University of Alberta

BANDWIDTH REGULATION AND PERFORMANCE ENHANCEMENTS FOR
OPEN-ISCSI NETWORKED STORAGE

by

Yongjian Zhang

A thesis submitted to the Faculty of Graduate Studies anddreb
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

©Yongjian Zhang
Fall 2010
Edmonton, Alberta

Permission is hereby granted to the University of Albertaraiies to reproduce single copies of this thesis

and to lend or sell such copies for private, scholarly orrgdie research purposes only. Where the thesis is

converted to, or otherwise made available in digital forime, niversity of Alberta will advise potential users
of the thesis of these terms.

The author reserves all other publication and other rightssociation with the copyright in the thesis, and
except as herein before provided, neither the thesis nosanstantial portion thereof may be printed or
otherwise reproduced in any material form whatever witlibatauthor’s prior written permission.

Examining Committee

Mike MacGregor, Ph.D., Computing Science

Marek Reformat, Ph.D., Electrical & Computer Engineering

Janelle Harms, Ph.D., Computing Science

Abstract

Virtual machines are gaining a growing importance in modrrsiness IT infrastructure. They fa-
cilitate multiple operating system instances on one playsiost, which provides more efficient use
of the computing power of the physical host but increasestheunt of network traffic as well. To
avoid potential network congestion and prioritize linkaesce usage in a virtual machine system,
we propose a bandwidth regulation scheme. Extensive di@ugemonstrates that this bandwidth
regulation scheme is accurate and effective. In additi@regolved a drastic performance degrada-
tion of the Open-iSCSI initiator. We thoroughly tested tleefprmance of the Open-iSCSI initiator
and three modified versions under two methods of setting @ end buffer size - statically and
dynamically. Based on these results, we propose a perfaartaning scheme, which can enable
users of Open-iSCSI, especially those using Open-iSCSlalang fat network, to achieve signifi-
cant throughput gains.

Acknowledgements

First of all, | would like to thank my supervisor ProfessoiddiMacGregor for being a great mentor.
This thesis would not have been possible without his suppodouragement, help, and guidance.

I would also like to thank Precarn Inc. and TRLabs for theiafioial support and DataGardens
Inc. for the opportunity to work on the HTB project and theis&tance in this effort.

| am grateful to my colleague Zhu Pang, a wonderful develofeerhis help in coding and
debugging. | would also like to show my gratitude to Mike Glig from the Open-iSCSI Google
group for his help with the Open-iSCSI source code.

It has been a great pleasure to work with Marcin Misiewicz &nid Chalmers in TRLabs.
Marcin offered tremendous help with my English and cultapaéstions and the random conversa-
tions between the three of us were of great joy.

My special thanks goes to Sapphire (Cailu) Zhao, a greatdritor always being there for me.
Special thanks also goes to my friend Calvin Penny for hip kéth the text, his encouragement,
and his faith in me.

| want to express my gratitude to Lan Liu, Ao Zhang, and Jinlien Adapting to a new life
was not 100 percent smooth for me; their help from the ottde sf the globe certainly made it
much easier. Now Lan Liu and her husband are starting thathgite school in the US and | would
like to take this opportunity to wish them all the best in tretudy and research.

Final thanks to my parents, Guixia Yang and Xun Zhang, forr tt@nstant unconditional sup-

port.

Table of Contents

4 Dyvnamica s P Send Buffer Size and i Pardmce . 38

List of Tables

4.3 Recommended Tuning Scheme of Open-i

4.1 The Accuracy ofietem in RTT Emulation.o v v oo,
%@n

List of Figures

1.1 Server-Centric Architectur

1.2 Storage-Centric Architectur

MIP. e 4

E; .§E§| ;;; EEE[P 5
2.1 TheiSCSI Protocaol Stacﬂh] 7
3.1 The Processing of Network Data in Lintwtﬁ] 11
[5]. .. v 12

3.2 A Queuing Discipline with Multiple Classe

3.8 The Effectiveness of HTB on Bandwidth Sharing of 3 iSCE&fflc Flows - with
BOIrOWING. v e e e e e e e e 23

4.4 Open-iSCSI Performance with Various Send Buffer SimesRITs-4. 34

4 Open-i Performance with Variou end Buffer SingsR -3, ... 35
4.6 Open-i Performance with Variou end Buffer SineskR -4, 36

4.7 Open-iSCSI Performance with Various Send Buffer Size®0@hs RTT 37

4.16 use _clustering

SIZE). . . e

4.17 use _clustering

4.21 Open-iSCSI Performance withse _clustering

4.22 Open-iSCSI Performance witlse _clustering

4.23 Open-iSCSI Performance witlse _clustering

4.24 Open-iSCSI Performance withse _clustering

4.25 Open-iSCSI Performance withse _clustering

4 P NODELAYaNnd Open-i Performance
/ P NODELAMaNd Open-i Performance
4,14 P NODELAMaNd Open-i Performance
4 P NODELAYaNd Open-i Performance

Enabled andTCP.NODELAY
Disabled (Dynamically Set Send Buffer Size).
Enabled andTCP.NODELAY
Disabled (Statically Set Send Buffer Size)-1.
Enabled andTCP.NODELAY
Disabled (Statically Set Send Buffer Size)-2.
Enabled andTCP.NODELAY
Disabled (Statically Set Send Buffer Size)-3.
Enabled andTCP.NODELAY
Disabled (Statically Set Send Buffer Size)-4.
i RTT
RTT

4.27 Open-iSCS| Performance Comparison @ ii(i i;

428 Open-iSCS| Performance Comparison @ 200 ms RTT

o).

4

43
44
45
46

and Open-iSCSI Performance (Dynamically Set Send Buffer

51

52

53

56

58

59

60

List of Algorithms

[S_J_HIB_D_egueug_ELogﬁss_C_anﬁmuaUﬂuﬂﬂtlon

20

List of Listings

Dis-

Default Open-iSCSI I/0 Segmentation Transmission with _clustering

abled.
Modified Open-iSCSI I/O Segmentation Transmission with _clustering En-

abled.

Chapter 1

Introduction

Live migration of virtual machines plays an increasinglyaal role in modern business IT infras-
tructure. Virtual machines, when not running, live as onenore static files on the physical host’s
storage subsystem. When started, virtual machines areddagdthe physical host from these files
and presented to the user as if they were independent phigsisis. As more than one virtual ma-
chine can be loaded at the same time on the host, more tharpen&tiog system instance can run
concurrently on one physical host, which allows for morecédfit use of computing resources.

Also, as virtual machines are represented as data in filesnwbrrectly replicated, virtual ma-
chines can be migrated to a different physical host and raxattly the same manner as they do
on the original physical host. The migration can even oceuing the time when a virtual machine
is running; this is called live migration. One crucial perfance indicator of virtual machine live
migration is the service down time, which is largely depemdm the migration time of the virtual
storage subsystem. Pang presents a technique that fasiliteore efficient disk migration [22].
This technique is able to reduce the service down time dwirigal machine live migration and
therefore improve business continuity.

As well as the benefits virtual machines bring to the IT infnacture, they extend new chal-
lenges, of which an obvious one is the ever higher presseseght on network resources: when
multiple virtual machines are running on one physical hths, amount of network traffic of the
physical host is multiplied accordingly; moreover, the ratgpn of virtual machines just adds an-
other significant amount on top of the multiplied traffic. Idiatributed IT system, the overwhelm-
ing traffic from virtual machines can cause severe competfor link resources and even disastrous
network congestion.

To avoid potential network congestion and prioritize ligsource usage in a distributed virtual
machine system, Sheng proposes an effective dynamic rletwsource allocation algorithm to
calculate the optimal maximum allowed bandwidth for thegbgl hosts in the network[23].

Based on this calculated maximum throughput of the physicsts, we realize the actual traf-
fic throttling. We discuss the use of the native Linux traffantrol tools, such atc and HTB

(Hierarchical Token Bucket) to regulate the network traffite and examine their practicality and

[P LAN

:I ol @ pisk | |O ©
]
==
Server
_—
=
=
= 1 =
Server CD@ [D.‘; Dis’kj
S =
———
F—
Server

Figure 1.1: Server-Centric Architecture. [26]

effectiveness. In addition, we focus more specifically anrégulation of the iISCSI traffic in order
to provide differentiated storage service for virtual maels. Chapter 3 documents this work. The
positive results demonstrate that with careful configorgtnative Linux traffic control tools com-
bined with the Open-iSCSI initiator can effectively regelgéhe traffic rate of a physical host and
provide differentiated quality of service for the disk fiafof virtual machines within the physical

host.

1.1 iSCSI Overview

In this new era of information, a tough challenge has beeangldd for our conventional storage
systems: According to Troppens et al.|[26], the amount o& @ahormal company owns grows
exponentially each year; a company with 1 TB of data will hawveeal with 32 TB in five years.
In addition to the constant generation of new data, the baekndows continue to shrink. These
trends undoubtedly bring a strong challenge for the expariconventional server storage systems
based on the SCSI bus, due to their limitation on cable leagththe number of devices allowed on
a daisy chain.

Moreover, data storage tends to be increasingly distribgémgraphically, yet the need for shar-
ing data is ever growing. The decentralization of data g®rand the converse demand of data
sharing surely challenge the architecture of conventisaaler-centric IT systems, as depicted in
Figure[1.1, in two ways [26]: Firstly, a multi-server daidyain does not work effectively; therefore,
it is difficult to share data efficiently between multiplesens through the SCSI bus; secondly, one

server cannot use the free space on the storage attacheutheeserver if they are not on the same

LAN

Server

Storage network

|

Server

Figure 1.2: Storage-Centric Architecture.|[26]

SCSI daisy chain, which causes inefficient use of storagriress.

To efficiently tame the drastic data growth and effectiveetthe need to share data, modern
IT architecture has gradually moved from the server-cestructure to a storage-centric structure,
as shown in Figurle 11.2. In a storage-centric IT system, tirage devices and servers are connected
via network links, which are generally dedicated for steragcess.

This network of storage devices is callStbrage Area Networ{SAN). SAN inherits the SCSI
command set and replaces the SCSI bus by a network. As a,rdsulstorage devices do not
have to be directly attached to the servers, which fadidlexible expansion of existing storage
volumes. Also, multiple servers can now connect to the saanage devices, which enables storage
consolidation and seamless data sharing. With the netwaokeply built, storage sharing between
geographically dispersed servers is made available as well

Unfortunately, everything comes with a cost and it is no gxioa for SAN. SANs were first built
upon the expensive Fibre Channel technology, which stithiates the majority of the SAN market
at the time of writing. The protocol stack of a Fibre Chann&Nds shown in[1.B. Fibre Channel
technology is fundamentally different than the widely udetechnology; therefore, to deploy Fibre
Channel SAN, an entirely new Fibre Channel network infrettire is required. While establishing
the Fibre Channel network, the cost of necessary trainimgnaaintenance needs to be budgeted
as well. The collective cost of the network infrastructysersonnel training as well as network
maintenance inevitably sets a financial barrier for the ajgpkent of Fibre Channel SAN in average
companies and lower-end users as well.

To tackle the financial barrier of Fibre Channel SAN, Inter8€SI (iISCSI) was brought into

Application

Operating System

SCSI Protocol

TCP

Fibre Channel

IP Protocols

Lower Layer
Protocols

Figure 1.3: Fibre Channel Protocol and TCP/IP.

the picture. As shown in Figufe1.4, iSCSI replaces the esigerFFibre Channel network with an
IP network, which is the existing network infrastructure &dmost every company. This infras-
tructure is usually based on conventional Ethernet cdet(cards) and cables, which are much
more affordable than their Fibre Channel equivalents andtiiemeet the average and even higher
end performance requirements. In addition, the staff imgiand network maintenance cost of IP
networks is minimal compared to Fibre Channel networks. Assalt, the total cost of ownership
for iSCSI is much lower than for a Fibre Channel SAN. Furtheme iSCSI is inherently TCP/IP
based; hence it has no distance limits and can fit well in WASEHDaistributed systems, for which
Fibre Channel SAN requires extra special hardware enhasesito function properly, adding even
more cost to the entire IT system.

Clearly, iISCSI is in a more favorable position financiallyheTold saying, however, makes no
exception for iSCSI either: The financial advantage comds avcost, which, in this case, is in the
form of potential performance concerns. iISCSI is based oR/TRCand hence inherits the two most
noticeable concerns in TCP/IP networks - packet loss angldetay over the network links.

To closely investigate how these two issues affect the paidace of iISCSI, we started our work
on the performance measurement of a software implementafithe Open-iSCSI initiator over
lossy links and long delay links. Our results show that iSBSible to reach the same maximum
performance as a general TCP application does on a lossy imka long delay link, however,
the performance of Open-iSCSI initiator degrades drdstiees the delay on the link increases,

while the general TCP application is able to maintain itetighput. We then performed a thorough

Application

Operating System

SCSI Protocol

iISCSI Protocol

TCP TCP
IP P
Lower Layer Lower Layer
Protocols Protocols

Figure 1.4: iSCSI and TCP/IP

examination of this problem and discovered two resolutibias gain substantial improvement for
Open-iSCSI throughput. Chapfdr 4 documents this work aadgmts our resolutions to the iSCSI
performance degradation problem. By the time of writing,hage not been able to find any other

published solutions to this problem.

Chapter 2

Background and Previous Work

2.1 AFew Terms

For the purpose of clarification, we introduce here somedarsed in the following sections.

Round-Trip Time (RTT) : The length of time it takes for a TCP segment to be sent pkifetigth
of time it takes for an acknowledgment of that segment to beived. It is twice the end-to-

end delay of the link.

Bandwidth Delay Product (BDP) : A link’s BDP is calculated as the product of its bandwidtldan
RTTH. This product is the amount of data required to be on the wifi#l the pipe in order to
fully utilize the capacity of the link; therefore, the BDP ahetwork link implies the proper

size of the send and receive buffer of the applications comicating over the link.

Long Fat Pipe and Long Fat Network (LFN) : If the BDP of a link path significantly exceed&®
bits, we call it along fat pipe And we call a network with a long fat pipelaong Fat Network
(LFN)[15].

2.2 Background on iSCSI

The iSCSI related protocol stack is illustrated in Figur8 2SCSI works between the SCSI layer
and the TCP layer. The I/O requests from applications firsthgough the SCSI layer, where the
SCSI driver builds SCSI Command Description Blocks (CDBsjdnl on the I/O requests. The SCSI
CDBs then move to the iISCSI layer and the iISCSI driver assesiitiotocol Data Units (PDUs) and
then hands them over to the TCP/IP layer. Thereafter, thedivel across the network just like
any other TCP payload. At the other end of the network, the&SiStEiver disassembles the received
PDUs and passes the encapsulated CDBs to the SCSI layer.CBlad8ver then disassembles the
CDBs and the 1/O requests are eventually performed on the S&fical Unit(s).

1Sometimes it is also calculated as the product of the linkisdwidth and end-to-end time. In this thesis, when refgrrin
to BDP, we always use round-trip time instead of end-to-éné-.t

Application
Layer

SCSI
Layer

iSCSI
Pratocol
Layer

With TCP/IP, iISCSI delivers a ubiquitous interconnectiorstorage that the market has been
long waiting for ml]. This interconnection undoubtedlypides new opportunities for data backup
and storage consolidation. At the same time, iSCSI managesep the Total Cost of Ownership
(TCO) low because the entire existing network infrastreettan be directly utilized by iSCSI.

