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Abstract

VVe present a novel system, called Actively Searching Contour Models (ASCMs), 

for contour extraction. ASCMs are based on two variants of the Active Contour 

Models (ACMs): balloons and ziplock snakes. Unlike the traditional ACMs, ASCMs 

are designed to actively search for desired contours, as opposed to being passively 

attracted  to image features. ASCMs start from trivial initializations and expand or 

shrink to find the right contour, and, thus, they can be used in autom atic applications.

Our ASCMs are able to integrate other useful information sources, in addition 

to raw image features such as intensity and edges. First, mid-level image features 

produced by a bottom -up edge linking-like method are effectively used. The bottom- 

up method uses local information to reduce noise and re-enforce detected structures 

and, thus, produces reliable mid-level features. Second, information collected during 

the searching process is used to predict and/or confirm searching directions. Finally, 

shape-models, which possess high-level information, are adopted to direct the search

ing process and to provide an informed guess.

To make the searching process more controllable, we begin to improve the balloons 

by re-modeling them as a series of spring-operated rods. The resulting model is less 

affected by the peeling problem which we observed in applying balloons to noisy 

images. Subsequently, we propose a multi-scale, non-shrinking internal energy model, 

which is also unbiased towards expanding or contracting. The multi-scale effect is 

achieved by combining multiple-snakes, and this model provides a balloon with a 

controllable smoothness constraint, which is essential for contour completion.

To accurately search for contours, we then propose using the Saliency Map method, 

and subsequent steps, to build a reliable potential field from an edge image. We also 

present an adaptive inflating force which can drive a balloon to converge to edges 

with a pre-specified strength.
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The above methods are then integrated using the backtracking strategy, which 

performs a multi-level feature search. Guidelines for param eter choosing are also dis

cussed. Numerous experiments are conducted, and the results show that the ASCMs 

are controllable, accurate, and easy to adjust.
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Chapter 1

Introduction

Image segmentation is the first essential step in a computer vision system. It has 
been extensively investigated in the computer vision community. The following is a 
commonly accepted informal definition of image segmentation [25]:

Image segmentation is to divide an image into non-overlapped regions.
Each region should be homogeneous and uniform with respect to some 
characteristic such as pixel intensity or texture.

Hundreds of segmentation techniques are discussed in the literature. They are 
usually divided into three categories [20]: (1) characteristic feature thresholding or 
clustering, (2) edge-based methods, and (3) region-based methods. Different cate
gorization frameworks [20, 27, 40, 43] exist because researchers look into these tech
niques from different perspectives. Usually one method works best for one specific 
imaging modality or application because general images have widely varying features 
in versatile applications.

The image segmentation problem is a so-called ill-posed problem, i.e. there is 
no unique and stable solutions to it. One of the reasons for this is tha t the image 
acquisition process, which projects 3D scenes into 2D images, induces information 
loss [6]. Computer vision researchers have been working to provide constraints to 
such kinds of ill-posed problems.

In this thesis, we focus on extracting contours from noisy images. Our method is 
based on the famous Active Contour Models (ACMs), or snakes [30, 31], but requires 
only a trivial initialization and can search for contours in a far larger area. Our 
snake model, termed Actively Searching Contour Models (ASCMs), can effectively 
utilize and combine various information sources such as raw image and shape models. 
Moreover, the behavior of our snake model is more predictable and controllable thanks 
to separated parameters for various desired functions.

1.1 Contour Extraction: A Review
Development of image segmentation techniques has been largely influenced by M arr’s 
view of computer vision [35]. Under M arr’s paradigm, recognition is done step by

1
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step, with each step relying only on the outputs of previous steps. This framework 
greatly simplifies recognition system design and has been widely accepted. Methods 
based on this view are usually called “bottom-up” methods in th a t information flows 
from pixels to features. A problem with this approach is th a t errors made in early 
steps propagate to later steps without opportunity for correction. An example in 
image segmentation is the two-step boundary extraction framework: edge detection 
followed by edge linking. M arr’s framework has achieved considerable success but has 
by no means solved the problem.

The human visual system (HVS) can effectively recognize objects in 2D images. 
Some researchers point out tha t the HVS has incomparable features tha t computer 
vision systems do not have, such as large-scale parallel processing, multi-scale pro
cessing, and, more importantly, effective use of knowledge. Inspired by this insight, 
researchers proposed another category of method featuring exploitation of knowledge. 
Rule-based methods, scene labeling, deformable models, and active contour models 
[25, 31] are in this category and have achieved considerable success, too. These types 
of methods are usually called utop-down” methods since they s ta rt from a high-level 
scene model and find evidence a t the pixel level to support the model. One point to 
note is although this categorization method is general purpose, we use it to categorize 
contour extraction methods only.

1.1.1 Bottom -up M ethods
Bottom-up methods consist of two steps: edge detection and boundary formation. 
In the first step, discontinuities in the image are detected by a high pass filter or a 
gradient operator. The second step then deals with eliminating false edges and filling 
in gaps in boundaries. The second step is usually termed edge-linking.

Edge detection methods have been extensively investigated in the literature. So- 
bel, Roberts, Prewitt, and the Laplacian gradient operators [22] are all difference 
operators tha t respond to changes in gray levels or average gray levels. However, 
these gradient operators respond not only to edges but also to isolated points. Since 
they are either first or second difference operators, they are sensitive to noise and 
thus not directly suitable for processing noisy images. It is usual to have a smoothing 
step before applying difference operators to reduce the effects of noise.

By combining the smoothing step and difference operator, M arr and Hildreth 
proposed the Laplacian of Gaussian (LoG) operator [25]. It is normally denoted by 
V 2G; where the Laplacian is given by

V 2 =  (i-1)
av av
d x2 + dy2

where /  is the intensity image; and

G =  e-(l2+y2^ 2x<r2) (1.2 )

is a two-dimensional Gaussian distribution with standard deviation a. The Gaussian 
part of the LoG operator smoothes the image so tha t the Laplacian operator will
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not respond to structures smaller than a. The Gaussian function is chosen because 
it has the desirable property of being smooth and localized in both the spatial and 
frequency domains. Also, since it is infinitely differentiable, the LoG operator is not 
an ill-posed operator.

Other similar methods include Torre and Poggio’s regularization method [48], Har- 
alick’s facet model [26], and Canny’s edge detector [9, 8]. Although researchers have 
used different kinds of frameworks, they have all derived filters similar to the Gaussian 
one. Use of the Gaussian filter was also confirmed by the results proposed by psy
chophysiologists and neurophysiologists indicating that there are physical analogies 
in the HVS [29].

Since the result of an edge detection operation is usually a set of spurious edges 
with many gaps, it is then necessary to have an edge aggregation process applied 
to the image after an edge detection operation. A graph-theory based pixel search 
method was used to extend discontinuous edge segments and to fill in gaps [36]. 
Nalwa and Pauchon [37] used a connectivity grid technique to map edge segments 
into connected graphs and then attem pted to fill in the edge gaps. Zhu et al. [58] 
presented a method inspired by a technique called potential function , which originated 
in the field of physics. An edge image is modeled as a potential field with energy 
depositions at the detected edge positions. The energy of an edge pixel is influenced 
by its neighboring edge pixels. The algorithm connects discontinuous edge segments 
by evaluating energy a t each edge pixel. Like other edge-linking methods, this method 
is also iterative and can fill only small gaps.

Sha’ashua and Ullman’s [1, 44] saliency map was originally proposed to detect 
salient structures in line-drawing images. However, in [1], examples of detecting 
salient structures in gray-level images are shown. The method itself is similar to 
Zhu’s potential function method [58] in concept; however, unlike others, the saliency 
map method provides a map of saliency values for all the image pixels instead of a 
map of edge points, i.e., it indicates the strength of edges, not ju st their location.

1.1.2 Top-down M ethods
The Hough transform [4] is the first method tha t tries to use a  global model to detect 
object boundaries in noisy image data. It maps the edge elements from image space 
to a parametric space, where parameters of the mathematical equations that describe 
the object boundaries are extracted. The Hough transform is highly noise immune 
because parameters are decided by an accumulation process. However, the compu
tational complexity can be prohibitive. Moreover, the requirement of a  pre-specified 
algebraic form of the boundary equation is very strict. Ballard [4] extended the 
method to use models th a t cannot be described by an algebraic equation. However, 
this method still cannot deal with boundaries tha t are deformed, which is common 
in image segmentation.

Deformable models have been extensively used in boundary extraction. In [19], 
they are divided into two categories: (1) parametric models, and (2) pseudophysical 
models. A pseudophysical model can be envisioned as a non-rigid material influenced
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by image-derived forces. The problem is solved by using techniques developed in 
mechanics. Pseudophysical models are usually represented by splines or simply a 
set of discrete points. On the other hand, parametric models use parameterization 
of shape to describe a boundary. The parameters used are global in the sense that 
changing one param eter will influence the shape of the whole contour. Deformation 
and minimization are done in the param eter space.

Parametric Deformable Models

Staib et al. proposed a method [45] which uses the Fourier series to parameter
ize boundaries. A priori information is included as a spatial probability expressed 
through the likelihood of each model parameter. In [56], this model is used to locate 
boundaries in medical images. An initial guess is needed to put the boundary on 
a gradient image. The template model is then deformed to maximize an objective 
function in which gradient information is involved. In [10], information other than 
gradient, e.g. region information, is further incorporated and makes the boundary 
localization more accurate and reliable. In [46], the model is extended to deformable 
surfaces for segmenting 3D medical images. However the need for an initial guess 
makes it difficult for the method to be used in an autom atic segmentation process.

Cootes et al. [15, 16] considered the Karhunen-Loeve (KL) decomposition of the 
global model observed on a training set of representative shapes. Through the use 
of a KL transformation, shapes are approximated by main variation modes extracted 
from the training data. As in Staib et al.'s method, the solution is sought by adjusting 
parameters to fit the model to edges extracted from an image. Gradient descent or 
relaxation methods are used to solve the problem, and again a close initialization is 
required.

In summary, parametric deformable models are powerful in their descriptive ability 
and make it easy to incorporate a priori information. Compared with the Active 
Contour Models (discussed in the next section), they do not have a smoothing term 
to regularize the solution, a  property which is im portant when the image is noisy.

Pseudophysical Deformable Models

Active Contour Models were first proposed by Kass et al. [31] as a regularization 
approach to the ill-posed edge-detection problem. A snake is a smooth spline under 
the influence of image forces and other external constraint forces. The internal spline 
forces serve to impose a smoothness constraint on the detected edges. The image 
forces push the snake towards salient image features such as lines, edges, and subjec
tive contours. A snake can be either closed or open, depending on whether the end 
points are connected.

The snake model is an analogy to mechanical systems, and influencing forces 
can be represented by equivalent potential and kinetic energies. Snake movement is 
governed by minimization of the to tal energy. Representing the position of a snake 
parametrically by v (s , £) =  v (x(s, t) ,y (s , £)) where s and £ are spatial index and time
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respectively, we can write its energy functional as

Esnake =  j> (Eint(v) + E ext(v))ds, (1.3)

where Eint represents the internal energy of the spline due to bending and stretching 
and Eext gives rise to the external constraint forces and image forces.

The internal energy is defined as follows:

£«nt(v(s)) =  a ( s ) |v s |2 +  /3 (s) |v44|2, (1.4)

where v 4 =  d v /d s  and \ ss =  d2v /d s 2. The first-order term o:(s)|v4|2 makes the 
snake behave like a string (i.e., it resists stretching), whereas the second-order term 
/?(s)|vS4|2 makes it behave like a rod (i.e., it resists bending). The weight a(s) 
regulates the tension of the snake, whereas j3(s) regulates its rigidity.

The external energy, E ext, usually consists of the image potential energy and 
energies from external constraints. The image potential energy is derived from the 
gravitational potential energy equation in a point-by-point fashion as follows:

£ e*t(v(s, £)) =  ngz{v{s , £)) (1.5)

where y. is the constant mass density of the snake, g is the constant magnitude of 
the gravitational acceleration, and z (v (s ,t) )  is the height of snake element s at time 
£ on the surface. External constraints depend on applications and can be qualitative 
shape descriptions or even intentionally added forces such as volcanos in Kass et a/.’s 
implementation [31].

To solve the minimization problem, the initial energy equation is converted into 
Euler-Lagrange equations of motion using the theory of calculus of variations. The 
Euler-Lagrange equations are as follows:

d ^2 |
y x tt +  7 x t -  ^ ( a ( s ) x 3) -I- g ^ { p ( s ) x ss) = - - E extz{v), (1.6)

0 ^2 ^
m t  +  7 Vt -  -^ (a { s )y s) + —  {(3{s)yss) =  - - E ^ v ) ,  (1.7)

where x u =  fj? , ytt =  Eextx =  £ { E ext), and E exty =  §^{Eext), and 7  is the 
constant damping density or viscosity factor.

The partial differential equations (PDE’s) are solved by discretizing them in the 
two domains of space and time. The discretization must be carefully considered. 
Different methods exist in the numerical analysis literature for such PD E’s. The two 
most popular methods for solving PD E’s are the finite differences method (FDM) 
[33] and the finite elements method (FEM) [14]. Basically, FEM is a better method
but FDM is also adequate for this problem and needs far less com putational effort
[33]. In the literature for snakes, FDM is the most common choice. The resulting 
equations are a sparse linear system which can be solved in linear time [33].

As pointed out by Amini e£ al. [3], satisfying the Euler-Lagrange equations is 
only a necessary condition to obtain the minimum of the original functional. The
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solution using the calculus of variations method could therefore be far from optimal. 
They instead proposed to use dynamic programming (DP) to solve the minimization 
problem [2]. The method is, however, computation intensive, but can handle snakes 
with non-differentiable external constraints. Williams and Shah [54] presented a 
method using greedy heuristics to search for a solution. It takes less computation 
effort, but can lack accuracy of solution when there are multiple local minima. Storvik
[47] used a Bayesian framework for active contours, and the problem is solved by 
simulated annealing (SA), which has the ability to avoid local minima.

The original snake was designed as a “power assist” to a person pointing to a 
contour feature on an image. The initial contour and external constraints are provided 
by the user. However, there are several problems with this original snake formulation: 
(1) An initialization, which should be very close to the desired object boundary, needs 
to be provided by a user. (2) Multiple local minima on an image potential field will 
prevent a snake from converging to the global minimum. (3) It is quite difficult to 
choose weights for various internal and external energies.

A number of people have proposed solutions to these problems. Berger [5] pro
posed a method called snake growing to try to eliminate the snake initialization prob
lem. However, his method, in which snakes start from edges selected from an edge 
map and grow at the two ends, loses the desirable global property of the snake model. 
It has no global model and thus can only possibly fill small gaps. To cope with the 
initialization problem, Cohen and Cohen [14] proposed a balloon model tha t uses an 
inflating force to make the contour expand until it meets an object boundary. How
ever, as pointed out by Xu et al. [57], a snake tends to shrink due to its internal 
forces and, even worse, the internal forces are not homogeneous along the boundary, 
being large at points with high curvature. This makes it difficult to choose a constant 
inflating force for the balloon model. Gunn and Nixon [23] presented a dual snake 
scheme with one snake starting from outside the object boundary and one from in
side. The process stops when the two snakes meet each other. Although this scheme 
greatly reduces the sensitivity of a snake to its initial position, it still needs user 
initialization.

Another reason that a snake is sensitive to its initialization is because of the 
existence of multiple local minima. The problem of how to avoid getting stuck in 
local minima has been investigated in the literature. Choosing a  good minimization 
algorithm is the first issue. In this sense, Storvik’s [47] Bayesian model and simulated 
annealing may be the best choice. The second way to avoid local minima is by using 
a coarse-to-fine multi-scale approach [33]. In this way, the image is first smoothed 
by a set of Gaussian filters of different sizes, resulting in an image stack [55]. The 
snake is first minimized a t the coarsest level, and then this solution is used as the 
initialization a t the next finer resolution, i.e. on the next image in the stack. This 
process is repeated until it reaches the finest resolution. At the coarse levels, details 
are smoothed out, and thus the snake is readily a ttracted  by prominent features, 
avoiding local m inim a. The problem with this framework, however, is th a t it cannot 
handle both diffuse and non-diffuse edges simultaneously, both of which are common 
in noisy images.
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The third way to avoid local minima is to pre-process the information available 
and use multiple information sources. Chiou et al. [13] used a neural network-based 
method to eliminate noise and unnecessary information, resulting in a well-posed 
potential field. Radeva et al. [42] argued tha t local minima were resulted from the 
snake’s being attracted  by edge points tha t do not correspond with object contours. 
The method they proposed was to incorporate more information, such as gradient 
direction and a priori shape information, into the snake model. The importance of 
gradient direction information was also observed by Fua et al. [21] and Chakraborty 
et al. [11]. Chalana et al. [12] used temporal information by putting several related 
active contours in a sequence of echocardiographic images. Ivins and Porrill [28] 
presented active region models (ARMs), which are based on balloons, to incorporate 
texture and color information. Each time that an ARM expands, the texture or color 
statistics of the region to be occupied are computed and compared with those of the 
current region. Expanding is continued if the comparison test is passed according 
to some predefined test. All of these methods have, to some extent, improved the 
original snake model.

Several other researchers proposed incorporating a priori shape information in 
snakes to avoid local minima. O lstad et al. [39] used a grammatical model to describe 
the contour. The encodings are used as a hard constraint to the energy minimiza
tion process, and the energy can be minimized by a discrete dynamic programming 
algorithm. Lai [32] proposed a method to describe the boundary shape using a shape 
matrix. The shape m atrix is proven to be scale, rotation, and translation invariant. 
However, the algorithm used to minimize the energy is also a variant of dynamic 
programming which is computationally intensive.

As to choosing the regularization param eter A, only one paper [32] has dealt with 
this problem. A minimax criterion is used to select the regularization parameter 
A automatically. The method can provide a solution tha t avoids extremely low or 
high weights; however, it requires tha t a discrete dynamic programming or greedy 
algorithm be used for energy minimization.

1.2 W hy Active Contour Models?
Active Contour Models have since attracted  much attention on the part of researchers. 
In this research, we base our approach on them as well and try  to solve some problems 
associated with them. The m ajor benefit of using ACMs lies in their great ability to 
combine various information sources such as edges, texture, and shape models. From 
our analysis, we conclude tha t ACMs embody many concepts tha t researchers have 
identified:

•  The initializations required by the original ACMs carry shape information and 
serve as a global model. Further improvements such as O lstad’s grammatical 
model [39] and Lai’s shape m atrix [32] confirm that ACMs can effectively use 
a priori information.
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•  The internal energies tha t maintain the smoothness of ACMS are a good exam
ple of the regularization concept, which is essential to solving ill-posed problems
[48]. Regularization techniques, or penalized optimization, are used for many 
applications in vision.

•  An implicit local “voting” process is incorporated for every node on a snake 
because the neighboring nodes have influences on one another. This concept is 
best illustrated by the Hough transform.

•  ACMs can effectively combine various information sources.

ACMs have been proven to be robust due to their unique ability to combine 
knowledge, regularization constraints, and various image information sources. Based 
on this well-formulated framework, our approach inherited the above advantages.

1.3 Active Search and ACMs
The initializations th a t are needed for ACMs are sometimes viewed as a  shortcoming. 
For example, ACMs cannot be directly used in automatic applications. In that case, a 
good pre-processing module is required to provide ACMs with accurate initializations.

Lai [32] proposed using the generalized Hough transform to initialize the shape- 
m atrix based snakes in cluttered images. A training set needs to be provided to 
estimate the shape matrix. The performance of this initializer is not satisfactory 
when there is severe clutter and deformation. Poor initializations thus yield poor 
solutions.

Cohen and Cohen [14] instead considered a snake as a balloon tha t is inflated by a 
pressure force as if air is introduced inside. The snake then expands while subjected 
to attracting forces from edges as before, and it will pass over edges which are too 
small or too weak, thus avoiding being trapped by local minima. Initializations are 
still needed for balloons, but they are trivial and can be effectively provided by a 
pre-processing module.

