum mechanically using either PBME or FBTS better

captures the signatures of the vibrational dynamics, while treating it classically using FBTS

better captures the decay in the signal. These findings underscore the utility of the PBME

and FBTS approaches for efficiently modelling and interpreting TA signals.

4.2 Introduction

The study of photo-induced electron transfer (PIET) is of great importance to the under-

standing of energy transfer in photosynthetic systems [87–90] and to the development of

solar energy harvesting materials such as those used in photovoltaic cells [91–95]. Detailed

experimental information about the electron transfer dynamics and participating vibrational

modes may be obtained using ultrafast nonlinear spectroscopies. However, given the com-

plexity of the systems in which PIET often occurs, the spectroscopic signals may be difficult

to interpret, making it difficult to extract detailed information about the electronic and

vibrational dynamics. Theoretical modelling of time- and frequency-resolved spectroscopic

signals plays an instrumental role in their interpretation, in particular when the PIET
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occurs in complex, condensed phase environments. In practice, however, fully quantum

mechanical simulations of nonlinear spectroscopic signals are not computationally tractable

in the case of systems with many degrees of freedom (DOF). Thus, it is desirable to develop

and apply approximate methods that are capable of capturing the essential physics with

reasonable accuracy and within a reasonable amount of computational time.

The fact that PIET reactions first involve a light-induced excitation of a chromophore

from its ground electronic state to an excited donor state, followed by the transfer of

an electron from a donor group to an acceptor group, suggests that the system may be

partitioned into three sets of DOF: the electronic DOF of the donor and acceptor, key

vibrational DOF in the donor and acceptor which influence the electron transfer, and the

typically many DOF in the environment. The mass scale separations between these sets

of DOF can be exploited to avoid a fully quantum mechanical treatment of the system

and to adopt a mixed quantum-classical one. In a mixed quantum-classical treatment,

one would treat the electronic DOF of the donor and acceptor quantum mechanically, the

vibrational DOF involved in the electron transfer either quantum mechanically or classically,

and the environmental DOF classically. Such a treatment could dramatically reduce the

cost of computing observables, while retaining a sufficiently accurate picture of the coupled

electronic and nuclear dynamics. Over the years, many mixed quantum-classical methods

have been proposed for simulating nonadiabatic dynamics, which essentially differ in the

way they couple the quantum and classical DOF [30–45].

The Fewest Switches Surface-Hopping (FSSH) method [46] is one of the most popular

mixed quantum-classical methods for simulating nonadiabatic dynamics. However, in spite

of its popularity, FSSH suffers from an inability to treat decoherence. Several schemes

have been developed to resolve this problem, but because FSSH lacks a rigorous derivation,

they are ad hoc in nature [56–58, 187]. One of the most rigorous ways of simulating
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the nonadiabatic dynamics of mixed quantum-classical systems is based on the solution

of the quantum-classical Liouville equation (QCLE) [31, 33, 164–166, 169]. The QCLE

approach has been shown to perform better than FSSH, due to its rigorous treatment

of decoherence effects. However, observables calculated via the surface-hopping solution

of the QCLE [67–69] are challenging to converge for systems of appreciable size and

complexity due to highly oscillatory weights that result from the Monte Carlo sampling

of nonadiabatic transitions, i.e., a huge ensemble of trajectories is typically required for

convergence. This drawback motivated the development of two approximate solutions of

the QCLE, namely the Poisson Bracket Mapping Equation (PBME) solution[38, 71, 78] and

the Forward-Backward Trajectory Solution (FBTS),[40, 72, 86] which greatly reduce the

number of trajectories required for the convergence of observables. In these approaches, the

quantum DOF are expressed in terms of continuous variables, while in the surface-hopping

implementation they are represented in terms of discrete states. The approximations which

lead to these two solutions are most valid when the coupling between the quantum and

the classical DOF is relatively weak. These solutions have been tested on both simple and

complex model systems, yielding a wide range of agreements with more accurate results

[38, 71, 72, 78, 83, 179, 188, 189].

In our previous study [188], we combined the efficiency of the PBME and FBTS

methods and the efficiency of the equation-of-motion phase-matching approach (EOM-

PMA) [124, 190] for calculating the pump-probe transient absorption (TA) signal of a

model condensed phase PIET reaction whose ground and excited donor states have the

same equilibrium geometry. EOM-PMA is an attractive approach because it combines

attractive features from both perturbative [99, 101, 102, 107, 111] and nonperturbative

[113, 114, 116, 121, 122, 191] methods for calculating nonlinear spectra to efficiently simulate

the time-dependent polarization of a system in any phase-matching direction in response
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to weak laser fields of arbitrary shape. The results of our study demonstrated that while

the PBME and FBTS methods were not capable of qualitatively capturing the behaviour

of the time-dependent population of the excited donor state, these methods performed

comparatively well at capturing the TA signal [188]. This fortuitous agreement was

attributed to the off-diagonal nature of the dipole moment operator, which leads to a

cancellation of errors in the calculation of the polarization.

The goal of this chapter is to gauge the abilities of PBME-PMA and FBTS-PMA

for effectively simulating the TA signal of the same condensed phase PIET model as in

Ref. [188], but now with the donor and acceptor electronic states coupled to an inner-sphere

harmonic vibrational mode representing a key vibration in the electron transfer complex.

This has the effect of shifting the equilibrium geometries of the ground and excited donor

states with respect to each other, which gives rise to nonequilibrium vibrational dynamics

upon photo-excitation that can be detected in the TA signal. The TA signals are calculated

using different pulse parameters (viz., width and carrier frequency), while treating the

additional vibrational mode either quantum mechanically or classically. In addition, we

calculate the time-dependent population of the excited donor state and compare to the

results obtained when the ground and excited donor states have the same equilibrium

geometry. The PBME-PMA and FBTS-PMA results are compared to those obtained via

the numerically exact self-consistent hybrid (SCH) method [28, 192] in order to assess

their abilities for extracting quantitative and qualitative insights into the electron transfer

dynamics and the dynamics of the inner-sphere vibrational mode.
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4.3 PIET Model

In this chapter, we study a vibronic model for a condensed phase PIET, originally proposed

in Ref. [118], with the following Hamiltonian

Ĥ(t) = |g〉εg〈g|+ |d〉εd〈d|+ |a〉εa〈a|+∆(|d〉〈a|+ |a〉〈d|)

+
1

2

{

P 2
v +Ω2

[

|g〉Q2
v〈g|+ |d〉

(

Qv −
2κ

Ω2

)2

〈d|+ |a〉
(

Qv −
κ

Ω2

)2
〈a|
]}

+
1

2

N
∑

j=1



P 2
j + ω2

j

(

Qj + |a〉
2cj
ω2
j

〈a|
)2


− µ̂ ·E(t)

, (4.1)

This Hamiltonian corresponds to a system with three electronic states: a ground state

|g〉 with energy εg, a photo-excited donor state |d〉 with energy εd, and an optically dark

acceptor state |a〉 with energy εa. The parameter ∆ refers to the electronic coupling

between the donor and acceptor states. Each electronic state is coupled to an inner-sphere

vibrational mode, with position Qv, momentum Pv, frequency Ω, and coupling constant

κ. The electron transfer complex is linearly coupled to a bath of N independent harmonic

oscillators (intended to mimic the effect of a solvent) with frequencies {ωj}, coupling

constants {cj}, and mass-weighted positions and momenta {Qj} and {Pj}, respectively.

The last term in the Hamiltonian denotes the field-matter interaction energy, with µ̂ given

by [118]

µ̂ = |g〉µgd〈d|+ |d〉µdg〈g|, (4.2)

where µgd = µdg is the electronic transition dipole moment and the incident electric field

E(t), which is composed of a sum of Np coherent laser pulses, is given by

E(t) =

Np
∑

α=1

Aαfα(t− tα) exp{i [kαr− ωα(t− tα)]}+ c.c. (4.3)
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In the above equation, each laser pulse α is characterized by its wave vector kα, carrier

frequency ωα, pulse envelope fα, and the product of the polarization vector and amplitude

of the pulse, Aα. The envelope function is taken to be a Gaussian centered at time tα:

fα(t− tα) =
√

4 ln 2

πτ2α
exp

(

−4 ln 2(t− tα)
2

τ2α

)

(4.4)

where τα is the full-width at half-maximum of the pulse. In this chapter, we will assume

that the electric field remains parallel to the dipole moment vector over the duration of the

pulse (to simplify the notation, we drop the vector notation for the dipole moment).

The model parameters correspond to those used for calculating the exact quantum

results in Ref. [118]. The electronic state energies are εg = 0 and εd = εa = 12000 cm−1.

