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Abstract 

 

With rising demands in industry for reliable electrical cable distribution networks comes an 

inherent need for utility providers to know well the condition of the assets in their network. 

Heightened expectations from regulators and consumers require methods of reliability 

assessment to improve the processes adhering to performance-based ratemaking models. 

 

The present work is a comparative assessment of survival modelling techniques in a real-

world application. This work investigates the incorporation of class balancing methods in 

survival analysis models, and how to assess model performance in the context of time-to-event 

failure probability. Numerous modelling strategies are assessed in the context of calibration and 

discrimination performance, leading to the choice of a model that most accurately describes 

individualized asset survival and hazard functions.  

 

A method is developed for a multi-stage approach to risk scoring and failure prediction 

for underground, medium-voltage, power distribution cable. The method applies data class 

balancing techniques and survival analysis models to accurately describe the survival probability 

of individual cables in a distribution network. Class balancing is applied to the failure state of the 

cables in the dataset using both under-sampling and over-sampling methods. The balanced data 

forms the input data for various machine learning survival analysis models and the performance 

of the models are compared against models trained using the original, highly unbalanced, dataset. 

The resultant survival models are evaluated for their efficiency, discrimination power and overall 
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goodness-of-fit to determine the best suited model given the data. Additionally, examination of 

cable parameters leads to the determination of the importance of cable properties and operating 

conditions that most significantly influence the model and the failure likelihood of cables. The 

information is used to generate individualized hazard and survival functions for specific cable 

instances with their unique covariate conditions.  

 

The work concludes with a discussion of the implementation of the comparative 

assessment in the utility providersô data analytics and reliability processes, suggestions for the 

supplementary capabilities for the annual cable testing program, and recommends further work 

and strategies to create a more all-encompassing strategy for cable reliability analytics. 
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Chapter 1 
 

 

Introduction 

An underground electrical distribution cable network is founded on the basis of providing 

safe and reliable power to consumers [10]. While governed by regulatory bodies, understanding 

the maintenance and reliability of distribution network has both service costs and an opportunity 

cost of lost production for utilities providers. It is therefore necessary to have strategies to 

minimize the costs of distribution network maintenance and to maximize distribution network 

reliability [126].  

 

Reliability is concerned with the components of a distribution network functioning as 

intended and the probability of success (not failing) over a specified duration [108]. Much effort 

has been expended in developing procedures to repair a fault once it has occurred. Further effort 

has gone into developing inspection techniques [101, 121]. But reliability analytics is the key 

step to effective preventative maintenance and a greater understanding of the ongoing condition 

of the distribution network.  

 

This work presents a strategy for enhancing the understanding of reliability concerns of 

medium-voltage distribution cables and provides a means of classifying high-risk cables in an 

estimated time-to-failure manner. 

 

The rest of this introductory chapter gives the scope of the problem of concern, the need for 

the work that was undertaken, and applications of the results. The chapter concludes with an 

overview of the rest of the chapters in the present work. 
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1.1 Background Situation 

 

Underground distribution cable is regarded as the most complex asset in a distribution network. 

The condition of the cables is largely non-observable, being buried directly in the soil, with 

numerous damage modes, and no one all-encompassing test to observe cable health and 

operating conditions [4]. 

 

In a five-year span, damaged and failed underground cable contributed to approximately 

70% of the experienced customer outages in the utility providerôs distribution network. The 

replacement of cable is among the most expensive asset in the network [16]. Locating and 

removing failed cable segments, installing new cable, as well as downtime experienced by 

consumers all contribute to the cost associated with unplanned outages. 

 

1.1.1 Nature of the Problem 

While there exists a theoretical useful life for the cables that adhere to the so-called bathtub 

curve [137], some cables remain in service much longer than their specified end of life while 

others fail in the normal useful life stage. 

 

Understanding the factors contributing to premature cable failure could significantly 

reduce the number of unplanned outages and consumer outage hours experienced, particularly in 

environments and operating conditions where it is hazardous or costly to conduct in-situ 

inspections. Underground cables operating in such environments demands remote diagnostic 

tools capable of accurately estimating remaining useful life and factors contributing to increased 

failure likelihood, leading to a more effective reliability understanding. 

 

Utili ty providers therefore need reliability analytics strategies to make their distribution 

networks more reliable. 
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1.2 Objective of the Present Work 

 

The present work describes a method of comparative assessment of survival modelling of real-

world data, accompanied with data class balancing techniques. The method includes not only a 

technique for generating probabilistic assumptions of the survival of underground distribution 

assets, but also a method of identifying the variables that most significantly influence the failure 

likelihood of these assets. 

 

Since most survival analyses are done for the classification of soon-to-be failed events 

[110], the focus is typically a singular survival model with high accuracy and a plethora of 

previously cited use. While the results generated may be of significance, other survival models 

exist that may provide greater predictive power [96] and are a more efficient approach for 

determining risk scores and failure probability attributed to the input data. 

 

Relevant previous work and reliability analyses are discussed, a comparative method is 

proposed, simulations and results are presented, and the merits and limitations of the work are 

discussed with recommendations for future work.  

  

1.3 Overview of Contents 

 

The following chapters present a literature review of previous work, methodology for the 

investigation, implementation of the method and the results, conclusions, and recommendations. 

 

1.3.1 Literature Review 

The review of literature describes previous research efforts in supporting fields that contribute to 

the present work. 

 

 

1.3.2 Methodology 

The methodology chapter presents the scope of the present research, based on the gap between 

the problem and established solutions, and develops a methodology for solving the problem. 
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This chapter offers a set of hypotheses to be validated in the present work and discusses 

the various combinations of models used for addressing the problem. The methodology focuses 

on the specific issues of data class imbalance and variable importance for underground, medium-

voltage, distribution cable data.  

 

1.3.3 Implementation and Results 

The implementation chapter describes how the hypotheses were validated. Specific methods are 

discussed for multiple combinations of class balancing and survival models. Identification of the 

most appropriate method of survival analysis for underground cable data, first by simulation, and 

then in performance evaluation is explained.  

 

The discussion was supplemented with limitations of modelling methods used, 

appropriateness of testing procedures, and contributing factors to the survivability of the cables. 

 

1.3.4 Conclusions 

The chapter of conclusions examines the merits and limitations of the comparative assessment 

methods, assesses how well the methods addressed the stated problem, and summarizes the 

original contributions of this work. 