Neuenschwander et al. presented the ziplock snake model [38], which needs only 
two user-supplied endpoints. The optimization process for a ziplock snake starts from 
the two endpoints and progresses towards the center of the snake. During the process, 
the image potential is progressively turned on to clamp the two ends of the snake on 
to an image contour. The ziplock snake model reduces the initialization need for a 
snake to merely specify two endpoints.

W hat the balloon models and the ziplock snake models do is different from the 
original ACMs — they are no longer a final refining tool. Instead, they actively search 
for the desired contours, as opposed to being passively a ttracted  to image features. 
In this research, we develop methods tha t further the practice of active search. Our 
methods are based on balloons and ziplock snakes but are more advanced and reliable. 
An overview of all the methods is provided in the next section.
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1.4 Overview of the Thesis

1.4.1 Objectives of the Thesis
The first objective of this research is to extract contours of objects with fuzzy bound
aries. The objects are assumed to have relatively homogeneous intensities or other 
features. Examples include ultrasound, infrared, and laser speckle images, all of which 
are being extensively used. The noise pattern, or speckle, in these images, is caused 
by the interference of energy from randomly distributed scatters, too small to be re
solved by the imaging system. Region-based segmentation methods are not effective 
because the background or neighboring objects have similar characteristics and may 
be connected via the fuzzy parts. The second objective is to extract contours from 
images with multiple contours or with heavy clutter. Contours are assumed to be 
strong but may have missing parts or be tangled with one another. This category of 
images includes most images we see everyday.

1.4.2 Contributions of the Thesis
Active search is the basic concept of our approach, which is based on two variants of 
ACMs: balloon models and ziplock snake models. These two kinds of models either 
expand or grow to search for contours in a large area. Our method, dubbed ASCMs, 
thus needs only trivial initializations and can be used in autom atic applications. 
Fig. 1.1 shows the relationship between ASCMs and the segmentation methods in 
the literature.

During the searching process, ASCMs combine information from various sources:

•  Raw image information, which includes edge and region features, is used effec
tively in ASCMs.

•  Mid-level information produced by a special pre-processing method for ultrasound
like images. The pre-processing method uses local information to reduce noise, 
and therefore it is also useful for non-ultrasound images.

•  Information collected during the searching process is used to predict and/or 
reinforce searching directions.

•  Shape-models, which possess high-level information, are adopted to direct the 
searching process and to provide an informed guess.

The last three items in the above list are our contributions.
The balloons and ziplock snakes are primitive in terms of their searching power. 

Also, as described in Section 1.1, it is very difficult to choose an appropriate inflating 
force for balloons. In this research, we present a new search engine which is more 
powerful and controllable. Features of this new searching module are shown in the 
following list, which also serves to summarize the contributions of this thesis.

9
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(Bottom-up M ethodsJ 
(link edge points)

(Top-Down M ethods)

(Deformable Models) (Hough Transform )

(Parametric Models) (Pseudophysical Models )

Chapters 2-5

(Active Contours (Snakes))

(Balloons) (Ziplock Snakes) (Active Region Models)

Shape Models)

Chapter 6

Figure 1.1: The relationship between ASCMs and the segmentation methods in 
literature.
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•  To help reduce the difficulty of choosing an inflating force, we propose a non
shrinking internal energy model tha t is scale, rotation, and translation invariant.

•  To provide smoothing power at various scale levels, we propose a multi-scale 
energy model which achieves its objective through the use of multiple snakes.

•  To reduce the side-effects of using a constant inflating force, we propose using an 
adaptive inflating force which embodies the idea of regularization. The adaptive 
inflating force is computed for every snake node based on a small neighborhood 
around it. The computed force is “just enough” to make a snake expand and 
is set to be trivial in places where image features are not present. This leaves 
the smoothing forces in a dominant position, which amounts to providing a 
regularized result.

•  To perform a multi-level feature search, we propose incorporating a  backtracking 
process, which can not only overcome local minima but also effectively use both 
strong and weak image information.

•  To better approximate a spline, we propose a semi-rigid model which models 
joints of a  discretized snake as spring-operated hinges. This new model is closer 
to the definition of splines than the original string and rod models.

•  To actively search for contours, we present a content-guided searching method 
tha t uses outputs of an edge linking-like method to guide the searching process. 
This method is a combination of a bottom-up and a top-down method. The 
method not only enables a snake to reach high-curvature boundary parts but 
also expedites the searching process.

The thesis is divided into two parts (see Fig. 1.2). The first, which includes 
Chapters 2-5, is based on the balloon models and is designed to achieve the first 
objective, i.e. to extract contours of objects with fuzzy boundaries. For a balloon, 
the essential properties it needs to be successful are: (1) an ability to perform contour 
completion; (2) to be able to overcome local minima; and (3) to provide ease of 
parameter choosing. Properties (1) and (2) are not only difficult to achieve but also 
contradictory to each other. For the original balloon model, only a compromise can 
be achieved through careful adjustment of parameters. In this research, we delegate 
the desired functions to several separate modules. A global strategy, which is based 
on image content, time, and current results, is then used to control these modules 
during the energy minimization process. In this way, objectives (1) and (2) can be 
achieved a t the same time. Param eter adjustment is made easy because parameters 
are now separated from one another.

The second part (Chapter 6) is based on Neuenschwander et aV s ziplock snake 
models and is aimed at extracting contours from a cluttered background. The original 
ziplock snakes are easily confused by multiple contours, missing contour parts, or 
noise. To overcome these problems, a grammatical shape model is added to guide 
the searching process of the ziplock snakes. The shape information is encoded using

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



High-Level Information
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Part I: Balloon- iased Methods
Internal Energy Models Searching Methods
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Search & 
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Figure 1.2: An overview of ASCMs: components tha t comprise the whole system.

attributed regular expressions, which are easy to understand and implement. The 
resulting model-guided ziplock snakes are able to tell model-conforming contours from 
those tha t are not, and, thus, their performance is much better. The final section of 
the thesis, Chapter 7, provides a list of contributions and a brief discussion of future 
work.
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Chapter 2 

Semi-Rigid Snake Models

2.1 Introduction: The Peeling Problem
The balloons were created by incorporating an inflating force into the original ACMs. 
However, this practice also gives rise to some side effects. We observed a phenomenon 
that we call a “peeling” effect in applying the balloon models to extracting contours 
with missing or weak parts from noisy images. To overcome local minima, we have 
to choose an inflating force large enough to overcome the noise edges. However, this 
will also cause some parts of the balloon to overrun some weak edges. Then these 
parts will pull their neighboring contour parts away from locations tha t are otherwise 
in equilibrium.

To understand the peeling problem, some illustrations are provided. Fig. 2.1 (a) 
shows a synthetic boundary with one gap on it. The boundary magnitude changes 
gradually from small to normal from the gap. If we choose an inflating force that can 
overcome an average magnitude edge, a probable intermediate state  of the balloon 
is shown in Fig. 2.1 (b). Now we check the status of the two neighboring snaxels1, 
x and y, with x on the gap and y on the brink of the gap. Each of them is under 
the influence of three forces, namely the gradient force, the internal smoothing force, 
and the inflating force. We assume that snaxel y is now in equilibrium under the 
influence of these three forces. For x, the gradient force is small compared with the 
inflating force, so it will continue to move outward (Fig. 2.1 (c)). This will cause a 
change in the internal force exerted on y since the internal angle 9 is getting bigger. 
Eventually, this force will pull y away from its equilibrium state, and it will reach a 
state as shown in Fig. 2.1 (d). This process will continue with y’s upper neighboring 
snaxels and eventually produce a large bump. This is what we call the “peeling5’ 
problem.

The reason tha t the peeling problem occurs lies in the way tha t the internal 
energies are computed and that the total energy is minimized. We argue that us
ing second-order internal energy models such as those tha t are curvature-based and

1 After discretization, a snake consists of a series of snake nodes called snaxels, which is an
abbreviation of snake element. In Chapters 2-5, ail snakes are closed and are in anti-clockwise order,
which means that each snaxel has a predecessor and a successor.
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(a) (b)

(c) ( d )

Figure 2.1: An illustration of the “peeling” problem: (a) a synthetic boundary; (b) 
a probable intermediate state of the balloon; (c) snaxel x keeps moving outward; d) 
snaxel y is pulled away from its equilibrium location.

a small neighborhood in energy minimization is what causes the peeling problem. 
Fig. 2.2 shows three states of a balloon, which is a partially magnified version of the 
one shown in Fig. 2.1. Assuming again tha t the upper half of the balloon is snagged 
by edges and the lower half is going through a gap, the only difference in total energy 
among the three states is the internal energy computed at snaxel y. This energy 
difference is proportional to the difference between the internal angles (0’s). To make 
the balloon expand from the state (a) to (b), and then to (c), the inflating force need 
only defeat the internal energy difference at snaxel y. Moreover, since the total energy 
is minimized iteratively, each time only a small displacement for snaxel x is consid
ered (Fig. 2.2 (d)). A small displacement involves a  small angle difference, which in 
turns produces a  small internal energy difference. Therefore, a  small inflating force is 
enough to defeat this small internal energy difference. Although the internal angle 6 
at snaxel y increases steadily, it has no effect on other snaxels’ internal energy com
putation. Snaxel y will eventually move again to dissipate the accumulated energy. 
The process will repeat on y’s immediate upper neighbor and so on.

The ultim ate reason for this behavior is th a t a snake is modeled as a series of 
nodes connected by strings. For snaxel y, the internal energy increases constantly 
throughout the iterations. However, this energy only produces a  force to make y
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Figure 2.2: How the peeling problem is related to the internal energy computation 
method: (a-c) three consecutive states of a snake; (d) for snaxel x, a small neighbor
hood (a 3x3 grid) is considered when its energy is minimized.

Figure 2.3: A spring-operated hinge is a more accurate model of a spline, 

move. Ideally, it should also produce a counter-force to prevent x from moving further

involves a  snaxel’s two immediate neighbors.
A better model will be a series of short rods jointed together with spring-operated 

hinges (e.g. see Fig. 2.3). A spring-operated hinge produces large counter-forces 
when it is pressed hard. In this way, gradual internal energy build-up processes will 
be avoided, thus reducing the chances of the peeling problem occurring.

A simulation is performed to show the advantages of rod-based models. In Fig. 2.4, 
a partial balloon with 4 fixed snaxels (2/1- 4) and 3 moving snaxels (11- 3) is instru
mented to record internal energies for every snaxel during energy minimization. The 
dotted line indicates the starting positions of all snaxels. Fig. 2.5 plots the interned 
energy of snaxel 2/2 with and without 2/2 and 2/3 modeled as spring-operated hinges. 
We observe tha t the internal energy of 2/2 is reduced when 2/2 and 2/3 are modeled as 
hinges, and thus they are less prone to the peeling problem.

In this chapter, we propose a semi-rigid snake model th a t aims a t preventing the 
peeling problem. An iterative process is first presented to dynamically identify snake

^pressing force

s *  counter-force 
1 from the spring

ahead so as not to increase the internal angle 9. However, strings cannot produce this 
kind of force because they are soft links, and the internal energy computation only
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Figure 2.4: A simulation configuration: snaxels j/i_4 are not movable while Xi_3’s 
positions are determined by the internal energy and the inflating force.
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Figure 2.5: The internal energy of y2 during iteration modeled as a  string or a rod 
with spring-operated hinges.
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parts tha t have successfully located strong boundaries. Once a few parts have been 
identified, an influencing force is propagated from these parts to their neighbors to 
counter the peeling force. This influencing force is similar to that generated by a 
spring-operated hinge, and it makes a snake act like a semi-rigid object. To prevent 
side-effects, only the snake parts that are on top of strong edges (called strong snake 
parts) are made semi-rigid. The identification of the strong snake parts and the 
following “rigidization” process are dynamic and are integrated into the minimization 
process.

2.2 Dynamic Strong Snake Parts Identification
Modeling a snake as a series of rods connected with spring-operated hinges takes it 
one step closer to the definition of a spline. Computation is quite complicated if 
the positions of all hinges are constantly changing. To reduce the computation, we 
propose a  simplified model. First, a procedure for identifying strong snake parts is 
developed. Then each of the strong snake parts is modeled as a large combined hinge, 
and influencing forces are generated for its neighbors at both ends. The differences 
between the complete and this simplified model are two-fold: (1) A snake is now 
modeled as a combination of strings and rods, i.e., only the strong snake parts are 
modeled as rods with spring-operated hinges, thus reducing computation. (2) The 
influencing force computation for this simplified model is asymmetrical, i.e., it con
siders influences only from strong snake parts to weak ones, not vice versa. This is 
a reasonable assumption because it reflects the way that the Human Vision System 
(HVS) operates.

We now try  to devise a method to dynamically identify strong snake parts. For 
each snaxel, an appropriate measure is defined and computed. Naturally, the measure 
for a snaxel should be large if it is on top of a strong boundary. The task is similar 
to identifying salient structures in images [44, 24], except for two differences. First, 
the la tter task involves a two dimensional search, i.e., for each pixel, every direction 
should be checked for possible connections with salient structures. However, for a 
snaxel, we only need to check two directions, namely, its predecessor and successor 
on a snake (Again, snakes are in anti-clockwise order). Second, a snake is always 
evolving, so the computation should be dynamic as well. Nonetheless, the guidelines 
presented in these two papers can still be used.

Since our final objective is to use the measures of some snaxels to direct the move
ment of their neighbors (i.e. rigidization), we represent them in terms of influence 
factors. Since the influence factors are bi-directional, two measures should be defined 
for each snaxel. For a  snaxel x*, let I*' stand for the influence on x^’s predecessor 
computed from its successor’s side of the snake and the opposite one. In Fig. 2.6
(a), /p{ should be larger than assuming tha t the lower part of the snake, a, lies 
on a strong boundary, while the upper part, b, does not. Some qualitative guidelines 
for computing these two measures are listed as follows:

•  Strong support from image features — Large gradients are often used for this
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Figure 2.6: An illustration for influence-measure computation: (a) influence measures 
for snaxel Xj are based on x*’s neighboring parts on a  snake, namely a and b. (b) 
angles used in Eqns 2.1 and 2.2

purpose.

•  Strong connections — Since snaxels are separated, image features along the 
connecting route between them are an im portant contributing factor to the 
measures.

•  Smoothness constraint — Smooth curves are preferred over non-smooth ones.

A simple way to compute these measures is to calculate an integral of image 
features along with other factors for a fixed length I starting from each snaxel (Fig. 2.6
(a), a and b for snaxel x,). However, the complexity of the algorithm is 0 {n * l)  where 
n  is the number of snaxels. VVe propose using a simpler algorithm with a complexity
0 (n ) . The algorithm is used in an iterative way so th a t influence measures are
propagated along the snake, thus having the same effect as computing an integral.

The algorithm can be easily integrated into either the greedy heuristic energy 
minimization method proposed by Williams et al. [54] or the time-delayed dynamic 
programming method suggested by Amini et al. [3]. After each round of computation, 
Ip and I s are updated as well (see the pseudo codes in Fig. 2.7). Starting from the 
head of the snake, Ip is updated for every snaxel in clockwise order using Eqn. 2.1. I , 
is also updated in a similar way using Eqn. 2.2 except tha t the snaxels are traversed 
in the opposite order:

Ip' =  limage 4“ Ip'+tC(Xi, ^i+l) COS($Xi+1 @avg)> (2-1)

I f  =  limage +  / f i_lC(Xj, X,_L) C O S(0I i _ l -  9avg), (2.2)

where Iimage is the normalized magnitude of gradient a t snaxel x,. C (x i,x i+i) is a 
measure of the connection between the current snaxel, x,-, and its successor, xt+i,
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procedure MinimizeEnergy() 
begin 

repeat
update energy for every snaxel; 
move all snaxels to their next position; 
update Ip for every snaxel in clockwise order; 
update Is for every snaxel in anti-clockwise order; 
compute influencing forces for every snaxel; 

until (Terminal Conditions =  true);
end

Figure 2.7: Pseudo codes for computing influence measures.

and is computed by mapping the average gradient magnitude along the straight line 
tha t connects the two snaxels through an exponential function, 1 — e xp (-p t) , where 
t is the normalized value of the average gradient magnitude. C (x j,ii_ i)  is computed 
similarly. Finally, 9Xi+l is the internal angle formed by the current snaxel and its two
successors (Fig. 2.6 (b)), 9Xi_l is the internal angle formed by its two predecessors,
and 9avg is the average internal angle.

Eqns. 2.1 and 2.2 embody the guidelines that we presented above. The function 
C{xi, —) introduces the connections between the current snaxel and its two immediate 
neighbors. cos(0 — 9avg) is designed to favor influences from smooth neighboring 
snaxels. Iimage is a contribution from the snaxel in question. Through an iterative 
update of the measures, influences from one snaxel can propagate to distant snaxels 
depending on how parameters are chosen. From the example shown in Fig. 2.8, we 
observe th a t for almost all snaxels that are inside the boundary, both Ip and Is are 
small. Moreover, the few with relatively large measures are not able to propagate this 
information to their neighbors because of poor connections between themselves and 
their neighbors. For snaxels tha t lie on a piece of strong boundary, there are some 
noticeable differences between Ip and / s. Snaxel z indicated by arrows in Figs. 2.8 
(b) and (c)) is a  good example of a case in which Ip is smaller than / ,  as expected.

2.3 Computing Influencing Forces
Once the strong snake parts have been identified, they are converted from string- 
linked nodes into hinge-jointed rods. This process is called “rigidization” because 
the snake is converted into a semi-rigid object. From an alternative perspective, 
identifying strong snake parts is the same as collecting information on what a snake 
has found. This information is useful and can be used to direct the search of the 
neighboring parts of those strong snake parts. This is why the method is also called 
the extrapolating mechanism.

To be consistent with snake models, “directing” is applied by adding one more 
kind of stiffness force. The forces are generated from strong snake parts and axe
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Figure 2.8: An example of influence measures: (a) a synthetic boundary with noise; 
(b) an example of / p in which the size of the snaxels indicates the magnitude; (c) the 
corresponding I s.

applied to their neighboring parts. There are two problems th a t should be solved to 
make the algorithm work:

•  How to judge whether a snake part is indeed a strong one. How large should 
the influence measures be to qualify as a strong snake part?

•  How to compute the directions and how to assign forces.

Our current solutions are relatively simple and work with a discretized snake di
rectly. For each snaxel, the influence measures from its predecessor and successor are 
compared. If one is larger than the other by a certain amount 5, then the side that 
the bigger influence is from is considered a part of a strong snake part; influencing 
forces are generated and applied to the other side. By using relative measures in
stead of absolute ones, we circumvent the problem of choosing a threshold for strong 
boundaries. Experiments show that choosing a difference threshold for two measures 
is relatively easy and th a t one value works with most cases.

To generate influencing forces, we need to compute the direction and magnitude 
of the forces. Fig. 2.9 is an example of how we do so. Assuming tha t snaxel x is the 
one in question and y is its successor with a large influence measure, our task is to 
use the shape, distance, etc., of the part a to predict a position for x. A natural way 
to do so is to extend the curve along the tangent (Fig. 2.9 (a)); or we can ensure tha t 
the internal angle shown in Fig. 2.9 (b) as 9 equals to the average internal angle while 
extending the curve. The differences between the two methods are small. We chose 
to implement the la tter and use the positions of the two immediate snaxels.

Once the curve-extending method is decided, the predicted position for the current 
snaxel is calculated simply by extending the curve by a length of I, which is the 
distance between snaxels x and y. In Fig. 2.9 (c), positions predicted from both sides 
of x  are shown as z  and z‘. Choosing which one to use depends on which of the 
measures is bigger. If v  is the influencing-force vector, we set

v  =  z — x . (2.3)
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tangent direction
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Figure ‘2.9: An example of generating influencing forces: (a) part a is extended in the 
tangent direction; (b) extended by maintaining the internal angle; (c) curve-extending 
is done from both directions.

2.4 Implementation and Experiments
We evaluate our method by comparing results generated by a balloon model equipped 
both with and without the extrapolating mechanism. Testing images include some 
synthetic line-drawings with different noise levels and some real noisy images.