Two values of the donor-acceptor coupling are investigated, i.e., ∆ = 0 cm−1 (for no

electron transfer) and ∆ = 50 cm−1. The parameters corresponding to the inner-sphere

vibrational mode are Ω = 300 cm−1 and 2κ2/Ω2 = 1000 cm−1. The harmonic oscillator

bath is characterized by its spectral density J(ω) = π
2

∑

j

c2j
ωj
δ(ω − ωj) and is chosen to be

of Debye form [184]

J(ω) =
λD
2

∑

j

ωωD

ω2 + ω2
D

(4.5)

where λD = 500 cm−1 is the bath reorganization energy and ωD = 50 cm−1 is the

characteristic frequency. The coupling constants and frequencies are given by cj =
√

λD tan−1(ωmax/ωD)/(πN)ωj and ωj = tan(j tan−1(ωmax/ωD)/N)ωD, respectively, where

ωmax is the maximum frequency of the spectral density [28, 185, 192].
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4.4 Observables via the PBME and FBTS Methods

In this section, we summarize the main results needed to compute observables via the

PBME and FBTS methods. Before starting, we note that the Hamiltonian of a quantum

subsystem coupled to a classical environment has the following general form:

Ĥ = He + ĥs + V̂c ≡ He + ĥ (4.6)

where He is the environmental Hamiltonian, ĥs is the subsystem Hamiltonian, V̂c is the

subsystem-environment coupling, and ĥ = ĥs + V̂c.

Within the PBME approach, the expectation value of an operator Â may be calculated

via [38]

A(t) =

∫

dxdXAm(x,X, t)ρ̃m(x,X) (4.7)

where the analogue of Â in the mapping basis [79] is given by

Am(x,X) =
1

2~

∑

λλ′

Aλλ′

W (X)(rλrλ′ + pλpλ′ − ~δλλ′) (4.8)

and the analogue of the initial density matrix in the mapping basis is given by

ρ̃m(x,X) =
1

(2π~)n

∑

λλ′

2n+1

~
e
−

∑

λ
(r2λ+p2

λ)/~
ρλ

′λ
W (X)

×
(

rλrλ′ − i(rλpλ′ − rλ′pλ) + pλpλ′ − ~

2
δλλ′

)

(4.9)

In the above equations, x = (r, p) = (r1, . . . , rn, p1, . . . , pn) denotes the set of mapping

variables of the n-dimensional quantum subsystem, X = (R,P ) denotes the set of positions

and momenta of the N -dimensional classical environment, the subscriptW denotes a partial

Wigner transform [170] over the environmental DOF, and Aλλ′

= 〈λ|Â|λ′〉, where |λ〉 is a
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quantum subsystem state defined by ĥs|λ〉 = ελ|λ〉. The time evolution of Am(x,X, t) is

obtained by first sampling the initial values of the subsystem mapping and bath variables

using ρ̃m(x,X) and evolving them in time by solving the following coupled equations of

motion

drλ(t)

dt
=
∂Hm

∂pλ
=

1

~

∑

λ′

hλλ′ (R(t), t) pλ′(t),

dpλ(t)

dt
= −∂Hm

∂rλ
= −1

~

∑

λ′

hλλ′ (R(t), t) rλ′(t),

dR(t)

dt
=

∂Hm

∂P (t)
=
P (t)

M
,
dP (t)

dt
= − ∂Hm

∂R(t)

(4.10)

where the mapping analogue of the Hamiltonian is given by [71]

Hm(x,X) = He(X) +
Tr ĥ

n
+

1

2~

∑

λλ′

h
λλ′

(rλrλ′ + pλpλ′), (4.11)

and the traceless form of the matrix elements of ĥ are given by

h
λλ′

= hλλ
′ − δλλ′(Tr ĥ/n) (4.12)

It should be noted that using the traceless version of the Hamiltonian has been shown to

enhance the reliability of the simulations by minimizing the incidence of unstable trajectories

that take the system out of the physical space [71, 193, 194].

Within the FBTS approach, the expectation value of an operator Â may be calculated

via [40]

A(t) =
∑

λλ′

∫

dXAλλ′

W (X, t)ρλ
′λ

W (X), (4.13)
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where

Aλλ′

W (X, t) =
∑

µµ′

∫

dxdx′φ(x)φ(x′)

× 1

2~
(qλ + ipλ)(q

′
λ′ − ip′λ′)A

µµ′

W (Xt)

× 1

2~
(qµ(t)− ipµ(t))(q′µ′(t) + ip′µ′(t)) (4.14)

In the above equations, x = (q, p) = (q1, . . . , qn, p1, . . . , pn) and x
′ = (q′, p′) = (q′1, . . . , q

′
n, p
′
1, . . . , p

′
n)

denote the two sets of coherent state variables [81] of the n-dimensional quantum subsystem,

and φ(x) = (2π~)−ne−
∑

ν(q
2
ν+p2ν)/2~. The time evolution of Aλλ′

W (X, t) is obtained by first

sampling the initial values of the coherent state and bath variables using φ(x), φ(x′), and

ρλ
′λ

W (X), and evolving them forward in time by solving the following coupled equations of

motion

dqµ
dt

=
∂Hcl(x,X)

∂pµ
,

dpµ
dt

= −∂Hcl(x,X)

∂qµ
,

dqµ′

dt
=
∂Hcl(x

′, X)

∂pµ′

,
dpµ′

dt
= −∂Hcl(x

′, X)

∂qµ′

,

dR

dt
=

P

M
,

dP

dt
= −∂He2(x, x

′, X)

∂R

(4.15)

where the coherent state variables are propagated using

Hcl(x,X) = He(X) +
1

2~

∑

λλ′

h
λλ′

(qλ′qλ + pλpλ′), (4.16)

and the bath variables are propagated using the mean potential

He2(x, x
′, X) =

1

2

[

Hcl(x,X) +Hcl(x
′, X)

]

. (4.17)
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4.5 Computational Details

4.5.1 Calculating the Hamiltonian Matrix Elements

The calculation of the Hamiltonian matrix elements appearing in the PBME and FBTS

approaches will depend on how the quantum subsystem is defined. For the vibronic model

considered herein, it is possible to define the quantum subsystem Hamiltonian in two ways,

depending on whether or not we include the inner-sphere vibrational mode as part of the

quantum subsystem. When the inner-sphere vibrational mode is treated classically, the

quantum subsystem Hamiltonian only involves the first line of Eq. 4.1, and the calculations

are the same as in our previous studies [83, 188]. On the other hand, when it is treated

quantum mechanically, one must also add the terms involving Pv and Qv to the subsystem

Hamiltonian. This introduces some new technical details in the implementation of the

PBME and FBTS, which we discuss in this section. From this point on, we will specify

whether the additional vibrational mode is treated quantum mechanically or classically

along with the method, e.g., classical-Qv PBME will refer to a classical treatment of the

vibrational mode within the context of PBME dynamics, and so on.

When treating the inner-sphere vibrational mode quantum mechanically, we may express

the subsystem Hamiltonian as

ĥs = ĥg + ĥd + ĥa (4.18)

where

ĥα = |α〉
[

εα +
1

2
{P̂ 2

v +Ω2
(

Q̂v − qα
)2
}
]

〈α| (4.19)

Here, qα refers to the shift in the equilibrium geometry of electronic state |α〉 along the

vibrational coordinate, i.e., qg = 0, qd = 2κ/Ω2 and qa = κ/Ω2 (see Eq. 4.1). Owing to the

form of ĥs, one may represent it as a block diagonal matrix (i.e., hs = hgv ⊕ hdv ⊕ hav, where
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hαv is a Hamiltonian in the vibrational subspace corresponding to electronic manifold α

and ⊕ denotes the matrix direct sum) and decompose the diagonalization of hs into three

independent eigenvalue problems (i.e., ĥαv |iα〉 = εαi |iα〉, where |iα〉 is the ith vibrational

eigenstate within electronic manifold α). Thus, a subsystem eigenstate can be expressed as

|α, iα〉 = |α〉|iα〉 ≡ |λ〉. Because the vibrational mode is a harmonic oscillator, we can easily

write that

〈α|〈iα|ĥs|jβ〉|β〉 =
[

εα +Ω

(

i+
1

2

)]

δαi,βj (4.20)

Consequently, there is no need to numerically diagonalize the subsystem Hamiltonian at

each step of the dynamics and all of the Hamiltonian matrix elements, hλλ
′

, for this model

may be computed analytically.

As we have seen, quantizing the inner-sphere vibrational mode generates a set of vibronic

subsystem states for each electronic manifold. The factor that determines the number of

vibronic states used for the ground electronic manifold in the simulations is the temperature.