 

1.3.5 Recommendations 

The final chapter recommends areas of further development of cable reliability diagnosis 

methods for real-world implementations and ends with the speculation about the future of 

reliability assessment for distribution asset data. 
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Chapter 2 
 

 

Literature Review 

This chapter reviews reliability and survival modelling literature pertaining to time-to-

event data, identifies issues with current modelling systems, describes previous solutions for 

survival modelling, and highlights the limitations of existing solutions related to the problem of 

survival analysis of underground cables. 

 

After a review of general survival analytics and the need for such an analysis, the 

discussion focuses on survival modelling. Performance metrics used for survival analysis and 

functions to determine underlying distributions are reviewed. Methods and models for evaluating 

time-to-event survival data are discussed, as well discussion surrounding the limitations 

surrounding conventional modelling approaches. Time-to-event data, its properties, key 

indicators, and limiting features, are considered, with emphasis on data class balancing 

techniques. 

 

2.1 Survival Analytics  

 

This section discusses the foundational principles of survival analysis and the applications in 

which survival analysis is beneficial as well as understanding and identifying key characteristics 

of survival data. 

 

2.1.1 The Need for Survival Analysis 

Conventional classification and regression models are machine learning algorithms used for 

prediction, however, differ slightly in their output. Classification models [39] are used to predict 

discrete outputs whereas regression models [43] are used to predict continuous values. Both 

classification and regression models provide an excellent framework for discovering patterns in 
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datasets that can lead to actionable intel. However, an intrinsic problem associated with these 

models arise when the data collected also contains information about instances in which the 

timing of an event is of interest to the research objective- the censoring status of the instances 

[52]. In most real-world cases, the data that requires analyzing contains more than one 

independent variable. This adds another level of complexity to modelling the data in an 

informative fashion; standard approaches to data analysis take a univariate (one variable) 

approach and therefore do not encompass all the independent variables simultaneously [64], 

resulting in less informed decision making. Hence, the need for specialized techniques that 

considers both time and multiple independent variables. 

 

Survival analysis is highly researched, with applications in a variety of fields such as 

engineering [38, 140], healthcare [19, 99], and economics [51, 80] in which a critical objective of 

these applications is determining when a particular event will occur considering it has not yet 

occurred. Survival analysis involves the consideration of the times between a fixed starting point 

and a terminating event, which is either an event occurrence, or the end of a study. The use of 

survival analysis models improves traditional models by allowing the survival to be assessed 

with consideration of multiple variables and offers insight into the strength of factors relative to 

their importance in the model. 

  

2.1.2 Survival Data 

Survival data best describes data that measures the time to some event [3]. In industrial 

applications, the event is failure of an asset or a component of an asset. Cox and Oakes [25] 

outline three requirements for understanding the time to an event: the start time, ὸ π, of the 

study; a scale, measuring the passage of time; and a clearly stated definition of what constitutes 

an event like, e.g., failure of an asset that requires complete replacement of an asset.  

  

Survival data consists of both dependent and independent variables. In all survival 

analyses, the dependent variable is composed of two pieces of information- the survival time and 

the event state [56], eliminating the possibility of producing qualitative measurements of, e.g., 

quality of an asset. 
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Hougaard [62] describes the uniqueness of survival data as stemming from responses 

being times unlike other variables whose responses are instantaneous and independent of 

response time. Consequently, during the time of the study, some assets do not fail under 

observation. These data are referred to as censored data.  

 

Collet [23] defines censored data as instances that are only partially known, i.e., failure of 

an asset does not occur under observation. Most common to industrial applications is right 

censoring. If an asset has not experienced failure during the time of the study and its survival 

time is known throughout the duration of the study, it is assumed that the failure will take place 

after the observation window and the instance is right censored [87]. Clark et al. [22] and 

Jenkins et al. [71] characterize censoring status as a dichotomous indicator variable. The 

censoring state is denoted using binary classification with the value zero indicating the absence 

of the event and conversely, a value of one indicating the presence of a defined event. 

 

Hougaardôs [62] notion that assets that have failed, i.e., their exact lifetime is observed, 

contribute to the density function, Ὢὸ, whereas if the censored assets contribute to the 

probability that the useful life exceeds the end of the study. That is, the observed end time for 

each asset instance is given by the value, ὢ, where Ὕ is the failure time or age and ὅ is the 

censoring time. 

ὢ ÍÉÎὝȟὅ     (2.1) 

If the asset end time, ὢ, is an observed failure rather than a right censored observation, 

the censoring status, , is given by Equation (2.2). 

 ὍὝ ὅ      (2.2) 

Independent predictor variables, or covariates, are critical in determining the likelihood 

of an event occurring. Kalbfleisch [75] categorizes covariates as either time-independent or time-

dependent. While covariates can provide explanatory insight that may determine an assetôs 

survival probability, Verweij et al. [134] and others [54, 77] deem that not all covariates are 

significant to the assetôs survival or failure. 
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Kalbfleisch et al. [75] mathematically explain survival data as ╧, a ὲ  ὴ matrix, where 

ὲ is the number of observations and p is the number of covariates. For observations, ● ɴ ᴙ , 

Witten and Tibshirani [138] describe survival data as a triplet, ώȟȟ● , consisting of 

observations, ● ɴ ᴙ , and their associated survival time ώ, and censoring status . 

2.2 Performance Metrics 

 

In order to gauge a modelôs ability to accurately represent and forecast data-based predictions, 

the model, along with the results, must be validated for the sake of accuracy and predictive 

performance [12]. While many performance metrics are readily available for use in regression 

and classification problems, survival analysis concerns itself with those metrics in which the 

presence of censored data is taken into consideration. 

 

Concordance Index 

The concordance index (C-index) [58] is a widely used discrimination measure for time-to-event 

models. The C-index can quantify correlations between event times and risk predictions so as to 

discriminate between early events and later occurrences [85]. In survival analysis applications, it 

is often desirable to compare the discriminative ability of various models and the resulting 

predictions made based upon the models; the C-index assesses the probability that a model 

generates a higher probability of event occurrence for a true event than for a non-true event, 

similar to that of the area under the ROC curve [85]. As a goodness of fit measure, the C-index 

provides a performance metric that can be reported across many modelling situations, where the 

data contains censored events.  

 

The C-index is developed in depth in Harrell et al. [58] and applied in several regression 

based studies [57] and for multivariate analyses [59]. In survival analysis applications, the C-

index provides a performance metric capable of enabling the comparison of models to determine 

robustness and operability, however, the C-index must be critically examined in models; Uno et 

al. determine an upward bias if the amount of censoring in the test data is large [128]. The 

application of the C-index is widespread, with usage in medical applications [35, 45], reliability 
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assessments [54, 123], and survival predictions [92, 134], while evaluating a variety of survival 

models.  