First, some implementation details are introduced. We implemented the time- 
delayed dynamic programming method [3] for both balloon models (See Appendix 
A for a brief account of the method). Each snake starts with a rough initialization 
inside the boundary that we are looking for. Additional snaxels are added at places 
where the distance between consecutive snaxels exceeds a  predefined threshold. In 
the experiments shown below, the distance between snaxels is maintained at 5 pixels.

The balloon forces and the influencing forces produced by the extrapolating mech
anism are converted into a potential field so tha t they can be used along with other en
ergy functions. Assuming tha t v  is the influencing-force vector for snaxel x (Fig. 2.10), 
the potential energies for each of x's  8 neighbors are assigned in the following way:

1 r -  - i  
E i n f l u  = ~2KLV ‘ WI (2.4)

where k  is a scaling factor. Barred symbols are unit vectors, and w ’s direction is 
from x to each of its neighbors. The operator • is the usual vector dot-product. The 
constant h is the average length between snaxels.

A snake may oscillate under the influence of all these forces [33]. A simple termi
nation criterion, such as to see whether any snaxel is moving, is usually unsuccessful, 
so we devised a more robust method based on a list of the 5 latest history positions
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Figure ‘2.10: Converting forces into potential energies (Eqn. 2.4).

Param eter P K S inflating force
Value 1.5 2.0 0.5 0.35

Table 2.1: Parameters used in the following examples unless otherwise specified.

recorded for each snaxel. Whenever a snaxel is moved, its new position is entered 
into the list and compared. If it is at least two pixels away from any of the history 
positions, it is considered active. After all snaxels are considered not active for 2 or 
3 rounds, the current snake state is considered the final solution. This termination 
criterion is used to check whether a specific snaxel is oscillating among two or three 
positions. Since a snaxel can only move one pixel away from its current position in one 
step, checking whether it is two pixels away is a  reliable criterion to use. The number 
of history positions can be lowered to 3, and the criterion is still quite reliable. While 
this criterion is ad hoc, similar approaches have also been used successfully [54].

As mentioned before, choosing parameters is a difficult job for a balloon model. 
In our experiments, the best set of parameters is chosen by trial and error and is 
listed in Table 2.1. Some good guidelines for choosing parameters can be found in 
[33, 14]. The scaling factor for the influencing force k is chosen to be of the same 
order as those for other forces, such as the balloon force.

In this thesis, we use noisy line-drawings instead of images with shaded regions as 
test images. Although synthetic images with shaded regions are a  better approxima
tion of real life images, we can always derive line images from shaded region images 
using an edge or line detector. These two categories of images are equivalent for our 
testing purposes because we do not use region information.

The first illustration uses a synthetic line-drawing image (Fig. 2.11 (a)). Due to 
the high level of noise, using a constant balloon force produces unsatisfactory results. 
Two typical results are shown in Figs. 2.11 (c) and (d), while the result produced 
by our method is shown in Fig. 2.11 (b). Aided by the extra stiffness force from 
the extrapolating mechanism, we can choose a  larger balloon force to deal with noise 
edges without fear of pushing the snake out of range.

Fig. 2.12 illustrates how the new model copes with big gaps on boundaries.
Fig. 2.13 shows an example that is used to test the robustness of the model against 

bad initializations. One thing to note is that, in this case, the stiffness forces need to
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Figure 2.11: An example using a synthetic line-drawing image: (a) the test image 
with an initialization; (b) the result produced by the semi-rigid balloon models with 
a normal force of 0.35; (c) and (d) are the results produced by the original balloons 
with normal forces set to 0.35 and 0.32 respectively.

be larger than the normal force.
The next experiment uses a cup image with fuzzy boundaries. Figs. 2.14 (a) and 

(b) show the image with an initialization and our solution respectively. Fig. 2.14 (c) 
is an intermediate result of the original balloon model. Note how the peeling problem 
takes place and results in a worse result (Fig. 2.14 (d)).

To systematically test the ability of the semi-rigid snake models, we provide a 
more accurate testing procedure. First, a series of synthetic images with a unit image 
contrast are generated. Each test image contains a circle (with a radius of 50) with 
four gaps ranging in size from 0 to 60. Zero-mean Gaussian noise with standard 
deviations from 0 to 1.0 is then added to each image. An example is shown in 
Fig. 2.15.

To assess the performance, we define several performance measures: epD > MSEnon9Qp, 
and M S E ^ .  The first measure, epo, is used to assess the smoothness of a snake by 
computing the feature distance between a snake’s Fourier Descriptors [41] and those
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(a) (b)

Figure 2.12: The semi-rigid balloons can cope with gaps on boundaries: (a) the test 
image; (b) the final result.

(a) (b)

Figure 2.13: For some bad initializations (e.g. (a)), the semi-rigid balloons can recover 
from the error ((b), the snake after a few iterations).
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(a) (b) (c) (d)

Figure 2.14: A cup image example: (a) an initialization; (b) a result using the semi
rigid models; (c) &: (d) results using the original balloons.

(a) (b)

Figure 2.15: Two test-image examples with a noise level of 0.40 and 0.80, respectively. 
The circle has a radius of 50 and four gaps 30 pixels in length.

of a discretized circle with the same length:

M
e FD  =  [ £  |«n -  w„|2] 2 , 

n = —M

where u and v are the Fourier Descriptors of the two contours respectively.
The last two measures compute the mean squared error (MSE) between the 

ground-truth circle and a  balloon’s final shape. The two contours are first aligned by 
finding the minimal MSE between them. MSEWhoie is then set to the minimal MSE, 
and MSEnongap is computed by omitting those snaxels tha t are on gaps:

M S E l hole =  vamE[\d{p{l),p{s +  Z))|2],

where p(l) is the point a t I on the parameterized ground-truth circle and p(s + 1) is 
the corresponding point on the balloon.

When driven by a  normal force, a balloon may never reach a stable state. In the 
following tests, a balloon is stopped when its length exceeds 130% of the length of the 
ground-truth circle. The above performance measures are still computed, but their
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use is limited. In the following plots, the non-stable final results are marked with 
squares.

The first experiment is designed to show when the peeling effect occurs. Two 
images, one with a  gap size of 30 and a noise level of 0.0, the other with the same gap 
size but with the noise level increased to 0.40, are used. Both the original balloon 
models and the semi-rigid models are tested using these two images several times 
with the normal force increased every time. The performance measures, MSEnonffap 
and MSEwhoie, are plotted against the normal force in Figs. 2.16 and 2.17. From these 
two figures, we can see tha t the semi-rigid balloons are less affected by the peeling 
problem. When the noise level is increased, the peeling problem makes it difficult to 
choose an appropriate normal force (see Fig. 2.17). Only the normal force 0.3 enables 
the original balloon to successfully extract the circle. W ith the rigidization process 
enabled, choosing a normal force is less difficult.

The second experiment tests the effects of the scaling factor k against a changing 
normal force. The results are plotted in Fig. 2.18. We observe that, for a certain 
noise level, the normal force has to be larger than a certain threshold (0.30 in this 
case) for the balloon to perform well. A small k does not perform well when the 
normal force increases because there is not enough stiffness energy to overcome the 
peeling problem. On the other hand, too large a k may not perform well either. This 
is because too much stiffness energy may compromise the effects of other energies, 
resulting in worse results. Generally, the extra stiffness energy should be adjusted in 
the same order as the other energies.

The third experiment tests the effect of the param eter p used in computing the 
influence measures (Fig. 2.19). As in the last experiment, the semi-rigid models 
perform best with a medium p (1.5 —2.0). The models also perform better with p set 
to 1.5 than to 2.0 when the normal force is small. Again, we conclude th a t p should 
be adjusted to match the normal force.

The next experiment compares the performance of the semi-rigid models and that 
of the original balloons under various noise levels. From Fig. 2.20, we can see that 
the semi-rigid models perform much better than the original balloons. Even when 
both of them cannot reach a stable solution, the semi-rigid models have much smaller 
errors.

The last experiment tests the effects of the influence-measure difference threshold 
6 (Fig. 2.21). A small threshold introduces too much stiffness energy from noise, 
thus preventing a balloon from expanding. When the threshold is made large enough 
(>  0.4), the semi-rigid models perform well consistently.

2.5 Conclusions
The semi-rigid balloon models are presented to cope with the peeling problem we 
observed in applying the balloon models to noisy images. The peeling problem is 
caused by modeling a balloon as a series of string-connected nodes. We instead 
model some of the balloon nodes as spring-operated hinges, a way tha t can better 
approximate a spline.
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A procedure th a t identifies strong snake parts is first presented. The procedure 
is designed to be iterative; measures are computed by accumulating influences from 
distant snaxels and, thus, are quite reliable. Those parts identified as strong ones are 
then converted into semi-rigid objects, a  process called rigidization.

From another perspective, the semi-rigid models collect information while evolv
ing. The collected information is then used to direct the searching of neighboring 
snaxels. This reflects the way that humans extract boundaries: first we locate the 
obvious boundaries, and then we use the shape and position of these parts to help 
locate other parts.

A series of experiments is conducted to show the effectiveness of the semi-rigid 
models. We conclude tha t the rigidization process is essential to balloon models 
because without it balloons often cannot even reach a stable state. Choosing a right 
normal force is painful for the original balloons. W ith the rigidization process, the 
range of effective normal forces is greatly increased.

Finally, since there is no a priori shape information involved, the semi-rigid balloon 
models are not able to recover noise-immersed corners. In such a case, a second-step 
model-based method should be used to refine the results (see Chapter 4).
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Figure 2.16: A test on when the peeling effect occurs. The test image has a gap size 
of 30 and a noise level of 0.0. The semi-rigid models perform consistently better than 
the original balloons and can reach a stable state even with a large normal force.
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Figure 2.17: Another test on when the peeling effect occurs. Fig. 2.17 shows the 
same test image except th a t the noise level is now increased to 0.40. W ith the noise 
level increased, the normal force has to be larger than a certain threshold (0.3) for 
the balloons to perform well.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



35
k = 1.0 ---------

30
k = 2.0 • • •  

k=3.0 - -  
Non-siable *25

20

15

10

5 -o

0
0.35 0.45 0.50.2 0.25 0.3 0.4

Normal Force

(a)

35

30
* = 2.0  • 

*=3.0 - -  
Non-stable ®25

20

15

10

5

0
0.35 0.4 0.45 0.50.2 0.25 0.3

Normal Force

(b)

Figure 2.18: Effects of the force scaling factor k. The test image has a gap size of 
30 and a noise level of 0.4. Once the normal force is larger than a certain threshold 
(0.30 in this case, related to the noise level), the semi-rigid models perform best with 
a medium k (2.0).
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Figure 2.19: Effects of the parameter p. Gap size =  30, and noise level =  0.4. The 
models perform best with a medium value (1.5 — 2.0).
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Figure 2.20: The semi-rigid models perform consistently better than the original 
balloons. Even when both of them cannot reach a  stable sta te  (noise level >  0.8), 
the semi-rigid models produce results with a much smaller MSE. The gap size =  30.
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Figure 2.21: Effects of param eter 8. The gap size is 30, and the normal force =  0.35. 
When 8 >  0.4, the algorithm performs well consistently.
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Chapter 3 

New Internal Energy Models

3.1 Problems with the Balloon Models
The original Active Contour Models are somewhat myopic, i.e., they are not able 
to find distant boundaries and need a close initialization to s tart with. Cohen and 
Cohen’s balloon models [14] addressed this problem by employing a pressure force 
to make themselves expand, thus searching a larger area. The balloon models are 
the first tha t adopt the idea of active search, as opposed to being passively attracted 
to boundaries. However, there are a few problems that the balloon models have not 
addressed.

The first problem is related to the contracting forces intrinsic to the original 
models. As illustrated by Gunn and Nixon [23], the contracting forces produced by 
the internal energy are not scale invariant because they decrease as a snake shrinks. 
Moreover, they are affected by the time step [23] and other factors, such as the image 
potential. In summary, the contracting forces are difficult to predict and vary both 
along the contour and along the time line. This fact makes it very difficult to choose 
an appropriate inflating force. To solve this problem, Xu et al. [57] proposed adding 
a new pressure force to totally offset the contracting forces, and their models are less 
sensitive to parameters. However, removing the contracting forces altogether also 
removes their ability to stay smooth while moving.

The second problem is with the re-sampling or re-parameterizing process of the 
ACMs. Unlike the original snake models, an initialization for a balloon model could 
be rather rough and far away from the object boundary. While expanding, a balloon 
needs additional snaxels to fill in gaps between sparse snaxel pairs. Common practice 
either re-parameterizes the curve and re-samples node points [33, 14], or adds snaxels 
to the most distant snaxel pairs [28]. However, both methods would disrupt the energy 
balance because most internal energy models use distance between neighboring snaxel 
pairs to assess their tension. A balloon relies on its tension to hold back snaxels with 
no image force to counter the inflating force. Therefore, maintaining tension while 
allowing additional snaxels to be added to a balloon is an im portant issue.

In this chapter, we present a  multi-scale non-shrinking internal energy model as 
part of our Actively Searching Contour Models (ASCMs). The ASCMs are improved
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balloons and are designed with three objectives in mind: (1) Effectively avoid local 
minima while searching for the global minimum. (2) Perform contour completion for 
small gaps. (3) Provide an easy and reliable way to choose parameters. Our new 
internal energy model is another step forward to achieving these objectives.

3.2 An Unbiased Non-Shrinking M odel
The original internal energy model consists of two parts: an elastic term that makes 
a snake behave like a string, and a stiffness term th a t makes it act like a rod. How
ever, this technique results in the contraction of snakes. Removing the contracting 
forces entirely, as in [57], also results in reduced smoothing power. We argue that a 
smoothness constraint should not be over-powerful, but just powerful enough to serve 
its purpose, thus reducing its side-effects. Another preferred quality in a smoothness 
constraint is to have no prejudice towards expanding or contracting.

To make it more manageable and controllable, we divide the whole internal energy 
model into two parts: a smoothness part and a tension part. In this section, a new 
smoothness constraint, whose purpose is to keep a snake smooth and its snaxels 
equally distant, is presented. In the next section, the issue of how to maintain tension 
while introducing new snaxels is discussed.

A contour is considered smooth if every internal angle, <t>, as shown in Fig. 3.1 (a), 
is within a smoothness range (x  — 9, x  + 9), where 9 is a small angle. In the case of 
a circle,

(N  — 2 ) j r  2t t

9  N  I v '  ( ’
where N  is the number of snaxels of a discrete snake. Given the positions of snaxels 
x and y and the angle 9, two arcs can be constructed such th a t any point z inside 
the region enclosed by the two arcs will have an internal angle within the specified 
smooth range. This region is what we call a smooth region (Fig. 3.1 (b)).

Once a snaxel is inside the smooth region spanned by its two neighbors, it is 
considered within the smoothness limit. Otherwise, the snaxel is pulled towards the 
smooth region via the shortest route, i.e., from the snaxel to its corresponding arc 
center. As shown in Fig. 3.1 (b), z  is pulled towards ci, one of the arc centers, 
provided tha t Lxzy  is larger than x.  Arrows indicate the direction and magnitude of 
the smoothing forces generated.

To compute the force vector v , the center of one of the arcs should be computed 
first. To make the formula simpler, we use location symbols to represent vectors, eg., 
x represents the vector from the origin, o, to location x. Assuming that Lxzy  is less 
than 7T, ci and v  are calculated using:

r  -  I*-Pl (3.2)
'  2sin(0) K '

Ci =  ^ { x +  y ) + rsm (9)R X J(x — y)  (3.3)
v  =  (|ci -  z| -  r)U (ci -  z) (3.4)
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(a) <c>

arc

■arc

(b)
Figure 3.1: A new smoothness constraint: (a) the internal angle 0; (b) the smooth 
area (enclosed by the two arcs) and the two force vectors computed to pull snaxel z 
or z' to the smooth area; (c) another force vector w  generated to  maintain the equal 
distance property.
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(a) (b)

Figure 3.2: An example using the new smoothness constraint: (a) an initialization;
(b) the final shape after energy minimization with only the internal energies.

where U  is the unit operator, and R  is a 90° clockwise rotation operator. It should
be noted tha t r is a scalar.

To ensure tha t snaxels are evenly spaced, a second condition is applied, z is pulled 
by another force w  to whichever one of its neighbors is farther away (Fig. 3.1 (c)). w  
is computed using

w  =  (|y -  A -  \x  -  *l)U(y -  z), (3.5)

and the total internal energy is normalized by the average distance, h, between snax-
gls

£1—  =  |  (3-6)

The smoothness constraint we just described has several im portant properties:

1. There are no contracting forces. In the absence of external forces, the pro
posed smoothness constraint will smooth a snake like a low-pass filter, and then 
the snake will hold its shape. Fig. 3.2 (a) shows an initialization and (b) the 
smoothed contour.

2. It is not biased towards expanding or contracting, and therefore it can be used 
along with a snake, with either an inflating or a deflating force.

3. In Fig. 3.2 (b), after being smoothed, the snake still has both concave and 
convex parts—a property that is missing in Gunn et al.'s model [23].

4. The internal energy is proven to be scale, rotation, and translation invariant 
(see proof in Appendix B).

5. The smoothness constraint can carry shape model information by specifying the 
interned angles for all snaxels.
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the average distance h

Figure 3.3: Two vectors v  and w  for tension computation. They are computed only 
when \y — z\ and |x — z\ are larger than the average distance h.

3.3 Maintaining Tension
A significant difference between a balloon and a traditional snake is the requirement 
for quality of initializations. A balloon is less demanding, and the initialization is 
generally only required to be inside the object contour. As described in Section 
3.1, new snaxels are added to a balloon when it expands. This practice, however, is 
detrimental to maintaining a snake’s tension, which is essential for a snake to perform 
contour completion for small gaps. W ithout enough tension, a balloon will go through 
even small gaps under the pressure of the inflating force.

Ivins et al. present a way to maintain the overall internal energy when inserting 
or deleting snaxels to/from  a balloon [28]. However, the internal energy for individual 
snaxels may have changed even though the overall internal energy remains the same. 
In fact, the internal energy for individual snaxels is guaranteed to change because 
the total number of snaxels is increased, while the total energy remains the same. 
Those which relied on the tension from neighbors to maintain equilibrium before the 
addition of the snaxels, might s tart to move outward again. Such statements also 
hold for methods tha t resample node points.

We present a new procedure to minimize the influence of newly added snaxels on 
other snaxels. First, the method for computing tension is defined. We argue that 
tension should be applied only to necessary places. In line with this, we propose 
applying tension to snaxels whose distances to their neighbors are larger than the 
median or average value1. For snaxel z in Fig. 3.3 (a), its tension, Tz, is computed 
using:

v =  ( \ y - z \ - h ) X J ( y - z )  (3.7)
w  =  (|x — z\ — h) U (x — z) (3.8)

T,  =  i  ( 4 = 4 ) 2 (3.9)

where h is the preferred average or median distance between snaxels.
Now we assume that a  snake with the new internal energy model is initialized to a

perfect circle on a flat potential surface. Driven by an inflating force, the next state of 
the snake would be a concentric circle with a larger radius due to symmetry (Fig. 3.4

‘For a deflating snake, those with closer neighbors are chosen instead.
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Figure 3.4: (a) under the influence of internal energies, the next state of a balloon 
initialized as a circle is a larger concentric circle; (b) a  typical tension change pattern.

(a)). Since the snake maintains its smoothness, only the tension part of the internal 
energy has changed. The tension would increase linearly until new snaxels are added 
to the snake (see Fig. 3.4 (b)). Using the definition of a balloon, an inflating force 
should be large enough to overcome the maximum tension where there are no image 
forces.

The procedures reported in the literature choose positions to add new snaxels 
indiscriminately, or even simply resample the contour. This practice hurts the ability 
of a snake to perform contour completion at small gaps. We, instead, propose a 
heuristic search method to locate the most appropriate positions to add snaxels. 
Some criteria as to whether a location is appropriate are listed here:

1. Smooth— Adding a snaxel at a place with large curvature changes will prevent 
the smoothness constraint from taking effect, a weakness which is not preferred.