Higher vibronic levels may have negligible or no populations at certain temperatures and,

therefore, will not contribute to the dynamics. Based on the model parameters used in this

study, we found that 20 vibronic states for the ground electronic manifold was sufficient for

convergence of the results. In the case of the donor and acceptor electronic states, more

vibronic levels were used to account for the possibility of the pump pulse leading to the

population of higher vibronic levels on the donor electronic state. The precise number of

levels depends on the pulse and vibrational mode coupling parameters, and for this study

we found that 25 vibronic states for each of the donor and acceptor manifolds was sufficient.

4.5.2 Initializing the System

We now discuss how the initial values for the quantum and classical variables were sampled

for the vibronic model considered herein. As is commonly done, we assume that the initial
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system density matrix is uncorrelated, with the subsystem in its ground electronic state

and the environment in thermal equilibrium. Thus, its expression can be given by

ρ̂W (0) ≈ ρ̂s(0)⊗ ρe(X). (4.21)

In the case that the inner-sphere vibrational mode is treated classically, the subsystem

density matrix is given by

ρ̂s(0)→













1 0 0

0 0 0

0 0 0













, (4.22)

and the Wigner distribution of the harmonic oscillator bath is given by [186]

ρe(X) =
N
∏

j=1

βωj

2πu′′j
exp

[

− β

u′′j

(

P 2
j

2
+

1

2
ω2
jR

2
j

)]

, (4.23)

with u
′′

j = uj cothuj , uj =
β~ωj

2 , and β = 1/kT . It should be noted that the initial position

and momentum (Qv, Pv) of the harmonic inner-sphere vibrational mode are also sampled

using Eq. 4.23, with its corresponding parameters. In the case that the inner-sphere

vibrational mode is treated quantum mechanically, the subsystem density matrix is obtained

by assuming a Boltzmann distribution for the vibrational state populations in the ground

electronic state. More specifically,

ρ̂s(0)→
1

Z













ρg 0

0

0 0













, (4.24)
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where the partition function Z is given by

Z =
∑

λ

〈λ|e−βĥ|λ〉 (4.25)

and ρg is a 20× 20 diagonal matrix, whose diagonal matrix elements are given by

ρig = exp

[

−εg +Ω(i+ 1/2)

kT

]

. (4.26)

This equation can be used to verify that for the twentieth vibronic level ρ20g ≈ 0. As in the

previous case, the positions and momenta of the harmonic oscillator bath are sampled using

Eq. 4.23. In both cases, the initial values of the mapping and coherent state variables are

sampled from e−
∑

λ(r2λ+p2
λ
/~) and e−

∑
ν(q

2
ν+p2ν)/2~, respectively.

4.5.3 Simulating the Pump-probe TA Signal

The approach for calculating the TA signal using PBME and FBTS within the EOM-PMA

[124, 190] was formulated in the previous chapter and demonstrated on a purely electronic

model of a condensed phase PIET reaction. Here, we only summarize the main results

needed to calculate the TA signal for the model studied herein.

In a typical pump–probe experiment, the subsystem under study essentially interacts

with three laser pulses: two super-imposed pulses (forming the pump pulse) centered at

time t1 and a third probe pulse centered at time t3. The resulting polarization of interest,

Pk3
(t), radiates in the kPP = −k1 + k2 + k3 = k3 (since k1 = k2) direction. Within

PBME/FBTS-PMA, Pk3
(t) may be calculated via [188]

Pk3
(t) ≈ 〈µΣ(t)〉PBME/FBTS , (4.27)
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where 〈· · · 〉PBME/FBTS refers to an average calculated using Eq. 4.7/Eq. 4.13 and

µΣ(t) = −µ0(t) + µ1(t)− µ2(t) + µ3(t), (4.28)

and

µ0(t) = µ0,0,0(0, t)

µ1(t) = µ1,0,0(1, t) + µ0,1,0(1,t) + µ0,0,1(1, t)

µ2(t) = µ1,1,0(2, t) + µ1,0,1(2,t) + µ0,1,1(2, t)

µ3(t) = µ1,1,1(3, t) (4.29)

In the above equation, µg1,g2,g3 (g, t) represents the dipole moments resulting from different

combinations of the pulses being on and off, i.e., gα can either be 0 or 1 depending on

whether the αth pulse is off or on, respectively, with g = g1+g2+g3. When the inner-sphere

vibrational mode is treated classically, the classical-Qv PBME evolution of these dipole

moments is given by [188]

µg1,g2,g3 (x,g, t) =
µgd
~

[rg(g, t)rd(g, t) + pg(g, t)pd(g, t)] , (4.30)

while the classical-Qv FBTS evolution is given by [188]

µg1,g2,g3(x, x′,g, t) = µgd{(qg(g, t)− ipg(g, t))(q′d(g, t) + ip′d(g, t))

+(qd(g, t)− ipd(g, t))(q′g(g, t) + ip′gg, t))}, (4.31)

where (rg, pg) and (rd, pd) are the mapping variables corresponding to the ground and donor

electronic states, respectively, while (qg, pg, q
′
g, p
′
g) and (qd, pd, q

′
d, p
′
d) are the coherent state
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variables corresponding to the ground and donor electronic states, respectively. When the

inner-sphere vibrational mode is treated quantum mechanically, the quantum-Qv PBME

evolution of these dipole moments is given by

µg1,g2,g3 (x,g, t) =
µgd
~

∑

i,j

〈ig|jd〉 [rg,i(g, t)rd,j(g, t) + pg,i(g, t)pd,j(g, t)] , (4.32)

while the quantum-Qv FBTS evolution is given by

µg1,g2,g3(x, x′,g, t) = µgd
∑

i,j

〈ig|jd〉{(qg,i(g, t)− ipg,i(g, t))(q′d,j(g, t) + ip′d,j(g, t))

+(qd,j(g, t)− ipd,j(g, t))(q′g,i(g, t) + ip′g,i(g, t))}, (4.33)

where (rα,i, pα,i) and (qα,i, pα,i, q
′
α,i, p

′
α,i) are the mapping and coherent state variables,

respectively, corresponding to the subsystem state |α, iα〉. Therefore, to calculate µΣ(t) in

Eq. 4.28, one must propagate eight trajectories corresponding to all on–off combinations of

the pump and probe pulses (i.e., each term on the RHS of Eqs. 4.29) by evolving the mapping

and coherent state variables in time as prescribed by Eqs. 4.10 and 4.15, respectively. Finally,

within the rotating wave and slowly-varying amplitude approximations, the time-integrated

TA pump–probe signal can be calculated via [114]

I (t3 − t1) = Im

+∞
∫

−∞

E3 (t; t3) (P ′k3
)∗ (t; t3 − t1) dt, (4.34)

where the asterisk denotes the complex conjugate, E3 is the probe field, and P ′k3
=

Ppump on
k3

−Ppump off
k3

is the difference between the polarizations with and without excitation

by the pump pulse.

In the following section, we also present PBME and FBTS results for the time-dependent

population of the donor state. These were obtained by calculating the expectation value of
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P̂d = |d〉〈d| using Eqs. 4.7 and 4.13.

4.6 Results and Discussion

Our main goal is to assess how effective the PBME and FBTS methods are for simulating

the time-integrated TA signal of the vibronic PIET model presented herein. This is

accomplished by comparing our results to the numerically exact results in Ref. 118 obtained

using a combination of a nonperturbative approach for simulating the nonlinear signal and

the SCH method. Unless mentioned otherwise, the pulse parameters used in this study

are ω1 = ω2 = ω3 = 13000 cm−1 and τ1 = τ2 = τ3 = 30 fs. The equations of motion

(i.e., Eqs. 4.10 and 4.15) were integrated using a velocity Verlet-type algorithm [83] with

time steps of ∆t = 0.2 fs for PBME and ∆t = 0.04 fs for FBTS. We used 20 harmonic

oscillators for the bath and the temperature was 300 K (giving rise to a moderately strong

subsystem-bath coupling since βλD = 2.4 > 1). Converged results were obtained using

approximately 105 trajectories.