 

Brier Score 

In order to gauge the variance between the predicted and actual survival probability of a subject, 

the Brier score [14] is used. The Brier score is, in essence, a loss function that measures the 

accuracy of probability predictions [79]; the lower the reported value of the Brier score indicates 

a better survival prediction. The Brier score, however, is dependent on a single time point [55] 

thus, has been extended as a metric to assess the overall model at all times- the integrated Brier 

Score (IBS) (Equation 2.3). The IBS is defined as, 

 

ὍὄὛ ᷿ ὄὛὸὨὸ      (2.3) 

 

where, the Brier score, ὄὛὸ, is defined through the number of instances, ὔ, estimated 

probability, Ὢ, and actual event status, „: 

ὄὛ В Ὢ έ       (2.4) 

 

Unlike the C-index, which a measure of the discrimination performance of a model, Park 

et al. [102] describe IBS as a measure of a modelôs overall performance that incorporates not 

only discrimination but also the level of calibration of a model. Gel et al. [50] found that IBS 

reduces hedging which is generally regarded as a desirable trait for a performance metric. The 

functionality of the IBS is two-fold, firstly, as mentioned, it provides both a goodness-of-fit 

measure to evaluate the model performance, and second, it provides a basis for a prediction error 

curve and further, a survival function to be built upon for survival analysis. 

 

Verweij et al. [134] conduct model validation for the analysis of low voltage paper 

insulated lead cable (PILC) using the IBS method and conclude that the Cox proportional 

hazards model (Cox PHM) outperforms other models. The validation is concurrent with the Ὑ  

metric results, showing that Cox PHM provides the greatest predictive power in this study. The 

IBS is also used in a comparative study of survival models including Cox PHM and random 



 

10 

 

survival forests (RSF) by Farhadian et al. [45]. The IBS, in conjunction with the C-index and 

error rate, provides strong evidence supporting the notion that RSF, in this study, outperforms 

Cox PHM for survival analysis. 

 

2.2.1 Underlying Distribution Analysis 

Frequently, it is important to understand and test whether the data in question is formulated from 

a specific distribution. If the test attempts to determine the agreement between a sample 

distribution and a theoretical distribution, then it is regarded as a goodness-of-fit test. The 

goodness-of-fit test helps determine whether there is a relation between studied covariates and if 

sampled data represents a population distribution.  

 

The Kolmogorov-Smirnov test (K-S test) [89] is a non-parametric statistical approach for 

comparing cumulative distribution functions (CDFs) to determine agreement or disagreement 

between empirical and theoretical distributions [86]. The K-S test maximizes the absolute 

differences between the CDFs. Extensive research has been conducted on, and with, the K-S test 

in a univariate and multivariate fashion. Schröer and Trenkler [117] study the distributions of K-

S test statistics where unequal sample sizes are present. DôAgostino and Stephens [28] and Justel 

et al. [74] provide extensive insight into the use and formulation of the K-S test and its statistical 

power. This is further developed in Razali and Wah [109] where the power of multiple statistical 

distribution tests, including the K-S test, is compared to test for data normality. 

 

2.3 Survival Analysis Models 

 

Many survival models exist that are capable of handling survival analysis and prediction tasks. 

The models of interest in this study learn from survival datasets, Ὀ, 

 

Ὀ ώȟȟ●  ȿ ● ɴ ᴙ        (2.4) 

 

as discussed in Chapter 2.1. 
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This study considers survival models that produce entire survival probability, Ὓὸȿ●░, 

curves ὸȟὛὸȿ●░ , for all points ὸ π, that can be specified by a grouped distribution as well as 

extended to survival distributions on an individualized basis. This is pertinent to reliability 

analytics in which individualized survival probabilities for all time points are the desired output. 

Such a model allows the computation of a key statistic- an individual assetôs expected survival 

time. 

 

Cox Proportional Hazards Model 

The Cox proportional hazards model (Cox PHM) was developed by Cox [25] in 1972 for 

medical applications [29] and is still among the most widely used models in reliability and time-

to-event analysis [7, 123]. Cox PHM is a semi-parametric approach to investigating the survival 

time of an asset with respect to one or many covariates. The semi-parametric nature of Cox PHM 

does not require the baseline hazard function, Ὤ ὸ, to be specified, 

 

ÈÔȟὀ È ÔÅØÐВ ɼὀἱ В ɾὀἲ      (2.5) 

 

thereby allowing the model to function without any assumptions made for the shape of the 

baseline hazard function. While not required, the baseline hazard function can be estimated using 

the hazard ratios generated from the modelling procedure, where the hazard ratio is determined 

using the ratio of two expected hazards, ὥ ÁÎÄ ὦ, using regression coefficients, . 

 

ÅØÐ
 

      (2.6) 

 

While Equation (2.5) considers both time-independent, ●░ȟ and time-dependent, ●▒, variable. This 

study considers only time-independent covariates; therefore Equation (2.5) is reduced to 

Equation (2.7).  

 

Ὤὸȟ● Ὤ ὸÅØÐВ ●░    (2.7) 
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The functionality of Cox PHM is two-fold; not only does the model estimate the 

probability of an event of interest occurring, but it is also useful in determining covariates of 

significance and their respective relative importance on the occurrence of the event. Cox PHM 

has shown its versatility and interpretability in a range of survival applications. 

 

In medical applications, Cox PHM is used by Farhadian et al. [45] for a cohort of patients 

undergoing coronary stenting to determine covariates of importance that may lead to, or have 

caused, major adverse cardiac and cerebrovascular events. Farhadian et al. find that Cox PHM 

yields similar covariates of importance to that of more complex machine learning techniques 

such as random survival forests (RSF). The dataset used by Farhadian et al. consists of 

approximately 50% right-censored samples which can generate lesser predictive accuracy [144], 

however the C-index of Cox PHM is 0.63, which is comparable to RSF, with a C-index of 0.65, 

for the given dataset. Recall, the C-index represents the modelôs discrimination ability of a time-

to-event model to quantify correlations between risk prediction and event times. The results 

conclude that even with many right-censored samples, Cox PHM still performs similarly to 

models that are not affected by skewness in the data. 