2. Average distance— If the distance between two snaxels is larger than the aver
age, then the two snaxels are under the influence of a large tension force. On 
the other hand, if it is smaller than the average, then adding a new snaxel will 
further prevent them from developing tension.

3. Evenly distributed— It is preferable for newly added snaxels to be evenly dis
tributed along the contour. In this way, energy change is evenly distributed as 
well.

4. Not on gaps— Adding a snaxel to a gap would reduce the tension of that part 
of the balloon and, possibly, the pressure force would drive the balloon through 
the gap. This is, therefore, not preferred. A procedure tha t identifies non-gaps 
has been proposed in Section 2.2.

One point to  note is tha t adding new snaxels is done only periodically. A small 
period of time before the next try  should be guaranteed, thus allowing a balloon

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(a) (b)

Figure 3.5: A snake discretized with different scales: it is considered (a) smooth using 
a small scale; (b) not smooth using a larger one.

to develop tension. To implement these criteria, a table is constructed whose entries 
contain, for each snaxel, the distance to its predecessor dp, the distance to its successor 
ds, curvature c, and a value g indicating if it is on a gap or not. All the entries are 
then sorted ascendantly according to the following a p p ro p r ia te n e s s  value:

a = Ki(dp + ds) + k-zc -4- k3<7, (3.10)

where Kt_3 are scaling factors. The first M  entries are chosen as places where new 
snaxels may be added, except when one place is too close to some other newly added 
snaxels, in which case the entry is discarded. M is often chosen to be 5 — 10% of the 
total number of snaxels. The resulting reparameterization procedure is thus optimized 
according to the criteria listed above.

3.4 A Multi-Scale Internal Energy M odel

3.4.1 Smoothness Constraint and Contour Completion
Contour completion is an im portant feature of the ACMs, and is essential to the 
extraction of contours of objects with fuzzy boundary. The heuristic search discussed 
in the previous section can prevent adding snaxels to gaps to some extent. However, 
a snake would still go through gaps if the tension is not built up. In this section, we 
examine the role of the smoothness constraint in contour completion.

Our theory is tha t the smoothness constraint is only effective for contour comple
tion when the discretizing scale is comparable to the size of gaps. This is because, af
ter discretization, the smoothness computed is directly related to the distance (scale) 
between consecutive snaxels. A contour may be considered smooth under one dis
cretizing scheme but not under another, given the same internal angle for internal 
energy computation (see example in Fig. 3.5).

Some simulations are further provided to back up this statem ent. Figs. 3.6 (a),
(c), and (e) show three partial balloons with the same discretizing scale, h, at three 
different sized gaps. The snaxels a, 6, c, and d are assumed to be not moving, as if 
they were snagged by strong edges. All the partial balloons are applied with the same 
inflating force, and internal smoothing and tension forces. Figs. 3.6 (b), (d), and (f) 
show their equilibrium states under the influence of these forces. I t is easy to see that 
larger gaps result in larger bumps. If new snaxels are introduced a t these bumps,
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Figure 3.6: A simulation configuration: (a), (c), and (e) show three partial balloons 
with snaxels a — d fixed; (b), (d), and (f) show their final shapes under the same 
inflating force. Arrows indicate the inflating forces applied to these partial balloons.

the balloons are ready to go through the gaps, thus losing their contour completion 
ability.

The average smoothness and tension energies are plotted in Fig. 3.7, which shows 
th a t the smoothness energy dominates the smaller gaps, while the tension gradually 
takes over as the gap size increases. This reflects the idea tha t discretization affects 
the smoothness energy computation, although the energy specification itself is scale- 
invariant after discretization.

3.4.2 Achieving M ulti-Scale via M ultiple Snakes
Since the discretization scale affects the ability of a balloon to perform contour com
pletion, it is preferable to discretize a balloon with a scale comparable to the size of 
the gaps in the contours to be extracted. However, using too big a scale would also 
affect a balloon’s ability to catch details. VVe present a multi-scale internal energy 
model to solve this problem.

A naive solution is to discretize a balloon at a scale th a t is small enough to catch 
any details, and then compute internal energies at different scales, i.e. using not only 
a  snaxePs immediate two neighbors, but also those farther away. The fast algorithm 
presented by Williams and Shah [54] is able to perform the minimization using this 
scheme, with much more computation. For the more accurate minimizing algorithm, 
the time-delayed dynamic programming method presented by Amini et al. [2, 3], this 
increases the computation dramatically.
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Figure 3.7: The average tension and smoothness energies for the three partial balloons 
shown in Fig. 3.6.

For example, if we consider four neighboring snaxels for every snaxel, the fast 
algorithm incurs twice the computation it normally needs. For the dynamic pro
gramming method, however, the computation is nm°, in which n  is the number of 
total snaxels, and m  is the size of the neighborhood searched— compared to nm 3 
if only two immediate neighbors are involved (see Appendix A for more details). If 
more snaxels are used, the algorithm’s complexity increases exponentially.

In this research, we instead propose a multiple-snake method tha t takes advantage 
of dynamic programming’s ability to use hard constraints. A balloon is still discretized 
a t the finest scale that is required by application needs. A coarser snake is created 
by periodically copying snaxels from the originally discretized balloon2. More snakes 
are created, if needed, using the same method but with increasingly larger sampling 
periods. To make the snakes interact with one another, the corresponding snaxels 
are attached to one another using virtual strings (see Fig. 3.8). Each of these virtual 
strings has a natural length of zero and exerts a contracting force, when pulled apart, 
on the two snaxels it links:

1 n  2
(3.11)2 i  h

where D  is the length of the string and 77 is a weighing parameter.
To make the balloon “feel” the image content, forces generated from the image 

are applied to each of the snakes. The inflating force is also applied to each and every 
snake, although the magnitude of the inflating force for different component snakes 
may be different.

The minimization is done sequentially for the multiple snakes. First, the energy 
for the first snake is computed, and all the snaxels are moved to  their preferred next 
step. And then the same is done for the next snake, and so on. The process is

2The balloon with the original scale is called the first snake
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resampled at 3x periods

Figure 3.8: An example of a multi-scale snake. Three component snakes are shown 
in this configuration. The second and third snakes are attached to the first one with 
virtual strings.

repeated until none of the snakes is moving. The total com putation depends on how 
many snakes are used, and how they are sampled. For the setup shown in Fig. 3.8, 
the amount of computation is 1 +  |  +  5 times tha t which the first snake needs. More 
snakes can be conveniently added with only a fraction of the computation.

3.5 Experiments
VVe designed several experiments to test the performance of the optimized reparam
eterization process and the multi-scale balloon models. The testing procedure in
troduced in Chapter 2 is again used. Since, this time, we are testing the contour 
completion function of the models, a new performance measure, MSEgap, is intro
duced. To compute this measure, first the ground-truth circle and the balloon are 
aligned, and then the mean squared error of the snaxels on gaps is computed. Other 
performance measures introduced in Chapter 2 are also used. Again, in the following 
tests, balloons are stopped when their lengths exceed 130% percent of the ground- 
tru th  circle. The non-stable results are marked with a square in the subsequent plots, 
and should be viewed as solutions with infinitely large errors.

The second detail to note is that the rigidization process introduced in Chapter 
2 is enabled in the following experiments, unless otherwise stated. In this way, the 
effect of the peeling problem is avoided. Since we are testing the contour completion 
ability of balloon models, it is essential that the expanding of balloons can be stopped 
by some mechanism.

The param eter 77 is adjusted in such a way tha t the resulting E string is in the 
same order as other energies. A rule of thumb is tha t E string should be adjusted
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Figure 3.9: epD plotted against the gap size. The noise level is 0.0. Squares indicate 
non-stable solutions.

to be smaller than other energies, when the distance D  is smaller than the average 
distance of the first snake. This is to ensure tha t the scale energy does not disturb 
the performance of other energies.

The first experiment tests the contour completion function of the optimized repa
rameterization process and the multi-scale models. Images with no noise, but chang
ing gap sizes, are used in this test. The distance of the two sets of Fourier Descriptors, 
epo,  is computed to measure the smoothness of the final result. Fig. 3.9 shows the 
computed e^D plotted against the changing gap size. We observe that an optimized 
reparam eterization method performs better than the original method. When the gap 
size grows too big (>  60), neither method can reach a stable solution. The multi-scale 
models tha t we used consist of two snakes; the first snake is discretized with the finest 
scale, and the second with double tha t scale. W ith the extra smoothness energy from 
the second scale, the multi-scale models perform consistently better. Even when the 
gap size reaches 60, the multi-scale models still produce very good results.

The second experiment is similar to the first one, except tha t the images are 
now added with zero-mean Gaussian noise with a standard deviation of 0.40. Four 
performance measures are plotted in Figs. 3.10 and 3.11. From these figures, we 
observe tha t: (1) The optimized reparameterization method generally performs better 
than the original method. Neither one can produce a  stable solution when the gap 
size exceeds 50. (2) The multi-scale snake models perform consistently better than 
the single scale models, and they can produce stable solutions with larger gap sizes.

The th ird  experiment uses a series of images with fixed gap sizes but changing 
noise levels, from 0.0 to 0.8. A single scale balloon with the optimized reparameter
ization process, and a multi-scale balloon, are applied to these images, and results 
are plotted in Figs. 3.12 and 3.13. The performance measure MSEn£mgap (Fig. 3.13
(a)) shows th a t the rigidization process performs equally welt for both methods. All 
other performance measures indicate that the multi-scale balloon performs consis-
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tently better than the corresponding single-scale one.
An extra smoothness energy is useful, not only for contour completion, but also 

for avoiding local minima. Shown in Fig. 3.14 (a) is a common shape for a single-scale 
balloon. The upper concave part was caused by a small part of the balloon being 
trapped by a local minimum. The smoothness energy of the first snake is not enough 
to pull itself out of the local minimum. Usually, this is because the average distance 
between snaxels is set to a small number so as not to miss details. Fig. 3.14 (b) 
shows the first snake along with a second scale snake. For the second scale snake, 
escaping a local minimum is easier due to two reasons: (1) The same concave part 
is not “smooth” from the second scale snake’s perspective. (2) A snake with loose 
snaxels misses some small details. According to the definition of a  multi-scale snake, 
the two component snakes exert influence on each other (shown in Fig. 3.14 (b) as 
arrows). W ith this extra force, the first snake comes out of the local minimum and 
moves on.

Another experiment is done to show the noise-resisting property of the multi-scale 
models. First, a multi-scale balloon is applied to a test image with gap size 40 and 
noise level 0.4. During the iteration, the performance measure epo  is computed and 
recorded. Then, a single scale balloon is applied to the same image with the same 
initialization. The values of epo are computed and recorded in the same way. The 
two sequences of epo's  are plotted and shown in Fig. 3.15, which shows that, after 
the first few rounds, the multi-scale balloon is smoother than the single scale one, 
reflecting the noise-resisting property of the multi-scale models.

A multi-scale balloon combines the advantage of two snakes with two different 
scales. The following experiment compares the performances of a multi-scale balloon 
and a single scale balloon. Unlike in previous tests, the scale of the single scale 
snake is equal to the scale of the second snake of the multi-scale balloon. The test 
image is again a circle but with numerous small gaps (shown in Fig. 3.16 (a)). Due 
to its larger average distance between snaxels, the single scale snake misses some 
details when expanding. A typical result produced by the single scale snake is shown 
in Fig. 3.16 (b). The multi-scale snake, however, produces very good results in a 
consistent way (Fig. 3.16 (c)).

The extra smoothness energy can sometimes be a disadvantage. Performing con
tour completion when necessary is an advantage, but a  multi-scale balloon cannot 
tell when it is necessary to do so. It cannot discriminate between gaps and cusps or 
bumps. Fig. 3.17 (a) shows a contour with a gap, and a convex part with an opening 
approximately the same size as the gap. A result produced by the multi-scale models 
is shown in Fig. 3.17 (b), with both openings treated as gaps. A method that solves 
this problem is presented in the next chapter.

3.6 Conclusions
In this chapter, we first presented a new internal energy model tha t is scale, rotation, 
and translation invariant. Unlike traditional internal energy models, this new model 
does not shrink on its own, and is unbiased towards expanding or contracting. W ith
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the new internal energy, a  snake would hold its shape— which may have both convex 
and concave parts—after being smoothed to some extent.

The ability of a balloon to perform contour completion is essential to locating 
incomplete boundaries. A better reparameterization process is thus presented to 
minimize the energy disturbance when adding new snaxels, although the performance 
improvement is limited.

To further improve the contour completion ability of balloons, a multi-scale bal
loon model is proposed. The idea of using multiple scales in computing internal 
energies is backed up by a simulation that demonstrates the relation between the 
smoothness constraint and the snake scale. To avoid excessive computation, we 
achieve the effect of multi-scale by using multiple component snakes linked to one 
another via virtual strings. Forces are generated from these strings to pull the com
ponent snakes together. The to tal computation is less than  twice that for a single 
scale snake.

We implemented and tested the performance of the proposed methods using vari
ous test images. Results show that the new reparam eterization method improves the 
performance of a balloon at gaps up to a certain size, but does not help a balloon with 
increased gap sizes in producing a stable solution. The multi-scale balloons, however, 
produce consistently better results with a larger range of gap sizes and noise levels. 
We also pointed out the new model’s noise-resisting property and their inability to 
reach high-curvature areas. To conclude, we have provided a reliable and controlled 
way to perform contour completion.
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Figure 3.10: The test images are the same as those used in the first experiment, 
except they are now added with zero-mean Gaussian noise with a standard deviation 
0.40. All four performance measures are plotted against the gap size. The multi-scale 
models can produce stable solutions all the time. Continued in Fig. 3.11.
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Figure 3.11: Continued from Fig. 3.10

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

T
  Optimized
 Multi-Scale

o  Non-Stable

i

o

0.2 0.4 0.6 0.8
Noise Level

(a)

03v i2

10

9

8

7

6

5

4

3

T

 Optimized
-  Multi-Scale

o  Non-Stable

0.2 0.4 0.6
Noise Level

0.8

(b)

Figure 3.12: The gap size is fixed at 40, but the noise level changes from 0.0 to 0.8. All 
four performance measures are plotted against the noise level. Continued in Fig. 3.13.
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Figure 3.13: Continued from Fig. 3.12. Figure (a) shows tha t the rigidization pro
cess performs equally well for both methods. The differences in other performance 
measures account for the performance difference of the two methods.
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Figure 3.14: (a) a part of a balloon trapped by a local minimum: (b) forces shown as 
arrows are generated from the two component snakes.
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during the iteration.
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Figure 3.16: (a) a circle with numerous small gaps and with noise level 0.4. A typical 
result produced (b) by a single scale snake; (c) by a multi-scale snake with two 
component snakes. Note tha t the single scale snake has the same average distance as 
the second snake of the multi-scale snake.
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Figiure 3.17: (a) a contour with a  gap and a convex part, (b) the result produced by 
a multi-scale snake. Both the gap and the opening to the convex part are treated as 
gaps, which is not true for the convex part.
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Chapter 4 

Content Guided Search

This chapter proposes another improvement to the balloon models’ searching ability 
to reach high-curvature areas of the contour, which cannot be easily achieved by the 
semi-rigid models (Chapter 2) and the multi-scale models (Chapter 3). We propose 
here to use local image contents to guide a balloon’s searching process. Sha’ashua 
and Ullman’s saliency map method is used to trace the strongest curve tha t passes 
through a particular pixel. This locally derived information is then used to guide a 
balloon’s searching process. Benefiting from both a global model and locally derived 
cues, the combined model is faster and more robust than the original balloon model.

4.1 Introduction
Active Contour Models [31] were presented as a “power-assist” to human operators 
for object contour extraction. In a typical scenario, a human operator draws a contour 
as an initialization for a snake, then the snake is progressively refined to match the 
actual contour. If we want to use snakes to automatically extract contours from 
images, however, the original snake models are not directly applicable due to the 
initialization problem. Cohen and Cohen’s balloon model [14] uses an inflating force 
to make a snake expand until it meets an object boundary. The advantage of using 
a balloon model resides in its ability to search for contours from a rough, far away 
initialization. However, the balloon model is primitive in terms of its searching power. 
Moreover, since it starts with a rough initialization, the starting  shape does not 
contain much a priori shape information.

As discussed in previous chapters, three problems need to be addressed to make 
balloon-based models effective: (1) How to perform contour completion when nec
essary? (2) How to overcome local minima? and (3) How to provide an easy and 
reliable way to choose parameters? The first problem is extensively addressed in the 
previous two chapters. By providing a new multi-scale internal energy model and a 
semi-rigid model, we have provided an effective way to make balloons perform contour 
completion. However, these two methods do not have a  way to differentiate gaps from 
bumps and cusps, thus preventing a balloon from converging to those high-curvature 
areas. We argue th a t information derived from the underlying image should be ex-
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ploited to make the balloon discriminative. The image content information we try 
to incorporate is what we call “mid-level” image cues, i.e. they axe outputs of some 
mid-level processing modules instead of raw image data  such as intensity and edge. In 
next section we provide more background information on the reasons why mid-level 
image cues are im portant, especially for noisy images.

4.1.1 M ethod Overview
As discussed in Chapter 1, boundary extraction approaches in literature can be di
vided into two categories. The first category methods, which are called bottom-up 
methods, employ a two-step framework: Edge detection followed by edge linking. 
Since the result of an edge detecting operation is usually a set of spurious edges 
with many gaps, it is necessary to have an edge aggregation process after an edge 
detection operation. A large number of papers have been published in this area 
[37, 58, 18, 1, 44], These methods share the property of using neighboring pixel in
formation to help label an image pixel. They exploit the fact th a t noise points do not 
have support from their neighbors to suppress noise and reinforce detected structures. 
However, these methods can only deal with small gaps since there is no global shape 
model involved in the process.

On the other hand, the top-down methods feature exploitation of knowledge. 
Rule-based methods, scene labeling, deformable models, and active contour models 
[25, 31] are in this category and have achieved considerable success. The top-down 
methods s tart from a high-level scene model and find evidence a t pixel level to support 
the model. However, the top-down methods are usually com putation demanding.

In this chapter, we combine the balloon model with a bottom -up method so that 
the combined model would inherit advantages of both methods, which are from two 
different categories. As discussed before, our ultim ate objective is to use balloon 
models to automatically extract contours from noisy images. A balloon model is 
suitable for this task due to the ease of initialization. However, since the inflating 
force th a t drives the balloon model is artificial and isotropic, it is not able to sense 
changes in underlying image intensities. That is, it does not have an intelligent way 
to steer the balloon towards salient image features. We propose to incorporate an 
edge linking-like method, which can provide, for each pixel, some information about 
its neighboring area. If this information is effectively used by a  balloon model, the 
resulting model is expected to be faster and more robust.

An illustration of our combined method is shown in Fig. 4.1. For each snaxel on 
a balloon A (e.g. c), the strongest curve tha t passes through it, is traced (shown as 
curve a-b). If the curve is strong enough according to some predefined threshold, it 
is used to guide the search of a balloon in this neighborhood. The arrows in Fig. 4.1 
show forces generated to pull balloon A to desired contour B. In next section, we 
discuss how to use an edge aggregating method to trace curves, and in Section 4.3, 
how to guide balloon searching is presented.

The most im portant feature of the combined model is, unlike most snake models 
reported in literature, its effective use of mid-level image features. Chiou et al. used
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Figure 4.1: An illustration of content guided contour search: Arrows indicate forces 
generated from local image content.

the neural network method to assign pixels to various categories for medical images, 
and the outputs are then fed into a stochastic active contour model for further pro
cessing [13]. Their method is designed specifically for one kind of images and it is 
not suitable for most other applications. Our method, however, is more general and 
is considered an improvement to ACMs themselves.

4.2 Tracing Curves
Sha’ashua and Ullman’s saliency map (SM) method [44] was originally proposed to 
detect globally salient structures in an image. Simply put, the SM method extracts 
certain shapes such as smooth, long curves tha t a ttract our attention more than 
others. It is suitable for our task because of its three significant merits: (1) It is 
fast and the amount of computation is only proportional to image size regardless of 
image complexity; (2) The computed results contain information necessary for curve 
tracing; (3) Thanks to its iterative process, the computed results are more accurate 
and reliable than raw image data. This property is especially im portant when dealing 
with noisy images.