Before presenting the results of the time-integrated TA signals, we first discuss the

time-dependent population of the donor state to get a sense of how well the PBME and

FBTS methods fare in capturing the population dynamics. Previously, we found that PBME

and FBTS struggled to qualitatively capture the population dynamics in a purely electronic

version of the model under moderately strong subsystem-bath coupling conditions [83]. In

particular, PBME gave rise to a non-physical increase in the donor-state population in time

instead of a decrease due to electron transfer to the acceptor state. This was due to the

combination of the -~δλλ′ term in Eq. 4.8 (which is non-zero when propagating operators

that are diagonal in the subsystem basis) and the emergence of inverted potentials that take

the mapping variables out of their physical space [71]. On the other hand, FBTS performed

substantially better than PBME, since it yielded a slight decrease in the population.
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methods overshoot the exact maximum by ≈ 8%. This inability to reproduce the exact

maximum during the pulse is due to the fact that PBME and FBTS employ generalized

mean potentials, which are not capable of accurately capturing the abrupt changes in the

potential that lead to the electron transfer. The improvement in the agreement with the

exact maximum upon quantization of the vibrational mode is due to the fact that, in a

classical description, there is no restriction on the energy that can be absorbed by the

system from the pulse. In this case, a higher number of accessible vibronic states within the

donor electronic state manifold become populated, leading to the much higher maximum

donor-state populations observed in the classical-Qv results. Second, the quantum-Qv

PBME/FBTS results show very small decays in the population compared to the exact decay

of ≈ 3%, while the classical-Qv PBME/FBTS results exhibit a decay of ≈ 1.6% and 2.4% for

PBME and FBTS, respectively. It should be noted that, between 50 and 150 fs, quantum-Qv

PBME exhibits a slight increase in the population before it decays, while in our previous

study [83], PBME gave rise to a relatively large monotonic increase in the population. In

the current model, the coupling of the vibrational mode to the electron transfer complex

leads to a reduction in the asymmetry of the diagonal elements of the Hamiltonian (induced

by the coupling to the harmonic oscillator bath) compared to that of the Hamiltonian

in the absence of the vibrational mode. As a result, using the traceless version of the

Hamiltonian, h, leads to better behaved results than using the original Hamiltonian, h,

which could lead to sudden inversions of the potential that take the mapping variables

outside of their physical space. When the original Hamiltonian, h, is used in this case,

one obtains unphysical results with classical-Qv PMBE, namely a monotonic increase in

the donor-state population after the pump pulse, and barely any change with classical-Qv

FBTS [83]. With quantum-Qv FBTS/PBME, the increase in the dimensionality of the

system aggravates the asymmetry of h and thereby increases the incidence of numerical
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instabilities in trajectories (i.e., breakdown in energy conservation), especially in the case

of quantum-Qv PBME. Finally, of the approximate methods, only the classical-Qv PBME

result exhibits oscillations, although they are highly damped compared to the exact case.

This could be understood in terms of how the approximations leading to these two methods

are affected by the partitioning of the system into quantum and classical parts. In the case

of PBME, a term responsible for higher order couplings between the quantum subsystem

and classical environment is dropped from the QCLE in the mapping representation to

arrive at the PBME. It has been shown that retaining this term cancels out an extra term in

the PBME, which over-compensates for the back reaction of the quantum subsystem on its

environment [78]. Therefore, by adding the vibrational mode to the quantum subsystem in

quantum-Qv PBME, one over-compensates for the back reaction of this mode on the classical

environment, which may in turn wash out the signatures of the vibrational dynamics. In

contrast, by adding the vibrational mode to the classical environment in classical-Qv PBME,

these effects are avoided, albeit at the cost of treating this mode classically. In the case

of FBTS, an orthogonality approximation is made in the exact solution of the QCLE to

arrive to the FBTS [40], which has been shown to work best under weaker subsystem-bath

coupling conditions. As seen, the effect of this approximation is to wash out the oscillations

and to minimize the population decay when the vibrational mode is treated quantum

mechanically. In summary, no single approximate method qualitatively captures all of the

features of the population dynamics. Quantizing the inner-sphere vibrational mode leads

to a dramatic improvement in the maximum population, but substantially inhibits the

subsequent population decay compared to the classical treatment.

We now move on to the main results of this study, i.e., the time-integrated TA signals

calculated via the PBME and FBTS methods. In Figures 4.2 and 4.3, we show the TA

signals obtained for two values of the electronic coupling between the donor and acceptor
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states, viz. ∆ = 0 cm−1 (where no electron transfer occurs) and ∆ = 50 cm−1, respectively.

In the ∆ = 0 cm−1 case, the exact TA signal initially exhibits a rise, followed by a repeated

pattern of oscillations with a ≈ 100 fs period. No overall decay of the signal is observed

since the donor and acceptor states are not electronically coupled. By comparing with

the ∆ = 0 cm−1 result in the absence of the inner-sphere vibrational mode, which does

not exhibit any oscillations, we realize that these oscillations are due to the vibrational

dynamics of the inner-sphere mode in the excited donor state [118]. In addition, the

shoulders associated with the main oscillations were shown to be due to the vibrational

dynamics in the ground state [118]. All of the approximate methods yield decent qualitative

and, for some features, quantitative agreement with the exact result, in contrast to the

population results. First, the maximum intensity of the TA signal immediately following

the photo-excitation by the pump pulse (i.e., after ≈ 15 fs) is well reproduced by all of

the approximate methods. Although all four approximate methods underestimate the

magnitudes of the remaining oscillations in the TA signal, classical-Qv PBME captures the

majority of the magnitude. More importantly, all methods are able to accurately reproduce

the period of the oscillations. Interestingly, quantum-Qv PBME/FBTS are capable of

reproducing the shoulders, while their classical counterparts are not. Overall, this level of

agreement between the PBME/FBTS and exact results is promising for future simulations

of TA signals in more complex systems. The better agreement between the PBME and

exact results (compared to the population results) is likely due to the fact that the time

evolution of the dipole moment operator does not involve a -~ in Eq. 4.32 (owing to its

off-diagonal nature) and, as a result, is less sensitive to trajectories that take the mapping

variables out of their physical space. The better agreement between the FBTS and exact

results (compared to the population results) is also likely due to the form of the dipole

moment operator.
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arb. unit for classical-Qv FBTS, from 0.064 arb. unit to 0.061 arb. unit for quantum-Qv

PBME, and from 0.068 arb. unit to 0.061 arb. unit for quantum-Qv FBTS). Moreover, all

of the peaks occur at the same times as those in the exact result.

More information can be obtained from the TA signal using different pulse parameters.

For instance, for this model, it is possible to separate the stimulated emission (which reflects

the dynamics of the donor-state population) and stimulated Raman contributions to the

TA signal if a probe pulse with a sufficiently smaller frequency than the vertical excitation

frequency is used [118]. As seen in Fig. 4.4, when ω3 = 11000 cm−1, the exact TA signal

exhibits a more pronounced decay than that in Fig. 4.3, which is in much better agreement

with that of the donor-state population and, thus, could be used to extract the electron

transfer rate. In addition, there is a change in the frequency and structure of the oscillation

compared to those in Fig. 4.3. There are now two frequencies present in the signal, viz.,

a slower frequency corresponding to that of the vibrational mode and a faster frequency

corresponding to the fact that the probe pulse detects the vibrational wave packet twice

during each vibration [118]. Also, there is no longer a shoulder associated with each peak.

Quantum-Qv PBME/FBTS are capable of capturing some of the changes in the TA signal

(see Fig. 4.4). Both methods capture the two frequencies in the oscillation, but quantum-Qv

PBME yields a more irregular oscillatory pattern, while quantum-Qv FBTS yields a more

regular pattern. On the other hand, classical-Qv PBME exhibits a different oscillatory

pattern, with shoulders appearing next to the main peaks, while classical-Qv FBTS is

only capable of capturing the slower frequency. In both the classical- and quantum-Qv

treatments, FBTS exhibits a slight decay, while PBME does not.

We next investigate how PBME and FBTS perform when the duration of the probe

pulse is increased. Increasing the duration leads to lower resolution of the TA signal, as

manifested by the disappearance of the peak sub-structure, due to the inability of the probe
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pulse to detect faster changes in the system. As seen in the exact TA signal in Fig. 4.5,

when the duration of the probe pulse is increased to τ3 = 50 fs, there is only an oscillation

with a ≈ 100 fs period corresponding to the period of the vibrational mode. One can no

longer resolve the faster oscillation that appeared when the probe pulse had a frequency of

ω3 = 11000 cm−1 and a duration of τ3 = 30 fs (see Fig. 4.4). The PBME and FBTS results

for this longer pulse duration are presented in Fig. 4.5. In the quantum-Qv results, we see

that the slower oscillation predominates, although there is still a signature of the faster

oscillation. This signature persists for the entire time in the quantum-Qv FBTS results,

while in the PBME results, it disappears after some time. Both quantum-Qv PBME and

FBTS struggle to capture the decay of the TA signal. On the other hand, classical-Qv

PBME exhibits a highly irregular oscillatory pattern, with no decay, while classical-Qv

FBTS exhibits a regular oscillatory pattern with the same frequency as the exact result but

with a slightly different phase. It should be noted that of all four methods, classical-Qv

FBTS exhibits a non-negligible decay.

