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Abstract

This thesis pursues the study of non-algebraic and non-Kähler compact com-

plex manifolds by traditionally algebraic methods involving sheaves, cohomol-

ogy and K-theory. To that end, Bott-Chern cohomology is developed to com-

plement De Rham and Dolbeault cohomology. The first substantial chapter

is devoted to the construction of Bott-Chern cohomology, including products.

The next chapter is an investigation of Pic0(X) for non-Kähler complex mani-

folds. The next chapter uses line bundles represented by classes in this Pic0(X),

along with Cartier divisors, to define a group of twisted cycle classes, gener-

alizing a previous algebraic definition. On this group of twisted cycle classes,

we use currents to construct a regulator map into Bott-Chern cohomology.

Finally, in a chapter of conjectural statements and future directions, we ex-

plore the possibility of an alternate regulator using a cone complex of currents.

We also conjecturally define a height pairing for certain kinds of compatible

twisted cycle classes.
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Chapter 1

Introduction

1.1 Cohomology Theory

Modern abstract algebra and algebraic geometry begin with classification prob-

lems. Complex analytic geometry can and has often been treated the same way,

by asking the following questions: What are all the complex manifolds? How

do we classify their structure? How do we differentiate between them?

The goal of differentiation between objects leads to the idea of homology and

cohomology. Very broadly speaking, one can interpret the idea of a cohomology

theory as any sufficiently powerful and robust construction which serves to

differentiate between algebraic or topological objects.

The creation of a wide variety of interesting cohomology theories to under-

stand and differentiate between objects has been a major advancement in the

mathematics of the 20th century. However, the most powerful and subtle of

these theories, such as the higher Chow Groups, algebraic K-theory, or the

conjectural theory of motivic cohomology, are exceedingly difficult to calcu-
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late.

This leads to the idea of understanding cohomology theories by investigating

the relationships between them. Maps between cohomologies theories are an

excellent tool to better understand both the domain and target theories. Even

when such a map fails to be injective and loses information, its existence and

the nature of its image can shed a great deal of light on the component pieces

of its domain. One of the most famous instances of such a map is the cycle

class map on Chow groups; its range in Dolbeault cohomology is the subject

of the celebrated Hodge conjecture and remains a central problem in complex

algebraic geometry.

Regulators have their origins in algebraic number theory, where they originally

were used to recover arithmetic information. In algebraic geometry, the term

is used to refer to certain functions from K-theoretic cohomology to more tan-

gible theories. Regulators exists for the higher Chow groups, Milnor K-theory,

and conjecturally on some theory of motivic cohomology, usually taking values

in some version of Deligne cohomology. Such regulator maps and their success

in providing interesting information on algebraic manifolds are motivating ex-

amples for this thesis.

1.2 Algebraic Methods

The whole realm of cohomology theories and regulator maps is, essentially,

part of algebra. The domains of regulators are algebraically constructed the-

ories over objects of algebraic geometry, whether they be complex varieties

or schemes of finite type over an arbitrary ring or field. However, there is
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little reason why such constructions should not apply to objects which, clas-

sically, are excluded from the realm of algebra, provided we have appropriate

sheaf theoretic tools at our disposal. One such arena is that of complex spaces

and analytic complex varieties, where a theory of coherent sheaves is well

developed. This thesis considers that arena by starting with a potentially non-

algebraic and non-Kähler complex manifold and using analytic subvarieties

and a sheaf-theoretic approach to build invariants and regulators for these

complex manifolds.

Such an idea is certainly not new. One could argue that the original source

of the ideas of sheaves and cohomology came from the study of analytic ob-

jects, in the tradition of Henri Cartan. However, particularly since the revo-

lutionary idea of schemes over arbitrary rings was championed by Alexandre

Grothendieck, these sheaf-theoretic methods have mostly been used to study

algebraic varieties. In that arena, enormous progress has been made, particu-

larly in the use of complicated algebraic invariants such as Chow groups and

K-theory. The general question of how much of this progress can be recovered

for analytic objects is extremely interesting to us.

This thesis aims to be a part of the project of adapting algebraic geometric

results to analytic objects. It focuses on a small number of algebraic con-

structions which can be generalized to analytic varieties. We will investigate

Bott-Chern cohomology, which generalizes Dolbeault cohomology for algebraic

varieties. We will look at line bundles over analytic varieties, and investigate

what becomes of the Picard variety. Using line bundles, we will build ana-

lytic twisted cycle classes, generalizing the algebraic construction in [Lew04]

and mimicking the structure of Milnor K-theory. Finally, we shall put this all
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together by constructing regulator maps on these twisted cycle classes into

Bott-Chern cohomology.

Thoughout the thesis, we will keep careful track of how the new material is

related to the original algebraic constructions and where the results of algebraic

geometry start to fail. In particular, we will ensure that the new definitions

coincide with the old when specializing back to algebraic manifolds.
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Chapter 2

Setting and Definitions

2.1 Assumed Material

We hope for this thesis to be readable by other graduate students with back-

grounds in algebra and geometry. The complex analytic content is limited, but

the thesis relies heavily on definitions and ideas from many parts of algebra,

topology and algebraic geometry.

Therefore, we assume the reader has a sufficent background in abstract alge-

bra: groups, rings, fields and modules. In addition, we assume a knowledge of

the definitions and techniques of homological algebra: complexes, exactness,

homology and cohomology of complexes, commutative diagrams and quasi-

isomorphisms. Specifically, the homological algebra that constructs sheaf co-

homology by way of resolutions and derived functors is important for the

majority of Chapter 3.

We also assume the reader is familiar with the basics of real and complex ana-

lytic geometry: analytic functions and their properties; holomorphic and mero-
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morphic functions; poles and residues; manifolds (real and complex); singular

homology and cohomology; De Rham cohomology and Dolbeault cohomology.

Line bundles and their metrics are central to this thesis. We expect that the

reader, being familiar with the topics already listed, is most likely also familiar

with vector bundle constructions. However, since line bundles are so central,

we will review those definitions further along in this chapter. This review also

serves to clarify upon which version of the various definitions of bundles we

will rely.

From topology, in addition to the basics of point-set topology, we rely on

standard homological constructions. In particular, we make use of singular

homology and cohomology and the duality theorems between those theories.

Knowledge of sheaf theory, which forms the core of modern algebraic geometry,

is also necessary. The reader should be familiar with the idea of a sheaf, its

sections, maps, germs and stalks. The calculation of sheaf cohomology by de-

rived functors has already been mentioned; calculation by the Čech resolution

is also important.

As indicated in the introduction, the major parts of this thesis are adapta-

tions of techniques from algebraic geometry to non-algebraic complex mani-

folds. Therefore, the last major area of necessary knowledge involves algebraic

geometry. Though we will not make heavy use of the very powerful machinery

of these areas, the reader would be well served by a familiarity with the ba-

sics of the following subjects: schemes, Hodge theory, Chow groups, Algebraic

K-theory and Milnor K-theory.

Major references for this background material are [Huy05], [GH94], [Har77],

[Voi02], [Lew99], [Dem07] and [GR84].
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2.2 Definitions and Preliminary Results

Though we will be comparing our results with those of algebraic geometry, the

setting for this thesis is the world of complex spaces and analytic varieties. In

that world, smooth complex manifolds, singularities, differential forms, cur-

rents, and coherent sheaves are important. Since we do not assume a general

knowledge of this setting, we start with the following definitions and proposi-

tions.

2.2.1 Definitions concerning Complex Spaces

The first definitions come almost exactly from Chapter 1 of [GR84]. We will

proceed in brief, and we encourage the reader to look to that reference for a

more substantial exposition.

Definition 2.2.1: A ringed space is a topological space X with a sheaf of rings

F . A locally ringed space is a ringed space where all stalks are local rings. A

sheaf of local C-algebras is a sheaf of local rings where each ring of sections

over an open set U is a C-algebra. Equivalently, it is a sheaf of modules over

the constant sheaf C. In addition, the definition imposes that no stalks are zero

rings, which guarantees that the morphism from the constant sheaf C into the

sheaf of local C-algebras is an injection. A locally ringed space is called a C-

ringed space if its sheaf of rings is a sheaf of local C-algebras. A morphism of

ringed spaces (X,F) → (Y,G) consists of a topological map f : X → Y and

a sheaf map f̃ : G → f∗F . An isomorphism of ringed spaces is a morphism

which has a two sided inverse.

Definition 2.2.2: A domain in Cn is an open, connected subset. A complex
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model space is a locally ringed space given by a domain D in Cn and an

ideal sheaf I in OD such that I is locally described by a finite number of

generators. The complex model space is topologically given by the zeros set

of the ideal sheaf, with the sheaf of rings OD/I restricted to this topological

space. Standard results, as in [GR84], show that this space is a C-ringed space.

Definition 2.2.3: A complex space is a C-ringed space X which is locally

isomorphic, as a ringed space, to a complex model space. Its sheaf of rings is

called its structure sheaf and is usually written OX .

Definition 2.2.4: A complex space is reduced if all stalks are reduced rings,

i.e. the stalks have no nilpotent elements. A complex space is locally irreducible

if all stalks are integral domains. A complex space is irreducible if is cannot be

written X = A ∪ B for A,B proper analytic subvarieties. (There are several

other equivalent definition of irreducibility in Theorem 9.1.2 of [GR84].) A

complex space is normal if all stalks are integrally closed in their quotient

rings. A complex space is smooth if it is locally isomorphic to an open set

in Cn. Since all these defintions are local, the same statements hold for the

definitions of a smooth point, normal point, reduced point or irreducible point.

A singular point is any point which is not a smooth point.

Definition 2.2.5: An analytic variety is a reduced complex space. (Note the

use of the word variety is not necessarily consistent throughout the literature.)

We will use the terms irreducible variety, smooth variety and normal variety to

refer to irreducible, smooth, or normal complex spaces, since all three notions

imply that the complex space is reduced.

Definition 2.2.6: A holomorphic map or morphism of analytic varieties is

a morphism of C-ringed spaces between analytic varieties. A biholomorphic
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map is an isomorphism of C-ringed spaces between analytic varieties. A closed

map is a holomorphic map where the image of a closed set remains closed. A

finite map is a closed map where all fibres are finite sets. A proper map is a

holomorphic map where the inverse image of any compact set if compact.

It is easy to see, in the local description, that the notion of a holomorphic map

recovers the ordinary definition of a holomorphic function between subsets of

Cn. The map of ringed spaces requires that holomorphic functions pullback

to holomorphic functions, which is only locally possible for functions which

satisfy the conventional definition of holomorphicity.

The notion of coherence is particularly important in the developments of com-

plex spaces. The formal definition is given in [GR84], particularly in the Annex

at the end of their book.

Definition 2.2.7: Roughly speaking, a sheaf of modules is of finite type if it

is locally generated by a finite number of sections. A sheaf of modules is of

relation finite type if the sheaf of relations between a generating set of sections

is of finite type. A sheaf of modules is coherent if both are true. We also refer

to this as finitely generated and finitely presented (a fairly standard algebraic

term). It is a standard result in Section 2 of [GR84] that structure sheaves and

ideal sheaves of complex spaces are coherent.

Though coherence is important to much of what we consider in this thesis, we

will usually supress notions of coherence and make use of the standard results

that guarantee coherence.
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2.2.2 Definitions concerning Currents

These definitions and results are taken from Chapter 1, Section 2 of [Dem07],

as well as from the paper [Kin71].

Definition 2.2.8: There is a topology on the space of differential forms ArX(X),

defined in Chapter I, Definition 2.2 of [Dem07], and a similar topology on the

space of differential forms with compact support Arc.

In Section 2.1 of [Kin71], we are given the useful characterization of limits in

this topology: a sequence of global forms converges to a limit if the local de-

scriptions of those forms, along with all higher derivatives, converge uniformly

in compact subsets of the local neighbourhood.

Definition 2.2.9: The sheaf of currents on X, written Dr, is the topological

dual of Arc. With raised indices, this is written D2d−r = Dr. This sheaf decom-

poses by types: Dn = ⊕p+q=nDp,q. The currents in Dp,q are those which are

supported on An−p,n−q.

There are two important examples of currents. First, given a form η ∈ Ap,q,

the current σ 7→
∫
X
η ∧ σ is a current in Dp,q. This provides an injective map

Ap,q ↪→ Dp,q. The notation δη for the current associated with the form η is

relatively standard. However, we will often abuse notation and simply write η

for both the form and the current associated with that form.

Second, for any subvariety Z in X of codimension r (even singular analytic

subvarieties), the integration over Z acts on 2n− 2r forms, giving a current in

Dr. We call these, unsurprisingly, analytic currents of integration.

Definition 2.2.10: By duality, currents act very much like differential forms

and we can define the exterior derivative d, as well as its components ∂ and
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∂, in the natural way on currents. If ω is a test form, then dσ(ω) := ±σ(dω),

and similarly for ∂ and ∂.

Definition 2.2.11: Let f : X → Y be a proper holomorphic map of reduced

complex spaces. If τ is a current on X and ω a test form on Y , then the

pushforward is defined as follows.

f∗τ(ω) := τ(f ∗ω) (2.2.1)

Pullbacks, in general, do not exist for currents.

2.2.3 Definitions concerning Line Bundles

There are a number of ways to define bundles over manifolds and varieties.

The following is a fairly standard definition of line bundles.

Definition 2.2.12: A holomorphic line bundle L over a complex manifold X

is a manifold E with a holomorphic map π : E → X such that the fibres

of the map are isomorphic, as complex manifolds, to C. In addition, there

must be an open cover Ui of X and isomorphisms of complex manifolds ri :

π−1(Ui) ∼= Ui×C, which are refered to as local trivializations. Moreover, these

isomorphisms must be linear maps, i.e. multiplication by a non-zero constant,

when restricted to each of the fibres.

Definition 2.2.13: A map of line bundles is a map of manifolds which com-

mutes with the projections to X and induces linear maps on the trivializations.

An isomorphism is an invertible map which induces isomorphisms on trivial-

izations.

11



On an intersection Ui ∩ Uj, this definition gives a nowhere vanishing function

lij := ri/rj which, fibrewise, describes the linear map between the trivializa-

tion over Ui and that over Uj. The collection of such functions clearly satisfies

lij = (lji)
−1, as well as the cocycle condition lijljk = lik. The line bundle can

be completely described by these transition functions: the manifold E can be

recovered by considering the disjoint union of the sets Ui × C and making

identifications on the intersections Ui ∩UJ via the functions lij. The holomor-

phic nature of the line bundle is captured by the fact that the functions lij

are holomorphic functions. We essentially use the following alternate definition

throughout the thesis.

Definition 2.2.14: A holomorphic line bundle L over a complex manifold X is

given by an open cover U = Ui of X along with nowhere vanishing holomorphic

functions lij on Ui∩Uj which satisfy a cocycle condition on triple intersections:

lijljk = lik. We call the collection {lij} the cocycle of transition functions.

Definition 2.2.15: The tensor product of line bundles of the line bundles {lij}

and {kij} is the line bundle given by the cocycle {lijkij}. The inverse of a line

bundle {lij} is the line bundle given by the cocycle {(lij)−1}.

Definition 2.2.16: The Picard Group of X, written Pic(X), is the group of

isomorphism classes of line bundles. It is a group by the previously stated

product operation, with the trivial line bundle C×X as the identity element.

Proposition 2.2.17: There is an isomorphism Pic(X) ∼= H1(X,O×X)

Proof. This is a standard result, found, for example, in Corollary 2.2.10 in

[Huy05]. The cocycle of transition functions is a Čech cocyle with coefficients in

O×X , and this map simply takes that cocycle to its Čech cohomology class.
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So far, we’ve considered line bundles over complex manifolds. However, line

bundles can be defined via transition functions even over arbitrary analytic

varieties. The following definition follows from page 32 of [GR84].

Definition 2.2.18: A line bundle over an analytic complex variety is given

by an open cover U and a cocycle {lij} of sections of O×X over the open sets of

U . The lij are still called transition functions of the line bundle, even though

the sheaf O×X is no longer aprioric a sheaf of functions.

Since these line bundles are defined by transition functions, any constructions

via transition functions are preserved, including products and inverses as pre-

viously stated in Definition 2.2.15.

Line bundles are often accessed by studying divisors. In this thesis, we work

almost exclusively with Cartier divisors.

Definition 2.2.19: A Cartier divisor on X is a global section of the quotient

sheaf M×
X/O

×
X . Equivalently, it is given by an open cover U that is acyclic

for the sheaf O× and meromorphic functions ci ∈ M×
X(Ui) such that ci/cj ∈

O×X(Ui ∩ Uj).

There is a straightforward identification between Cartier divisors and mero-

morphic sections of line bundles. A Cartier divisor described by ci gives rise

to a line bundle by the fact that ci/cj define a cocycle of transition functions.

In the line bundle described by those transition functions, the Cartier divisor

ci is nothing more than a meromorphic section.

13



2.2.4 Standard Results

There are some standard results which we review in this section. We do this

both for the sake of readers who might not be familiar with them, and for the

sake of stating them for easy reference.

Proposition 2.2.20: Differential forms pullback under proper maps. The push-

forward of currents is defined to be the current acting on the pullback of a form,

i.e. f∗η(ω) := η(f ∗ω), so currents pushfoward under proper maps.

This is standard for forms, and from Section 2.C.1 of Chapter 1 of [Dem07]

for currents.

Proposition 2.2.21: Direct products of complex spaces exist, and the topolog-

ical space of the direct product is the direct product of the topological spaces.

This is a theorem on page 26 of [GR84].

The various versions of the Poincaré Lemma are important. We state it here

for C-valued forms and currents, even though it is mostly a result of real

differential geometry.

Proposition 2.2.22: Let ∆ be an open polydisc in Cn. If ω is a differential

form on ∆ and T is a current on ∆, then the following are true.

• If dω = 0, then there exists a form η with dη = ω.

• If ∂ω = 0, then there exists a form η with ∂η = ω.

• If ∂ω = 0, then there exists a form η with ∂η = ω.

• If dT = 0, then there exists a current S with dS = T .
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• If ∂T = 0, then there exists a current S with ∂S = T .

• If ∂T = 0, then there exists a current S with ∂S = T .

The first three results are found in [Huy05], particularly Proposition 1.3.9. The

fourth and fifth are found in [Dem07], Chapter I, Proposition 2.2.4, and the

sixth follows easily from those.

The following corollary of the Poincaré Lemma will be used frequently. We

refer to this as the Poincaré Corollary throughout the thesis.

Corollary 2.2.23: The Poincaré Lemma shows that the sequence of sheaves

Ar−2 → Ar−1 → Ar → Ar+1 is exact for r ≥ 2. Tracing the isomorphisms of

images and kernels provided by this exact sequence gives the following isomor-

phisms.

Ar−1

dAr−2
=

Ar−1

Ker(d : Ar−1 → Ar)
∼= dAr−1 = Ker(d : Ar → Ar+1) (2.2.2)

The isomorphism in the middle is realized by the differential d : Ar−1 → Ar.

The same is true for the ∂ and ∂ operators. Restricted to acting on the sheaves

Ω and Ω, respectively, we have the following isomorphisms.

Ωr−1

∂Ωr−2
=

Ωr−1

Ker(∂ : Ωr−1 → Ωr)
∼= ∂Ωr−1 = Ker(∂ : Ωr → Ωr+1) (2.2.3)

Ω
r−1

∂Ω
r−2 =

Ω
r−1

Ker(∂ : Ω
r−1 → Ω

r
)
∼= ∂Ω

r−1
= Ker(∂ : Ω

r → Ω
r+1

) (2.2.4)

Again, the isomorhpisms in the middle are realized, respectively, by the differ-
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entials ∂ and ∂.

Similar results hold for the equivalent sequences defined in terms of currents

instead of forms.

Another very useful result is the ∂∂ lemma:

Proposition 2.2.24: If ω is a d-closed differential form of type (p, q), either

on a polydisc ∆ in Cn or on an arbitrary Kähler manifold X, then the following

are equivalent.

• ω is d-exact.

• ω is ∂-exact.

• ω is ∂-exact.

• ω is ∂∂-exact.

This can be found in [Huy05] Proposition 3.2.10.

An important result about currents is the following, which is known as the

regularity theorem for currents. This is from Chapter 3, Section 1 of [GH94].

Proposition 2.2.25: If T is a holomorphic current on a complex manifold

X, then there exists a holomorphic form η such that T is of the form

ω 7→
∫
X

ω ∧ η (2.2.5)

When working with sheaf cohomology and considering local sections, the fol-

lowing result becomes very useful.
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Definition 2.2.26: An acyclic open cover of a complex space with regards to

a sheaf F is a countable open cover U = {Ui|i ∈ I} such that for any subset

J ⊂ I, and for any q > 0, the following statement holds.

Hq(∩i∈JUi,F) = 0 (2.2.6)

Proposition 2.2.27: If U is an acyclic open cover of X with regards to the

sheaf F , then it calculates Čech cohomology.

Hp(X,F) = Ȟ(U ,F) (2.2.7)

This is from [Voi02] Theorem 4.41. For complex manifolds, open covers by

polydiscs are acyclic for the structure sheaf and other coherent sheaves. For

analytic varieties, we have the following two propositions.

Proposition 2.2.28: Coverings of analytic varieties by Stein spaces are acyclic

for any coherent analytic sheaf.

Proposition 2.2.29: Any analytic variety admits a Stein covering.

These are found on page 35 of [GR84]. They allow us to freely use acyclic

covers for coherent sheaves, which is extremely convenient. For those familiar

with schemes theory, Stein spaces act, in some ways, like affine schemes.

Frequently in the thesis, we consider integrals with polar coefficients. Though

we could deal with convergence arguments for those integrals as we come to

them, it is convenient to collect those arguments together at this point.

Proposition 2.2.30: The integrals in Equations 6.1.3 and 6.2.2 and the four

integrals in Equation 7.1.2 are convergent.
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Proof. We establish this result by appealing to the literature, where the con-

vergence of these integrals are established over projective algebraic manifolds.

For example, convergence of one of these integrals is explicitly considered in

Lemma 3.1 in [Gon95], and the convergence of two of the others is implicit in

the papers [Lew01] and [Lew04]. The style of these arguments is to use local

coordinates and resolution of singularities to reduce to integrals on a poly-

disc in Cn which are polar along a normal crossing divisor. Then standard

arguments of several complex variables ensure that such integrals take finite

values.

These arguments are entirely complex-analytic in nature and are not depen-

dent on the assumption of a projective algebraic structure. Therefore, they

continue to hold in our non-algebraic environment.

Finally, the ability to make modifications to remove singularities of analytic

varieties is extremely important. The classic reference for this is the paper

[Hir64], which establishes resolution of singularities for both algebraic and

analytic varieties. This definition of modifications is from II.10.1 in [Dem07].

Definition 2.2.31: A proper modification of an analytic variety Z is a proper

map f : Z̃ → Z such that f is proper and there exists a nowhere dense closed

analytic subset B ⊂ Z such that the restriction f : Z̃\f−1(B) → Z\B is an

isomorphism.

Proposition 2.2.32: If Z is a singular reduced analytic variety, there exists

a proper modification of Z to a smooth analytic variety.

Though this is an important issue, we generally supress the idea of desingu-

larizations and proper modifications throughout the thesis. When necessary,
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modifications will be implicit in our constructions of objections and integrals.
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2.3 Notations

Here is a list of notation used in this thesis. In this table, X is a topologi-

cal space, analytic variety or complex manifold as necessary. The subscripts

refering to the space X are often dropped when the space is understood.

Notation Object

ApX,R Sheaf of C∞ R-valued differential forms on X

ApX Sheaf of C∞ C-valued differential forms on X

Ap,qX Sheaf of forms of type p, q

OX Structure sheaf of a complex space X

OX Sheaf of holomorphic functions on a complex manifold X

OX Sheaf of anti-holomorphic functions on X

O×X Sheaf of nowhere vanishing holomorphic functions on X

O×X Sheaf of nowhere vanishing anti-holomorphic functions

MX Sheaf of meromorphic functions on X

M×
X Sheaf of non-zero meromorphic functions on X

Ωp
X Sheaf of holomorphic 0, p-forms

Ωp
D Sheaf of holomorphic 0, p-currents

Ω
q

X Sheaf of anti-holomorphic 0, q-forms

Ω
q

X,D Sheaf of anti-holomorphic 0, q-currents

Dr Compactly supported currents of type r on X,

= D2n−r topological dual to Ar
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Notation Object

Dp,q Compactly supported currents of type p, q on X,

= Dn−p,n−q topological dual to Ap,q

Hn(X,R) Singular cohomology of X with coefficients in R

Ȟn(U , R) Čech cohomology of X with cover U and coeff. R

Hn(F•) Cohomology of a complex of sheaves

Hn(X,F•) Hypercohomology of a complex of sheaves F• on X

HDR(X,R) De Rham cohomology of X with coefficients in R

Hp,q(X) Dolbeault cohomology of X

HBC(X,R) Bott-Chern cohomology of X with coefficients in R

HAp(X,R) Aeppli cohomology of X with coefficients in R

HD(X,R) Deligne cohomology of X with coefficients in R

Pic(X) Picard Group of X

Pic0(X) Picard Variety of X

δω Current of integration associated with a form ω

π, πr πp,q Various projections as defined in the text

d Ordinary differential of forms or currents d followed

by projection on an appropriate degree

Ker(F f→ G) Kernel sheaf of a map of sheaves f

Im(F f→ G) Image sheaf of a map of sheaves f
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Notation Object

L•p,q Complex of sheaves defining B-C cohomologies

M•
p,q Complex of sheaves defining B-C cohomologies

S•p,q Complex of sheaves defining B-C cohomologies

B•p,q Complex of sheaves defining B-C cohomologies

F•[n] Complex of sheaves shifted n to the right

F•[−n] Complex of sheaves shifted n to the left

R(p) Tate twist on a subring of R

R(p)•D Deligne complex for R(p)

R(p)
•
D Anti-holomorphic Deligne complex for R and subring of C

εD Map from Bott-Chern to Deligne cohomology

εD Map from Bott-Chern to Anti-Holomorphic Deligne

F sF• Hodge filtration on a complex of sheaves

Zr,sD Sheaf Kernel of ∂ : Dp,q → Dp,q+1

δ Čech differential

φq Projection onto antiholomorphic degree < q

D•<q Sheaves of currents with anti-holomorphic degree < q

A•<q Sheaves of forms with anti-holomorphic degree < q

Cone(A• → B•) Cone complex of a map of complexes of sheaves

◦ Product of cone complexes

L = {lij} Line bundle by transition functions

FLB Group of flat line bundles in Pic0(X)

FLS Group of FLB with non-zero meromorphic sections
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Notation Object

|σ| or |σ|L Metric on a line bundle L applied to a section σ

DST Cartier divisors corresponding to densely stably trivial bundles

Ω̂p Forms in Ωp which are d-closed, equivalantly ∂-closed

Čr(U , X) Group of Čech cocycles

Hn
tor(X,Z(r)) Torsion subgroup of singular cohomology

Z̃ → Z Desingularization of a singular analytic variety Z

AnZ Twisted cycles on a subvariety Z

T (R) Tensor algebra of a module R

zk(X,m) Analytic twisted cycles of codim k and rank m on X

{σ1, . . . , σm}Z Basic element of zk(X,m)

TmD Tame symbol for a given subvariety D

Tm Tame symbol

νD Discrete valuation given by a subvariety D

k(νD) Residue field

Π Special basis element for κ-algebra

∂φ A κ-algebra map

∂νD A κ-algebra map

V k(X,m) Twisted cycle classes of rank m and codimension k −m

? Product on Čech complexes

∩ Various intersections and similar products

〈·, ·〉 Height pairings
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2.4 Global Assumptions

Throughout the thesis, the following assumptions will hold. X will always

be a smooth, compact complex manifold of dimension d. Z will always be

an irreducible analytic subvariety. We do not assume that X is projective

algebraic or Kähler. We work exclusively with the strong topology of X.
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Chapter 3

Bott-Chern Cohomology

3.1 C-Valued Bott-Chern Cohomology

The constructions for this section on Bott-Chern cohomology are taken mostly

from the online book [Dem07] and the unpublished thesis by Demailly’s former

student [Sch07]. The former is a good reference, but the latter is the major

source of inspiration for this section of the thesis. For the latter, as an unpub-

lished work, we try to be very careful to check the calculations and provide

proofs when necessary; however, that should not distract from the intellectual

debt we owe to that work.

We start with the basic definition. In a non-algebraic context, Bott-Chern

cohomology is a variant of the standard De Rham and Dolbeault cohomologies

and is calculated by differential forms. As a note, we will often carelessly use

the term ‘Bott-Chern cohomology’ to include both the Bott-Chern and Aeppli

versions, since they are so closely connected.

Definition 3.1.1: The Bott-Chern cohomology of X, with complex coeffi-
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cients, is defined as follows.

Hp,q
BC(X,C) :=

Ker(d : Ap,q(X)→ Ap+q+1(X))

∂∂Ap−1,q−1(X)
(3.1.1)

Sometimes the numerator here is written Ker∂ ∩ Ker∂, which gives the same

thing given that d = ∂ + ∂.

Note that the denominator is trivial if either p = 0 or q = 0. If, for example

q = 0, then Bott-Chern cohomology simply captures the (finite dimensional)

vector space of global closed holomorphic p-forms.