Technically, a saliency map is computed in the following way. For every pixel 
in an image, we consider a set of k “orientation elements” connecting the pixel to 
its neighboring pixels. An orientation element is either called an active element if 
it lies on an edge, or a virtual one or gap if not. At each point P , we check every 
connected sequence of orientation elements Pi, • • • ,Pj+Jv starting from P , with each 
element being an active or a virtual one. The sequence of N  + 1 orientation elements, 
or a curve T of length N , is assigned a saliency value of

i+iV

E(T) = Y ,  vjPijCij, (4.1)
j - i
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(a) (b)

Figure 4.2: A saliency map example: (a) a contour with a gap; (b) its computed 
saliency map.

where aj is a switch function indicating whether pj is active or not and

j
Pij = n  P k = p g,j,

k - i

where pi is a penalty factor, pi is set to 1 if pi is active, and otherwise is set to p, 
a pre-defined constant typically ranging from 0.3 to 0.7. gij is the number of virtual 
elements between pi and pj. Finally,

j*Pj
Cij =  e~K,} with Kij =  / n2(s)ds,

•>Px

where k(s ) is the curvature at position s. K t] is the accumulated squared curvature 
from the beginning of the curve and is used to penalize curving boundaries.

The saliency of an edge point P  is defined as the maximum saliency of all curves 
emanating from it. A saliency network was proposed by Sha’ashua and Ullman to 
compute the saliency values. For each element p{ associated with a point P , we 
maintain a state  variable Ei and a set of three attributes tha t include its local saliency 
<7i, orientation 8it and penalty factor pi. Each element pi updates its state  variable 
Ei iteratively through a local computation:

Ei°} =  <Ju £'t-ri+1) =  (jj +  pi m ax  C ijE \n) (4.2)
P j £ i { P i )

where 6(pi) is the set of k  possible neighbors of p^  It is proven in [44] tha t

E \N) =  m a x  Y ,  ajPijCij,
7*

J

where j i  is the set of all possible curves of length N  starting from pi.
An example of a saliency map is shown in Fig. 4.2. Fig. 4.2 (a) shows a hand- 

drawn image with Gaussian noise added and (b) its saliency map. Note tha t isolated 
noise points get small saliency values and small gaps are filled in.
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(a) (b)

Figure 4.3: Tracing curves: (a) c-a is the most salient curve tha t originates from c:
(b) the starting  point of the second most salient curve is picked from a set of 7 points 
at the opposite side of the first starting point.

Once a saliency map is computed for an image, it is easy to trace the most salient 
curve tha t emanates from every pixel because orientations are recorded as part of the 
computation results. For a given pixel, the neighbor from which the largest saliency 
is computed is chosen as the starting point of the curve to be traced. However, 
only one curve tha t starts from every pixel can be traced in this way. For example, 
suppose tha t at some point a balloon A meets an object contour B a t c (Fig. 4.3 
(a)). Curve c-a is traced by following the largest saliency value. However, it is also 
necessary tha t curve c-b is traced unless c is an end point of contour B. We devised 
the following method to locate a second starting point. As shown in Fig. 4.3 (b), the 
second starting point should be a t the opposite side of the first s tarting  point (one 
of the 7 end points labelled as 1-7 on the discrete grid), otherwise the two traced 
curves would most likely collide with each other. Naturally, the second starting point 
is chosen as the the one with the largest saliency value among the 7 seven end points.

The saliency map method is extensively used in this thesis to provide the snake 
models with reliable mid-level information. It is also suitable for pre-processing ul
trasound images [53]. The idea and computation method described above is quite 
brief and readers are referred to [44, 1] for detailed analysis of this method.

4.3 Content-Guided Search
The curves th a t are traced as discussed in the previous section are the strongest 
in their neighborhood. Since the SM method uses an iterative way to accumulate 
information, it is robust against random noise. Moreover, smoothness is included as 
a constraint in saliency map computation, therefore the curves traced are reasonably 
smooth provided the parameters are well adjusted. In summary, these curves are a 
strong local cue for a balloon. Properly harnessed, they can not only speed up a 
balloon’s searching process but also make it more robust.
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The traced curves can be used with any of the available energy minimization 
methods. In this thesis, the dynamic programming method [3] is the primary method 
for minimizing the energy of a balloon for better performance. Curve tracing and force 
generating is performed for each snaxel before each round of computation. To avoid 
unnecessary computation, only snaxels with a saliency value larger than a predefined 
threshold are used as starting points for curve tracing. However, the threshold is 
relaxed during tracing to allow some saliency value variation. A second condition 
regarding starting points selection is tha t one of a snaxel’s two neighbors should have 
a saliency value less than the threshold. This condition is to ensure that the traced 
curves are indeed not repetitive. Traced curves are limited in length to 3 to 4 times 
of the average distance between neighboring snaxels.

Before the traced curves are passed onto later steps, some “bad” curves are elim
inated based on the following conditions: (1) A curve must be smooth; (2) It should 
not be too far away from the balloon; (3) It should agree with the snake in terms of 
direction. The first condition is enforced by making sure an integral of curvature over 
curve length is less than a pre-defined threshold. For the second and third conditions, 
a series of internal angles, 9, between the traced curve and the balloon are computed 
as shown in Fig. 4.5 (a). The angles are required to be less than a threshold, which is 
chosen around 45 degrees in our experiment. The procedure for computing the angles 
is described in Fig. 4.4.

Converting local cues into influencing forces for a  balloon is straightforward. As 
shown in Fig. 4.1, forces tha t would pull a balloon towards the traced curves are 
generated for this purpose. For each snaxel (for example, c in Fig. 4.5 (b)), we only 
consider 3 to 4 of its closest neighbors at one side (shown in Fig. 4.5 (b) as n l, n2, 
and n3). For each of them, a corresponding point (d in Fig. 4.5 (b) for n3) on the 
traced curve is determined so tha t the distance between c and n3 is equal to that 
between c and d. The direction of vector n3-d is a good direction candidate for the 
influencing force of snaxel n3.

The magnitude of the force is determined based on two factors: The saliency value 
of the curve and the magnitude of the normal force used by the balloon. The force is 
designed to be proportional to the saliency of the curve. In our experiments, the force 
is also chosen to be of the same order as the normal force so tha t the new influence 
force is able to offset the normal force when necessary.

Finally, if a  particular snaxel is under the influence of several curves simultane
ously, we choose to use the largest influencing force. The composite of these influenc
ing forces is also an option. But usually these influencing forces have approximately 
the same direction, thus the composite force would be a lot larger than the normal 
force, which would disturb the balance of forces.

4.4 Experiments
As claimed before, our method can speed up the energy minimization process of a 
balloon model. Furthermore, the method is more robust in such cases as bad initial
izations, noise corrupted images, etc. In this section, several groups of experiments
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procedure ComputeAnglesQ 
begin

r=current snaxel;
p=r;
n=r;
c l= traced  curve 1; 
c2=traced curve 2; 
repeat

p = p ’s predecessor; 
n = n ’s successor;
/*  for p * /
find p’s closest point t l  on cl; 
find p’s closest point t2 on c2; 
t =  argm int=tt,t2 (distance(t,p)); 
compute angle between vectors r-p and r-t;
/*  for n * /
find n’s closest point t l  on cl; 
find n’s closest point t2 on c2; 
t = argm int- ti't2{distance(t,n)); 
compute angle between vectors r-n and r-t; 

until one of the traced curves is traversed;
end

Figure 4.4: Pseudo codes for computing angles between a snake and a traced curve. 
The angles are then used to verify the curve’s suitability for content guiding.
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Figure 4.5: (a) a series of internal angles are computed as part of curve goodness 
measures; (b) several force vectors are generated to perform content guiding.

Figure No. (a) (b) (c) (d)
W ith the guiding module 84 80 70 120
W ithout it 112 98 103 150

Table 4.1: Iteration numbers for examples shown in Fig. 4.6.

are designed to test the performance of our method. In following experiments, the 
internal energy model proposed in Chapter 3 is used.

The first group of experiments test the speed of our method. Since the influencing 
forces are generated only when a balloon hits a strong curve, the speedup can only 
be observed when one part of a balloon hits a strong curve earlier than others. If 
all parts of a balloon meet a contour simultaneously, no speedup can be achieved. 
However, this is a rare scenario due to various reasons. A common reason is that a 
balloon is not initialized equally distant from the contour being sought. Even if it 
is perfectly initialized, some parts of a balloon can be snagged temporally by noise 
points. In this experiment, we test our method with some typical shapes with different 
initializations (Fig. 4.6). First, a balloon model is used to extract the contour in these 
figures, then the exact balloon model with the guiding model enabled is applied to 
these figures. Both programs are instrumented to record iteration numbers, which 
are listed in Table 4.1. These numbers, along with other experimental results we 
gathered, indicate a consistent speedup from our method.

The second test is on the robustness of the new method. Specifically, we test how 
this new method works with bad initializations and noisy images. For applications 
tha t require autom atic extraction of contours, initializations are provided by a pre
processing program. If an initialization is not within the contour being looked for, a 
balloon model is not able to handle that. An example is shown in Fig. 4.7 (a). Since 
the balloon crosses the contour, some influence forces are generated from the two 
cross-points, A and B. Now if the influence forces are adjusted to be slightly larger 
than the inflating force, the outside part of the balloon would retreat and find the 
right contour (Fig. 4.7 (b)).
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Figure 4.6: Some typical shapes with different initializations.

Another example of the robustness test is shown in Fig. 4.8. It is easy for a 
balloon to miss the boundary when approaching a circle with numerous gaps (refer to 
Fig. 3.16). For a contend-guided balloon, once one snaxel finds a piece of the circle, 
its neighboring snaxels are “informed” and know where to find the rest of the circle. 
Another problem with the original balloon model is, a snaxel may be pushed over 
the boundary by internal forces if it is on the tip of a cusp. Once it is pushed over, 
there is no chance for it to come back due to the inflating force. The content guided 
balloon solves all these problems and thus is more robust.

When a balloon is applied to an image corrupted by random noise, it is difficult 
to choose the weight for parameters, including the inflating force. Fig. 4.9 (a) shows 
an irregular shape immersed in noise. For the original balloon model, if the stiffness 
energy is given a large weight, then the balloon is not able to reach the upper- 
left comer (Fig. 4.9 (b)). On the other hand, if the stiff energy is reduced, then 
a typical result is shown in Fig. 4.9 (c). A perfect match could be achieved after 
careful adjustm ent of the parameters. For the content-guided searching snake models, 
however, this process is less painful. For both stiffness energy settings, our new 
method is able to extract the exact contour without any difficulties (Fig. 4.9 (d)).

To be more accurate on how tolerant the content-guided model is on noise, it is 
applied to a series of unit contrast circle images with various levels of noise. To get a 
feeling of how noisy these pictures are, an example is shown in Fig. 4.10 along with its 
computed saliency map. For comparison purpose, the original balloon model and the
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(a) (b)

Figure 4.7: A bad initialization example: (a) an initialization; (b) the result produced 
by the content-guided snake model.

(a) (b)

Figure 4.8: (a) a contour with various small gaps; (b) the contour is successfully 
extracted by a content guided balloon.

semi-rigid model introduced in Chapter 2 are also applied to the same set of images. 
Again, the performance measures epD and MSEWh0ie, which are introduced in Chapter 
2, are used. The results are plotted in Figs. 4.11. From the epD plotting, we can 
see tha t the original balloon cannot reach a stable state  when the noise level exceeds 
0.4. The semi-rigid model performs better, producing good results up to noise level 
0.8. The performance of the content-guided model is even better and can tolerate 
noise level up to 1.2. This proves that the saliency map method is reliable even with 
high-level noise and the information it gathers helps make a balloon more reliable. At 
noise level 1.4, the &fd value of the content-guided is larger than  th a t of the semi-rigid 
model. This is because epo  is a smoothness measure and with more parts attached 
to the circle, the content-guided model is not as smooth as the semi-rigid one.

The local information gathered by the saliency map method is enough for a balloon 
to tell a bump from a gap. The semi-rigid model and the multi-scale model introduced 
in the previous chapters have the ability to perform contour completion but cannot
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Figure 4.9: Dealing with irregular shapes: (a) an irregular shape with an initialization; 
(b-c) two typical results produced by the original balloon models with different normal 
forces; (d) result produced by the content guided balloons with either normal force.

reach high-curvature areas. The content-guided model, however, can easily reach 
those areas with the help of local cues. Shown in Fig. 4.12 (a) is the image we used 
in Chapter 3 to show the semi-rigid model’s problem. Fig. 4.12 (b) shows the result 
found by the content guided method.

4.5 Conclusions
A balloon is a  global model because all snaxels have direct or indirect impact on one 
another. Moreover, a balloon can carry a priori shape information. It is a top down 
method tha t expands and converges to a contour tha t has the minimal energy on a 
potential field.

On the other hand, a bottom-up method such as the saliency map method gathers 
information from a small neighborhood. Through an iterative process, the information 
gathered is reliable and immune of random noise.

By combining the balloon model with the saliency map method, the content guided 
balloon inherits the power of both methods. Specifically, the balloon model combines 
image features, regularization factors, and knowledge-based constraints, while the 
saliency map method produces reliable local information. The combined model uses
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Figure 4.10: (a) an example test image with a noise level of 1.2; (b) the input edge 
image to the SM method; (c) the produced saliency map.

this information to guide a balloon’s searching process. W ith this extra input, the 
improved balloon model is faster and more robust in many cases.

Experiments provided proves that the new method is robust against random noise, 
bad initializations, and other sources of misconduct by the original balloon. Further
more, a content-guided balloon converges considerably faster due to its local steering 
ability. It can also reach high-curvature areas, solving the problem that plagues the 
semi-rigid and multi-scale models.
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Figure 4.11: Testing the noise-resisting property of the content-guided model. The 
test image has a unit contrast circle with zero mean Gaussian noise. Noise level in 
this figure stands for the standard deviation of the Gaussian noise.
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(c) (d)

Figure 4.12: (a) a  contour with both a bump and a  gap; (b) the input image to 
the SM method; (c) the saliency map produced by the SM method; (d) the contour 
successfully extracted by the content-guided model.
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Chapter 5

Controlled Accurate Search: A 
Combined Model

5.1 Introduction
In this chapter, we present several new ideas on how to accurately search for fuzzy 
contours. More importantly, these ideas are combined with those presented in the 
previous three chapters to form Actively Searching Contour Models (ASCMs). The 
resulting system can perform a controlled accurate search which, by our standards, 
should include being able to perform contour completion when needed, overcome the 
exact kind of edges specified, and provide ease of parameter choosing.

By accurate search, we mean tha t the strength of edges tha t a balloon is allowed 
to converge to, can be specified beforehand. During the iteration, a balloon would 
then overrun edges below the threshold and converge to those above the threshold. 
To achieve this objective, we propose two groups of methods.

The first group is aimed at providing the balloons with better potential fields. 
Since images are quite noisy, it is often difficult to differentiate legitimate edges from 
spurious ones, when using one single threshold. Even if a balloon has the ability 
to converge to edges with specified strength, it is not guaranteed tha t the edges the 
balloon converges to are all legitimate. To solve this problem, we propose a series of 
methods to pre-process noisy images so as to generate better potential fields, where 
the magnitudes of edges more accurately reflect their strength, and noise edges are 
greatly reduced.

The second set of methods consist of two parts. The first part improves the 
original balloon by using an adaptive inflating force. Unlike a constant inflating 
force, an adaptive one is computed locally for each snaxel, and is controlled by two 
parameters. The first param eter specifies the strength of edges a  balloon should 
converge to, and the second one controls the inflation level of a balloon. An adaptive 
force is “just-enough” to overcome image forces, thus reducing the side-effects of using 
a constant one. In the second part of the method, a backtracking strategy is presented 
to facilitate the conducting of a  multi-level feature search, which is complementary 
to the adaptive inflating force.
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The rest of this chapter is organized as follows: Section 2 discusses how to prepare 
potential energy fields from noisy images; Section 3 introduces the adaptive balloon 
models; and Section 4 describes the backtracking mechanism. In Section 5, we present 
a  global strategy to combine all the methods presented so far, to complete Part I of 
ASCMs.

5.2 Building up External Force Fields
In this section, we present a way to prepare external force fields, also called potential 
fields, for balloon models. The method was originally developed for ultrasound-like 
images, but is also suitable for any other images corrupted by random noise. It takes 
advantage of the fact th a t random noise does not have any support from its neighbors, 
and is based on the saliency map method introduced in the previous chapter.

5.2.1 Rectifying Edge Magnitudes
Since one of our objectives is to apply the developed m ethod to automatically seg
menting ultrasound images, it is necessary to introduce some background on ultra
sound images. Segmentation of ultrasound images has been plagued by so-called 
“ultrasound speckle” , which is due to the physical mechanism of ultrasonic devices 
[7]. Ultrasound speckle noise is often modeled as a multiplicative process [7], i.e., 
the speckle fluctuations in the signal are proportional in magnitude to the signal 
strength. This results in images with significant noise, even in very bright regions. 
Fig. 5.1 shows an ultrasound loin image, along with an edge image from a LoG oper
ator. As shown in Bovik’s analysis [7], the LoG operator can detect boundary edges 
accurately; however, it also produces a large number of erroneous edges due to speckle 
noise. Moreover, the erroneous edges in bright areas have a  large magnitude—even 
larger than boundary edges in dark areas—for two reasons: (1) the multiplicative 
nature of speckle noise; and (2) the LoG operator (and most other edge detectors) 
searches for sharp intensity changes which are good only for detecting edges cor
rupted by additive noise. Boundary edges are immersed in erroneous ones, and this 
phenomenon poses a problem for most segmentation systems, since differentiating 
useful edges from erroneous ones is difficult.

It is necessary to rectify the edge magnitudes so tha t the side-effects from the 
multiplicative speckle noise are reduced. As observed by Czerwinski et al. [17], the 
boundaries in an ultrasound image have the appearance of straight or gently curving 
line segments because they are cross-sectional views of the surfaces between tissue 
layers. Based on this observation, we propose using the saliency map (SM) method, 
developed by Sha’ashua and Ullman [44], to transform the ultrasound edge images. 
As introduced in the previous chapter, the SM m ethod uses a  saliency network to 
compute a saliency value for every edge pixel, so th a t an edge pixel is assigned a large 
value if it is part of a long straight curve, and otherwise is assigned a  small one. The 
transformed edge image is a better potential field for snakes, since the boundary edges 
are assigned a larger magnitude, and speckle edges are greatly reduced. Furthermore,
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(a) (b)

Figure 5.1: (a) an ultrasound image; (b) an edge image produced by a LoG operator 
with a  =  1.0.

Figure 5.2: (a) the edge image produced by a Sobel operator; (b) the saliency map 
with p =  0.5 and N  =  20; (c) the improved saliency map.

small gaps on boundary edges are filled in, leaving only larger gaps for the snake to 
cope with.

Since the saliency map method was designed to extract salient features from im
ages, it works with intensity values directly. However, an edge image contains not 
only magnitudes, but also directions; therefore, it is necessary to revise the saliency 
map method to take advantage of the direction information as well. We propose 
encoding this information in the initial values of a* and pu for every orientation of a 
given point, p. To this end, we first apply an edge detector {e.g., the Sobel operator) 
to the ultrasound image, and then normalize the edge vectors a t each point. For each 
orientation element of a given point, the edge vector is projected to the particular 
direction, and the result is thresholded and assigned to cr*. pi is then assigned 1, if Pi 
is active; otherwise it is assigned the penalty constant p.

An example is shown in Fig. 5.2. The ultrasound loin image shown in Fig. 5.1 (a) 
is used as the test data. The edge image, which is computed using a Sobel operator, 
and the resulting saliency map are shown in Fig. 5.2 (a) and (b), respectively.

(a) (c)
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(a) (b)

Figure 5.3: The potential energy related to the step edge in (a) is h, where tha t of 
the smoothed edge in (b) is h!.