As mentioned in Section 1.1, iSCSI suffers from an imperfettvork environment, such as
WAN. To achieve a better understanding of these issues aprbira the iISCSI performance over
imperfect networks, we chose a well maintained open sowfte/are iISCSI initiator-target pair,
the Open-iSCSl initiator and the iISCSI Enterprise TargeT|| and extensively examined the iISCSI
initiator throughput over links with emulated WAN-like RTahd packet loss. The results (Chapier 4)
show that the Open-iSCSI implementation reacts well to pask but suffers severely from long

delay over the links. Based on our analysis, we propose alj@explanation for this performance

degradation.

11O Request
Application ol = e giyioa® > Logical Unit
/ SCSi Interface ~
¥ ¥
SCSI Class Driver
¢ SCSIProtocol | ol pevice | SCSICDR
(SCS! Initiator)
Transport Service
1 Interface 4
¥ ¥
Services [R5 TF Services

Figure 2.1: The iSCSI Protocol Stack. [14]

2.3 Previous Work on iISCSI Performance

Lu et al.[18] have done a thorough simulation study of a iISB&led storage system with the net-
work simulator ns-B; Their study covers the performance variance of iSCSI imaukition setting
while varying PDU size, TCP Maximum Segment Size (I\&S)]d TCP window size. The simula-
tion model they built facilitates the exploration of the iSiperformance with adjustable parameters
and even different scheduling algorithms. Our results @SBperformance degradation over long
delay links (presented in Chaptér 4) conform to the resultheir simulation with varying TCP
window sizes.

Gauger et al. [12] also performed a simulation study on iSie®flormance. Their study analyzes
the iISCSI throughput and total request write times overingriink RTTs, link loss probabilities,
process delays in the iSCSI layer, as well as 1/0 requestcteistics. One major contribution of
their paper is that their simulations are based on staiticealistic network and 1/0O request mod-
els. Although the maximum RTT studied in their model is onyris, it is sufficiently descriptive
as they set the link bandwidth to 1 Gbps. As for the results pbgervation of iISCSI performance
degradation over long delay links (presented in Chdgtels#) @nforms to their results in the sce-
nario with a single iISCSI session over long RTT links.

As the work of both Lu et al. and Gauger et al. is performed withulation, they did not
consider practical factors that may affect actual perforoea such as the buffering effect of file
systems. Also, their study is observation oriented; thelyrdit provide any practical approach to
address the observed iSCSI performance degradation.

Aiken et al. [3] performed real measurements of iISCSI pentorce. They first measured the
performance of two commercial iISCSI initiators, a softwamne and a hardware one, against a hard-
ware iSCSI target. Then they compared these performangésagainst a storage subsystem based
on Fibre Channel, yielding the conclusion that the comnagsnftware iISCSI initiator outperforms
the hardware initiator and the software initiator compapaige “favorably” to Fibre Channel. Next,
they measured the performance of Intel open source iSC<h and target pair over a Storage
Area Network (SAN) setting and a Wide Area Network (WAN) Begt(emulated by an external
router) as well. Our results in Chapiér 4 conform to their Wisults and we both noticed the
importance of network tuning for iSCSI to achieve best panfance over WAN. However, Aiken et
al. did not attempt to explore any of the actual network tgrdptions in their paper.

Bianco et all[7] used the same iSCSI implementation as we @haptef#. They performed
tests including RAIE 0 with iISCSI over SAN and iSCSI without RAID over WAN. Theirsudts
demonstrate that iISCSI can utilize the data striping featdRAID 0 to multiply its performance

2please refer thttp://www.isi.edu/nsnam/ns/ for more details about the network simulator ns-2.

3please refer tottp://en.wikipedia.org/wiki/Maximum_segment_size for more details on TCP maxi-
mum segment size.

4Please note that this imtthe Open-iSCSI initiator we used in Chagiér 4.

5Redundant Array of Independent Disks. Please reférttim//en.wikipedia.org/wiki/RAID for more de-
tails.

http://www.isi.edu/nsnam/ns/
http://en.wikipedia.org/wiki/Maximum_segment_size
http://en.wikipedia.org/wiki/RAID

in the SAN setting. The results in the WAN setting, not swgipigly, show the identical limitation
as we observed in our study - the 256 KB send buffer size (Plegfer to Sectioh 4.2.2 for more

details.). In their paper, however, they did not furtheeistigate the cause of this performance issue.

2.4 Previous Work on TCP Tuning

Lawrence Berkeley National Laboratory [17], Mathis et alorfi PSU [20] and Tierney [25] all
clearly point out that it is necessary to tune the TCP seiffitige network link is considered as an
LFN (Long Fat Network, please refer to Sectlonl2.1 for mor&ile), as the current (2010, up to
Linux kernel 2.6.32) Linux operating system does not setifault values for relevant parameters
to best perform on LFN and the default values may result irr pro@ughput over LFN. All three
works provide similar recipes of tuning due to the same nedmhind the poor throughput over
LFN - insufficient TCP buffer size. This was the starting gdar our examination of the differences
between static and dynamic tuning (Please refer to Chialfiar #hore details). We believe of the
three sources, Lawrence Berkeley National Laboratoryiges/the most up-to-date information,
which is still continuously updated. In our research, werbthat both the static and dynamic
methods, if applied properly, can help tune TCP to bettayd8CSI traffic. An Open-iSCSI session
with the buffer size statically set outperforms one with T@Rotuning when the RTT is less than or
equal to 40 ms. TCP autotuning starts to show its advantatied®T T further increases. However,
on links with very long RTTs, we found that TCP autotuningagextra tuning itself to achieve the

desired performance.

2.5 Traffic Scheduling with Round-Robin Algorithms

Shreedhar et all [24] propose an efficient fair queueingrétgn named Deficit Round Robin
(DRR), which is used in the HTB implementation [10]. The DRIBaaithm first assigns newly-
arrived packets of different flows to corresponding queweksthen services these queuesin a round
robin manner to dequeue packets from each queue up to thefdize quantum the queue has for
the current round.

Although DRR achieves fair queueing, it cannot satisfy thkag requirement of latency-critical
flows. Shreedhar et al. also propose a revised version of DRRed DRR+, to deal with this kind
of flows. DRR+ maintains a different set of queues for latesritycal flows to guarantee their delay
bound. At the same time, DRR+ signs a contract with the |atenitical flows about the amount
of data they can send in one service round. Whenever a flosvttailespect its contract, it will no
longer be treated as latency-critical.

However, DRR+ still does not service latency-critical floadequately due to the bursty feature
of real-life network traffic, as pointed out by MacGregor efaS]. As an improvement to DRR+,

they propose another scheduling algorithm, named DRR++.

DRR++ improves DRR+ by not removing a latency-critical floserh its service class when
the flow violates its contract. Instead, DRR++ only stopsugerng from that flow for the current
service round and resumes the flow's latency-critical serin the next service round. According
to the test results of Zhang et al. [28], DRR++ significantiyproves DRR+ in terms of the delay of
latency-critical traffic while still preserving the fairsg provided by DRR+.

In this thesis, we documented the implementation of HTB ia@ai{3, which is based on DRR.

In the future work, we would like to explore the possibilityimplementing HTB using DRR++.

10

Chapter 3

Linux Traffic Control and HTB

In this chapter, we give the details of the mechanism andeémphtation of the hierarchical token
bucket (HTB) method of traffic control. This is the method veed in our work, and while we found
it very effective, we also found that documentation of theliementation was somewhat incomplete
and opaque. This chapter is an attempt to provide solid deatation for others working in the area,

as well as to explain how we used HTB in our work.

3.1 Linux Traffic Control

Linux traffic control has been provided as part of Quality ef\Bce (QoS) support since Linux 2.2
kernel. It fits into the big picture of network data procegsas illustrated in Figule 3.1 .

When a packet is enqueued to a Network Interface ContrdN&C) or the kernel decides to
dequeue a packet from a NI@dv _queue _xmit in net/core/dev.c), the traffic control com-
ponent, if applied to that device, is invoked and carriestbetspecified network traffic regulation

task. The traffic control subsystem is comprised of the ¥falhg four main conceptual components:
 queuing disciplines
« classes (within a queuing discipline)
« filters

* policing

| Upper layers (TCP, UDP,) |
Ed Traffic control

—| Input de-multiplexing }—"‘ Forwarding }—'| Qutput queuing l—"

Figure 3.1: The Processing of Network Data in Linux. [5]

11

Filter —a Class [Queuing discipline —™

Filter ~, : — T
- Class [| Queuing discipline | —* | -

Filter |~

Queuing discipline

Figure 3.2: A Queuing Discipline with Multiple Classes. [5]

A gqueuing disciplineean be considered as just a queue, where packets come antligithe
heart of the traffic control system, as it implements how pé&knter the queue and in which order
the packets leave. It can facilitate packet buffering,deadng, throttling, dropping and classifying,
plus all of the above to each individual class of the clagssifietwork traffic. Queuing disciplines
provide great controllability as well as immense flexiilitWithout any queuing discipline, the
NIC is just like a space-limited FIFO for packets - packetsieand leave in the same order, if not
dropped due to the overflow of the FIFO buffer.

Not all queuing disciplines support traffic classificatidime ones that do allow classes are called
classfulqueuing disciplines. Figufe 3.2 illustrates a classfulugug discipline with thrediltersand
two classes. The major role of these filters is to assign imegmpackets to one of the classes or
attachedpolicing actions(not shown), such as dropping a packet. An interesting artulfact
about classful queuing disciplines is that more queuingiplises can be further attached to the
classes inside, one new queuing discipline for one clags,tla new inner queuing disciplines
do not even have to be the same as the outer one. Moreover, guaaiing discipline may contain
more classes, which means “newer” disciplines can be evéreiuconcatenated; therefore, a highly
sophisticated traffic control scheme can be implementeditiir a traffic control chainl[5] [8]

HTB, or Hierarchical Token Buckets an example of a classful queuing discipline. In Sec-
tion[3.2, we will explain the concepts of queuing disciplared class within the context of HTB. As
we are only concerned about the traffic regulation part of Hfllers and policing are out of the

scope of this thesis. Please refer to Brown et al. [8] for na@taiils.

3.2 Hierarchical Token Bucket

Hierarchical Token Bucket, or HTB, is one of the classful ujng disciplines within the Linux
traffic control subsystem. As the name implies, HTB is basethe token bucket theory; it builds a
tree structure of token buckets to exert sophisticatedraboih outbound traffic flows. Each of these
token buckets is considered as a class in traffic controlgerm

Figure[3.3 illustrates the structure of a simple HTB poliBach circle in the graph represents

one class, which can contain either multiple child classes single child queuing discipline. The

12

| FIFO | | FIFO | | FIFO | | FIFO | | FIFO | | FIFO |

Figure 3.3: An Example of a HTB Queuing Discipline Structure

classes on the second level (counting from the HTB root ansliticluding the “To Other” class on
the leaf level) break down the network traffic to three categgbased on its destination; the classes
on the leaf level associate the traffic with the same destiménto different categories according
to the nature of the traffic (recognized by their destinafi@P port). For leaf classes, a queuing
discipline must be attached. If ndt; will have a default queuing discipline attached. All the
packets entering HTB are assigned to one of the leaf clasgb®\w@entually dequeued from the
attached queuing discipline.
This hierarchy of classes allows HTB to perform control avetwork traffic on various levels,

which presents immense flexibility for the traffic controldomplicated scenarios.

3.2.1 The Class in HTB and Bandwidth Regulation

As mentioned before, HTB is a hierarchical structure ofs#as Each class represents one certain
type of network traffic. We can regulate the speetla traffic class by using the set of parameters
HTB has to offer.

The two most important parameters aege andceil (standing for ceiling). Theate
parameter indicates the assigned traffic speed of the ckasshe class is definitely allowed to send
packets at that speedate , however, doenotserve as the upper limit of the traffic speed. If a class
has more thamate to send, it can borrowrate ” from its parent, provided that the parent class
has someate available to lend. On the other hamejl specifies the maximum traffic speed, and

it is a hard limit that cannot be exceeded, which means thanvahclass reaches theil limit, it

1Here we choose “traffic speed” over “traffic rate” becausde’ranay cause confusion, as it is also the name of a
parameter within HTB. When we refer to this parameter, weausmnospace font like thisate .

13

cannot borrowate from its parent even if the parent hage available for lending. Thugeil
should be at least as high as tfade value of the class and at least as high as the higteskt
value of all the child classes.

rate andceil provide explicit indications for bandwidth regulation. @oforce these indica-
tions, the classitoken bucket theorig utilized to actually limit the traffic speed. In this thgpthe
bucket is an imaginary container holding tokens, each otlwhépresents a certain amount of data
that can be transmitted. The bucket also has a depth, whilitaites how many tokens, if not used
immediately after generated, can be buffered in the bucket.

According to Kuznetsov et al. [16], if we denote the assigmafiic rate and the bucket depth by
R (in bits/second) an® (in bits) respectively, for any time interval betwegn. .., t; (k > i) (in

seconds), the amount of transmitted bits cannot exceed
D+ R x (ty, — t;).

Considering that the transmitted bits are actually sentroat series of packets, if we denote the
sizes of these packets Iy, ..., S, (n > m) (in bits), we get a formalized version of the token
bucket theory, with the last item denoting the number of tskgenerated (also the amount of data

allowed to be sent in bits) [16]:
Sm+ Smi1+ -+ 81+ Sy <D+ Rx (t — ;) (3.1)

According to Eq[311, if we can generate tokens at the Raterhen a packet arrives for trans-
mitting, either we deduct the corresponding amount of tekeom the bucket if there are enough
tokens, or we put the packet on hold until enough tokens amergéed. In practice, however, this
algorithm is implemented slightly differently [16]: Themparison between the packet size and the
amount of available tokens is converted to the comparisbmd®n two times. For the time related
to tokens, we denot% by N(¢;), andN (¢) grows linearly over time before the bucket is completely
filled, that is:

N(t + At) = mz’n{%,N(ti) +At}. (3.2)

N(t) here gives the time allowed by available tokens for trantsmgitat full rate R. When a packet
of size S arrives for transmission, it can be emitted to the netwodl ahthe timet. when all the
previous arrived packets are sent and

< N{(t.). (3.3)

Ine] RV

Eq.[3.3 basically means that the amount of time to transmitrtboming packet should not exceed
the available amount time for transmitting. If it is not séigd, the packet has to wait uniil(¢.)
grows large enough. Elg. 3.3 describes the core algorithimeoftplementation of the token bucket
theory. After a packet is emitted to the networK(t.) jumps [16@ and N (t. + 0) is used for

Note that thisN () jump happens too when the previous arrived packets aresghtittthe network.

14

subsequent packets:
S

- =
When a class reaches itate limit but still has more to send, it may borrow tokens from its

N(t. +0) = N(te — 0) (3.4)

parent, provided the class has not exceederkils limit and the parent class has tokens available.
One may wonder what will happen if more than one child clatsmits to borrow from its parent
class. The solution provided by HTB is fairly elegant: Thaikble tokens from the parent are
distributed between the child classes according to the odttheirrate values but no more than
limited by theirceil values. This borrowing and ceiling mechanism allows thesga in HTB to

make a friendly share and a full utilization of all the avalabandwidthi[10].

3.3 The Implementation of HTB

To explain the implementation details of HTB, we add thevate concepts about the HTB policy
(Figure[3.3) we talked about before, as shown in Fifurk 314hik section, we gradually cover all

the newly added elements.

3.3.1 Essential Concepts in HTB Algorithm - Level, Priority, and Mode

This HTB policy shown in FigurE-3l4 has classes on thegek, as delimited by the dashed lines.
The classes on the leaf level have the level num&ten¢t htb _class::level H) 0, and they
each contain a single queuing discipline as their childfemm which packets are ultimately de-
gueued. Then from bottom to top, the level numbers of therigtzsses increase by one as their
level rises, with an exception that the top level, i.e. theBH®dot class, has as its level number the
maximum number of levels HTB can hol@dC_HTBMAXDEPTHwhich is 8 in HTB 3.0) minus
one.