4.7 Concluding Remarks

In this study, we applied two approximate, highly efficient solutions of the QCLE, namely the

PBME solution and FBTS, for simulating the time evolution of the donor-state population

and the pump-probe TA signal of a vibronic model of a condensed phase PIET reaction. This

model represents an electron transfer complex coupled, in which an inner-sphere vibrational

mode influences the electron transfer. We considered two different decompositions of the

system, one in which this vibrational mode coupled is included in the quantum subsystem

and another in which it is included in the classical environment. This led us to test four

methods, i.e., classical-Qv PBME/FBTS and quantum-Qv PBME/FBTS. Since this was

the first application of PBME/FBTS to a PIET reaction involving a harmonic inner-sphere
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vibrational mode, the details of quantizing this mode were worked out and presented in

this study. Due to the approximations inherent to these methods and the moderately

strong nature of the subsystem-bath coupling in this model, no single method was able to

quantitatively capture all of the features in the exact population and TA signals. Nonetheless,

all of the methods were able to qualitatively capture at least some of the features (and some

even quantitatively) in these observables. Overall, FBTS and PBME performed similarly,

although in some cases FBTS performed slightly better.

Given the moderately strong subsystem-environment conditions, all of the approximate

methods considered struggled to satisfactorily represent the decays in the TA signals,

which are characteristic of the electron transfer. However, this was not the case for the

donor-state population, where classical-Qv PBME/FBTS yielded substantial decays, but

quantum-Qv PBME/FBTS did not. This was somewhat surprising at first, since one would

have expected the quantum-Qv methods to perform better with respect to all features

in the results. In this case, useful information about the electron transfer rate could be

extracted from the classical-Qv calculations of the donor-state population, since a classical

treatment of the inner-sphere vibrational mode leads to a more accurate description of

the subsystem-environment coupling than the quantum treatment. Apart from a lack of

a significant decay in the donor-state population, quantum-Qv PBME/FTBS performed

substantially better than classical-Qv PBME/FBTS. The classical-Qv treatments were

unable to capture the maximum population following the pump pulse and to reproduce

all of the vibrational features in the TA signals, whereas the quantum-Qv treatments were

able to.

In general, the PBME and FBTS methods are not well suited for extracting the electron

transfer rate from a pump-probe TA signal of an electron transfer reaction in which the

subsystem-environment coupling is moderately strong to strong. However, our study suggests
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that they can be used to extract reliable information about the vibrational dynamics from

the TA signal under these conditions. The next steps will be to determine if the recently

proposed improvements to the PBME solution, which are just as efficient as the original

PBME solution [84, 85], are capable of capturing the decay in the TA signals of the current

model, and to test these methods on more realistic models of PIET reactions which can be

parametrized using electronic structure calculations.
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Chapter 5

Simulation of a Proton Transfer

Reaction in a Polar Nanocluster

We now shift the focus to simulating the dynamics of a heavier particle, the proton.

Proton transfer (PT) reactions are common in chemistry and biology, so the assessment of

approximate solutions of the QCLE for simulating them is of great interest. In this Chapter,

we study PT reactions occurring in polar nanoclusters. In these systems, the PT reaction

is mediated by a strong coupling of the proton to the polar solvent. Simulations of such

reactions therefore allow one to rigorously test the PBME method, which performs best

under weak subsystem-bath coupling conditions. Moreover, this is the first time that the

PBME solution is tested on a realistic system. In particular, we investigate a PT reaction

in a hydrogen-bonded phenol trimethylamine complex dissolved in a nanocluster of methyl

chloride molecules.
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5.1 Azzouz-Borgis Model

We investigate a nanocluster model, which is based on the Azzouz–Borgis model [135], for

a PT reaction in a hydrogen-bonded phenol (A) trimethylamine (B) complex (denoted by

AHB) surrounded by NS methyl chloride molecules. Within our mixed quantum-classical

approach, the proton is the quantum subsystem and the remaining atoms constitute the

classical environment. The Hamiltonian of the total system may be written as

Ĥ(r̂, p̂, X) = KS(P ) +KC(P ) + K̂P (p̂)

+ VSS(R) + V̂CS(r̂, R) + V̂PS(r̂, R) + V̂PC(r̂, RAB), (5.1)

where KS , KC , and K̂P are the kinetic energies of the solvent, complex, and proton,

respectively; VSS , V̂CS , V̂PS , and V̂PC are the solvent–solvent, complex–solvent, proton–

solvent, and proton–complex potential energies, respectively; r̂ and p̂ are the position and

momentum operators of the proton, respectively; R and P are the position and momentum

vectors of the environment; and RAB is the distance between the A and B groups in the

AHB complex.

The A and B groups are modeled as single particles (Fig. 5.1), and polarizability effects

are incorporated by allowing the charges on A and B to depend explicitly on the position of

the proton, which is restricted to move along the A–B axis. The proton–complex interaction

potential is given by a gas-phase H-bonding potential of the following form [135]:

VPC(r;RAB) = be−aRAB +DA

[

1− exp

(−nA(r − dA)2
2r

)]

+ cDA

[

1− exp

(−nB(RAB − r − dB)2
2(RAB − r)

)]

,

where r is the distance between A and H. The values of all the parameters are taken
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Parameter Value Parameter Value

a (Å−1) 11.2 DA (kcal mol−1) 110
b (kcal mol−1) 7.1×1013 na (Å−1) 9.26
dA (Å) 0.95 nb (Å

−1) 11.42
dB (Å) 0.97 c 0.776

Table 5.1: Hydrogen bonding potential parameters for the AHB complex, which correspond
to a medium strong hydrogen bond.

Site Q(e) σi (Å) εi (kcal mol−1)

CH3 +0.25 3.774 0.238
Cl -0.25 3.481 0.4150

Table 5.2: Lennard-Jones and Coulomb parameters for the methyl chloride solvent interac-
tions.

from Reference [141] and are listed in Table 5.1. It should be noted that different sets of

parameter values may be chosen to vary the strength of the hydrogen bond. This particular

set of parameter values represents a medium strong OH–N hydrogen bond.

The methyl chloride molecules are modeled as rigid polar diatomic molecules, viz., the

methyl and chloride groups are reduced to single sites with a fixed bond distance of 1.781

Å (Fig. 5.1). The solvent–solvent interactions are governed by the following Lennard-Jones

and Coulomb potentials:

VSS =
∑

i∈m

∑

j∈n 6=m

4εij

[

(

σij
Rij

)12

−
(

σij
Rij

)6
]

+
KCQiQj

Rij
, (5.2)

where Rij is the distance between site i on molecule m and site j on molecule n; εij and

σij are the Lennard-Jones parameters between site i on molecule m and site j on molecule

n; Qi and Qj are the charges sites i and j, respectively; and KC is the Coulomb constant.

The parameter values for this potential are listed in Table 5.2 and correspond to the same

values obtained for the force field in Reference [195]. The Berthelot mixing rules are used

to derive the cross parameters [196].
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Finally, the proton–solvent interactions are governed by a Coulomb potential (VPS), while

the complex–solvent interactions are governed by pair-wise Lennard-Jones and Coulombic

potentials (VCS). VCS takes the same form as that in Eq. 5.2, with the restriction that m

can be only A or B. The Lennard-Jones parameters are chosen to be identical for all the

site–site interactions and have the following values: σ = 3.5 Å and ε = 0.3974 kcal mol−1.

The electrostatic interactions between any of the sites in the AHB complex and the solvent

involve the interaction between the fixed charges of the solvent (Table 5.2) and the r-

dependent charges Qα on the complex. The r-dependency is introduced using the following

expression:

Qα = (1− f(r))Qc
α + f(r)Qi

α, (5.3)

where

f(r) =
1

2

[

1 +
r − r0

√

(r − r0)2 + l2

]

. (5.4)

In the above equation, α is either A, H, or B, r0 = 1.43 Å, and l = 0.125 Å. The superscripts

c and i refer to the covalent and ionic states, respectively, of the AHB complex. These

two states result from the PT reaction, AH· · ·B 
 A− · · ·H+ B, i.e. when the proton is

on the phenol, the complex is in its covalent state, and when the proton is on the amine,

the complex is in its ionic state. Thus, by smoothly varying the switching function f(r)

(Eq. 5.3) from 0 to 1, one can account for the charge redistribution due to the protonic

motion. When f(r) = 0, the charges correspond to the ones in the covalent state, and when

f(r) = 1, the charges correspond to the ones in the ionic state (see values of charges in

Table 5.3).

89



State QA (e) QH (e) QB (e)

Covalent -0.5 +0.5 0
Ionic -1.0 +0.5 +0.5

Table 5.3: Charges on the different sites in the AHB complex depending on its charge state.