Definition 3.1.2: The Aeppli cohomology is similarly defined:

Hp,q
Ap(X,C) :=

Ker(∂∂ : Ap,q(X)→ Ap+1,q+1(X))

∂Ap−1,q(X) + ∂Ap,q−1(X)
(3.1.2)

Definition 3.1.3: There are maps from these cohomologies to the De Rham

groups as follows.

Hp,q
BC(X,C)→ Hp+q(X,C) Hp,q

Ap(X,C)→ Hp+q+1(X,C) (3.1.3)

Assume the De Rham groups are given as the quotients of d-closed forms by

d-exact forms. Then the map on Bott-Chern is given by the identity on forms,

since Bott-Chern classes are given by d-closed forms and ∂∂-exact forms are

also d-exact. The map on Aeppli cohomology is given by ∂ acting on forms,

since ∂ maps ∂∂-closed forms to d-exact forms and ∂ or ∂-exact forms to

d-exact forms.
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3.1.1 Products on C-Valued Bott-Chern Cohomology

It is straightfoward to define two products on Bott-Chern cohomologies with

complex coefficients.

Proposition 3.1.4: The exterior derivative of forms is well defined on the

classes defining Bott-Chern and Aeppli cohomologies, giving two products:

∧ : Hp,q
BC(X,C)×Hr,s

BC(X,C)→ Hr+p,s+q
BC (X,C) (3.1.4)

∧ : Hp,q
BC(X,C)×Hr,s

Ap(X,C)→ Hr+p,s+q
Ap (X,C)

Proof. This is almost immediate: it is only necessary to check that the product

preserves the relations defining these groups. In the numerators: the product

of d-closed forms remains d-closed, and the product of a d-closed form and

a ∂∂-closed form is ∂∂-closed. In the denominators: the product of ∂∂-exact

forms remains ∂∂-exact, and the product of a ∂∂-exact form with a ∂-exact

or ∂-exact forms remains, respectively, ∂-exact or ∂-exact.

The first product gives a ring structure on the direct product of all bidegrees of

Bott-Chern cohomology. However, unlike the Dolbeault cohomology on smooth

manifolds, this ring does not give a Serre duality result. The second product

is required for a duality. In degree (n, n), the denominator is equivalent to

dA2n−1(X), which shows that Hn,n
Ap (X,C) ∼= Hn

DR(X,C) ∼= C. This leads to

the following result.

Proposition 3.1.5: The product in Proposition 3.1.4 gives a perfect pairing.
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∧ : Hp,q
BC(X,C)×Hn−p,n−q

Ap (X,C)→ C (3.1.5)

Proof. This proof is from [Sch07]. It relies on the theory of harmonic forms

describing Bott-Chern and Aeppli cohomology, which we do not investigate in

this thesis. In summary, there are elliptic operators ∆̃BC and ∆̃Ap such that

Bott-Chern and Aeppli cohomology are realized as the harmonic forms under

these operators, respectively. Then the proof of duality is reduced to a simple

calculation.

u ∈ Hp,q

∆̃BC
(X)⇒ ∂u = 0, ∂u = 0, (∂∂)∗u = 0 (3.1.6)

⇒ ∂
∗
(∗u) = 0, ∂∗(∗u) = 0, ∂∂(∗u) = 0

⇒ ∗u ∈ Hn−p,n−q
∆̃Ap

(X)

Note that there is no product pairing classes from Aeppli cohomology with

classes from Aeppli cohomology. The exterior derivative preserves neither the

numerator defining Aeppli cohomology, nor the denominator. This is an im-

portant difference when working with Bott-Chern and Aeppli cohomology, as

compared to De Rham and Dolbeault cohomology, and it complicates products

in many situations, as shall be seen in Section 3.9.
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3.2 Bott-Chern Hypercohomology

The definition by differential forms is convenient for its simplicity, but lack-

ing in flexibility. Therefore, following the constructions suggested in [Dem07],

which are elaborated on in [Sch07], we define Bott-Chern cohomology as the

hypercohomology of a complex of sheaves.

Before starting the hypercohomology constructions, the following result must

be established. This is essentially a version of the Poincaré Lemma for Aeppli

cohomology, identifying that Aeppli classes are locally trivial. Since our use

concerns complexes of sheaves, we prove a sheaf-theoretic version of the result.

Lemma 3.2.1: Let 0 ≤ p < n and 0 ≤ q < n. Then the kernel sheaf of ∂∂

acting on forms of fixed bidgree (p, q) is:

Ker(∂∂ : Ap,q → Ap+1,q+1) = Ap,q∂−closed +Ap,q
∂−closed

(3.2.1)

Proof. The inclusion of the right-hand side in the ∂∂-kernel is immediate, so

it is only necessary to prove the opposite inclusion. To do so, we work with

germs of forms, considering only a small polydisc neighbourhood of the stalk

where we can apply the Poincaré Lemma.

Assume that η is a ∂∂-closed locally defined (p, q)-form. The Poincaré Lemma

(Proposition 2.2.22) implies that there exists a form τ such that ∂η = ∂τ , i.e.

∂η is ∂-exact. By Proposition 2.2.24, since ∂η is of a single bidegree, ∂η is also

∂∂-exact. Therefore, there exists a form ν such that ∂η = ∂∂ν.

Then ∂(η − ∂ν) = 0, so there exists a form σ with (η − ∂ν) = ∂σ, which is

η = ∂σ + ∂ν, completing the proof.
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In order to define the complex of sheaves which will eventually calculate Bott-

Chern cohomology, we must proceed in two cases based on the bidegree of

Hp,q
BC(X,C). The two cases are the case where p ≥ 1 and q ≥ 1 (which we

call the strictly positive case), and the case where p, q, or both are 0 (which

we call the case allowing degree zero). Those cases determined the necessary

definitions; inside those cases, in order to do proofs and calculations, we also

consider a variety of subcases.

3.2.1 Strictly Positive Bidegrees

Definition 3.2.2: For each strictly positive bidegree (p, q), we define the com-

plex Lp,q and its differentials as follows.

Lkp,q =
⊕
r+s=k
r<p, s<q

Ar,s if k ≤ p+ q − 2 (3.2.2)

Lkp,q =
⊕

r+s=k+1
r≥p s≥q

Ar,s if k ≥ p+ q − 1

dkp,q = d if k < p+ q − 2

dp+q−2
p,q = ∂∂

dkp,q = d if k > p+ q − 2

Recall that we write πp,q for the projection onto a given bidegree of forms

or currents and that we use d to mean the normal differential d followed by

projection onto whatever bidegree(s) are necessary to give a form in the target

space. To clarify this implied projection, consider two examples. If p = 3 and
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q = 4, then L1
3,4 = A1,0 ⊕ A0,1 and L2

3,4 = A2,0 ⊕ A1,1 ⊕ A0,2. In this degree,

no projection is necessary, since the restrictions r < 3 and s < 4 are trivially

satisfied. Here d is simply d. Later on, we have L3
3,4 = A2,1 ⊕A1,2 ⊕A0,3 and

L4
3,4 = A2,2 ⊕A1,3. Here the image of d on L3

3,4 gives a form in A3,1 ⊕A2,2 ⊕

A1,3 ⊕ A0,4. To satisfy the restrictions and give a form in L4, the projection

here is projection onto the middle two components, so d = (π2,2 + π1,3) ◦ d.

The following proposition concerning the cohomology of the L•p,q complex is

from [Dem07]. The proof is done in brief in that reference, so we give a detailed

version here.

A caution should be noted concerning the calculation of the cohomology of the

L•p,q complex. By cohomology here, we simply mean the quotients of kernels

modulo images in the complex; these quotients are still sheaves. This is very

different from the eventual calculation of sheaf cohomology, where we calculate

hypercohomology by taking resolutions and using the derived functors asso-

ciated with the global section function. Even though both constructions use

the term cohomology liberally, it is important not to confuse them. In addi-

tion, a quasi-isomorphism of complexes is, by definition, a map which induces

an isomorphism on the level of the cohomology of the complexes. A quasi-

isomorphism also gives rise to an isomorphism on hypercohomology, but that

is an important theorem, not part of the definition.

Proposition 3.2.3: The cohomology of the complex L•p,q vanishes in all degrees

except 0, p− 1 and q − 1. In those degrees, cohomology is calculated in cases.

Case 1: If p ≥ 2, q ≥ 2, and p 6= q then all three degrees are distinct.

31



H0(L•p,q) = C Hp−1(L•p,q) =
Ωp−1

∂Ωp−2
Hq−1(L•p,q) =

Ω
q−1

∂Ω
q−2 (3.2.3)

Case 2: If p = q ≥ 2, then only degrees 0 and p− 1 are nonvanishing.

H0(L•p,p) = C Hp−1(L•p,p) =
Ωp−1

∂Ωp−2
⊕ Ω

p−1

∂Ω
p−2 (3.2.4)

Case 3: If p = 1 and q ≥ 2, then only degrees 0 and q − 1 are nonvanishing.

H0(L•p,q) = O Hq−1(L•p,q) =
Ω
q−1

∂Ω
q−2 (3.2.5)

Case 4: If p ≥ 2 and q = 1, then only degrees 0 and p− 1 are nonvanishing.

H0(L•p,q) = O Hp−1(L•p,q) =
Ωp−1

∂Ωp−2
(3.2.6)

Case 5: If p = q = 1, then only degree 0 is nonvanishing.

H0(L•p,q) = O +O (3.2.7)

Proof. The proof proceeds in the same cases as the statement of the proposi-

tion.

Case 1: (p ≥ 2, q ≥ 2, p 6= q)

Assume, without loss of generality, that p < q. (The case q < p proceeds

precisely in parallel.) Isolating degree zero gives this sequence.

0→ A0,0 d→ A1,0 ⊕A0,1 (3.2.8)
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The 0th cohomology of L•p,q is the sheaf Ker{A0,0 d→ A1,0⊕A0,1}. Since A0,0 is

simply the sheaf of functions and since functions which have zero differentials

are locally constant, this kernel is simply the constant sheaf C. This gives the

conclusion that H0(L•p,q) = C.

For degrees 0 < i < p− 1, the complex L•p,q has these terms.

[
Ai−1,0 ⊕ . . .⊕A0,i−1

] d→ (3.2.9)[
Ai,0 ⊕ . . .⊕A0,i

] d→[
Ai+1,0 ⊕ . . .⊕A0,i+1

]

These degrees are exact on the stalks by the Poincaré Lemma (Proposition

2.2.22). Exactness on the stalk implies exactness on the sheaf level, so the

cohomology sheaves in these degrees vanish.

The next term is at degree p− 1.

[
Ap−2,0 ⊕ . . .⊕A0,p−2

] d→ (3.2.10)[
Ap−1,0 ⊕ . . .⊕A0,p−1

] d→[
Ap−1,1 ⊕ . . .⊕A0,p

]

The only difference between this degree and the previous is that the target

space lacks the component Ap,0, which affects the kernel of the differential.

Restricted to the sheaves Ap−2,1⊕ . . .⊕A0,p−1, the kernel is the set of d-closed

forms. By the Poincaré Lemma (Proposition 2.2.22), the complex is exact on

all these component sheaves, since locally d-closed forms are d-exact. This
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leaves only the kernel restricted to Ap−1,0. Here the image of the ∂ portion of

the differential would land in Ap,0, which is excluded from the target space.

Therefore, the differential is only the ∂ part of d, and the kernel consists of

forms in Ap−1,0 which are ∂-closed, i.e. Ωp−1.

The image of the previous differential, restricted to the summand Ap−1,0 is

∂Ap−2,0. Since L•p,q is a complex, this is necessarily a subset of Ωp−1, so these

∂-exact forms are ∂-closed. Since ∂ and ∂ commute, up to a sign, this image

is the same as ∂Ωp−2. We conclude the the cohomology in degree p − 1 is

described by the following quotient sheaf.

Hp−1(L•p,q) =
Ωp−1

∂Ωp−2
(3.2.11)

Then, for degrees p− 1 < i < q − 1, we have these terms.

[
Ap−1,i−p ⊕ . . .⊕A0,i−1

] d→ (3.2.12)[
Ap−1,i−p+1 ⊕ . . .⊕A0,i

] d→[
Ap−1,i−p+2 ⊕ . . .⊕A0,i+1

]

Again, by the Poincaré Lemma (Proposition 2.2.22), using both the ∂ and ∂

version of that result, this is exact on the stalks, so the cohomology of the

complex is trivial.

At degree q − 1 we have these terms.
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[
Ap−1,q−p−1 ⊕ . . .⊕A0,q−2

] d→ (3.2.13)[
Ap−1,q−p ⊕ . . .⊕A0,q−1

] d→[
Ap−1,q−p+1 ⊕ . . .⊕A1,q−1

]

As in degree p − 1, the only part of this which contributes is the following

sequence.

A0,q−2 d→ A0,q−1 d→ A1,q−1 (3.2.14)

By the same reasoning as in the degree p− 1 case, the kernel at this degree is

Ω
q−1

and the image is ∂Ω
q−2

, so the cohomology is the quotient sheaf.

Hq−1(L•p,q) =
Ω
q−1

∂Ω
q−2 (3.2.15)

For degrees q − 1 < i < p+ q − 3, we have these terms.

[
Ap−1,i−p ⊕ . . .⊕Ai−q,q−1

] d→ (3.2.16)[
Ap−1,i−p+1 ⊕ . . .⊕Ai−q+1,q−1

] d→[
Ap−1,i−p+2 ⊕ . . .⊕Ai−q+2,q−1

]

For degrees p+ q − 3, p+ q − 2 and p+ q − 1, we have these terms.
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[
Ap−1,q−3 ⊕Ap−2,q−2 ⊕Ap−3,q−1

] d→ (3.2.17)[
Ap−1,q−2 ⊕Ap−2,q−1

] d→ Ap−1,q−1 ∂∂→

Ap,q d→
[
Ap+1,q ⊕Ap,q+1

]

For all higher degrees, we have the the complex of forms Ar,s with r ≥ p and

s ≥ q and with the differential simply d.

In all these last three cases, the Poincaré Lemma (Proposition 2.2.22) shows

that everything is exact on the stalks, so all cohomology vanishes. We make

use of the ∂∂-lemma (Proposition 2.2.24) in the cases which involve ∂∂ instead

of the normal differential d. This is justified since, at this point, the forms in

Ap,q or Ap−1,q−1 are of a single bidegree, and the ∂∂-lemma applies.

Case 2: p ≥ 2, q ≥ 2, p = q.

In this case, everything is precisely the same as Case 1 except in degree p−1 =

q − 1. At that degree the complex is as follows.

[
Ap−2,0 ⊕ . . .⊕A0,p−2

] d→ (3.2.18)[
Ap−1,0 ⊕ . . .⊕A0,p−1

] d→[
Ap−1,1 ⊕ . . .⊕A1,p−1

]

We have contributing terms on both ends of the direct sum. These terms are

calculated as in Case 1 in degree p − 1 and q − 1, and the calculations are

independent of each other since p ≥ 2 and q ≥ 2. This gives the following
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cohomology.

Hp−1(L•p,q) =
Ωp−1

∂Ωp−2
⊕ Ω

p−1

∂Ω
p−2 (3.2.19)

Case 3: p = 1 and q ≥ 2.

All degrees other than 0 and q − 1 are the same as Case 1. At degree 0, we

have these terms.

0→ A0,0 ∂→ A1,0 (3.2.20)

The kernel of ∂ is the sheaf of holomorphic functions O.

At degree q − 1 we have the following complex.

A0,q−2 ∂→ A0,q−1 ∂∂→ A1,q (3.2.21)

The kernel, by Lemma 3.2.1, is A0,q−1
∂−closed+A0,q−1

∂−closed
. The image of the previous

map is ∂A0,q−2. In the second component, the quotient is trivial by the ∂-

version of the Poincareé Lemma (Proposition 2.2.22). In the first component,

the numerator is Ω
q−1

and the denominator is ∂Ω
q−2

, which gives the desired

cohomology.

Case 4: q = 1 and p ≥ 2.

This is precisely in parallel with the argument given in the Case 3, with holo-

morphic and anti-holomorphic forms and differentials reversed.

Case 5:

Past degree 0, the complex is exact by the arguments given in Case 1. At
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degree zero, we have these terms.

0→ A0,0 ∂∂→ A1,1 (3.2.22)

By Lemma 3.2.1, the kernel here is O + O. This is the desired cohomology

sheaf, which completes the last of the five cases.

Now that L•p,q and its cohomology are known, we want to construct new se-

quences of sheaves which will be easier to work with but recover the same

hypercohomology. To that end, we use the following definitions from [Sch07].

Definition 3.2.4: The S•p,q complex of sheaves is defined in two cases. In the

first case, assume p = q.

S•p,p := 0→ O +O → Ω1 ⊕ Ω
1 → . . .→ Ωp−1 ⊕ Ω

p−1 → 0 (3.2.23)

The sheaf O + O is in degree 0. Note here that the sum in degree 0 is not

direct. The differentials are (∂, ∂), both acting on the one element in degree 0

and acting componentwise in positive degrees. In the second case, first assume

p > q.

S•p,q :=0→ O +O → Ω1 ⊕ Ω
1 →

. . .→ Ωq−1 ⊕ Ω
q−1 → Ωq → . . .→ Ωp−1 → 0 (3.2.24)

The differentials are similarly (∂, ∂) up to term q−1 and ∂ from q−1 onward.
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If instead we assume q > p, then the definition is a mirror of this, with a trail

of purely antiholomorphic forms and a differential of ∂ from p− 1 onward.

The complex S•p,q is a subcomplex of L•p,q, so the inclusion provides a map

S•p,q → L•p,q.

Definition 3.2.5: We define B•p,q very similarly.

B•p,q = 0→ C→ O⊕O → Ω1 ⊕ Ω
1 → . . . (3.2.25)

The definition assumes that B•p,q continues in the same pattern as S•p,q, depend-

ing on p and q as in the cases above. The map C → O ⊕ O is z 7→ (z,−z).

Unlike the S•p,q complex, the product O ⊕O is direct.

We have a choice on the indexing of this B•p,q complex. We can match the

indexing of the L•p,q and S•p,q complexes, where the term O ⊕ O is in degree

zero, or we can make the more natural choice of C in degree zero. Another

consideration is that the definition of Deligne cohomology involves a similar

complex, with C in degree 0. In the interest of matching up well with the

Deligne complex, we make that choice and set the term C at index 0.

There is a simple map B•p,q → S•p,q[−1]. In degree 0, it is the zero map. In degree

1, it is simply addition of the two direct product components: O⊕O → O+O.

In higher degrees, it is the identity map. It is easy to see that this is a map of

complexes: we only need to check compatibility at degrees 0 and 1. In degree

0, there is very little to check: one side factors through 0, so is a zero map,

and the other maps z → (−z, z) → z + (−z) = 0. In degree 1, if we take

the differential first, we get (f, g) 7→ (∂f, ∂g) 7→ (∂f, ∂g). Otherwise we have

(f, g) 7→ f + g 7→ (∂(f + g), ∂(f + g)) = (∂f, ∂g), which agrees.
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The importance of the B•p,q and S•p,q complexes is made clear by the following

proposition.

Proposition 3.2.6: The three complexes of sheaves L•p,q[−1],S•p,q[−1] and B•p,q

are quasi isomorphic by the map B•p,q → S•p,q[−1] and the inclusion S•p,q[−1]→

L•p,q[−1].

Proof. We’ve already explicitly constructed the cohomology of L•p,q, so all we

must do is check that S•p,q and B•p,q have the same cohomology and that the

induced maps on cohomology are isomorphisms. For positive degrees, in each

of the five cases, this is essentially by construction and simple application of

the ∂ and ∂ versions of the Poincaré Lemma (Proposition 2.2.22. Therefore,

the proof is only concerned with degree 1. We follow the same cases as in the

calculation of the cohomology of the L•p,q complex in Proposition 3.2.3.

Case 1 and Case 2: p ≥ 2 and q ≥ 2 (the p = q distinction is not important

here).

At degree 1, for S•p,q[−1] we have this sequence.

0→ O +O → Ω1 ⊕ Ω
1 → (3.2.26)

The differential in degree 1 is just d, split into components. Only constant

functions have zero differential everywhere, so the kernel in degree 1 is C. The

map from S•p,q[−1] into L•p,q[−1] is simply the inclusion. This maps C to C,

giving an isomorphism of cohomology.

At degree 1, the sequence B•p,q is as follows.

40



B•p,q = 0→ C→ O⊕O → Ω1 ⊕ Ω
1 → (3.2.27)

(Remember that C is in degree 0.) The differential at degree 0 is an injection,

z 7→ (z,−z), so the 0th cohomology vanishes.

The kernel of the first differential is C ⊕ C. The image of the injection from

the previous sheaf is the constant sheaf described by {(z,−z)|z ∈ C}. This

is the kernel of the addition map + : C ⊕ C → C, so the quotient, by the

addition map, is isomorphic to C. Moreover, the addition map is precisely the

map of complexes in degree 1 into S•p,q[−1], so this induces an isomorphism on

cohomology, mapping to the constants C in O +O.

Case 3: p = 1 and q ≥ 2.

At degree zero, the sequence S•1,q[−1] is as follows.

S•1,q[−1] = 0→ 0→ O +O (0,∂)→ Ω
1 → (3.2.28)

The 0th cohomology is the entire sheafO plus the kernel of ∂ onO. That kernel

is the constants, which are already included in O. (Recall the sum is not direct

here). Therefore, the cohomology is O, which matches with the L•1,q complex,

and the inclusion of O in A0 is the appropriate isomorphism on cohomology.

At degree zero, the differential on B•1,q is inclusion and there is no kernel. At

degree 1, we have:

B•1,q = 0→ C→ O⊕O (0,∂)→ ⊕Ω
1 → (3.2.29)
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The arguments here are the same as in Case 1, where the elements (z,−z)

vanish under addition of components. The inclusion of the constants into the

kernel O⊕C gives a cohomology isomorphic to O, which is identified with O

in S•p,q[−1] by the addition map.

Case 4: As before, this is a direct parallel with Case 3, switching holomorphic

and anti-holomorphic terms.

Case 5: p = q = 1.

At degree zero, the sequence S•1,1[−1] consists of these terms.

S•1,1[−1] = 0→ 0→ O +O → 0→ (3.2.30)

This is trivially the correct cohomology: O+O. It injects into L•1,1[−1], which

is the isomorphism on cohomology.

At degree zero, the sequence B•1,1 is as follows.

B•1,1 = 0→ C→ O⊕O → 0→→ (3.2.31)

This argument here is similar to the previous cases. The cohomology of B•1,1

is O ⊕ O modulo {(z,−z)|z ∈ C}. The addition map is well defined on this

quotient, sending it to O +O, moreover, the kernel of the addition map O ⊕

O → O +O is precisely the set {(z,−z)|z ∈ C}. Therefore, the addition map

provides an isomorphism on the cohomology of the complexes.

Bott-Chern cohomology is now calculated according to this proposition.
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Proposition 3.2.7:

Hp,q
BC(X,C) = Hp+q−1(L•p,q) ∼= Hp+q−1(S•p,q) ∼= Hp+q(B•p,q) (3.2.32)

Proof. The second and third isomorphisms follow directly as a corollary of the

previous proposition, since all the complexes are quasi-isomorphic.

The first equality (which is an actual equality, not an isomorhpism) is essen-

tially by construction. The sheaves in the L•p,q complex are acyclic for the global

section functor, since they are sheaves of C∞ forms which admit partitions of

unity. Therefore, the hypercohomology is the cohomology of the sequence of

global sections.

The global section term Lp+q−1
p,q (X) is Ap,q(X), with the differential d. The

previous global section term Lp+q−2
p,q (X) is Ap+q−2(X) with the differential

∂∂. The cohomology is the kernel of the first term modulo the image of the

second term, which is precisely the definition of Bott-Chern cohomology as in

Definition 3.1.1.

This finishes the construction of Bott-Chern cohomology as the hypercoho-

mology of complexes of sheaves for all subcases in the strictly positive case

1 ≤ p, q ≤ n.

3.2.2 Cases with Degree Zero

Now we consider the cases where at least one of the degrees p and q is 0. We

consider the case where q = 0 and p 6= 0; the p = 0 case will follow in parallel.

In the cases with degree zero, there are new definitions of the relevent com-
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plexes.

Definition 3.2.8: The complex L•p,0 is defined as follows.

Lkp,0 = 0 if k ≤ p− 2 (3.2.33)

Lkp,0 =
⊕

r+s=k+1
r≥p

Ar,s if k ≥ p− 1

The differential is the exterior derivative at all non-zero terms, with projections

as necessary (we still refer to this operator as d).

Proposition 3.2.9: The cohomology of L•p,0 in this case is only supported in

degree p− 1, where it is the sheaf Ω̂p = Ker(∂ : Ωp → Ωp+1).

Proof. Away from degree p− 1, repeated use of the Poincaré Lemma (Propo-

sition 2.2.22) shows that the complex has trivial cohomology. Isolating around

degree p− 1 gives the following terms.

. . .→ 0→ Ap,0 d→ Ap+1,0 ⊕Ap,1 d→ . . . (3.2.34)

The cohomology of the complex in degree p − 1 is the kernel of dAp,0 →

Ap+1,0⊕Ap,1. By the decomposition of the derivative, we can write this as the

kernel of ∂ : Ωp−1 → Ωp.

In this case, a complex like S•p,0 is not particularly helpful, but the B•p,0 complex

is still useful.

Definition 3.2.10: B•p,0 is the following complex.
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0→ C→ O → Ω1 → . . .→ Ωp−1 → 0 (3.2.35)

All differentials in this complex are ∂ except the inclusion map C→ O. C is in

degree 0, as it was in the definition of B•p,q in the case with non-zero degrees.

Proposition 3.2.11: The complexes B•p,0 and L•p,0[−1] are quasi-isomorphic

by the following map:

0 → C → O → . . . → Ωp−1 → 0 → . . .

↓ ↓ ↓ ↓ ∂ ↓

0 → 0 → 0 → . . . → Ap,0 → Ap+1,0 ⊕Ap,1 → . . .

Proof. The complex B•p,0 has cohomology only supported in degree p − 1. In

that degree, it has the cohomology sheaf Ωp−1/∂Ωp−2. By Corollary 2.2.23,

Ωp−1/∂Ωp−2 ∼= Ker(∂ : Ωp → Ωp+1).

However, Ωp is the same as Ker(∂ : Ap,0 → Ap,1), so we can make this identi-

fication.

Ker(∂ : Ωp → Ωp+1) = Ker(d : Ap,0 → Ap+1,0 ⊕Ap,1) = Hp(L•p,0) (3.2.36)

All of the maps involved here are actual equalities, excepting the isomorphism

given by Corollary 2.2.23; that isomorphism is accomplished by the map ∂.

Since the map between the complexes at this degree is ∂, the induced map on

cohomology is the desired isomorphism.

The equivalent calculation to Proposition 3.2.7, calculating Bott-Chern coho-
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mology in this case, is the following proposition.

Proposition 3.2.12:

Hp,0
BC(X,C) = Hp−1(L•p,0) ∼= Hp(B•p,0) (3.2.37)

Proof. Like the previous case, the first equality is by construction and the

second isomorphism follows from the quasi-isomorphism.

The case for p = 0 is directly in parallel. We define a B•0,q complex that only has

anti-holomorphic terms and the quasi-isomorphism with L•0,q[−1] in degree q

is realized by the map ∂ instead of ∂. The final result is a similar isomorphism.

H0,q
BC(X,C) = Hq−1(L•0,q) ∼= Hq(B•0,q) (3.2.38)

Finally, if both p = q = 0, then H0,0
BC(X,C) = H0

DR(X,C) is equivalent to the

De Rham cohomology in degree zero. Is this context, L•0,0[−1] = A• is the

normal De Rham resolution, and B•0,0 is C in degree 0 and trivial everywhere

else.

3.3 Bott-Chern with Finer Coefficients

The advantage of working with the hypercohomology of B•p,q is that we can alter

the constant term to vary the coefficients. Before starting that construction,

we need the definition of Tate twists.

Definition 3.3.1: If R is a subring of R, the pth Tate twist of R, written

R(p), is defined to be (2πı)pR.
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Note that the Tate twists remain subrings of C only when p is even; otherwise,

they are simply abelian subgroups.

The Tate twists are not present in the description of Bott-Chern cohomology in

[Dem07] and [Sch07], but introducing them is only a minor adjustment to those

definitions. The early introduction of Tate twists and the total inclusion of

them in our development simplifies the relationship with Deligne cohomology

in future sections.

Recall that Bott-Chern cohomology is defined in two cases in Section 3.2. We

work with the same cases here.

3.3.1 Strictly Positive Degrees

Definition 3.3.2: If R is a subring of R, we define the complex of sheaves

B•p,q(R(r)) to be the same as the complex B•p,q in all degrees excepting that C

in degree 0 is replaced by the subgroup R(r).

For example, if p, q > 1 the complex starts as follows.

B•p,q(R(r)) := 0→ R(r)→ O⊕O → Ω1 ⊕ Ω
1 → . . . (3.3.1)

The map R(r)→ O⊕O is z → (z,−z), as was the case with C coefficients.

The definition is given for arbitrary r, but in practice we are usually concerned

with r = p or r = q, matching with one of the two bidgrees of B•p,q.