It is easy to see th a t the saliency map is a better energy field for snakes, since 
the speckle noise is reduced and the boundaries are enhanced. We further propose 
improving the saliency map by calculating the saliency value for a given point p using

E{p) =  m  v x i p i E ^  + pi>E^]) (5.1)

where p? is the element whose direction is the opposite of p^s. In this way, the 
saliency value of a given point p is assigned the maximum saliency of all curves of 
length 2N  on which p is the middle point. It should be noted tha t Equation 5.1 is 
only an approximation of the new definition. The result for the same ultrasound loin 
image is shown in Fig. 5.2 (c), and shows some improvements: boundaries are thinner 
and better connected.

5.2.2 Non-M aximum Suppression
The potential fields produced by the SM method also have some side effects. For 
example, a thin boundary becomes a thin band because neighboring non-edge pixels 
also get larger saliency values. The result is similar to an edge image after being 
smoothed by a Gaussian filter. Ideally, only the edge pixels with the maximum 
magnitude in the neighborhood should be marked as edges in the potential field. A 
saliency map is not really suitable for most of the minimization methods for snakes, 
mentioned in the literature. This is because, during the minimization process, only 
a small neighborhood (usually a 3x3 grid) is checked, and the difference in edge 
magnitude is the base for com putation of the edge force. Due to the smoothing 
nature of the SM method, the edge magnitude difference between a  pixel and its 
immediate neighbors is quite small, and does not reflect the strength of the original 
edge.

As shown in Fig. 5.3, a step edge produces an external force with strength propor
tional to its magnitude, h ; however, the largest force produced by the smoothed edge 
is h \  which is substantially smaller. The saliency map, then, actually produces a less 
effective potential field even though the magnitude of edges might have increased, 
and the noise has been reduced. Moreover, the position of the largest magnitude 
difference has also shifted, resulting in less accurate boundary location.
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noise STD 0.40 0.60 0.80 1.00
before processing 0.162 0.242 0.325 0.403
after “AND” operation 0.156 0.193 0.254 0.263
after tracing 0.158 0.196 0.263 0.273

Table 5.1: Average noise intensity values before and after pre-processing.

VVe propose a two step post-processing method to reduce these side effects. The 
first step performs a thresholding procedure on the original edge image to obtain 
the position of edges. Then, an “AND” operation is performed between the original 
edge image and the saliency map. The magnitude of the pixels identified as edges by 
the thresholding process is replaced with the corresponding saliency value. Since a 
second step tha t traces edges from those already identified has been developed, the 
threshold-choosing process does not have to be very accurate.

The second step performs our version of hysteresis and non-maximum suppression. 
Using the saliency map, for each edge pixel, the two most significant1 directions are 
derived, and are also traced for edge pixels not detected in the first step. This 
step is necessary because the SM method can perform gap completion for small or 
weak gaps, and these results should be included. To avoid introducing non-legitimate 
edge points, every new edge pixel traced should meet one more criterion: its most 
significant direction should point to the pixel it is traced from. In summary, these two 
steps perform thresholding with hysteresis, and achieve non-maximum suppression by 
not introducing non-maximum edges to the final results.

We use a synthetic image to demonstrate the power of our pre-processing method. 
Fig. 5.4 (a) shows a contour with a constant unit intensity. The synthetic image is 
then added, with zero mean Gaussian noise and standard deviations of 0.4,0.6,0.8, 
and 1.0. Two of the processed results are shown in Figs. 5.4 (b)-(d) and Figs 5.5
(a)-(d).

Since the ground tru th  is a known contour with unit intensity, the average intensity 
values of the contour and background are used as performance measures. These values 
(computed before and after processing) are shown in Tables 5.1 and 5.2. We observe 
that the average values of the background noise decrease, while those of the contour 
increase—except for the last image, which is heavily immersed in noise. After the non
maximum suppression, the average contour intensity increases by 5.46%. Although 
the average noise intensity also increases, the level of 2.54% is much smaller.

Fig. 5.6 illustrates the processed results for the ultrasound image shown in the 
previous section (Fig. 5.1 (a)). Performance measures are not computed due to the 
lack of ground tru th .

‘The two most significant directions associated with each pixel: (1) the one with the largest 
saliency value; (2) the opposite of the first direction.
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Figure 5.4: (a) a contour with unit intensity and a noise level of 0.4; (b) the saliency 
map; (c) after the AND operation; (d) after non-maximum suppression (tracing).

5.3 Adaptive Inflating Forces
For the original balloons, the inflating force and the internal smoothing force are 
expected to perform all the tasks: overcoming edges below a certain strength level, 
performing contour completion, and reaching high-curvature areas. The last two ob
jectives are even contradictory to each other. The original balloons are not equipped 
with anything tha t can differentiate between gaps and bumps, and thus are not able 
to achieve both objectives a t the same time.

Our solution for these problems is to dissect the general purpose forces into several 
specific ones, so tha t each of them performs one function. Below is a list of what has 
been achieved in the previous three chapters:

•  Chapter 2 introduced a semi-rigid balloon model tha t provides extra stiffness 
force to counter the peeling effect. This reduces the instability of the energy 
minimization method, and it also helps in performing contour completion.
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Figure 5.5: (a) another example with noise level 0.8: (b) the saliency map; (c) after 
the AND operation; (d) after tracing.

•  Chapter 3 proposed an unbiased, non-shrinking, multi-scale internal energy 
model. This new internal energy model removes the contracting force with
out sacrificing its smoothing power. The multi-scale part of the model provides 
a controllable extra smoothness constraint, and is useful for contour completion.

•  Chapter 4 presented a content-guided searching model which provides a way 
to reach high-curvature areas. Using information gathered from the image, the 
model is able to guide itself in converging to high-curvature areas where the 
smoothing forces are a t their greatest.

In this section, we propose an adaptive inflating force to perform a controlled 
accurate search. First, problems with using a constant inflating force are discussed. 
In order to overcome the largest unwanted edges, and the contracting force from the 
internal energy, a constant inflating force is often set to a  large value. Inevitably, a 
chosen constant inflating force is too large when encountering weak boundaries. At
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noise STD 0.40 0.60 0.80 1.00
before processing 1.017 1.068 1.040 1.057
after “AND” operation 1.460 1.126 1.067 0.801
after tracing 1.501 1.163 1.131 0.855

Table 5.2: Average contour intensity values before and after pre-processing.

ii \  '1

(a) (b)

Figure 5.6: Results for the ultrasound image shown in Fig. 5.2: (a) after the AND 
operation; (b) after tracing.

gaps, this inflating force would push the balloon with its maximal strength, which 
partially causes the peeling problem. Since the contracting force is removed from 
our new internal energy model, an inflating force needs to provide a small force 
to overcome the tension and make the snake expand, and also to overcome image 
forces below a predefined threshold. Since the inflating force is no longer needed for 
reaching cusps and bumps, we propose using a “just-enough” adaptive inflating force, 
computed locally for each snaxel, to overcome the image force.

As discussed in Chapter 3, a balloon with the new internal energy model is easily 
pushed outward or inward: the tension does not have any effect if the distances 
between every neighboring snaxel pair are approximately the same as the average. 
W ith regard to smoothness, a parallel outward or inward shift of a snake part would 
not cause much energy change, as long as it stays smooth. In practice, the small force 
needed to make a balloon expand is easily decided by a few trials.

To perform an accurate search, it is necessary to be able to predict and control 
what levels of edges a balloon converges to. Now that an inflating force does not have 
to deal with a  contracting force, the strength of the inflating force reflects the strength 
of edges a  balloon will converge to. To overcome noise edges, an inflating force should 
be as large as the strength of noise edges in the image. A threshold computed from 
the statistics of an edge distribution is a  good estim ate of the strength of noise edges. 
Using this method, the inflating force can be computed systematically, instead of 
chosen empirically.

Traditionally, an inflating force is apphed to every snaxel, regardless of what 
condition the snaxel is in. We argue tha t an inflating force should be used only to
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Figure 5.7: Using a  constant inflating force: (a) the image force, f image, is the only 
external force; (b) a constant inflating force as large as the noise threshold, tedge', (c) 
the composite external force. Shaded areas indicate tha t the composite force is too 
large or too small.

assist a balloon in overcoming noise edges. When a snaxel is attracted by legitimate 
edges, it is not necessary to have an assisting inflating force. Even worse, it may be 
detrimental to the balloon, since the added inflating force can reduce the smoothing 
power of the internal energies. To illustrate this problem, Fig. 5.7 shows a constant 
inflating force added to varying image forces, where t tension is the minimal inflating 
force needed to overcome the tension, and tedge is the edge threshold. For the shaded 
area a in Fig. 5.7 (c), the composite of the image force and the inflating force is less 
than ttension> and, thus, is not enough to defeat the tension. For area b, however, the 
composite force is larger than t ten3ion and would affect the internal energies’ ability 
to maintain smoothness.

Removing the shaded areas from the composite force produces a more appropriate 
composite force. Fig. 5.8 (a) shows the desired composite force and (b) the adaptive 
inflating force, after removing the image force from the composite force. To sum
marize, the composite force is adjusted to be t tension when the absolute value of the 
image force is less than the edge threshold tedge• For image forces larger than tedge, 
which means the balloon is being pulled forward by the image forces, the inflating 
force is reduced to t tensi(m-tedge• On the other hand, the inflating force is set to tedge 
when the image forces are dragging the balloon, i.e., when the image force is smaller 
than tedge.

By computing an adaptive inflating force locally for every snaxel, we ensure that 
each snaxel is only subjected to a minimal composite force, ttensiim, when the image 
force is within a predefined threshold. By adjusting this force, we can control the 
inflation level of a balloon. On the other hand, adjusting the edge threshold, tedge, 
controls the strength of edges tha t a balloon is allowed to converge to. These two 
parameters are separated from each other, and thus provide better control of the 
searching process.
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Figure 5.8: An adaptive inflating force: (a) the expected final external force after 
compensating for the insufficient part and removing the excessive part; (b) the adap
tive inflating force plotted against the underlying image force.

5.3.1 Estim ating Image Forces
The dynamic programming algorithm that minimizes the energy of a balloon uses a 
nine-pixel neighborhood, as shown in Fig. 5.9. Image forces are estimated from these 
nine pixels, and then the corresponding inflating forces are computed. To estimate the 
image forces, we first compute the normals to the contour (in both directions), which 
are shown as arrows and have components (u l x, u l y) and (u2x, u2y), respectively. For 
any u, we consider the two points in the 8-pixel neighborhood of PXiV which lie closest 
to the line through PXyV in the direction of u. For example, for u l  in Fig. 5.9, pixels 
Px,y+1 and Pz+li!,+i are the closest ones to u l .  The gradient values of these two points 
are then used to estimate tha t of a new point in between them. The value of the 
interpolated gradient is

u lx , . u lu — u lx , , ,
91 =  —r 9 { x  +  1, V + 1) + ------ : g{x, y +  1)Ulj, u l y

where g(x ,  y)  is the gradient value a t the position (x, y) .  Similarly, the interpolated 
gradient a t a point on the opposite side of PXyy is

w2z t  - t \  , n i x  /  \

92 = la ,9{x ~ l'9- V  + '>

The image forces are then calculated using the following formula:

H im age =  (^t -  #(x, y ) )u l  

f2 im a g e  =  ( ^ ( x ,  y)  -  g2)u 2

where u l  and u2 are unit vectors.
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Figure 5.9: Estimating image forces for adaptive inflating force computation from a 
3x3 neighborhood.

5.3.2 Backtracking
An adaptive inflating force gives the balloon models the ability to choose what levels of 
edges to converge to. Choosing an appropriate magnitude for the adaptive inflating 
force is also made easy. However, there is still a thresholding process involved in 
deciding how large the inflating force should be. For noisy images, it is inevitable 
tha t there will be some gaps or weak parts on the object boundaries. Although the 
adaptive inflating force is designed not to interfere with the function of the internal 
energies, the regularized solutions provided by the contour completion function are, 
a t best, an informed guess.

Unless the gaps on the object boundaries are clean, there is generally some useful 
information tha t could be used. Usually, the edges are not totally missing only 
weaker than other parts. Thresholding with hysteresis is a common practice in edge 
detecting to take advantage of this fact. We instead propose a searching strategy, 
called backtracking, to look for weaker features.

The searching strategy is achieved by systematically changing the inflating force 
applied to a balloon. The force is chosen to be initially large and outgoing, but is 
flipped in direction, and reduced in magnitude, after reaching its first equilibrium. 
The process is repeated until the inflating force is small compared to other snake 
forces, i.e., when a global minimum is found. The searching strategy makes it possible 
for a part of the snake to backtrack to areas previously visited and look for weaker 
features— a property th a t is crucial in the segmentation of noisy images.

An illustration is given in Fig. 5.10. The snake starts from contour A, and the 
object boundary of interest is B. There are some gaps along the boundary, as is the 
case for edges derived from real-life noisy images. A possible first-try result is shown 
as boundary C, which is over-inflated. The major factor tha t makes the snake stop at 
point C is the internal force from other parts of the boundary. Once it has reached the 
first equilibrium, the inflating force is changed in direction and reduced in magnitude;
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Figure 5.10: An illustration of the backtracking mechanism, 

this makes the snake backtrack, and likely converge to weaker features.

5.4 A Combined M odel
So far, we have presented a series of ideas that comprise our balloon-based ASCMs. 
These ideas were developed for one common purpose: to actively search for contours 
in a  controlled manner, and with accuracy. In this section, we combine them into one 
framework that makes systematic use of these models. Fig. 5.11 is a diagram illus
trating  contour extraction using ASCMs. The process can be divided into two steps: 
the pre-processing step and the searching step. The pre-processing step includes edge 
detecting, saliency map computation, non-maximum suppression, and inflating force 
estimation. It is a preparation step tha t provides the searching module with a  rectified 
edge map as a potential field, a saliency map for content-guiding, and an estimated 
starting value for the inflating force. Before the searching process is started, a rough 
initialization should be provided by either an operator or an initialization program.

The searching step is a  loop tha t consists of three sub-steps: (1) energy min
imization with all modules enabled; (2) continued energy minimization with only 
the content-guided module enabled; (3) parameter adjusting. This step performs the 
backtracking searching procedure described in the previous section. The first sub-step 
is to search for contours with all four modules enabled (see step [2.1] in Fig. 5.11). The 
inflating force is first set to the largest possible value estim ated by the pre-processing 
step, and the multi-scale and semi-rigid modules are adjusted to have maximum effect. 
This is to ensure tha t the resulting balloon a t the first equilibrium is over-inflated, 
setting the search area for later steps. The second sub-step is added to reduce the 
effects tha t the multi-scale and semi-rigid models might produce. For example, the 
smoothing power from the multi-scale model might prevent a balloon from converging 
to a sharp comer. By disabling these two modules, the balloon would dissipate the 
extra energy produced by them, and converge to sharp comers.

The third sub-step prepares for the next round of energy minimization. First, the
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Figure 5.11: A diagram illustrating contour extraction using the Actively Searching 
Contour Models.
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direction and magnitude of the inflating force are adjusted. The magnitude is reduced 
by a certain percentage, for example 10% to 20% every time. Since all modules 
interact with one another, others should be adjusted as well when the inflating force 
is changed. This is to ensure that the forces generated by these models have the 
same order in magnitude. One exception is the content-guided searching module. 
The weight for this energy is maintained at its original level because this force is 
generated from image content, and is reliable.

The parameters involved in these component modules can be adjusted in the 
third sub-step as well. For example, the threshold for the curve tracing method in 
the content-guided module can be lowered to allow tracing through weaker edges. 
Another im portant parameter to adjust is tlensian- Generally, this parameter should 
be reduced when the inflating force is reduced.

It should be noted tha t although there are a lot of parameters used in these 
component modules, choosing parameters is not difficult. We have demonstrated in 
the previous chapters tha t a fixed set of parameters works well for the same category 
of images. Also, for a specific parameter, a large range of values can be used, showing 
the robustness of the algorithms themselves.

5.5 Experiments
Two parameters, namely tedge and t ten3ion, are used to control the adaptive searching 
process. The first experiment tests how t ten3XOn controls the inflating level of a balloon. 
As introduced in Chapter 2, synthetic images that we generate contain a unit-contrast 
circle with four gaps of controllable sizes (see examples in Fig. 2.15). In the first 
experiment, a  circle with gap size 30 and zero noise level is used. The performance 
measures, MSEgap and MSEntmgap, are again used to measure the closeness between a 
balloon and the ground-truth circle. MSEgap measures the difference for the gap part 
of the circle while MSEntmgap measures that for the non-gap part.

In this experiment, an adaptive balloon is repeatedly applied to the testing image 
with te(ige fixed and t tmaim  increased from 0.15 to 0.24, a t an increment of 0.03. 
After one round of computation, tedge is increased to a new level, and the process is 
repeated. Fig. 5.12 plots the performance measures, MSEgap and MSEn(mgap, against 
ttension for three t edge levels, 0.20,0.25, and 0.30. From the MSEnongop plot, we observe 
that, for the non-gap part of the circle, the resulting balloon is equally close to the 
ground-truth circle under a  different tedge- Switching to the MSEgap plot, we can see 
that, for a specific tet/ge, MSEgap increases when t ten3ion increases. This indicates that 
ttension controls the inflating level of the balloon. For different levels of tedge, M S E gap 
increases at a similar pace, and the values are in the same range, which means that 
tedge does not affect the inflating level of the balloon. We conclude, therefore, tha t 
the param eter t tensum alone controls the inflating level of a balloon.

The second experiment compares the performance of balloons using an adaptive 
inflating force with those using a constant force. The testing image in the first ex
periment is utilized again. For the balloon using an adaptive force, t tm3ion is set to 
0.15, which is the minimal force required. tedge is increased from 0.15 to 0.30, with
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an increment of 0.05 each time. For the balloon using a constant force, the inflating 
force is set to the same value as tedge used by the adaptive balloon. The performance 
measures are plotted in Fig. 5.13, where small squares indicate th a t the balloon can
not reach a stable state with parameters set to the given values. From this figure, we 
observe th a t a constant inflating force cannot produce satisfactory results if it is set 
too large. This is because the peeling problem occurs a t the gaps and spreads to the 
non-gap parts. On the other hand, an adaptive force is equal to the minimal force 
ttension a t gaps, which is substantially smaller than tedge, and thus less likely to incur 
the peeling problem. This is further illustrated in Fig. 5.14, using a contour with 
a large gap on it. Fig. 5.14 (c) and (d) show two typical results of the traditional 
balloon, with the inflating force set to 0.22 and 0.30, respectively. Fig. 5.14 (b) shows 
the result produced by the adaptive balloon with tedge set to 0.30. In conclusion, an 
adaptive balloon is less sensitive to parameter choosing, and is less likely to incur the 
peeling problem.

To test the accuracy of the adaptive searching process, a testing image with multi
ple concentric circles is generated (see Fig. 5.15 (a)). The intensity level of the circles 
increases by about 0.07 from inside out, starting from 0.24. An adaptive balloon is 
repeatedly applied to the image, with an initialization well inside the smallest circle. 
We set ttension to 0.15 and tedge to various values from 0.16 to 0.64, with an incre
ment of 0.02. Each time, the intensity of the circle tha t is extracted is recorded and 
compared to tedge. Fig. 5.15 (b) plots the intensity of the circles extracted, against 
the given tedge value. We can easily see tha t the actual results fit the expected ones 
quite well. We conclude tha t the param eter tedge controls the strength of edges that 
a balloon is allowed to converge to.

To prove tha t the two parameters, tedge and tension> are separated from each other, 
another experiment is conducted. In the testing image shown in Fig. 5.15 (a), four 
gaps are added to every circle. Each circle has the same percentage of its contour 
missing, with the third one having a radius of 50 and a gap size of 20 (see Fig. 5.16
(a)). For a traditional balloon, a typical result is shown in Fig. 5.16 (b), with the 
inflating force set to 0.35. Due to the peeling problem, the balloon converges to circles 
with far larger intensity levels. For an adaptive balloon with tedge set to 0.35 and 0.41, 
respectively, the results are shown in Fig. 5.16 (c) and (d). From its performance at 
gaps, we conclude tha t tedge does not control the inflating level of the balloon.