5.2 PBME Dynamics

5.2.1 Computational Details

In order to simulate the dynamics of the PT reaction using the PBME approach, one first

defines the quantum subsystem Hamiltonian as follows:

ĥs = K̂P (p̂) + V̂PC(r̂, RAB). (5.5)

As one can see, this form of the subsystem Hamiltonian depends on RAB, which has impli-

cations on the numerical simulation of the system. To evaluate the mapping Hamiltonian

(Eq. 2.16), the subsystem states |λ〉 must be obtained by solving the eigenvalue problem

ĥs|λ〉 = ελ|λ〉. This leads to two scenarios that depend on whether the AB bond length,

RAB, is fixed or not. If RAB is fixed, the subsystem Hamiltonian depends only on r̂ and p̂

and, thus, the subsystem states will not change over the course of a trajectory. In this case,

the eigenvalue problem needs to be solved only once at the beginning of the simulation.

Conversely, if RAB is not constrained, the AB bond length will fluctuate over the course

of a trajectory, rendering the subsystem Hamiltonian RAB-dependent. In this case, the

eigenvalue problem must be solved at every time step of the trajectory, adding to the

computational cost of the simulation. Another drawback is the introduction of arbitrary

eigenvector sign inversions upon diagonalization, which must be properly dealt with. To

circumvent these issues, a viable approximation may be to solve the eigenvalue problem only

once at the beginning of the simulation for RAB fixed at the average AB distance. Such
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an approximation would be most valid if the AB distance oscillates, with small deviations

about its average value. In this Chapter, the results generated rely on this approximation, in

which RAB is fixed at 2.7 Å (in accordance with the average distance reported in Ref. [135]).

The solution of the time-independent Schrödinger equation for {|λ〉} and {ελ} is carried

out by expanding the subsystem states in a set of normalized basis functions |φi〉, i.e.,

|λ〉 =
∑

i

ci|φi〉, (5.6)

which are chosen to be the wavefunctions of the quantum harmonic oscillator,

φi(r) = 〈r|φi〉 = (2kk!
√
π)−1/2α1/2Hk(α(r − r0))exp

[

−α2(r − r0)2/2
]

, (5.7)

where k is an integer, Hk(x) is the k-th Hermite polynomial, and i is an index associated

with a pair of values for k and r0. Two sets of basis functions are used, each containing

six functions (such that k = 0–5) and each centered at a different r0. These r0 correspond

to the minima of each well in V̂PC and are located at r = 1 Å for the covalent well and

r = 1.6 Å for the ionic well.

For the reasons discussed at the end of Sec. 2.3.2, the form of the mapping Hamiltonian

with h
λλ′

is used. If hλλ
′

is used, numerical instabilities arise due to the relatively large

magnitudes of the hλλ
′

matrix elements over the course of a trajectory. Thus, the mapping

Hamiltonian takes the form

Hm(x,X) = KS +KC + VSS(R) +
Tr ĥ

N
+

1

2~

∑

λλ′

h
λλ′

(R)(rλrλ′ + pλpλ′), (5.8)
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where h
λλ′

(R) is given by

h
λλ′

(R) = ελδλλ′ + 〈λ|V̂CS(r̂, R) + V̂PS(r̂, R)|λ′〉 − δλλ′

Tr ĥ

N
. (5.9)

It is clear from the previous equation that the coupling potential is given by

V̂c(r̂, R) = V̂CS(r̂, R,RAB) + V̂PS(r̂, R). (5.10)

Taking all of the above details into consideration, simulations of the system are carried

out by propagating an ensemble of trajectories for three different cluster sizes, viz., Ns = 7,

9, 11. Initial equilibrium configurations are prepared by first melting a face–centered cubic

lattice configuration with velocity rescaling to obtain a kinetic temperature of 150 K and

then equilibrating with microcanonical dynamics for 7 ps. Production runs of 50 ps are

generated using microcanonical dynamics. The equations of motion are integrated using

the velocity-Verlet-type algorithm prescribed by Eqs. 2.55 and 2.56 with a time step of

0.4 fs. The bonds in the complex and solvent are constrained using the RATTLE [197]

and SHAKE [198] algorithms. Finally, in the event of an evaporation of the cluster, the

trajectory is terminated.

5.2.2 Complex and Solvent Properties

In order to gain insight into the dynamics of this system, we monitor trajectories of the

solvent polarization, distance between the complex’s center of mass and the center of mass

of the solvent molecules, and the mapping analogue of the position of the proton. These

results are then compared qualitatively to the results of adiabatic dynamics simulations in

Refs. [155] and [159], which are known to give a realistic picture of the dynamics.
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To begin with, the solvent polarization is defined as

∆E(R) =
∑

i,a

Qae

(

1

|Ra
i − s|

− 1

|Ra
i − s′|

)

, (5.11)

where Qae is the charge of atom a in molecule i (with e = 1.602× 10−19C), and s and s′

are points within the complex corresponding to the minima of V̂PC . As seen in Eq. 5.11,

the solvent polarization is a collective solvent coordinate, which measures the difference

between the solvent electric fields at points s and s′. Therefore, this quantity monitors the

solvent dynamics as the complex switches between the covalent (lower values) and ionic

states (higher values).

Secondly, the distance between the complex’s center of mass and the center of mass

of the solvent molecules (denoted by d) gives insight into the preferred positions of the

complex within the cluster. When d is close to 0, i.e. both centres of mass overlapping, the

complex is situated in the core of the cluster and is in its ionic state. Conversely, when d is

large, the complex is situated on the surface of the cluster and is in its covalent state. This

correlation between location and state occurs because a larger number of solvent molecules

is required to stabilize complexes with larger dipole moments [154, 155, 199, 200].

Finally, because the proton is the key particle in the reaction, knowledge of its position

along the course of the PT is desired. In the mapping representation, one can gain insight

into the motion of the proton by monitoring the mapping analogue of the proton’s position

operator; according to Eq. 2.17, it is given by

qm(x) =
∑

λλ′

qλλ′cλλ′(x), (5.12)

where qλλ′ = 〈λ|q̂|λ′〉. It should be noted that, unless cλλ′ fulfills the requirement given by

Eq. 2.32, the dynamics of the mapping variables (x) can take place outside of the physical
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Figure 5.2: The protonic position in the mapping space, qm, (top) the distance between the
centers of mass of the complex and solvent, d, (middle) and the solvent polarization, ∆E,
(bottom) along a representative trajectory of the Ns = 11 cluster.

space. For this reason, qm may provide a “rough” probe of the motion of the proton.

Results for ∆E, d, and qm along a representative trajectory of the system are presented

in Figure 5.2. In this case, Ns = 11 and, therefore, the system is expected to exhibit a

bistable behaviour with the ionic form of the complex being more stable [155]. As can

be seen, none of these quantities clearly capture the expected bistability. In particular,

both qm and ∆E primarily fluctuate around some mean values (viz., 〈qm〉 ≈ 1.495 Å and

〈∆E〉 ≈ 0.017 eC/Å), with qm fluctuating on a faster time scale than ∆E (≈ 10 fs for qm

and ≈ 200 fs for ∆E), as expected. Occasional hops in qm to lower values are observed,

but these values do not persist for more than a few picoseconds. Most of these hops are

accompanied by the expected structural changes in the cluster, namely, a decrease in d and

an increase in ∆E, indicative of the system becoming more ionic in character. In addition,

the ranges of d and ∆E values explored by the system (i.e., approximately 0 < d < 4.0
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as the size of the cluster increases. Again, this behaviour is consistent with what is observed

in the previous adiabatic simulations, except for the fact that the PBME histograms are

unimodal whereas the adiabatic ones are bimodal. The unimodal character of the ∆E and

d histograms is a clear testament to the mean-field nature of the PBME dynamics, which is

due to the mixing of ground- and excited-subsystem state potentials (see the summation in

the last term of Eq. 5.8). As a consequence, the system cannot switch completely between

the two stable configurations of the system observed in the adiabatic dynamics simulations.

To gain insight into the correlation between the solvent polarization and the position of

the complex within the cluster, joint histograms of d and ∆E were calculated for all three

cluster sizes. These histograms, shown in Fig. 5.6, demonstrate that the more polarized the

cluster is, the closer the complex will reside to the center of mass of the solvent, irrespective

of the cluster size. In contrast to the two peaks observed in the joint histograms calculated

via adiabatic dynamics [155], these histograms contain only one peak. Hence, the picture

of the reaction dynamics given by the PBME method is very different than that given by

adiabatic dynamics, in which the PT reaction involves diffusion of the complex from the

surface to the interior of the cluster and vice versa. PBME dynamics cannot effectively

capture these excursions of the complex, especially in the larger clusters.

