! * E National Library

of Canada

Acquisitions and

Bibliotheque nationale
du Canada

Drrection des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

395, rue Wellington
Ottawa (Ontano)

[T T ST TR

W B N e e

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec ['université
qui a conféré le grade.

La qualité dimpression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont eté
dactylographiées a l'aide d'un
ruban usé ou si 'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

UNIVERSITY OF ALBERTA

A PROOF PROCEDURE FOR THE PREFERENTIAL SEMANTICS

©

BY

ZHONG LI

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfill-
ment of the requirements for the degree of Masters of Science.

DEPARTMENT OF COMPUTING SCIENCE

Edmonton, Alberta
Fall 1993

ional Li
Bl e

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa (Ontaro)

Yown fue Vatie relerennce

G e Notee tofveennce

L’auteur a accordé une licance
irrévocable et non exclusive
permettant a Ila Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-315-88213-1

Canada

UNIVERSITY OF ALBERTA

RELEASE FORM

NAMI OF AUTHOR: Zhong Li

TITLE OF THESIS: A PROOF PROCEDURE FOR THE PREFERENTIAL SEMANTICS
DECGRIEE: Masters of Science
YEAR THIS DEGRELF, GRANTED: 1993

Permission is hereby granted to the University of Alberta Library to reproduce single
copies of this thesis and 1o lend or sell such copies for private, scholarly or scientific

research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as hieceinbefore provided neither the thesis nor any
substantial portion thereof may be printed or otherwise reproduced in any material
form whatever without the author’s prior written permission.

(Signed) . ./ <
Zhong Li
140 Kiniski Crescent
Edmonton, Alberta
Canada TG6L 5A9

RN

wJ

Date:

UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommenil to the Faculty of Grad-
uate Studies and Research for acceptance, a thesis entitled A PROOE PROCEDURE
FOR THE PREFERENTIAL SEMANTICS submitted by Zhong Li in partial fulfillment
of the requirements for the degree of Masters of Science.

Dr. Jia-Huai You (Supervisor)

Dr. Bernard Linsky (External)

.....

Dr. Peter van Beek (Examiner)

Dr. Piotr Rudnicki (Chair)

Dedicated to my parents for giving my life
and
my wife and my daughter for enriching my life

Abstract

The recent developmient of varions declarative semantics and their proof procedures
for normal logic programs reflects the need to have better understanding of normal
logic programs both semantically and operationally. How to treat negation in a logic
program becomes a difficult topic which has received a lot of attention in recent years.
Many different semantics have been proposed for normal logic programs. Dung's

preferential semantics has shown some advantages over others.

To compute the intersection of all the extensions for a given theory has been a
difficult topic in nonmonotonic reasoning and logic programming. We propose a new
proof procedure, also the first one according to our knowledge, for the preferential
semantics from the skeptical reasoning point of view. This proof procedure uses hoth
top-down and bottom-up methods to make reasoning. The key idea of our method is
to define two different proof trees, called Primary Proof Tree and Asswmption Proof
Tree respectively. By checking the consistency of those two proof tices’ leaves we
can answer a query correctly for a given logic program. We show the sonndness of
our method with respect to the preferential semantics and present. some analyses of

completeness and computational complexity.

Acknowledgements

I wonld like to express my deepest thank to my supervisor, Dr. Jia-Huai You,
for his continued guidance and encouragement. His never-ending intellectual, moral,
ideological, and financial support makes this thesis possible. His insightful comments
i every step of my rescarch have helped me reach my potential. Over the years, his

generous helps make me from a student. to a reseascher. Morcover, I have received a

lotof help from him in my personal life.

I aun grateful to the members of my examining committee, Dr. Peter van Beek
and Dr. Bernard Linsky for their time and effort in reviewing my research work and
making thoughtful comments on my thesis. Also thank you, Dr. Piotr Rudnicki, for
chairing the committee.

Thanks to Pablo Hadjinian, Aditya Ghose, Allen Sharpe, and Suryanil Ghosh for
their valuable comments and discussions throughout my research. Aditya deserves
a special thank for organizing Al group weekly meeting which has brought me a lot

imspirations,

Contents

Introduction
LI Backgroundo
1.2 Motivation and QOur Work

Negation in Logic Programming

2.1 Preliminaries
2.2 Resolution L
23 Fixpoints L
24 Negetionas Failure L
2.5 Completions of Programs
26 StableModels L
2.7 Weil-Founded Models
A New Proof Procedure

3.1 Preferential Semantics
3.2 A Proof Procedure for Skeptical Reasoning
3.3 Examples

3.4 Implementations

1 Some Theoretical Results and Analyses

4.0 Soundness .o

1.2 Completeness and Computational Complexity

5 Conclusions

Bibliography

58

List of Figures

3.1 The Proof Trecol e oo oo o000 oo 30
3.2 Two A-treesfore oo o000 3l
33 Petreefore oo oo |
3.4 (a) P-tree of a (b) A-trecof b . 00 oo 39
3.5 (a) P-tree PT_, (b)Y Atvee PT_y o000 Lo 10
3.6 (a) P-tree PT_, (b)Y Atree AT_y o 0 0o 11
3.7 Petrecfora . ..o o 12
38 P-tree PT_ forquery «—c. B
39 P-tree PT_ forquery —c¢. I
4.1 P-treefor —gwhen N=2 19
4.2 Two A-trees for «— [;; and « b respectively 19

43 A-reefor ATy 51

Chapter 1

Introduction

In this chapter we give a brief introduction to negation in logic programming and
the different approaches which have been proposed in recent years for how to treat
negation. We also provide the motivation of our work and outline the main results

to he reported in this thesis.

1.1 Background

The original idea of designing symbolic logic was to use it as a formalization of
human reasoning. As a result, it has long been used in computing science as a
specification langnage for computer programs and as a foundation for database
query languages. The conflict between expressive power and efficiency of execution
has always been a major problem faced by the designers of programming languages.
In the conventional approach, expressive power has consistently been sacrificed in
an ad hoc manuer for efficiency and has ofien been confused with the accumulation
of “useful” features [JLMS6]. The two relevant aspects of predicate logic are
the model theory and the proof theory: model theory corresponds to specification

and declarative notions while proof theory corresponds to operational semantics

-

CHAPTER 1. INTRODUCTION 2

which provides guidance for implementation. The mode; theory (oi declarative
semantics) describes a precise meaning of a logic program which is independent
of procedural considerations. The proof theory (or procedural semanties), on the
other hand, is given by providing a procedural mechanisn. The behavior of such
a mechanism (especially its correctiness) is ovaluat od by cotparing its behavior to

the specification provided by the declarative semantics.

There are no existing “suitable™ declarative semantics for logic programs. One
of the difficulties in finding “suitable™ declarative semantics is that there is no
precisely defined sei of conditions such that the “snitab:le™ declarative semantics
satisfies this set of conditions. In fact, different declarative semantics are usually
based on different intuitions. There are clashes: a declarative semantics may be
intuitive to some people but may not be intuitive to others, and different declar
ative semantic treatments may he suitable for different applications. However,
it seems that it has been widely accepted that a declarative semanties shonld at.
least be reducible to the perfeet model semanties (Przss] for (locally) stratified
logic programs. Several alternative formulations of negation that appear to be
equivalent to the stable and the well-founded semantics have heen developed (see
[Bry89],[Pr289a], and [Gel92]). This tells us that a declarative semantics ol alogic
program chould be determined more by its common sense meaning than by ils
purely logic contents. For example, given a list of names registered i a conrse,
we should be able to reach a common sense conclusion that John does not take

this course if his name does not appear in this list.

The “intended” semantics (from now on when we say semantics we tnean the
declarative semantics) must therefore he nonmonotonic, i.c., the conclusions de
termined by a semantics of a logic program P cannot monotonically inercase, For
example, after learning that John has heen added into the name list, we have to
withdraw the previously reached conclusion that John does not take this cotrse,

Conscquently, the problem of finding a snitable semantics for logic WORTINS Citgl
| ¥, 8

CHAPTER 1. INTRODUCTION 3

he viewed as the problem of finding a suitable semantics in a nonmonotonic for-
malization of the type of reasoning nsed in logic programs. Negation in logic pro-
grams has played a very important role in finding “suitable” semantics because

the differences of semantics are mostly reflected in the treatments of negations.

As for the procedural semantics, Apt and Van Emden([AES82]) introduced
fixpoint technigues to establish various results in an clegant way. For instance
the soundness and completeness of SLD resolution with respect to definite pro-
grams. SLD-resolution stands for SL-resolution for Definite clauses. SL stands
for Lincar resolution with Selection function (sce [L1o87]). Their methods have
become standard since then, However, they met with difficulties when character-
izing the finite failure of SLD resolution to prove an atom to be a logical con-
sequence. This led to long, involved proofs and a weak result which is difficult
to interpret semantically: the SLD finite failure set for a given logic program
I’ is equal to the complement of Tp | w. Tp is a monotonic operator which
maps interpretations of P to interpretations of P. The descending ordinal pow-
ers T L« of Tp are defined by Tp | 0 = Bp (Bp is the Herbrand bhase of P),
Tp l(a+1)=Tp(Tp | a), Tp | a = ﬂ/3<a Tp | B for a limit ordinal. The
greatest fixpoint of Tp is equal to Tp | a. The result is difficult to interpret
semantically, as the complement of Tp | w is an abstract mathematical object
implicitly defined. We only have a purely mathematical characierization of the
SLD finite failure set. It is weak in the sense that for some ! in Herbrand base
[€ T | wonly implies that there exits a finitely failed SLD tree for [while infinite

SLD trees for [mmay also exist.

As Lassez and Maher in [LM84] made it clear that the standard concept of
fairness should be introduced in SLD resolution in order to remove a class of
finite computations due to the interpreter’s design. The result was startling;
most difficulties in the treatment of SLD finite failure were due to the presence of

these unnecessary loops. With this modification, all trees for a given goal behave

CHAPTER 1. INTRODUCTION 1

in the same way: cither all of them fail or none of them fails. Farthermore | if
some SLD tree for a literal ¢ finitely fails, then all SLD trees for ¢ are finitely
failed. Consequently, if we have an implementation of SLI resolution, test ing the
SLD finite failure simply requires the generation of a single tree, as it is the case

when the SLD tree succeeds.