 

Cox PHM is also used as a predictive tool used to analyze power consumption of energy-

intensive buildings by Gonzalez-Dominguez et al. [54]. Ten variables pertaining to building 

quality and condition are included in the model, with results outlining covariates of significance 

and their respective increase and decrease on the assetôs hazard. Healthcare buildings with more 

than 10,000 users in the area were 124% more likely to exceed reference energy consumption. 

With this study, Gonzalez-Dominguez et al. propose different optimization strategies to reduce 

energy consumption of healthcare buildings based on the findings of Cox PHM. 

 

Cox PHM has been used for determining ideal asset replacement times for low-voltage 

paper insulated lead cable (PILC) by Verweij, van Houwelingen, and Prein [134]. In the study, 

Verweij et al. leverage the multivariate nature of Cox PHM to analyze 17 covariates based on the 

technical specifications of PILC cables to optimize a replacement schedule from an asset 

management perspective. The results of Verweij et al. indicate that the length of cable and 

previous outages experienced in a specific cable are most significant to the increased hazard of a 
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cable and the cable network. A C-index of 0.77 is achieved with the data used in the study, 

which is in accordance with the average predictive accuracy of using Cox PHM [26].  

 

Tang et al. [123] use Cox PHM to analyze a network grid of low, medium, and high-

voltage cables to determine factors of significance that increase the likelihood of cable failure. 

The covariates in the study include the cable manufacturer and cable length. Tang et al. conclude 

that longer cables possess a greater risk that contributes to a larger failure probability. Further, 

the study determines that different manufacturers and their respective manufacturing processes 

also contribute to varying degrees of failure likelihood; all of which is determined solely and 

accurately, by Cox PHM. 

 

Gradient Boosted Models 

Gradient boosting and gradient boosted models provide a powerful framework for handling a 

vast range of objectives, with Friedman et al. developing an extension to gradient boosting for 

statistical estimation [48] and regression objectives [47]. 

 

Gradient boosting leverages multiple base leaners that, when used alone, are only slightly 

better than randomly guessing the outcome of a problem [115]. Base learners are simply 

regression estimators that are sequentially refined in an additive fashion to minimize a loss 

function [145], where the loss function is a measure of the deviation between predicted values 

from true value states. The use of multiple base learners effectively enhances the overall modelôs 

performance. 

 

Gradient boosted models are used by Zhang and Haghani [145] to improve travel time 

predictions along freeways in the United States. Zhang and Haghani explore autoregressive 

integrated moving average (ARIMA), random forest, and gradient boosted models and conclude 

that the gradient boosted model is not only less sensitive to varying time outlooks while 

maintaining strong prediction accuracy, but also outperforms both ARIMA and random forests. 

Zhang and Haghani also confirm that gradient boosted models, by minimizing the specified loss 

function, reduce model bias and reduce variance as previously shown by Elith et al. [41]. 
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He et al. [61] explore high-dimensional cancer data using a component-wise gradient 

boosted model to determine the effect on false discovery and model stability. Comparing various 

gradient boosted models used by Buhlmann and Yu [17] for high-dimensional data, Ridgeway 

[111] for boosting a proportional hazards model, and Li and Luan [83] for boosting non-linear 

function forms, He et al. discover that multivariate boosting, with emphasis on model stability, 

provides extremely low false discoveries, that is false positive and false negative results when 

compared with univariate and conventional boosting models.  

 

Gradient boosting via the optimization of performance metrics such as partial log-

likelihood, Brier score, and C-index is also examined in a study of high-dimensional, B-Cell 

Lymphoma conducted by Nguyen [98]. Gradient boosted models based upon the optimization of 

minimizing Brier score outperform models built to optimize partial log-likelihood and C-index, 

with testing errors of 0.29 for Brier score and greater than 0.5 for both partial log-likelihood and 

C-index. The ability for optimization of performance metrics using gradient boosted models 

provides model stability and accurate feature selection for high-dimensional data where 

traditional statistical methods cannot. 

 

Random Survival Forest 

Random survival forests (RSF) were developed as an extension of Breimanôs [13] random 

forests (RF) as a classification and regression model for right-censored survival settings. RSF is 

a non-parametric ensemble learning method formed by averaging tree base learners where, in a 

survival setting, the base learners are binary survival trees [68]. The non-parametric nature of 

RSF enables a data-driven approach to survival analysis, independent of model assumptions. 

Unlike univariate approaches that are limited by overfitting and lack of convergence, RSF is 

constructed to mitigate these issues, even in the case of high dimensional data [35]. Where 

highly correlated covariates in the data are concerned, models with restrictive assumptions, 

namely Cox PHM, are not capable of dealing with the data, whereas the RSF model is 

specifically suitable for the analysis of such a dataset [66]. 

 

Ishwaran et al. [66] developed RSF and study the prediction accuracy of RSF using 

medical datasets. A varying number of covariates, ranging from 10 to 100 covariates, are used 
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among the eleven datasets in the study. Cox PHM is used as a benchmark test to determine the 

efficacy of RSF for different types of data. Ishwaran et al. conclude that RSF has the lowest 

prediction error in all examples, and with faster computing time. As the number of variables, and 

effectively, the amount of noise in the model increases, Cox PHM performs progressively worse 

whereas RSF remains stable and not susceptible to noise. The performance of RSF, however, is 

shown to decrease when the number of censored instances increases. Further testing of RSF for 

primary biliary cirrhosis of the liver by Ishwaran and Kogalur [67] indicate that the number of 

trees, when increased, provides a significant reduction in prediction error, and plateaus after 200 

trees. The prediction error ranges from 16.0% to 17.5%, depending on the splitting rule used.   

 

Numerous medical studies have been conducted using RSF including Miao et al. [92], 

who explore one-year mortality risk predictions of patients with cardiac arrhythmias. For the 

10,000 patients in the dataset, four models are created. Two RSF models, one containing forty 

covariates and one containing fourteen covariates, are compared against two Cox PHMs with an 

equal number of covariates. Miao et al. conclude that both the high-dimensional and simplified 

RSF risk models perform better than both the high-dimensional and simplified Cox PHM, with 

prediction accuracies of 0.81 and 0.79 for RSF models, respectively. RSF is also used to 

determine covariates of importance for the survival of gastric cancer patients by Adham et al. 

[1]. The prediction error of the models was in the range of 29% and 32%, with age, tumor size, 

and metastatic status among the most important covariates that effect the prediction accuracy. 

 

Applications of RSF have since extended outside of the medical domain, for use in 

reliability analytics and risk management by Frisk et al. [49] and Fantazzini and Figini [44]. 