To gain insight into the correlation between the protonic motion and the solvent

dynamics, the joint histograms of qm and ∆E are presented in Fig. 5.7 for all three cluster

sizes. For the Ns = 7 and Ns = 9 clusters, there is no distinct correlation between qm and

∆E. However, for Ns = 11, qm and ∆E are negatively correlated, i.e., as ∆E increases,

qm decreases. This negative correlation is consistent with what is seen in the adiabatic

dynamics of the proton in physical space, where the mean position of the proton tends

towards the B group as the solvent polarization increases. However, the inability of the

PBME dynamics to capture this behaviour in the smaller clusters suggests that the protonic
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state |λ〉. As can be seen, the probability distribution associated with the first subsystem

state, |1〉, has a maximum at 1 Å, which corresponds to the minimum of the covalent

well in the hydrogen bonding potential. The probability distribution associated with the

third subsystem state, |3〉, has a mainly ionic character but also a non-negligible covalent

character. On the other hand, the probability distribution associated with the second (|2〉)

and fourth (|4〉) subsystem states are quite delocalized. It should be noted that none of

the probability distributions have maxima corresponding directly to the minimum of the

ionic well (at 1.6 Å) in the hydrogen bonding potential. This is due to the fact that, in the

absence of the coupling to the solvent, the complex cannot be stabilized in the ionic state.

In the following section, we will see how the characters of these distributions can distinctly

impact the shape of a free energy profile when a quantum reaction coordinate is chosen.

5.3 Reaction Coordinates and Free Energy Calculations

In this section, expressions for calculating free energy profiles using PBME dynamics are

derived. The expressions are then used to calculate free energy profiles for the PT reaction

based on two different reaction coordinates, one quantum and one classical. The differences

between these profiles are discussed.

To gain insight into the energetics of a reaction, one may examine its free energy along a

suitable reaction coordinate, i.e., a function that monitors the progress of the reaction. This

reaction coordinate may either be classical or quantum mechanical in character, depending

on the nature of the reaction. In the case of a PT reaction in a polar nanocluster, there are

three potentially viable reaction coordinates: the solvent polarization, proton position, and

distance between the center of mass of the complex and the center of mass of the solvent (see

Section 5.2.1). In this work, we consider the solvent polarization (a classical coordinate) and

the proton position (a quantum coordinate), and study the ability of the PBME approach
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to capture the expected features in the free energy profiles for both reaction coordinates.

For a general reaction coordinate ξ (which may be a quantum operator, a function of

the classical configuration, or a combination of the two), the free energy, W , may be defined

according to the following statistical mechanical expression:

βW (ξ′) = − ln〈δ(ξ − ξ′)〉, (5.13)

where β = 1/kBT and 〈. . .〉 denotes an expectation value. In the following subsections, we

show how this expectation value may be calculated using the PBME method.

5.3.1 PBME Approach

Using the PBME approach, the expectation value in Eq. 5.13 is given by

〈δ(ξ − ξ′)〉 =
∫

dxdX (δ(ξ − ξ′))mρ̃m(x,X), (5.14)

where (δ(ξ−ξ′))m, the mapping analogue of the delta function, may be obtained by applying

Eq. 2.17:

(δ(ξ − ξ′))m =
∑

λλ′

〈λ|δ(ξ − ξ′)|λ′〉cλλ′(x). (5.15)

Up to this point, the form of ξ has not been established, but depending on whether ξ is a

function of classical or quantum mechanical variables, the evaluation of Eq. 5.15 will differ.

When the reaction coordinate is taken to be the solvent polarization, a purely classical

quantity, ξ ≡ ξ(R) = ∆E(R), and therefore it can be factored out of the sum in Eq. 5.15,

resulting in the following expression:

(δ
(

∆E(R)−∆E′
)

)m = δ
(

∆E(R)−∆E′
)

∑

λ

cλλ(x). (5.16)
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However, when the reaction coordinate is taken to be the proton position, a quantum

mechanical variable, ξ ≡ r, and therefore the matrix elements of Eq. 5.15 must be evaluated,

resulting in the following expression:

(δ(r − r′))m =
∑

λλ′

〈λ|δ(r − r′)|λ′〉cλλ′(x), (5.17)

where

〈λ|δ(r − r′)|λ′〉 =
∫

dr λ(r)δ(r − r′)λ′(r)

= λ(r′)λ′(r′). (5.18)

Upon substituting Eqs. 5.16 and 5.17 into Eq. 5.14, the expressions for the averages become

〈δ
(

∆E(R)−∆E′
)

〉 =
∫

dxdX δ
(

∆E(R)−∆E′
)

(

∑

λ

cλλ(x)

)

ρ̃m(x,X) (5.19)

for the solvent polarization, and

〈δ(r − r′)〉 =
∫

dxdX

(

∑

λλ′

λ(r′)λ′(r′)cλλ′(x)

)

ρ̃m(x,X) (5.20)

for the proton position, respectively. The upper limits of the sums in these expressions

depend on the number of subsystems states that are included in the calculation. The

mapping analogue of the density matrix, ρ̃m(x,X), appearing in Eqs. 5.19 and 5.20, is given

by Eq. 2.27. In this work, we have replaced the equilibrium Wigner distribution with its

high-temperature approximation, i.e.

ρλλ
′

W ≈ e−βH
λλ′

∫

dX
∑

λλ′ e−βH
λλ′
. (5.21)
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This is a reasonable approximation for the system at hand, given that its temperature is

relatively high. In addition, this approximation greatly simplifies the sampling of the initial

conditions of the classical environment. In addition, we have assumed that the excited

subsystem states are negligibly populated, such that

ρλλ
′

W =















e−βH11

∫
dX

∑
λλ′ e

−βHλλ′
if λ = λ′ = 1

0 in any other case.

(5.22)

To sample the initial conditions from the density matrix in Eq. 5.22, it is first convenient

to rewrite it as follows:

ρ11W =
e−βH

11

∫

dX
∑

λλ′ e−βH
λλ′

=
e−βH

11

∫

dXe−βH11
×

∫

dXe−βH
11

∫

dX
∑

λλ′ e−βH
λλ′
. (5.23)

Noting that

∑

λλ′

e−βH
λλ′

= e−βH
11



1 +
∑

λ 6=1

e−β(H
λλ−H11) +

∑

λ 6=λ′

e−β(H
λλ′−H11)



 (5.24)

we may rewrite Eq. 5.23 as

ρ11W =
e−βH

11

∫

dXe−βH11
× 1

〈1 +
∑

λ 6=1 e
−β(Hλλ−H11) +

∑

λ 6=λ′ e−β(H
λλ′−H11)〉11

, (5.25)

where 〈. . .〉11 =
∫
dXe−βH11

...
∫
dXe−βH11 denotes a ground-state average. Under these conditions,
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ρ̃m(x,X) becomes

ρ̃m(x,X) =
2

~(π~)N
e−x

2/~

(

r21 + p21 −
~

2

)

e−βH
11

∫

dXe−βH11

× 1

〈1 +
∑

λ 6=1 e
−β(Hλλ−H11) +

∑

λ 6=λ′ e−β(H
λλ′−H11)〉11

. (5.26)

Based on Eqs. 5.19 to 5.26, one sees how to generate the free energy profiles using

PBME dynamics. The phase space integrals in Eqs. 5.19 and 5.20 may be evaluated as

follows:

1. Sample the initial values of the mapping variables, x, according to the Gaussian

distribution in Eq. 5.26.

2. Sample the initial positions and momenta of the classical DOF from a long constant

temperature PBME trajectory generated using the Hamiltonian H11, i.e. a trajectory

restricted to the ground subsystem state, in accordance with the bath part of the

initial density matrix in Eq. 5.26.

3. Starting from these initial conditions, propagate the system in time by solving the

PBME equations of motion (Eq. 2.25) using the states obtained from solving the

subsystem eigenvalue problem. In practice, only a subset of the subsystem states

may contribute appreciably to the dynamics, so one may truncate the full set of

states to reduce the simulation time. (The number of subsystem states needed can be

determined by computing the free energy profile using increasing numbers of states

and checking for convergence.) Calculate cλλ′ and ξ along each trajectory in the

ensemble.

4. When ξ = ∆E, the average in Eq. 5.19 can be obtained by histogramming the values

of ∆E(R) explored by the ensemble of trajectories, into bins centered at the various
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∆E′ values. However, instead of adding 1 to the bin each time ∆E(R) = ∆E′, one

adds the corresponding value of the
∑

λ cλλ factor. When ξ = r, the average in

Eq. 5.20 can be obtained by evaluating
∑

λλ′ λ(r′)λ′(r′)cλλ′(x) at each time step of

each trajectory and then averaging this quantity over all time steps in the ensemble of

trajectories. The λ(r′) = 〈r|λ〉 appearing in Eq. 5.20 may be evaluated using Eqs. 5.6

and 5.7 for every value of r′.