By definition, when we compute partial recursive functions, there are inputs
which lead to infinite computations. As Kowalski ([Kow79]) pointed out. in the
context of logic programming there is no limit to the amount of infinite branches
that can be pruned from the search space (by loop-checking methods ete.), and
there could be no way to eliminate all of them. Consequently, we can further and

further approximate the closed world assumption but never, in general, reach it.

How to treat negation in a logic program has been a topic extensively in-
vestigated in recent years. This has also resulted in much rescarch in databases
and nonmonotonic reasoning. Clark ([Cla78]) provided a formal framework to
study negation as failurc via the notion of cemplete logic programs, and proved
the soundness of negation as failure. This turned out to be quite important as
it provided a better understanding of the negation as failure rule and opened an

active area of research.

There are two major approaches to the semantics of negation in logic pro-
gramming: the stable semantics and the well-founded semantics. While the stable
semantics is based on a subset of two-valued minimal models, the well-founded
semantics is defined by a three-valued minimal model by allowing the status of
a predicate to be undetermined. The stable semantics and the well-founded se-
mantics capture different features of a given program. Besides these two major
approaches, Dung proposed a new semantics, called the preferential semantics
[Dun91]. This semantics overcomes some of the drawbacks of the stable semantics

and the well-founded semantics.

CHAPTER 1. INTRODUCTION 5

1.2 Motivation and Our Work

Motivated by Eshghi and Kowalski’s proof procedure ([EK89]) for abduction,
Dung proposed a new semantics, called preferential semantics. He showed that
the new semantics captures, generalizes and unifies the different existing semantic
concepts (e.g. the well-founded semantics, the stable semantics) in logic pro-
gramming. He also proved the soundness of this proof procedure from the brave
reasoning point of view with respect to the preferential semantics. Unfortunately,
it is not. complete with respect to the preferential semantics. The idea of this
proof procedure is 1o simulate negation as failure by making negative conditions
abducible and by imposing appropriate denials and disjunctions as integrity con-
straints. This gives an alternative semantics for negation as failure. The abducible

extension of logic programming extends negation as failure in three ways:

[. computation can be performed in alternative minimal models

positive as well as negative conditions can be made abducible

o

3. other integrity constraints can also be accommodated

Although the proof procedure is very elegant for answering a query which is
in any extension of a given logic program, it does not allow for answering a query
which is in all the extensions of a given logic program. We propose a totally
different method using bhoth top-down and bottom-up strategies. Based on these
strategies, a proof procedure is developed for answering a query with respect to
all the extensions of a given logic program. The key idea of our method is to
define two proof trees, called the Primary Proof Tree and the Assumption Proof
Tree. By checking the consistency of these two proof trees’ leaves we can answer
the query correctly. The bottom-up strategy is reflected in the computation of

the well-founded set and the top-down strategy is reflected in the computation of

CHAPTER 1. INTRODUCTION 6

the proof trees. According to our knowledge, our approach is not only new, but
is also a first atemipt to compute an extension in the sense of skeptical reasening
for the preferential semantics. In this thesis, we will prove the soundness of our
proof procedure with respect to the preferential semantics and present some anal-
yses for the issues of completeness and computational complexity for the case of

propositional logic programs.

Chapter 2

Negation in Logic Programming

It is important to realize that the use of negation indeed increases the expressive
power of logie programs. This may sound paradoxical since, as is well known from
[Tar77], logic programs without negation have the full power of recursion theory.
But the point is that in many situations we compute over a finite domain, and

this drastically changes the situation.

The realization of this fact led to extensive studies, started by Clark [Cla78], of
the extensions of logic programming incorporating the use of negation. Two major
approaches, recognized by most researchers, to the semantics of negation in logic
programming are the stablec semantics and the well-founded semantics. A new
comer, called preferential semantics which is proposed in [Dun91], has recently

received much attention.

In this chapter we first introduce some fundamental definitions which are used
throughott this thesis. Then, we briefly discuss different approaches towards
negation in logic program. These approaches include negation as failure, predicate
completion, stable model, and well-founded model. Since our focus is on logic

programming semantics and not on a complete survey of nonmonotonic reasoning,

CHAPTER 2. NEGATION IN LOGIC PROGRAMAMING 8

there are some well-known methods, such as the elosed world assumptions [ReiTy],
perfect model semantics [Prz88], cte., which have not bheen mentioned heve, All
the definitions and theorems in this chapter are cited from [LIo8T] il not explicitly

stated.

2.1 Preliminaries

This section defines the syntax of well-formed formulas for first order logic. All the
requisite concepts from first order logic are discussed informally in this section.
A first order logic has two aspects: syntar and semantics. 'The syntactic aspect.
is concerned with well-formed formulas admitted by the grammar of a formal
language. The semantic aspect is concerned with the meanings attached to the

well-formed formulas and the symbols they contain.

Definition 1 A term is defined inductively as follows:

o A wvariable is a term.
e A conslant is a lerm.

o if [is an n-ary function symbol and t,,...,t, are Levms, then [(1,,. ..,)

s a term. A O-ary function symbol is a constant symbol.

O

Definition 2 4 (well-formed) formula is defined inductively as follows:

o Ifpis an n-ary predicate symbol and U, ... 1, arc terms, then p(ly, ..., 1,)

s a formula (or atom).

CHAPTER 2. NEGATION IN LOGIC PROGRAMMING 9

o [[p and g ave formulas, then so are (-p), (pAq), (pVq), (p — q) and (p & q).

o [pis a formula and x is a variable, then (Vz p) and (3z p) are formulas.

o

Definition 3 7The first order language consists of the set of all formulas which
can be constructed from the symbols of a given alphabet. A literal is either an
alom or the negation of an atom. A positive literal is an atom. A negative

literal is the negation of an atom.
O

Definition 4 A closed formula is a formula with every variable appearing in

the formula cither bounded by 3 or bounded by V.
4

Definition 5 A clause is a formula of the form
Vay.. . Va,(r V...Vr,)
or
PrseosPhk & q1y.. .44,

where each vy is aliteral and xy, . . . 2, are all the variables occurring inri V... Vrp,

Or I Pry . Pra iy ...y Gu (i and q; are atoms).

Definition 6 A definite clause is a clause in the form of

Pe—=4q...,qn

which contains precisely one atom p in its consequent. p is called the head and

Q1+ qn is called the body of the program clause. A definite program consists

CHAPTER 2. NEGATION IN LOGIC PROGRAMMING 10

of a finitc set of definite clauses. If n =G, then the clause is stmply poand is called

a fact.
U]

Lefinition 7 A definite goal is a clause of the form
— Gl

L.e. the head of the clause is empty. Each q; is called a subgoal of the goal.
0

Definition 8 A Horn clause is a clause which is cither a definite clause or a

definite goal, i.e. a clause with at most one positive literal,
0

Definition 9 A ground term is a ferm withoul variables. Similarly, o ground

atom is an atom without variables.
O

Definition 10 An interpretation consists of some domain of universe over
which the variables range, an assignment to cach constant of an clement of the
domain, an assignment to each function symbol, and an assigninent lo cach pred-

icate (i.e., ground atom) over the domain.
a

An interpretation thus specifies a meaning for a formula. We are particularly
interested in interpretations for which the formula expresses a true statement, in
that interpretation. Such an interpretation is called a model of the formmli. Nor-
mally there is some distinguished interpretation, called the intended interpretation,

which gives the principal meaning of the symbols.

CHAPTER 2. NEGATION IN LOGIC PROGRAMMING 11

Definition 11 Let S be a sel of closed formulas and F be a closed formula of a
Jirst order language .. We say I is a logical consequence of S if, for every
interpretation I of L, Iis a model of S implies that I is a model for F.

(]

Theorem 1 Lt S be a set of closed formulas and I be a closed formula of a
Jirst ovder language I. Then F is a logical consequence of S iff SU{=F} is

unsatisfiable or inconsistent.

A set of clauses is satisfiable iff there is an interpreiation that satisfies every
clanse which is in this set. Otherwise, it is unsatisfiable. It is generally true
([(iNS7]), that as one writes more clauses, the number of possible models de-
creases. This raises the question of whether it is possible for an individual to
define his symbols so thoroughly that no interpretation is possible except the one
he intended. As it turns out, there is no way in general of ensuring a unique

interpretation, no matter how many clauses we write down.

Definition 12 Let L be a first order language. The Herbrand universe U, for
L is the set of all ground terms, which can be formed out of the constants and
Junction symbols appearing in L. The Herbrand base By for L is the set of all
ground aloms which can be formed by using predicate symbols from L with ground

lerms from the Herbrand universe as arguments.
a

Definition 13 A substitution 0 is any finite set of associations between vari-
ables and expressions in the form {v/t,,... ,Un/tn}, where each v; is a variable,
cach t; is a term different from v; and the variables vy, ..., v, are distinct. Each
element vift; is called a binding for v; and each variable is associated with at

most one cxpression. No variable with an asseciated expression occurs within any

CHAPTER 2. NEGATION IN LOGIC PROGRAMMING 12

of the associated crpressions. 0 is called a ground substitution f the t, are all

ground terms,
(W

Definition 14 Let S be a finite set of cxpressions. A substitution 0 is called a
unifier for S if SO is a singleton. A unifier 0 is called a most general unifier
(mgu) for S if. for ecach unificr o of S, there cxists a substitution v such that
o=0~

(W]

2.2 Resolution

We only consider definite programs in this section. A resolution deduction of a
clause C from a program P is a sequence of clauses in which (1) " is an element
of the sequence, and (2) cach clement is cither a member of P or the result of
applying the resolution principle to clauses earlier in the sequence. The resolution
principle was introduced by Robinson ([Rob65]), based on carlier work of others.
It is a simple yet extremely powerful inference procedure because it uses just one
rule of inference. It had been proved that resolution is sound and complete with

respect to definite programs.

Typical use of resolution is in demonstrating unsatisfiability. If a set of clanses
is unsatisfiable, then it is always possible by resolution to derive a contradiction
from the clauses in the set. In clausal form, a contradiction takes the form of the
empty clause, which is equivalent to a disjunction of no literals. Thus, to antomate
the determination of unsatisfiability, all we need to do is to use resolution to derive
consequences from the set to be tested, terminating whenever the empty clanse is

generated.

CHAPTER 2. NEGATION IN LOGIC PROGRAMMING 13

Demonstrating that a set of clauses is unsatisfiable can also be used to demon-
strate that a formula is logically implied by a set of formulas. Suppose we wish
to show that a set of formulas P logically implies a formula F. We can do this
by finding a proof of I from P; i.c., by establishing P = F. From the refuta-
tion theorem ([Rob65]), we can establish P = F by showing that PU{-F} is
inconsistent. (unsatisfiable). Thus, if we show that the set of formulas P J{-F}

is unsatisfiable, we have demonstrated that P logically implies F.