Similarly, though the subring R ⊂ R in the definition is arbitrary, we limit

ourselves to considering subrings Z and R, leading to the following definitions.
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Definition 3.3.3: The Tate-twisted integral and real Bott-Chern Cohomolo-

gies are defined, respectively, as follows.

Hp,q
BC(X,Z(p)) := Hp+q(B•p,q(Z(p)) (3.3.2)

Hp,q
BC(X,R(p)) := Hp+q(B•p,q(R(p))

The holomorphic-antiholomorphic symmetry is broken here: we insist that the

Tate twists match with the holomorphic index of Bott-Chern cohomology.

We could alternatively choose to match the anti-holomorphic index, leading

to a parallel theory of Tate-twisted integral and real anti-holomorphic Bott-

Chern cohomologies. (Note that R(q) = R(q), but the distinction is useful for

notational purposes.) These would be the definitions with the antiholomorphic

matching.

Hp,q
BC(X,Z(q)) = Hp+q(B•p,q(Z(q)) (3.3.3)

Hp,q
BC(X,R(q)) = Hp+q(B•p,q(R(q))

An important property of the Tate twisted Bott-Chern cohomologies is that

they relate to well-known constructions, particularly Analytic Deligne coho-

mology, which is defined in [EV86] and [Jan88]. We repeat the definition here.

Definition 3.3.4: The Deligne complex, with coefficients in a subring R ⊂ R,

is defined as the following complex of sheaves.
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R(p)•D := 0→ R(p)→ O → Ω1 → . . .→ Ωp−1 → 0. (3.3.4)

The R(p) term in degree 0.

Definition 3.3.5: The Deligne cohomology is the hypercohomology of the

Deligne complex.

Hk
D(X,R(p)) := Hk(R(p)•D) (3.3.5)

Using definitions from [Sch07], there is a map of complexes of sheaves εD :

B•p,q(R(p))→ R(p)•D defined as follows.

0 → R(p) → O⊕O → Ω1 ⊕ Ω
1 → . . .

↓ ↓ Id ↓ π1 ↓ π1 . . .

0 → R(p) → O → Ω1 → . . .

(The notation π1 stands for projection onto the first component in the direct

sum, not projection on degrees or bidegrees of forms.)

Definition 3.3.6: As a map of complexes of sheaves, εD induces a map on

hypercohomolgoy, which is expressed with the same notation.

εD : Hp,q
BC(X,R(p))→ Hp+q

D (X,R(p)) (3.3.6)

One reason we prefer the holomorphic matching defining integral and real

Bott-Chern cohomology is that it mirrors the definition of Deligne cohomol-

ogy. However, there is also a similar, anti-holomorphic version of Deligne co-

homology which cooperates with our anti-holomorphic version of Bott-Chern.

49



Definition 3.3.7: The anti-holomorphic Deligne complex is the following com-

plex.

R(q)
•
D := 0→ R(q)→ O → Ω

1 → . . .→ Ω
q−1 → 0 (3.3.7)

The anti-holomorphic version of Deligne cohomology is the hypercohomology

of the anti-holomorphic Deligne complex.

Hk
D(X,R(q)) := Hk(R(q)

•
D) (3.3.8)

Definition 3.3.8: There is a similar map εD : B•p,q(R(q)) → R(q)
•
D, defined

by the following diagram.

0 → R(q) → O⊕O → Ω1 ⊕ Ω
1 → . . .

↓ ↓ Id ↓ π2 ↓ π2

0 → R(q) → O → Ω
1 → . . .

This similarly induces a map in hypercohomology.

εD : Hp,q
BC(X,R(q))→ Hp+q

D (X,R(q)) (3.3.9)

In the remainder of this thesis, we will ignore this parallel anti-holomorphic

construction in favour of the holomorphic version, both for Bott-Chern and

Deligne cohomologies.
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3.3.2 Cases with Degree Zero

In the case where q = 0, the definition of Bott-Chern cohomology with coeffi-

cients R ⊂ R is similar to the previous case. The B•p,0 complex has the constant

sheaf C in degree 0. We replace C with R(p) to define B•p,0(R(p)). The Bott-

Chern cohomology with R coefficients is calculated as the hypercohomology

of this new complex. We similarly construct the maps εD and εD. In this case,

by looking at the definition of Bp,0(R(p)), we see that this sequence is exactly

the analytic Deligne complex, and εD is the identity map.

The case where p = 0 is in parallel to the q = 0 case and the induced map εD

is the identity map between anti-holomorphic versions of cohomology.

In the case where both p = q = 0, H0,0
BC(X,C) = H0(X,C) and altering the

coefficients simply calculates H0(X,R). The B•0,0(R) conmplex is simply R in

degree 0 and trivial everywhere else.

3.4 Bott-Chern Cohomology by Currents

Recall from our global assumptions in Section 2.4 that X is a compact complex

manifold. Compactness and finite volume are important for the following work

with currents and allow us to work with global currents without worrying about

compact support.

We work in the same two cases: strictly positive and allowing degree zero.

These definitions are from [Dem07].
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3.4.1 Strictly Positive Degrees

If p > 0 and q > 0, the definition of M•
p,q is parallel to L•p,q, but in terms of

currents instead of forms:

Mk
p,q =

⊕
r+s=k
r<p, s<q

Dr,s if k ≤ p+ q − 2 (3.4.1)

Mk
p,q =

⊕
r+s=k+1
r≥p s≥q

Dr,s if k ≥ p+ q − 1

dkp,q = d if k < p+ q − 2

dp+q−2
p,q = ∂∂

dkp,q = d if k > p+ q − 2

Using the map which sends forms to their associated currents, there is an

injective map of complexes L•p,q ↪→ M•
p,q. Therefore, there are also injective

maps from the subcomplexes of L•p,q, in particular S•p,q, intoM•
p,q. We want to

argue that the map S•p,q ↪→M•
p,q is quasi-isomorphism. We can do this directly

as in Section 3.2 by calculating the cohomology of the sequence of sheaves of

currents. However, following [Dem07], a spectral sequence argument is open

to us. The following proposition and proof are sketched in that reference and

provided here in full detail.

After the spectral sequence argument shows a quasi-isomorphism between

M•
p,q and S•p,q, the compatibility of the maps and the transitivity of quasi-

isomorphism will show that M•
p,q is quasi isomorphic to L•p,q and B•p,q[1] as

well.
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Proposition 3.4.1: The injection S•p,q →M•
p,q is a quasi-isomorphism.

Proof. We work with the same cases as Proposition 3.2.3, except that we don’t

need to separate p = q and p 6= q.

Case p ≥ 2 and q ≥ 2:

We have the standard filtration on forms and currents by bidgree as follows.

F sAr =
⊕
i≥s
i+j=r

Ai,j (3.4.2)

F sDr =
⊕
i≥s
i+j=r

Di,j.

We apply this filtration to M•
p,q.

F rMk
p,q =Mk

p,q ∩ F rD• (3.4.3)

Since S•p,q is a subcomplex, it gets filtered similarly (though that filtration is

nearly trivial).

A filtered complex naturally gives rise to an associated spectral sequence,

written Er,s
t . The 0th sheet is

Er,s
0 = GrFrMr+s

p,q =
F rMr+s

p,q

F r+1Mr+s
p,q

(3.4.4)

Explicitly doing the calculation gives the following quotients.
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Er,s
0 = Dr,s if r ≤ p− 1 and s ≤ q − 1 (3.4.5)

Er,s
0 = 0 if r ≤ p− 1 and s > q − 1

Er,s
0 = 0 if r > p− 1 and s < q − 1

Er,s
0 = Dr,s+1 if r ≥ p− 1 and s ≥ q − 1

The 0th sheet has differentials Er,s
0 → Er,s+1

0 , which are ∂ or zero maps in all

cases. The columns of the 0th sheet, where they are non-zero, come in two

cases. If r < p, the following sequence is the upward proceeding column.

0→ Dr,0 ∂→ Dr,1 ∂→ . . .
∂→ Dr,q−1 → 0 (3.4.6)

If r ≥ p, instead we have this sequence as a column.

0→ Dr,q ∂→ Dr,q+1 ∂→ . . .
∂→ Dr,n → 0 (3.4.7)

Since the first sheet is the cohomology of the 0th sheet, it is calculated by

the cohomology of these truncated pieces of the ∂-complex of currents. By the

Poincaré Corollary (Corollary 2.2.23), the internal pieces of the ∂-complex are

exact; only the truncations give rise to non-zero cohomology sheaves. We can

explicitly calculate these non-zero terms.
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Er,0
1 = Ωr

D := if 0 ≤ r < p (3.4.8)

Er,q−1
1 =

Dr,q−1

∂Dr,q−2
if 0 ≤ r < p

Er,q−1
1 = Ker{∂ : Dr,q → Dr,q+1} if p ≤ r ≤ n

Er,s
1 = 0 otherwise

Recall that the notation Ωr
D stands for holomorphic currents of bidegree (0, r).

By regularity, the sheaf Ωr
D can be identified with Ωr. However, for the current

exposition, it is convenient to preserve the distinction.

For Er,q−1
1 , the Poincaré Corollary (Corollary 2.2.23) gives the following cal-

culations.

∂Dr,q−1 ∼= Ker{∂ : Dr,q → Dr,q+1} (3.4.9)

We write Zr,qD for Ker{∂ : Dr,q → Dr,q+1}. With these identifications and

definitions, the first sheet can give a concise description of the first sheet of

the spectral sequence.

Er,0
1 = Ωr

D if 0 ≤ r < p (3.4.10)

Er,q−1
1

∼= Zr,qD if 0 ≤ r < p

Er,q−1
1 = Zr,qD if p ≤ r ≤ n

Er,s
1 = 0 otherwise.
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The first sheet has support only when s = 0 or s = q− 1. The differentials are

∂ : Er,s
1 → Er+1,s

1 , so there are only two non-zero sequences in the first sheet.

E•,01 = 0→ Ω0
D

∂→ Ω1
D

∂→ . . .
∂→ Ωp−1

D → 0 (3.4.11)

E•,q−1
1 = 0→ Z0,q

D
∂→ Z1,q

D
∂→ . . .

∂→ Zn,qD → 0

These sequences are exact at all intermediate terms, so only the initial or

final terms can contribute to cohomology. Moreover, the end of the second

sequence is the exact as well. Therefore, there are only three non-zero terms

in the second sheet.

E0,0
2 = C (3.4.12)

Ep−1,0
2 =

Ωp−1
D

∂Ωp−2
D

E0,q−1
2 = Ker{∂ : Z0,q−1

D → Z1,q−1
D }

The calculations of first term is clear, since the only holomorphic currents

which are ∂-closed are constant. The second term is isomorphic to ∂Ωp−1
D by

the Poincaré Corollary (Corollary 2.2.23). The third term is Ker(∂ : Z0,q
D →

Z1,q
D ). By the anticommutative nature of ∂ and ∂, this can be realized as

Ker(∂ : Ω
q

D → Ω
q+1

D ), which is isomorphic to ∂Ω
p−1

D . Therefore, the non-zero

terms of the second sheet can be simplified.
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E0,0
2 = C (3.4.13)

Ep−1,0
2 = ∂Ωp−1

D

E0,q−1
2 = ∂Ω

q−1

D

The spectral sequence stabilizes here, so these sheaves calculate a graded piece

of the cohomology of the complex. However, this already matches up with the

cohomology groups of L•p,q, indicating that not only do we have the right

cohomology, but the grading on cohomology is trivial.

For the sake of completeness and parallel structure, we do the same spectral

sequence construction for S•p,q, even though we already know the cohomology.

It is useful to see how the spectral sequence for S•p,q constructs the same E2

terms. The 0th sheet of that spectral sequence has the following terms.

Er,s
0 = GrFr Sr+sp,q =

F rSr+sp,q

F r+1Sr+sp,q

(3.4.14)

Because the complex S•p,q is only supported in holomorphic and anti-holmorphic

forms, this 0th sheet has non-zero terms only when r = 0 or s = 0.

E0,s
0 = Ω

s
if 0 ≤ s < q (3.4.15)

Er,0
0 = Ωr if 0 < r < p

For r > 0, the terms Er,0 are isolated in the 0th sheet, so they descend to the
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1st sheet of cohomology. The other terms form a sequence in the 0th sheet.

E0,•
0 = 0→ O +O ∂→ Ω

1 ∂→ . . .
∂→ Ω

q−1 → 0 (3.4.16)

Preserving the isolated terms and calculating the cohomology of this sequence

gives a 1st sheet with the following non-zero terms.

Er,0
1 = Ωr if 0 < r < p (3.4.17)

E0,0
1 = O

E0,q−1
1 =

Ω
q−1

∂Ω
q−2

The term E0,q−1
1 is isolated, and the remaining terms form a sequence.

E•,01 = 0→ O ∂→ Ω1 ∂→ . . .
∂→ Ωp−1 → 0 (3.4.18)

Taking cohomology of this sequence and remembering the isolated term, the

second sheet has only three non-zero entries.

E0,0
2 = C (3.4.19)

Ep−1,0
2 =

Ωp−1

∂Ωp−2

E0,q−1
2 =

Ω
q−1

∂Ω
q−2

We simplify these terms by applying Corollary 2.2.23. This gives the following
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2nd sheet.

E0,0
2 = C (3.4.20)

Ep−1,0
2

∼= ∂Ωp−1

E0,q−1
2

∼= ∂Ω
q−1

Now the two second sheets have the same form, the only difference is that one

is calculated in terms of currents and one in terms of forms. So the conclusion

rests on ∂Ωp−1 ∼= ∂Ωp−1
D , which is regularity of holomorphic currents as stated

in Proposition 2.2.25.

The matching of the E2 terms ensures that the two complexes calculate the

same cohomology, completing the required quasi-isomorphism. The map real-

izing this quasi-isomorphisms is either the identity after identifying forms and

currents, or the differential ∂.

Case p = 1 and q ≥ 2

Now assume that p = 1, while q ≥ 2. We can follow the same general proof as

before, making adjustments as we go along.

The calculations of the 0th sheet are the same as in Equation 3.4.8. The

cohomology calculation in Equation 3.4.8 is also unaltered in this case, which

gives the 1st Sheet as in Equation 3.4.10. Note that the case 0 ≤ r < p is

simply one case: r = 0, since p = 1.

There are two sequences that make up the first sheet.
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E•,01 = 0→ Ω0
D → 0 (3.4.21)

E•,q−1
1 = 0→ Z0,q

D
∂→ Z1,q

D
∂→ . . .

∂→ Zn,qD → 0

Using the same arguments and identifications as before, which led to Equation

3.4.13, we calculate the cohomology of the first sheet to get the second sheet.

E0,0
2 = Ω0

D (3.4.22)

E0,q−1
2 = ∂Ω

q−1

D

For the spectral sequence associated with the S•p,q complex in this case, a very

similar adjustment takes place. In the first sheet in the general case, we had

the sequence in Equation 3.4.18. Since p = 1 in this case, this sequence only

consists of the isolated term Ω0
D. Therefore, the first sheet has only these two

isolated terms, and the second sheet is as follows.

E0,0
2 = Ω0

D (3.4.23)

E0,q−1
2 = ∂Ω

q−1

D

This agrees with the M•
p,q spectral sequence.

Case p > 1 and q = 1

The calculation in Equation 3.4.5 still holds in this case. However, the fact that
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q = 1 means that for r < p the terms Er,0
0 = Dr,0 are isolated terms instead of

being the first terms of a sequence. Taking cohomology, and treating r ≥ p as

in the general case gives the following first sheet.

Er,0
1 = Dr,0 if 0 ≤ r < p (3.4.24)

Er,0
1 = Zr,1D if p ≤ r ≤ n

Er,s
1 = 0 otherwise.

We cannot make the identifications that worked in the general case. However,

we have only one non-zero sequence in this first sheet.

E•,01 = 0→ D0,0 ∂→ . . .
∂→ Dp−1,0 ∂∂→ Dp,1 ∂→ . . .

∂→ Dn,1 → 0 (3.4.25)

Using previous calculations and the ∂∂-lemma (Proposition 2.2.24), the coho-

mology of this sequence is only supported in degrees 0 and p− 1. Calculating

those cohomologies gives us the second sheet.

E0,0
2 = Ω0

D (3.4.26)

Ep−1,0
2 =

Ker∂∂ : Dp−1,0 → Dp,1

∂Dp−2,0

By regularity (Proposition 2.2.25 and Corollary 2.2.23), we can simplify this.
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E0,0
2 = O (3.4.27)

Ep−1,0
2 =

Ωp−1

∂Ωp−2

For the S•p,q complex in this case, all terms in the first sheet are isolated, so

they descend directly to the second sheet. There we have only one non-zero

sequence.

E•,01 = 0→ O +O → Ω1 → . . .→ Ωp−1 → 0 (3.4.28)

The cohomology of this sequences gives the second sheet.

E0,0
2 = O (3.4.29)

Ep−1,0
2 =

Ωp−1

∂Ωp−2

This matches up, and finishes this case.

Case p = 1 and q = 1

This case proceeds similarly to the previous case. For M•
p,q, the 1st sheet of

the spectral sequence is only one sequence.

E•,01 = 0→ D0,0 ∂∂→ D1,1 ∂→ . . .
∂→ Dn,1 → 0 (3.4.30)

The only cohomology here is in degree 0, so we have the second sheet only

62



supported in degree (0, 0).

E0,0
2 = Ker∂∂ : D0,0 → D1,1 (3.4.31)

For S•p,q, the spectral sequence only has one term, which is O + O at degree

(0, 0). Regularity identifies this sheaf with the kernel in the above equation,

which finishes the case.

3.4.2 Cases with Degree Zero

For cases where p = 0, q = 0 or both, we use the alternate definitions of L•p,q

and B•p,q as in Definitions 3.2.8 and 3.2.10. This is done for p = 0 and q > 0,

but the other case is precisely in parallel. This inspires a complex of currents:

Mk
p,0 = 0 if k ≤ p− 2 (3.4.32)

Mk
p,0 =

⊕
r+s=k+1
r≥p

Dr,s if k ≥ p− 1

There is no need for a spectral sequence here to prove that this is still quasi-

isomorphic to the L•p,q and B•p,q complexes. The only sheaf cohomology is sup-

ported in degree p− 1, where it is the currents in Dp,0 which are d-closed. By

regularity, this is Ω̂p, which is the cohomology of B•p,q in degree p.

The case for q = 0 is, as noted before, simply in parallel. If both p = q = 0,

then we recover the 0th De Rham group when calculating Bott-Chern, which

we know can be calculated by currents as well as forms. The B•0,0 complex
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is just C in degree zero, and the complex of currents M•
0,0[−1] = D• is a

resolution of C.

3.5 Aeppli Hypercohomology

The previous three sections on hypercohomology, altered coefficients and cur-

rents dealt exclusively with the Bott-Chern cohomology, but similar results

hold for the Aeppli groups. This is indicated in [Sch07], but we give more

explicit details here. With Aeppli cohomology, unlike Bott-Chern, we do not

need to separate cases where p, q > 0 and where one or both may be 0.

Recall the definition of L•p,q in Definition 3.2.2. By comparing with the defini-

tion of Aeppli cohomology in 3.1.2, and using the fact that L•p,q is a complex

of fine sheaves which calculate hypercohomology by taking the cohomology of

the complex of global sections, we see that we can use this complex to calculate

Aeppli cohomology.

Hp,q
Ap(X,C) = Hp+q(L•p+1,q+1) (3.5.1)

Unlike Bott-Chern cohomology, this still holds for cases where p = 0 or q = 0.

This is due to the shift in degree in the complex: Aeppli in degree (p, q) is

defined by the L•p+1,q+1 complex, not the L•p,q complex.

It is convenient that we can make use of the same complex, since that gives

us access to all of the quasi-isomorphisms from previous sections. With those

in place, we have the following isomorphisms.
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Hp,q
Ap(X,C) ∼= Hp+q(M•

p+1,q+1) ∼= Hp+q(S•p+1,q+1) ∼= Hp+q+1(B•p+1,q+1) (3.5.2)

3.6 Aeppli with Finer Coefficients

We define the Aeppli cohomology with coefficients in R(p), (for R a subring

of R), similarly to Bott-Chern, by replacing C with R(k) in the complex B•p,q.

The notation is the same as before: B•p,q(R(k)), and the definition is in parallel

with Definition 3.3.3.

Hp,q
Ap(X,R(k)) := Hp+q+1(B•p+1,q+1(R(k))) (3.6.1)

As with Bott-Chern cohomology, we have a choice to match this to holomor-

phic or anti-holomorphic indices. The conventional choice is to match with

holomorphic indices in order to easily match with Deligne cohomology. How-

ever, for Aeppli cohomology, we will need to shift by one in maps to Deligne

cohomology. Therefore, our standard indexing is as follows.

Definition 3.6.1:

Hp,q
Ap(X,R(p+ 1)) := Hp+q+1(B•p+1,q+1(R(p+ 1))) (3.6.2)

Now consider the projection map to the Deligne complex, parallel to Definition

3.3.6. Aeppli cohomology in degree (p, q) is related to the Deligne complex in

degree p+1, and projection onto the first component gives a map of complexes

B•p+1,q+1(R(p+1))→ R(p+1)D. (For this diagram, assume q ≥ p. The parallel
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case is similar.)

0 → R(p+ 1) → O⊕O → . . . → Ωp ⊕ Ω
p → Ω

p+1 → . . .

↓ ↓ ↓ ↓ ↓

0 → R(p+ 1) → O → . . . → Ωp → 0 → . . .

Then the map on hypercohomology of these complexes defines the following

map. We use the same notation for this map as for the equivalent map on

Bott-Chern cohomology.

εD : Hp,q
Ap(X,R(p+ 1))→ Hp+q+1

D (X,R(p+ 1)) (3.6.3)

If we wished to adapt this to the anti-holomorphic version of analytic Deligne

cohomology, we could follow the parallel construction to build a similar map

εD : Hp,q
Ap(X,R(q + 1))→ Hp+q+1

D (X,R(p+ 1)) (3.6.4)

3.7 Identifying Real Bott-Chern Classes

Assume that ω is current defining a class in Bott-Chern or Aeppli cohomology,

according to the original description in Definition 3.1.1. We would like to de-

termine, from the properties of that current, whether it defines a class in Bott-

Chern or Aeppli cohomology with R(r) coefficients. The following construction

answers that question for Aeppli cohomology, but the case for Bott-Chern is

similar.
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Consider a class in Aeppli cohomology Hp,q
Ap(X,C) identified by a current

ζ ∈ Dp,q, according to the description that Hp,q
Ap(X,C) = Hp+q(M•

p+1,q+1).

(Alternatively, we could work with a form, coming from the description via

the L•p+1,q+1 complex – the following construction would hold just the same,

replacing currents with forms.)

Let πp be the projection onto the first component in C = R(p) ⊕ R(p + 1).

With a common abuse of notation, we also use πp to be the induced map on

sheaves of forms and currents, instead of πp,∗ or some other similar notation.

If (p, q) = (0, 0), then Aeppli cohomology is equivalent to H0(X,C) ∼= C.

The classes with R(1) coefficients are cleary those which vanish under π0, the

projection to R. If (p, q) 6= (0, 0), then we have the following proposition.

Proposition 3.7.1: The class [ζ] defines an element of the cohomology quo-

tient Hp,q
Ap(X,R(p + 1))/δ(Hp+q(X,R(p))) if the current ζ satifies πp∂ζ = 0.

In particular, it is satisfied if either ζ is a R(p + 1)-valued current or if ζ is

a ∂-closed current. The map δ : Hp+q(X,R(p)) → Hp,q
Ap(X,R(p + 1)) will be

defined in the proof.

Proof. We move back to the description by the complexes B•p+1,q+1. Without

loss of generality, assume that p < q. (The other cases are very minor ad-

justments of this proof). Then we have a short exact sequence of complexes

B•p+1,q+1(R(p+ 1))→ B•p+1,q+1 → R(p).
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0 → R(p+ 1) → O⊕O → . . . → Ωp ⊕ Ω
p → Ω

p+1
. . .

↓ ↓ ↓ ↓ ↓

0 → C → O⊕O → . . . → Ωp ⊕ Ω
p → Ω

p+1
. . .

↓ ↓ ↓ ↓ ↓

0 → R(p) → 0 → . . . → 0 → 0 . . .

This gives a long exact sequence in hypercohomology. In particular, we have

the following exact sequence, where δ is the connecting morphism. (Recall that

Aeppli cohomology is the (p+ q + 1)th hypercohomology of B•p+1,q+1.)

Hp+q(X,R(p))
δ→ Hp,q

Ap(X,R(p+ 1))→ Hp,q
Ap(X,C)

φ→ Hp+q+1(X,R(p))

(3.7.1)

The first and last terms here are the hypercohomology of the constant sheaf

R(p), which is isomorphic to ordinary (singular) cohomology with coefficients

in R(p).

In this exact sequence, we can identify classes that come from Aeppli co-

homology with R(p + 1) coefficients by finding those that map to zero in

Hp+q+1(X,R(p)), i.e. φ[ζ] = 0. However, we can only identify such classes up

to their image in Hp,q
Ap(X,C). Since the sequence is exact, that image is iso-

morpic to Hp,q
Ap(X,R(p+1)) modulo δ(Hp+q(X,R(p))). Then the proof reduces

to the following lemma.

Lemma 3.7.2: This map φ is the same as the map πp∂.
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Proof. The map of complexes factors as follows.

0 → C → O⊕O → . . . → Ωp−1 ⊕ Ω
p−1 → Ω

p
. . .

↓ ↓ ↓ ↓ ↓

0 → C → 0 → . . . → 0 → 0 . . .

↓ ↓ ↓ ↓ ↓

0 → R(p) → 0 → . . . → 0 → 0 . . .

The second map in this factorization is just πp. To understand how the first

map influences hypercohomology, we can replace the complex C by the quasi-

isomorphic complex (Ω•, ∂).

0 → C → O⊕O → . . . → Ωp−1 ⊕ Ω
p−1 → Ω

p
. . .

↓ ↓ ↓ ↓ ↓

0 → O → Ω1 → . . . → Ωp → Ωp+1 . . .

The vertical maps here are inclusion in degree 0 and ∂ in all higher degrees.

It is an easy check of all the squares to see that these maps give a map of

complexes. (Actually, all routes around squares compose to zero maps. Past

degree p − 1, since the domains are anti-holomorphic, the vertical maps are

themselves zero maps.)

The complex of currents M•
p+1,q+1 serves as a fine resolution of the complex

B•p+1,q+1, by the quasi-isomorphism in constructed in Proposition 3.4.1 and the

fine nature of sheaves of C∞ currents. The map between complexes is the map

of forms to their associated currents: η 7→ δη =
∫
X
η ∧ .

Using Mp+1,q+1[−1] as a fine resolution gives us the definition of Aeppli in

terms of classes of ∂∂-closed currents. Using D• as a resolution of C also gives
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classes of currents. The induced map on hypercohomology, at least until degree

p+ q+ 2 whereMp+q+1[−1] has a differential ∂∂, must be ∂ to agree with the

original complex. In degree p+ q+ 1, which is the relevant degree to calculate

Aeppli cohomology, this ∂ sends the ∂∂-closed current η to ∂η, which is a d-

closed current, defining a class in Hp+q+1(X,C). (Note that this recovers the

map defined in Definition 3.1.3). Then we reach Hp+q+1(X,R(p)) by appliying

πp, finishing the lemma.

As noted at the start of the section, this proof can be adopted for Bott-Chern

cohomology as well, giving the following similar proposition. Assume that ζ is

a current or a form identifying a classs in Hp,q
BC(X,C).

Proposition 3.7.3: The class [ζ] defines an element of the cohomology quo-

tient Hp,q
BC(X,R(p))/δ(Hp+q−1(X,R(p−1))) if the current ζ satifies πp−1ζ = 0.

In particular, it is satisfied if ζ is a R(p) valued current.

Proof. We only need to adjust slightly the previous proof. Since the current

defining the Bott-Chern class is from degree p + q in M•
p,q, which is past the

∂∂-differential in degree p+ q − 1, the map on this level to Hp+q(X,C) is (up

to a sign) the identify map on the current instead of ∂ as in the Aeppli case.

The adjustment here changing ∂ to the identity is necessary because theM•
p,q

complex changes and we need the following square to commute, where the first

vertical map is ∂.

Dp,q ∂∂→ Dp+1,q+1

↓ ↓

Dp+q+1 d→ Dp+q+2
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Up to a sign, the identity map in the second vertical map allows the square to

commute. Then to get to R(p) coefficients is just the projection πp, as in the

Aeppli proof.

However, this argument only holds for degrees p, q larger than zero, since a

different resolution M•
p,q is defined if either are zero. The adjustments for

the degree zero cases are simple and we omit them here. However, as in the

Aeppli case, the (p, q) = (0, 0) cohomology is just C and the conclusion follows

immediately.

3.8 Resolutions of the Bott-Chern complexes

3.8.1 Čech Resolution

The material in this section is mostly taken from [Voi02], particularly The-

orem 4.4.1 and its proof. In that reference, Voisin is following the original

constructions of [God58].