HTB allows classes to have different prioritistrict htb _class::prio). Thatis, classes
with a higher priority (loweprio value) are dequeued before the ones with a lower priorityh@i
prio value).

As a class is dequeued, tineodeof the class may change over time. The mosieuct
htb _class::cmode) ofaclass isrepresented by three colours in the implertientaed, yellow
and green. Before introducing how this colour system wonksneed to recall two variables afore-
mentioned to help understandingate (struct htb _class::rate) andceil (struct
htb _class::ceil) (Please refer to Sectidn 3.2.1 for more details). They seelto indicate the
assigned and the absolute rate limit of a class respectilfelye consider the actual traffic rate of
classe, denoted byR(c) of a class as a real continuum, thte andceil divide the continuum

into three parts, and thus the three colours:

SImplementation specific function and variable names arérpbétween parenthesis to relate the concepts to the source
code. This idea is originally from.[9].

15

Td 01 | 0d 01
Id T1 | 0d T1
Td ¥1 | 0d 41

©RQ 210 yum aimonas auldiosig buinand giH s ainbi4
(OL|E! O4l4 (OEIE| (OL|E! (OLIE| (oE|E!
(td)
(0d) o0 (0d)
I1SOS! ol HSS
1d 0d 0d
01
ol ol
a1
Td 0d
004
(0414) ®nanp yau1g } 1517 1M
dlH -

(AvoLid)

1517 paa4-Jauu|

sse|)
1s17 pad4-419S

16

Red if R(c) > ceil
mode(c) = { Yellow if rate < R(c) < ceil (3.5)
Green otherwise

3.3.2 Self-feed List, Inner-feed List, Walit List and DirectQueue

As stated in Section 3.2.1, all the packets are ultimatefudaed from the queue disciplines at-
tached to the leaf classes; when a leaf class reachesdéts limit, it is allowed to borrow fate "
from its parent class. That is, when borrowing occurs, thekelis dequeued using the tokens
belonging to its parent; therefore, in this case, it is eglent to think that the packets are being
dequeued from the leaf class and all the parent classestgtttk tokens. Consequently, packets
can be “conceptually” dequeued from any level despite beéid on the leaf level.

To facilitate the dequeue and borrow process, HTB maintiree data structureself-feed
list (struct htb _sched::row), inner-feed list(struct htb _class::feed) andwait list
(struct htb _sched::wait _pq). They respectively store thieeadsof three types of class
lists. Self-feed listis a global (as in one HTB policy) twardinsional array across all the levels and
priorities. It stores the heads of the lists that hattiveclasses belonging to a particular priority on
a particular level. Self-feed list is so called becausetaldlasses linked to this list are dequeuing
packets without borrowing tokens from their parents, iteest classes are self-sufficient in terms
of token supply. When a class has to borrow from its pareiid, iémoved from the self-feed list
and inserted to a class queue linked to the inner-feed ligiaifparent class; therefore, inner-feed
list stores the heads of the list of classes that are borgteikens. Since each class queue contains
borrowing child classes with a particular priority, the émffeed list organizes these list heads in a
one dimensional array across all the possible prioritippetted by the HTB policy. The classes in
the inner-feed list queue are also in a queue linked to theligaon its own level. This wait list is
also a global data structure within one HTB policy. It is a dimaensional array across all the levels
within the HTB policy.

Figure[3.4 illustrates the concepts of self-feed list ameirfeed list. The use of these three data
structures in the HTB implementation will be covered in maegail in subsequent sections.

In addition to these three lists, HTB maintains two otheaddituctures to store the current class
to dequeue in each individual class queue. We call these &@sdructuresurrent-class liss. One
of them is for the self-feed lissfruct htb _sched::ptr) and the other one is for inner-feed
list (struct htb _class::un.inner.ptr).

Although self-feed list and inner-feed lists give us a hofdatl the classes within one HTB
gueuing discipline, they do not cover all the possible pdeae incoming packet can go: There is a
gueue within HTB but not related to any of the classes dilect queue The direct queue is actually
just an ordinary FIFO queue directly attached to the quedisgjpline, which keeps the packets that
are either fast matched to this direct queue (this will beecest in more details in Sectién 3.B8.3.) or

17

not able to fit in any existing class (this should not happemell designed HTB policy).

3.3.3 The Enqueue Process of HTB

The challenge of the enqueue process lies in finding the ddeaf class for the incoming packet,
which is handled byhtb _classify() . htb _classify() first does a fast match for the in-
coming packet - by trying to match thekb->priority to an existing (leaf) class id or the
HTB queuing discipline handle. On success, the matched cashe direct queue of the HTB
gueuing discipline will be chosen accordingly. If the fasitoh does not yield any valid result,
htb _classify() will try to apply thetc filters to find the right spot for the packet. If a leaf class
is found, it is chosen. Otherwisktb _classify() will try the default clasof the HTB queuing
discipline, which should be a leaf class specified when thB padlicy is created. If the default class
is not properly set uthtb _classify() will use the direct queue as a last resort.

Please note that so far we have only chosen a class or the glirege for the incoming packet,
i.e. the packet has not been putin there yet. To proceea ditect queue is selectdath _enqueue()
will check if there is still space in the queue for the incogiipacket. If so, the packet will
be enqueued there; otherwise, the packet will be droppea légaf class is selected instead of
the direct queue, the corresponding enqueue function ofjtieaiing discipline will be called to
try to include the packet in that queuing discipline. On ssschtb _enqueue() will activate
(htb _activate()) this leaf class, by adding it to the corresponding actieslqueue, if it is not
in there yet; otherwise, the packet will be dropped.

The enqueue process ends here.

3.3.4 The Dequeue Process of HTB

To achieve a fair dequeue process, HTB implements a Weidtdadd -Robin (WRR) algorithm [24]
for each priority on each level - the weight of each class @pprtional to itsrate value; Classes
with a lower priority are only dequeued after the ones witfhler priorities are served.

The implementation of the dequeue process of HTB is actuadlye complicated than the en-
gueue process because it contains the algorithm to do WRRmwatch priority and implements
the lending-borrowing mechanism. Pseudo-code for the H&@udue implementation is given in
Algorithm[3.1. Please note that this pseudo code does net ¢be error handling part in the HTB
dequeue source code.

Whenhtb _dequeue() is called, it tries to dequeue the direct queue first. If nokpecare
pending there, it will try to loop through the self-feed l{8ectio 3.3.R2) starting from the highest
priority on the leaf level to find a class to dequeue from. Aslaixed in Sectioh 3.312, each element
in the self-feed list is the head of a queue of classes withtaioepriority on a certain level and the
corresponding element in the current-class list is keepinigh class in this queue to dequeue next.

These two data structures provide sufficient informatiaritie class look-up process.

18

When a class is chosen to dequeue from, HTB will next look ftead class associated with
the chosen class. If the chosen class is already a leaf thesassociated leaf class will of course
be itself. Otherwise, HTB will consult the inner-feed cldssrarchy to look for a leaf class that is
borrowing from this chosen class. If no valid leaf class cartrbced down through the class queue
with the current priority, the loop will move on to the nexiiation (lower priority). The same rule
applies to the outer loop through levels: the loop will moyeaulevel if no valid leaf class can be
found on the current level.

After a valid leaf class is found, a packet will be dequeuedifthat leaf class. Each class can
dequeue up to quantum bytes before HTB moves to the nextialélse same queue, provided the
class does have one or more packets to send. The size of thieigquealue of each class is by default
one tenth of the amount the bytes the class is allowed to seintigcated by theate parameter.

It can be assigned independently (and manually) when ogettte HTB queuing discipline.

19

Algorithm 3.1 HTB Dequeue Process - Conceptual lllustration.

if NotEmpty(direcgueue}hen
return DequeueOnePacket(direct_queue)
end if

ProcessTheW aitList {This will be covered in more detail latér.

Packet < NULL
Level «+ 0 {Dequeue from the leaf level.
repeat
Priority < 0 {Dequeue from the highest priority.

repeat
CurrentDequeueClass < current_class_list[Level|[Priority)
AssociatedLea fClass <— FindLeaf(CurrentDequeueClass)
OldAssociatedLeafClass < AssociatedLeafClass

repeat
if IsValid(AssociatedLeafClasgjen
Packet < DequeueOnePacket(AssociatedLeafClass)
goto Done
else
current_class_list[Level|[Priority] « ...
... NextClass(sel f _feed_list| Level] [Priority|, current_class_list[Level|[Priority])

CurrentDequeueClass < current_class_list[Level]|[Priority]
AssociatedLea fClass < FindLeaf(CurrentDequeueClass)
end if
until AssociatedLeafClass == OldAssociatedLeafClass

Priority < Priority + 1
until Priority > HTBMAXPRIO or a packet to dequeue is found

Level < Level + 1
until Level> HTBMAXDEPTH or a packet to dequeue is found

Done :

if PacketZz NULL then

{Weighed round-robih
AssociatedLeafClass.Deficit|Level] <+ AssociatedLeafClass.Deficit|Level] —
sizeof(Packet)

if AssociatedLeafClass.Deficit[Levef]0then
AssociatedLeafClass.Deficit|Level] + AssociatedLeafClass.Deficit|Level] +
AssociatedLea fClass.Quantum
current_class list[Level][Priority] < ...
... NextClass(sel f-feed_ list|Level][Priority|, current_class_list[Level|[Priority])
end if

UpdateClassStats(AssociatedLea fClass, Level, Packet)
ChangeClassModel f Necessary(AssociatedLea fClass, Level, Packet)
end if

return Packet

20

3.4 The Results of iISCSI Traffic Regulation with HTB
3.4.1 The Test Scheme

We explored the option of using tcng [6] ast@ script generator in this set of experiments, as
tcng provides a more human-friendly syntax. A tcng scriptaafigure the HTB policy shown in

Figure[3.5 is provided in Listing 3.1. For all the test respidtn average value of 5 runs is used unless

© © N e o AW N R

T S S S S T =
S © ® N ® 0 A W N P O

otherwise notified.

#include "fields .tc”

#include "ports.tc”
#define ISCSIIF ethO
dev ISCSLIF {
egress {
class k$iscsi-1>) if tcp-sport == 53291,
class k$iscsi.2>) if tcp_sport == 53292;
class k$iscsi-3>) if tcp-sport == 53293;
htb () {
class (rate 10 Mbps, ceil 10 Mbps]
$iscsil = class (rate 1 Mbps,
$iscsi2 = class (rate 3 Mbps,
$iscsi3 = class (rate 6 Mbps,
}
}
}
}

ceil 10 Mbpsy};
ceil 10 Mbpsy};
ceil 10 Mbpsy};

Listing 3.1: A Simple tcng Script Example.

3.4.2 The Effectiveness of HTB for iSCSI Traffic

Figure[3.6 illustrates the effectiveness of HTB regulatingingle iSCSI flow. The bar on the left
indicates the iSCSI throughput when no HTB policy is appli€te bar on the right represents the
iISCSI throughput when the traffic speed is limited to 40 Mbysshown by the data label, the mean

error of the actual throughput is less than 2 percent.

HTB root class
(rate 10 Mbps,
ceil 10 Mbps)

[1

iISCSI Flow 1 iISCSI Flow 2 iSCSI Flow 3
(rate 1 Mbps, (rate 3 Mbps, (rate 6 Mbps,
ceil 10 Mbps) ceil 10 Mbps) ceil 10 Mbps)

Figure 3.5: The HTB Queuing Discipline Structure Exampletfe tcng Script.

21

100

90

80 -

70 -

60 -

40.754

Rate (Mbps)
vl
o

40

30 4

20

10 -

Unlimited Limited at 40 Mbps

Figure 3.6: The Regulation Effectiveness of HTB on a Sin§l@$| Traffic Flow.

Figure[3.Y and Figure_3.8 are the 1/O graphs of 3 traffic flonarislg the same physical link.
(Please note that the results in these two figures were teildoom one single run.) Theate
andceil values of the root HTB class are set to 10 Mbps, as shown by ltilgthroughput
(the blue curve). Theate parameters of Flow 1, 2, and 3 are set to 1 Mbps, 3 Mbps, and &Mbp
respectively. Theiceil valuesare all setto 10 Mbps, which is equal torte andceil values
of the root class.

As shown in Figuré_3]7, every flow gets its fair share when th@yall saturated with traffic.
HTB’s rate borrowing mechanism starts to kick in when one or more of tai¢ flows cannot
fully utilize the assignedate , as illustrated in Figure-3.8. The three flows are pausedesuhned
in turn manually. The unused bandwidth is redistributethindy according to the ratio of thrate
values of the flows that require more bandwidth than assigied example, at 60 s, Flow 3 is
paused Flow 2 is resumed, and Flow 1 stays at the same tragsyseeitl. The inactivity of Flow 3
spares 6 Mbps bandwidth for Flow 1 and Flow 2, which share thtbps by theirate ratio 1:3;
therefore, the throughput of Flow 1 should increase to 2.p$Mnd that of Flow 2 should increase
to 7.5 Mbps, which conform to the curves between 60 s and 80tsand after 80 s, Flow 3 is
resumed and all the 3 flows start to fairly share the bandvagtin.

This bandwidth allocation and redistribution feature ofBid@an be utilized to prioritize differ-
ent flows as well as to provide differentiated services, autrsacrificing any available bandwidth

resources.

22

—o—Global —M—iSCSI Flow 1 —#—iSCSI Flow2 ==iSCSI Flow 3
1
A " Aeeste 2 A 0 AVAVAY, I
9
8 —
7
"
g 6 X oK = XX KK
s Nl NITTSTS \(WY\(“W“%"‘
¥ 5
&
4 |
3 - —
2
1 -
0 : . : . . .
0 5 10 15 20 25 30 35
Time (s)

Figure 3.7: The Effectiveness of HTB on Bandwidth Sharing &CSI Traffic Flows.

—o—Global —®—iSCSIFlow1 —4—iSCSIFlow2 —<—iSCSI Flow 3

[
o -
!

9
8 X
; ikl RPN
E 6 X XX X¥ X I y X X
= WRERLBBORNY MO)¢ WSSO
g 5
e 4
3 Tﬁ —
2
1 Plﬂ-v'ﬁ-—n
0 t T T
0 10 20 30 40 50 60 70 80 90 100 110
Time (s)

Figure 3.8: The Effectiveness of HTB on Bandwidth Sharin@ @éCSI Traffic Flows - with Bor-
rowing.

23

3.4.3 The Dynamic Features of HTB

Sectiori3.4.P has demonstrated the effectiveness of a Bf&B policy. In this section we examine
the performance of HTB when the policy has to change over.time

We first apply a HTB policy at 20 s to limit the traffic to 20 Mbglken change the policy to 40
Mbps at 40 s, and eventually remove the HTB policy at 60 s. Awvshin Figure 3., the traffic
speed dips briefly at 20 s. (Please note that the resultsdtighire were collected from one single
run.) Otherwise no visible throughput drop can be obsertdbeinstants when the HTB policy
is changed. Between the policy change points, the throudghas stable as it is in the single flow
scenario.

If we zoom in by a factor of 10 on Figufe 3.9 and look at a timengtarity of 0.1 s, transient
traffic pauses do appear on the 1/O graph, as shown by the dexamfpigure 3.10. (Please note that
the results in this figure were collected from one single)riine example illustrates an example at
40 s, when the HTB policy is changed from 20 Mbps to 40 Mbpsagdenote that the unit of the
vertical axis is Mbits/0.1s instead of Mbps. Because thespasisufficiently short, it does not have
noticeable negative effect on the link throughput, as longhe frequency of the policy change is
not excessively high.