Frisk et al. apply RSF to fleet management services for the lifetime prediction of vehicle 

batteries by analyzing 291 covariates from over 33,600 vehicles spanning across 5 markets. 

Throughout the analysis, RSF parameters such as the number of split variables, node size, and 

number of trees in the survival forest were optimized, with results indicting the optimal 

parameter selection yields an error rate of 15%. Fantazzini and Figini analyze small and medium 

enterprise credit risk ratings to compare RSF and logistic regression in terms of prediction 

accuracy. The area under the ROC-curve (AUC) is examined for both in-sample and out-of-

sampling data, with results indicating that RSF outperforms logistic regression for in-sample 
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data, however, underperforms for out-of-sample data; AUC results for RSF in-sample and out-

of-sample are 0.932 and 0.767, respectively. 

 

Support Vector Machines 

Support vector machines (SVMs) were developed by Cortes and Vapnik [24] as a learning 

method for analyzing high-dimensional data to produce a dichotomous outcome [63]. The 

development of SVMs was later extended by Vapnik [133] to support continuous regression 

outcomes and for use in survival analysis by Van Belle et al. [131] to maximize the C-index of 

the survival model. More generalized survival SVMs [46], formulated based on the foundations 

of Cortes and Vapnik [24], include the ranking approach [42, 131, 132], the regression approach 

[118], and a ranking and regression hybrid approach [130].  

 

The ranking approach utilizes SVMs as a classification method to rank the risk of 

instances relative to each other, rather than determining survival time [130]. The objective of the 

regression approach, the survival SVM used in this study, is to find a function that estimates 

survival times as a continuous outcome and is built upon support vector regression [133]; 

Shivaswamy et al. [118] furthered the regression approach to include censorship in the SVM and 

SVR models [46]. 

 

Comparative studies of survival SVMs have been conducted by 0ÏÌÓÔÅÒÌ et al. [105] to 

determine prediction performance of survival in numerous medical datasets. The models 

compared in the study include kernel-based, linear, and simple survival SVMs compared against 

a baseline Cox PHM. 0ÏÌÓÔÅÒÌ et al. examine five datasets, with varying degrees of censoring for 

various medical datasets including AIDS, lung cancer, and coronary artery disease data. The C-

index was used as one of three performance metrics, and the results indicated that survival SVMs 

performed on the same level of Cox PHM, with C-index values in the range of 0.68-0.76 among 

the various datasets.  

 

Condition based monitoring and remaining useful life of machine components using 

SVMs is studied by Widodo and Yang [136]. The survival analysis encompasses SVMs to 

estimate the survival probability of failure time of bearing components in machinery to predict 
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failure times. The SVM used by Widodo and Yang accounts for censored data that is directly 

implemented into the prognostics modeling through the Kaplan-Meier estimator function. The 

predicted failure time compared with actual failure time of bearings was 98.51%, with a RMSE 

of 0.073, outlining the robust nature of SVMs when coupled with survival analysis.  

 

Kernel based SVMs are used to study heart failure patients with correlation-based and 

ranking-based feature selection methods by Sujatha et al. [120]. Of the 299 patients in the 

dataset, AUC values between 0.85 and 0.88 and accuracy between 0.80 and 0.87 are achieved for 

the four kernel SVMs studied. Regression based kernel SVMs are compared against Cox PHM in 

Goli et al. [53] for a breast cancer study. Goli et al. report that linear kernel outperforms non-

linear kernel regression SVMs using the Wilcoxon rank sum test [113] and performs greater than 

the Cox PHM. C-index values indicate that regression based SVMs perform better than Cox 

PHM, with values of 0.66 and 0.64 for the SVM and Cox PHM, respectively.  

 

2.4 Handling Class Imbalance 

 

Real-world datasets are often highly imbalanced; these imbalances can negatively skew the 

accuracy of predictions [33, 72, 77, 107, 127]. Imbalanced data is characterized by a difference 

in the number of instances, per class, of a variable. If the number of minority class instances and 

majority class instances significantly differ, the model becomes dominated by the majority class, 

with features of the minority class only slightly influencing the model [70]. Data imbalance can 

be dealt with using a data-level approach and algorithm approach [122]. The data-level approach 

involves re-balancing class imbalances in a preprocessing step and is the focus of resampling in 

this study. 

 

Class imbalance, in the context of survival data, is commonly associated with the 

censoring status, with greater right-censored samples than uncensored samples. However, 

imbalances may also be prevalent in covariates, leading to bias selection of covariates in a model 

[18]. Data-level resampling techniques have been shown to improve classifier and regression 

model performance in a general and survival analysis application [36, 70]. Resampling 

techniques can be categorized into two sampling styles- under-sampling and over-sampling. 
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2.4.1 Under-Sampling Techniques 

Under-sampling techniques reduce the cost at the learning stage of a model by removing 

instances in the majority class. Where cost-sensitivity is concerned, McCarthy et al. [90] and Liu 

et al. [84] show the benefit of under-sampling. This method, however, effectively discards 

potentially useful data that could be used in the model. Under-sampling may increase the 

variance of the classifier while also producing skewed probabilities [31].  

 

Random Under-Sampling 

Random under-sampling involves randomly removing random instances from the majority event 

class, i.e., the censored class, in the training data. This is often done until the number of samples 

of the majority class is equivalent to that of the minority class.  

 

Random under-sampling can be utilized with various levels of sampling ratios, with a 

ratio equivalence showing a 30 percent increase in classifier performance when compared with a 

non-balanced dataset [147]. Yu et al. [143] determine a clear improvement in SVM accuracy 

when using random under-sampling for protein-ATP binding prediction. Dag et al. [30] 

examines one-, five-, and nine-year outlooks on predicting heart transplant outcomes on medical 

patients. Using, random under-sampling with various machine learning models, Dag et al. 

determines that under-sampling yields comparable results to more complex, over-sampling 

methods. 

 

 

 

 

Figure 2.1: Random under-sampling data balancing 
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Tomek Links 

Tomek Links (T-Links), an improvement on the nearest-neighbour rule [40], provide an 

alternative to random under sampling by removing pairs, from the majority class, of instances of 

opposites classes that are their own nearest-neighbour [125]. Removing the nearest-neighbour 

from the majority class in a dataset creates increases the space between the two classes in the 

training dataset, allowing for a more distinguishable and less noisy classification. 