2.3 Fixpoints

An elegant. way of studying logic programs without negation has been proposed
in [IXK76]. This definition still makes sense in the presence of negation. The idea
is to use a natural closure operator and equate the models of a program P with
the pre-fixed points of the operator, which are simpler to analyze. This operator

is usually denoted by Tp. It maps interpretations of P into interpretations of P

and is defined as follows:

A € Tp(1) iff for some ground instance A «— L,..., L, of a clause in P and
{I/[,...,I/,,,} g /
Intuitively, Tp(1) is the set of immediate conclusions of I, i.e., those which can be

obtained by applying a rule from P only once.

Definition 15 Lct S be a set with a partial order <. Then a € S is an upper
bound of « subset X of S if ¢ < a. for all x € X. Similarly, b € S is a lower
bound of X' if b <, for all ¥ € X. a € S is the least upper bound of a subset
X of 8 if a is an upper bound of X and, for all upper bounds o' of X, we have
a < . Similarly, we can define greatest lower bound. A partially ordered set

[is a complete lattice if the least upper bound and the greatest lower bound

CHAPTER 2. NEGATION IN LOGIC PROGRAMMING It

erist for every subset X of L.
0

Definition 16 Let L be a complete iattice and T': I — 1. be a mapping. We say
T is monotonic if I'(x) < T(y), whencver v < y. We saya € L is the least
fixpoint of T if a is a firpoint (I'(a) =) and for all firpoints b of T', we have
a < b, Similarly, we can definc greatest fixpoint.

0

Theorem 2 Let L be a complete lattice and T: I, — L be monotonic. Then T

has a least firpoint (Lfp(T))and a greatest firpoint (q[p(T)).

We say that T"is monotonic if [y C I, implies T'p(1,) € Tp(1y). When Tp(l) C
I then we say that [is a pre-firpoint of T and when Tp(1) = [then we say that [/

is a fizpoint of T. The following theorem is critical for fixpoint, semantics[[NKT6):

T! eorem 3 A monotonic operator T has a least fixpoint that is also the least

pre-fixpoint of T.

Now suppose that T is one of the operators Tp on Herbrand interpretations.
The importance of theorem 3 stems from the fact that for a definite program I’
the operator Tp is monotonic. This is not so in the presence of negation. If 1 is a
program without negation, then Tp is monotonic; the intersection of two models
of P is a model of P, and P has a least model. On the other hand, if P is a
program with negation, then Tp does not need to be monotonic; the intersection
of two models of P is not necessarily a model of P, and £ might have no least

model.

Theorem 4 Let P be a program. Then [is a model of P iff Tp(l)Z 1.

CHAPTER 2. NEGATION IN LOGIC PROGRAMMING 15

Fixpoint. models are especially interesting -—- particularly in the context in
which negation is usnally considered in database theory and logic programming.

In this context, a positive ground literal is assumed false unless it can be supported

in some way by the program.

2.4 Negation as Failure

By “negation as failure” or SLDNF-resolution, we mean the result of adding nega-
tion as failure to SLD-resolution. This is the query evaluation procedure described
in [Cla78], where a negative literal is sclected only if it is a ground literal —q. The
next step s then to query g; if ¢ succeeds, then the evaluation of =g fails; if ¢ fails
on every evaluation path then, —¢ succeeds. Since the evaluation tree is finite,
this is called finite failure to distinguish it from the situation where the evaluation

tree has no successful path but has infinite paths.

The different evaluation paths correspond to the different program clauses
whose head matches the chosen fiteral. Different query evaiuation procedures
result from different rules for selecting the literal to resolve. These selection rules
are called computation rules. A query flounders if some evaluation path ends in a

goal containing only non-ground negative literals.

Negation as failure has been studied extensively as a means of extending the
power of logic programming without taking on the burden of full-fledged non-Horn
resolution. For a ground atom ¢, if q is false in all Herbrand models of P (P is
a normal program), then —g is inferred and ¢ belongs to the complement (with
respect to the Herbrand base Bp) of gfp(Tp). This is a larger set than that of
the atoms [that are false in all models of P, i.e., those for which P = —l. But it
is smaller than the set of those that are false under the closed world assumption;

that set is the complement of {ft(Tp).

CHAPTER 2. NEGATION IN LOGIC PROGRAMMING L6

SLDNF-resolution is both sound and complete with respect to the completion

of a definite program (see [L1o87)).

2.5 Completions of Programs

Another way of adding negative information to logic programs is the competion
of a program proposed by Clark ([Cla78]). His idea was to reinterpret the impli
cations within a program as equivalences. In this way one adds to the program

the “only if” part which allows one to infer negative COnsequences,

Formally the completion is defined as follows. Let .y, ..., ok be some variables

not appearing in a given programn P. First, transform cach clanse
Pl oty = Ly, Lo
of program P into
P(Trye o) &= 3y, =6), 0 (e =) Ly oo Ly,

where y), ...,y are the variables of the original clause. Next, change cach set of

the transformed clauses of the form

plxy,...,¢k) « S

p(Ila' '-smk) — ‘S’n

where n > 1, into

Voo, .o,z plag,...,z8) & S V...V S,

CHAPTER 2. NEGATION IN LOGIC PROGRAMMING 17

It is essential to include some axioms (see [L1087) on page 79) which constrain =.

Then the completion of P is denoted by comp(P).

It is often argned that in everyday language when one writes P one really
intends to assert comp(P). The step from P to comp(P) is certainly a step away
from the clarity in ideal logic programming, where the declarative meaning of a
program should be apparent from the text of the program as written. Although in
simple cases comp() may be what most people have in mind when they write P,
it is not casy to foresee the effect of forming comp(P) when P contains “recursive”
clanses with the same predicate occurring on bhoth sides of the implication sign,

or clauses involving mutnal recursion.

2.6 Stable Models

The stable model semantics is based upon the canonical models ([GL88]). The
idea of canonical model approach is that a declarative semantics for a class of
logic programs can be defined by selecting, for each program P in this class, one
of its models as the “canonical” model CM(P). This model determines which
answer o a given query is considered to be correct. For instance, a query without
variables should be answered yes if it is true in CM(P), and no otherwise. The
canonical model is usually selected among the Herbrand models of P, i.e., among
the models whose universe is the set of ground terms of the language of P, and
whose object and function constants are interpreted in such a way that every

ground term denotes itself.

Recall that Tp is an operator defined as a mapping from one interpretation to

another interpretation. All the interpretations used in this section are 2-valued.

Definition 17 Lef P be a definite logic program and I be an interpretation of P.

CHAPTER 2. NEGATION IN LOGIC PROGRAMMING I8
We define Tp T w as follows:

Tp10(I) =1
Tp 1 (n+ 1)(1) = Tp(T T n(H)UT 1 n(1)
Tp 1 w(l) = U Tr(n)(1)

Suppose P is a normal program, in which cach rule containing variables is
replaced by all its ground instances, so that all atoms in I are ground, and M €
Bp is an interpretation. The program Py of P is the logic program obtained as

follows:

e Lvery negation-free clause in P is in /.

e f A DBy,...,Bu,mDy,...,~D, is a clause in P’ such that for all 1 < J <
n, D; ¢ M, then A~ By,..., B, isin Py.

¢ Nothing else is in Pyy.
M is said to be stable iff M =Tp,, T w.
Theorem 5 ([GL88]) Any stable model of P is « minimal Herbrand model of 1.

The intuitive meaning of stable models can be described in the same way as
the intuition behind “stable expansions” in autoepistemic logic: they are “possible
sets of beliefs that a rational agent might hold”[Moo85]. If M is the set of ground
atoms that a rational agent considers true, then any rule that has a subgoal —q
with ¢ € M is, from agent’s point of view, uscless; furthermore, any subgoal —q

with ¢ ¢ M is, from agent’s point of view, trivial. Then the agent can simplify

CHAPTER 2. NEGATION IN LOGIC PROGRAMMING 19

the premises P2 and replace them by Py, If M happens to be precisely the set
of atoms that logically follow from the simplified set of premises Py, then he is
“rational”. The stable model semantics is defined for a logic program P, if P has

exactly one stable model, and it declares that model to he the canonical model of
P,

Example 2.1 Consider the program P consisting of the following clauses:

a — =

b— -a.
Suppose My = {a}, we can have Py,:
a —

whose least minimal Herbrand model is M, itself. Therefore, M; = Tle Tw. So

M, is a stable model of P. It is easy to see that M; = {b} is also a stable model

of P.

There are two kinds of programs for which the stable model semantics is not
applicable: the programs that have no stable models, and the programs that have
several stable models ([GL88]). The program consisting of just one clause a «— —a
has no stable models. Given a program P, the completion of P may have a unique
Herbrand model, but P may possess no stable models. The stable model semantics
has a simple and clegant definition. It also extends the perfect model semantics.
Some important drawbacks of the stable model semantics are the restrictive usage
of the stable model semantics for a certain class of programs and the unintended

semantics of the stable model semantics shown in ([PP93)).

CHAPTER 2. NEGATION IN LOGIC PROGRAMMING 20

2.7 Well-Founded Models

The key idea of the well-founded semantics is the concept of an unfounded set
([GRS91]), which is an adaptation of the “closed set™ developed for disjunctive
databases by [RT88]. Let us denote the complement of a set of literals 7' by ~o 7',
If Iis an atom, then the complement of 1 is =/ and the complement of =/ is I. So
=oT = {l|lis acomplement of I and ! is an arbitrary clement in 7'}. We say
A C Bp is an unfounded set (of P) with respect to I if cach atom p € A satisfies
the following condition: For each instantiated clause R of P whose head is . (at

least) one of the following holds:

1. Some (positive or negative) subgoal ¢ of the body is false in /.

2. Some positive subgoal of the body occurs in A.

A literal that makes one of the above true is called a witness of unusability for
clause R (with respect to). Intuitively, we regard I as what we already know

about the intended model of P.

Definition 18 ([GRS91]) Let P be a logic program and I be a partial interpre-
tation of P. The greatest unfounded set of P with respect to I, denoled by

USp(1), is the union of all sets that are unfounded with respect to 1.
a

Transformations Tp, Up, and Wp from sets of literals to sets of literals defined

as follows:

1. p € Tp(I) iff there is some instantiated rule 7 of P such that » has head p

and each literal in the body of r is in /.