This dynamic feature of HTB allows it to fit in the situationh@re the traffic control policy

needs to be altered frequently.

3.4.4 The Impact of Uncontrolled Traffic

Typically, each HTB policy has one root class, which repnésé¢he physical link. Although this
mapping between the root class of HTB and the physical limoismandatory, not following this
rule, that is, allowing network traffic to go around the cohtwf HTB, may result in unexpected
bandwidth sharing: The uncontrolled traffic “bullies” thentrolled traffic, as discussed below.

We examined the behavior of two traffic flows when there is la@ofiow that is not regulated by
HTB. The test was done on a simulated link of 10 Mbps bandwilithhe test, the two controlled
flows, Flow 1 and Flow 2, were limited to 1 Mbps and 2 Mbps by HEBpectively. The uncon-
trolled flow, however, was not controlled by HTB and could s@me up to all 10 Mbps. As shown
in Figure[3.11, the uncontrolled flow steals bandwidth frdewFl and Flow 2; neither Flow 1 nor
Flow 2 reach their allocated bandwidth. This is an advereetaused by the HTB direct queue
(Sectiori 3.3.R).

This test demonstrates that HTB is not capable of guarargebe bandwidth allocated to the
traffic flows it is regulating when other flows from outside HaBBempt to aggressively seize band-
width.

24

100

AN
90 AN/ D\

80

70

60

50

Rate (Mbps)

40

-_—

10

0 T T T T T T T T |
0 10 20 30 40 50 60 70 80 90

Time (s)

Figure 3.9: The Performance of HTB - Dynamic.

10

Rate (Mbits/0.1s)
1%}

35 36 37 38 39 40 41 42 43 44 45
Time (s)

Figure 3.10: The Performance of HTB - Dynamic with the Time@rarity of 0.1 s.

25

Rate (Mbps)

10

7.886

Flow 1 Flow 2 Flow 1 & 2 Uncontrolled Flow

Figure 3.11: The Bully Impact of Uncontrolled Traffic.

26

Chapter 4

Open-ISCSI Performance
Enhancements

The motivation of this chapter is the drastic performanggaéation observed in a throughput mea-
surement of Open-iSCSI over a LFN, as shown in Figurk 4.1 .bllreecurve represents the through-
put of one iperf session; it indicates the throughput capadia general TCP session. Throughput
stays at a stable level around 90 Mbps regardless of the ik Rn the contrary, the achieved
bandwidth of Open-iSCSI, represented by the red curvetssiadrop dramatically right after the
RTT grows to 12 ms and eventually dives to only around 14 Mbpsmthe RTT reaches 100 ms.
Obviously, the iSCSI initiator traffic suffers severelyfmdong RTTs and it is unable to fully utilize
the TCP bandwidth when there is a noticeable delay on the Wilich means that, in most WAN
settings, users of the Open-iSCSl initiator will sufferrfrthe iISCSI throughput cut-off.

We also ran a similar group of tests of Open-iSCSI over lostyark links. The results are
shown in Figuré4l2. As the overlap of the two curves dematsstiSCSI does not suffer any more
than a general TCP session does over a lossy link. Theref@rdpcus our study on the iISCSI
performance degradation over long RTT links.

We investigated closely this iSCSI initiator performanegidation issue and present in this
thesis a combination of tuning methods, which result in aufghput gain of 70 Mbps on a 100
Mbps link with an RTT of 100 ms.

4.1 Experimental Setup
Experimental environment:

Operating System (iSCSl initiator side): Ubuntu 9.10 Desktop (32 bit) with Linux kernel 2.6.32-

22-generic-pae (used out-of-box unless otherwise ineliat

Operating System (iSCSI target side): Ubuntu 9.04 Desktop (32 bit) with Linux kernel 2.6.28-

18-generic (TCP receive buffer size tuned for over 100 ms Bfl€ss otherwise indicated).

27

«=4=TCP Throughput =ll=iSCSI Throughput
100 93.093 88.862 89.697 88.192 88623 88.780
90 =0 \g —_— v O
E 80 90, 71R843
s .
s 70
5 60 68.13
£ 50
) 57.180\
o 40
=
E 30 \
5 2 31667 e
21.866
10
16.710 13.501
0 1 1 1 1 I 1 L 1 1 # 1 L L L # 1 1 1 L # 1 L # r
0 20 40 60 80 100
RTT (ms)
Figure 4.1: Open-iSCSI Performance Degradation over LoRQ Rnks.
«4=TCP Throughput =ll=iSCSI Throughput
100
90 -
Z 80
iy
g 7
s 60
£ 50
[
g 40 \\
£
E 30
(=
S 20
10
0 . . : t . . . t . . . t : . . t : . . t . !
0 1 2 3 4 5
Packet Loss (%)

Figure 4.2: Open-iSCSI Performance over Lossy Links.
Network: A direct connection between two PCs using a straight-thinazale. This connection
works on 100 Mbps with the average RTT of 0.280 ms and the gegvacket loss of 0%.
iISCSI Implementation: Open-iSCSI Initiator 2.0.87[|[4] and iSCSI Enterprise 'éil@.4.16|ﬂ2].
Traffic Generator: iperf for general TCP traffic and dd for iISCSI traffic

Measurement of Achieved Bandwidth on the Link Layer: Wireshark 1.2.5

We need various link RTTs to investigate the iISCSI througlbpar long delay links. On our test
network, however, the original link RTT is negligible (0@2&s) and non-adjustable (the link is a
straight-through cable); therefore, we adopted the traffitrol command line utilityc to emulate
delays on the linktc manipulates the output queues of the network interfacedtdthes a queue

discipline (gdisc) to the output interface in order to resdie, delay, duplicate and/or drop the

28

-

Table 4.1: The Accuracy ofetem in RTT Emulation.

Emulated RTT(ms) O 4 8 12 16 20 40 60 80 100
Actual RTT (ms) 0.192 4.290 8.293 12.289 16.295 20.292 4.8D.296 80.293 100.292
Precision N/A 92.8% 96.3% 97.6% 98.2% 98.5% 99.3% 99.5% 989.699.7%

Table 4.2: The Accuracy afetem in Packet Loss Emulation.

Emulated Loss (%) 0.25 05 0.75 1 125 15 175 2 3 4 5
Actual Loss (%) 0.243 0.503 0.751 0.990 1.266 1.510 1.754901.98.015 4.001 4.977
Precision 97.0% 99.4% 99.9% 99.0% 98.7% 99.4% 99.8% 99.5%9%99100.0% 99.5%

qualified packetstc belongs to théproute2 package, which comes with the Linux kernel 2.4 or
later. [13] [8]. The qdisc we used to emulate the link RThétem . It is capable of emulating Wide
Area Network (WAN) properties, such as RTT and packet logth avsufficiently high accuracy, as
demonstrated by the resultspifig shown in Tablé 4]1 and Talle #.Betem is widely used for
protocol testing. An example of usimgtem andtc to emulate a link with a 4 ms RTT is given in
Listing [4.3.

$ tc qdisc add dev ethO root netem delay 4ms loss 0%

Listing 4.1: Usingtc andnetem to Emulate a Link with 4 ms RTT.

4.2 TCP Flow Control and iSCSI Performance

TCP uses a sliding window protocol to control the rates ofvidadial flows, so that the receiver
buffer does not get overrun. The size of the sliding windogigates the amount of outstanding data
allowed, which is to be sent in one batch unacknowledgederAtnding this amount of data, TCP
stops and waits for the ACKs of the sent segments.

The minimum amount of time for the ACKSs to get back to the traitir is the link RTT. If the
RTT is sufficiently short and the link bandwidth is sufficigniow, the resulting link BDP can be
smaller than the sliding window size. In this case, TCP hasigh outstanding data to “fill” the
network link. As a result, the transmitter keeps sending segments while waiting for the ACKs
of the previously sent segments. Since new data is congtauttbn the link, the link is fully utilized
during this period of time.

If, however, the link RTT is large and the bandwidth is hidie tesulting link BDP can exceed
the sliding window size. In this case, after TCP sends outehtzf segments of the sliding window
size, the ACK for the first segment still has not reached thiesmitter yet, if indeed it has already
left the receiver at all. As a result, TCP has to idle to waittfee ACKs of the sent segment before

sending any more segments. This idling is caused by TCP miidi@nough outstanding data to

29

“fill” the link. During the idling period, the link is not useblecause no new data is sent to the link;
therefore, the link is not fully utilized in general.
Lettseng andt; g denote the time TCP spends in sending and idling respegtivet B, qiiabie
denote the capacity of the link. The actually achieved baditws
Bachieved = _ Tsend X Bavailable- (4.1)
tsend T tidie
As the sending time and the idling time depend on the BDP ofittkeand the send window

size, i.e. the sliding window size, (denoted®s,,4_window), EQ.[4.1 can be rewritten as

Ssend_window

Bavaia e
BDP X labl

Bachieved

Ssend_window « B
= available
Bauailable * RTT

Ssend_window
—FrIT (4.2)

Eq[4.2 shows clearly how the send window size and RTT affiecattually achieved bandwidth.
For example, a link between Beijing in China and Edmonton am&ia can have an RTT of 200
ms [27]. Suppose the bandwidth is 50 Mbps. Hence, the link BDIR80 KB. If the send window
size is 640 KB, it takes TCP only 100 ms to put the data withéwtindow on the wire. The ACKSs of
this batch of data, however, do not come back until afterfaerda00 ms, as the link RTT is 200 ms.
During the second half of the RTT, TCP can do nothing but i@iteerefore, the 50 Mbps bandwidth
is wasted during this 100 ms period. The overall achievediwadth is640 KB -+ 200 ms, which is
25 Mbps. This number is only half of the link capacity but ihist a surprise. After all, we are only
sending data for half of the time. Also, not surprisinglye ttandwidth waste is expected to be even
worse if the link capacity is larger - the faster the link s imore bandwidth is wasted.

Such a bandwidth waste is unacceptable, especially foytmtng-distance / high-bandwidth
links. Recent Layer 1 technology has boosted the link c#ypaci a large scale. Gigabit Ethernet
NICs are standard configuration on modern PCs and 2.488 GBg8 @iber optic cables are typical
on Internet backbones. Verizon, one of the major networkigess in the U.S, just deployed a
commercial ultra-long-haul optical system that which dealdi 00 Gbps link capacHy On such a
link, idling of 1 ms means the loss of more than 100 MB throughp

Therefore, keeping TCP running without idling is cruciat fachieving the highest possible

throughput. In order to prevent TCP from idling, the senddeiw size needs to be properly adjusted.

4.2.1 TCP Send Buffer Size and Open-iSCSI Performance

In Section 4.2, we discussed the effect of the TCP send wirglpgvon the TCP throughput. In

implementation, the TCP send window size is realized aseahé buffer size of the TCP socket. We

Ihttp://www.dailytech.com/Verizon+Deploys+First+100+ Gbps+Backbone+in+Europe/
article17125.htm

30

http://www.dailytech.com/Verizon+Deploys+First+100+Gbps+Backbone+in+Europe/article17125.htm
http://www.dailytech.com/Verizon+Deploys+First+100+Gbps+Backbone+in+Europe/article17125.htm

investigated the effect of varying send buffer sizes hawa @pen-iSCSI throughput on links with
RTTs of 4 ms, 8 ms, 12 ms, 16 ms, 20 ms, 40 ms, 60 ms, 80 ms, and4.00ha initial 4 ms step
between 4 ms and 20 ms was chosen because of the kernel tsokrtien, which is configured to
be 250 HZ at compile time. As shown by the resultpiiy in Table[4.1, the average accuracy of
the actual RTTs is ~98%, which is sufficiently accurate farexperiments.

There are generally two ways of adjusting the TCP send bsifer. statically or dynamically.
In the static method, the buffer size is set by calling thecfiom setsockopt() (in C on Linux).
Once the buffer size is set, the socket works with this sideasnexplicitly told otherwise (usually
through another call teetsockopt() . The results of iISCSI throughput with statically set buffer
size are shown and discussed in Sedtion 4.2.1.1. On theacgyitr the dynamic method, one does
not set the send buffer size of the TCP socket. Instead, the: lneffer size is determined by TCP
autotuning and it changes in accordance with the changetwbnielink parameters. The results of
iISCSI throughput with dynamically set buffer size are shand discussed in Sectibn 4.2]1.2. The
details of how to set the send buffer size in both ways areudised in Section 4.2.2.

4.2.1.1 Statically Set TCP Send Buffer Size and iSCSI Perfarance

The first batch of iSCSI throughput results gathered byrsgttie TCP send buffer size statically are
plotted in Figuré 4.8, Figufe 4.4, and Figlire]4.5. Please tiatt the vertical axis in Figuke 4.5 starts
from 50 Mbps instead of 0 Mbps. In each of these figures, th&I1$i@roughput is compared to the
throughput of a baseline TCP application, namely iperf, seheend buffer size is autotuned by the
kernel. An obvious trend in all of the figures is that the iIS@8bughput is significantly improved
as the send buffer size increases from 128 KB to 1280.KB

The throughput values, however, are still lower than exgaecFor example, according to Eq.
[4.2, at 100 ms RTT, to achieve the maximum TCP throughput,Mereed the send buffer size to
be 1280 KB, which means that in Figlre 4.5d the iSCSI throughipould have at least matched the
TCP baseline application output. On the contrary, we olesemdisparity between the TCP baseline
throughputand iSCSI throughput. To investigate if thipdisty is caused by insufficient send buffer
size, we further increased the send buffer size up to 2560r¢Bested the iISCSI performance. The
results show that no significant throughput benefit is agdewith further increases in the send
buffer size above 1280 KB, as shown in Figurg 4.6.

To have a closer look of the iSCSI throughput change verstisussend buffer sizes, we
plotted the throughput against the send buffer sizes at 4andsl00ms, as shown in Figure 4.7
and Figuré 418 respectively. The curves in both figures shatthe iSCSI throughput continues to
benefit from the increase of the send buffer size until thel $erifer size hits a certain value. The

points where iSCSI last benefits from an increase in sen@bsiffe are 512 KB at 40 ms RTT and

2From send buffer size of 1152 KB to 1280 KB, the iSCSI throughat 100 ms seemingly decreased. Considering the
standard deviation of the results (as shown by the errombigiureL.4.5H), however, this value can be considered asutith
significant change.

31

1152 KB at 100 ms RTT. 512 KB is the theoretical send buffez sizachieve 100 Mbps bandwidth
at40 ms RTT and 1152 KB is close to the theoretical send bsitferto achieve 100 Mbps at 100 ms
RTT. Similar results are also observed at RTTs of 20 ms, 60mds88@ ms: The iSCSI throughput
continually benefits significantly from the increase of teadbuffer size up to the point where the
send buffer size is the theoretical value to achieve the miaxi bandwidth. We call this buffer size
iISCSI Maximum Benefit Buffer Sizehich is denoted aS,,,44_tene fit-

As soon as the send buffer size exceSds,; venerit, the iISCSI throughput is limited by the
capacity of the network link and Network Interface Conto(INIC) as well as other implementation
factors instead of the TCP send buffer size.

Moreover, exceedingly large send buffer size can have adwdfects on the iSCSI throughput,
as demonstrated by the gap between 90 Mbps and the iSCSptipotstarting from send buffer
size 1024 KB in Figurg4]7. Excessively large send buffex bias additional devastating effects on
lossy links as well, but the discussion of this matter is duhe scope of this thesis.

Therefore, with the socket buffer size statically set to @per value, Open-iSCSI can achieve

the desired performance. Section 4.2.2.1 explains hovatizatly set the TCP send buffer size.