 

While T-Links do not provide a true class balance, results from a highly imbalanced 

dataset indicate that model accuracy is significantly improved when used with classifiers such as 

SVMs, Artificial Neural Networks, and Random Forests [40]. T-Links, as a noise removal tool, 

can also be coupled with other resampling techniques to improve classification accuracy [97]. A 

two-stage resampling method reduces the likelihood of information loss while still enhancing the 

robustness of a model. 

 

 

Figure 2.2: Tomek Links data balancing 

NearMiss 

NearMiss is an under-sampling technique that eliminates instances in the majority class based on 

their average distances from the minority class in the data space; this is done by removing, from 

the majority class, nearest-neighbours [60]. This technique preserves information from the 

training dataset, a common complication when using random under-sampling. 

 

NearMiss is explored to great lengths by Mani and Zhang [88]. Three methods of 

NearMiss are used in which the number of opposite instances is eliminated to varying degrees. 



 

20 

 

The NearMiss methods in [88] are compared with random selection sampling in a kNN model. 

With an increase in the number of samples eliminated, the recall decreases and precision 

increases. The NearMiss method in which all opposite nearest-neighbour classes are eliminated 

from the dataset outperforms all other methods in the study. Classification models are compared 

by Oladunni et al. [100] in which highly imbalanced COVID-19 data is examined using 

NearMiss. Several NearMiss approaches are used similar to those in Mani and Zhang [88]. The 

results indicate that Boosted and Random Forest models present the greatest accuracy when 

under-sampling is used.  

 

2.4.2 Over-Sampling Techniques 

Over-sampling data involves introducing additional data to the minority class. When examining 

small datasets, over-sampling has proven to be an effective method to increasing the 

performance of a model [36]. Over-sampling outperforms under-sampling techniques where 

relatively low-dimensional data is present [6]. 

 

Random Over-Sampling 

Random over-sampling is a non-heuristic approach to handling imbalanced data. In this 

technique, the minority class in the training data is duplicated randomly one or more times until 

both classes are equivalent. 

 

In highly imbalanced datasets, Barandela et al. [5] showed that random over-sampling of 

the minority class increases the accuracy of predictions. While random over-sampling does not 

provide the highest accuracy in software defect prediction, the results from Bennin et al. [8] 

indicate improvement of failure-prone software module detection when compared against a non-

balanced dataset. Random over-sampling, however, increase the likelihood of overfitting due to 

the duplication of samples in the minority class [78, 112, 135]. 
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Figure 2.3: Random over-sampling data balancing 

 

Synthetic Minority Over -Sampling Technique (SMOTE) 

SMOTE interpolates synthetic instances along a line segment which connects randomly chosen 

data points in the minority class. This is done by computing k-nearest-neighbours for the creation 

of the sample [20, 107]. SMOTE overcomes the overfitting phenomenon created by random 

over-sampling and is focused on the creation of synthetic samples, rather than duplicate instances 

[20]. 

 

Chawla et al. [20] demonstrate improvement of accuracy for real-world data 

classification using SMOTE compared to other sampling methods. In a large-scale comparison, 

Pecorelli et al. [103] indicate that SMOTE outperforms several other over-sampling methods. 

SMOTE can also be used in a multi-class balancing fashion with a random forest classifier, with 

results indicating an improvement in the accuracy of the model [9]. Ishaq et al. [65] integrate 

SMOTE with various classifiers and found that classifier accuracy, precision, and recall results 

were strengthened in medical survival analysis. 

 

Figure 2.4: SMOTE data balancing 
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2.5 Summary of Previous Work 

 

This chapter has given an overview of the theory and methodology pertinent to multivariate 

survival analysis. Biased performance metric results stemming from imbalanced data used in a 

survival analysis setting are of greatest concern, with specific attention given to data pre-

processing and modelling methods that can achieve high accuracy while minimizing 

computational cost, false negative results, and skewed metrics. 

 

Previous work conducted in the area of survival analysis, while advancing the expertise 

in the field, have been primarily conducted for medical applications, with minimal application in 

the research of underground power distribution cables. Jamet et al. [69] predict transplant 

eligible patients using RSF modelling methods, Bohannan et al. [11] use RSF to identify 

biomarkers in high-risk leukemia patients, and González-Domínguez et al. [54] use Cox PHM 

for predictive analysis of healthcare building energy consumption. All of these studies focus on a 

single survival model, used to generate information pertinent to prediction of medical related 

information.  

 

Few researchers have applied survival analysis techniques to underground cable assets, 

however the datasets used in these studies are carefully curated such that large imbalances do not 

exist. Tang et al. [123] use Cox PHM to understand variables of significance that contribute to 

cable failure. The data used in the study is handpicked to create a dataset containing equal 

numbers of cables of various lengths. Verweij et al. [134] develop replacement strategies of 

PILC cable formulated through a Cox PHM survival analysis. Data used in this study is 

algorithmically selected based on location and topology. In the study, the IBS is used as the 

performance metric of choice. 

 

Few studies encompass real-world, multivariate, and highly censored data. A highly 

censored dataset also limits researchersô ability to obtain true results, without inherent bias due to 

censorship.  

 



 

23 

 

Limitations of Underground Cable Survival Analysis 

Current underground cable analyses have been limited to simple methods such as Cox PHM, in a 

multivariate fashion. In these studies, data balancing has been manually conducted, typically in 

the form of under-sampling whereby the data instances are selected from a master dataset in 

attempt to balance the number of censored and non-censored cases.  

 

Further, the current underground cable studies are limited in the number of samples used 

in the study, and the number of covariates included. This is due, in part, to the limited amount of 

data obtainable, and the lack of covariate data that is included when initially forming the dataset. 

 

To the best knowledge, no current survival analysis study has been conducted with the 

objective of a comparative analysis of various modelling methods with the inclusion of data class 

imbalance techniques for underground cable assets. 
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Chapter 3 
 

 

Methodology 

This chapter develops techniques for applying multivariate survival analysis techniques 

to medium-voltage underground cables with the inclusion of data class balancing techniques. 

The hypotheses to be validated are presented, a testing methodology is proposed, encompassing 

the process outlined in Figure 3.1, and an overview of the theoretical development required to 

fulfill that methodology is presented. 