CHAPTER 2. NEGATION IN LOGIC PROGRAMMING 21

2. Up(1) is the greatest unfounded set of P with respect to 1.
3. Wp(1) = Tp(1)U -0 Up(]).

Since Wp is monotonic, it has a least fixpoint. We denote this least fixpoint
by Wpe(I) and call this the well-founded model of P. Note that Wg(I) is a

three-valued model in the sense of [Fit85). A ground atom may appear positively,

negatively, or not all in W2 (7).

‘The well-founded semantics of a program P is the “meaning” represented by
the least fixpoint of Wp, or Wp(I) described above; every positive literal denotes
that its atom is true, cvery negative literal denotes that its atom is false, and

missing atoms have no truth value assigned by the semantics.

Example 2.2 Consider the program consisting of the following clauses:

a e =bh
bhe— -a
c— d,—¢

d — c.

The literal set {c, d, ¢} consists of an unfounded set with respect to I = 0. Actually,
¢ is unfounded due to the condition 1: there is no clause headed with e in our given
program, which tells us that it is impossible to derive e under any circumstances.
¢ and d are unfounded due to condition 2: we have no way to prove ¢ without first
prove d (whether we can establish —e to support c is irrelevant for determining
the unfounded set). But in order to prove d we must prove c first. Clearly, there

is a loop among ¢ and d. None of them can be proved “firstly”.

In contrast, the pair @ and b does not form an unfounded set even though

they depend on cach other, because the only dependence is through “negation”.

tw

CHAPTER 2. NEGATION IN LOGIC PROGRAMMING 2

As soon as one of @ and b is proved to be false, it becomes possible to prove the
other is true. If both are proved to be true at once, we have inconsisteney. The

well-founded model of this program is W () = {-¢, ~d, ~¢}.

A 2-valued well-founded model of a program P refers to a well-founded model
of P which covers all the atoms in the Herbrand base with respect to 2. The
relationship between stable model semantics and well-founded model semantics

can be established by following theorem:

Theorem 6 ([GL88]) If P has a 2-valued well-founded model, then that model is

its unique stable model.

The well-founded semantics seems to be the most adequate extension of the
perfect model semantics to logic programs and avoids some drawbacks of other

approaches which we have discussed.

Example 2.3 ([GRS91]) Consider the program P consisting of the following

clauses:

a— =b
b— -a
c— =

Cc — ~a.

It has a unique stable model Mg = {b,c}. However, the unique stable model My
seems unintuitive in the view of the fact that ¢ is a consequence of the third clause
(in 2-valued logic) and therefore the last clause can be considered meaningless. The
first two clauses do not seem to have any reasonable 2-valued intended semantics
with respect to Ms. Moreover, it is easy to see that it is impossible to derive b

from P using any Horn-resolution procedure. This is because any Horn-resolution

CHAPTER 2. NEGATION IN LOGIC PROGRAMMING 23

beginning with the goal « b will reach only the first two clauses of P, from which

b cannot be derived.

In contrast, the well-founded model of P is W(0) = @ which seems to be
more intuitive than its stable model Mg. From the computational complexity
point. of view, it has been proved that the computation of well-founded model
for propositional logic programs are polynomial time ([GRS91]). But Marek and
Truszezynski (see page 646 in [GRS91]) have shown that for propositional logic

programs to determine whether a program has a stable model is NP-complete.

Chapter 3

A New Proof Procedure

Horn clavse logic programming can be extended to include abduction with in-
tegrity constraints. In the resulting extension of logic programs, negation as fail-
ure can be simulated by making negative conditions abducible and by imposing
appropriate denials and disjunctions as integrity constraints. Fshghi and Kowal-
ski [EK89] have given an abductive procedure as the operational semanties of
abduction and have also pointed out that the stable semantics does not provide
the expected semantics for abduction. Based on this operational semantics, Dung
([Dun91]) proposed another declarative semantics, called the preferential seman-

tics, for logic programs containing negations.

The preferential semantics of a logic program gencralizes and unifies different,
semantics (e.g. well-founded semantics, stable model semantics). In this chapter
we introduce the preferential semantics and discuss our new proof procedure for
preferential semantics in the sense of skeptical reasoning. This chapter is the main

result of our thesis.

24

CHAPTER 3. A NEW PROOF PROCEDURE 25
3.1 Preferential Semantics

The: diversity of different approaches to semantics of negation suggests that there
be probably no unique intended semantics for logic programs. Which semantics
should be used depends on different applications. Dung [Dun91] has defined the
preferential semantics for abduction where negation in logic programs is treated as
a form of hypotheses. This semantics is a 3-valued semantics, in which the totality

requirement characterizing the stable model semantics is replaced by a maximality

condition,

A well-known and simple approach in nonmonotonic reasoning is abduction.

In the simplest case, it has the form:

From Aand A —~ B

infer B as a possible “explanation” of A.

Hypolheses which are consistent with one state of a knowledge base may become
inconsistent when new knowledge is added. Poole ([Poo88]) argues that abduction
is preferable to nonmonotonic logics for default reasoning. In this view, defaults
are hypotheses formulated within classical logic rather than conclusions derived

within some form of nonmonotonic logics.

The intuitive idea is that the user supplies a set of facts known to be true,
and a pool of possible hypotheses which they are prepared to accept as part of an
explanation to predict the expected observations which is consistent with the facts.
This erplanation should be viewed as a “scientific theory” based on a restricted
set of possible hypotheses. it is also useful to view the explanation as a scenario in

which some goal is true. The user provides what is acceptable in such scenarios.

In general, the theory of abductive reasoning is based on the notion of abduction

Jramework ([Poo88], [EK89], [Dun91]) defined as triples (P, H, IC) where P is

CHAPTER 3. A NEW PROOF PROCEDURE 26

a first order theory representing the user supplied clauses and facts, # is a set
of first order formulas representing the possible hypotheses, and 1" is a sct of

integrity constraints used to determine the admissible explanations.

Given an abduction framework (P, H, I1C), a sct of hypotheses £ is an ab-
ductive solution for a query Q iff PUE | Q and P E satisfies (.

For each predicate symbol p appearing in logic program P we introduce a new
predicate symbol p~ ([Dun91]). The new predicates are called abducible predicates.
The benefit of introducing the new predicates is that after the transforming we
can treat the transformed program as a positive logic program. Atoms of the
the abducible predicates are called abducible atoms. Ground abducible atoms are
called hypotheses. HY represents the set of all hypotheses. An abductive program

over the language L is an abduction framewoik (P, If, 1(’) where

e P is a definite Horn program over LU{p~|p € L} with no abducible predi-

cates appearing in the heads of its clauses,
o IC = {+ p(x),p~(z) | p is a predicate symbol in L}, and

o H=HY.

A logic program P is transformed into an abductive program I’* by replacing
every negative literal —p(ty,...,1,) in each clausec body by p~(t,...,4.). The
semantics of abductive program is based on the notions of scenario and extension
in [Poo88]. From now on, we suppose all the programs are given as abductive

programs, i.e., we simply denote P* by P.

Definition 19 A scenario of an abductive program P is a first order theory P H
where H is a subset of HY such that PUH \JIC is consistent. An extension of

an abductive program P is a mazimal (with respect to set inclusion) scenario of

CHAPTER 3. A NEW PROOF PROCEDURE 27

I
a

Definition 20 ([Dun91]) Let P be an abductive program. A set of hypotheses
v is an evidence of an atom q € Bp (Bp is the Herbrand base of P) with
respect lo P af PUL = q. A hypothesis ¢~ is acceptable with respect to a
scenario S if for cvery evidence E of q, EUinout(S)UIC is inconsistent. Here

moul(S) = HU{qe Bp | S kEq).
O

We are only interested in scenarios whose hypotheses are acceptable. A sce-
nario .S is admissible if every hypothesis accepted in S is also acceptable with

respect to 5, i.e., if ¢7 is in S, then ¢~ must be acceptable with respect to S.

Definition 21 A preferred extension of an abductive program P is a mazimal
admissible scenario of P, The semantics defined by the preferred extensions is

called preferential semantics.
(]

Let ASp denote the set of all admissible scenarios of P. The existence of at

least one preferred extension for every program P is guaranteed by theorem 7.

Theorem 7 ([Dun91]) (ASp,C) is a complete partial order, i.e. every directed
subsel of ASp has a least upper bound. For every admissible scenario S , there is

at least one preferved extension K such that S C K.

Theorem 8 reveals the relationship between stable extensions for the stable

semantics and preferential extensions for the preferential semantics.

CHAPTER 3. A NEW PROOF PROCEDURE 28

Theorem 8 ([Dun91]) Every stable cxtension is a preferved extension but nof vice
versa. If P is a locally stratificd logic program then the unique preferred extension
S of P* is stable and M = {q |S |= q} is the unique stable model of P

Dung has proved the soundness of the Eshghi and Kowalski's abductive proofl
procedure with respect to the preferential semantics. Unfortunately. this proof
procedure is incomplete [GMS93] because there are cases in which the procedure
loops indefinitely when applied to atoms belonging to a preferred extension of the
given abductive program; therefore the procedure lacks the completeness property

with respect to the preferential semantics.

Theorem 9 (Soundness) Lel us denote an abductive vefutation of lishghi and
Kowalski’s proof procedure for query q by ([« q], {}) = ([],), which means there
is an abduclive refutation that starts from q with empty hypothesis and ends with
emply goal and a hypotheses set H. Suppose P is an abductive program, then

PUH is an admissible scenario and PUI = q.

3.2 A Proof Procedure for Skeptical Reasoning

The preferential semantics corresponds to the “maximalism” semantics where each
preferred extension represents a “belief world” of an agent. who tries to conclude
as much as possible from an abductive program, which is considered as an incom-
plete knowledge base. But in many cases we want, our knowledge to be “minimal”
in the sense that the knowledge we believe in may be true in all the circum-
stances, which is captured by well-founded semantics to a certain degree. It seems
that minimalism and maximalism are two main semantic intuitions for knowledge
representation schemes. In the theory of nonmonotonic inheritance, these two in-

tuitions are known as skepticism and bravecism respectively. A skeptical reasoner

CHAPTER 3. A NEW PROOF PROCEDURE 29

refuses to draw conclusions in ambiguous situations where a brave reasoner tries

to conclude as much as possible.