32

«=4=—TCP Throughput =l=iSCSI Throughput

100 93.093 88.862 89.697 88.192 88.623 88780
90 O g —_— > 2 4
- 80 90.218
a 84.3
g 70
5 60 68.13
£ 5o
® 57.180\
© 40
£ 3 \
4
5 2 31667 e
21.866
10
16.710 13.501
0 1 L I L i L L 1 L i L 1 L L : L 1 1L L i I 1 : L
0 20 40 60 80 100
RTT (ms)
(a) Default Send Buffer Size (128 KB)
=9=TCP Throughput ==iSCSI Throughput
100 01192
.044 i ¢J.611 88.473 88.390 88.903
90 —= > & ¢
@ 80 (9016383747
2 70 N\
s 60 N\
[-%
® 0 56.961
2 40
=
40.563
% 30
£ 31.461
= 20 25.592
10
0 t : . . : t —t —t — . : . t
0 20 40 60 80 100
RTT (ms)
(b) Send Buffer Size 256 KB
=—TCP Throughput ==iSCSI Throughput
100 93:120 83.936 89.772 88.512 88.607 88.226
90 —= & < —
= g0 90.389 91.176
& - \-\
2 75.612\
F \
£ 50
3 a0 52.655
E 40.517
3 0 32.538
S 20 :
10
0 I I L 1 % L I I L } I L 1 I i I I L I i L I I L i I L
0 20 40 60 80 100
RTT (ms)

Figure 4.3: Open-iSCSI Performance with Various Send Bi8fees and RTTs - 1.

(c) Send Buffer Size 384 KB

33

=9=TCP Throughput ==iSCSI Throughput

100 93113 89.234 89.860 88.461 88,281 88.859
90 ﬁ < <> O
7 80 90.3%4 91.441 88:949
'E% 70 ~
a : e
£ 50
g 40 52898 ——m
£
£ 42.438
'% 30
5 20
10
0 . : . . t t : . . : t t . . : . t
0 20 40 60 80 100
RTT (ms)
(a) Send Buffer Size 512 KB
=—TCP Throughput ==iSCSI Throughput
100 88.746 89.764 88.151 $8.430 88.835
90 v v
z 80
2 70
S %o .
H 62827 g
£ 50
3 40 52.094
£
5 30
5 20
10
0 1 1 1 1 % I 1 1 1 i 1 1 1 1 i 1 1 1 1 i 1 1 1 1 i 1 1
0 20 40 60 80 100
RTT (ms)

(b) Send Buffer Size 640 KB

«=4==TCP Throughput =ll=iSCSI Throughput

100 93.063 89.050 89.748 88.230 88.451 88.558
90 M - -
20 90.390 91.191 89.948

_§ 85.762 \
70
H ERT M
5 60
[-%
_En 50 60.447
3
g 40
5 30
S 20
10
0 . : . . t t : . . : t t . . : . t
0 20 40 60 80 100
RTT (ms)

(c) Send Buffer Size 768 KB

Figure 4.4: Open-iSCSI Performance with Various Send B8fees and RTTs - 2.

34

«=@==TCP Throughput =ll=iSCSI Throughput
- 10092.975 88.946 89.797 88.376 88.345 88.821
g 90 &t.;u-.: -
2 90.387 M ¢
£ g]
5
2 70
fn 70.734
3 60
£ 50 f f f f
£ 0 20 40 60 80 100
RTT (ms)
(a) Send Buffer Size 896 KB
=4=—TCP Throughput ==iSCSI Throughput
- 100 5 88.678 89.766 88.188 88.615 88.818
5 % 5305 v v
2 .
:,' 80 90.739 8/.773 85.518 ﬂ
3 : 81.424 oo can
_g- 70 78503
:‘3" 60
.'E 50 1 1 L % L 1 L L i 1 L 1 i 1 L L 1 I L L 1 1 % L L
£ 0 20 40 60 80 100
RTT (ms)
(b) Send Buffer Size 1024 KB
=4=—TCP Throughput ==iSCSI Throughput
& 100 70 g, 88580 89.883 88.116 88.364 88.727
_‘Eg 90 > &
= 80 88-974
5 R S7723 84.887 83.112 -
2 70 : 79.660
)
3 60
.'E 50 1 1 % L 1 L L i 1 L 1 i 1 L L 1 I L L 1 1 % L L
£ 0 20 40 60 80 100
RTT (ms)
(c) Send Buffer Size 1152 KB
=4=TCP Throughput =l=iSCSI Throughput
100
7 20.389 89.145 89:812 88.898 88.309 88.782
-EQ 30 Q9 Q17 t‘\ M
= oeeH 86.838 85.107 84.558 o
2 70 77434
[
3
£ 50 Py t
E 0 20 40 60 80 100
RTT (ms)

(d) Send Buffer Size 1280 KB

Figure 4.5: Open-iSCSI Performance with Various Send B8fees and RTTs - 3.

35

100

=4=—TCP Throughput ==iSCSI Throughput

= 390 88.719 89.768 88.657 88.444 88.787
S 90 = 5
é 80 -
87.822 87.411
‘é 20 85.133 83.277 20 93t
®
3 60
.'E 50 1 1 L L % L 1 L L i 1 L L 1 i 1 L L 1 i L L 1 1 i L L
£ 0 20 40 60 80 100
RTT (ms)
(a) Send Buffer Size 1408 KB
=9=TCP Throughput ==iSCSI Throughput
= 1009 390 88.747 89.758 88.183 88.354 88.837
Q
s ¥ ———
= 80 88.643 -
5 67.068 84.383 84.050
< 70 79.778
]
3
2 60
£
x 50 e S S
= 0 20 40 60 80 100
RTT (ms)
(b) Send Buffer Size 1536 KB
=4—TCP Throughput ==iSCSI Throughput
- 190 55350 89.010 89:765 88.164 88363 88,531
2 90
2 —% —— = v
2 80 —i
= 8/6/1 85.887 86.134 83.261
2 70 . 81.475
:’g_" 60
,'E 50 t t . . : . t : : . . t t
E 0 20 40 60 80 100
RTT (ms)
(c) Send Buffer Size 2048 KB
=—TCP Throughput ==iSCSI Throughput
= 09392 88.636 89:834 88.189 88.350 88.804
g 9 O
=
< 80 88333 87.854 —
5 50 85.418 84.278 80.547
=
%" 60
,'E 50 t - - - - t - - - - t - - - - t - - - - t
E 0 20 40 60 80 100
RTT (ms)

Figure 4.6: Open-iSCSI Performance with Various Send B8fees and RTTs - 4.

(d) Send Buffer Size 2560 KB

36

=4==iSCS| =@=Theoretical TCP Throughput
100 /—0—0—0—0—0—0—0—0—0—07
90 L= .
80
o /

B
s /]
~ 60
S
3
5 V/
£ 50
3 /)
£ 40
£
a=‘30//
S d

20

10

o+

128 256 384 512 640 768 896 1024 1152 1280 1408 1536 2048 2560
Send Buffer Size (KB)

Figure 4.7: Open-iSCSI Performance with Various Send Bi8fees @ 40 ms RTT

~—iSCSI =—®—Theoretical TCP Throughput
100
90
80
g 70
s
- 60
2
5 50
3
£ 40
=
=
£ 30
= /
20
10
o+
128 256 384 512 640 768 896 1024 1152 1280 1408 1536 2048 2560
Send Buffer Size (KB)

Figure 4.8: Open-iSCSI Performance with Various Send B#fees @ 100 ms RTT

37

4.2.1.2 Dynamically Set TCP Send Buffer Size and iSCSI Penfimance

The TCP send buffer size can be set dynamically through T@tuming. The iSCSI throughput

results with dynamically set TCP send buffer size were ctéié using the default TCP autotuning
settings, which are explained in detail in Section 4.2. FZ&yure[4.9 illustrates the results, from
which we can see that TCP autotuning does a generally goad jolffer size adjustment to adapt
to different network link RTTs.

At this point, one may be wondering whether to use static oradyic tuning of TCP send buffer
size. Figurd_4.70 can provide some insight on this mattere Alhe curve represents the iSCSI
throughput when the TCP send buffer size is se$$Q.; peneric (ISCSI Maximum Benefit Buffer
Size, please refer to Sectibn 4.2]11.1.). If $)gax pene i fOr a certain RTT is not included in our
experimental buffer sizes, we use the least possible bsiferthat is larger than th€,,,.._vene rit
instead. For example, th8,, .5 penefir iS 153.6 KB for 12 ms RTT on a 100 Mbps link, but 153.6
KB is not included in the buffer size list; therefore, it whle replaced by 256 KB, as 256 KB is the
least possible buffer size in the list that is larger than. @ 8.

As shown in Figur&4.10, when the RTT is less than or equal tngiGhe iSCSI session with the
buffer size set statically outperforms the iSCSI sessidh WCP autotuning. As the RTT increases

above 40 ms, however, TCP autotuning starts to show its &alyan

4.2.2 The TCP Send Buffer Size in Implementation

In implementation, the TCP send window size is determinethbse factors: the send buffer size
of the transmitter, the receive buffer size of the receigad the transmitter’s congestion window
size. In this thesis, however, we work with an error-fre&;lithus, no packet loss would occur and
the congestion window size does not constrain the TCP semdowi size. Also, the receive end is
always properly tuned in our experiments for RTTs of ~100 nesice, the only factor determining
the TCP send window size is the send buffer size of the soe¥etonsider the send buffer size and
the send window size interchangeable in this section.

The send buffer size can be set in two ways - statically anduahycally, which are addressed in

=4—TCP Throughput ==iSCSI Throughput

- 100 55304 88.744 89.755 88.190 88.290 88.833

& 90 LHH —_—

2 v

E 80 Q9 a9 L !

- ©0.762 86.693 85.367 83.640

a3 70 : 80.445

®

§ 60

.E 50 1 L L 1 I L L L 1 t L L 1 L t L L 1 1 t

=

_5 0 20 40 60 80 100
RTT (ms)

Figure 4.9: Open-iSCSI Performance with Various RTTs witmB8mically Set Send Buffer Size.

38

N o o s W N R

=4=iSCS| @ Max Benefit Buffer Size == iSCSI Buffer Size Autotuned

100

m

o

-]

S 90

=

=]

£ 80

%" \’

.'E 70 L L I L ; 1 L L L I L I L L ; L L L L I I L L 1 I

-

,5 0 20 40 60 80 100
RTT (ms)

Figure 4.10: Open-iSCSI Performance - Send Buffer Size #djent Dynamic vs. Static.

the following two sections.

4.2.2.1 setsockopt () - A Static Approach

To set the TCP send buffer statically, we call functsatsockopt() . Listing[4:2 shows how to

statically set the send buffer size to 1 MB.

#include <sys/socket.b

I/l suppose we have a socket with the file descriptor sfac
/Il set the send buffer size to 1 MB (1048576 B)

/I no error checking is included

setsockopt(sodd, SOLSOCKET, SQSNDBUF, &1048576, sizeof(1048576))
Listing 4.2: Set the Send Buffer Size to 1 MB.

According to Dunigan [11], Linux 2.4 kerndbubleghe requested buffer size $etsockopt()
and so do we observe with Linux 2.6 kernsttsockopt() , however, does not always get what
is required: The actual buffer size returned by the OS isextltp the maximum value specified by
the system environment varialsiet.core.wmem _max. Interestingly, the kernel also doubles this
maximum value as the upper limit of send buffer size [20]. &@ample, ifnet.core.wmem _max
is set to 131071 (128 K - 1) B and we use the code in Lidiing) 4 fetahe send buffer size, the
kernel will try to acquire a buffer size of 2097152¢8576 x 2) B, but the actual buffer size will
be only 262142 (256 K]131071 x 2) B, due to the limit of the doubledet.core.wmem _max.
Another interesting fact about the buffer size setting & the returned buffer size (the 262142 in
our example) is not completely available for the networkl@agtion: The kernel reserves a certain
portimH of it for metadata storage, i.e. the housekeeping data éoatktual payloads.

We examined the Open-iSCSI initiator source code and ribtltat Open-iSCSI sets the buffer
size to a fixed value of 512 KB by default. Supposedly, thisdkfsetting should give us a 1 MB
send buffer. The actual buffer size that iISCSI gets by defaolvever, as revealed by the Open-

iISCSI log file, is merely 256 KB. The cause of this “shrunkenffer size is the small out-of-box

3According to the man page of socket(7), the Linux kernelmese50 percent of the returned buffer size. Other sources
on the Internet, however, claim that it is not 50 percent Bup@rcent.

39

value ofnet.core.wmem _max, which is only 131071 on our test system and for most Linux
distributions as well. According to EQ. 4.2, the theordtinaximum throughput achieved with this
buffer size over a link with 100 ms RTT is 40 Ml@)swhich is less than half of the link bandwidth
100 Mbps.

To change this fixed buffer size, one may be tempted to chamgy&12 KB constant in the

Open-iSCSI code, as shown in the following code:
#define TCP _WINDOVBIZE 512 * 1024

Unfortunately, however, this method doest work. Open-iSCSI maintains a database for each
of the targets it has already discovered. The records okttargets are created the first time the
target discovery occtHsand these records stay in the database unless deleteditkptecom-
piling the Open-iSCSI source code does not delete prewiasled records). The value “512 *
1024” in the code above is used as ttefaultvalue for the send buffer size in the recamation
therefore, even if the Open-iSCSI source code is recompilfdan updated value for the macro
TCP.WINDOVEIZE , the change to this value is only going to affect the conpestio the targets
discovered after this change; the records of previouslgodisred targets do not get rebuilt when
they are re-connected, so the change in this mag@B.WINDOVEIZE does not update the send
buffer size of the sockets related to these targets. To cttlaange the buffer size, we need to
change thécp _window _size (not the macro in the source code) value saved in the targetde

entry using the Open-iSC&csiadm command line utility as shown in Listing 4.3.

$ iscsiadm—-m node—T <iSCSI target name —p <iSCSI target portal —op —n node.
conn[<connection number].tcp_.window_size —v <the new send buffer size in
bytes>

Listing 4.3: Set the Send Buffer Size in Open-iSCSI.
Theoretically, the most desirable actual send buffer sizeé BDP of the link.

4.2.2.2 TCP Autotuning - A Dynamic Approach

Sectio 4.2.2]1 explained how we can manually adjust thd beffer size to achieve the highest
possible throughput. The problem with this static appraachowever, that if either or both of the
link bandwidth or the RTT changes dynamically, the old BDR/ma longer be the optimal buffer
size after each change. Thus, we have to constantly mohidintk parameters to keep up with the
change, otherwise we may only achieve a suboptimal thrautghp

Fortunately, however, Linux has officially introduced a T&Rotuning mechanism since kernel

2.6.7 (and back-ported to 2.4.27) [17]. With this autotgninechanism, on the transmitter side,

4This value is larger than the actually achieved bandwidshasvn in Figur€Z]1. We believe this gap is caused by certain
implementation issue of Open-iSCSI.

5Please refer thttp://www.open-iscsi.org/docs/README for more details about the iSCSI target discovery
process.

40

http://www.open-iscsi.org/docs/README

[N A

TCP automatically adjusts the send buffer size to maxintizeughput. The send buffer size can
be up to the limit set by the system variahk.ipv4.tcp wmem = "min default max"

The meanings of the values are explained below [1]:

nm n: The minimum amount of memory every TCP socket allowed to ast¢hie send buffer. The

default value omin is 4 KB.

def aul t : The initial size of the send buffer used by a TCP socket. T feeudtesalue ofdefault
is 16 KB.

max: The maximum amount of memory allowed for automatically thii€€P send buffers. The

default value omaxis between 64 KB and 4 MB, depending on the system RAM size.