The following several experiments illustrate the benefits of the backtracking pro
cess. Fig. 5.17 shows that this process makes it possible for a balloon to find less 
strong edges. Fig. 5.17 (b) is the first equilibrium state of an adaptive balloon with 
the maximum tedge. tedge is then reduced and the direction is changed to the opposite 
one. After several rounds of backtracking, the final result is reached and shown in 
Fig. 5.17 (c).

Fig. 5.18 illustrates the importance of the second sub-step of the backtracking 
process. This figure shows a contour with sharp corners, which is hard to reach if the 
multi-scale and semi-rigid modules are enabled. In the second sub-step, the models 
are disabled to allow the balloon to converge to the corners shown in Fig. 5.18 (c).

The next experiment (Fig. 5.19) illustrates that, even if there are not any weaker
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edges to be found, the backtracking process can produce the best regularized solution. 
Fig. 5.19 (a) presents a contour with a large opening. Figs. 5.19 (b) and (c) show 
the first two equilibrium states, with one over-inflated and one over-deflated. After 
several more cycles, the balloon produces a better solution (Fig. 5.19 (d)), which is 
neither over-inflated nor over-deflated, because of the reduced tedge.

The next several experiments use various real images to test the Actively Searching 
Contour Models. Figs. 5.20, 5.21, 5.22, and 5.23 are a group of ultrasound loin images 
taken from live pigs. The ASCMs are used to outline the contour of the loin object, 
and a subsequent step is conducted to estimate the size and weight. Each of the 
figures, except for Fig. 5.23, shows the original image, a saliency map produced by 
the pre-processing module, and the first and last equilibrium states of the ASCMs.

Figs. 5.20 and 5.21 dem onstrate the ASCMs’ ability to converge to contours with 
various gaps. By invoking the backtracking process, the final results provide improved 
regularized solutions for large gaps. This property is also illustrated by Fig. 5.22. 
Fig. 5.23 shows tha t ASCMs can skip less strong curves inside the loin object, and 
converge to the real boundary.

Fig. 5.24 using the example of a cup image. Results presented are produced by 
an adaptive balloon, as well as the traditional balloon model. It should be noted 
that the balloon using a constant force overruns the weak part of the contour and 
converges to the outer rim of the cup.

Fig. 5.25 is a CT medical image example that demonstrates the versatility of the 
ASCMs. By changing the direction of the initial inflating force, the balloon can either 
expand or shrink to search for the contour. For the expanding balloon, an appropriate 
inflating force is chosen so th a t the balloon converges to the contour shown in Fig. 5.25 
(f), instead of those less strong curves inside the contour.

5.6 Conclusions
In this chapter, we first present a pre-processing method tha t produces reliable po
tential fields for snakes, from noisy images. The second part describes an adaptive 
inflating force which is easier to control and has fewer side effects. Finally, the meth
ods introduced in Chapters 2 to 5 are put together in a framework to form the Actively 
Searching Contour Models.

The pre-processing method is based on the Saliency Map method proposed by 
Sha’ashua et al., and is quite robust against random noise. The SM method uses 
an iterative process to gather local information. Edges from object boundaries are 
reinforced using the information gathered, and noise edges are substantially reduced. 
A second step tha t performs hysteresis and non-maximum suppression is also in
troduced. Results show tha t the pre-processing method is effective for ultrasound 
images, and other images with random noise.

The adaptive inflating force is designed to reduce the side-effects resulting from 
a constant inflating force. By computing an inflating force locally for each snaxel, 
a  snaxel is not subjected to an excessively large inflating force when the underlying
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image provides no image forces. Moreover, an adaptive inflating force is more accurate 
and controllable when two parameters are adopted, one used to control the strength 
of edges tha t a  snake is allowed to converge to, and the other to control the inflation 
level of a  balloon. A backtracking process is also introduced to search for any skipped 
less strong edges.

The methods introduced in this chapter are combined with those from previous 
chapters. The resulting framework is aimed at controlled accurate search. The advan
tages of the combined framework are threefold: (1) it can perform contour completion; 
(2) it can overcome edges below a given threshold; and (3) it allows for ease in choos
ing parameters. A diagram is provided to illustrate when and how to take advantage 
of all the separate modules to achieve the best performance. Finally, experimental re
sults are provided to illustrate the advantages of adaptive balloons and the combined 
ASCMs.
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Figure 5.12: Testing the effect of te(ige and t tensi(m. The test image is a circle (radius 
50) with four gaps of size 30.
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Figure 5.13: Comparing an adaptive balloon with the traditional balloon. The pa
rameter, ttendon, for the adaptive balloon is set to 0.15.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(c) (d)

Figure 5.14: An experiment on parameter sensitivity: (a) a contour with a gap; (b) 
the result using the adaptive balloon; (c) and (d) results of the traditional balloon 
with different inflating forces. It should be noted tha t the balloon shown in (d) is not 
able to reach a stable state.
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Figure 5.15: (a) a test image for accuracy testing. The third circle from inside has a 
radius of 50; (b) a plot of the extracted circles’ intensity levels against the parameter
tedge-
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(c) (d)

Figure 5.16: (a) multiple concentric circles with gaps; (b) a result using the traditional 
balloon with a constant force of 0.35; (c) and (d) results of the adaptive balloon with 
the inflating force set to 0.35 and 0.41, respectively.
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(a) (b) (c)

Figure 5.17: (a) a contour with some weak parts; (b) the first equilibrium state of an 
adaptive balloon; (c) the final result after several cycles of backtracking.

(a) (b) (c)

Figure 5.18: (a) a square with sharp corners; (b) a balloon with multi-scale and semi
rigid modules is not able to reach corners; (c) the balloon converges to the corners 
after disabling the two modules in the second sub-step.
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(C) (d)

Figure 5.19: (a) a contour with a  large opening; (b) and (c) show the first two 
equilibrium states of the backtracking process; (d) the final state, which is a better 
regularized solution.
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Figure 5.20: (a) a loin image; (b) its saliency map; (c) and (d) the first and final 
states.
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Figure 5.21: Another loin image example: (a)-(d) the loin image, its saliency map, 
and the first and last equilibrium states.
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Figure 5.22: The third loin image example: (a)-(d) the loin image, its saliency map, 
and the first and last states of a balloon.

(a) (b)

Figure 5.23: The fourth loin image example: (a) the loin image; (b) the contour 
extracted.
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(a) (b)

(c) (d)

Figure 5.24: A cup example: (a) the cup image; (b) its saliency map; (c) the adaptive 
result; (d) the result produced by the traditional balloon.
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(a) (b)

(c) (d)

Figure 5.25: A CT medical image example: (a) the CT image; (b) its saliency map; 
(c) and (d) an initialization for a  shrinking snake, and the corresponding result; (e) 
and (f) an initialization for an expanding balloon, and the result produced.
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Chapter 6 

Shape-Model Guided Search

In this chapter, we present a  method to combine a grammatical model that encodes 
a priori shape information with the ziplock snakes presented by Neuenschwander 
et al. A competing mechanism is adopted to take advantage of the shape models 
without inducing excessive computation. The resulting model-based ziplock snakes 
have many advantages over the original model: they can accurately locate contour 
features, produce more refined results, and deal with multiple contours, missing image 
cues and noise. This model-based ziplock snake is part of our Actively Searching 
Contour Models (ASCMs) although it is not based on balloons. However, it shares 
the idea of active search with the models introduced in the previous chapters and 
requires a trivial initialization as well.

6.1 Introduction
By combining image information and smoothness constraints, Active Contour Models, 
or snakes, are effective and robust in contour extraction. In most papers on snakes, 
an initialization close to the desired contour is assumed to be provided, a require
ment which is inappropriate in many cases. The ziplock snake model [38] presented 
by Neuenschwander et al., however, needs only two user-supplied endpoints. The 
optimization process for a ziplock snake starts from the two endpoints and progresses 
towards the center of the snake. During the process, the image potential is progres
sively turned on to clamp the two ends of the snake on to an image contour. The 
ziplock snake model reduces the initialization need for a snake to merely specifying 
two endpoints. However, a  ziplock snake is easily confused by an image potential 
with multiple contours due to the lack of an inherent global model.

To take advantage of a priori information in contour extraction, Olstad and Torp 
proposed incorporating a grammatical model into snakes [39]. Regular expressions 
are used to describe contour models. For example, a description for the square in 
Fig. 6.1 (a) is (LL*R )*, where L stands for a  short straight line and R a 90° angle. 
In their experiments, for this particular example, 35 evenly spaced radial rays were 
chosen with 40 candidate points on each of them (Fig. 6.1 (b): only a few rays and 
points are shown for typographical purposes.) A candidate solution is a polygonal
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(a) (b)

~ 3

(C) (d )

Figure 6.1: (a) a square; (b) rays and candidate points for the Olstad method; (c) a 
difficult case for choosing candidate points; (d) two user-selected starting points for 
a ziplock snake.

curve that connects a series of points with one from each ray. To apply the a priori 
information, each point is in turn assigned every possible symbol from the above 
regular expression. Any discrepancies between the actual curvature and the one 
associated with the symbol produce a  penalty in the format of an energy term. The 
minimization is achieved by using the time-delayed discrete dynamic programming 
[3] method. The following problems with their method were noted: (1) A new set 
of candidate points needs to be specified for every new image. The number and 
positions of these points are not easy to decide (For an example, see Fig. 6.1 (c).) (2) 
The amount of computation is proportional to the square of the number of points. 
(3) The resulting grammatical representation is not necessarily a valid sentence of 
the given regular expression. One thing to emphasize is tha t the neighborhood used 
by their method is all the points on a specific ray. This number is usually much 
larger than the traditional neighborhood, which is a 3x3 grid. In essence, Olstad et 
al.'s method searches a large space1 for a combination tha t best fits the given regular 
expression. The computation is prohibitive if the images are large.

In this chapter, we devise a method tha t combines a grammatical model with 
ziplock snakes. The resulting model-guided ziplock snakes are able to differentiate 
model-conforming contours from those not conforming, and thus the computation is 
moderate. In the remaining part of this chapter, Section 2 discusses how to encode a 
priori information and Section 3 presents how ziplock snakes work. How to integrate 
them is proposed in Section 4 and the results are reported in Section 5.

6.2 Encoding a  p r i o r i  Information
Grammars, a powerful tool to describe shapes, have been widely used in Syntactic 
P attern  Recognition. In this paper, regular expressions are used to encode shape 
models. An example will be shown to illustrate the basic concepts. Readers are 
referred to [39] and references therein for a detailed account of the grammatical theory. 

Since ziplock snakes start from two user-supplied endpoints, the encoding should

1 It is in fact the whole space that is occupied by the contour to be extracted.
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start from those points as well. For the square shown in Fig. 6.1 (d), if positions a and 
b are selected by a  user, then L* RL* RL* RL* R 2 fully describes the counter-clockwise 
contour starting from a. An appropriate regular expression can also be given for 
the clockwise contour starting from 6. Fig. 6.2 shows a nondeterministic finite-state 
machine tha t could be used to match patterns to this regular expression.

L L L L

R RRR

Figure 6.2: A nondeterministic finite-state machine for the regular expression that 
describes a rectangle.

A state table is generated for every nondeterministic finite-state machine. Ta
ble 6.1 shows the corresponding state table for the above example. For each state, 
there are one or two next states associated with it, depending on whether it is a termi
nal state or not. For a terminal state, a symbol is also associated with it. To further 
represent the expected length of certain lines or arcs, we add an average length and 
a deviation value for some terminal states (such as states 2 and 5) as attributes to 
the grammar.

6.3 How Ziplock Snakes Work
A ziplock snake consists of two parts: an active part and a passive part (see Fig. 6.3). 
The two parts are separated by moving force boundaries, and the active part is further 
divided into two segments, indicated as head and tail respectively. The initial positions 
of the head and tail segments are specified by an operator and /o r a pre-processing 
module. The passive part is then generated by an interpolating method, such as the 
Bezier’s curve method, using the force boundaries as input. Unlike the procedure 
for a traditional snake, the image potential is turned on only for the active part of a 
ziplock snake. Starting from two short pieces, the active part is iteratively optimized, 
and the force boundaries are progressively moved towards the center of the snake. 
Each time that the force boundaries are moved, the passive part is re-interpolated 
using the position and direction of the end vertices of the two active segments.

Compared with traditional snake models, ziplock snakes need far less initializa
tion effort and are less affected by the shrinking effect from the internal energy term. 
Moreover, the computation process is more robust because the small excursion as
sumption is always satisfied [38], i.e. the active part whose energy is minimized is

2(L*i?)* is a more compact regular expression that generates approximately the same set of 
sentences. The longer expression is chosen because it can accommodate attributes for each symbol. 
For example, different attributes can be associated with each of the four L's in the longer expression.
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State Symbol N extl Next2 A* £7
0 - 1 - - -
1 - 2 3 - -
2 L 1 - 5 2
3 R 4 - - -
4 - 5 6 - -
5 L 4 - 20 5
6 R 7 - - -
7 - 8 9 - -
8 L 7 - 20 5
9 R 10 - - -
10 - 11 12 - -
11 L 10 - 10 4
12 R 13 - - -
13 - - - - -

Table 6.1: The corresponding state  table for the autom aton shown in Fig. 6.2. fj. and 
a  are the expected length and deviation of a certain graphical element such as an arc 
or a straight line denoted by the corresponding symbol.

always quite close to the contour being extracted. The small excursion assumption 
is necessary for the underlying mathem atical theory of the deformable method, and 
this is why a close initialization has to be provided for the traditional snake models.

As stated in Section 1, ziplock snakes are easily confused by multiple contours or 
missing contour parts due to the lack of a  global model. Fig. 6.4 shows two difficult 
cases for ziplock snakes. For the image with multiple contours, a ziplock snake is not 
able to tell which direction is more appropriate, and the result depends largely on the 
shape and position of the passive part. For the contour with gaps, a ziplock snake 
would stop a t the gaps and find only part of the contour.

6.4 Combining Ziplock Snakes with the Grammat
ical Model

Unlike the traditional snake models and balloons, a ziplock snake starts from two end
points, thus making it possible for sequentially encoded shape model information to 
govern the searching process. To use the shape information with a  balloon, the shape 
model has to be aligned with the balloon before each round of energy minimization. If 
only one alignment is used, the error involved in this process will limit the performance 
of the shape model. This is the main reason why a ziplock snake is chosen instead of 
a  balloon. Possible solutions to combining a shape model with a  balloon are discussed 
in the Future Work section of Chapter 7.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



passive part

head

tailforce boundaries

Figure 6.3: An illustration of a ziplock snake. The head and tail are the active parts 
tha t are under the influence of the image potential. The force boundaries are moved 
gradually to convert more of the passive part into active part.

(a) (b)

Figure 6.4: Difficult cases for ziplock snakes: (a) multiple contours crossing one 
another; (b) a single contour with gaps.

6.4.1 Competing Interpretations
Given the regular expression tha t describes a contour to be extracted, one can gener
ate every possible sentence tha t can be used to interpret the two active segments. For 
example, for the counter-clockwise contour starting  from a as shown in Fig. 6.1 (d), 
if the active segment is only 3 nodes long (excluding the first and last nodes), then 
all the possible valid sentences or interpretations are LLL, LLR, LRR, LRL, RLL, 
RLR, RR R , and RRL.

For this active segment, the best next-position3 is computed for every node using 
each and every one of the interpretations as a constraint. The constraint is expressed 
by a potential energy tha t is dubbed the grammatical energy. For every snake node, 
the grammatical energy is computed based on the discrepancy between the curvature 
measured a t this node and tha t given by the grammatical symbol assigned to it. The 
to tal energy for a specific interpretation is the sum of the grammatical energy of all 
nodes on the active segment. The best next-position derived using this interpretation 
is then recorded in a list, and then the process is repeated for the next interpretation. 
After all the computation is done, the next-position list is searched for the best (of 
all interpretations) move, i.e. the one with the smallest energy. The active segment

3 Considering a 3x3 neighborhood for every snake node [3].
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is thus best described by the corresponding interpretation and is moved to the best 
next-position found.

The above method is computationally expensive. The amount of computation 
increases exponentially because the number of possible interpretations increases ex
ponentially when the two active segments grow. Since many interpretations do not 
fit the underlying image information at all, the amount of computation can be re
duced. We now present a way to trim  unlikely interpretations while retaining the 
most reasonable ones. The idea is to keep the n  most “promising” interpretations 
after each round of computation and to derive new interpretations only from them. 
“Promising” is measured by the energy value computed for an interpretation, and the 
smaller it is the better.

For an active segment of length /, the number of all possible interpretations with 
length from 1 to I is about 2l — 1 (the number of nodes on a complete binary tree), 
and the trimmed-down number is bound by nl. An example is shown in Fig. 6.5. One 
thing to note is tha t such a binary tree can be constructed for any contour. This is 
because for any interpretation, at most two new ones can be derived from it.

starting point

1 2 3 4 5

1: LLLLL 2: LLLLR 3: LLLRL 4: LLRLL 5: LRLLL

Figure 6.5: A binary tree listing all possible interpretations shorter than 6 for the 
regular expression L m RL*RL* R L ' R. Solid lines indicate the paths to the five most 
possible interpretations.

Once a binary tree has been trimmed to a few branches, the energy minimization 
process is much faster. Each time, one of the interpretations is chosen as the best 
description of the active segment. Once the minimal energy has been reached, the 
force boundary of this active segment is moved one node closer to the center of the 
snake. To accommodate this new node, new interpretations are generated from those 
n  old ones. Since each interpretation can have two derivations, 2n new interpretations 
are generated and n  of those with smallest energies are retained.

The purpose of keeping n most probable interpretations instead of one is to tolerate 
errors and to introduce competition. Even if an interpretation is not considered as 
the best one a t one point, there is still a chance that one of its derivations may be 
when new information is introduced.

In conclusion, by having the n  best interpretations competing against one another, 
a  ziplock snake is not only governed by a valid instantiation of a shape model, but also
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open to new interpretations when the snake grows. The complexity of this algorithm 
is bound by n times tha t of the original ziplock snakes. However, a model-based 
ziplock snake converges more quickly and needs fewer iterations.

6.4.2 Predicting the N ext Step
After the two active segments are optimized, the passive part is re-interpolated based 
on the force boundaries (marked in Fig. 6.3). The position and tangent of these 
two points are the input to an interpolating method such as Bezier’s method. As 
introduced in Neuenschwander et al.'s paper, the interpolating process provides a 
regularized solution for the passive part. Moreover, it allows the snake to grow or 
shrink in a natural way, thus avoiding the shrinking problem of the original snake

After the interpolation, each of the force boundaries is moved one node closer 
towards each other. In other words, the interpolating process predicts a next step for 
each of the active segments. Now that a grammatical model has been incorporated 
and a list of n most reasonable interpretations is available, more information can be 
fed to the interpolating method to produce a better next step. Since the regular 
expression encodes shape information, the next symbol of an interpretation contains 
a priori information. On the other hand, image information is available to compute 
a likelihood value for each and every next symbol generated. Combining these two 
sources, posteriori probability values can be computed for every next symbol using 
Bayes’s rule.

Since there are n possible interpretations and each of them can produce one or two 
symbols, about 2n  next steps are generated. We now use m  to represent the actual 
number of symbols generated. Each next symbol contains curvature and direction in
formation for a possible next step, and, therefore, a  likelihood value can be computed 
by matching this information to the image content. A posteriori probability value for 
every next symbol is then computed using the following formula:

where nst is the ith next symbol and I stands for the image content. The denominator 
is the same for every next symbol and is removed from further computation.

To estimate P (nsj), we make use of two categories of information: (1) The energy 
value computed for an active segment using the interpretation from which ns* is 
derived as a  constraint. (2) A probability value computed for ns* based on expected 
length of line or arc th a t the current symbol stands for. This is to take advantage 
of the attributes added to the regular expression. For example, if L  and R  are both 
valid next symbols of the interpretation LL L L L , and the length of the active segment 
is approximately the same as the a ttribu te  p. given for current symbol L, then R  is 
the more probable next symbol. Formally, P (L \p(cs),a (cs))  is computed using:

models.