 

An examination of survival analysis modelling methods led to the selection of several 

models to be used in the study. Similarly, the selection of class balancing techniques that best 

balances data are applied concurrently with the survival models. The effects of class balancing 

were considered with respect to predictive accuracy and overall model performance. The 

limitations of commonly used models were uncovered, and a strategy was developed for using 

survival analysis techniques to create a robust technique, capable of developing individualized 

survival curves for underground cables. 
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Figure 3.1: Methodology flowchart 
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3.1 Hypotheses 

 

Four hypotheses address the objective of conducting a comparative assessment of various 

survival analysis techniques and class balancing methods to achieve high predictive 

performance, capable of extending to individualized hazard and survival curves for underground 

cables: 

 

1. cable properties have an observable and quantifiable effect on cable failure; 

2. class balancing has a positive outcome on the performance results of survival models; 

3. the performance of the models is comparable with the same metrics; and 

4. the model can be related to cables on an individual basis. 

 

Each subsequent hypothesis relies on the validation of the previous hypothesis. By providing 

experimental support for the hypotheses, it becomes possible to establish a methodology to 

generate an accurate model capable of highlighting the risk factors and their effects on 

underground cable on a grouped and an individual basis. 

 

3.1.1 Comparative Assessment Requirements  

A comparative assessment of modelling methods must have the following characteristics: the 

effects of the covariates in the study have an observable effect on cable hazard; the use of class 

balancing provides additional insight into the data used and the performance of survival models 

and is comparable using performance metrics; and the model can be extended to cables on an 

individualized basis. 

 

A successful assessment of the models had to meet all four criteria, and so it was 

necessary to validate all the hypotheses to meet the objectives of the study. The first criterion 

depended on the type and quality of the survival data used: either the data was able to provide 

insight into risk factors generated by the models or it did not. The second criterion defined 

methods of dealing with highly censored data in a useful manner so as to improve the 

performance of the survival models. The third criterion established a method for comparing the 
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performance of various survival models to determine how they perform relative to one another. 

The fourth criterion allows for cables to be evaluated in terms of their survival probability on an 

individual basis with respect to their specific parameters. 

 

3.2 Feature Extraction 

 

A desired characteristic of the survival analysis method applied was that little a priori cable 

knowledge was required to build a survival model that was capable of analyzing all of the data 

inputted. Minimizing the amount of data sorting and selective management of covariates allowed 

the models to train on more information and determine the covariatesô importance without the 

requirement of covariate pre-selection. 

 

3.2.1 Cable Characteristics 

Medium-voltage (MV) distribution cable operates at voltages above 11 kV and below 50 kV. 

Many of these cables have been in operation for over 50 years, longer than the expected lifetime 

of cross-linked polyethylene (XLPE) cable [2]- a common cable used in the power service 

providerôs distribution system for its temperature and abrasion resistant properties. 

 

Underground cables feature a multilayer construction (Figure 3.2) designed for 

minimizing damage and increasing the longevity of their operability [37]. However, many failure 

mechanisms still exist. Breakdown of the cable insulation due to partial discharge caused by 

localized electrical fields around any defects in the insulating material cause serious damage to 

cables if left undetected [95].  

 

Distribution cable conductors are made primarily from copper or aluminum, both of 

which provide excellent electrical conductivity. The shift to aluminum conductors is backed by 

the inexpensive nature of using aluminum when compared to using copper conductors; a cost 

difference of about three to five times [27]. The use of aluminum, however, comes with 

increased risk of conductor corrosion. Corrosion and oxidation become greater risk factors, 

introducing additional resistance, and resulting in additional, unwanted, heat generation in the 
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distribution system. Copper, on the other hand, is far more resistant to corrosion and other 

chemical exposure [91]. 

 

Another failure mechanism pertinent to the use of cables underground is the appearance 

of water-tree induced faults. Water-treeing occurs in cables that have been exposed to high 

moisture levels wherein defects occur in the insulation and semiconducting materials [119]. This 

phenomenon quickly degrades the cable by creating localized stresses at the point of the water 

tree. 

 

 

Figure 3.2: Cross-linked polyethylene cable cross section [129] 

 

3.2.2 Data Selection 

Data used in the study was selected on the basis of the availability of information pertaining to 

covariates and their completeness and based on the failure mechanisms discussed in Section 

3.2.1.  

 

A dataset of 8,172 cable instances was created, all of which contained complete covariate 

information. In order to add a greater number of entries, estimation of interval parameters would 

be required using the mean covariate values. In doing so, the models would become reliant on 

the use of estimated parameters rather than true value measurement and would further 

complicate the system when using class balancing.  
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Seven covariates of interest were included, with the addition of cable age and failure 

status, to complete the survival data triplet. The covariates include cable diameter, length, 

insulating and conducting material, number of cables in the configuration, number of repair 

splices, and the arrangement in which the cables are buried underground. The covariates and 

their respective scale of measure are summarized in Table 3.1.  

 

Table 3.1: Covariates and scale of measure 

Covariate Scale of Measure 

Cable Age Interval 

Cable Diameter Interval 

Cable Length Interval 

Conducting Material Nominal 

Insulation Material Nominal 

No. of Cables Interval 

No. of Splices Ratio 

Underground Arrangement Nominal 

Failed Status Binary 

 

Three covariates, namely the conducting material, insulating material, and underground 

arrangement, are categorical in nature (Table 3.2). Categorical variables require additional pre-

processing in order to extract information out of the data by transforming the qualitative 

properties into quantitative measures. One-hot encoding [15] creates a set of binary variable 

columns corresponding to the number of categories in a covariate to create binary encoded 

values that machine learning models can utilize as shown in Figure 3.3. The original 8,172  9 

tuple is thus transformed to a 8,172  16 tuple using one-hot encoding. 
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Table 3.2: Instance count of categorical covariates 

Categorical Covariate Number of Instances 

Conducting Material Aluminum: 7494 

Copper: 678 

Insulation Material EPR CN: 76 

EPR LC Shield: 4 

PILC: 57 

TRXLPE: 41 

XLPE CN: 7992 

XLPE LC Shield: 2 

Underground Arrangement Directly Buried: 8098 

Duct line: 74 

 

 

 

Figure 3.3: One-hot encoding for categorical covariates 

 

3.3 Implementing Class Balancing Techniques 

 

Class balancing is pertinent to the success of the study. Class balancing can be performed on any 

covariate, in attempt to balance the number of feature instances. In this study, class balancing is 

performed on the failure status of the cable as the number of censored cases far outweighs the 

number of uncensored cases; this is to be expected when using real-world survival data.  
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The objective of class balancing allows machine learning models to be trained with 

minimal bias. A heavily imbalanced dataset creates bias in machine learning models, skewing 

the modelôs predictive capability. The resultant is an accuracy paradox where overly accurate 

results are generated but are not indicative of the true class prediction of the data. The 

predictions made by the model in a highly imbalanced data tend to overestimate the number of 

predicted majority class instances because the model itself is trained on imbalanced classes. In 

doing so, the minority class is largely outweighed, and the number of false positive and false 

negative results increases. 