On our test system, this variable is sehtd.ipv4.tcp wmem = "4096 16384 2674688"
out-of-box.

Please note that the Linux kernel stops autotuning the TG keffer size if the application
explicitly sets the socket buffer size usig&) SNDBURhroughsetsockopt() . To use TCP
autotuning in Open-iSCSI initiator, the send buffer sizeudt be set to zero using the command
shown in Listind 4.B.

4.3 Nagle’s Algorithm and iISCSI Performance

To attempt to further increase the iISCSI throughput, weergged the Open-iSCSI implementation.
In the source code, we noticed that the socket opfiGR.NODELANYs set, as shown in Listing_4.4.
This TCP.NODELAYoption is the switch for a TCP transmission policy: Nagld¢goaithm. When
TCP_NODELAYs set, Nagle's algorithm idisabled

int rc, onearg;

onearg = 1;
rc = setsockopt(cona>socketfd , IPPROTQTCP, TCRNODELAY, &onearg,
sizeof (onearg));

Listing 4.4: Set the Socket OptidfCP.NODELAY

Proposed in RFC 896 [21], Nagle’s algorithm aims to redueciiiP/IP header overhead when
the data comes to TCP in small chunks. When there is unackdoet data on the link, Nagle’s
algorithm puts data that arrives in small chunks on hold aesdot transmit the data until all the
previous sent data is acknowledged or the accumulated gegads the maximum segment iné
TCP.

In our tests, iISCSI is sending big chunks of data; theref@esdo not expect significant change
in the iISCSI throughput if we enable Nagle’s algorithmdigablingTCP.NODELAY

Splease refer tottp://en.wikipedia.org/wiki/Maximum_segment_size for more details on TCP maxi-
mum segment size.

41

http://en.wikipedia.org/wiki/Maximum_segment_size

== iSCSI Throughput (TCP_NODELAY Disabled) =4=iSCSI| Throughput (Default)

100

=

g 9 h—.—.—.i.;.; &

o

3

27

3 60

= 50 1 L 1 1 1 I 1L 1 1 I 1 1 1 1 I 1 1 1 1 I

£

E 0 20 40 60 80 100
RTT (ms)

Figure 4.11TCP.NODELAYand Open-iSCSI Performance (Dynamically Set Send Buffes)Si

Figure[4.11 shows the iSCSI throughput results, with andautTCP.NODELAnabled, with
dynamically adjusted send buffer size. No significant difece is observed between the two curves.
Figure[4.1? to FigurE4.15 present the throughput resuh atibtically set send buffer sizes, with
and withoutTCP.NODELAenabled. Again, no significant difference can be observeddsn the
two implementations, except for the small performance ¢j@iough disablingTCP.NODELAYat
384 KB send buffer size and the slight performance degralaiiie to disablingCP.NODELAat
100 ms RTT with 1536 KB send buffer size.

Therefore, Nagle’s algorithm, or tHReECP.NODELAYoption, alone does not have any noticeable
effect on the iISCSI performance. It is therefore unclear thieydefault implementation touches this

option at all from the perspective of the iISCSI throughput.

42

=—iSCSI Throughput (TCP_NODELAY Disabled) =4—iSCSI Throughput (Default)
100
% &l‘
= 80
by
E 70
s 60
£ 50
)
3 40 \\
£
= 30
S 20
10
0 20 40 60 80 100
RTT (ms)
(a) Default Send Buffer Size (128 KB)
== iSCSI Throughput (TCP_NODELAY Disabled) ==4==iSCS| Throughput (Default)
100
90 ‘#@&.\
% 80
Qo
2 70 \
:; 60 \
a
g 50
3
2 40
=
= 30
S 20
10
0 —— ey
0 20 40 60 80 100
RTT (ms)
(b) Send Buffer Size 256 KB
={=iSCSI| Throughput (TCP_NODELAY Disabled) =4=iSCSI Throughput (Default)
100
90
= 80
s 70
=
S %0 IS
2 k
g 50
3 40 \\!\
= 30
3 20
10
0 +——— ey
0 20 40 60 80 100
RTT (ms)

(c) Send Buffer Size 384 KB

Figure 4.12.TCP.NODELAYand Open-iSCSI Performance (Statically Set Send Buffex)Siz.

43

={l=iSCS| Throughput (TCP_NODELAY Disabled) =4=iSCSI Throughput (Default)
100
o B-E-B-nmm —
= 80
&
E 70
5 60
o
g 50
3
° 40
=
= 30
3 20
10
0 +—— ey
0 20 40 60 80 100
RTT (ms)
(a) Send Buffer Size 512 KB
~{—iSCS| Throughput (TCP_NODELAY Disabled) =4—iSCSI Throughput (Default)
100
%0 —\‘\
% 80
by
E 70
5 60
a
g 50
3
2 40
=
= 30
S 20
10
0 —— ey
0 20 40 60 80 100
RTT (ms)
(b) Send Buffer Size 640 KB
={=iSCSI| Throughput (TCP_NODELAY Disabled) =4=iSCSI Throughput (Default)
100
e ———
= 80
g B
E 70
5 60
o
g 50
3
2 40
=
= 30
3 20
10
0 +——— ey
0 20 40 60 80 100
RTT (ms)

(c) Send Buffer Size 768 KB

Figure 4.13.TCP.NODELAYand Open-iSCSI Performance (Statically Set Send Buffex)Si2.

44

~{—iSCS| Throughput (TCP_NODELAY Disabled) =4—iSCSI Throughput (Default)
__ 100
g m
2 9
%— 80
2 70
®
§ 60
£ 50 by
£ 0 20 40 60 80 100
RTT (ms)
(a) Send Buffer Size 896 KB
={=iSCS| Throughput (TCP_NODELAY Disabled) =4=iSCSI Throughput (Default)
__ 100
8
g h.\‘_
FR —
®
§ 60
S 50 by
=
,g 0 20 40 60 80 100
RTT (ms)
(b) Send Buffer Size 1024 KB
={=iSCS| Throughput (TCP_NODELAY Disabled) =4=iSCSI Throughput (Default)
__ 100
"
& 90 LH-.-I-;.;
s T
= 80
3
_g 70
§ 60
S 50 by
=
,g 0 20 40 60 80 100
RTT (ms)
(c) Send Buffer Size 1152 KB
~{—iSCS| Throughput (TCP_NODELAY Disabled) =4—iSCSI Throughput (Default)
__ 100
"
g 9 L'.'.-I-H— ——
S —=_—
= 80
2 70
®
3 60
2
£ 50 by
£ 0 20 40 60 80 100
RTT (ms)

(d) Send Buffer Size 1280 KB

Figure 4.14TCP.NODELAYand Open-iSCSI Performance (Statically Set Send Buffex)Si3.

45

~{—iSCS| Throughput (TCP_NODELAY Disabled) =4—iSCSI Throughput (Default)
__ 100
w
g 9 L-I-l-i.i.s— —— =
% 80 ‘Eﬂ
2 70
®
§ 60
£ 50 by
£ 0 20 40 60 80 100
RTT (ms)
(a) Send Buffer Size 1408 KB
={=iSCS| Throughput (TCP_NODELAY Disabled) =4=iSCSI Throughput (Default)
__ 100
8
2 90
72: 80
2 70 I
:’g_" 60
S 50 by
=
,g 0 20 40 60 80 100
RTT (ms)
(b) Send Buffer Size 1536 KB
={=iSCS| Throughput (TCP_NODELAY Disabled) =4=iSCSI Throughput (Default)
__ 100
8
2 90
72: 80
3
% 70
§ 60
S 50 by
=
,g 0 20 40 60 80 100
RTT (ms)
(c) Send Buffer Size 2048 KB
~{—iSCS| Throughput (TCP_NODELAY Disabled) =4—iSCSI Throughput (Default)
__ 100
& o0 L—I-I-I-Iif —
Q2
s — =
= 80
2 70
®
3 60
2
£ 50 by
£ 0 20 40 60 80 100
RTT (ms)

(d) Send Buffer Size 2560 KB

Figure 4.15TCP.NODELAYand Open-iSCSI Performance (Statically Set Send Buffex)SiZ.

46

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

-

2
3

4.4 use_cl ust eri ngandiSCSI Performance

Further examination of the Open-iSCSI initiator sourceecoal/eals that Open-iSCSI disables the
SCSI device optiomse _clustering by default.use _clustering is the option to control if
more than one (memory) page is allowed in one scatter-ghshentry, which is used for DMA in
iISCSI and SCSI. With this option disabled, each scattdnagdist entry can only hold one p%e

We modified the Open-iSCSI source code to enableubis_clustering option and support
the transmission of scatter-gather list entries contgimore than one page. Listiig #.5 and Listing

[4.9 show the source code before and after the modification.

static int iscsi_sw_tcp_.xmit_segmenttruct iscsi_.tcp_.conn xtcp_conn,
struct iscsi_.segmentxsegment)
{
struct iscsi.sw_tcp_conn xtcp_.sw_.conn = tcpconn—>dd_data;
struct socket xsk = tcp.sw_conn—>sock;
unsigned intcopied = 0;
int r = 0;
while (!iscsi-tcp.segmentdone (tcpconn, segment, 0, r)X
struct scatterlist xsg;
unsigned int offset, copy;
int flags = 0;
r = 0;
offset = segment>copied;
copy = segment>size — offset;
if (segment>total_copied + segment>size < segment>total_size)
flags |= MSGMORE;
if (!segment>data) {
Sg = segmemnt>sqg;
offset += segment>sg.offset + sg—>offset;
[*
+ Please note here, the default implementation assumes that
» there is only one page in the sg (scattegatter) list entry.
*
*/
r = tcp_.sw_conn—>sendpage (sk, sgage(sg), offset,
copy, flags);
} else {
}
if (r<0){
iscsi_tcp_segmentunmap (segment);
return r;
}
copied += r;
}
return copied;
}

Listing 4.5: Default Open-iSCSI /0 Segmentation Trangiois with use _clustering
Disabled.

static int iscsi_sw_tcp_xmit_segment@truct iscsi_tcp_.conn xtcp_conn,
struct iscsi_.segment*segment)
{

“For more implementation details, please refer to the fondtlk _rq _map.sg() in the Linux kernel source code, the
2.6.34 version of which can be foundtetp://Ixr.linux.no/linux+v2.6.34/block/blk-merge.c

47

http://lxr.linux.no/linux+v2.6.34/block/blk-merge.c

© © N o o b

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
i
42
43
44

45
46
47

48
49
50

Figure 4.16: use _clustering
Size).

=fli=iSCSI Throughput (use_clustering Enabled) =4=iSCSI Throughput (Default)

__ 100
(%]

e A e =

g— 30 N
5

27

g 60

'-E 50 L 1 1 1 I 1 1 1 1 ; 1 1 1 1 I 1 1 1 L g 1 1 1 1 I 1 1
z 0 20 40 60 80 100

RTT (ms)

struct iscsi_sw_tcp_conn *=tcp_sw_conn = tcpconn—>dd_data;
struct socket xsk = tcp.sw_conn—>sock;

unsigned int copied = 0;

int r = 0;

while (!iscsi_-tcp.segmentdone (tcpconn, segment, 0, r)X
struct scatterlist xsg;
unsigned int offset, copy;
int flags = 0;

r = 0;
offset = segment>copied;
copy = segment>size — offset;

if (segment>total_copied + segment>size < segment>total_size)
flags |= MSGMORE;

if (!segment>data) {
unsigned int curr_sg.copied = 0;
unsigned int pageoffset.in_sg_entry = 0;
unsigned int num_pagein_sg-entry = 0;
int once = 0;

Sg = segmenmnt>sqg;
offset += segment>sg_offset + sg—>offset;

if (unlikely (NULL == sg-page(sg))){
printk (KERN.ERR "sg_page(sg) returns NULL\n");
break;

}

curr_.sg-copied = 0;
pageoffset.in_sg_entry = offset / PAGESIZE;

[
+ Please note that pageount(sgpage(sg)) did not give us
+ the correct page number in one sg entry in our tests.
*

/

num_pagein_sg.entry = (sg—>offset + sg—>length + PAGESIZE — 1) >>
PAGESHIFT;

while ((curr.sg.copied < copy) & (page.offset.in_sg_entry <
num_pagein_sg-entry)) {
struct page »pageto_be = NULL;
size_.t offset.to_be = 0;
size_.t copy-to_be = 0;

48

and Open-iSCSI Performance (Dynamically Set Send Buffer

51
52
53
54
55
56
57
58
59

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

once ++;

/1 figure out the send params
/1 which page to send

pageto_be = sgpage(sg) + pageoffset.in_sg-entry;

offset.to_be = offset % PAGESIZE ;

copy-to_be = mint(size.t, copy — curr_.sg_-copied , PAGESIZE —
offset_.to_be);

r = tcp.sw_conn—>sendpage (sk, pageo_be, offsetto_be,
copy.to_be, flags);

if (r<o0){
iscsi_tcp_segmentunmap (segment);
return r;

}

curr_sg.copied += r;
offset += r;
pageoffset.in_sg_entry = offset>> PAGESHIFT;

}

I/l not necessary, just to be compatible with the default iscs
implementation
r = curr_sg-copied;

} else {

}

if (r<o0){
iscsi_-tcp_.segmentunmap (segment) ;
return r;

}

copied += r;

}

return copied;

}

Listing 4.6: Modified Open-iSCSI I/0 Segmentation Transite with use _clustering
Enabled.

We measured the iSCSI throughput with and without this meatifon. Figuré 4.6 shows the
results with dynamically set send buffer size. The overfahe two curves demonstrates that with
TCP autotuning the differenaese _clustering makes in iISCSI throughput is insignificant.

On the other hand, in Figute 4117 and Figure #.18 we notidelieadefault Open-iSCSI imple-
mentation (withuse _clustering disabled) outperforms the modified version (wite _clustering
enabled) before the send buffer size is increased to thesondingS,,qz_bene rit (Please refer to
Section 4,2.1]1 for more details) at RTTs shorter than oaktpu40 ms. Other than that, even if
the RTT is shorter than or equal to 40 ms, as long as the seffet lsife is less than or equal to the
correspondin®,qz_vene it the modified version witbse _clustering enabled slightly outper-
forms the default version. This performance gain also elg¢a the situations with the RTT longer

than 40 ms. Moreover, with the RTTs over 60 ms, the througbpilite modified implementation of

49

iISCSIl is at least as high as the throughput of the defaultemphtation.

The same pattern continues all the way through all the baffers we used in the test, as shown
in Figure[4.19 and Figurle_4.P0,with an exception of 1152 KBdsbuffer size, which exposes a
case without any significant difference as observed in BGUL6. Figuré 4.20 also shows that
use _clustering does not make a significant difference in iISCSI throughptti tie size of the
send buffer greater than th8,,_bene fit-

We summarize these results in the following formula:

ThroughPUtuse_clustering > ThTOUQhPUtdefault

true if RTT > 40ms 4.3)
is true if RTT < 40ms andssend_buffer < Smaacbenefit .
false if RT'T < 40ms ands’send_buffer > Smawbenefit

50

~fl—iSCSI Throughput (use_clustering Enabled) =4=iSCSI Throughput (Default)

100
90 hﬁ‘\
80

m
-y
g 70
5 60
o
g 50
3
o 40
=
= 30
S 20
10
04— e e e g
0 20 40 60 80 100
RTT (ms)
(a) Default Send Buffer Size (128 KB)
={l=iSCSI Throughput (use_clustering Enabled) =4=iSCSI Throughput (Default)
100
ol it
= 80
s 70
S
2 60 AN
o
g 50
=]
° 40
=
= 30
3 20
10
0 20 40 60 80 100

RTT (ms)

(b) Send Buffer Size 256 KB

~{li—iSCSI Throughput (use_clustering Enabled) =4=iSCSI Throughput (Default)

100
5 Eﬁ*%.\
80

7
'E% 70 TR
s 60 \\\L\
£ 50 -
3
=
oL
£ 2
10
0 : . 1 B —t E— —t S . : t E— —t t
0 20 40 60 80 100

RTT (ms)

(c) Send Buffer Size 384 KB

Figure 4.17:use _clustering and Open-iSCSI Performance (Statically Set Send Buffex)Siz
1.