  P (ns,)P(tlr» .)
E l 'l l  P(na,)P(l|»Mi)

ex P(nSi)P(l\nSi)

(6 .1)

(6 .2)

1 e -(x-M)/(2<r2)(fx (6.3)
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D/ t \ / \ t w \  P{L) if TiSi^cs;
P(L\n{cs),a{cs)) -  |  1 0 _ p ( L) otherwise. (6.4)

where n(cs) and a(cs) are the mean and standard deviation of the expected length 
distribution for the current symbol cs. The length distribution is assumed to be 
Gaussian. A sample plot of P (L ) and 1.0 — P (L )  is shown in Fig. 6.6 for fj, =  100 
and a  =  20.

—i------- 1-----
NormaI( 100,20)

P(L) —  
1.0-P(L) —0.8

0.6

0.4

0.2

0
100 120 140 160 180 20020 40 800
L

Figure 6.6: A plot of a Gaussian distribution with /z =  100 and a  = 20. The 
corresponding P{L) and 1.0 — P{L) are also shown.

Each of the next symbols is then assigned a probability value:

P (n Si) =  P (E (I))P (L \n (cs),a (cs)), (6.5)

where P (E (I))  is a  probability value given the minimal energy E (I))  computed for 
interpretation I  during the last energy minimization step.

The next step is to estimate P(f|ns*) which is a likelihood value for next symbol 
nsi on the image content I. To estimate this value, all curves em anating from the force 
boundaries are first traced. This task can be efficiently done by using the saliency map 
method reported in Chapter 4 and needs to be done only once a t the pre-processing 
stage. Let k  stand for the number of curves traced. Once all the possible curves are 
traced, a compatibility value is computed for every combination of a next symbol and 
a  traced curve. For every next symbol, k  probability values are computed and the 
largest one is chosen as P(Z|ns,).

As an example, Fig. 6.7 (a) shows the current state of a ziplock snake and (b) shows 
two possible next steps for the right side active segment. Fig. 6.7 (c) displays all three 
curves traced from the corresponding force boundary. To compute a compatibility 
value for the No. 1 next step and the No. 1 traced curve, we chose to use the area
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encircled by them (Fig. 6.7 (d)). The size of the area indicates the distance between 
the two items. Precisely, P(/|nSi) is computed using:

P{li\nsi) = S(h) * exp (-p A (li, nsj)); 
P(l\nSi) =  maxjL1 P{li\nsi),

(6 .6)

(6.7)

where function A(li,nSi) is the normalized area encircled by lt and nsi within a 
predefined radius. Function 5(/,) is the normalized average edge magnitude on the 
traced curve l{.

force 
boundaries

possible 
next steps ^

all traced 
curves I

^  <■% ......
\

2
p" passive part

/
/

3-'

head ta*
b a

curve 1 next step 1

% ■ encircled
area

(a) (b) (c) (d)

Figure 6.7: (a) an intermediate state of a ziplock snake; (b) all possible next steps 
for the right-side active segment; (c) all traced curves from the corresponding force 
boundary; (d) compatibility is mapped through an exponential function of the shaded 
area.

6.4.3 Further Reducing Computation
Since only the n most promising interpretations are retained after each round of 
optimization, they tend to converge to one another. By converging, we mean tha t the 
n  interpretations share the leading part. For example, {LLLLL, LLLLR, LLLRR, 
LLLRL}  is the group of interpretations our algorithm produces for the square in 
Fig. 6.1 (d) at some point. The common leading part is LLL. All others are eliminated 
because LLL  best fits the underlying image information, and interpretations derived 
from it have larger probability values.

Since this behavior is expected in a typical execution, computation can be reduced 
by stopping the optimization for the leading common part. The different part, which 
is where the competition is focussed on, is of fairly fixed length most of time.
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6.5 Implementation and Experiments
The algorithm is implemented using the time-delayed discrete dynamic programming
[3] method. Grammatical energies are mapped through an exponential function:

„  _  j  1 — exp(—3 (ExpA ng  — x)) x  < ExpAng;
grammar |  1 — exp(—3(x  — ExpAng)) x  > ExpAng.

where ExpA ng  is the expected angle (from the grammar) and x  is the measured one. 
The parameter /3 is used to adjust the steepness of the energy function and is set to 
0.5 in our experiments.

The advantages of our algorithm are illustrated in the following experiments. The 
first experiment demonstrates its ability to accurately locate contour features, thanks 
to its underlying competing mechanism. For example, if given a regular expression 
L ’C L * (symbol C  has an expected angle of 135°) and an input image (Fig. 6.8 (a)), 
then an intermediate state  is as illustrated in Fig. 6.8 (b). At this point, the 4 
most promising interpretations are {LLC, LLL, LCL, CLL}4, all of which show that 
the competition is now focusing on the position of feature C. After more iterations 
(Fig. 6.8 (c)), the list becomes {LLLLLLC, LLLLLCL, LLLLLLL, LLLLCLL}, which 
means the snake has found a better match for C  and the competition has shifted to 
this new area.

head head head

force
boundaries

force ' 
boundaries

tail tail

Figure 6.8: (a) a contour; (b) an intermediate state; (c) after some more iterations.

The second experiment illustrates the ability of the algorithm to deal with multiple 
contours. Fig. 6.9 (a) shows an image with two overlapping contours, where a and b 
are the two user-initialized points. The original ziplock snakes fail because at positions 
c and d  they have no knowledge as to which contour to choose. W ith our algorithm, 
necessary information is effectively encoded using the regular expressions. If given 
the description for a square and necessary information on the length of the side lines, 
the square is extracted (Fig.6.9 (b)). Fig. 6.9 (c) shows the arch extracted when the 
description is changed to tha t of an arch.

The third experiment tests the robustness of our algorithm. As shown in Fig. 6.10
(a), a model-based ziplock snake is able to continue searching and find the right result 
even when image cues are missing temporarily (Fig. 6.10 (b)).

4The content of this list depends on the parameters chosen. Symbols are assigned to ail snake 
nodes excluding the first and last ones.
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Figure 6.9: (a) multiple contours; (b) the square is extracted when given a description 
for a square; (c) the arch extracted when the shape model is for an arch.

0 0 (b)

Figure 6.10: (a) a square with some gaps; (b) the square extracted successfully.

The robustness of the model-based ziplock snake is also illustrated by the following 
two experiments. The test image (Fig. 6.11 (a)) is again a square with missing parts, 
similar to the one used in the last experiment. However, the square in Figs. 6.11 (a) 
and 6.12 (a) has a unit contrast, and the background is filled with Gaussian noise with 
zero mean and a  standard deviation of 1.0 and 1.2 respectively. Figs. 6.11 (b) and 6.12
(b) show the saliency maps generated by the pre-processing module for curve tracing. 
Even with such a high level of noise, the squares are successfully extracted (Figs. 6.11
(e) and 6.12 (c)) with the help of a shape model. During one searching process, the 
ziplock snake deviates a little from the straight side line th a t it is supposed to follow 
(see Figs. 6.11 (c)-(d)). However, when it locates strong curves later, the deviation 
is corrected thanks to the shape model. In Figs. 6.11 (f) and 6.12 (d), darker areas 
indicate the part of image tha t is searched by the curve tracing procedure for possible 
next steps.

The last experiment shows the power of integrating attributes to the shape model.
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Shown in Fig. 6.13 (a) is an image with several rectangles. W ithout any attributes, the 
regular expression to describe any of the rectangles is exactly the same, thus making 
it impossible to tell one from another. W ith our model-based ziplock snakes, we 
simply specify the expected length and deviation for the side lines of each rectangle. 
W ith this extra a priori input, the right course is selected after posteriori probability 
is computed for every possible next step.

6.6 Conclusions
In this chapter, a shape model-based ziplock snake is presented and is shown to have 
some excellent properties. The shape models are encoded with a ttributed regular 
expressions tha t are more powerful in describing shapes than the regular expressions 
used by Olstad et al. A ttributes of a grammar are sometimes indispensable if the 
shapes to be extracted are structurally similar.

The shape models are then used to guide the searching process of a ziplock snake. 
The ziplock snake models are chosen over the balloon models because the shape 
models are sequentially encoded. To combine shape models with balloons, a diffi
cult alignment problem has to be solved first. Similar to the balloons, the ziplock 
snakes need trivial initializations, too, and can be used in automatic image-processing 
applications.

To guide a ziplock snake’s searching process, all valid sentences of the specified 
regular expression are generated step by step. Each of the symbols in a sentence 
is assigned to a snake node, and a grammatical energy is computed to reflect the 
discrepancies between the attributes of the symbol and the actual values computed 
for the corresponding snake node. By including the grammatical energy in the total 
energy formulation, a ziplock snake is influenced by the shape models.

To reduce the computation, only a few most reasonable sentences are retained 
every time a  snake’s energy is minimized. The sentences are designed to compete 
against each other, and this behavior helps a snake accurately locate contour features.

Each time the ziplock snake is expanded, a new node is added. W ith the shape 
information available, the position of the new node is predicted by combining o priori 
information and the image content. Posteriori probability values are computed for 
all the next steps generated from the retained sentences, and the largest one is chosen 
as the best prediction. By using such a sophisticated next-step predicting method, 
the model-based ziplock snake is able to differentiate between multiple contours and 
extract the right one.

W ith a grammatical model integrated, the new ziplock snake model can now 
handle multiple contours, noise, and missing image cues, all of which the original 
model cannot. Experiments are provided to illustrate all these features.
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(e) (f)

Figure 6.11: (a) a square with unit contrast, and corrupted by zero-mean Gaussian 
noise with a standard deviation of 1.0; (b) the corresponding saliency map generated 
for curve tracing, (c) the ziplock snake deviates from the straight side line when it 
is a ttracted  by noise; (d) the deviation is corrected once the snake locates strong 
curves; (e) the final results; (f) the darker area indicates the part of the image tha t 
is searched by the curve-tracing method.
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(C) (d)

Figure 6.12: (a) the same image as in Fig. 6.11 (a) except the noise standard deviation 
is increased to 1.2; (b) the corresponding saliency map; (c) the final result; (d) the 
area tha t is searched for possible next steps.
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(c) (d)

Figure 6.13: (a) an image with several rectangles; (b) the corresponding saliency 
map; (c) the largest rectangle is extracted when the expected length and standard 
deviation of the side lines are set to 100 and 20 respectively; (d) the lower half of 
the largest rectangle is extracted when the expected length is lowered to 70. The 
initializations and other parameters are exactly the same.
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Chapter 7 

Conclusions and Future Work

7.1 Conclusions
We have presented a series of methods that comprise the Actively Searching Contour 
Models (ASCMs) System for contour extraction. ASCMs are designed to actively 
search for desired contours, as opposed to the traditional Active Contour Models’ 
behavior of being passively attracted  to image features.

The first part of our work on ASCMs is based on Cohen et a/.’s balloon models 
and is aimed at extracting objects with fuzzy boundaries. We had three objectives in 
mind when we set out to improve the balloon models: (1) a balloon should perform 
contour completion when needed; (2) it should be able to overcome local minima and 
accurately converge to desired boundary; and (3) it should allow for ease of parameter 
choosing. We began by examining problems with the energy minimization method 
and the way tha t snakes are modeled. Semi-rigid models were then proposed to solve 
the peeling problem tha t was observed. Subsequently, we proposed a multi-scale 
non-shrinking internal energy model, which is also unbiased towards expanding or 
contracting. The multi-scale part of the internal energy model provides a balloon 
with a controllable smoothness constraint, which is essential for contour completion.

We then proposed using image content to help a balloon searching for contours. 
The saliency map method was utilized to pre-process input images, and to trace 
curves tha t pass through a certain pixel. The curves traced were then used to guide 
a  balloon’s searching process. W ith this extra input, the improved balloon model 
was faster and more robust in many cases. The extra input also enables a balloon to 
reach high-curvature areas of a contour.

To accurately search for contours, we then proposed: (1) using the saliency map 
method, and subsequent steps, to transform the input image into a good potential 
field for balloons; (2) use of an adaptive inflating force th a t is able to make a  balloon 
converge to edges with specified strength. All the above methods were then combined 
into one framework, using the backtracking strategy.

The second part of the ASCMs project is based on Neuenschwander’s ziplock 
snake models, which share the idea of active search and also require trivial initial
izations. To make a ziplock snake more robust, a grammatical model tha t encodes a
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priori shape information is integrated into it. A competing mechanism is proposed 
to take advantage of the shape models, without inducing excessive computation. The 
resulting model-based ziplock snakes can accurately locate contour features; produce 
more refined results; and deal with multiple contours, missing image cues, and noise.

The content of this thesis was partially reported in various papers [53, 51, 34, 49, 
52, 50] written by the author.

7.2 Future Work
In the second part of our ASCMs’ work (Chapter 6), we chose to incorporate a gram
m atical model into the ziplock snakes instead of into the balloon models. As discussed 
in Chapter 6, this is because the regular expressions encode a priori information se
quentially. A balloon has to be aligned with the shape model before each round of 
energy minimization. However, the advantages of using a shape model are limited if 
errors are introduced in the aligning process.

Despite various methods proposed in the literature, a balloon is still likely to be 
stuck in local minima if there are significant irrelevant edges in the expanding course 
of a balloon. Shape models are essential in getting the balloon out of local minima.

One viable way to use shape models with balloons is: (1) Whenever a balloon 
reaches equilibrium (meaning local minima or the global minimum), the shape model 
is used to assess the balloon by matching it with the strong parts of the balloon. 
Several good matchings are generated for further use. (2) a few guesses are then 
generated based on the matchings derived by the first step. One balloon is initialized 
for every guess with an objective contour (generated from the shape model) associated 
with it. The inflating force for each balloon is adjusted to drive it towards the 
objective contour. (3) Steps (1) and (2) are repeated until no further balloons are 
initialized. The final shapes of the series of balloons are assessed, using the shape 
models, underlying image content, and other factors, and the best result is chosen as 
the final contour.
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Appendix A

Dynamic Programming for Energy 
Minimization of Balloons

The Time-Delayed Discrete Dynamic Programming method was first used for energy 
minimization of ACMs by Amini et al. in [3]. In this appendix, we give a brief 
account of this method and an introduction of how it can be applied to minimize the 
energy of balloons.

Considering a snake with second-order internal energy, the total energy is:

n—l

Etotal =  ^  ' Einternal(,Ui) "F Eexternal(^i) (A.l)
i=0

where the internal energy is defined by:

Einternal(Vi) =  (dfi |t> i -  l / j _ t | 2 +  3i\v i+ 1 -  2v{ +  Ui _ 1 |2 ) / 2  ( A . 2 )

and the external energy is usually derived from the image content.
Etotai can be divided into multiple items:

EtatalivI, Vi, . ..,! /« )  =  £ i(« i, v3) +  E 2{v2, v2, u4) + . . .  +  E„_2(un_2, u„) (A.3)

where
E%—i ( u j _ i ,  U t + i )  =  E txieTnai[vi)  +  E j n terTl0/ ( u , _ i ,  i?j, U j + i )  ( A . 4 )

To apply dynamic programming, the energy has to be minimized in stages. For 
each snaxel, a  3x3 grid is searched for possible moves. Searching for the best move for 
the whole snake starts from the first snaxel, then the second one, and so on. Each step 
is based on the results found by the previous step. A state table is used to store the
decisions made by the previous step. For a snake with second-order internal energy
involving a snaxel’s two immediate neighbors, a vector of two variables is enough for 
each stage. At stage i ,

Si(u,-+i,Ui) =  m insi_ 1(ui,ui_1)+Q |ui - u i_ i|2+/3|vm - 2 u i -t-Ui_i|2+ e ertema/K) (A.o)
Vi—1

where Si(i/t+1,Ui) is the state variable for stage i which involves three snaxels, u1+l, 
Vi, and Uj_i. The state  variable of this stage records the energies for all possible
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next-position combinations of snaxels u,+l and i/j. This state variable is then used 
to compute the state variable a t the next stage. The best move can be backtracked 
when reaching the final stage.

The time complexity of this algorithm, using a second-order internal energy model, 
is 0 ( n m 3), where n is the length of the snake and m=9, the size of a 3x3 neighbor
hood tha t is searched for each snaxel. The memory required for the state table is 
0 ( n m 2). Now, if a snake’s internal energy is computed at various scales, both the 
time complexity and storage requirement increase exponentially. For example, as
suming tha t the internal energy of the partial balloon shown in Fig. A .l is computed 
using 4 immediate neighbors of each snaxel, we have

Einternal{Vi) =  (Qi|Vi -  1/j-i |2 + Pi |t/i+i -  2v{ +  Uj.j |2)/2  + Pi\vi+2 -  2Uj H-Ui_2|2)/2  (A.6)

The dynamic programming method is not directly applicable to the above energy 
formulation. Instead, we try  to minimize the following internal energy:

EintemaliVi) =  (aj|t/j_i —U*_212 | ~ 2 l ? i _ ! + 1;*_212)/2-hp*117^2~ +  V»-212)/2  (A.7) 

The state variable is updated using:

Si+i{vi+2 ,Vi+ uVi,Vi-i) =  minUi_a si(t;i+l,i;i,u i_ l ,(;i_2) (A.8)
+  alu j-! -  t/i_212 +  8\vi -  2vi-i +  Vi-2 12 (A.9)
"b P\^i+2 -Vi "b 2I” "b &extemal{Vi+i) (A.10)

The time complexity increases from nm3 to nm°, and the storage requirement is 
now nm4.

To minimize the energy of balloons, the inflating force has to be converted into 
a potential energy so that it can be used with other external energies. In Fig. A.2,
for the normal inflating force n , the amount of potential energy for each of x’s 8
neighbors is computed using:

_  1 .

Einflating — 0 WJ (A .ll)
2

where w  is a vector from x to each of its neighbors. Barred vectors are unit vectors.
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i+l

i+2

Figure A .l: The 3x3 grid (m=9) indicates the searching area for each snaxel. The 
number of combinations of possible moves involving 5 snaxels is m5. Curved arrows 
show one possible move.

y

Figure A.2: Converting the normal inflating force into potential energies.
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Appendix B 

Proof of Snake Properties

LEMMA 1: The new internal energy. External, as defined in Eqn. 3.6 is scale, rotation, 
and translation invariant.

Proof: A translation, rotation and scale transformation is defined as.

' — c  (  cos ̂  -  sin 0 
X — 1 sin# cos#

From Eqn. 3.4, we have:

t -  ±(x' +  y') +  r ' sin 0RU(x' -  y ') (B.3)

= i ( A ( i + !() + 2 B ) +  sin 9 R U ( A ( l - y ) )  (B.4)
=  i ( A ( i  + y) + 2 B ) + l | A | | i - y | A R U ( i - y )  (B.5)

= i(A(x +  y) + 2 B )  + jA|x -  y|RU(x -  y) (B.6)

Then, dv — z' is derived:

c[ -  z' =  i(A (x  + y )+  2B)  +  ±A|x -  t/|R U (x - y ) -  (A z  -  B )  (B.7)
|A ( (x  + y — z) — \x — y |R U (x  — y)) (B.8)

A(ci -  z) (B.9)

|v '| =  | ( f t - * ' | - r ' ) U ( t ' l - ; 8') | (B.10)
|A|(c, -  2 -  S J ) |U A (c , -  z )| (B .ll)

|A|(c, -  s -  S J ) |U (c , -  *)| (B.12)
|A||v| (B.13)

Similarly, the following equation cam be derived:

|w '| =  |A ||w | (B.14)

In Eqn. 3.6, h stands for the average distance between snaxels. After the trans
formation, we have:

t i  =  \A \h  (B.15)
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Therefore,

E, =  l l v ^ + l w ^
^  internal 2 (/i')

1 |A|2(M2+M 2)
2 [ApP

1 Iv F + jw l2
2 (/i)2

Einternal

Hence, E inte.mai is scale, rotation, and translation invariant.

(B.16)

(B.17)

(B.18)

(B.19)
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