5. The free energy is finally obtained by multiplying the average from the previous step

by the factor on the second line of Eq. 5.26 (evaluated during the sampling of the

initial conditions from the trajectory restricted to the ground subsystem state) and

then taking the negative logarithm of the result.

5.3.2 Free Energy Profiles

Before presenting the free energy profiles for the PT reaction, we describe the simulation

details for computing the free energy profiles for the Ns = 7 cluster. The initial conditions

of the cluster and complex were sampled from a 1 ns trajectory on the ground subsystem

state, i.e. using H11 in accordance with Eq. 5.26. The first four (out of twelve) subsystem

states were used in the production dynamics (as the higher lying states were found to

contribute negligibly to the final results). The equations of motion were integrated using

the velocity-Verlet-type algorithm prescribed by Eqs. 2.55 and 2.56, with a time step of

0.05 fs was used. All other parameters were the same as the ones used in Section 5.1.

The free energy profiles as a function of the solvent polarization (left panel) and protonic

position (right panel) reaction coordinates for the Ns = 7 cluster are shown in Fig. 5.9. As

can be seen, the two free energies present two very different pictures; when the reaction

coordinate is chosen to be the (classical) solvent polarization, only a single well is observed,

while when the (quantum) protonic position is chosen, one observes a predominantly double-
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Chapter 6

Conclusions and Future Work

The modeling of large chemical systems is feasible more than ever due to the rapid progress

of computer technology. Ground-state dynamics simulations are now commonplace and are

frequently used to complement information obtained from experiments or as a predictive

tool. Such simulations rely on the Born-Oppenheimer approximation; however, many

chemical processes of interest are not confined to the ground state or a single potential

energy surface. This has prompted the development of methods for simulating the dynamics

of a system when the Born-Oppenheimer approximation breaks down. Unfortunately, as

the size of the system grows, fully quantum dynamical methods quickly become intractable.

Therefore, developmental work has focused on methods capable of efficiently treating larger

systems. One way to accomplish this is by introducing approximations into exact or inexact

(but highly accurate) methods. In doing so, simplified and faster algorithms are obtained;

however, one must understand for which systems and/or under which conditions these

algorithms work best, in order to minimize the error introduced by the approximations.

The work presented in this thesis was an investigation of this idea.

In this thesis, our interest was in algorithms that are derived from the QCLE, which
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is known to be an accurate equation of motion for simulating the dynamics of mixed

quantum-classical systems. Because the solution of the QCLE becomes increasingly difficult

as the quantum subsystem size and simulation time grow, approximate solutions have

been developed to alleviate these difficulties. Our work focused on testing the validity of

two approximate solutions, namely the PBME solution and the FBTS, for simulating the

dynamics and spectroscopy of a variety of charge transfer processes.

Firstly, formalisms for calculating pump-probe TA signals using PBME and FBTS were

laid out. These formalisms were based on the EOM-PMA, a general approach that can

be used to calculate any type of nonlinear spectroscopic signal. The main advantage of

EOM-PMA is that it avoids the often costly calculation of ORFs. However, using this

approach, one must generate an ensemble of at most 2Np − 1 trajectories (where Np is the

number of laser pulses employed in the spectroscopic technique) in order to extract the

appropriate component of the polarization corresponding to the nonlinear signal of interest.

In our work, we exploited the computational efficiency of the PBME and FBTS methods

for generating these trajectories. The PBME-PMA and FBTS-PMA approaches were then

tested on a model PIET reaction. By comparing to the numerically exact results for the TA

signals in this model, the performances of our combined approaches were assessed. Under

weak subsystem–bath coupling conditions, the results of these approaches were in reasonable

agreement with the exact results, while under relatively strong coupling conditions, the

agreements started to break down. This was expected, as the underlying approximations of

both the PBME and FBTS methods were previously shown to improve with decreasing

subsystem–bath coupling.

As a second step, the PBME-PMA and FBTS-PMA approaches were tested on a more

complex PIET model, in which the ET complex is coupled to an inner-sphere vibrational

mode. Unlike the simpler model, two different subsystem–bath decompositions of the system

110



were possible, which depended on whether or not the vibrational mode is included in the

quantum subsystem. For the classical treatment of the vibrational mode, the simulation

details were essentially the same as those used in the treatment of the simpler model, with

the exception of an additional classical DOF. However, the situation is somewhat more

complex for the quantum treatment of the vibrational mode, and so we worked out the

necessary theoretical/simulation details to carry it out. In this case, the resulting manifold

of subsystem states reflects the vibronic nature of the system. In the end, the results

showed that no single method was able to capture all of the features of the pump-probe TA

signals; reliable information about the vibrational dynamics could be extracted from the

TA signals, but none of the methods were able to fully capture the signal decay observed in

the numerically exact results.

The PBME method was also used to simulate the dynamics of a more realistic model

of a charge transfer reaction, namely a PT reaction in a phenol–trimethylamine complex

dissolved in a polar nanocluster. Our work constituted one of the first applications of PBME

dynamics to a realistic system. This system represented an extreme case for testing the limits

of the PBME approach, given the prevalence of electrostatic interactions between the dipoles

in the system. In our simulations, the transferring proton was treated quantum mechanically,

while the rest of the system (i.e. complex and cluster molecules) was treated classically. We

started by following the dynamical behaviour of various complex and cluster properties

in an ensemble of PBME trajectories. Interestingly, PBME dynamics was not capable

of exploring the expected cluster configurations associated with the covalent and ionic

states of the phenol–trimethylamine complex. Instead, PBME dynamics generated stable

cluster configurations that are neither distinctly covalent or distinctly ionic in character, but

rather have mixed characters. This behaviour was attributed to the fact that the overall

potential governing the PBME dynamics is a sum over potentials that localize the system
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in both the covalent and ionic wells. Our results highlighted the mean-field-like nature of

the PBME method for describing the dynamics of the classical DOF. We then went on

to derive PBME-based expressions for the free energy along both classical and quantum

reaction coordinates, namely the solvent polarization and protonic position, respectively.

The free energy profile obtained using the classical reaction coordinate had a single well,

reflecting once again the mean-field-like potential experienced by the classical DOF in the

PBME dynamics. In contrast, the use of a quantum reaction coordinate yields the expected

double-well character of the free energy profile. This is due to the fact that the values of

r, ranging from the covalent to the ionic well, are used to calculate the λ(r)’s in Eq. 5.20

and thus contributions to the ionic well are always taken into account (despite the fact

that the solvent molecules do not explore values of ∆E that distinctly correspond to the

ionic well). Overall, our result suggests that it is possible to obtain reasonable free energy

profiles using the PBME method for strongly coupled systems, as long as one could identify

a good quantum reaction coordinate.

Based on the results in this thesis, the following general picture emerges: (i) The

approximate solutions of the QCLE give rise to more efficient algorithms with better

convergence properties compared to the surface-hopping solutions of the QCLE. (ii) They

give rise to algorithms that can be easily integrated into larger molecular dynamics codes

(as the quantum DOF are described in terms of continuous variables whose evolution is

classical-like). (iii) The main downside is the breakdown of the approximations as the

coupling between the subsystem and environment increases. (iv) If there is a bias (or

asymmetry) in the energies of the subsystem states, the approximate solutions may struggle

to yield accurate results. This is due to the inability of the potentials to capture the

dynamics induced by the asymmetries in the Hamiltonian. For this reason, the use of the

traceless form of the Hamiltonian is necessary in more complex systems, as it helps to
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tame dynamical instabilities. (v) The performance of PBME is affected by the form of

the observable; namely, PBME struggles to capture the correct dynamics when diagonal

operators are involved. This is due to the −~ term found in the expression for the mapping

analogue of an operator, which can render the observable more sensitive to trajectories that

take the mapping variables out of their physical space.

In contrast to the QCLE-based surface-hopping algorithms, PBME and FBTS can

struggle to accurately capture the dynamics of observables for the systems and conditions

encountered in this thesis. That being said, their efficiency and ease of implementation

warrant the development of improvements which expand their domain of applicability,

e.g. the improvements proposed in Refs. [84] and [85] for PBME and in Ref. [86] for FBTS.

Testing these improvements on the systems studied in this thesis would be a worthwhile

endeavour. It would also be worthwhile to develop an entirely new approximate solution of

the QCLE and an algorithm for simulating such an approximation. The fact that the PBME

and FBTS approaches yield classical-like equations of motion for the quantum DOF, makes

them suitable candidates for incorporation into open source MD codes such as LAMMPS or

GROMACS. Doing so could expand the applicability of PBME/FBTS to complex systems

by allowing for the treatment of atomistically explicit classical environments. This will

be particularly important when studying large systems in which nonadiabatic effects are

pronounced, such as those encountered in applications to the design of more efficient

photovoltaic and semiconductor technologies.
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