51

== iSCSI| Throughput (use_clustering Enabled) ==4==iSCSI| Throughput (Default)
100
90
z 80
g 70 -
e R
2
-§° 50 \".
8 40
=
* 30
S 20
10
04— e e e g
0 20 40 60 80 100
RTT (ms)
(a) Send Buffer Size 512 KB
=—iSCSI Throughput (use_clustering Enabled) =4—iSCSI Throughput (Default)
100
90
= 80
-3
3 7 \\-;\
: o —
g 50
=]
2 40
=
= 30
S 20
10
0 +— ey
0 20 40 60 80 100
RTT (ms)
(b) Send Buffer Size 640 KB
={l—iSCSI Throughput (use_clustering Enabled) =4=iSCSI Throughput (Default)
100
90
% 80
o
: —
5 60 >
2
g 50
=]
8 40
=
x 30
S 20
10
04— e e e g
0 20 40 60 80 100
RTT (ms)

(c) Send Buffer Size 768 KB

Figure 4.18:use _clustering and Open-iSCSI Performance (Statically Set Send Buffex)Siz
2.

52

=fli=iSCSI Throughput (use_clustering Enabled) =4=iSCSI Throughput (Default)
__ 100
& 90
2
g 80
5
2 70
%" 60
I-E 50 1 L 1 L i 1 L 1 L % L 1 L L i L 1 L 1 i 1 L L 1 I 1 L
z 0 20 40 60 80 100
RTT (ms)
(a) Send Buffer Size 896 KB
={li=iSCSI Throughput (use_clustering Enabled) =4=iSCSI Throughput (Default)
__ 100
& 90
2
g 80
5
2 70
%" 60
I-E 50 1 L 1 L i 1 L 1 L % L 1 L L i L 1 L 1 i 1 L L 1 I 1 L
£ 0 20 40 60 80 100
RTT (ms)
(b) Send Buffer Size 1024 KB
== iSCSI| Throughput (use_clustering Enabled) =4==iSCS| Throughput (Default)
__ 100
3
_§ 90
= 80
5
'?o 70
§ 60
€ 50 s
4
,5 0 20 40 60 80 100
RTT (ms)
(c) Send Buffer Size 1152 KB
== iSCSI| Throughput (use_clustering Enabled) =4==iSCS| Throughput (Default)
__ 100
g LI-.-U--
_§ 90
R H
5
'?o 70
§ 60
€ 50 s
4
,5 0 20 40 60 80 100
RTT (ms)

Figure 4.19:use _clustering
3.

(d) Send Buffer Size 1280 KB

and Open-iSCSI Performance (Statically Set Send Buffex)Siz

53

=fli=iSCSI Throughput (use_clustering Enabled) =4=iSCSI Throughput (Default)
__ 100
"
g 90 ""“Iﬂé;
— 80
5
2 70
%" 60
I-E 50 1 L 1 L i L 1 L % L 1 L L i L 1 L 1 i 1 L L 1 I 1 L
z 0 20 40 60 80 100
RTT (ms)
(a) Send Buffer Size 1408 KB
={li=iSCSI Throughput (use_clustering Enabled) =4=iSCSI Throughput (Default)
__ 100
(%)
S 90 M -
2 80 = u
5
2 70
%" 60
I-E 50 1 L 1 L i L 1 L % L 1 L L i L 1 L 1 i 1 L L 1 I 1 L
£ 0 20 40 60 80 100
RTT (ms)
(b) Send Buffer Size 1536 KB
== iSCSI| Throughput (use_clustering Enabled) =4==iSCS| Throughput (Default)
__ 100
& 90 """.-.E;
)
s — — O
= 80
5
'?o 70
§ 60
€ 50 f g
9
,5 0 20 40 60 80 100
RTT (ms)
(c) Send Buffer Size 2048 KB
== iSCSI| Throughput (use_clustering Enabled) =4==iSCS| Throughput (Default)
__ 100
& o “F.-.ﬁ-;
2 —D—
£ g N_
5
'?o 70
§ 60
€ 50 f g
=<
,5 0 20 40 60 80 100
RTT (ms)

Figure 4.20:use _clustering
4,

(d) Send Buffer Size 2560 KB

and Open-iSCSI Performance (Statically Set Send Buffex)Siz

54

4.5 iSCSI Performance Boost Observed with Nagle’s Algoritm
anduse_cl ustering

After seeing the slight difference these _clustering option introduces to the iSCSI perfor-
mance, we were curious about using Nagle’s algorith@f.NODELAMisabled) and thase _clustering
option together.

First, we tested the iISCSI throughput with the modificationder autotuned send buffer size. It
turns out that the these two options again do not make a rdifieelifference in this case, as shown
in Figure[4.21.

Under statically set send buffer size, however, Nagle'srtigm (TCP.NODELAMisabled) and
use _clustering combined together becomes a throughput booster for iISQ8lemtions over
long RTTs and/or with insufficient send buffer size, as shawRigurel4.22 and Figuife 4.23. Fig-
urel4.24 and Figuifle 4.25 show that the throughput of iISC3I Nigle’s algorithmTCP.NODELAY
disabled) andise _clustering falls back to the throughput of the default implementatisriee
send buffer size grows close 3,4z penerit (Sectioi4.2.111).

One disadvantage we also noticed about the modification WitR NODELAYdisabled and
use _clustering enabled is that with short RTTs, typically shorter than anaddo 40 ms, this
modification brings the performance down by about 2 Mbps whensend buffer size is greater
than or equal to the correspondifig.,_ pene fit -

The observations found with this modification follow EEq.]48it with the performance gain

very much larger.

4.6 Open-iSCSI Initiator Performance Tuning Suggestions

Inthe previous sections, we discussed the performance @plen-iSCSl initiator and its three mod-
ified versions - with Nagle’s algorithnTCP.NODELA\iisabled), with the SCSlse _clustering
option enabled, and with both of the previous two.

The results with statically set send buffer size show thal&la algorithm alone does not make
a significant difference in the iISCSI throughput.

Theuse _clustering modification brings mild changes to the iISCSI throughpudchieves
slight performance gain if the send buffer size is small@ntthe S, pene it (Section 4.2.1]1)
corresponding to the RTT,; Also, it causes slight perforneathegradation if the RTT is less than
or equal to 40 ms and the send buffer size is larger than thesmondingS,,qu beneric- EQ.[43
summarizes this pattern of performance change.

When Nagle’s algorithmT{CP.NODELAMisabled) and thase _clustering option are both
applied, we see a similar performance change pattern batthit performance gain very much
larger.

To have a closer look at how these four Open-iSCSI implentients (default, with Nagle’s

55

== iSCS| Throughput (TCP_NODELAY Disabled & use_clustering Enabled)
==4==iSCS| Throughput (Default)

__ 100

4 90 *‘H-.-.-.:.¥

o — -

s 80 0]
8 70

_hg-b 60

g 50 L 1 I 1 Il 1 L L 1 Il 1 I 1 1 ¥ 1 L 1 L } I 1 1 1 t
= 0 20 40 60 80 100
=

5 RTT (ms)

Figure 4.21: Open-iSCSI Performance witke _clustering Enabled and CP.NODELADis-
abled (Dynamically Set Send Buffer Size).

algorithm TCP.NODELAMisabled), with the SCSise _clustering option enabled, and with
both of the previous two) perform, we plotted the throughgfuthe four implementations against
the send buffer sizes at 40 ms and 100ms, as shown in FiglleAd®Figuré 4.27.

As for the choice between dynamically set send buffer size, with TCP autotuning, and
statically set send buffer size, the iISCSI session with tiféeebsize statically set outperforms the
one with TCP autotuning when the RTT is less than or equal tmg0As the RTT increases above
40 ms, however, TCP autotuning starts to show its advant&ge.more details, please refer to
Sectiof4.2.1)2.

All the results so far have concerned RTTs of 100 ms or lesgssscontinental Internet links,
however, can have an average RTT as long as 200 ms[27]; therefe also tested the iSCSI
throughput over a link with an emulated RTT of 200 ms. Theltegue shown in Figule 4.28. TCP
autotuning did not get an equally high throughput as stificet buffer size can provide. This is
because TCP autotuning needs extra tuning to work proparlyeoy long delay links. That is the
reason we do not recommend TCP autotuning as the answersitualions.

Based on the discussion above, we recommend the an Open-i8t&or tuning scheme to
achieve the best performance, as demonstrated in TallleTh&.“Free Memory Usage” in the
table means that the socket send buffer size can be set armahplarge value and the “Restricted
Memory Usage” means that there is a socket (send) buffecajzand the maximum allowed value
is not smaller tharb,,.. veneric. The latter case can represent the situations of servensngias
virtual machines: if a large number of virtual machines amening on a physical host, the memory
share of each individual virtual machine is relatively simiflerefore, the virtual server is running
under memory size restrictions and thus cannot afford albiieen sockets with large buffer sizes.

Please note that one can also choose TCP autotuning witkefaeltdOpen-iSCSI implementa-
tion as an alternative, which provides the convenience efdjmg the least effort on configuration

at the expense of a certain amount of performance sacrifice.

56

Table 4.3: Recommended Tuning Scheme of Open-iSCSI

RTT (ms) | Free Memory Usage Restricted Memory Usage
Statically set the send buffer size to
< 401 Smam_benefit-
stable Choose the default Open-iSCSI implementa-
tion.
Statically set the send buffer size toStatically setthe send buffe
Smaz_benefit- size to the maximum value
> 40, Choose the Open-iSCSI implementation wittallowed.
stable Nagle’s algorithm TCP.NODELAYdisabled)
and the SCSulse _clustering option en-
abled.
Statically set the send buffer size to
Smaz_benefit according to the estimated
< 40 mean RTT.
=~ Choose the Open-iSCSI implementation wijt .
variable Nagle’s algorithm TCP.NODELAYdisabled) r_bhoose the (_)pen_-|SCSI
. . implementation with
and the SCSulse _clustering option en- ,)
abled Nagle’s algonthm
- — : (TCP.NODELAMisabled)
Use TCP autotuningith caution
. ' . and the SCSI
< 40 Choose the Open-iSCSI implementation wthuse clustering option
Y Nagle’s algorithm TCP.NODELAYdisabled) -
variable enabled.

and the SCSulse _clustering
abled.

option en-

57

—fli—iSCSI Throughput (TCP_NODELAY Disabled & use_clustering Enabled) =#=iSCSI Throughput (Default)
100
90 Eﬁ*_.‘\
_ 80
-E% 70 \ \\
= 60
3
§ \\ \.\"\.
é - \
l-‘;: %0 \
R \
10
0
0 20 40 60 80 100
RTT (ms)
(a) Default Send Buffer Size (128 KB)
={l=iSCS| Throughput (TCP_NODELAY Disabled & use_clustering Enabled)
==4==iSCSI| Throughput (Default)
100
%0 Em*.\
& 80
i N
5 60
< 50 y
> \
o 40
E 30 \
~ x
£ 20
-
10
0
0 20 40 60 80 100
RTT (ms)
(b) Send Buffer Size 256 KB
={l=iSCS| Throughput (TCP_NODELAY Disabled & use_clustering Enabled)
==4==iSCSI| Throughput (Default)
100
90 #m?.\
g 0 ~——
s \\I~
.g; " \
§ 40 v\
£ 30
£ 20
-
10
0
0 20 40 60 80 100
RTT (ms)
(c) Send Buffer Size 384 KB
Figure 4.22: Open-iSCSI Performance witke _clustering Enabled and CP.NODELAYDis-

abled (Statically Set Send Buffer Size) - 1.

58

={l=iSCS| Throughput (TCP_NODELAY Disabled & use_clustering Enabled)
==4==iSCS| Throughput (Default)
100
90
2 80
2
£ 70 \\
R \
a
3 —
° 40
£ 30
£ 20
-
10
0 L 1 L % 1 1 1 L % L 1 L L i L 1 L 1 E 1 L L 1 i
20 40 60 80 100
RTT (ms)
(a) Send Buffer Size 512 KB
~l=iSCSI Throughput (TCP_NODELAY Disabled & use_clustering Enabled)
=4—iSCS| Throughput (Default)
100
90
8 80
2 —3
5 60 \\’
o
-§° 50
o 40
£ 30
£ 20
-
10
0 t t }
20 40 60 80 100
RTT (ms)
(b) Send Buffer Size 640 KB
={l=iSCS| Throughput (TCP_NODELAY Disabled & use_clustering Enabled)
==4==iSCSI| Throughput (Default)
100
& 80
2 o~
s 70 Q
5 60 " g
a
{‘::," 50
° 40
£ 30
£ 20
-
10
0 L 1 L % 1 1 1 L % L 1 L L i L 1 L 1 E 1 L L 1 i
20 40 60 80 100
RTT (ms)

(c) Send Buffer Size 768 KB

Figure 4.23: Open-iSCSI Performance witke _clustering
abled (Statically Set Send Buffer Size) - 2.

59

Enabled andCP.NODELAYDis-

={l=iSCS| Throughput (TCP_NODELAY Disabled & use_clustering Enabled)
=4=iSCSI| Throughput (Default)
__ 100
4 90
2
= 80
8 70
2 60
%"50 e o B S
= 0 20 40 60 80 100
=
£ RTT (ms)
(a) Send Buffer Size 896 KB
=fl=iSCS| Throughput (TCP_NODELAY Disabled & use_clustering Enabled)
=4=iSCSI| Throughput (Default)
__ 100
Eotrtttrtee— o -
= 80 —
8 70
2 60
%"50 e o B S
= 0 20 40 60 80 100
=
£ RTT (ms)
(b) Send Buffer Size 1024 KB
~{=iSCSI| Throughput (TCP_NODELAY Disabled & use_clustering Enabled)
=4—iSCS| Throughput (Default)
__ 100
& 90 ﬁ-l-l-l-.—. —_—
a —
S 80 N
5 70
_hg‘o 60
= 50 1 1 1 1 1‘ 1 1 1 1 ‘l 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1
[
= 0 20 40 60 80 100
=<
£ RTT (ms)
(c) Send Buffer Size 1152 KB
~{=iSCSI| Throughput (TCP_NODELAY Disabled & use_clustering Enabled)
=4—iSCS| Throughput (Default)
__ 100
& 90 ﬁ-l-l---lﬁF
k- —
S 80 N
5 70
_hg‘o 60
= 50 1 1 1 1 1‘ 1 1 1 1 ‘l 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1
[
= 0 20 40 60 80 100
=<
£ RTT (ms)

(d) Send Buffer Size 1280 KB

Figure 4.24: Open-iSCSI Performance witke _clustering
abled (Statically Set Send Buffer Size) - 3.