Since the preferential semantics has overcome some drawbacks of both the
stable model semantics and the well-founded semantics {{Dun91]), in general we
can expect the preferential semantics to be closer to our common sense than those
two. ‘There is little study of operational semantics for preferential semantics and
ouly a prool procedure in the sense of brave reasoning has been given. To the
best of our knowledge, no proof procedure for the preferential semantics from the
skeptical reasoning point of view has been proposed. We have developed such
a proof procedure which is fundamentally different from Eshghi and Kowalski’s
prool procedure. To simplify our technical explanation we restrict our discussion
to propositional logic. It is straightforward to extend it to predicate logic for

abductive programs.

Definition 22 Let R be a computation rule. We say that R is positivistic if

il seleets positive literals ahead of negative ones.
a

We require that the computation rule we use is positivistic throughout this

thesis.

Definition 23 Let (be the query — g and R be a positivistic computation rule.
We define the proof tree Ty for Q. The root of Ty is q. If the query H =— A’

is any node of Tg, then ils children are obtained as follows:

o I must selecl a positive literal if there is one in A'. Let | be the one selected
and Uy be the set of clauscs whos: heads are | in the program. The children

of l are obtained from the bodies of those clauses and each child corresponds

CHAPTER 3. A NEW PROOF PROCEDURE 30

lo one clause in the program. If Uy = 0, then H has no children and is a

dead leaf.
o If a branch contains any loop, i is a dead branch.

o If A' contains only negative subgoals, then A’ is a negative node (ornegative

leaf). Negative nodes have no children.

a

A branch of Tg is an acyclic path from the root of Ty. A proof tree is actually

an AND-OR graph. The leaf of a proof tree is a set of literals.

Example 3.1 Let P be the program

a— b
be— a
ce—a

c—b

and @ be the query — c. Then the proof tree is in Figure 3.1, Both leaves are

negative leaves.

a/C\ b
o

b a

Figure 3.1: The Proof Tree of ¢

Definition 24 Let P be a logic program and Q be the query — q. The Primary
Proof Tree (P-irec) of Q with respect to P is the proof tree rooted in . Let 1=

CHAPTER 3. A NEW PROOF PROCEDURE 31

he an tlement of a negative leaf of a primary proof tree. The Assumption Proof
Tree (A-lree) of L wilh respect to Pois the proof tree rooled in |, While the P-tree
of a query is unique, a P-tree may have many corresponding A-trees.

a

fxample 3.2 From example 3.1 we have one primary proof tree as in Fig-

ure 3.1 and two assumption proof trees for query « ¢ as follows:

a b
b a
(a) (b)

Figure 3.2: Two A-trees for ¢

Definition 25 A sct of literals S is consistent if VI € S we have I= € S and if
VI“ e S we have 1 € S. Otherwise it is inconsistent.
O

Recall that Wie(1) is defined as a least fixpoint of Wp with respect to the

well-founded semantics in section 2.7.

Definition 26 Lct P be a logic program and N be a set of negative literals. We
say N can be consistently assumed with respect to the well-founded semantics iff
Wikia(B) is consistent. If WL N (D) is inconsistent we say N cannot be consistently

assumed.
0

Definition 27 Let I b a partial interpretation of program P, Q =« q be a
query. and Ply be the primary proof tree of Q with respect to P. A negative

CHAPTER 3. A NEW PROOF PROCEDURE 32

leaf N of PTq is an active leaf of Ply if the following two conditions hold

simultancously:

o Wain(B) is consistent

o Vie N WENB)UF is inconsistent for all F', where I is a negative leaf of

the assumption proof tree AT._,.

The first condition required for an active leaf in a P-tree guarantees that as-
suming all the elements in this negative leaf will not cause any inconsistency, If
it results in inconsistency, we know the assumptions cannot. be made for this neg-
ative leaf in any circumstances. This leafl will be useless for proving the given
query. The second condition requires that any assumption we are going to make

should have a solid ground. For example, we may have the program

a— b
be— ¢

Cc+— ¢~

and let us consider query « a. To establish b we must first establish ¢. Before
we can establish ¢ we must establish ¢=. It is very clear that both b and ¢ cannot,
be established in this program. From this we may conclude that b= can be estab-
lished because this establishment will not bring us any trouble, i.c. Wi -y (0) is
consistent. The assumption b~ may eligibly be made in some semantics, but both
the well-founded semantics and the preferential semantics refuse to accept this
assumption in their extensions. Actually, b~ is to be considered as undefined (or
undetermined) in 3-valued logics. Semantically, assuming b~ means that b must

be false. Furthermore, that b must be false requires that ¢ must also he false,

CHAPTER 3. A NEW PROOF PROCEDURE 33

However, as we can see, we will get inconsistency if ¢ is false. So b~ cannot be
accepted in this case. With a solid ground we mean when we make an assumption
(for example b7) we require the existence of the complement of the evidence for the
complement of this assumption (¢” is the evidence of b which is the complement

of b7, the complement of ¢ is ¢; therefore, we require the existence of ¢ before

making assumption 7).

However, an active leaf may not necessarily mean that the corresponding ele-
ments (assumptions) in this leaf can be made in the sense of skeptical reasoning.

For example, consider following program:

a— b~

be— a.

It is casy Lo verify that both the above two conditions are satisfied for query « a,
but a is only in one preferential extension. There is another preferential extension
{b,a™} which contains no a. So b~ should not be allowed to be assumed in a

skeptical reasoning context. This leads to our next definition.

Definition 28 Lel A be an active leaf of a primary proof tree. We say that A is
successful if cither A is empty (represented by Q), which means all literals are
resolved, or for coery L € A, WEp(0) is inconsistent for all F (F is a negative

leaf of the assumption proof tree AT_;). Otherwise, A is failed.

a

Definition 29 Let be a query. A negative branch (or negative path) of
a P-trec (or A-tree) is a branch (or path) that ends at a negative leaf. A dead
branch (or dead path) of a P-tree (or A-tree) is a branch (or path) that ends

al a dead leaf. An active branch (or active path) of a P-tree is a branch (or

CHAPTER 3. A NEW PROOF PROCEDURE 34

c
a, b/d.l} f
| | |
b,b h,e h™

Figure 3.3: P-tree for ¢

path) that ends at an active leaf. A successful branch (or successful path)

of a P-tree is a branch (or path) that ends at a successful leaf.

Example 3.3 Let £ be the program

a— b
be— a"
c— a,b
c— d,e,g
ce— [
d— h~
[h

g('—

and the query be c. We have the primary proof tree in Figure 3.3.

The branch {c} — {a,b} — {b=,b} — {b=,a"} is failed because b= and
a~ cannot be consistently assumed. The branch {¢} — {d,e¢,g9} — {h™,¢} is

dead because ¢ is not negative. Only the branch {¢} — {f} — {h™} is both

CHAPTER 3. A NEW PROOF PROCEDURE | 35

active (Wit 1 (8) is consistent and there is no clause with A as head in P) and
successful. If there is no clause with head ! in a given program, [must be in an
unfounded set according to the definition of unfounded set. This tells us that A~

should be assumed in this program.

Definition 30 A primary proof tree P-tree is said to be successful if there is
a suceessful branch in this P-lree. An assumption proof tree A-tree is said to

be successful if there is a negative leaf L in this A-tree such that W, (0) is

consistend.
O

Definition 31 Let) be a query for a given program P. We say the primary
proof tree 1y is inconsistent if W 4(0) is inconsistent where A is the set of

all active leaves of Ply. Othervise, PTg is consistent.
a

Definition 32 Let I be a partial interpretation of program P, and ASy,...,AS,
be negalive literal sels (assumption sets) where no set is any other’s subset. For
anyay € AS\,...,a; € AS,, suppose Ay,..., A, are negative leaves of AT—,,,...,
ATy, respectively. The cross consistency checks are to check the consistency

of

l'Vl(;(L'JA]u...UA.-,uA.+,u...uA,,(1) ud; (I= w)

Jorall: (i =1,...,n) and all the negative leaves of AT—,,,....,AT_,,
(]

Let P be a program and Q =« ¢ be a query. Our proof procedure for the

preferential semantics in skeptical reasoning is given below.

CHAPTER 3. A NEW PROOF PROCEDURE 36

1. Initial Setting:
Construct the P-tree PTg rooted in query ¢. For any negative branch,
let L be the leal. If Wg, (0) is consistent and VI= € L, W, (UL is
inconsistent for all negative leaf L’ of the A-tree AT_;, then mark this leaf
active in PTg. Otherwise mark it failed in PTy. Check the consistency of

the PTq and there are two cases as in cases 2 and 3.

o

PTy inconsistent:
Suppose PTg has n (n > 2) activeleaves and L; (i = 1,...,n) is an arbitrary
active leaf, make cross consistency checks. If all the checks are inconsistent,

return “yes”, otherwise return “no”, and stop.

3. PTgy consistent:
Let L be an active leal of PTg. For any [~ € I, construct an A-tree AT,
rooted in . If there is no successful branch in AT, then mark this A-
tree failed. Otherwise, mark it successful. If for all the clements in £, their
corresponding A-trees are dead or failed, mark the branch, ended with active

leaf L, of PTy successful.

4. If there is any successful branch in P-tree PTp, return “yes”, otherwise

return “no”.

We only use primary and assumption proof trees for answering a query and
both P-tree and A-tree are the same syntactically, although their semantics are
different. This two level of proof trees strategy will bring many benefits to the
implementation aspects. Our initial setting will guarantee that we only explore
those leaves which are active, because only an active leal can contribute to a
successful proof. Under those two conditions in the initial setting, there is a
possibility that ¢ might be in all extensions. The inconsistency of W72, (9)U 1/

allows us to assume L with explicit evidence from [/. This prevents us from

CHAPTER 3. A NEW PROOF PROCEDURE 37

making assumptions without a solid ground. For example, we may assume [~
in an extension I, if [¢ K. Obviously this violates the definitions of both the
well-founded serantics and the preferential semantics because [may be undefined

in 2. 17 can be assumed only if we have ezplicit evidence blocking [to be true.