For Bott-Chern and Aeppli cohomologies with coefficients in C, the L•p,q com-

plex is a complex of fine sheaves; therefore, hypercohomology is calculated

by cohomology of the complex of global sections L•p,q(X). The Bott-Chern

and Aeppli cohomologies with finer coefficients are the hypercohomology of

B•p,q(R(k)), which is not a complex of fine sheaves. To get explicit representa-

tives for these cohomology classes, we need to build a resolution of B•p,q(R(k))

which consists of fine sheaves or other sheaves which are acyclic for the global

section functor.

One such resolution is the Čech resolution of a complex of sheaves. This is
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the resolution pursued in [Sch07] for calculations and products. We review the

construction here.

Let F• be a complex of sheaves of OX-modules (or abelian groups) on a rea-

sonably well behaved topological space X with an appropriate structure sheaf

OX . For an appropriately fine open cover U , each sheaf F r has a Čech res-

olution Č•(U ,F r), with a map F r → Č0(U ,F r). The Čech resolutions are

functorial; that is, the maps dF of the complex F• give rise to maps on the

Čech groups. These maps commute with the Čech differential δ, specifically:

dFδ = δdF .

Definition 3.8.1: The Čech resolution of a complex of sheaves F• is the

double complex formed out of the individual Čech resolutions.

⊕
j+k=•

Čj(U ,Fk) (3.8.1)

The differential of this complex, acting on an element in Čj(U ,Fk), is dD :=

dF + (−1)kδ. The alternating sum is necessary to ensure that d2
D = 0. (Note

there is a choice of sign in this process. There is an alternate description

where the differentials δ and dFanti-commute and the differential of the double

complex is an ordinary sum.)

Since this is a compatible collection of resolutions, for a sufficiently fine open

cover U , the arguments in the proof of Theorem 4.4.1 in [Voi02] show that the

cohomology of the associated single complex calculates the hypercohomology

of F•.
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Hp(F•) ∼= Hp

(⊕
j+k=•

Čj(U ,Fk)

)
(3.8.2)

Now we return to the complex B•p,q(R(p)). (We could work with other co-

efficients, but our need for these results only includes R(p) coefficients. For

simplicity, we consider only these coefficients.) Let η be an element of the rth

degree of the associated diagonal single complex.

η ∈
⊕
j+k=r

Čj(U ,Bkp,q(R(p))) (3.8.3)

= Čr(U ,B0
p,q(R(p)))⊕ . . .⊕ Č0(U ,Brp,q(R(p)))

In terms of that decomposition, we can write η in a particular form.

η = ηci0,i1,...,ir + (ηh,0 + ηa,0)i0,i1,...,ir−1 + . . .+ (ηh,r + ηa,r)i0,i1,...,ir−1 (3.8.4)

This notation requires some explanantion. The superscripts on η stand for

the position in the complex B•p,q. The c superscript refers to B0
p,q = R(p) and

represents the constant terms. The h and a superscripts represent holomorphic

or antiholomorphic pieces in the B•p,q complex, since past degree 0, the terms of

that complex have the form Ωm ⊕Ω
m

. The holomorphic and antiholomorphic

pieces truncate at p and q, respectively, so ηh,m = 0 for m ≥ p and ηa,m = 0

for m ≥ q.

The subscripts i0, . . . , im indicate the Čech cocycle degree and index the open
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sets of the cover. From now on, we entirely supress these Čech indices.

Following [Sch07] , there is a convenient adjustments to this notation for el-

ement η. (Note that there are no holomorphic terms if p = 0, and no anti-

holomorphic terms if q = 0.)

η = ηc; ηh,0, ηh,1, . . . , ηh,r; ηa,0, ηa,1, . . . , ηa,r (3.8.5)

The only difference between Equation 3.8.4 and Equation 3.8.5 is that we

group the antiholomorphic and holomorphic pieces together. We will refer to

these superscripts as the degree of the piece of η, i.e. η in degree (a, 3) is ηa,3.

Note that though the indices go all the way to r = p+ q, the truncations still

hold: ηh,i = 0 for i > p and ηa,i = 0 for i > q.

This notation is convenient because the differentials of the B•p,q respect the

holomorphic and antiholomorphic decomposition. In this notation, those dif-

ferentials dB restricted to the various degrees act as described in the following

chart.

dBη
c = (ηc,−ηc)

dBη
h,0 = ∂ηh,0 dBη

a,0 = ∂ηa,0

dBη
h,1 = ∂ηh,1 dBη

a,1 = ∂ηa,1

...
...

dBη
h,p = 0 dBη

a,q = 0

Then using the fact that the differential of the simple complex associated with

the double complex is dD : dB + (−1)degBδ, we can write explicitly how the

differential of the double complex acts. For a form η as presented in this new
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notation, the differential dDη is calculated as follows. For this chart, assume

that r ≥ max{p, q}; this is a fair assumption since it is the only case we require.

degree term degree term

c δηc

h, 0 ηc − δηh,0 a, 0 −ηc − δηa,0

h, 1 ∂ηh,0 + δηh,1 a, 1 ∂ηa,0 + δηa,1

h, 2 ∂ηh,1 − δηh,2 a, 2 ∂ηa,1 − δηa,2

. . .

h, j ∂ηh,j−1 + (−1)j−1δηh,j a, j ∂ηa,j−1 + (−1)j−1δηa,j

. . .

h, p− 2 ∂ηh,p−3 + (−1)p−3δηh,p−2 a, q − 2 ∂ηh,q−3 + (−1)q−3δηh,q−2

h, p− 1 ∂ηh,p−2 + (−1)p−2δηh,p−1 a, q − 1 ∂ηh,q−2 + (−1)q−2δηh,q−1

h, p ∂ηh,p−1 a, q ∂ηa,q−1

h, p+ 1 0 a, q + 1 0

. . . . . .

h, r 0 a, r 0

This explicit calculation of the differential completes our look at the Čech

resolution, until we return to it for the calculation of products.

3.8.2 Cone Complex Resolution

A common tool in cohomology is resolution by a cone complex. Though the

machinery of cone complexes is very general, we restrict to R-coefficients. The
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main advantage of R-coefficients is the decomposition C = R(p − 1) ⊕ R(p),

which is not available in other coefficient systems.

This approach is following [Jan88], where cone complex constructions are de-

scribed in detail for Deligne cohomology. We take inspiration from that source

both in substance and style: both for the constructions and the ideas in the

proofs.

It is useful to recall some notation. In this section, the projections πp will

refer to projections in C = R(p) ⊕ R(p − 1), and the induced maps between

cohomology theories with C and R(p) coefficients.

We use the notation φq for projection onto bidgrees (r, s) where s < q. This

is a unusual, non-standard notation, but extremely useful in describing the

following construction.

We also use the notation D•<q to refer to the sheaf of currents whose anti-

holomorphic bidgree is < q, and similarly for A•<q.

Recall the shorthand d to refer to the differential of forms or currents d followed

by whatever projection onto bidegree is necessary to fit the target space. We

continue to use this convenient notation.

We start with the definition of a cone complex.

Definition 3.8.2: If f : A• → B• is a map of complexes, the cone com-

plex, Cone(f)•, is the direct product complex (A[1]⊕B)• with the differential

(−dA, f + dB).

Our inspiration comes from Deligne cohomology, and we want this construction

to work well with Deligne cohomology and the map εD in Definition 3.3.6.

Therefore, we recall the specific cone complex results for Deligne cohomology
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from [Jan88] and [EV86].

Proposition 3.8.3: Deligne cohomology is isomorphic to the cohomology of

the following as a cone complex.

Hr
D(X,R(p)) = Hr−1(Cone(F pD•X(X)

−πp−1→ D•X,R(p−1)(X)) (3.8.6)

Proof. From [Jan88], [EV86], and [Lew01]. The main details of this proof are

also used in the proof of the next proposition.

The proof constructs a quasi-isomorphism between the Deligne complex R(p)•D

and the above cone complex. We follow the same construction, adapted to

B•p,q(R(p) instead of the Deligne complex. The added information in B•p,q(R(p))

is the trail of anti-holomorphic terms O → Ω
1 → . . . → Ω

p−1
. In order to

account for these, we add a second term to the target of the map defining the

cone complex.

Proposition 3.8.4: The sequence B•p,q(R(p)) is quasi-isomorphic to the fol-

lowing cone complex.

Cone(F pD•X
−πp−1,φq→ D•X,R(p−1) ⊕D•<q)[−1] (3.8.7)

The [−1] shift is necessary to match up with the indexing in B•p,q(R(p), we place

the constants R(p) in degree 0. This is consistent with the Deligne complex in

the literature. The maps realizing this quasi-isomorphism will be constructed

piece by piece in the proof.

Proof. In this proof, currents are either holomorphic or antiholomorphic cur-

rents which can be identified with forms by regularity. Throughout the proof,
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we refer to forms and their associated currents by the same symbols. This is

an abuse of notation, but makes the construction easier to follow.

This cone complex in degree r is a direct product sheaf.

F pDrX ⊕Dr−1
R(p−1) ⊕D

r−1
<q (3.8.8)

If (a, b, c) is a triple with respect to this decomposition, the differential is

calculated as follows.

dC(a, b, c) = (−da,−πp−1(a) + db,−φq(a) + dc). (3.8.9)

By the frequent use of the Poincaré Lemma (Proposition 2.2.22) on the stalks,

the cone complex is exact except at degrees 0, p − 1, q − 1. We must work in

cases, though all of the substantial calculations occur in the first case.

Case p > 0, q > 0 and (p, q) 6= (1, 1).

Near degree 0, the B•p.q(R(p)) complex and this cone complex are:

0 → R(p) → O⊕O → Ω1 ⊕ Ω
1 →

↓ ↓ ↓ ↓

0 → 0 → D0
X,R(p−1) ⊕D0,0 → D1

X,R(p−1) ⊕ (D1,0 ⊕D0,1) →

The degree 0 vertical map must obviously be a zero map. On an element

(f, g) ∈ O ⊕ O, we define the degree 1 map to be (f, g) 7→ (πp−1f, (f + g)).

The following vertical maps are similarly defined: (f, g) 7→ (πp−1f, (f + g)).

It is not difficult to show that these maps commute with the differentials at
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this degree. In degree 0, and element r ∈ R(p) maps to (r,−r) in O⊕O, then

to (−πp−1(r), r+ (−r)) = (0, 0), which commutes with the clearly zero map of

the other route. In degree 1, let (f, g) ∈ O ⊕ O. Taking the differential first

gives (∂f, ∂g) which maps to (πp−1(∂f), ∂f + ∂g). If we take the vertical map

first, we get (πp−1(f), g), which maps to (πp−1(df), d(f + g)). These two agree

because ∂f = 0 and ∂g = 0. The same argument holds for higher degrees,

until degree p− 1.

The kernel at degree 1 of B•p.q(R(p)) is the following sheaf.

C⊕ C
{(r,−r)|r ∈ R(p)}

(3.8.10)

By the complex linear change of variables given by (a, b)→ (a, a+b) on C⊕C,

this quotient is isomorphic to R(p− 1)⊕ C.

In the cone complex, we can construct the same kernel in degree 1 by working

locally with the stalks. The closed R(p − 1)-valued currents, are simply the

constants R(p−1), by regularity. Similarly, C is the group of local, closed (0, 0)

currents. Together we have a kernel of R(p)⊕ C. The map of complexes is of

the form (f, f + g). This is precisely the change of variables map suggested

in the previous paragraph, so the map of complexes realizes isomorphism on

cohomology.

Assuming p, q > 1, we look at subcases as follows.

Subcase p < q

In this case, the complex is exact with the given vertical maps until we get to

degree p− 1. At that degree, the two complexes are as follows.
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Ωp−2 ⊕ Ω
p−2 → Ωp−1 ⊕ Ω

p−1 →

↓ ↓

Dp−2
X,R(p−1) ⊕Dp−2 → Dp,0X,C ⊕D

p−1
X,R(p−1) ⊕Dp−1 →

→ Ω
p →

↓

→ (Dp+1,0
X,C ⊕D

p,1
X,C)⊕DpX,R(p−1) ⊕Dp →

The first vertical map is as before: (f, g) 7→ (πp−1f, (f+g)). The second vertical

map is defined to be (f, g) 7→ (∂f, πp−1f, (f + g)). The third vertical map, and

those continuing past this point, are simply g 7→ (0, 0, g).

We can check that these maps commute with the differentials. Taking the dif-

ferential first applied to (f, g) gives ∂g, which maps to (0, 0, ∂g). (The assump-

tion p < q is important at this point.) The other direction is more involved:

(f, g) maps to (∂f, πp−1(f), f + g). Taking the cone complex differential gives

(−d(∂f),−πp−1(∂f) + πp−1(∂f),−φq(∂f) + d(f) + ∂g). Using the fact that

∂f = 0 and that df and φq∂f are equivalent in this situation, this expression

reduces to (0, 0, ∂g).

The cohomology of B•p,q(R(p)) in degree p − 1 is Ωp−1/∂Ωp−2. We need to

make sure the cone complex agrees, and the induced map on cohomology is

an isomorphism. Therefore, consider the kernel in degree p − 1 in the cone

complex.
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(a, b, c) ∈ Dp,0X,C ⊕D

p−1
X,R(p−1) ⊕Dp−1 da = 0

πp−1(a) = db

φq(a) = dc

 (3.8.11)

In the first summand, we have the differential d, so we get a kernel of Ω̂p
D. By

regularity, this is the group of currents associated with the holomorphic forms

Ω̂p.

Then consider the equation πp−1(a) = db. Up to a constant, this projection

πp−1 is a + a, which is a (p, 0) form plus a (0, p) form. Provided that p ≥

2, the equation c(a + a) = db implies that b decomposes as bp−1,0 + b0,p−1,

with ∂bp−1,0 = ca and ∂b0,p−1 = ca. However, then we can use the Poincaré

Lemma (Proposition 2.2.22), to show that b is uniquely determined by a in

both bidegrees. Therefore, this second component is fixed by the choice of a

in the first component.

If p = 1, we have that b is a (1, 1) form with ∂b = ca and ∂b = ca, which is

similarly uniquely determined by the Poincaré Lemma (Proposition 2.2.22).

The third component of the image of (a, b, c) is −φq(a)+dc. In the kernel, this

imposes the relations dc = a on the original triple. But we are working locally

and dc = a implies that c is a (p − 1, 0) current which satisfies ∂c = 0 and

∂c = a. By regularity and the Poincaré Lemma, this means that the form c

which satisfies dc = a is unique.

These observations allow us to conclude that both the second and third compo-

nents are determined uniquely by the first. Projection onto the first summand

preserves the kernel entirely, and is an isomorphism with the sheaf Ω̂p. There

is no image in the first component, so the cohomology of the cone complex in
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degree p− 1 is Ω̂p.

Lastly, the induced map between the kernels is the map on the first component,

which is ∂. By Corollary 2.2.23, the map ∂ is an isomorphism from Ωp−1/∂Ωp−2

to Ω̂p. This proves the quasi-isomorphism in degree p− 1.

Still working in the subcase p < q,the complexes continue exactly until q − 1,

where we have the following terms.

Ω
q−2 → Ω

q−1

↓ ↓

FpDq−2
X,C ⊕D

q−2
X,R(p−1) ⊕Dq−2 → FpDq−1

X,C ⊕D
q−1
X,R(p−1) ⊕Dq−1

→ 0

↓

→ FpDqX,C ⊕D
q
X,R(p−1) ⊕ (Dq,0 ⊕ . . .⊕D1,q−1)

The vertical maps are g 7→ (0, 0, g), which still form commutative squares. The

cohomology of B•p,q(R(p)) in degree q− 1 is Ω
q−1

/∂Ω
q−2

. In the cone complex,

the first two summands are exact and the third summand starts to truncate at

this degree. This gives the cohomology of precisely Ω
q−1

/∂Ω
q−2

, agreeing with

the B•p,q(R(p)). The map between the two cohomologies is the identity map

after identifying forms with currents, by regularity of holomorphic currents.

The rest of B•p,q(R(p)) is zero, and the cone complex continues exactly by the

Poincaré Lemma (Proposition 2.2.22), which completes the proof in this case.

Subcase p > q

For this case, the anti-holomorphic part of the complex ends first. At degree

q − 1, we have the following terms.
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Ωq−2 ⊕ Ω
q−2 → Ωq−1 ⊕ Ω

q−1 →

↓ ↓

Dq−2
X,R(p−1) ⊕Dq−2 → Dq−1

X,R(p−1) ⊕Dq−1 →

→ Ωq →

↓

→ DqX,R(p−1) ⊕ (Dq,0 ⊕ . . .⊕D1,q−1) →

The vertical maps are still defined to be (f, g) 7→ (−πp−1(f), f + g) and they

still form commutative squares. The cohomology in the top complex is only

supported in the second component, which is Ω
q−1

/∂Ω
q−2

. The calculation for

the cohomology of the cone complex, in this case, is like degree q − 1 above:

we only have non-trivial cohomology because of the start of the truncation in

the second component. This cohomology is precisely the same, Ω
q−1

/∂Ω
q−2

,

and the map in the second degree restricted to cohomology is the identity (up

to identification of anti-holomorphic forms with currents).

The sequences continue exactly until degree p−1. We have to adjust the maps

slightly, taking φq(f) in the second component instead of just (f), to account

for the truncation. These maps still commute with the differentials.

At degree p− 1, we have the next possible contribution.
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Ωp−2 → Ωp−1 →

↓ ↓

Dp−2
X,R(p−1) ⊕Dp−2 → Dp,0X,C ⊕D

p−1
X,R(p−1) ⊕Dp−1 →

→ 0 →

↓

→ (Dp+1,0
X,C ⊕D

p,1
X,C)⊕DpX,R(p−1) ⊕Dp →

The vertical map in degree p − 1 is f 7→ (∂f,−πp−1f, φqf). Past this, the

vertical maps are zero. These maps still form commutative squares.

The kernel calculation here is just a simplification of the calculation in degree

p − 1 in the previous subcase, where cohomology is realized by restricting to

the first component and ∂ induces an isomorphism in cohomology.

Subcase p = q

Here the two cohomology calculations happen as the same time, which is in

degree p− 1 = q − 1.

Ωp−2 ⊕ Ω
p−2 → Ωp−1 ⊕ Ω

p−1 →

↓ ↓

Dp−2
X,R(p−1) ⊕Dp−2 → Dp,0X,C ⊕D

p−1
X,R(p−1) ⊕Dp−1 →

→ 0 →

↓

→ (Dp+1,0
X,C ⊕D

p,1
X,C)⊕DpX,R(p−1) ⊕Dp →
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The cohomology of B•p,q(R(p)) here is a direct sum: Ωp−1/∂Ωp−2⊕Ω
p−1

/∂Ω
p−2

.

The cohomology of the cone complex is found by the same methods as the

calculations in degree p−1 and q−1 in the previous subcases; it works out to a

direct sum support in the first and third components of Ωp
d−closed⊕Ω

p−1
/∂Ω

p−2
.

The induced map is ∂ on the first component, which is an isomorphism, and

the identity on the second.

Other Cases

The first case covered all degrees where p, q > 1. There are other cases with

non-zero p and q, following cases describing cohomology calculations in the

proof of Proposition 3.2.3, as well as cases where p and q may be zero. These

cases required some slight adjustment to the calculations, since various pieces

of the calculation interfere with degree 0. Though the details vary slightly, the

calculations are similar to what we have already done, and are excluded here.

As a particular note, the case q = 0 recovers the Deligne cohomology cone

complex construction, since D<0 is trivial.

A pleasant fact about this quasi-isomorphism is that all sheaves involved are

fine, so the map into the cone complex acts as a resolution of B•p,q(R(p)).

Therefore, we can calculate hypercohomology simply by taking the cohomology

of the global sections of the cone complex.

Hp,q
BC(X,R(p) = Hp+q(B•p,q(R(p)) =

Hp+q−1(Cone(F pD•X(X)
−πp−1,−φq→ D•X,R(p−1)(X)⊕D•<q(X))) (3.8.12)
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Hp,q
Ap(X,R(p+ 1) = Hp+q+1(B•p+1,q+1(R(p+ 1)) =

Hp+q(Cone(F p+1D•X(X)
−πp,−φq→ D•X,R(p)(X)⊕D•<q(X))) (3.8.13)

The cone complex construction allows for new definitions of the maps between

Bott-Chern or Aeppli cohomology and Deligne cohomology.

Definition 3.8.5: There are maps εC .

εC : Hp,q
BC(X,R(p))→ Hp+q

D (X,R(p)) (3.8.14)

εC : Hp,q
Ap(X,R(p+ 1))→ Hp+q+1

D (X,R(p+ 1))

Assume that all cohomologies are described by cone complexes as in Equations

3.8.6, 3.8.12 and 3.8.13, and assume that a class in Bott-Chern or Aeppli

cohomology is represented by a triple as follows.

(a, b, c) ∈ F pDrX ⊕Dr−1
R(p−1) ⊕D

r−1
<q (3.8.15)

Then the maps εC are the maps induced by the projection (a, b, c) 7→ (a, b).

Proposition 3.8.6: The maps εC are well defined.

Proof. The result is essentially by construction. To give well defined maps on

hypercohomology, the maps need to commute with the differentials on the

levels of complexes. However, the differentials in the cone complex defining
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Deligne cohomology are precisely the same as those in the cone complex defin-

ing Bott-Chern, simply ignoring the third component. Since the differentials

are the same, and the map is the identity on the first two components, the

commutativity is trivial.

This also clarifies the claim earlier that we recover all of the necessary calcu-

lations for Deligne cohomology. The nature of this map, simply forgetting a

component, shows that all the information in the Deligne complex is already

part of these Bott-Chern cone complex constructions.

Proposition 3.8.7: The following diagram is commutative.

B•p,q → Cone(F pD•X(X)
−πp−1,−φq→ D•X,R(p−1)(X)⊕D•<q(X))

↓ ↓

R(p)•D → Cone(F pD•X(X)
−πp−1→ D•X,R(p−1)(X))

Here the horizontal maps are the quasi-isomorphisms constructed in this sec-

tion. The first vertical map is the map on complexes inducing εD: projection

away from the anti-holomorphic terms. The second vertical map is the map

just described defining εC : the projection onto the first two components in the

cone complex.

Proof. The quasi-isomorphisms are defined in cases, as in the proof of Propo-

sition 3.8.4. In each case, we can explicitly calculate the two paths around the

diagram. We assume p, q > 1 and use the maps defined in Proposition 3.8.4

In all cases, the degree zero situation is simply this square, for z ∈ C.
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z → 0

↓ ↓

z → 0

Case p < q

For degree 1 ≤ d ≤ p− 2, we have this square.

(f, g) → (−πp−1(f), f + g)

↓ ↓

f → −πp−1(f)

For degree d = p− 1 we have this square.

(f, g) → (∂f,−πp−1(f), f + g)

↓ ↓

f → (∂f,−πp−1(f))

For degrees d ≥ p we have this square.

(0, g) → (0, 0, g)

↓ ↓

0 → (0, 0)

Case p > q

For degrees 1 ≤ d ≤ p− 2 we have this square.
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(f, g) → (−πp−1(f), f + g)

↓ ↓

f → −πp−1(f)

For degree d = p− 1 we have this square.

(f, g) → (∂f,−πp−1(f), φq(f + g))

↓ ↓

f → (∂f,−πp−1(f))

For higher degrees, the initial elements in the top left of the square are just

zero, so the square commutes automatically.

Case p = q

For degrees 1 ≤ d ≤ p − 1, this is the same as the previous two cases. For

degree p− 1 this is the same as the case p > q. Finally, for higher degrees, the

initial top left elements are zero and commutativity is trivial.

As with the proof of Proposition 3.8.4, the other cases from Proposition 3.2.3

for p, q > 0 and cases involving p = 0 or q = 0 are similar and the calclulations

are excluded here.

The commutativity of the maps of complexes gives this corollary.

Corollary 3.8.8: The maps εD and εC are the same map, once the the Bott-

Chern and Deligne cohomologies have been identified with their cone complex

descriptions.
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3.9 Bott-Chern and Aeppli Products

The first Bott-Chern and Aeppli products were defined in Proposition 3.1.4,

working with C-coefficients. These products were defined by the wedge prod-

uct of forms, but that option is no longer available when discussing products

for Bott-Chern cohomology with finer coefficients. To investigate products of

cohomology with finer coefficients, we use the two resolutions established in

Section 3.8.

3.9.1 Products using the Čech resolution

First we return to the Čech resolution. These constructions and calculations

are following [Sch07]. Elaborating on that source, we have checked the work in

detail and made the signs much more explicit, as well as adapted for formula

to include Aeppli cohomology. Though the Čech resolution machinery is more

general regarding coefficients, we restrict to R(p) coefficients here as we have

done before.

In the following, we have repressed the Čech indices and the cup product

notation in Čech cohomology. When we write consecutive terms, the implicit

product is always the cup product of Čech cocycles.

Many of the product calculations for the Čech resolution are lengthy and

technical, so we have relegated most of them to Appendix A.

Assume that u ≥ max{p − 1, q − 1} and v ≥ max{r − 1, s − 1}, and assume

that η and ν are elements, of degrees u and v respectively, in two different

Čech double complexes as follows, using the notation from Definition 3.8.5.
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η ∈
⊕
j+k=u

Čj(U ,Bkp,q(R(p))) (3.9.1)

η = ηc; ηh,0, ηh,1, . . . , ηh,u; ηa,0, ηa,1, . . . , ηa,u

ν ∈
⊕
j+k=v

Čj(U ,Bkr,s(R(r)))

ν = νc; νh,0, νh,1, . . . , νh,v; νa,0, νa,1, . . . , νa,v

Then there is a product formula which defines the following element.

η ? ν ∈
⊕

j+k=u+v−1

Čj(U ,Bkp+r,q+s(R(p+ r))) (3.9.2)

The term by term definition of this product is given in Appendix A. Note that

the product maps degree u and degree v to degree u+ v − 1.

Proposition 3.9.1: The formula presented in Appendix A is a well defined

map of complexes and induces a product structure on cohomology.

Proof. The proof involves checking the Leibniz rule. This is a long, detailed

and technical calculation which is also found in Appendix A.

This product formula can be used to define two Bott-Chern cohomology prod-

ucts:

Hp,q
BC(X,R(p))×Hr,s

BC(X,R(r))→ Hp+r,q+s
BC (X,R(p+ r)) (3.9.3)

Hp,q
BC(X,R(p))×Hr,s

Ap(X,R(r + 1))→ Hp+r,q+s
BC (X,R(p+ r))
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The details and the adjustment in degrees and calculations are listed in Ap-

pendix A.

In a remark in [Sch07], it is noted that this product is compatible with the map

εD defined in 3.6.3 and the product on Deligne cohomology defined in [EV86].

That reference does not give the details, nor have we worked them out.

3.9.2 Products using the Cone Complex Resolution

The details of a product in Deligne cohomology via the cone description are

from [EV86]. We repeat those details, adjusting them only in notation.

Deligne cohomology is given by the cohomology of cone complex.

Hr
D(X,R(p)) = Hr−1(Cone(F pD•X(X)

−πp−1→ D•X,R(p−1)(X)) (3.9.4)

The r − 1th term of the cone complex is F pDrX(X)⊕Dr−1
X,R(p)(X). With respect

to this direct sum, an element of Deligne cohomology is represented by a pair

(f, g).

Proposition 3.9.2: If (fr, gr) and (fs, gs) are representatives of Deligne coho-

mology classes in Hr
D(X,R(p)) and Hs

D(X,R(q)) respectively, then the product

in Hr+s
D (X,R(p+ q)) is represented by the following expression.

(fr ∧ fs, gr ∧ πqfs + (−1)degfrπpfr ∧ gs) (3.9.5)

Proof. In order to ensure that this leads to a product, it is necessary to check

that it respects the Leibniz rule, as is done in [EV86] Lemma 3.11. That

calculation is straightforward, using the observation that projection and the
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wedge product interact as follows.

πp+q−1fr ∧ fs = πp−1fr ∧ πqfs + πpfr ∧ πq−1fs (3.9.6)

Recall that the Bott-Chern cohomology is given, in a cone complex, by this

formula.

Hp,q
BC(X,R(p) = Hp+q(B•p,q(R(p)) =

Hp+q−1(Cone(F pD•X(X)
−πp−1,0→ D•X,R(p−1)(X)⊕D•<q(X))) (3.9.7)

The difference between this and the Deligne cohomology is the extra D•<q

component. We need to incorporate the extra component into the product.

Proposition 3.9.3: There is a product on Bott-Chern cohomology with R(p)-

coefficients. In terms of the cone complex, assume that classes in Bott-Chern

cohomology Hp,q
BC(X,R(p)) and Hr,s

BC(X,R(r)) are represented, respectively, by

the following elements.

(η, σ, ω) ∈ F pDp+q
X (X)⊕Dp+q−1

X,R(p−1)(X)⊕Dp+q−1
<q (3.9.8)

(η̃, σ̃, ω̃) ∈ F rDr+s
X (X)⊕Dr+s−1

X,R(r−1)(X)⊕Dr+s−1
<s

Then the product in Hp+r,q+s
BC (X,R(p+ r)) is represented by the following ele-

ment.
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(
η ∧ η̃, σ ∧ πrη̃ + (−1)pπpη ∧ σ̃,

1

2
(ω ∧ φsη̃ + (−1)pφqη ∧ ω̃)

)
(3.9.9)

Proof. The product on complexes needs to be stated slightly more generally in

order to check that the Leibniz rule applies. Therefore, we take two elements

similar to those in the statement of the proposition, but in arbitrary degrees

n and m respectively.