60

Enabled and CP-.NODELAYDis-

={l=iSCS| Throughput (TCP_NODELAY Disabled & use_clustering Enabled)
=4=iSCSI| Throughput (Default)
__ 100
é- 90 L"""H:.N:
S 80 -0
8 70
2 60
%"50 e o B S
= 0 20 40 60 80 100
=
£ RTT (ms)
(a) Send Buffer Size 1408 KB
=fl=iSCS| Throughput (TCP_NODELAY Disabled & use_clustering Enabled)
=4=iSCSI| Throughput (Default)
__ 100
4 90
2
S 80
8 70
2 60
%"50 e o B S
= 0 20 40 60 80 100
=
£ RTT (ms)
(b) Send Buffer Size 1536 KB
~{=iSCSI| Throughput (TCP_NODELAY Disabled & use_clustering Enabled)
== iSCSI| Throughput (Default)
__ 100
8 90 h—m-'é: —
g 80 “%—
5 70
_hg'o 60
= 50 1 1 1 1 1‘ 1 1 1 1 ‘l 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1
[
£ 0 20 40 60 80 100
=<
£ RTT (ms)
(c) Send Buffer Size 2048 KB
~{=iSCSI| Throughput (TCP_NODELAY Disabled & use_clustering Enabled)
== iSCSI| Throughput (Default)
__ 100
& 90 ﬁ‘"—.—'-=.;
§ 80 = ﬁi
5 70
_hg'o 60
= 50 1 1 1 1 1‘ 1 1 1 1 ‘l 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1
[
= 0 20 40 60 80 100
=<
-5 RTT (ms)

(d) Send Buffer Size 2560 KB

Figure 4.25: Open-iSCSI Performance witke _clustering
abled (Statically Set Send Buffer Size) - 4.

61

Enabled and CP-.NODELAYDis-

Link Throughput (Mbps)

= Default «=¢--TCP_NODELAY Disabled
==f=use_clustering Enabled ==>4=TCP_NODELAY Disabled & use_clustering Enabled
100

90
80

70
’dd
60

50 /
40

30 J

20

10

0 L . T R ——————————

128 256 384 512 640 768 896 1024 1152 1280 1408 1536 2048 2560 Auto

Send Buffer Size (KB)

Figure 4.26: Open-iSCSI Performance Comparison @ 40 ms RTT

Link Throughput (Mbps)

= Default «=¢-—-TCP_NODELAY Disabled
«=huse_clustering Enabled «=4=TCP_NODELAY Disabled & use_clustering Enabled
100

90
80

70

60 -

50 +
40

30

20 (

10

0 T T T T T T T T T T T T T T
128 256 384 512 640 768 896 1024 1152 1280 1408 1536 2048 2560 Auto

Send Buffer Size (KB)

Figure 4.27: Open-iSCSI Performance Comparison @ 100 ms RTT

62

Link Throughput (Mbps)

70

60

50

40

30

20

10

=fi—Default =4—TCP_NODELAY Disabled
«=he==use_clustering Enabled «=6=TCP_NODELAY Disabled & use_clustering Enabled

128 256 512 768 1024 1280 1536 1792 2048 2304 2560 2816 3328 3840 5120 auto

Send Buffer Size (KB)

Figure 4.28: Open-iSCSI Performance Comparison @ 200 ms RTT

63

Chapter 5

Conclusions and Future Work

In this thesis, we first discussed and examined the fedgibitid effectiveness of using the native
Linux traffic control components, such & and HTB (Hierarchical Token Bucket) to regulate
the network traffic rate in order to provide differentiateghtity of service for the disk traffic of
virtual machines and throttle the traffic rate of the phylsizzst as well. Our results in Chapfdr 3
demonstrate that HTB is capable of achieving the netwoffdrthrottling goal with high accuracy.
In addition, HTB can redistribute the available bandwidymamically between concurrent traffic
flows when one or more flows are not fully utilizing the assigjf@ndwidth; therefore, HTB not
only accurately maintains the global bandwidth regulatioal, but also makes the most efficient
use of the available bandwidth. Moreover, when the traffiotiad policy is required to change
dynamically, the switch between different HTB policiesves minimal footprint in the traffic pro-
file. Therefore, HTB can be used as an effective bandwidthlagign tool to meet the demand in
providing differentiated quality of service.

In the course of this investigation, however, we noticed tha HTB implementation is not
very well documented. Thus, also in Chagter 3, we providedildeabout what we consider the
most critical implementation details of HTB. We believestimformation can provide more solid
reference for others working in similar areas.

In addition, we examined a drastic performance degradatidthe Open-iSCSI initiator. We
thoroughly tested the performance of the Open-iSCSI toitiand its three modified versions - with
Nagle’s algorithm TCP.NODELAMisabled), with the SCSlise _clustering option enabled,
and with both of the previous two - under two methods of sgttive TCP send buffer size - stati-
cally and dynamically. The results with statically set sénffer size show that Nagle’s algorithm
alone does not make a significant difference in the iSCSlutinput. Theuse _clustering
modification brings mild changes to the iSCSI throughpuéchieves slight performance gain but
causes minor performance degradation under certain cgtanres as well. When Nagle’s algo-
rithm (TCP.NODELAVYdisabled) and theise _clustering option are both applied, we see a
performance change pattern similar to the pattermiee clustering modification exhibits, but

with the performance gain very much larger.

64

As for the choice between dynamically set send buffer size, with TCP autotuning, and
statically set send buffer size, the iISCSI session with tiféeebsize statically set outperforms the
one with TCP autotuning when the RTT is less than or equal tm€0As the RTT further increases,
however, TCP autotuning starts to show its advantage.

Based on these results, we proposed a performance tuniagiedor the Open-iSCSI initiator,
which covers network links with varying combinations of Rffdnd link bandwidth. We believe that
by following this tuning scheme, users of Open-iSCSI, eglgahose using Open-iSCSI over an

LFN, can gain significant throughput benefits.

5.1 Future Work

The core theory behind the implementation of HTB is DRR, \tstands for deficit round-robin.
Without the priority parameter, HTB, as mentioned in Sed24, does not give sufficient consid-
eration to latency-critical flows; therefore, HTB, withalifferentiating the priority of classes, may
not be able to schedule latency-critical flows effectivelyen they are mixed with best-effort flows.
Even with the priority parameter, HTB may not be able to aghibe desired results either because it
handles this parameter in a relatively naive manner: Céas#tl a higher priority are always served
first, which can result in starving the classes with loweopties. Thus, mapping latency-critical
and best-effort flows to different priorities may not alwayge desirable scheduling results. Further
investigation into this matter is of importance as it wilbpide valuable insight into the scheduling
effectiveness of HTB. If the outcome of this investigatioggests non-optimal scheduling of HTB,
it would be of interest to explore the option of re-implemegtHTB using DRR++.

As for the performance of the Open-iSCSl initiator, futurarikwshould explore the possibility of
implementing an autotuning component for the Open-iSCi8ator so that end users, who may not
possess the required privileges / knowledge / skills fofggerance tuning, would no longer have
to be concerned with the potential performance loss. Alsrgtis still a 10 percent throughput gap
between the highest iSCSI throughput we have achieved smththe throughput of a general TCP
session atthe RTT of 100 ms. The cause of this throughpusgagtiainly worthwhile investigating,
which may enlighten us on the possibility of endowing Op8&-$I with this last bit of performance

gain.

65

Bibliography

[1] /proc/sys/net/ipv4/* variables. http://Ixr.linux.no/linux+v2.6.34/
Documentation/networking/ip-sysctl.txt , May 2010.

[2] The iSCSI Enterprise Target projettttp://iscsitarget.sourceforge.net , July
2010.

[3] S. Aiken, D. Grunwald, A. R. Pleszkun, and J. Willeke. Afoemance analysis of the iISCSI
protocol. InMSS ’03: Proceedings of the 20 th IEEE/11 th NASA Goddard €&ente on

Mass Storage Systems and Technologies (MS§¥@8)e 123, Washington, DC, USA, 2003.
IEEE Computer Society.

[4] A. Aizman and D. Yusupov. Open-iSCSI project: Open-iSCRFC3720 architecture and
implementationhttp://www.open-iscsi.org/ , February 2005.

[5] W. Almesberger. Linux network traffic control - implemtation overview. InProceedings of
5th Annual Linux Expopages 153-164, May 1999.

[6] W. Almesberger. Traffic control - next generatidntp://tcng.sourceforge.net/
October 2004.

[7] A. Bianco, J. Finochietto, M. Modesti, and F. Neri. Dibtrted storage on networks of Linux
PCs using the iISCSI protocol. high Performance Switching and Routing, 2008. HSPR 2008.
International Conference qipages 252 —256, 2008.

[8] M. A. Brown. Traffic control howto. http://tldp.org/HOWTO/
Traffic-Control-HOWTO/index.html , October 2006.
[9] M. Devera. Hierarchical token bucket theotyttp://luxik.cdi.cz/ ~devik/qos/
htb/manual/theory.htm , May 2002.
[10] M. Devera and D. Cohen. HTB Linux queuing discipline mah- user guide.http://
luxik.cdi.cz/ ~ devik/qos/htb/manual/userg.htm , May 2002.
[11] T. Dunigan. TCP auto-tuning zoo. http://www.csm.ornl.gov/ ~dunigan/
netperf/auto.html , February 2006.

[12] C. Gauger, M. Kohn, S. Gunreben, D. Sass, and S. Peredelig and performance evalua-
tion of iISCSI storage area networks over TCP/IP-based MAMWAN networks. InBroad-
band Networks, 2005. BroadNets 2005. 2nd Internationaf€ence onpages 850 —858 \Vol.
2,7-7 2005.

[13] B. Hubert. Linux advanced routing and traffic contromro. http://lartc.org/
howto/ | March 2004.

[14] J. L. Hufferd.iSCSI: The Universal Storage Connectienlume 1. Addison-Wesley Profes-
sional, November 2002.

[15] V. Jacobson, R. Braden, and D. Borman. RFC1323 - TCPnsidas for high performance.
http://www.ietf.org/rfc/rfc1323.txt ,1992.

[16] A. Kuznetsov and D. Torokhov. Token bucket filter queusttp://Ixr.linux.no/
linux+v2.6.33/net/sched/sch_tbf.c#L1 , April 2010.

[17] Lawrence Berkeley National Laboratory. TCP tuningdguihttp://fasterdata.es.
net/TCP-tuning/linux.html , July 2010.

66

http://lxr.linux.no/linux+v2.6.34/Documentation/networking/ip-sysctl.txt
http://lxr.linux.no/linux+v2.6.34/Documentation/networking/ip-sysctl.txt
http://iscsitarget.sourceforge.net
http://www.open-iscsi.org/
http://tcng.sourceforge.net/
http://tldp.org/HOWTO/Traffic-Control-HOWTO/index.html
http://tldp.org/HOWTO/Traffic-Control-HOWTO/index.html
http://luxik.cdi.cz/~devik/qos/htb/manual/theory.htm
http://luxik.cdi.cz/~devik/qos/htb/manual/theory.htm
http://luxik.cdi.cz/~devik/qos/htb/manual/userg.htm
http://luxik.cdi.cz/~devik/qos/htb/manual/userg.htm
http://www.csm.ornl.gov/~dunigan/netperf/auto.html
http://www.csm.ornl.gov/~dunigan/netperf/auto.html
http://lartc.org/howto/
http://lartc.org/howto/
http://www.ietf.org/rfc/rfc1323.txt
http://lxr.linux.no/linux+v2.6.33/net/sched/sch_tbf.c#L1
http://lxr.linux.no/linux+v2.6.33/net/sched/sch_tbf.c#L1
http://fasterdata.es.net/TCP-tuning/linux.html
http://fasterdata.es.net/TCP-tuning/linux.html

[18] VY. Lu, F. Noman, and D. H. C. Du. Simulation study of iS@®ised storage system. In
12th NASA Goddard and 21st IEEE Conference on Mass Storaglensy and Technologies
(MSST2004pages 399-408, 2004.

[19] M. H. MacGregor and W. Shi. Deficits for Bursty Latencyiital Flows: DRR++. INNICON
'00: Proceedings of the 8th IEEE International ConferenceNetworks page 287, Washing-
ton, DC, USA, 2000. IEEE Computer Society.

[20] M. Mathis and R. Reddy. Enabling high performance dedadfers. http://www.psc.
edu/networking/projects/tcptune/ , February 2008.

[21] J. Nagle. RFC896 - congestion control in IP/TCP Inténmeks. http://www.fags.
org/rfcs/rfc896.html , January 1984.

[22] Z. Pang. High Performance Live Migration over Low-Bardth, High-Delay Network with
Loss Prevention. Master’s thesis, University of Albertdptonton, AB, Canada, 2010.

[23] Y. Sheng. Dynamic Network Resource Allocation. Ma'stéhesis, University of Alberta,
Edmonton, AB, Canada, 2010.

[24] M. Shreedhar and G. Varghese. Efficient fair queueinggudeficit round robin. SIGCOMM
Comput.Commun.Re25(4):231-242, 1995.

[25] B. Tierney. TCP tuning techniques for high-speed wdédea networks. http://
fasterdata.es.net/TCP-tuning/TCP-Tuning-Tutorial.pd f , June 2005.

[26] U. Troppens, R. Erkens, W. Mueller-Friedt, R. Wolaflead N. Haustein Storage Networks
Explained: Basics and Application of Fibre Channel SAN, N&ESlI,InfiniBand and FCaE
Wiley Publishing, 2009.

[27] Q. Ye, D. Cui, Z. Wang, L. Wang, and M. H. MacGregor. Lohgul transmission perfor-
mance in the internet. ICNSR '10: Proceedings of the 2010 8th Annual Communication
Networks and Services Research Conferepeges 387-395, Washington, DC, USA, 2010.
IEEE Computer Society.

[28] C. Zhang and M. H. MacGregor. Scheduling latency-caittraffic. a measurement study of
DRR+ and DRR++. IrHigh Performance Switching and Routing, 2002. Merging €gtand
IP Technologies. Workshop ppages 262—267, 2002.

67

http://www.psc.edu/networking/projects/tcptune/
http://www.psc.edu/networking/projects/tcptune/
http://www.faqs.org/rfcs/rfc896.html
http://www.faqs.org/rfcs/rfc896.html
http://fasterdata.es.net/TCP-tuning/TCP-Tuning-Tutorial.pdf
http://fasterdata.es.net/TCP-tuning/TCP-Tuning-Tutorial.pdf

	Introduction
	iSCSI Overview

	Background and Previous Work
	A Few Terms
	Background on iSCSI
	Previous Work on iSCSI Performance
	Previous Work on TCP Tuning
	Traffic Scheduling with Round-Robin Algorithms

	Linux Traffic Control and HTB
	Linux Traffic Control
	Hierarchical Token Bucket
	The Class in HTB and Bandwidth Regulation

	The Implementation of HTB
	Essential Concepts in HTB Algorithm - Level, Priority, and Mode
	Self-feed List, Inner-feed List, Wait List and Direct Queue
	The Enqueue Process of HTB
	The Dequeue Process of HTB

	The Results of iSCSI Traffic Regulation with HTB
	The Test Scheme
	The Effectiveness of HTB for iSCSI Traffic
	The Dynamic Features of HTB
	The Impact of Uncontrolled Traffic

	Open-iSCSI Performance Enhancements
	Experimental Setup
	TCP Flow Control and iSCSI Performance
	TCP Send Buffer Size and Open-iSCSI Performance
	Statically Set TCP Send Buffer Size and iSCSI Performance
	Dynamically Set TCP Send Buffer Size and iSCSI Performance

	The TCP Send Buffer Size in Implementation
	setsockopt() - A Static Approach
	TCP Autotuning - A Dynamic Approach

	Nagle's Algorithm and iSCSI Performance
	use_clustering and iSCSI Performance
	iSCSI Performance Boost Observed with Nagle's Algorithm and use_clustering
	Open-iSCSI Initiator Performance Tuning Suggestions

	Conclusions and Future Work
	Future Work

	Bibliography