The inconsistency of a P-tree means that the hypotheses are conflicting, so
there could exist more than one extension. In this situation we want to know
whether there is an extension not containing ¢. Obviously, the fact that ¢ is
not included in an extension tells us that no active leaf of ¢ is admissible to this
extension with respect o a given logic program. If such an extension exists, it
must contain a set of literals such that this set blocks all the active leaves in the
P-tree of ¢. In case this kind of set is found, we know, for sure, the query cannot
be in every preferential extension. Otherwise we can answer the query with “yes”.
‘This is because it is guarantced that there is af, least one successful branch in
P-tree for any extension. A typical example is Example 3.1. For query « ¢, the
P-tree is inconsistent. We need to do cross consistency checks. If there is an
extension that contains a and b, we know ¢ will never succeed in this extension. In
order to establish a (or b respectively) we must establish b~ (or a~ respectively)
first. Therefore, the extension containing both @ and b must also include both b~
and a”. Our cross consistency checks will eliminate this case by recognizing that

accepting b~ and e~ will result in inconsistency.

When a P-tree is consistent, we should try every possibly successful branch.
For cach active branch we check every element of its leaf node. If there is no
evidence against this element (i.e. the corresponding A-tree fails), it succeeds (i-e.
it cani be consistently assumed). The failure of an A-tree AT, guarantees that no
extension contains any literal I. Therefore, some active leaf must be admissible to
any preferential extensions by the definition of the preferential extension. This is
exactly the same idea behind the preferential semantics. The admissibility of an

active leaf gives us that the query should be included.

CHAPTER 3. A NEW PROOF PROCEDURE N
3.3 Examples

In this section we will give some examples to see how our proof procedure works

and to provide a better understanding of the definitions given in last section.

Example 3.4 Let P be the program

a— b
be— a”
c— a

c— b

Then P has two preferential extensions 151 = {a,c,b™} and Kl = {b,e,a"}. The
well-founded semantics says the extension (model) of P is empty. We have seen
that ¢ is contained by both E1 and E2. For query «— ¢, we have the P-tree
in Figure 3.1. It is easy to see that WEL (a-3(8) and Wig () are consistent
respectively. But Wgp, ., (0)U{67} and Weip-1(0)U{a™} are inconsistent. So
both negative leaves of PT_. are active leaves. Since Wi (a- p-1(B) is inconsistent
(from b~ we can derive a, so both a and a™ are in W,'i‘,’_’,(a_,b_)(V))), the P-tree PPT'_,
is inconsistent. According to the procedure, the cross consistency check should be
performed next. Only two cross consistency checks are needed in this case becanse
there is only one element in every active leaf of PT—.. Since the active leafl for a is
b~ in AT._, and the active leaf for bis ¢~ in AT._, we have ¥ Poga-y (D) U{b™} and

I/V,%fJ{b_}(([)) U{e"} are inconsistent. Thercfore, the answer for query ¢ is “yes”.

As for query « @, part (a) of Figure 3.2 is the P-tree P7'_, and part (h) of
Figure 3.2 is the A-tree AT_;. Since W,,”‘G{b_}(([)) is consistent and there is only one
branch in the PT_,, the PT_., is consistent. We need to check the consistency
of the A-tree. From the fact t! -t WEia-y(B) is consistent, we conclude that b~

cannot be assumed in all circumstances. Therefore, the answer for query a is “no”.

CHAPTER 3. A NEW PROOF PROCEDURE 39

Similarly we can get the answer “no” for query b,
Example 3.5 Let P be the program
ae— b

bhe— ¢

C— -

and () be the query «— a. We have the P-tree and A-trec as follows:

a b
b c
(a) (b)

Figure 3.4: (a) P-tree of a (b) A-tree of b

Since Wiy, (0) = {e,b7} and Webp-3(8)U{c™} = {a,b7,c"} are both con-

sistent, the only negative leaf of PT._, is not an active leaf. So we conclude that

the answer for the query a is ¢

no”. Similarly we can get the same answers for b
and e. As a matter of fact, there is only one preferential extension which is empty.

This coincides with the well-founded semantics.

Example 3.6 Let P be the program

a— b
bh— ¢

C— ¢

The only preferential extension for P is empty. Let us look at query « a.
Considering that both WEl-3(8) = {a,b7} and Pop-3(O)U{c™} = {o,b7,c7}

CHAPTER 3. A NEW PROOF PROCEDURI 10

are consistent, the only negative leaf of PT_, is not an active leafl, So we conclude
that the answer for the query a is *no™. Here b= cannot be assumed becanse
the complenment of b~ is the b and b's evidence is ¢, and we do not have the
complement of ¢~ in our extension. In this case we say that there is no caplicit

evidence blocking b from being true.

As for the answers of b and ¢, both negatives in P71y, and PT—. are failed
respectively because they are inconsistent. Consequently, the answers are “no”
for both b and ¢. Both the preferential extension and the well-founded model ave

empty for P.

Example 3.7 Let P be the program

a« b~

b—a, a

and @) be the query « a. We have the P-tree and A-tree as in Figure 3.5:

: |
aa
|
b b,a
(a) (h)

Figure 3.5: (a) P-tree PT._, (b) A-tree PT._,

Since Wg[,(,-1(0) is consistent and Wisp- (M U{a™, b7} = {a,a=, b7} is in-
consistent, the only branch in PT_ , is an active branch. Because of the inconsis-
tency of Wpi,- 4-3(0) the answer for the query a is “yes”. We can also conclude
that the answer for the query b is “no” hecause there is no active leal in P-tree
PT_,. Actually there is only one preferential extension which is {a, b™}. Although

its well-founded model is empty.

CHAPTER 3. A NEW PROOF PROCEDURE 41
Example 3.8 Let P be the program

a — b~

heua,c

d — ¢

and @ be the query — a. We have the P-trec and A-tree in Figure 3.6.

, b
a
|
a, ¢
I
b b,c

(a) (b)
Iigure 3.6: (a) P-tree PT._, (b) A-tree AT,

On account of the inconsistency of WEL-3(8) = {a,b,d,b™,c™}, there is no
active leal in PT.—,. So the answer for the query a is “no”. The only preferential
extension is {d, ¢}. This is simply because ¢~ must be acceptable to any scenario

due to the fact that there is no clause headed with ¢ in P. From ¢= we have d.

Example 3.9 Let P be the program

a— b
a +— ¢~
be—a"
¢ — d~

d—a.

There is only one preferential extension £ = {a,c, b=,d"} for P. The P-tree for

+ a is shown in Figure 3.7.

CHAPTER 3. A NEW PROOF PROCEDURE 12

a

b C

Figure 3.7: P-tree for a

Since Wals-1(9) = {a,¢,b7,d7} is consistent and Wibpe— () Ufe}
= {a,¢,a”,b7,d"} is inconsistent, the branch {a — b=} is an active branch. But
Welie-3(0) = {a,¢,b7,¢7,d"} is inconsistent, so the branch {¢ — ¢} is a failed
branch. Hence, the P-tree PT_, is consistent. Qur next step is to check the consis-
tency of A-tree AT_,. Due to the inconsistency of ¥ ',‘ﬁ,{"_}((ﬂ) ={a,b,d,a", 7},
ATy is failed. b~ can be consistently assumed. Consequently, the answer for

query «— a is “yes”.

For query «— ¢, W5 . _1(0) = {a,c, b, d™} is consistent and W2, (0 a”
juery PU{d-} Pu{d-}
= {a,b,d,a”,c™} is inconsistent. For the reason that PT_. is consistent we need
to check the consistency of A-tree AT'—,. From the inconsistency of Wilie-)(0) =
{a,b,d,a”,c™} we have the answer for ¢ is “yes” t0o. As for the query «— b, there
is only one negative leaf in PT—,. This negative leal is not an active leaf by the
fact that Wg2 i, 1(0) = {a,b,d,a",c™} is inconsistent. Accordingly, the answer
PU{b-} gy

for query « bis “no”.

Example 3.10 Let P be the program

a—b",d
be—a,d
c—ua
c—b
de—e”

e—d".

CHAPTER 3. A NIEW PROOF PROCEDURE 43

There are three preferential extensions: E1 = {a,b,e,d"}, E2 = {a,c,e,d"},
I3 = {d,a”,b7, ¢ }. The well-founded model is empty. For query « ¢ the P-tree

I - is shown in Figure 3.8.
C
a b
b,d a,d
Figure 3.8: P-tree PT_, for query « c

By the consistency of W= 4-)(8) = {a,¢,e,d"}, the inconsistency of
Wiiih-a- (M U{a™,d"} = {a,c,e,a™,d7}, as well as the inconsistency of
Wiiie-u-) (M U{c™} = {a,c,e,d™, e}, we know that the negative leaf {b=,d"} of
PT. is an active leaf. Also by the consistency of W,‘i,‘i,{a_’d_}(@) = {b,c,e,a",d"},
the inconsistency of Pofa~a-}(0)U{b™,d"} = {b,c,e,a=,b,d"}, and the incon-
sistency of Wﬁ?.,{u_‘d_}((?))U{e‘} = {b,c,e,a”,d",e”}, we know that the negative
leaf {b=,d™} of PT_, is an active leaf. PT.__ is inconsistent for the sake of incon-
sistency of Wilia-p-4-}(8) = {a,b,¢,a=,b~,d~}. Hence, we need to do the cross

consistency check. The cross consistency checks of {6~,a"} are as follows:

Wil (ama-y (D) U{b™.d} = {b,c,e,a,b7,d"} is inconsistent
Wilip-a-y (M U{e",d"} = {a,c,e,a7,b7,d"} is inconsistent

Furthermore, the cross consistency checks of {6~,d~} are as follows:

Willa-a-1 (D) U{e} = {b,c,e,a™,d", e} is inconsistent

(W) U{a",d"} = {d,a”,d™, e} is inconsistent

CHAPTER 3. A NEW PROOF PROCEDURI 3B

Similarly, we can have the same result for the cross consistency checks of {d"ca '}

However, the cross consistency check of {d=,d™}:

,‘ N — bt — .
"'1‘}6{(—}(”)U{f b= {dya= b7 ¢}
is consistent. In consequence, the answer for the qUery — ¢ is “no”.

Example 3.11 Let P be the program

C— a”
c— b
a— b
be— a~
ce— d-

d— ¢

There are two preferential extensions: £1 = {a,e,b~,d™} and L2 = {b,¢,a=,d"}.
However, the well-founded model is empty. First let us see the answer for the

query « c. Figure 3.9 is the P-tree for c.