(η, σ, ω) ∈ F pDnX(X)⊕Dn−1
R(p−1(X)⊕Dn−1

<q (X) (3.9.10)

(η̃, σ̃, ω̃) ∈ F rDmX(X)⊕Dm−1
R(r−1(X)⊕Dm−1

<s (X)

Note that these terms have degrees n and m, respectively, in the [−1] shifted

cone complexes. The [−1] here is very necessary to make sure that we have the

right sign in the Leibniz rule. Also note that the numbers p, q, r, s are fixed,

since they define the original complexes, but the degrees n,m are variable.

The product gives an element of order m+n in the new shifted cone complex.

(η, σ, ω) ◦ (η̃, σ̃, ω̃) ∈ F p+rDm+n
X (X)⊕Dn+m−1

R(p+r−1)(X)⊕Dn+m−1
<q+s (X) (3.9.11)

This is the general product formula.
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(
η ∧ η̃, σ ∧ πr(η̃) + (−1)nπp(η) ∧ σ̃, 1

2
(ω ∧ φs(η̃) + (−1)nφq(η) ∧ ω̃)

)
(3.9.12)

With this formula in place, it sufficies to prove the Leibniz rule. We first

calculate the differential on the product.

dC [(η, σ, ω) ◦ (η̃, σ̃, ω̃)] = (3.9.13)

dC

[(
η ∧ η̃, σ ∧ πr(η̃) + (−1)nπp(η) ∧ σ̃, 1

2
(ω ∧ φs(η̃) + (−1)nφq(η) ∧ ω̃)

)]

We work by components. The first component has the following form.

−d(η ∧ η̃) = −dη ∧ η̃ + (−1)n+1η ∧ dη̃ (3.9.14)

The second component is more complicated.

− πp+r−1(η ∧ η̃) + d (σ ∧ πr(η̃) + (−1)nπp(η) ∧ σ̃) (3.9.15)

= πp+r−1(η ∧ η̃) + dσ ∧ πr(η̃) + (−1)n−1σ ∧ dπr(η̃)+

(−1)ndπp(η) ∧ σ̃ + (−1)n(−1)nπp(η) ∧ dσ̃

= πp+r−1(η ∧ η̃) + dσ ∧ πr(η̃) + (−1)n−1σ ∧ πr(dη̃)+

(−1)nπp(dη) ∧ σ̃ + πp(η) ∧ dσ̃

The third component is similar to the second.
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− φq+s(η ∧ η̃) +
1

2
d (ω ∧ φs(η̃) + (−1)nφq(η) ∧ ω̃) (3.9.16)

= φq+s(η ∧ η̃) +
1

2
dω ∧ φs(η̃) + (−1)n−1 1

2
ω ∧ dφs(η̃)+

(−1)n
1

2
dφq(η) ∧ ω̃ + (−1)n(−1)n

1

2
φq(η) ∧ dω̃

= φq+s(η ∧ η̃) +
1

2
dω ∧ φs(η̃) + (−1)n−1 1

2
ω ∧ φs(dη̃)+

(−1)n
1

2
φq(dη) ∧ ω̃ + (−1)n(−1)n

1

2
φq(η) ∧ dω̃

We must calculate the other half of the Leibniz formula and compare to these

espressions. The other half of the formula is the product of the differentials.

dc(η, σ, ω) ◦ (η̃, σ̃, ω̃) + (−1)n(η, σ, ω) ◦ dc(η̃, σ̃, ω̃) (3.9.17)

Note that the sign is (−1)n. According to the shift [−1] in the cone complex,

the first element has degree n.

Then we expand the differentials.

(−dη,−πp−1(η) + dσ,−φq(η) + dω) ◦ (η̃, σ̃, ω̃)+ (3.9.18)

(−1)n(η, σ, ω) ◦ (−dη̃,−πr−1(η̃) + dσ̃,−φs(η) + dω̃)

Again, we work by components. The first component is straightforward.

−dη ∧ η̃ + (−1)n+1η ∧ dη̃ (3.9.19)

96



This agrees with the previous construction. The second component is, again,

more involved.

(−πp−1(η) + dσ) ∧ πr(η̃) + (−1)n + 1πp(−dη) ∧ σ̃+ (3.9.20)

(−1)n [σ ∧ πr(−dη̃) + (−1)nπp(η) ∧ (−πr−1(η̃) + dσ̃)]

= −πp−1(η) ∧ πr(η̃) + dσ ∧ πr(η̃) + (−1)n + 1πp(−dη) ∧ σ̃+

(−1)n [σ ∧ πr(−dη̃) + (−1)nπp(η) ∧ (−πr−1(η̃)) + (−1)nπp(η) ∧ dσ̃]

= −πp−1(η) ∧ πr(η̃)− πp(η) ∧ πr−1(η̃) + dσ ∧ πr(η̃)+

(−1)n+1σ ∧ πr(dη̃) + (−1)nπp(dη) ∧ σ̃ + πp(η) ∧ dσ̃

This agrees with the previous second component using the relation between

the projections and the exterior derivative: πp+r−1(η ∧ η̃) = πp−1(η) ∧ πr(η̃) +

πp(η) ∧ πr−1(η̃).

This leaves the third component.

1

2

[
(−φq(η) + dω) ∧ φs(η̃) + (−1)n+1φq(−dη) ∧ ω̃

]
+ (3.9.21)

(−1)n
1

2
[ω ∧ φs(−dη̃) + (−1)nφq(η) ∧ (−φs(η̃) + dω̃)]

=
1

2

[
−φq(η) ∧ φs(η̃) + dω ∧ φs(η̃) + (−1)n+1φq(−dη) ∧ ω̃+

]
(−1)n

1

2

[
ω ∧ φs(−dη̃) + (−1)nφq(η) ∧ (−φs(η̃)) + (−1)nφq(η) ∧ dω̃

]
= −φq(η) ∧ φs(η̃) +

1

2
dω ∧ φs(η̃) + (−1)n+1 1

2
ω ∧ φs(dη̃)+

(−1)n
1

2
φq(dη) ∧ ω̃ +

1

2
φq(η) ∧ dω̃
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This agrees with the previous third component. We use the fact that dφq = φqd,

since the implied projections in d are precisely the projections imposed by φq.

This finishes the argument, since the establishment of the Leibniz rule ensures

that the product is well defined on cohomology. We specialize to the case

that n = p and m = q to get the desired product relation on Bott-Chern

cohomology.

Corollary 3.9.4: We also have a product Hp,q
BC(X,R(p)×Hr,s

Ap(X,R(r+1))→

Hp+r,q+s
Ap (X,R(p+ r + 1).

Proof. This product is given by the formula established in the previous proof.

It suffices to check that the degrees for Bott-Chern × Aeppli→ Aeppli match

with this product construction, which is immediate.

We do not have a product on Aeppli cohomology itself, since the degrees in this

calculation do not match up with the degrees calculating Aeppli cohomology.

This mirrors the original scenario in Section 3.1.1, where we lacked an Aeppli-

only product.

By construction, we developed this product to mimic the product on Deligne

cohomology in 3.9.5 defined previously. The explicit compatibility we want is

expressed in the following proposition.

Proposition 3.9.5: The following diagrams are commutative, where the hor-

tizontal maps are the products just defined, and the vertical maps, componen-

twise, are εC.
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Hp,q
BC(X,R(p))×Hr,s

BC(X,R(r)) → Hp+r,q+s
BC (X,R(p+ r))

↓ ↓

Hp+q
D (X,R(p))×Hr+s

D (X,R(r)) → Hp+r+q+s
D (X,R(p+ r))

Hp,q
BC(X,R(p))×Hr,s

Ap(X,R(r + 1)) → Hp+r,q+s
Ap (X,R(p+ r + 1))

↓ ↓

Hp+q
D (X,R(p))×Hr+s+1

D (X,R(r + 1)) → Hp+r+q+s+1
D (X,R(p+ r + 1))

Proof. These compatibilities are almost automatic. In the above product cal-

culations, we simply drop the third terms and recover the calculations for the

product on Deligne cohomology.
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Chapter 4

Flat Bundles and Pic0(X)

4.1 The Exponential Sequence

We begin this section with some exposition on bundles, Picard groups and

Picard varieties. This material is standard, following [Huy05] and others. The

only notable difference between the main references and our exposition is the

inclusion of Tate-twisted coefficients.

The exponential map on functions gives a sheaf map OX → O×X . This leads to

the exponential short exact sequences of sheaves.

0→ Z(1)→ OX
exp→ O×X → 0 (4.1.1)

A short exact sequence of sheaves produces a long exact sequence in sheaf

cohomology.
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0→H0(X,Z(1))→ H0(X,OX)→ H0(X,O×X) (4.1.2)

→H1(X,Z(1))→ H1(X,OX)→ H1(X,O×X)

→H2(X,Z(1))→ . . .

Definition 4.1.1: The connecting homomorphism from the exponential se-

quence is called the (integral) Chern class.

H1(X,O×X)
c1→ H2(X,Z(1)) (4.1.3)

The classical description of this has Z coefficients. Our definition agrees up to

multiplication by (2πı).

Definition 4.1.2: The Picard Variety, written Pic0(X), is the kernel of the

Chern class map c1 : H1(X,O×X)→ H2(X,Z(1)).

Proposition 4.1.3: The logarithm allows the following identification.

Pic0(X) ∼= Coker(H1(X,Z(1))→ H1(X,OX)) (4.1.4)

Proof. Since Equation 4.1.2 is a long exact sequence, we can identify Pic0(X)

with the image of H1(X,OX) → H1(X,O×X) which in turn is identified with

the cokernel of the map H1(X,Z(1)) → H1(X,OX). This identification is a

logarithm by definition, since it is the inverse of an exponential operation. The

logarithm is multivalued, which explains why the value of the logarithm is only

defined in the quotient by H1(X,Z(1)).
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For projective algebraic manifolds, the structure of Pic0(X) is well understood.

The map H1(X,Z(1)) → H1(X,OX) is the embedding of a lattice into a C-

vector space of half the lattice dimension, and the quotient is a C-torus. This

torus admits a polarization, making it an abelian variety. This fact is usually

argued by way of the Hodge decomposition where we can identify Pic0(X)

as the quotient of H0,1(X) by the lattice H1(X,Z). The kernel of the Chern

class map into H2(X,Z(1)) identifies which line bundles admit flat metrics, so

that the abelian variety Pic0(X) is exactly the group of isomorphism classes of

flat line bundles. Finally, all line bundles over an projective algebraic manifold

admit non-zero meromorphic sections.

It is not clear, for non-algebraic manifolds, which of the previous lists of results

fail and how they fail. The remainder of this chapter tries to answer that ques-

tion by understanding the structure of Pic0(X) for non-algebraic manifolds.

4.2 Flat Bundles

The following definition is a specialized version of more general definitions of

metrics on vector bundles, following [Lew04].

Definition 4.2.1: A metric on a line bundle L = {lij} with respect to an open

cover U = {Ui} is defined to be a collection of C∞ functions ρi : Ui → (0,∞)

such that ρi |lij|2 = ρj on intersections Ui ∩ Uj.

This metric gives an absolute value on meromorphic sections. Locally, this has

the form |fi| = fiρifi. An easy calculation shows that this absolute value does

not depend on the local description.
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Definition 4.2.2: A metric ρi on L is called flat if the ∂∂logρi = 0. The

differential form ∂∂logρi is called the curvature form.

Definition 4.2.3: If L = {lij} is a line bundle over X, then any metric ρi on

L defines a class [2πı∂∂logρi] ∈ H1,1
BC(X,C). This defines a map H1(X,OX)→

H1,1
BC(X,C) which is called (somewhat redundantly) the Bott-Chern Chern

class.

Proposition 4.2.4: The Bott-Chern Chern class is well defined, i.e. this class

is independent of the metric chosen. Furthermore, L admits a flat metric if

and only if this class vanishes.

Proof. If σi is another metric on L = {lij}, then we can calculate the difference

between the two Bott-Chern Chern classes.

2πı∂∂logρi − 2πı∂∂σi = 2πı∂∂log
ρi
σi

(4.2.1)

But log ρi
σi

is a C∞ function on X. Therefore, the difference due to a change in

metrics is a ∂∂-exact form. Since Bott-Chern cohomology is defined modulo

∂∂A0(X), we conclude the Bott-Chern Chern class is well-defined.

If ρi is a flat metric, then by definition 2πı∂∂logρi = 0 so the class is zero.

Conversely, if the class [2πı∂∂logρi] = 0, then 2πı∂∂logρi = 2πı∂∂f for some

global C∞ R-valued function f . It is easy to see that ρi/e
f is also a metric on

L. The following calculation shows that ρi/e
f is a flat metric.

2πı∂∂logρi/e
f = 2πı∂∂logρi − 2πı∂∂logef = 0 (4.2.2)
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In addition to the Chern class maps into H2(X,Z(1) and H1,1
B C(X,C), there

is also the Chern class H1(X,O×X) → H2(X,R(1)) defined by the curvature

of a connection. All three target spaces admit maps to H2(X,C), so we can

consider what compatibilities exists among the Chern classes.

Proposition 4.2.5: Up to a sign, the following is a commutative diagram

involving all three Chern classes. The map H1,1
BC(X,C)→ H2(X,C) is the map

defined in Definition 3.1.3.

H1(X,O×) H2(X,Z(1))

H1,1
BC(X,C) H2(X,R(1))

H2(X,C)

Proof. The compatibility of the upper right triangle is found in Proposition

4.4.12 of [Huy05], up to a sign or multiplication by 2πı where necessary. The

compatibility of the lower part of the diagram follows from the fact that both

Chern characters can be calculated by the class [2πı∂∂logρi], and the inclusion

into H2(X,C) preserves this class.

Proposition 4.2.6: Up to a quotient by the image of H1(X,R(1)), the Bott-

Chern Chern class factors through H1,1
BC(X,R(1)).

Proof. This is just an application of Proposition 3.7.3, since π0 of the the

curvature form vanishes.

We can make an addition the commutative diagram based on this proposition.
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H1(X,O×) H2(X,Z(1))

H1,1
BC(X,C)

H2(X,R(1))

H2(X,C)

H1,1(X,R(1))
H1(X,R)

Having formed some understanding of Chern classes, we want to understand

how they relate to flat line bundles.

Definition 4.2.7: FLB′ is the group of flat line bundles. That is, FLB′ :=

Ker(H1(X,O×X)→ H1,1
BC(X,C)).

For projective algebraic manifolds, it is well known that FLB′ = Pic0(X).

However, we have no guarantee that the kernels of the Bott-Chern and inte-

gral Chern classes correspond. Since both kernels are important to our devel-

opment, we impose both restrictions.

Definition 4.2.8: FLB := FLB′ ∩ Pic0(X).

Our constructions in the following chapters will depend on meromorphic sec-

tions of line bundles. For non-algebraic manifolds, line bundles without any

non-zero meromorphic sections may exist. We wish to exclude these.

Definition 4.2.9: FLS is the subgroup of FLB containing those line bundles

which admit at least one non-trivial meromorphic section.

The fact that FLS is a subgroup is easy to see. The group structure comes from

the tensor product of line bundles, described by multiplication of the transition

functions. Since meromorphic sections are equivalent to Cartier divisors, we
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can take their product as Cartier divisors. That product is a meromorphic

section over the tensor product of the line bundles.

Using the identification of meromorphic sections and Cartier divisors, we will

often treat FLS as a group of Cartier divisors whose corresponding line bundles

are flat with vanishing integral Chern classes. This only caution in doing so

is that FLS is defined to be a group of isomorphism classes, and the group of

Cartier divisors has many elements corresponding to the same isomorphism

class.

4.3 The Structure of Pic0(X)

In order to investigate the structure of Pic0(X), recall we made the identifica-

tion Pic0(X) = Coker(H1(X,Z(1)) → H1(X,OX)) in Proposition 4.1.3. The

first three terms in the long exact sequence associated with the exponential

sequence are as follows.

0→ Z(1)→ C→ C× → (4.3.1)

This is an exact sequence, so the next map factors through 0. Therefore, the

map H1(X,Z(1))→ H1(X,OX) is injective (and that H1(X,Z(1)) is a torsion-

free abelian group). Since this map is injective, we identify H1(X,Z(1)) with

its image, allowing a new description of Pic0(X).

Pic0(X) ∼=
H1(X,OX)

H1(X,Z(1))
(4.3.2)

H1(X,OX) is a complex vector space and H1(X,Z(1)) is a finite rank free
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abelian group. We need to understand how the latter is embedded in the

former.

Proposition 4.3.1: H1(X,Z) is discrete in H1(X,OX). More precisely, any

basis for H1(X,Z(1)) is R−linearly independent and H1(X,Z(1)) forms a lat-

tice in H1(X,OX).

Proof. Consider the following short exact sequence of sheaves.

0→ C→ OX
d→ Ω̂1 → 0 (4.3.3)

The start of the corresponding long exact sequence on cohomology is as follows.

0→ H0(X,C)→ H0(X,OX)→ H0(X, Ω̂1)→ H1(X,C)→ H1(X,OX)

(4.3.4)

The first two groups are both isomorphic to C, so the third map factors through

zero. Therefore, H0(X, Ω̂1) ↪→ H1(X,C) is an injective map which identifies

H0(X, Ω̂1) with its image. (This connecting morphism is nothing more than

the map which sends a global closed holomorphic 1-form to its De Rham class.)

Then the map from the quotient H1(X,C)/H0(X, Ω̂1) into H1(X,OX) is in-

jective. We conclude that any subgroup of H1(X,C) injects into H1(X,OX) if

it intersects H0(X, Ω̂1) trivially.

Elements of the subgroup H1(X,R(1)) are classes of R-valued closed forms,

according to the De Rham description. Let ω be a form in H0(X, Ω̂1) and

assume that its class [ω] in H1(X,C) is equal to the class of a Tate twisted

real form [η]. Equality in H1(X,C) implies that there exists a C∞ function
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f : X → C such that ω = η + df .

This is an equation of forms, so it preserves type. The form ω is of pure type

(1, 0), which gives these relations.

ω = η1,0 + ∂f, 0 = η0,1 + ∂f (4.3.5)

We assumed that η is a real form, so η0,1 = η1,0. We substitute η0,1 = −∂f

and η1,0 = −∂f into the previous equation.

ω = −∂f + ∂f = ∂f − ∂f = ∂
(
f − f

)
(4.3.6)

This calculation shows that ω is ∂-exact. Since ω is holomorphic (∂ω = 0), we

have ∂∂(f − f) = 0, i.e. the function f − f is a ∂∂-closed function.

Any such function g with ∂∂g = 0 is an element in H0,0
Ap(X,C), which is

dual to Hn,n
BC (X,C). But this Bott-Chern cohomology is just C (relying on our

assumption that X is compact). Therefore, we have only a one dimensional

complex space of functions satisfying ∂∂g = 0, and we conclude that g must

be constant.

Returning to ω, we see that f − f is a constant function, and ω = ∂(f − f) =

0. The class of ω was assumed to be in the intersection of H0(X, Ω̂1) and

H1(X,R(1)). By proving that ω vanishes, we have established that the two

vector spaces intersect trivially. We conclude that H1(X,R(1)) injects into

H1(X,OX).

The map H1(X,Z(1)) → H1(X,O) is induced by inclusion, so it factors

through H1(X,R(1)). Therefore, a basis for H1(X,Z(1)) must be R-linearly
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independent in H1(X,O), i.e. H1(X,Z(1)) forms a lattice in H1(X,O).

For projective algebraic manifolds, we can argue that this lattice has full rank.

Without an algebraic assumption, we lose this result; the following proposition

is as much as we can say.

Corollary 4.3.2: The group Pic0(X) is the product of a real torus and a finite

dimensional real vector space.

Pic0(X) ∼= Rr ⊕ T s (4.3.7)

Where T s ∼= H1(X,R(1))/H1(X,Z(1)) and r, s are the real dimensions of the

pieces. This isomorphism is non-canonical.

We might have hoped for this to be a decomposition into a complex torus and

a complex vector space, but this expectation is not reasonable. In particular, if

the first Betti number, b1, is odd, then the lattice has odd rank and the quotient

can never have a complex structure. We know that for Kähler manifolds, b1 is

always even, but we are interested in non-Kähler examples. Hopf manifolds,

for examples, have odd first Betti numbers.

4.4 Constant Transition Functions

Take L = {lij} ∈ FLS with a meromorphic section (or Cartier divisor) σi.

Recall that the local functions σi satisfy σi = σjlij on intersections of the open

cover. L has a flat metric is given by ρi and we write |σi| for the absolute value

of σ given by the metric. The following idea is from [Lew04].
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Proposition 4.4.1: For L ∈ FLS, we can choose the transition functions lij

to be constants in S1 = {z ∈ C | |z| = 1}.

Proof. Lemma 5.3 in [Lew04] tells us that |σi| is locally of the form hihi where

hi is a meromorphic function on the open set Ui. (We refine the open cover

U = {Ui} if necessary, so that Ui and Ui∩Uj are isomorphic to simply connected

open sets in Cn). Then, on intersections Ui∩Uj, we consider the meromorphic

function hi/hj. As the quotient of meromorphic functions, this is ∂-closed.

However, by the identity |σi| = |σj|, the norm is preserved on the intersection.

This implies that hihi = hjhj. We can write this equality as follows.

hi
hj

=

(
hj
hi

)
=

(
hi
hj

)−1

(4.4.1)

The middle term is antiholomorphic, so it is ∂-closed; we conclude that hi/hj

is ∂-closed as well. This implies that hi/hj must be locally constant. Write

cij = hi/hj for this constant. Then the left hand side of the above equation

implies that cij = c−1
ij , which translates to |cij| = 1, so the cij are constant

complex numbers of norm 1.

The cij satisfy cijcjk = cik on triple intersections, so they form a Čech cocycle

in C1(U , S1) and a class in H1(X,S1). By the inclusion of S1 ↪→ O×X , the cij

define a class in H1(X,O×X), hence the transition functions for a line bundle.

What line bundle is this? The meromorphic functions hi, by definition, satisfy

the conditions of a meromorphic section of this line bundle. But |σi| = hihi

implies that the associated Weil divisor satisfies div(σi) = div(hi). Therefore,

the line bundle defined by the cij is the line bundle of the divisor div(σi). That

is just the original line bundle L, since σ is a Cartier divisor associated with
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L, which completes the proof.

The following proposition establishes an important property of line bundles

with constant transition functions.

Proposition 4.4.2: In terms of the decomposition Pic0(X) ∼= Rr
⊕

T s into

a vector space and a torus from 4.3.2, line bundles with constant transition

functions lie in the torus, i.e. FLS ⊂ T s.

Proof. We have a short exact sequence of constant sheaves.

0→ Z(1)→ R(1)→ R(1)/Z(1)→ 0 (4.4.2)

By the logarithm, we identify S1 with R(1)/Z(1). This gives a long exact

sequence in sheaf cohomology.

0→ H1(X,Z(1))→ H1(X,R(1))→ H1(X,S1)→

→ H2(X,Z(1))→ H2(X,R(1))→ . . . (4.4.3)

The kernel of this last map is torsion, so we truncate to get a short exact

sequenece of cohomology groups.

0→ H1(X,R(1))

H1(X,Z(1))
→ H1(X,S1)→ H2

tor(X,Z(1))→ 0 (4.4.4)

This is totally compatible with the exponential sequence, i.e. the following

diagram is commutative.
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0 → H1(X,R(1))
H1(X,Z(1))

exp
↪→ H1(X,S1) → H2

tor(X,Z(1)) →

↓ ↓ ↓

0 → Pic0(X) = H1(X,OX)
H1(X,Z(1))

exp
↪→ H1(X,O×X) → H2(X,Z(1)) →

The commutativity of this diagram follows from the observation that the map

H1(X,S1) → H2
tor(X,Z(1)) is the classical Chern class map. By assumption,

the line bundles in FLB have zero Chern class. Therefore, by the short exact se-

quence in Equation 4.4.4, they come from classes in H1(X,R(1))/H1(X,Z(1)).

We conclude that line bundles with transition functions in H1(X,S1) come

from the map H1(X,R(1))/H1(X,Z(1)) ↪→ H1(X,OX)/H1(X,Z(1)). That

target space is the torus part of Pic0(X), completing the proof.

Since all line bundles in FLS have constant transition functions by Proposition

4.4.2, we conclude the FLS ⊂ T s, where T s is the torus part of Pic0(X).

As a curious aside, the constant S1-valued transition functions satisfy |lij|2 =

1. This implies that the metric ρ for L satisfies ρi|lij|2 = ρi, which is ρi =

ρj. Therefore, the ρi actually define a global C∞ function ρ : X → (0,∞).

Moreover, any such function which is closed under ∂∂log satisfies the metric

condition.

Though we have FLS ⊂ T s, it is not clear what relationship FLS has to the

torus. This question is intriguing for the parallel with the projective algebraic

case; we are curious how close we can get to a non-algebraic analogue of the

Poincaré bundle. The following is a conjecture in that direction.

Conjecture 4.4.3: FLS is a real sub-torus of T s.
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Though the conjecture is open, the following argument might be the start of

a proof. We can consider a projection map onto the real torus.

H1(X,R)
π→ H1(X,R)

H1(X,Z)
(4.4.5)

Then the inverse image π−1(FLS) is a subgroup of H1(X,R). A necessary

condition for FLS to be a subtorus is that this subgroup is a subvector space,

i.e. π−1FLS is preserved under scaling by real numbers.

If we take a class [rij] in H1(X,R), the transition functions for the corre-

sponding line bundle are e2πırij . If α ∈ R is a scalar, then α acts on [rij] by

multiplication. The action on the transition function is then e2πıαrij takes lij

to (lij)
α. This is still a constant non-zero function, hence defines a class in

H1(X,O×X), so these are the transition functions of a line bundle. Moreover,

this line bundle still admits a flat metric.

At this point, the next step would be to argue that π−1FLS is a lattice-invariant

subspace. We are not familiar with any technique that immediately addresses

this step, so the statement is left as a conjecture.

A similar conjecture would be to consider the subset of FLS consisting of

densely stably trivial bundles, which will be defined shortly in Section 4.6.

These line bundles more closely mimic the Poincaré bundle; perhaps they are

more likely to have a sub-torus structure.
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4.5 Families of Flat Line Bundles

Proposition 2.2.21 ensures that direct products of complex spaces exist. More-

over, Section 10.5 of [GR84] uses the ideas expressed in [Kod86] to construct

proper families of complex spaces. We can make use of those constructions

to build families of flat line bundles. Though families of complex spaces are

defined as the fibres of proper maps, we can use a more direct method for

understanding a family of line bundles on a fixed complex space. Let X be a

complex space and ∆ an open polydisc about 0 in Cn. We define families of

line bundles by working over the trivial family of complex spaces formed by

the product X ×∆, with the projection onto ∆.

Definition 4.5.1: A local analytic family of line bundles with sections is a

global Cartier Divisor A ∈M×
X×∆/O

×
X×∆(X ×∆) which restricts to a Cartier

Divisor in each of the fibres Xt.

We only care about a small neighbourhood of 0 ∈ ∆; to that end, we shrink ∆

as necessary to preserve local properties. We have the following useful descrip-

tion of this Cartier divisor. Given a suitably fine open cover of X, U = {Ui},

and assuming that we shrink ∆ as necessary to a smaller open polydisc, the

open sets Ui×∆ form a suitably fine open cover for the trivial family. Then the

Cartier divisor A is described by non-zero meromorphic functions Ai on Ui×∆

such that the quotients Ai/Aj are nowhere vanishing holomorphic functions

on the intersections Ui ∩ Uj ×∆.

This description of the Cartier divisor leads to a more intuitive notion of

families of line bundles. On each fibreXt, the meromorphic functionsAi restrict

to meromorphic functions on Ui × {t}, which we identify with Ui. Since we
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assumed that the global Cartier divisor restricted to a Cartier divisor on each

fibres Xt, this restriction is neither the zero function nor everywhere a pole,

so it defines a non-zero meromorphic function. The agreements between the

Ai are preserved, so this gives a well defined Cartier divisor on Xt
∼= X. The

line bundle over this fibre is the line bundle with transition functions given

by Ai/Aj restricted to the open intersections of the fibre. The Cartier divisor

itself naturally restricts to a non-zero section of this line bundle.

Definition 4.5.2: A family of metrics on a family of line bundles defined

by a Cartier Divisor A is a collection of C∞ functions ρi : Ui × ∆ → (0,∞)

which satisfy the compatibility condition of a metric on the global line bundle

associated with A and restrict to metrics on the line bundles over each fibre.

Having families of metrics, we can talk about flatness and Chern classes. In the

construction of families of line bundles, we can limit our scope by insisting that

all fibres satisfy particular conditions. In particular, we have this definition.

Definition 4.5.3: A family of FLS line bundles on X is a family of line

bundles where all fibres are Cartier divisors corresponding to flat line bundles

with zero Chern class, i.e. bundles in FLS.

We need the following important result.