4N

a b d

Figure 3.9: P-tice PT_. for query « ¢

With regard to the negative leaf «: W’,”,‘l’J{H_}(W) = {b,e,a”,d™} is consistent,
whereas W2, _,(0) U{b™} = {b,¢c,a™,b7,d7} is inconsistent. Therefore, the leafl
a” is an active leaf. As for the negative leafl b: Wion-(0) = {a,e,b7,d7}

is consistent, whereas Wi, 1(0)U{e™} = {a,¢,a”,b7,d"} is inconsistent. We

CHAPTER 3. A NEW PROOF PROCEDURE 45

know leaf b~ is an active leaf. Finally, for the negative leaf d—: Wgla-y(0) =
{e,d™} is consistent and W () U{c™} = {e¢,c7,d"} is inconsistent. So leaf

d= is also an active leal.
Our next, step is to do the cross consistency checks:
Witiu-u-3(0)U{c™} = {a,b,c,a™,b7,c7,d"} inconsistent

',%{,,-'c-}(@)U{b"} = {b,¢,d,a,b",c”} inconsistent
Wivi- () U{e"} = {a,¢,d,a”,b™, ¢~} inconsistent

So the answer for query « cis “yes”.

With regard to the query « «, the only leaf of P-tree PT._, is an active leaf for
the reasen that W2, ,—(8) = {a,¢,b”,d"} is consistent and WeL - (@) U{a"} is
inconsistent. ‘Therefore, PT._, is consistent. But Wg,,.,(0) = {b,c,a™,d"} is

consistent, The answer for query « a is “no”. Similarly we have the same result

for query «— b and « d.

3.4 Implementations
Now we give more details about our proof procedure.

Skeptical Reasoning Algorithm for Preferential Semantics

Let [be a partial interpretation of a given logic program P and Q =« ¢ be a

query. If this algorithm returns “yes”, @ can be proved (Q is in all the preferential

extensions).

Begin

CHAPTER 3. A NEW PROOF PROCEDURE

Find all the clauses unifiable with g;
If no such clause available Then
Return “no™;
Buiii » P-tree rooted in ¢ PToUntil:
Either we encounter negative literal,
Or positive literal without unifiable clause;
If there is any successful branch Then
Return “yes”;
For each negative leaf L in PTy Do
If Wg2,.() inconsistent Then
Mark L failed in PTy;
For each element [~ € L Do
Build an A-tree AT, for I;
For each negative leal I in AT_; Do
If WE,,(0)U F consistent Then
Mark the leaf L failed in PTg;
End-For
End-For
End-For
If no active leaves Then
Return “no”;
If PTg, inconsistent Then
For each artive leaf L in PTy Do
For each element [~ in L Do
Build an A-tree rooted in ;
End-For;
End-For;

If all cross consistency checks are inconsistent Then

40

CHAPTER 3. A NEW PROOF PROCEDURE 47

Return “yes”;
Else
Return “no”;
Else
For cach active leaf L in PTg Do
For cach element I~ in L Do
Build an A-tree AT ;
For each negative leaf F of AT.; Do
If Wg,r(0) inconsistent Then
Mark F failed in AT_;;
End-For;
If all the leaves in AT, are failed Then
Mark AT, failed;
End-For;
If all the AT, are failed Then
Mark I, successful;
Return “yes”;
End-For;
End-If;
Return “no”;
End

We have an unfinished implementation of our proof procedure in Quintus-
Prolog. Our implementation is originally for preferential answer set semantics
([YLY93]) and it is not difficult to change this implementation into an implemen-
tation for preferential semantics. We expect this could be done at the end of this

July. Some ideas are borrowed from XTlieorist ([Goe92]) in our implementation.

Chapter 4

Some Theoretical Results and
Analyses

We have described our proof procedure for the preferential semantics in skeptical
reasoning and from the examples in the last chapter we have also seen that our
algorithm appears to coincide with the preferential semantics. We will present
some theoretical results about our proof procedure and then compare it with
some other approaches. The most important result is the soundness (correctness)

of our algorithm with respect to the preferential semantics.

4.1 Soundness

Lemma 1 Let P be a given logic program, I be a partial interprelation of P,
Q =+ q be a query, and Ly,..., Ly (N > 2) be active leaves of the primary proof
tree PTq. If PTy is inconsistent and the cross consistency checks are inconsistent,

tren ¢ must be in every preferential extension of P.

48

CHAPTER 4. SOME THEORETICAL RESULTS AND ANALYSES 49

Proof: We prove it by using induction on the number of active leaves of PTy.
Suppose there is a preferential extension I, such that ¢ € E.

Base Step: N = 2. The primary proof tree PTy is shown in Figure 4.1:

/q\
L1 L2
Figure 4.1: P-tree for — ¢ when N =2

In Figure 4.1, Ly = {{}, 15, ..., 1.} and Ly = {I5,15,,...,15,} are two active
leaves. Let us consider literal ¢=. For ¢~ there is only two possibilities: either
¢~ € IYor ¢~ ¢ . We will prove that in both cases we will get a contradiction.

Consequently, our assumption ¢ € E is false.

Suppose ¢~ € E, from this we know that ¢~ is acceptable with respect to E.
However, Ly and I, are the two evidence of ¢ and by the definition of preferential
extensions we have both F{JL; and E|J L, are inconsistent. This means that
de(i=1,...,m)and 35 (j = 1,...,n) such that I;; € E and l; € E. Let l;; and

ly; have the following assumption trees:

NN

Ly Ly Ly Ly Ly thj

Figure 4.2: Two A-trees for « [;; and « ly; respectively
Since l;; € E, there exists ' (¢ = 1,...,t;) such that L;y € E. So does

3" and Ly € E. From E = W& (D), we have E = WﬁfJEuLli,usz,((D). Our
cross consistency checks say that Wg,, | (8)U Ly is inconsistent and from this

CHAPTER 4. SOME THEORETICAL RESULTS AND ANALYSES 50
incensistency we can easily derive that l"’f}bl,,,,ul,,ﬂ(w) is also inconsistent. Henee,
we have WgP 2(0) is inconsistent and I is inconsistent. Therefore, £ is not a

preferential extension of P, which is contradictory to our assumption.
Suppose ¢~ ¢ E. Therc are three cases we need to deal with:

Case 1: E L, is consistent and E | L is inconsistent. From the inconsistency of
EU Lz, we have 35 (j = 1,...,n) such that lp; € E. Therefore, we still can find
aj' (' = 1,...,t;) such that Ly; C E. But the cross consistency checks tell us
that W1‘3°._,L2],((0)UL11" for all ¢' (¢ = 1,...,4) is inconsistent. So & Ly should
be also inconsistent for all #/. Ij; should be acceptable with respect to . Since
our ¢ is arbitrary, we can extend this result to all the element in L. That is 1,

should be admissible to £. Then ¢ € E.

Case 2. EJL; is inconsistent and E|J L, is consistent. This is a symmetric

situation as in case 1.

Case 3: both E\JL, and E{J L, are consistent. Let Fy = Witikur, (9) and 1y =
WEgur,(0). Then Fy cannot be consistency. Suppose F) is consistent. As a result
of L being an active leaf we have Wy, (0) U{ any negative leaf of A-tree AT, }
is inconsistent, for all ¢ = 1,...,m. Of course, W5y ., (0)U{ any negative leaf
of A-tree AT_,,,} is also inconsistent for all s = 1,...,m. L; must be admissible
to . Accordingly, we have ¢ € E, which is contradictory to ¢ & E. So Fy cannot
be consistent. Similarly, F; is inconsistent too. Since F} (also) is inconsistent,
there is an element [in Herbrand base of program P such that both [€ I, and

I~ € F;. We discuss [for three different situations:

1. l € E: The only chance for I~ € F, is [~ € L, because F is consistent. But
this is contradictory to our assumption that £ I, is consistent. Obviously,

the same result will be applied to F.

CHAPTER 1. SOME THEORETICAL RESULTS AND ANALYSES 51

2. I7 € I For cvery negative leaf L of the A-tree AT.—;, we have EJL is
inconsistent. This guarantees that every active branch of A-tree AT._; cannot
succeed with respect to £, So no matter what assumptions you add into P
(i.c. no matter what L, could be), W5 51, (8) cannot conclude ! which is

contradictory to the assumption [€ Fy. It is trivial to get the same result

for F,.

3. I ¢ I and I~ ¢ I2: By the fact that we conclude [from Fy, for sure I~ € L.

‘There must exist a negative leaf in A-tree AT, as in Figure 4.3,

A

AB,C
Figure 4.3: A-tree for AT,

with the conditions: A C E, B C L,, C is admissible to EJ L, (C may be
empty).

Since L is an active leaf, we have that Wear, (0)UAUBUC is inconsistent
and both Wt () and Wg,, ,c(D) are consistent. Therefore, the incon-
sistency can only be caused by some p € Wg,, (0) with p~ € A C E. So
we have Wi, (0) U E is inconsistent. Similarly we have W, (0)UE is
inconsistent. Thercfore ¢~ € E which is contradictory to our assumption

that ¢- ¢ E.

Induction step: Suppose N = k, the lemma holds. We prove our result when
N==k+1 Let Li = {I3,l5,...,05} i =1,2,....k+ 1). If there exists any
ek (i=1,...,k+1; j=1,...,¢), then we know that the active leaf L; is a
failed leaf. So the P-tree PT._, has at most k active leaves left. In this case, our

lemma holds according to the induction hypothesis.

CHAPTER 4. SOME THEORETICAL RESULTS AND ANALYSES 52

Ifforalliand j, l;;, € E, then all EUL, EUL,, ..., U Li41 are consistent.
So ¢~ & E. A very similar proof, as in case 3 of our base step, can be constructed

in a straightforward manner.

a

Theorem 10 (Soundness) Let P be a given logic program, and I be a partial
interpretation of P. Suppose Q =« q is a query and Py is the primary proof

tree of « q. For our proof procedure:

If the answer for q, given by our proof procedure, is “yes®, then g is in cvery

preferential extension of P.

Proof: There are three cases in our proof procedure, so we discuss them separately.

o Case 1: The P-tree PTy has a successful branch without further exploring

any A-tree. In this case we have

k=1

where E is an arbitrary preferential extension of program I,

e Case 2: The P-tree PTy is consistent. In this case we know that PTg has a
successful branch. Let L be the leaf of this successful branch. It follows that
WELL(D) is consistent which satisfies the integrity constraints (sce [Dunyl)).
For any I~ € L, the A-tree AT._; is failed (i.c. no leaf in AT can be con-
sistently assumed). This guarantees that no extension will contain ! which
could block L to be consistently assumed. That V! VL' Weo (YU L must
be inconsistent can eliminate those assumptions made simply by without the
presence of positive counterpart, where L' is a negative leaf of assumption

tree AT.;. The complement of these assumptions is exactly a set of those

CHAPTER 4. SOME THEORETICAL RESULTS AND ANALYSES 53

elements which are undefined in the well-founded semantics. From the def-
inition of admissibility (see the section 3.1), I~ must be admissible to any
preferential extension. Further more, L is an admissible set to any preferen-

tial extension. Therefore, ¢ must be true in every preferential extension of

P.

o Case 3: The P-tree PTy is inconsistent. The key idea of our algorithm
is trying to find an extra extension which contains a literal set such that
this set will block all the active leaves of PTy, i.e., no active leaf could be

succeeded. The lemma we just proved is exactly the case as here.