Proposition 4.5.4: Assume we have a family of line bundles over X × ∆

described by a Cartier divisor A. If σ is a meromorphic section of the line

bundle over 0, then there exists a Cartier divisor Ã over X ×∆ such that Ã

defines the same family of line bundles and Ã restricts to the section σ in the

fibre over 0.
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Proof. The Cartier divisorA is defined byAi, which are meromorphic functions

on Ui ×∆. We can write Ai = Ai(x, z) in terms of the variables in this direct

product. Then we can make this definition.

Ãi(x, z) :=
Ai(x, z)σi(z)

Ai(x, 0)
(4.5.1)

Ãi is still a meromorphic function on Ui×∆. On the intersections Ui ∩Uj ×∆

the following is true.

Ai(x,z)σi(z)
Ai(x,0)

Aj(x,z)σj(z)

Aj(x,0)

=
σi(x)

σj(x)

Aj(x, 0)

Ai(x, 0)

Ai(x, z)

Aj(x, z)
(4.5.2)

This is still a nowhere vanishing holomorphic function. Restricted to the fibre

over z, this product of three transition functions gives the line bundle L0 ⊗

L−1
0 ⊗ Lz = Lz, so Ã defines the same family of line bundles as A.

By construction, the A(x, 0) terms cancel when restricted to the fibre over 0,

giving the section σi.

If we have a family of line bundles, we can realize any section over the central

fibre as the restriction of a section over the whole family. In particular, we

can use limits; we can realize a central section as the limit of sections over a

sequence of points converging to 0 in the polydisc ∆.

Lastly, we wish to construct the product of a family of line bundles.

Definition 4.5.5: Consider two families defined by Cartier divisors A and B

on trivial families X ×∆A and X ×∆B, respectively. The product ∆A ×∆B

is a polydisc in a larger dimensional complex vector space. We can form the

trivial family X×∆A×∆B. Let zA and zB be local coordinates of ∆A and ∆B
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respectively, and define a Cartier divisor AB over this family by the following

formula.

AB(x, zA, zB) = A(x, zA)B(x, zB) (4.5.3)

The product of the two families of line bundles is the family of line bundles

associated with the Cartier divisor AB.

Since A and B are Cartier divisors, AB is also a Cartier divisor. Moreover,

AB can only have zeros matching the fibres of the trivial family if either A or

B vanish along the fibres of their trivial families. The same is true for poles.

Since neither A nor B are zero or polar along any fibre, the divisor AB defines

a valid family of line bundles. It is easy to see that the line bundle in the

central fibre of AB is the tensor product of the central fibres of each of the

two factors.

4.6 Stably Trivial Families

Though the term ‘stably trivial’ does not appear in the paper, the following

property is important in [Lew04] and it behooves us to give it a name.

Definition 4.6.1: A line bundle L over an analytic variety Z is stably trivial

if there exists a finite covering Z̃
φ→ Z such that φ∗L is the trivial line bundle

over Z̃.

Definition 4.6.2: A local family of line bundles given by a Cartier divisor

A over X × ∆ is called densely stably trivial if there exists a dense subset
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D ⊂ ∆ such that the line bundles over all fibres Xd, d ∈ D are stably trivial

line bundles. We write DST for the set of such bundles.

The following proposition is necessary for the development in the next chapter.

Proposition 4.6.3: DST is a subgroup of FLS.

Proof. Consider two stably trivial families defined by Cartier divisors A and B

on trivial families X×∆A and X×∆B, respectively. The product construction

in Definition 4.5.5. gives the product of these families, with Cartier divisor AB.

The product of dense subsets SA of ∆A and SB of ∆B is dense in the product,

and the line bundles over the dense set SA × SB are the products of stably

trivial bundles, which remain stably trivial. Therefore, this is a densely stably

trivial family.

We will often think of DST as a group of Cartier divisors. The definitions

and constructions here are compatible with such a perspective, and the group

structure is very easily realized by the product of Cartier divisors. However,

this is a fundamentally different definition, since many Cartier divisors corre-

spond to the same isomorphism class of line bundles. To recover the original

description of DST, it is necessary to quotient by the relation that identifies

two divisors if they correspond to isomorphic line bundles.
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Chapter 5

Analytic Twisted Cycle Classes

5.1 Analytic Twisted Cycles

The constructions in this chapter are generalizations of the ideas in [Lew01]

and [Lew04] on Milnor K-Theory and related invariant theories on projective

algebraic manifolds. We frequently look to those papers, as well as original

sources on Milnor K-Theory, for definitions and inspiration.

Definition 5.1.1: Let Z be an irreducible analytic subvariety of a compact

complex manifold X. The group of analytic twisted 1-cycles over Z is the

following.

A1
Z =

⊕
L

M×
L (5.1.1)

The sum runs over all line bundles L ∈ DST over Z. If we interpret DST

as a group of Cartier divisors, then the identification of Cartier divisors and

meromorphic sections implies that A1
Z = DST.

119



We can consider the tensor algebra associated with this group.

T (A1
Z) :=

∞∑
i=0

(A1
Z)⊗j (5.1.2)

If we think of working with sections of line bundles, we must take note that

there are two tensor products. The tensor product of line bundles and their

sections defines the abelian group structure of A1
Z . The tensor product of

abelian groups is the multiplication in the tensor algebra. We must be careful

not to confuse the two tensor products. However, working with Cartier divisors

avoids this confusion, since the tensor products of the underlying line bundles

become implicit.

T (A1
Z) is a graded ring. In analogue with the Milnor K-theory of a field, define

R to be the two-sided graded ideal generated by all elements of the form

σ ⊗ (−σ) for σ ∈ A1
Z and (1− f)⊗ f for f ∈M(Z)×. We treat meromorphic

functions as Cartier divisors corresponding to the trivial line bundles.

Then T (A1
Z)/R is a graded quotient ring.

A•Z =

(∑∞
j=0(A1

Z)⊗j
)

R
(5.1.3)

The bullet indicates the grading, and we write AmZ for the module of elements

of degree m. Note that this definition agrees with A1
Z , since the relations start

in degree two. Also note that A0
Z = Z.

Definition 5.1.2: The group of analytic twisted m-cycles is defined as follows.

120



zk(X,m) :=
⊕
codim
Z=k

AmZ (5.1.4)

Taking inspiration from Milnor K-theory, we can clarify a notation for elements

of zk(X,m). Such an element can be written as a sum of basic elements, which

have the following notation.

(Z, {L1, ρ1, σ1;L2, ρ2, σ2; . . . ;Lm, ρm, σm}) (5.1.5)

In this notation, Z is some fixed subvariety of codimension k, each Li is a

line bundle over Zi with flat metric ρi and meromorphic section σi. To avoid

confusion with notation from the previous chapters, note that the subscripts

on the σi are the indices of the iterated tensor product, not the indices of local

sections over an open cover.

However, we prefer to work with a Cartier divisor description, which leads to

this simplified notation.

{σ1, σ2, . . . , σm}Z (5.1.6)

This notation is appropriate from the perspective of Cartier divisors: the σi

are Cartier divisors and the only extra information required is the subvariety

Z. This makes the supression of the line bundles and metrics more natural,

particularly since the Cartier divisor uniquely determines the line bundle and

we shall argue that all future constructions are independent of the choice of a

flat metric.
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5.2 Analytic Twisted Milnor Complex

The details of the Tame symbols on Milnor complexes originally come from

[BT73] and are explored in detail in [Lew04]. Following the latter reference,

since our version of a real regulator will also ignore torsion, we simplify our

exposition and work modulo 2-torsion.

Definition 5.2.1: Let D be an irreducible analytic subvariety of X of codi-

mension k + 1. We define the D-Tame symbol by the following formula.

TmD : zk(X,m)→ zk+1(X,m− 1) (5.2.1)

{σ1, . . . , σm}Z 7→
m∑
j=1

(−1)(m−j)νD(σj){σ1|D , . . . , σ̂j|D , . . . , σm|D}D

This formula holds whenever D ⊂ Z. If D 6⊂ Z, then TmD ({σ1, . . . , σm}Z) = 0.

After being defined on symbols, the formula is extended by linearity to all of

zk(X,m).

Definition 5.2.2: The complete Tame symbol is the sum of all these D-Tame

symbols.

Tm : zk(X,m)→ zk+1(X,m− 1) (5.2.2)

Tm :=
⊕
D

T kD

The sum is taken over all irreducible analytic subvarieties of codimension 1 in

Z.
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Proposition 5.2.3: This Tame symbol is well defined.

Proof. The proof follows [BT73] and [Lew04].

The approach of the proof is to restrict to suitable open sets where we can

apply the results of [BT73] on the Milnor K-Theory of fields. To that end,

let U = {Uα} be a suitable open cover, as per Proposition 2.2.28. We restrict

our attention to a specific subvariety Z, with D of codimension 1 in Z, and

consider TD acting on A•Z . Let {f1, . . . , fm}Z ∈ AmZ be a symbol. (Note that

throughout this proof we use Latin indices for the symbol index and Greek

indices for the open cover index.)

The suitable open cover allows us to treat Cartier divisors fj over Z as local

meromorphic functions in C(Uα). The advantage of dealing with the problem

locally is that C(Uα) is a field, and the results in [BT73] on fields apply.

On the field C(Uα), the order of vanishing along D∩Uα is a discrete valuation,

which we will write as νD,α. Choose a function φ ∈ C(Uα) defining D ∩ Uα

such that νD,α(φ) = 1. According to [BT73], this discrete valuation gives rise

to a map on Milnor K-theory.

∂φ : K•MC(Z)→ K•Mk(νD,α) 〈Π〉 (5.2.3)

Π is a variable that satisfies Π2 = (−1)Π, and A 〈Π〉 is the free module over

A with basis 1,Π. (This can be described more carefully using κ-algebras, but

we omit those details.)

The map ∂φ is a homomorphism. It is induced by the map defined on K1
M and

the product in the κ-algebra. More precisely, ∂φ restricted to K1
M = C(Z)× can
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be described as follows. If f ∈ C(Z)×, then the discrete valuation implies that

there exists unique u ∈ C(Z)× and r ∈ Z such that f = uφr and νD,α(u) = 0.

Then the following formula gives the map ∂φ.

∂φ(f) = l(u) + rΠ (5.2.4)

The notation u refers to the restriction of u to the residue field of νD,α,

namely k(νD,α), and l(u) is the element in Milnor K-theory associated with

u ∈ k(νD,α)×.

If we write fi = uiφ
ri , we can calculate the value for ∂φ on higher rank symbols

using the κ-algebra product.

∂φ{f1, . . . , fm} =
m∏
i−1

(l(ui) + riΠ) (5.2.5)

This product is calculated using the fact that Π2 = l(−1)Π. However, to sim-

plify our situation, we impose the condition Π2 = 0 by taking everything mod-

ulo 2-torsion, i.e. imposing the relation l(−1) = 0. With this simplification,

we can directly determine the product formula.

∂φ{f1, . . . , fm} = {u1, . . . um}+

[
m∑
j=1

(−1)m−jrj{u1, . . . , ûj, . . . , um}

]
Π

(5.2.6)

The coefficient of Π in the previous formula is an element of Km−1
M k(νD,α),

which is denoted ∂νD,α({f1, . . . , fm}). This is precisely the same formula that

defined our Tame symbol. Therefore, when restricting to the open set Uα we
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conclude that T{f1, . . . , fm} = ∂νD,α({f1, . . . , fm}).

Describing the Tame symbol by this local process using discrete valuations

allows us to use the results in [BT73] concerning such maps. Proposition 4.5

in that paper gives the two results we need.

1. The map ∂ν associated with a discrete valuation ν is independent of the

choice of the element π with ν(π) = 1.

2. The map ∂ν is well defined on symbols in Milnor K-theory, i.e. it respects

all relations defining such symbols.

In our context, the first result implies that this construction of the Tame

symbol doesn’t depend on the choice of the function φ defining the subvariety

D. The second result ensures that the Tame symbol is well defined modulo

the relations in the ideal R defining A•Z .

The argument so far is local; in order to complete the proposition, we must

ensure that the local descriptions of the Tame symbol patch together into

a consistent global description. However, this is almost immediate. For any

Cartier divisor f = fα used locally in this construction, the compatibility

condition implies that fα/fβ = lαβ. Then a description fα = uαφ
rα
α in terms of

the discrete valuation allows uα/uβ = lαβ|D. Finally, this works across symbols,

and the order of vanishing along D is globally consistent.

Proposition 5.2.4: For any m, Tm−1 ◦ Tm = 0.

Proof. This is a technical calculation from [Lew04]. It starts with the T 1 case

and works inductively. There are no adjusments necessary to adopt that proof.
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Let k be a fixed non-negative integer. Since the Tame symbols compose to 0,

they furnish us with the maps defining the following complex.

z0(X, k)
Tk→ z1(X, k − 1)

Tk−1

→ . . .
Tk−m+1

→ zm(X, k −m)
Tk−m→ (5.2.7)

. . . zk−1(X, 1)
T 1

→ zk(X, 0)
T 0

→ 0

We set the final term in degree 0, so Tm acts on degree −m.

5.3 Analytic Twisted Cycle Classes

The results of the previous section on the Tame symbol allow the following

definitions. These parallel the definitions from [Lew04], in that we build a

complex that resembles a Gersten resolution and then work on the cohomology

of that complex.

Definition 5.3.1: For a fixed k > 0 and some 0 ≤ m ≤ k, the group of

analytic twisted m-cycle classes is defined as follows.

V k(X,m) :=
Ker

(
Tm : zk−m(X,m)→ zk−m+1(X,m− 1)

)
Tm+1 (zk−m−1(X,m+ 1))

(5.3.1)

Note the shift in the superscript: V k(X,m) represents classes from zk−m(X,m),

not from zk(X,m). In this situation, m is the symbol rank, k − m is the

codimension; therefore the upper index in V k(X,m) stands for the sum of

the codimension and symbol rank. This is a natural choice, as explained in

Section 5.5. It is also a convenient choice for the degrees of the target spaces
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of regulator maps.

Proposition 5.3.2: Our construction V k(X,m) generalizes the construction

of twisted cycle classes in [Lew04] on projective algebraic manifolds.

Proof. The definition of V k(X,m) is similar toHk−m(XKM
k−•), X) from [Lew04].

The pieces of the definiton are the same; the major difference is that the later

construction makes use of the Zariski topology over algebraic varieties. The

question of compatibility comes down to moving between the two topologies:

strong and Zariski. However, by use of Serre’s GAGA result, we know that the

sets of algebraic and analytic subvarieties of a projectdive algebraic manifold

are equivalent. Moreover, there is a matching on sheaf cohomology between

OX and its equivalent Zariski sheaf. Therefore, the isomorphism classes of line

bundles do not depend on the choice of Zariski or strong topology. With that

established, the same line bundles are flat, and all line bundles over projective

algebraic manifolds admit non-zero sections. Again, GAGA proves that the

sets of sections over strong or Zariski line bundles correspond, since such sec-

tions can be calculated cohomologically. This implies that both constructions

give rise to the same twisted cycles. Finally, the Tame symbol has precisely the

same form in either case, so the equivalent descends to twisted cycle classes.

We conclude that V k(X,m) is independent of the choice of topology over pro-

jective algebraic manifolds.

5.4 Twisted Cycle Classes Product

On the level of twisted cycle groups, zk−m(X,m), there is a natural candidate

for a product.
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Definition 5.4.1: Assume we have two analytic subvarieties Z1 and Z2 of

codimensions k1 −m1 and k2 −m2 respectively. Consider two twisted cycles

written as follows.

σ := {σ1, . . . , σm1}Z1 ∈ zk1−m1(X,m1) (5.4.1)

τ := {τ1, . . . , τm2}Z2 ∈ zk2−m2(X,m2)

If the two twisted cycles are in a sufficiently general position (a vague notion to

be clarified in the proof of the next proposition), we can consider the following

combination.

σ ∩ τ = {σ1|Z1∩Z2
, . . . σm1 |Z1∩Z2

, τ1|Z1∩Z2
, . . . τm2|Z1∩Z2

}Z1∩Z2

∈ zk1+k2−m1−m2(X,m1 +m2) (5.4.2)

The ∩ notation is used because this structure is reminiscent of intersection

products in other theories.

Proposition 5.4.2: For a sufficiently powerful notion of cycles in general

position, which is defined in the proof, the formula in Equation 5.4.2 gives a

well defined product on the level of twisted cycle classes in V k(X,m).

Proof. Before considering cycle classes, we must note that in order for the

product to make sense, it must be well defined on symbols. This is almost

immediate, since any symbol relations in σ or τ that would give the trivial

cycle are preserved in the product.
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Then we have the following calculation to ensure that the Leibniz rule holds

for the Tame symbol.

Tm1+m2(σ ∩ τ) =
∑

D⊂Z1∩Z2

Tm1+m2
D (σ ∩ τ) (5.4.3)

=
∑

D⊂Z1∩Z2

[
m1∑
i=1

(−1)iνD(σi){σ̄1, . . . , ˆ̄σi, . . . , σ̄m1 , τ̄1, . . . , τ̄m2}D+

m2∑
j=1

(−1)j+m1νD(τj){σ̄1, . . . , σ̄m1 , τ̄1, . . . , ˆ̄τj, . . . , τ̄m2}D

]

=
∑

D⊂Z1∩Z2

[(
m1∑
i=1

(−1)iνD(σi){σ̄1, . . . , ˆ̄σi, . . . , σ̄m1}D

)
∩ τ |D

]
+

(−1)m1

∑
D⊂Z1∩Z2

[
σ|D ∩

(
m2∑
j=1

(−1)jνD(τj){τ̄1, . . . , ˆ̄τj, . . . , τ̄m2}D

)]

=

[∑
D⊂Z1

m1∑
i=1

(−1)iνD(σi){σ̄1, . . . , ˆ̄σi, . . . , σ̄m1}D

]
∩ τ+

(−1)m1σ ∩

[∑
D⊂Z2

m2∑
j=1

(−1)jνD(τj){τ̄1, . . . , ˆ̄τj, . . . , τ̄m2}D

]

= (Tm1σ) ∩ τ + (−1)m1σ ∩ (Tm2τ)

In this calculation, D ⊂ Z implies that D is irreducible of codimension 1 in

the larger subvariety and the bars over Cartier divisors indicate restriction to

the appropriate subvariety.

In order for the above calculation to make sense, every D ⊂ Z1 ∩ Z2 must

be realized as both D = D′ ∩ Z2 where D′ is irreducible codimension 1 in Z1

and D = D′′ ∩ Z1 where D′′ is irreducible codimension 1 in Z2. This is the

condition of general position that we define and apply to Z1 and Z2 in order

129



to allow the definition.

Finally, we extend the product over sums of cycles which are pairwise in general

position with each other, to give a partial product on V k(X,m).

Note that only a partial product is possible. While we can use the symbols and

the Steinberg relations to adjust poles and zeros of the meromorphic sections,

it is not as easy to adjust the subvarieties that support the cycles. Unlike the

Chow groups, we do not have a moving lemma to adjust the subvarieties into

general position.

5.5 Comparison with Other Invariants

Very roughly speaking, there are partial comparisons between V k(X,m) and

the projective algebraic version of twisted cycles, Milnor K-theory and higher

Chow groups. These identifications are very far from perfect and they are

only defined for particular degrees and situations. Nonetheless, it is useful for

inspiration, if nothing else, to have an idea of how the degrees match up.

V k(X,m) ∼ Hk−m(KM
k−•, X) ∼ Hk−m

Zar (X,KMk,X) ∼ CHk(X,m) (5.5.1)

Again very roughly speaking, the relations in the above list are as follows. The

first relation is an identification when reducing the analytic to the projective

algebraic case, as argued in Proposition 5.3.2. The second identification comes

from considering only functions (sections of the trivial line bundle) instead of

sections of arbitrary line bundles. The functions are then sheafified, and the
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third element is, in fact, a sheaf cohomology group. Lastly, the relationship

between Milnor K-theory and a certain coniveau graded part of the higher

Chow groups is well known and given by a graph map.
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Chapter 6

Regulators

In algebraic geometry, regulators refer to various maps from K-theoretic in-

variants (such as Milnor K-theory, higher Chow group, and our twisted cycle

classes) to simpler cohomologies theories (such as Deligne cohomology and

Bott-Chern cohomology). Our inspiration to consider regulators on twisted

cycle classes comes from the previous definition on Milnor K-theory and Chow

groups.

Even though we identify Deligne and Bott-Chern cohomology as target spaces

for regulator maps, it is often true that such maps are only defined modulo

some relations. Quotients of Deligne and Bott-Chern cohomology become the

actual target spaces. This is consistent with classically defined regulators.

6.1 Regulators on Twisted 1-Cycles

The regulator constructions in this section are adaptations of the real regu-

lators constructed for projective algebraic complex manifolds in [Lew01] and
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[Lew04].

We briefly recall the details of Aeppli cohomology: Hp,q
Ap(X,R(p + 1)). Aeppli

cohomology with coefficients in C was defined as hypercohomology in terms of

the complex of currentsM•
p+1,q+1. It is the hypercohomology in degree 2k− 2

of this complex.

Ker
(
∂∂ : Dp,q(X)→ Dp+1,q+1(X)

)
∂Dp−1,q(X)⊕ ∂Dp,q−1(X)

(6.1.1)

The currents in the numerator act on differential forms of bidegree (n−p, n−q),

that is, complex valued forms in An−p,n−q(X). Then Proposition 3.7.1 proves

that classes with coefficients in R(p+ 1) can be identified, up to a quotient, as

classes of currents which are either entirely real or entirely imaginary.

Now we can proceed to define the regulator current in the simplest degree,

m = 1. Recall the group of twisted 1-cycle classes.

V k(X, 1) :=
Ker

(
T 1 : zk−1(X, 1)→ zk(X, 0)

)
T 2 (zk−2(X, 2))

(6.1.2)

Definition 6.1.1: We define the Bott-Chern regulator on analytic twisted

1-cycle classes as follows.

rBC : V k(X, 1)→ Hk−1,k−1
Ap (X,R(k))/Q (6.1.3)∑

i

(Zi, Li, ρi, σi) 7→

(
ω 7→ (2πı)k

∑
i

∫
Z̃i

ωlog|σi|

)

Q is a subspace consististing of two parts: Q1 +Q2.
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Q1 is defined to be the image of H2k−2(X,R(k−1)) in Hk−1,k−1
Ap (X,R(k)). The

quotient by Q1 is necessary to have well defined classes in Aeppli cohomology

with R(k) coefficients according Proposition 3.7.1.

Q2 is defined to be the subspace of twisted real currents generated by integra-

tion over subvarieties:

Q2 :=

〈
ω 7→ (2πı)k

∫
Z̃

ω

∣∣∣∣ codimXZ = k − 1

〉
(6.1.4)

We refer to Q2 as the group of analytic currents or currents of integration over

analytic subvarieties. It defines classes in the quotient Hk−1,k−1
Ap (X,R(k))/Q1

according to Proposition 3.7.1 since it takes values in R(k).

Proposition 6.1.2: The regulator on twisted 1-cycle classes is well defined.

The proof of this proposition is broken up into several lemmas. First, in order

to get an element of Hk−1,k−1
Ap (X,C) we must ensure the current is ∂∂-closed.

Second, the formula must be independent of the metric on the line bundle.

Third, we must check that the current satisfies πk−1rBC(σ)) = 0, so that by

Proposition 3.7.1 the regulator take values in Aeppli Cohomology with R(k)

coefficients. These three give a regulator defined on twisted cycles in the kernel

of the Tame symbol; to get a map on twisted cycle classes, we need to show

that the regulator vanishes on the image of the previous Tame symbol.

The first lemma is only a very minor adaption of the calculation in [Lew04].

Lemma 6.1.3: Let η be a differential form of type n − k, n − k on X. The

regulator vanishes on ∂∂η.
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rBC

(∑
(Zi, Li, ρi, σi)

)
(∂∂η) =

∑
i

∫
Zi

∂∂ηlog|σi| = 0 (6.1.5)

Proof. We apply the chain rule to the integrand.

∂∂ηlog|σi| = ∂
(
∂ηlog|σi|

)
+ (−1)n−k+1∂η ∧ ∂log|σi| (6.1.6)

This expression is substituted back into the integral.

rBC

(∑
(Zi, Li, ρi, σi)

)
(∂∂η) =

∑
i

[∫
Zi

∂
(
∂ηlog|σi|

)
(6.1.7)

+(−1)n−k+1

∫
Zi

∂η ∧ ∂log|σi|
]

Consider the first of these two terms. Note that Z is of dimension n − k + 1,

so it can only support holomophic or anti-holomorphic forms of type at most

n − k + 1. This means that the form ∂(∂ηlogρi(σi)) on Z is equivalent to

d(∂ηlogρi(σi)), since the ∂-component is anti-holomorphic of type n − k + 2.

We may exclude the divisor set of σi from the integral, since it is of measure

zero. Applying these changes gives the following integral.

∑
i

∫
Zi

d
(
∂ηlog|σi|

)
=
∑
i

∫
Zi−div(σi)

d
(
∂ηlog|σi|

)
= lim

ε→0

∑
i

∫
Zi−Bε
d
(
∂ηlog|σi|

)
(6.1.8)

Here Bε is a solid tube of radius ε around the divisor set of σi. Tε is the

boundary of Bε, i.e. the hollow tube of radius ε around the divisor of σi. Now

we can apply Stokes theorem.
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lim
ε→0

∑
i

∫
Zi−Bε

d
(
∂ηlog|σi|

)
= lim

ε→0

∑
i

∫
Tε

∂ηlog|σi| (6.1.9)

The last expression here is a residue calculation. Since ∂η is a C∞ form on Bε,

we can simplify the residue calculation.

lim
ε→0

∑
i

∫
Tε

∂ηlog|σi| =
∑
i

∫
div(σi)

Res(∂ηlog|σi|) (6.1.10)

If σ tends to zero along a particular divisor, this residue integral clearly van-

ishes. If σ is polar along a divisor, since ∂η is a C∞ form defined on the whole

variety, it does not contribute to the polar behaviour along the divisor. There-

fore, in appropriate local coordinates, this integral behaves like a standard

(1-dimensional case) line integral.

∫
|z|=ε

log|z|dz =

∫
|z|=ε

εlogεdθ = 2πεlogε (6.1.11)

It is easy to see that this integral vanishes in the limit ε → 0. Therefore, the

first term on the right-hand side in Equation 6.1.7 is 0.

For the second term on the right-hand side in Equation 6.1.7, we use another

chain rule calculation.

∂η ∧ ∂log|σi| = ∂ (η ∧ ∂log|σi|) + (−1)n−k+1η ∧ ∂∂log|σi| (6.1.12)

By assumption, the metric ρi is flat, so the second term vanishes. For reasons

of type and holomorphic support, we can replace ∂ with the simple differential

d in the first term. Then we apply a similar argument as we did for the first
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term around the divisor set.

∑
i

∫
Zi

d (η ∧ ∂log|σi|) =
∑
i

∫
Zi−div(σi)

d (η ∧ ∂log|σi|) (6.1.13)

= lim
ε→0

∑
i

∫
Zi−Bε

d (η ∧ ∂log|σi|)

Here we have Stokes theorem again.

lim
ε→0

∑
i

∫
Zi−Bε
d (η ∧ ∂log|σi|) = lim

ε→0

∑
i

∫
Tε

η ∧ ∂log|σi| (6.1.14)

This is now a residue calculation, and the dlog term returns the order of

vanishing. This order of vanishing is unaffected by taking the absolute value

of the section.

lim
ε→0

∑
i

∫
Tε

η ∧ ∂log|σi| =
∑
i

∑
D∈Σi

νD(σi)

∫
D

η (6.1.15)

This gives the integral of η over all of the various divisors of the σi. However,

the condition of T 1 vanishing is precisely that the sums of the divisors of the

σi vanish. Therefore, this is an integral over an empty set and we conclude

that the second term in Equation 6.1.7 vanishes.

We need the regulator formula to be independent of the metric ρi chosen. The

second lemma establishes this fact, and is also very similar to the calculation

in [Lew04].

Lemma 6.1.4: Let ρ and τ be flat metrics on the line bundle L over Z of

codimension k. Let σ be a non-zero Cartier divisor which corresponds to a
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meromorphic section of L over Z. Then for a differential form ω of type n−

k, n− k, the following equality is true modulo the subspace Q1.

∫
Z

ωlog|σ|ρ =

∫
Z

ωlog|σ|τ (6.1.16)

Proof. The difference of the two integrals is the following expression.

∫
Z

ω (log|σ|ρ − log|σ|τ ) =

∫
Z

ωlog
|σ|ρ
|σ|τ

(6.1.17)

If ρ and τ are given by local positive functions ρi and τi, these local functions

agree with the cocycle lij defining the line bundle, that is, ρj = ρi |lij|2 and

likewise for τ . Then, locally, the integrand in question has this form.

ωlog
|σ|ρ
|σ|τ

∣∣∣∣
Ui

= ωlog
σiρiσi
σiτiσi

== ωlog
ρi
τi

(6.1.18)

The local descriptions for the quotient ρ/τ , which is also a positive function,

agree on intersection Ui ∩ Uj.

ρj
τj

=
ρi |lij|2

τi |lij|2
=
ρi
τi

(6.1.19)

Therefore, the quotient glues into a global function instead of a global section.

Since ∂∂logρi/τi = 0, the function logρi/τi is a global, ∂∂-closed function,

therefore a real constant c.