0

There is little study of operational semantics for the preferential semantics and
only a very efficient proof procedure, in the sense of brave reasoning, is known (see
[EK89]). Unfortunately, this proof procedure cannot be used for computing exten-
sions under the skeptical reasoning. The reason is that for a given program and
a query, once there exists an extension containing this query, the proof procedure
always can find it. But it is impossible for it to tell whether other extensions
could contain this query or not. During the proof, the procedure may go to other
extensions to try to find “evidence” without noticing that it is been in a different
extension. As to our knowledge no proof procedure for the preferential semantics

in the view of skeptical reasoning has known yet. So our method is a. first attempt.

The closest method we have found to our algorithm is Ross’s proof procedure
for the well-founded semantics in [Ros92], which uses the so-called global SLS-
resolution. SLS-resolution ([Prz89b]) is a top-down proof procedure that uses
an extension of SLD-resolution to answer queries. Global SLS-resolution is an
extended version of SLS-resolution. But our method is fundamentally different
from Ross’s. Since Dung ([Dun91]) has proved that the preferential semantics can

capture the well-founded semantics, our proof procedure can be considered more

CHAPTER 4. SOME THEORETICAL RESULTS AND ANALYSES B!

powerful in this sense.

4.2 Completeness and Computational Complex
ity

As of now we do not know whether our proof procedure is complete or incomplete.
Further research is needed to investigate the completeness of this proof procedure.
Our conjecture is that this procedure is complete based on its principle. The
main difficulty in proving the completeness of our proof procedure comes from the
lack of a constructive definition for the preferential extensions. For this reason we
should reformalize the definition of an extension in the preferential semantics by
finding a new constructive definition. Ross has designed a sound and complete
proof procedure for the well-founded semantics ([R0s92]). The method, which he
used for proving the completeness, has provided us a very good guidance for our

further research.

A natural question concerning our proof procedure is, of course, the comptta-
tional complexity. Contrary to our intuition, finding an extension is casier than
determining whether a predicate is a member of some extension (mernbership) in
nonmonotonic reasoning area generally (see [KS91]). The difficulty in devising
sound, complete and tractable algorithms for skeptical reasoning has led many
researchers to suppose that any formulation of reasoning based on an intersection
of extensions is intractable [KS91]. Although this is not proved, it is a reasonable
conjecture. Unfortunately, our proof procedure is intractable, i.e. the compu-
tational complexity of our algorithm is not polynomial. The number of cross

consistency checks could lead to exponential times theoretically.

Consistency checks are usually considered to be expensive. Fortunately, our

special consistency check is tractable for propositional logic. Since the compu-

CHAPTER 4. SOME THEORETICAL RESULTS AND ANALYSES 55

tation of an unfounded set is polynomial time ([GRS91]) for propositional logic
program and the cost for determining whether Wg,y(8) contains a literal is linear
(N is a set of hypotheses) in the length of the logic prog:am (see [DG84]). The
length of a logic program is defined as the total number of occurrences of literals

in the program. So our consistency check costs polynomial time for propositional

logic program.

Chapter 5

Conclusions

How to treat negation in a logic program is a difficult topic which has received
a lot of attention in recent years in the logic programming arca. Many different,
semantics have been proposed for a normal logic program. Dung’s preferential
semantics has shown some advantages over others and this is why we choose this

semantics to start our research.

We have presented a new, possibly the first, proof procedure for the preferential
semantics from the skeptical reasoning point of view. This proof procedure uses
a different method from all known ones. The key idea of our method is to define
two different proof trees, called Primary Proof Trec and Assumplion Proof I'rce
respectively. By checking the consistency of those two proof trees’ leaves with
respect to the well-founded semantics, we can answer a query correctly for a given
program. The strategies we have used in our proof procedure are both bottom-up
and top-down. We have also shown the soundness of our method with respect to

the preferential semantics.

Further research could be to investigate the completeness of this proof pro-

cedure with respect to the preferential semantics. Qur conjecture is that this

56

CHAPTER 5. CONCLUSIONS 37

procedure is “omplete based on its principle and the completeness of a proof pro-
cedure designed by Ross in [Ros92]. The main difficulty to prove the completeness
of our proof procedure comes from the lack of a constructive definition for a pref-
erential extension. So we should reformalize the definition of an extension in the
preferential semantics by finding a new constructive method. The proof method
nsed by Ross in [Ros92] has provided us a very good guidance for our further
research,

Another rescarch topic about proof theory for preferential semantics could be
the computational complexity. If we cannot prove our problem (finding a query
in all the extensions of a logic program) to be NP-complete, we may be able to
make our proof procedure tractable. This will force us to find new methods for
computing cross consistency checks, or replace cross consistency checks with other

strategies which are tractable.

Bibliography

[AES2]

[Bry89]

[ClaT78]

[DG84]

[Dun91]

[EK76]

[EKS8Y)]

K. Apt and M. Van Emden. Contributions to the theory of logic pro-
gramming. Journal of ACM, 29(3):841--862, 1982,

F. Bry. Logic programming as constructivisin: A formalization and its
application to databases. n Proceedings of the 8th ACM Symposium on

principles of Tatbase systems, pages 34- 50, 1989,

K. Clark. Negation as failure. In 1. Gallaire and J. Minker, editors,

Logic and Databases, pages 293--322. Plenum Press. 1978,
g » pag ,

W. Dowling and J. Gallier. Lincar algorithms for testing the satisfiability
of propositional horn formula. Journal of Logic Prograriming, 3:267

284, 1984.

P. Dung. Negations as hypotheses: An abductive foundation for logic
programming. In Logic Programming: Proccedings of the 8th Interna-

tional Conference, pages 317, 1941,

M. Van Emden and R. Kowalski. The semantics of predicate logic as a

programming language. Journal of ACM, 23(4):37 54, 1976.

K. Eshghi and R. Kowalski. Abduction compared witl: iegation by
failure. In Proceedings of the 6th International Conf ence on Logic

Programming, pages 234-—254, 1989.

H8

BIBLIOGRAPIY 59

[11185)]

[Gel92)

[Ci18K]

[(iMS9:3]

[(iNST]

[Goey2]

[GRSY1)

[JLMS6] J.

[KowT9]

(K591

[l,loST]

M. Fitting. A kripke-kleene semantics for logic programs. Journal of

Logic Prograriming, 2:295 --312, 1985.

A. Van Gelder. The alternative fixpoint of logic program with negation.

Journal of Computer system science, 29:123—13/, 1992,

M. Gelfond and V. Lifschitz. The stable model semantics for logic pro-
gramming. In Proceedings of the 5th International Conf./Sympo. on

Logie: Programming, pages 10711080, 1988.

L. Giordano, A. Matelli, and M. Sapino. A sc.nantics for eshghi and
kowalski’s abductive procedure. In Proceedings of the 10th international

conference on logic prograinming (Lo appear), 1993.

M. Genesereth and N. Nilsson. Logical Foundations Artificial Intelli-

genee. Morgan Kaufmann Publishers ine., 1987.
R. Goeble. Xtheorists, XTheorists Manual, 1992,

A. Van Gelder, K. Ross, and J. Schlipf. The well-founded semnantics for
general logic programs. Journal of ACM, 99(99):620—650, 1991.

I. Jaffer, J-1.. Lassez, and M.J.Maher. Some issues and trends in the
semantics of logic programming. In Proceedings of 3rd Inernational Con-

Jerenee on Logic Programnming, pages 223—241, 1986.
R. Kowalski. Logic for problem solving. North Holland, 1979.

H. Kautz and B. Selman. Hard problems for simple default logics. Ar-

tificial Intelligence, 49:243--279, 1991.

J. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

BIBLIOGRAPHY 60

[LM84]

[Moo85]

[Pooss|

[PPo3]

[Prz89a)

[Prz89b}

[Rei78]

[Rob65]

[Ros92]

J. Lassez and M. Maher. Closures and fairness in the semanties of

programming logic. Theorctical Computer Scienee, 29:167 184, 1981,

R. Moore. Semantical consideration on nonmonotonic logic. Artificial

Intelligence, 25(1):234--252, 1985.

D. Poole. A logical framework for default reasoning. Avtificial Intelli-
gercee, 36:27—47, August 1988,

H. Pezymusinska and T. Pruymnsinski. Semauntics issues in deductive
totabases and logic programming. In A. Banjeri, ~ditor, Sourcebook on

the Jormal approaches in aviificiai inteiliyence, 1993.

T. Praymusinski. Ou the <carative semantics of deductive databases
and logic programs. In li. Gallaire and J. Minker, editors, Foundations
of deductive datubascs and Logic programming, pages 193 216, Morgan

Kaufmann Publishers, fr-c., 1988.

1. Przymusinski. Every logic program has a natural stratification and an
iterated fixed point model. In Procecdings of the Kth ACM Symposium

on principles of Tatbase systems, pages 22-33, 1989.

T. Przymusinski. On the decarative and procedural semantics of jogic

programs. Journal of Automated Reasoning, 5:167 205, 1989,

R. Reiter. On closed world data bases. In I. Gallaire and J. Minker,

editors, Logic end Data Bases, pages 55 76. Plenum Press, 1975.

J. Robinson. A machine-oriented logic based on the resolution prineiple.

Journal of ACM, 12(1):23—41, 1965.

K. Ross. A procedural semantics for well-founded ngation in logie

programs. Journal of Logic Projrammning, 13:1- 22, 1992.

BIBLIOGRAPHY 61

[RI88] K. Ross and T. Topor. Inferring negative inforination from disjunctive

databases. Journal of Automalic Reasoning, 4:397—424, 1988.
[Tar77] S. Tarnlund. Horn clause compatibility. BIT, 17:215—226, 1977.

[YLY93] J. You, L. Li, and L. Yuan. Construction of preferential answer sets for
logic programs and default theories. In Procecdings of the first interna-

tional wo. op on deductive database (to ;-), 1993.