This means that the integral in Equation 6.1.17 now takes the following form.

2πıc

∫
Z

ω (6.1.20)
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This current acting on ω belongs to the group Q2, completing the proof.

At this point, the calculation differs from that of [Lew04]. That paper used

Hodge theory directly to get a current on the appropriate twisted real co-

homology. Here, we instead make use of Proposition 3.7.1 to find the right

coefficients.

Lemma 6.1.5: The current rBC(σ) satisfies the relation πk−1rBC(σ) = 0.

Therefore, it gives a class in Aeppli cohomology with R(k) coefficients, modulo

the subspace Q1.

Proof. This is nearly trivial. Since the integrand is a real-valued form, the

current is a real-valued current. Then the twisting term of (2πı)k before the

integral corrects the parity and ensures that projection of the current to R(k−

1) vanishes. By Proposition 3.7.1, the lemma follows.

Finally, we investigate how the regulator interacts with the Tame symbol.

Consider the tail of the complex defining V k(X,m).

z2(X, k − 2)
T 2

→ z1(X, k − 1)
T 1

→ z0(X, k)→ 0 (6.1.21)

The above three lemmas show that the regulator is defined on the subgroup

Ker(T 1) of z1(X, k−1). To descend to V 1(X,m), the regulator must vanish on

the image of T 2. We prove this in three lemmas, following [Lev88] and [Lew04].

Lemma 6.1.6: For any holomorphic functions f, g : Z → P1, the regulator on

the Tame symbol {f, g} vanishes.

rBC(T 2({f, g})) = 0 (6.1.22)
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Proof. This proof is due to Levine in [Lev88]. Choose a desingularization µ :

Z̃ → Z according to Proposition 2.2.32. Then F := µ∗(f × g) : Z̃ → P1 × P1

is a holomorphic map of complex manifolds.

On P1 × P1, let (s, t) be affine coordinates on each summand. We can inter-

pret s and t as meromorphic functions on P1 × P1. The class of the symbol

{s, t} naturally lives in V 2(P1 × P1, 1). We can consider the regulator current

rBC(T 2({s, t})), which acts on 1, 1-forms on P1×P1. Explicitly using the Tame

symbol formula and the fact that the coordinate functions divisors are easy to

determine, we get the following current.

ω 7→
∫
∞×P1

ln |t|ω −
∫

0×P1

ln |t|ω +

∫
P1×0

ln |s|ω −
∫
P1×∞

ln |s|ω (6.1.23)

Levine claims that this current vanishes on cohomology, and we fill out that

argument. The Künneth decomposition for P1 × P1 means that a form repre-

senting a cohomology class in H2(P1 × P1,C) is either a constant times ωs, a

2-form in the variable s, or a constant times ωt, a 2-form in the variable t. The

current applied to forms of the first type is only supported on the first two

integrals. However, the first two integrals are equal on such forms, since the t

dependence is only a constant, meaning the difference vanishes. The same is

true of the forms of the second type and we conclude that the rBC(T 2({s, t}))

represents the trivial cohomology class.

Since F is a smooth map, we can pull back the current rBC(T 2({s, t})). Since

s and t are coordinate functions on P1, F ∗rBC(T 2({s, t})) = rBC(T 2({f, g})).

Since the pullback is a morphism in cohomology, it preserves the zero coho-
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mology class. Finally, pushing forward by the desingularization µ back to the

original Z also preserves the zero class in cohomology and we conclude that

the regulator on the image of the Tame symbol of functions is trivial.

Using the result of Levine, the next two lemmas are adaptations of those in

[Lew04], bringing in the language of stably trivial bundles. Lacking a Poincaré

bundle, which is used to construct families of stably trivial line bundles in

[Lew04], we use Definition 4.5.1 to understand such families.

Lemma 6.1.7: For any elements {f, g} ∈ z2(X, k − 2) such that f and g

are Cartier divisors corresponding to stably trivial line bundles, the regulator

vanishes on the Tame symbol image of {f, g}.

rBC(T 2({f, g}Z)) = 0 (6.1.24)

Proof. Assume we have a map φ : Z̃ → Z which is a finite covering map

of complex spaces, and under which both the line bundles pullback to trivial

line bundles. The assumption that both f and g correspond to stably trivial

bundles implies such a map exists.

The current defining r(T{f, g}) pulls back to a zero current under φ∗ since,

on a trivial line bundle, we are dealing with functions and the Lemma 6.1.6

applies. We can consider forms ω on Z̃ and currents η on Z with the definition

of pullback of currents.

η(φ∗ω) = (φ∗η)ω (6.1.25)

Since our current pulls back to zero, this identity shows that our current van-
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ishes on all forms in the image of the pushforward. Lastly, the pushforward

map in homology is surjective; since the regulator is defined modulo closed

forms (or ∂∂-closed forms), the regulator is zero.

Lemma 6.1.8: For any element {f, g}Z ∈ z2(X, k−2), such that f and g are

Cartier divisors corresponding to line bundles L and M , the following is true.

rBC(T 2({f, g})) = 0 (6.1.26)

Proof. These Cartier divisors are limits of Cartier divisors corresponding to

stably trivial line bundes, as per Propositions 4.5.4 and 4.6.3.

Explicitly, let F and G be Cartier divisors over the trivial family X ×∆ such

that F0 gives the Cartier divisor f of the line bundle L and G0 gives the

Cartier divisor g of the line bundle M . Then there exists sequences of points

xi and yi in ∆ such that limi→∞ xi = limi→∞ yi = 0, limi→∞ F (xi) = f and

limi→∞G(yi) = g and the line bundles defined by the divisors over xi and yi

are all stably trivial.

The Tame map and the regulator are all continuous operations on Cartier

divisors. This allows us to conclude the following.

r(T ({f, g})) = lim
i→∞

r(T ({Fxi , Gyi})) (6.1.27)

All terms in this limit are symbols of stably trivial bundles. On such bundles,

the regulator vanishes on the image of the Tame symbols by Lemma 6.1.7. So

this is a limit of zero values, and we conclude that r(T ({f, g})) = 0.
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6.2 Regulators on Twisted m-cycles

Having completed the m = 1 case in the previous section, we have a very good

idea of what form a general regulator should take. This section addresses other

values of m, and defines the regulator in general.

For m = k, the domain of the regulator we wish to construst is a piece of the

Milnor K-theory of the function field of X (for X connected), so this regulator

can be defined by the same formula as the regulator in [Lew01] on Milnor

K-theory into Deligne cohomology. For m = 0 the domain of the regulator is

the analytic cycle group, and the regulator is nothing more than a cycle class

map into Aeppli cohomology.

With those cases accounted for, we assume 1 < m < k. We want to construct

a regulator with the following form.

rBC : V k(X,m)→
Hk−1,k−m

Ap (X,R(k))

δH2k−m−1(X,R(k − 1)
(6.2.1)

We could also consider the regulator acting on Hk−m,k−1
Ap (X,R(k − m + 1)).

However, no new information is provided by this calculation: such a regulator

would simply be the complex conjugation of what we are about to construct.

Definition 6.2.1: Consider a form ω ∈ An−k+m,n−k+1. Then the action of the

regulator for an element {σ1, . . . , σm}Z , where all the σi are defined over Z of

codimension k −m, is given by the following formula.
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rBC({σ1, . . . , σm}Z)(ω) := (6.2.2)

(2πı)k
k−m∑
i=1

(−1)i+1

∫
Z

log|σi|dlog|σ1| ∧ . . . d̂log|σi| ∧ . . . dlog|σm| ∧ ω

Proposition 6.2.2: This regulator is well defined on V k(X,m) and defines a

class in Hk−1,k−m
Ap (X,R(k))/δH2k−m−1(X,R(k − 1)

The proof proceeds according to several lemmas. The proof is similar to the

m = 1 case in Section 6.1, but some small adjustments are necessary.

Lemma 6.2.3: The formula in Equation 6.2.2 is well defined on symbols.

Proof. For this to be true, the formula has to be independent of the relations

defining symbols. Those relations are twofold. First, the symbols represent

tensors in a tensor product, so the relations implicit in the tensor product

must be respected. This isn’t an issue here, since any expression involving

logarithms satisfies those relations.

The are two other relations defining symbols, originally stated in Equation

5.1.3. Specifically, symbols {σ,−σ} for Cartier divisors σ and {f, 1 − f} for

meromorphic functions f are trivial, and similar relations in symbols of higher

degree cause the symbol to vanish.

First consider {σ,−σ}. All such Cartier divisors σ ∈ DST are the limits of

stably trivial Cartier divisors. Stably trivial Cartier divisors pullback to mero-

morphic functions over a finite cover, by definition. That reduces us to the

situation in [Lew01], where this result is argued for rational functions. The

argument is only algebraic in its use of Hodge theory to describe the target
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cohomology. If we replace the Hodge-theoretic quotient in that arugment with

the quotient of Hk−1,k−m
Ap (X,R(p) in our regulator image, we can make use of

that argument. The regulator is continuous, so we can make use of the limit

argument to conclude that {σ,−σ} vanishes under the regulator for general

Cartier divisors (still in DST, of course).

The same argument also applies to the meromorphic functions {f, 1− f}.

If we have σi = −σj or fi = 1 − fi in a symbol of degree higher than 2,

these same arguments still show that the regulator vanishes on such symbols,

completing the proof.

Lemma 6.2.4: For any component piece TD of the Tame symbol, the regulator

vanishes on the image.

rBC(TD({σ1, . . . , σk−m−1}))(ω) = 0 (6.2.3)

Proof. The projective algebraic version of this result is proved in the papers

[Lew01] and [Lew04], and follows a similar form to Lemmas 6.1.6, 6.1.7 and

6.1.8. The crux of those arguments is the reduction to the case of meromorphic

functions, realized as morphisms to P1. Then, by pulling back and pushing

foward currents to products of P1, the regulator currents on the Tame symbol

of such functions are shown to vanish.

Then the argument considers Cartier divisors corresponding to stably trivial

line bundles. By combining the various covering maps, we pull those Cartier

divisors back to meromorphic functions on the cover. The regulator on the

level of the cover is trivial on meromorphic functions, and it is shown that the

original current depends on the current pulled back to the cover.
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Finally, in the projective algebraic case, all Cartier divisors are limits of stably

trivial Cartier divisors by a Poincaré bundle argument. By the continuity of

the regulator, the final result is established.

In the analytic case, we specifically restrict our attention to those Cartier

divisors which are limits of stably trivial Cartier divisors, thus getting around

the problem of lacking a Poincaré bundle. By using limits of stably trivial

bundles and pullbacks of sections to meromorphic function, we can also reduce

to the case of considering Tame symbols of functions.

We can consider a set of meromorphic functions defining an analytic morphism

to a product of P1. Then, a proper modification to a desingularization allows

us to assume that this analytic morphism is a smooth map of manifolds. Under

a smooth map of manifolds, we can use the same argument as in the projective

algebraic case. The relations on P1 are the same, and the currents pullback via

the smooth map. Then we proceed back though the desingularization, covering

maps, and limits, to show that the result holds for Tame images of arbitrary

symbols in zk−m(X,m).

Lemma 6.2.5: For any form η of type n− k +m− 1, n− k, the regulator is

trivial on ∂∂η.

rBC({σ1, . . . , σk−m})(∂∂η) = 0 (6.2.4)

Proof. Recall the regulator formula.

k−m∑
i=1

(−1)i+1

∫
Z

log|σi|dlog|σ1| ∧ . . . d̂log|σi| ∧ . . . dlog|σm| ∧ ∂∂η (6.2.5)
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Since ∂∂η is already n − k + m times holomorphic and Z is of dimension

n− k + m, any holomorphic differential involved in the dlog terms leads to a

form which cannot be supported. Therefore, this expression simplifies.

k−m∑
i=1

(−1)i+1

∫
Z

log|σi|∂log|σ1| ∧ . . . ̂∂log|σi| ∧ . . . ∂log|σm| ∧ ∂∂η (6.2.6)

We apply the chain rule.

∂

(
log|σi|∂log|σ1| ∧ . . . ̂∂log|σi| ∧ . . . ∂log|σm| ∧ ∂η

)
= (6.2.7)

∂log|σ1| ∧ . . . ∧ ∂log|σm| ∧ ∂η

+ (−1)m−1log|σi|∂log|σ1| ∧ . . . ̂∂log|σi| ∧ . . . ∂log|σm| ∧ ∂∂η

The original formula can be realzed by integrating the left hand side less the

second term. Consider the left hand side of Equation 6.2.7.

k−m∑
i=1

(−1)i+1

∫
Z

∂

(
log|σi|∂log|σ1| ∧ . . . ̂∂log|σi| ∧ . . . ∂log|σm| ∧ ∂η

)
(6.2.8)

The steps here are precisely the same as in the proof for m = 1, where we

remove an ε-tube around the divisor set and integrate over Z less this tube.

Letting ε → 0 gives a residue calculation. Since we can assume the σi have

disjoint divisors by the symbol relations, we are left with a finite C∞ term

and a term which acts like
∮
εlogε, which vanishes in the limit, as in Equation
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6.1.11.

Therefore, we are left with the second term in Equation 6.2.7. Again we apply

the chain rule.

∂
(
∂log|σ1| ∧ . . . ∧ ∂log|σm| ∧ η

)
= (6.2.9)

∂
(
∂log|σ1| ∧ . . . ∧ ∂log|σm|

)
∧ η + (−1)m∂log|σ1| ∧ . . . ∧ ∂log|σm| ∧ ∂η

We are interested in the second term; the first term must vanish because each of

the metrics is flat and locally satisfies ∂∂log|σ| = 0. The regulator calculation

reduces to the following formula.

∫
Z

∂
(
∂log|σ1| ∧ . . . ∧ ∂log|σm| ∧ η

)
(6.2.10)

We can remove the divisor set of σ from the integral, since it is of measure

zero. Also we can revert to the complete differential dlog here for type reasons.

Then, letting Tε be an ε-tube around the divisors of the σi, we apply Stokes

theorem.

∫
Tε

dlog|σ1| ∧ . . . dlog|σm| ∧ η (6.2.11)

This is a residue calculation with dlog arguments, so it recovers the order of

vanishing along the divisors. Since the divisors of the σi are disjoint, we get the

following expression, letting Σ be the union of the divisors and D the specific

divisor.
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∫
Σ

∑
D⊂Σ

m∑
j=1

(−1)m−jνD(σi)∂log|σ1| ∧ . . . ̂∂log|σi| ∧ . . . ∂log|σm| ∧ η (6.2.12)

This expression in the integrand is precisely the Tame symbol of a twisted

cycle class. Since the definition of V k(X,m) involves the kernel of the Tame

symbol, we can conclude this integrand vanishes, completing the proof.

Lemma 6.2.6: The regulator satisfies πk−1r = 0, allowing it to take values in

Aeppli cohomology with R(k) coefficients, up to a quotient.

Proof. As in the m = 1 case, this is essentially by construction. The current

is integration against a R-valued form, and is twisted to take values in R(k).

Thus, it vanishes under the R(k − 1) projection. By Proposition 3.7.1, the

lemma follows.

Lemma 6.2.7: The regulator is independent of the choices of flat metrics on

the line bundles.

Proof. The elements of this calculation are very similar to the calculation in the

proof of Lemma 6.1.4. There we argued, in the m = 1 case, that the difference

caused by changing the metric on a line bundle was, up to a constant, an

integration current over the subvariety Z.

In this case, we apply the same calculation in two pieces. For the dlog terms in

the integral, the same calculation as in Lemma 6.1.4 implies that the difference

caused by a variation of flat metrics is the differential applied to a constant,

which is zero. For the log term, the difference caused by a variation of flat

metrics is a constant. However, the remaining terms are all closed forms. The
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integration of a closed form over a compact subvariety is trivial in cohomology,

so those terms vanish as well.

We conclude that any adjustments to the metric in any of the involved line

bundles make no difference to the regulator current.

This last lemma is the final result needed to show that the regulator was well

defined.

We have constructed this regulator with compatibility with previous construc-

tions in mind, which leads to the following expected result.

Proposition 6.2.8: This regulator is equivalent to the construction in [Lew04]

when restricting to projective algebraic manifolds.

Proof. For projective algebraic manifolds, the natural equivalent to V k(X,m)

is written Hk−m(KM
k−•, X). This object is constructed precisely in the same

way, and as we argued in Proposition 5.3.2.

The target, in the projective algebraic setting, is this cohomology group.

{
Hk−1,k−m(X)⊕Hk−m,k−1(X)

}
∩H2k−m−1(X,R(k)) (6.2.13)

The target injects into the following cohomology product.

{
Hk−1,k−m(X)⊕ . . .⊕Hk−m,k−1(X)

}
∩H2k−m−1(X,R(k)) (6.2.14)

Since this is an projective algebraic situation, we can make use of the Hodge

filtration to identify this group as the following quotient.
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H2k−m−1(X,R(k))

πkF kH2k−m−1(X,C)
(6.2.15)

This quotient can be identified with a quotient of H2k−m01
D (X,R(k)), as in

[Lew04]. Let Q be the implicitly defined subspace of Deligne cohomology that

realizes such a quotient.

Our regulator lands in a quotient of Hk−1,k−m
Ap (X,R(k)) by δH2k−m(X,R(k−1).

The numerator maps, according to Equation 3.6.3, to H2k−m−1
D (X,R(k)). How-

ever, the quotient in Equation 6.2.15 involves a restriction to R(k) coefficients.

Therefore, the map between Aeppli and Deligne descends to a map on our

Aeppli quotient to the group described in Equation 6.2.15.

Then consider the following diagram.

V k(X,m) Hk−m(KM
k−•,X)

Hk−1,k−m
Ap (X,R(k))

H2k−m−1(X,R(k−1))

H2k−m−1
D (X,R(k)

Q

Since the calculation of the regulators in each case is given by precisely the

same formula and the identifications in cohomology are compatible, this dia-

gram commutes and our construction generalizes the algebraic construction.

Note that if m = 1, this diagram must be adjusted by taking a quotient by

the group of analytic integration currents in the target spaces.
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Chapter 7

Conjectural Regulators and

Height Pairings

This chapter considers alternate approaches to regulators, based on the cone

complex construction. It then proceeds to look at constructions of height pair-

ings on twisted cycle classes, adapting the idea of height pairings on Chow

groups.

The material in this chapter is labeled as conjectural since, at the time of

completing this thesis, the proofs and details remain unfinished. We have good

confidence that most statements in this chapter are realistic, and look forward

to producing rigorous proofs as future work.

7.1 Standard Currents and Relations

If σ is a Cartier divisor over Z, then log|σ| is a well-defined R-valued section,

excepting the pole set of the divisor. As a coefficient function in an integrand,
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when integrating against an L1 form, both log|σ| and dlog|σ are well defined

and lead to convergent integrals.

Hoever, the notion of logσ and argσ are not necessary defined, particularly

since σ is not a global function and branch cuts are necessary. Taking inspi-

ration from identities that can be proved in simpler situations, we make the

following definitions.

Definition 7.1.1:

dlogσ = 2∂log|σ| (7.1.1)

dargσ = Im(dlogσ) = Im(2∂log|σ|)

Similar to the second definition, we have the following observation.

dlog|σ| = Re(dlogσ) = Re(2∂log|σ|)

These construction give us access to the language of standard currents in the

literature, which are often defined using dlogσ and dargσ.

Definition 7.1.2: Let σ = {σi, . . . , σm}Z be a twisted analytic cycle on Z

of codimension k −m in X. We define the following currents, where ω is an

appropriate test form.
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Ξlog(σ) :=

∫
Z

dlog|σ1| ∧ . . . ∧ dlog|σm| ∧ ω (7.1.2)

ΩB(σ) :=(2πı)−m
∫
Z

dlogσ1 ∧ . . . ∧ dlogσm ∧ ω

Rlog(σ) :=

∫
Z

m∑
j=1

(−1)j−1log|σj|dlog|σ1| ∧ . . . ∧ ̂dlog|σj| ∧ . . . ∧ dlog|σm| ∧ ω

RB(σ) :=(2πı)−mAltm
∑
j≥0

ım−2j−1

(2j + 1)!(m− 2j − 1)!

log|σ1|dlog|σ2| ∧ . . . ∧ dlog|σ2j+1| ∧ dargσ2j+2 ∧ . . . ∧ dargσm

In this definition, Altm refers to an alternating sum over all permutations of

{1, 2, . . . ,m}, where the sign of each summand is given by the sign of the

associated permutaion.

Using the relations from Definition 7.1.1, we can make the following adjust-

ments.

ΩB(σ) :=(πı)−md

∫
Z

∂log|σ1| ∧ . . . ∧ ∂log|σm| ∧ ω (7.1.3)

RB(σ) :=(2πı)−mAltm
∑
j≥0

.
(2ı)m−2j−1

(2j + 1)!(m− 2j − 1)!

log|σ1|dlog|σ2| ∧ . . . ∧ dlog|σ2j+1|∧

∧ Im(∂log|σ2j+2|) ∧ . . . ∧ Im(∂log|σm|)

These are, in some ways, the archetypical current formulae that show up in

various regulator calculations. The Rlog formula has been the basis for our own
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calculations in Chapter 6.

The currents themselves are not well-defined on symbols, twisted cycles nor

twisted cycle classes. However, following the pattern in the previous chapter, it

can be shown that they can be used as representatives for well defined classes

in quotients of Aeppli or Deligne cohomology.

However, simply working on the current level, we have the following relations,

for σ as before. We expect that these are true.

Statement 7.1.3:

d(Ξlog(σ)) = 0 (7.1.4)

d(Rlog(σ)) = mΞlog(σ)

d(Ω(σ)) = Ω(Tm(σ))

d(RB(σ)) = ImΩ(σ) +RB(Tm(σ))

7.2 Cone Regulators

We can use the currents in 7.1.2 and the relations in 7.1.1 to give a new

regulator construction. In the Chapter 6, we defined regulators following the

main constructions of [Lew01] and [Lew04]. We used the complex M•
p,q to

define Bott-Chern or Aeppli cohomology, then identified classes with R(p)

coefficients. The target of the regulator is a quotient of Aeppli cohomology,

which maps to a corresponding quotient of Deligne cohomology, under the map

εD of Equation (3.6.3). This map between quotients was a part of the proof of

Proposition 6.2.8.
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However, we can also look at regulators defined via the cone complex def-

initions of Deligne or Bott-Chern cohomology from Section 3.8. We refer to

these constructions as cone regulators. Our guiding sources here are the second

section of [Lew01] discussing the Beilinson regulator, as well as the regulator

calculations in [Gon95].

Conjecture 7.2.1: We can define a map as follows.

zk−m(X,m) → Cone(F kD•X(X)→ D•X,R(k−1)(X))2k−m−1 (7.2.1)

σ 7→ (Ω(σ), RB(σ))

This map is well defined up to a quotient of this cone complex, and descends

to a regulator map.

rB : V k(X,m)→ H2k−m
D (X,R(k))

Q
(7.2.2)

Here Q is a subspace of Deligne cohomology which is not yet determined.

Proof. This proof, once constructioned, should involved well-defined argu-

ments on symbols, on twisted cycles and on twisted cycle classes, including

independence of choices of metrics. These independences will necessarily de-

fine the subspace Q.

The following is an insight into the necessary quotient.

Conjecture 7.2.2: Assume the previous conjecture holds and we have a reg-

ulator map into a quotient of Aeppli cohomology described by a cone complex.
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Then the image of this quotient under the map εC to Deligne cohomology is

well defined and equal to the Deligne quotient defined in [Lew04]. That quo-

tient was defined to be a quotient by a subspace Q such that the following is

an isomorphism.

H2k−m−1
D (X,R(k))

Q′
∼=→
(
Hk−m,k−1(X)⊕Hk−1,k−m(X)

)
∩H2k−m−1(X,R(k)

(7.2.3)

This conjecture implies, among other things, an approach which involves cur-

rents of bidegree (k − 1, k − m) and (k − m, k − 1). (The potential currents

involved in Deligne cohomology aprioric could have any bidgree between those

two extremes.) We refer to this as ‘restriction to currents of outside Hodge

type’, since these are the two bidgrees which have the highest holomorphic or

anti-holomorphic degrees which can be supported.

In order to understand and prove this conjecture, some calculations must be

undertaken on the cone complex defining Deligne cohomology. The algebraic

construction must be generalized to the analytic areas, where the Hodge de-

composition of cohomology is no longer available.

The cone complexes, as in Section 3.9, have well defined products for Deligne

cohomology. A potential advantage of the cone regulator is compatibility with

this product.

Conjecture 7.2.3: If σ ∈ V k(X,m) and τ ∈ V r(X, s) represent classes in

general position, then rB(σ ∩ τ) = rB(σ) ◦ rB(τ).

When regarding a product calculation, we could alternatively consider prod-
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ucts working with the regulators defined by Rlog as in the previous chapter.

However, there is no intrisic product on Aeppli cohomology, so we would have

to identify some classes which lift to Bott-Chern cohomology and work with

the Bott-Chern / Aeppli product as defined in Section 3.9. Since the cone

structure isn’t natural here, the Čech product might be useful in this situa-

tion.

7.3 Height Pairing

Using both the Rlog regulator and the conjectural cone regulator, it may be

possible to construct something like a height pairing for certain twisted cy-

cles. This is a generalization of a similar construction for Chow groups in the

appendix to the paper [LC11]. Assume we have twisted cycle defined as follows.

ξ1 ∈ zk−m(X,m) ξ2 ∈ zd−k+1(X,m) (7.3.1)

ξ1 = Tm+1τ1 τ1 ∈ zk−m−1(X,m+ 1)

ξ2 = Tm+1τ2 τ2 ∈ zd−k(X,m+ 1)

We want to consider products of cycles, matching one cycle with the Tame

pre-image of the other.

ξi ∩ τ2 ∈ zd−m(X, 2m+ 1) τ1 ∩ ξ2 ∈ zd−m(X, 2m+ 1) (7.3.2)

In order to even consider this idea, we have to ensure that these intersec-
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tions are well defined, invoking the notion of general position from the proof

of Proposition 5.4.2. Collecting all this data together leads to the following

definition.

Definition 7.3.1: Compatible cycles ξ1 ∈ zk−m(X,m) and ξ2 ∈ zd−k+1(X,m)

are cyles which satisfy the following properties.

• Both are in the image of the Tame symbol.

• The cycles intersect in general position.

• If ξi = Tm+1τi, then ξ1 intersects τ2 in general position and ξ2 intersects

τ1 in general position.

Using the Rlog regulator from the Chapter 6, we can make a direct definition of

the pairing. The motivation here is to use one term in the pairing to define the

regulator, and use the other term in the pairing to define a form acted upon

by the regulator current. Such a form might be the integrand to the Ω current

on the other side of the pairing. (With an abuse of notation, write Ω(σ) for

that form as well as the current defined in Definition 7.1.2.) Explicitly, this

gives the following definition.

Definition 7.3.2: The height pairing 〈ξ1, ξ2〉 is calculated by Rlog(τ1)Ω(ξ2).

In this notation, ξ1 is the twisted cycle defining the current Rlog(τ1), which

then acts on the form Ω(ξ2). Such a formula gives a real number, since the

involved currents are real currents. Moreover, such a formula allows easy access

to the following result.

Conjecture 7.3.3: The height pairing is independent of the choice of Tame

pre-image τ1 of ξ1.
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This proof is yet to come, but should make use of the structure of Rlog from

Chapter 6. Unlike independence from the choice of Tame pre-images, reci-

procity is difficult with this approach. The parallel construction is the pairing

calculated by Rlog(τ2)(Ω(ξ1); and proving that the two formulae differ by a

sign seems challenging.

Instead, if we consider the cone regulator, we can take a different approach. For

the cone regulator, the conjectural agreement with the product in Conjecture

7.2.3 is of great use. Instead of defining the current Rlog, which then acts on

another form, we can calculate the regulator directly acting on the product of

cycles ξi∩ τj. Such a product falls in V d+m+1(X, 2m+ 1). The regulator image

from that group of twisted cycles is in H2d+1
D (X,R(d+m+ 1)).

Recall the definition of the relevant cone complex.

Cone(F d+m+1D•X
−πd+m→ D•X,R(d+m)) (7.3.3)

The first term in the cone complex at degree 2d cannot be supported, since

the filtration degree exceeds the dimension d. Therefore, this cone complex

is simply the complex of R(d + m)-valued currents. With the shift defining

Deligne cohomology, the 2dth cohomology of this complex gives the desired

group. That cohomology (since X is compact) is simply R(d+m). Therefore,

the value of the regulator on the product twisted cycle ξi∩τj defines a (twisted)

real number, and hence a pairing.

We want to be more explicit with this regulator calculation. If Deligne coho-

mology is calculated by the cone complex, the regulator is given by the pair

(ΩB(ξ1 ∩ τ2), RB(ξ1 ∩ τ2)).
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Recall the product on the cone complex describing Deligne cohomology in

Equation 3.9.5. Applying the product formula to the current situation and

using the compatibility in Corollary 7.2.3 gives the following.

rB(ξ1 ∩ τ2) = rB(ξ1) ∩ rC(τ2) = (7.3.4)(
Ωm(ξ1) ∧ ΩB(τ2), RB(ξ1) ∧ πmΩB(τ2)+

(−1)m+1πmΩB(ξ1) ∧RB(τ2)
)

However, since Ωm(ξ2) is a current that cannot be supported, having holomor-

phic degree m+ 1 over a subvariety of, at most, dimension m, we are left with

only one term defining this regulator: RB(τ2) ∧ ΩB(ξ1). If we abuse notation

and use ΩB and RB to refer to the integrands in the currents as well as the

currents themselves (i.e. we drop the
∫
Z

in the definition and use the same

notation), we can explicitly write this integral as follows.

rB(ξ1 ∩ τ2) =
∑
Z1,Z2

∫
Z1∩Z2

RB(τ2) ∧ πmΩB(ξ1) (7.3.5)

Returning to the other intersection, τ1∩ ξ2, we can repeat the same arguments

by simply switching components. We end up with a very similar formula.

rB(τ1 ∩ ξ2) =
∑
Z1,Z2

∫
Z1∩Z2

πmΩB(ξ2) ∧RB(τ1) (7.3.6)

Definition 7.3.4: The two height pairings on a duple (ξ1, ξ2) of compatible

analytic twisted coboundaries are the values in R(d+m) given by the two pre-
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vious formulae. We use the following notation for these pairings, respectively.

〈ξ1, ξ2〉+m = rB(ξ1 ∩ τ2) ∈ H2d+1
D (X,R(d+m)) = R(d+m) (7.3.7)

〈ξ1, ξ2〉−m = rB(τ1 ∩ ξ2) ∈ H2d+1
D (X,R(d+m)) = R(d+m)

A disadvantage of this approach is that it seems the independence of pre-

images may be more difficult to establish.

Conjecture 7.3.5: This height pairing is independent of the choice of Tame

pre-image of ξ1 and ξ2

The cone version, however, gives easy access to a reciprocity result.

Proposition 7.3.6: The two conjectural height pairings in 7.3.5 have a reci-

procity result:

〈ξ1, ξ2〉+m = (−1)m〈ξ1, ξ2〉−m (7.3.8)

Proof. The Tame symbol satisfies the Leibniz rule.

T 2m+2(τ1 ∩ τ2) = Tm+1(τ1) ∩ τ2 + (−1)m+1τ1 ∩ Tm+1(τ2) (7.3.9)

= ξ1 ∩ τ2 + (−1)m+1τ1 ∩ ξ2

We simply apply the regulator rB to this equation. The left hand side vanishes,

since the regulator vanishes on the image of the Tame symbol. The right side,

rearranged, is this relation:
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rB(ξ1 ∩ τ2) = (−1)mrB(τ1 ∩ ξ2) (7.3.10)

By definition, this is the required reciprocity relation.

Finally, we expect that at least for m ≤ 2, the two definitions of the height

pairing should coincide. As well, for m = 0 we should recover a height pairing

on Milnor K-theory.
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Chapter 8

Conclusion

In many ways, this thesis feels like a work only just begun. While we are

very pleased with the adaptability of various regulator calculations on analytic

varieties, only a small portion of the possible questions have been answered.

The regulator of Chapter 6 was the first goal when the thesis was originally

suggested, and we are pleased that goal has been achieved. We are intrigued

that the goal led to investigations of the properties of Bott-Chern and Aeppli

cohomology and the nature of Pic0(X) over non-algebraic complex manifolds,

both of which seem like interesting topics in their own right.

We have constructed a reasonable collection of target spaces for regulators in

Bott-Chern and Aeppli cohomologies. We have seen, particularly in the penul-

timate chapter, that Bott-Chern and Aeppli cohomology should serve as addi-

tions to Deligne cohomology, not replacements. Having a variety of such target

cohomology spaces which are relatively easily constructed by forms, currents

and cone complexes makes the business of regulator maps more flexible.

While we have given it a good definition, this thesis has only started to con-
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sider the properties of V k(x,m), and how much K-theoretic information might

be contained in such a group. The details of products and the possibility of

constructing some kind of moving lemma is a question we have only barely

had time to consider, let alone address. We have not considered the larger

question of what K-theory means over non-algebraic object. It is interesting to

wonder how much can be recovered from Milnor K-theory on functions fields,

or how an analytic equivalent to the Chow groups would be defined. All these

questions make for interesting directions and possibilities for the future.
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Appendix A

Čech resolution calculations

The differential on the double complex is calculated as follows.

degree term degree term

c δηc

h, 0 ηc − δηh,0 a, 0 −ηc − δηa,0

h, 1 ∂ηh,0 + δηh,1 a, 1 ∂ηa,0 + δηa,1

h, 2 ∂ηh,1 − δηh,2 a, 2 ∂ηa,1 − δηa,2

. . .

h, j ∂ηh,j−1 + (−1)j+1δηh,j a, j ∂ηa,j−1 + (−1)j+1δηa,j

. . .

h, p− 1 ∂ηh,p−2 + (−1)pδηh,p−1 a, q − 1 ∂ηh,q−2 + (−1)qδηh,q−1

h, p ∂ηh,p−1 a, q ∂ηa,q−1

h, p+ 1 0 a, q + 1 0

. . . . . .

h, r 0 a, r 0
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1.1 Calculations for Čech Resolution Products

in Bott-Chern and Aeppli Cohomology

Assume that p, q, r, s > 0. The cases involving p = 0 or q = 0 are similar

calculations adjusted for the overlap of some calculations with degree 0. They

are excluded from this appendix. The use of p− 2 or q − 2 at some points in

these calculations can be excluded if p = 1 or q = 1 respectively, since they

will correspond to indices already considered. The same is true for r and s.

Assume that u ≥ max{p − 1, q − 1} and v ≥ max{r − 1, s − 1}, and assume

that η and ν are elements of degree u and v respectively.

η ∈
⊕
j+k=u

Čj(U ,Bkp,q(R(p))) (1.1.1)

η = ηc; ηh,0, ηh,1, . . . , ηh,u; ηa,0, ηa,1, . . . , ηa,u

ν ∈
⊕
j+k=v

Čj(U ,Bkr,s(R(r)))

ν = νc; νh,0, νh,1, . . . , νh,v; νa,0, νa,1, . . . , νa,v

Then the the product is an element of this group.

η ∗ ν ∈
⊕

j+k=u+v−1

Čj(U ,Bkp+r,q+s(R(p+ r))) (1.1.2)

η ∗ ν = (η ∗ ν)c; (η ∗ ν)h,0, (η ∗ ν)h,1, . . . , (η ∗ ν)h,u+v−1;

(η ∗ ν)a,0, (η ∗ ν)a,1, . . . , (η ∗ ν)a,u+v−1
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We identify each term by its degree. Depending on the parity of u, these terms

are giving by the following table. The last column is the term itself. It is

multiplied by 1 or (−1) according to the middle columns.

degree u even u odd term

c 1 1 ηcνc

h, 0 1 (−1) ηcνh,0

h, 1 1 1 ηcνh,1

h, 2 1 (−1) ηcνh,1

...
...

h,m1 1 (−1)m1+1 ηcνh,m1

...
...

h, r − 1 1 (−1)r ηcνh,r−1

h, r (−1)r 1 ηh,0∂νh,r−1

h, r + 1 1 (−1)r ηh,1∂νh,r−1

...
...

h, r +m2 (−1)rm2+r (−1)rm2 ηh,m2∂νh,r−1

...
...

h, r + p− 1 (−1)rp (−1)rp+r ηh,p−1∂νh,r−1

h, r + p 1 1 0

...
...

h, u+ v − 1 1 1 0
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degree u even u odd term

a, 0 1 1 ηa,0νc

a, 1 1 1 ηa,1νc

...
...

a,m3 1 1 ηa,m3νc

...
...

a, q − 1 1 1 ηa,q−1νc

a, q (−1) 1 ∂ηa,q−1νa,0

a, q + 1 (−1)q+1 (−1)q+1 ∂ηa,q−1νa,1

...
...

a, q +m4 (−1)m4q+1 (−1)m4q+m4 ∂ηa,q−1νa,m4

...
...

a, q + s− 1 (−1)sq+s+1 (−1)sq+s+q+1 ∂ηa,q−1νa,s−1

a, q + s 1 1 0

...
...

a, u+ v − 1 1 1 0
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1.1.1 Leibniz Rule Calculations

To prove that the product is well defined, we need to check the Leibniz rule.

For η and ν as above, the formula takes the following form.

dD(η ∗ ν) = (dDη) ∗ ν + (−1)uη ∗ (dDν) (1.1.3)

Recall dD is the differential of the double complex, and δ is the Čech differen-

tial. Recall as well that the wedge form is explicitly written ∧, and the Čech

cup product is implicit between any two adjacent terms. Lastly, d, ∂ and ∂

remain the normal differentials of forms or currents.

This section makes heavy abuse of the “. . .” notation between steps. The

formulae are given form1 and the other indices in the middle, since the patterns

are difficult to pull out immediately.

We calculate each side independently in degree, then compare. We also do this

in cases, one for odd u and one for even u.

The first four pages are the left hand side in degrees, assuming u is even.

The next four pages are the right hand side with the same assumption. The

calculation can be repeated with minor variation of signs assuming degree u

odd, but those calculation are ommited here.

As a convention regarding exponents of (−1), I have expanded multiplication

whenever possible and simplified mod 2.

In the final steps of the right hand side calculation, I frequently use the fact

that the differentials commute: δ∂ = ∂δ and δ∂ = ∂δ.
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Holomorphic LHS chart for deg(η) even.

Degree Expression

c δ(η ∗ ν)c

= δ(ηcνc)

= δηcνc + ηcδνc

h, 0 (η ∗ ν)c − δ(η ∗ ν)h,0

= ηcνc − δ(ηcνh,0)

= ηcνc − δηcνh,0 − ηcδνh,0

h, 1 ∂(η ∗ ν)h,0 + δ(η ∗ ν)h,1

= ∂(ηcνh,0) + δ(ηcνh,1)

= ∂ηcνh,0 + ηc∂νh,0 + δηcνh,1 + ηcδνh,1

= ηc∂νh,0 + δηcνh,1 + ηcδνh,1

. . . . . .

h,m1 ∂(η ∗ ν)h,m1−1 + (−1)m1+1δ(η ∗ ν)h,m1

= ∂(ηcνh,m1−1) + (−1)m1+1δ(ηcνh,m1)

= ∂ηcνh,m1−1 + ηc∂νh,m1−1

+(−1)m1+1δηcνh,m1 + (−1)m1+1ηcδνh,m1

= ηc∂νh,m1−1 + (−1)m1+1δηcνh,m1 + (−1)m1+1ηcδνh,m1

. . . . . .

h, r − 1 ∂(η ∗ ν)h,r−2 + (−1)rδ(η ∗ ν)h,r−1

= ∂(ηcνh,r−2) + (−1)rδ(ηcνh,r−1)

= ∂ηcνh,r−2 + ηc∂νh,r−2 + (−1)rδηcνh,r−1 + (−1)rηc∂νh,r−1

= ηc∂νh,r−2 + (−1)rδηcνh,r−1 + (−1)rηc∂νh,r−1
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Holomorphic LHS chart for deg(η) even.

Degree Expression

h, r ∂(η ∗ ν)h,r−1 + (−1)r+1δ(η ∗ ν)h,r

= ∂(ηcνh,r−1) + (−1)r+1(−1)rδ(ηh,0∂νh,r−1)

= ∂ηcνh,r−1 + ηc∂νh,r−1 − δηh,0∂νh,r−1 + ηh,0∂δ∂νh,r−1

= ηc∂νh,r−2 − δηh,0∂νh,r−1 + ηh,0δ∂νh,r−1

. . . . . .

h, r +m2 ∂(η ∗ ν)h,r+m2−1 + (−1)r+m2+1δ(η ∗ ν)h,r+m2

= ∂((−1)rm2ηh,m2−1∂νh,r−1) + (−1)r+m2+1δ((−1)r(m2+1)ηh,m2∂νh,r−1)

= (−1)rm2∂ηh,m2−1∂νh,r−1 + (−1)rm2+m2+1ηh,m2−1∂∂νh,r−2

+(−1)rm2+m2+1δηh,m2∂νh,r−1 + (−1)rm2ηh,m2δ∂νh,r−1

= (−1)rm2∂ηh,m2−1∂νh,r−1 + (−1)rm2+m2+1δηh,m2∂νh,r−1

+(−1)rm2ηh,m2δ∂νh,r−1

. . . . . .

h, r + p− 1 ∂(η ∗ ν)h,p−2 + (−1)r+pδ(η ∗ ν)h,p−2

= ∂((−1)rp−rηh,p−2∂νh,r−1) + (−1)r+pδ((−1)rpηh,p−1∂νh,r−1)

= (−1)rp+r∂ηh,p−2∂νh,r−1 + (−1)rp+r+pηh,p−2∂∂νh,r−2

+(−1)rp+r+pδηh,p−1∂νh,r−1 + (−1)rp+rηh,p−1δ∂νh,r−1

= (−1)rp+r∂ηh,p−2∂νh,r−1 + (−1)rp+r+pδηh,p−1∂νh,r−1

+(−1)rp+rηh,p−1δ∂νh,r−1
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Anti-holomorphic LHS chart for deg(η) even.

Degree Expression

a, 0 −(η ∗ ν)c − δ(η ∗ ν)a,0

= −ηcνc − δ(ηa,0νc)

= −ηcνc − δηa,0νc + ηa,0δνc

a, 1 ∂(η ∗ ν)a,0 + δ(η ∗ ν)a,1

= ∂(ηa,0νc) + δ(ηa,1νc)

= ∂ηa,0νc − ηa,0∂νc + δηa,1νc + ηa,1δνc

= ∂ηa,0νc + δηa,1νc + ηa,1δνc

. . . . . .

a,m3 ∂(η ∗ ν)a,m3−1 + (−1)m3+1δ(η ∗ ν)a,m3

= ∂(ηa,m3−1νc) + (−1)m3+1δ(ηa,m3νc)

= ∂ηa,m3−1νc + (−1)m3+1ηa,m3−1∂νc

+(−1)m3+1δηa,m3νc + ηa,m3δνc

= ∂ηa,m3−1νc + (−1)m3+1δηa,m3νc + ηa,m3δνc

. . . . . .

a, q − 1 ∂(η ∗ ν)a,q−2 + (−1)qδ(η ∗ ν)a,q−1

= ∂(ηa,q−2νc) + (−1)qδ(ηa,q−1νc)

= ∂ηa,q−2νc + (−1)qηa,q−2∂νc

+(−1)qδηa,q−1νc + ηa,q−1δνc

= ∂ηa,q−2νc + (−1)qδηa,q−1νc + ηa,q−1δνc
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Anti-holomorphic LHS chart for deg(η) even.

Degree Expression

. . . . . .

a, q ∂(η ∗ ν)a,q−1 + (−1)q+1δ(η ∗ ν)a,q

= ∂(ηa,q−1νc) + (−1)q+1δ(−∂ηa,q−1νa,0)

= ∂ηa,q−1νc + (−1)q+1ηa,q−1∂νc

+(−1)qδ∂ηa,q−1νa,0 + ∂ηa,q−1δνa,0

= ∂ηa,q−1νc + (−1)qδ∂ηa,q−1νa,0 + ∂ηa,q−1δνa,0

. . . . . .

a, q +m4 ∂(η ∗ ν)a,q+m4−1 + (−1)q+m4+1δ(η ∗ ν)a,q+m4

= ∂((−1)m4q+q+1∂ηa,q−1νa,m4−1

+(−1)q+m4+1δ((−1)m4q+1∂ηa,q−1νa,m4)

= (−1)m4q+q+1∂∂ηa,q−1νa,m4−1 + (−1)m4q+1∂ηa,q−1∂νa,m4−1

+(−1)m4q+m4+qδ∂ηa,q−1νa,m4 + (−1)m4q+m4∂ηa,q−1δνa,m4

= (−1)m4q+1∂ηa,q−1∂νa,m4−1 + (−1)m4q+m4+qδ∂ηa,q−1νa,m4

+(−1)m4q+m4∂ηa,q−1δνa,m4

. . . . . .

a, q + s− 1 ∂(η ∗ ν)a,q+s−2 + (−1)q+sδ(η ∗ ν)a,q+s−1

= ∂((−1)sq+1∂ηa,q−1νa,s−2

+(−1)q+sδ((−1)sq+s+1∂ηa,q−1νa,s−1)

= (−1)sq+1∂∂ηa,q−1νa,s−2 + (−1)sq+q+1∂ηa,q−1∂νa,s−2

+(−1)sq+s+1δ∂ηa,q−1νa,s−1 + (−1)sq+q+s+1∂ηa,q−1δνa,s−1

= (−1)sq+q+1∂ηa,q−1∂νa,s−2 + (−1)sq+s+1δ∂ηa,q−1νa,s−1

+(−1)sq+q+s+1∂ηa,q−1δνa,s−1
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Holomorphic RHS chart for deg(η) even.

Degree Expression

c ((dDη) ∗ ν)c + (η ∗ (dDν))c

= (dDη)cνc + ηc(dDν)c

= δηcνc + ηcδνc

h, 0 ((dDη) ∗ ν)h,0 + (η ∗ (dDν))h,0

= −(dDη)cνh,0 + ηc(dDν)h,0

= −δηcνh,0 + ηc[νc − δνh,0]

= ηcνc − δηcνh,0 − ηcδνh,0

h, 1 ((dDη) ∗ ν)h,1 + (η ∗ (dDν))h,1

= (dDη)cνh,1 + ηc(dDν)h,1

= δηcνh,1 + ηc[∂νh,0 + δνh,1]

= ηc∂νh,0 + δηcνh,1 + ηcδνh,1

. . . . . .

h,m1 ((dDη) ∗ ν)h,m1 + (η ∗ (dDν))h,m1

= (−1)m1+1(dDη)cνh,m1 + ηc(dDν)h,m1

= (−1)m1+1δηcνh,m1 + ηc[∂νh,m1−1 + (−1)m1+1δνh,m1 ]

= (−1)m1+1δηcνh,m1 + ηc∂νh,m1−1 + (−1)m1+1ηcδνh,m1

. . . . . .

h, r − 1 ((dDη) ∗ ν)h,r−1 + (η ∗ (dDν))h,r−1

= (−1)r(dDη)cνh,r−1 + ηc(dDν)h,r−1

= (−1)rδηcνh,r−1 + ηc[∂νh,r−2 + (−1)rδνh,r−1]

= ηc∂νh,r−2 + (−1)rδηcνh,r−1 + (−1)rηcδνh,r−1

175



Holomorphic RHS chart for deg(η) even.

Degree Expression

h, r ((dDη) ∗ ν)h,r + (η ∗ (dDν))h,r

= (dDη)h,0∂νh,r−1 + (−1)rηh,0∂(dDν)h,r−1

= [ηc − δηh,0]∂νh,r−1 + (−1)rηh,0∂[∂νh,r−2 + (−1)rδνh,r−1]

= ηc∂νh,r−1 − δηh,0∂νh,r−1 + (−1)rηh,0∂∂νh,r−2 + ηh,0∂δνh,r−1

= ηc∂νh,r−1 − δηh,0∂νh,r−1 + ηh,0δ∂νh,r−1

. . . . . .

h, r +m2 ((dDη) ∗ ν)h,r+m2 + (η ∗ (dDν))h,r+m2

= (−1)rm2(dDη)h,m2∂νh,r−1 + (−1)rm2+rηh,m2∂(dDν)h,r−1

= (−1)rm2 [∂ηh,m2−1 + (−1)m2+1δηh,m2 ]∂νh,r−1

+(−1)rm2+rηh,m2∂[∂νh,r−2 + (−1)rδνr−1]

= (−1)rm2∂ηh,m2−1∂νh,r−1 + (−1)rm2+m2+1δηh,m2∂νh,r−1

+(−1)rm2+rηh,m2∂∂νh,r−2 + (−1)rm2ηh,m2∂δνr−1

= (−1)rm2∂ηh,m2−1∂νh,r−1 + (−1)rm2+m2+1δηh,m2∂νh,r−1

+(−1)rm2ηh,m2δ∂νr−1

. . . . . .

h, r + p− 1 ((dDη) ∗ ν)h,r+p−1 + (η ∗ (dDν))h,r+p−1

= (−1)rp+r(dDη)h,p−1∂νh,r−1 + (−1)rpηh,p−1∂(dDν)h,r−1

= (−1)rp+r[∂ηh,p−2 + (−1)pδηh,p−1]∂νh,r−1

+(−1)rpηh,p−1∂[∂νh,r−2 + (−1)rδνr−1]

= (−1)rp+r∂ηh,p−2∂νh,r−1 + (−1)rp+r+pδηh,p−1∂νh,r−1

+(−1)rpηh,p−1∂∂νh,r−2 + (−1)rp+rηh,p−1∂δνr−1

= (−1)rp+r∂ηh,p−2∂νh,r−1 + (−1)rp+r+pδηh,p−1∂νh,r−1

+(−1)rp+rηh,p−1δ∂νr−1
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Anti-holomorphic RHS chart for deg(η) even.

Degree Expression

a, 0 ((dDη) ∗ ν)a,0 + (η ∗ (dDν))a,0

= (dDη)a,0νc + ηa,0(dDν)c

= [−ηc − δηa,0]νc + ηa,0δνc

= −ηcνc − δηa,0νc + ηa,0δνc

a, 1 ((dDη) ∗ ν)a,1 + (η ∗ (dDν))a,1

= (dDη)a,1νc + ηa,1(dDν)c

= [∂ηa,0 + δηa,1]νc + ηa,1δνc

= ∂ηa,0νc + δηa,1νc + ηa,1δνc

. . . . . .

a,m3 ((dDη) ∗ ν)a,m3 + (η ∗ (dDν))a,m3

= (dDη)a,m3νc + ηa,m3(dDν)c

= [∂ηa,m3−1 + (−1)m3+1δηa,m3 ]νc + ηa,m3δνc

= ∂ηa,m3−1νc + (−1)m3+1δηa,m3νc + ηa,m3δνc

. . . . . .

a, q − 1 ((dDη) ∗ ν)a,q−1 + (η ∗ (dDν))a,q−1

= (dDη)a,q−1νc + ηa,q−1(dDν)c

= [∂ηa,q−2 + (−1)qδηa,q−1]νc + ηa,q−1δνc

= ∂ηa,q−2νc + (−1)qδηa,q−1νc + ηa,q−1δνc
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Anti-holomorphic RHS chart for deg(η) even.

Degree Expression

a, q ((dDη) ∗ ν)a,q + (η ∗ (dDν))a,q

= ∂(dDη)a,q−1νa,0 − ∂ηa,q−1(dDν)a,0

= ∂[∂ηa,q−2 + (−1)qδηq−1]νa,0 − ∂ηa,q−1[−νc − δνa,0]

= ∂∂ηa,q−2νa,0 + (−1)q∂δηq−1νa,0 + ∂ηa,q−1νc + ∂ηa,q−1δνa,0

= ∂ηa,q−1νc + (−1)qδ∂ηq−1νa,0 + ∂ηa,q−1δνa,0

. . . . . .

a, q +m4 ((dDη) ∗ ν)a,q+m4 + (η ∗ (dDν))a,q+m4

= (−1)m4q+m4∂(dDη)a,q−1νa,m4 + (−1)m4q+1∂ηa,q−1(dDν)a,m4

= (−1)m4q+m4∂[∂ηa,q−2 + (−1)qδηa,q−1]νa,m4

+(−1)m4q+1∂ηa,q−1[∂νa,m4−1 + (−1)m4−1νa,m4 ]

= (−1)m4q+m4∂∂ηa,q−2νa,m4 + (−1)m4q+m4+q∂δηa,q−1νa,m4

+(−1)m4q+1∂ηa,q−1∂νa,m4−1 + (−1)m4q+m4∂ηa,q−1δνa,m4

= (−1)m4q+1∂ηa,q−1∂νa,m4−1 + (−1)m4q+m4+qδ∂ηa,q−1νa,m4

+(−1)m4q+m4∂ηa,q−1δνa,m4

. . . . . .

a, q + s− 1 ((dDη) ∗ ν)a,q+s−1 + (η ∗ (dDν))a,q+s−1

= (−1)sq+q+s+1∂(dDη)a,q−1νa,s−1 + (−1)sq+q+1∂ηa,q−1(dDν)a,s−1

= (−1)sq+q+s+1∂[∂ηa,q−2 + (−1)qδηa,q−1]νa,s−1

+(−1)sq+q+1∂ηa,q−1[∂νa,s−2 + (−1)sνa,s−1]

= (−1)sq+q+s+1∂∂ηa,q−2νa,s−1 + (−1)sq+s+1∂δηa,q−1νa,s−1

+(−1)sq+q+1∂ηa,q−1∂νa,s−2 + (−1)sq+q+s+1∂ηa,q−1δνa,s−1

= (−1)sq+q+1∂ηa,q−1∂νa,s−2 + (−1)sq+s+1δ∂ηa,q−1νa,s−1

+(−1)sq+q+s+1∂ηa,q−1δνa,s−1
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1.1.2 Specific Formula for Bott-Chern, Bott-Chern

Let u = p+ q − 1 and v = r + s− 1, and η and ν as before. The Bott-Chern,

Bott-Chern product is given by this table.

degree p+q-1 even p+q-1 odd term

c 1 1 ηcνc

h, 0 1 (−1) ηcνh,0

h, 1 1 1 ηcνh,1

h, 2 1 (−1) ηcνh,1

...
...

h,m1 1 (−1)m1+1 ηcνh,m1

...
...

h, r − 1 1 (−1)r ηcνh,r−1

h, r (−1)r 1 ηh,0∂νh,r−1

h, r + 1 1 (−1)r ηh,1∂νh,r−1

...
...

h, r +m2 (−1)r(m2+1) (−1)rm2 ηh,m2∂νh,r−1

...
...

h, r + p− 1 (−1)rp (−1)r(p+1) ηh,p−1∂νh,r−1

h, r + p 1 1 0

...
...

h, p+ r + q + s− 1 1 1 0
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degree p+q-1 even p+q-1 odd term

a, 0 1 1 ηa,0νc

a, 1 1 1 ηa,1νc

...
...

a,m3 1 1 ηa,m3νc

...
...

a, q − 1 1 1 ηa,q−1νc

a, q (−1) 1 ∂ηa,q−1νa,0

a, q + 1 (−1)q+1 (−1)q+1 ∂ηa,q−1νa,1

...
...

a, q +m4 (−1)m4q+1 (−1)m4(q+1) ∂ηa,q−1νa,m4−1

...
...

a, q + s− 1 (−1)(s+1)q+1 (−1)(q+1)(s+1) ∂ηa,q−1νa,s−1

a, q + s 1 1 0

...
...

a, p+ r + q + s− 1 1 1 0
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1.1.3 Specific Formula for Bott-Chern, Aeppli

Let η and ν be slightly redefined as follows:

η ∈
⊕

j+k=p+q−1

Čj(U ,Bkp,q(R(p))) (1.1.4)

η = ηc; ηh,0, ηh,1, . . . , ηh,p+q−1; ηa,0, ηa,1, . . . , ηa,p+q−1

ν ∈
⊕

j+k=r+s

Čj(U ,Bkr+1,s+1(R(r)))

ν = νc; νh,0, νh,1, . . . , νh,r+s; νa,0, νa,1, . . . , νa,r+s

Then the following table gives the product formula for the element

η ∗ ν ∈
⊕

j+k=p+r+q+s

Čj(U ,Bkp+r+1,q+s+1(R(p+ r))) (1.1.5)

η ∗ ν = (η ∗ ν)c; (η ∗ ν)h,0, (η ∗ ν)h,1, . . . , (η ∗ ν)h,p+r+q+s;

(η ∗ ν)a,0, (η ∗ ν)a,1, . . . , (η ∗ ν)a,p+r+q+s
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degree p+q-1 even p+q-1 odd term

c 1 1 ηcνc

h, 0 1 (−1) ηcνh,0

h, 1 1 1 ηcνh,1

h, 2 1 (−1) ηcνh,1

...
...

h,m1 1 (−1)m1+1 ηcνh,m1

...
...

h, r 1 (−1)r+1 ηcνh,r

h, r + 1 (−1)r+1 1 ηh,0∂νh,r

h, r + 2 1 (−1)r+1 ηh,1∂νh,r

...
...

h, r +m2 (−1)(r+1)m2 (−1)(r+1)(m2+1) ηh,m2−1∂νh,r

...
...

h, r + p (−1)(r+1)p (−1)(r+1)(p+1) ηh,p−1∂νh,r

h, r + p+ 1 1 1 0

...
...

h, p+ r + q + s 1 1 0
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degree p+q-1 even p+q-1 odd term

a, 0 1 1 ηa,0νc

a, 1 1 1 ηa,1νc

...
...

a,m3 1 1 ηa,m3νc

...
...

a, q − 1 1 1 ηa,q−1νc

a, q (−1) 1 ∂ηa,q−1νa,0

a, q + 1 (−1)q+1 (−1)q+1 ∂ηa,q−1νa,1

...
...

a, q +m4 (−1)m4q+1 (−1)m4(q+1) ∂ηa,q−1νa,m4−1

...
...

a, q + s (−1)(s)q+1 (−1)(q+1)(s) ∂ηa,q−1νa,s

a, q + s+ 1 1 1 0

...
...

a, p+ r + q + s 1 1 0
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