 

The class balancing techniques used in this study are adopted from the Python package, 

imbalanced-learn (imblearn) [82]. 

 

Random Under-Sampling 

In the case of random under-sampling (RUS), data instances from the majority class are removed 

naively. That is, instances are removed in a completely random manner without replacement, as 

represented in Figure 3.4. Although simple and effective, the limitation of RUS is that this 

method does not consider the usefulness and importance of the information that is removed. It is 

likely that in a heavily imbalanced dataset, RUS eliminates useful information from the dataset 

when balancing the classes.  

 

The usability of RUS is straightforward in procedure and is implemented by: 

1. Setting a minority, □, and majority class, ╜, 

2. selecting an instance, ὼ, at random, from ╜, and eliminating it, and 

3. repeating step 2 until the number of instances from □ and ╜ is equivalent 
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Figure 3.4: Representation of random under-sampling balancing [81] 

 

Tomek Links 

Tomek Links is formulated as a modified condensed nearest-neighbours sampling method. A so-

called Tomek Link (Figure 3.5) is defined as points from the majority class, ὼ , and minority 

class, ὼ , that are distance, Ὠὼȟὼ , apart provided that no other class, ὼ, such that 

Ὠὼȟὼ Ὠὼȟὼ , and Ὠὼȟὼ  Ὠὼȟὼ , exists.  

 

When Tomek Links have been identified in the data feature space, the majority class 

instances are eliminated by applying the nearest-neighbour rule to select the instances [40].  
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Figure 3.5: Representation of Tomek Links balancing [81] 

NearMiss 

NearMiss is used on two instances of different classes, in close proximity to one another in the 

feature space, by removing that of the majority class in order to increase the dispersion of points 

in the classes. This is a commonly used under-sampling technique as it provides the added 

benefit of preserving information when compared to RUS and other under-sampling techniques.  

 

NearMiss can be applied to a dataset by: 

1.  Setting a minority, □, and majority class, ╜, 

2. calculating the Euclidean distance between all instances in □ ÁÇÁÉÎÓÔ ╜, 

3. setting an under-sampling rate, ὔ, with the number of instances that, when removed from 

the majority class, will balance the □ ÁÎÄ ╜ instances, and 

4. selecting ὔ instances from ╜ for which average Euclidean distance is smallest to 

instances in □ and eliminating them. 
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Random Over-Sampling 

Random over-sampling (ROS) enables the preservation of critical information in the dataset, 

unlike RUS. ROS involves generating new instances in the minority class by duplicating 

instances randomly. ROS is effective for machine learning algorithms where distributions are 

skewed and where duplicate instances can influence the fit of a model in a positive manner. 

However, this comes with an increased computational cost and increased likelihood of 

overfitting. 

 

Applying ROS to a dataset involves: 

1. Setting a minority, □, and majority class, ╜, 

2. selecting an instance, ὼ, at random, from □, and duplicating it, and 

3. repeating step 2 until the number of instances from □ and ╜ is equivalent 

 

SMOTE 

SMOTE synthesizes minority class data between existing minority instances through linear 

interpolation of data. The new data points are generated by randomly selecting k-nearest-

neighbours and synthesizing data in the feature space. Satphathy [114] provides a graphical 

representation of the SMOTE algorithm (Figure 3.6) where ὶ is the synthetic point generated out 

of two k-nearest-neighbour points, 8 ÁÎÄ 8 . 

 

Algorithmically, SMOTE can be performed on a dataset by: 

1. Setting a minority class, □, 

2. for each point ὼ, calculating the Euclidean distance between all ὼɴ □ to determine the 

k-nearest-neighbours of ὼ, 

3. setting a sampling rate, ὔ, to create balanced classes, 

4. randomly select ὼɴ □ȟὔ, i.e., ὼȟὼȟȣὼ , from k-nearest-neighbours and create a new 

dataset, □ , and 

5. for each ὼᶰ□ , Ὥ ρȟςȟȣȟὔ generate synthetic data using: 

Ø Ø ÒÁÎÄπȟρȿØ Øȿ       (3.1) 
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Figure 3.6: Representation of SMOTE balancing [114] 

 

3.4 Modelling for Survival Analysis 

 

Once class balancing techniques have been performed on the data, survival models can be 

utilized to further the understanding between the covariates of interest and the likelihood of 

survival of cable instances. 

 

The survival models used in this study are selected based on the availability of 

documentation related to their applicability in survival analysis, general performance and feature 

identification ability, and satisfaction of the hypotheses in the study. 

 

Cox Proportional Hazards Model 

Cox PHM is among the most widely adopted models for survival analysis. The hazard rate, or 

the risk of failure given that a data instance has survived up to a time, ὸ, is the primary measure 

of effect when using Cox PHM.  

 



 

36 

 

Cox PHM is given by, 

Ὤὸȟ● Ὤ ὸÅØÐВ ●░      (3.2) 

 

where the expected hazard function, Ὤὸȟ●, at a time, ὸ, with covariates, ●, is derived from the 

baseline hazard, Ὤ ὸ, covariate coefficients, , and covariate, ●░. A key feature in Cox PHM is 

that Ὤ ὸ is derived from the model itself, calculated as the hazard function if all ●░ π, and 

requires no estimation of the parameter which contributes to increased model performance.  

 

The Cox PHM model relies on several assumptions that are critical to its use in survival analysis: 

1. All instances in the data as presumed to be independent, i.e., the survival time of one 

instance does not inform the estimated survival of another instance, 

2.  censoring of data is done in a non-informative or independent manner; the assumption is 

satisfied when there is no relationship between failure and probability of censoring,  

3. the relationship between the log hazard and each covariate is linear, and 

4. the proportional hazard assumption- the assumption that all instances have the same 

hazard function but possess unique scaling factor specific to the covariates of the 

instance. This implies that the effect of a risk factor is constant over time.   

  

Gradient Boosted Models 

Gradient boosted models perform better than traditional survival analysis models in the case of 

high-dimensional data, where the analysis is computationally expensive and variable selection 

becomes increasingly complex. Rather than fitting base-learners to the entire covariate feature 

set, component-wise gradient boosting fits covariates successively by selecting the best covariate 

iteratively [21]. 

 

Two gradient boosted models are used- a gradient boosted model that implements 

regression tree base learners which is efficient in determining non-linear relationships between 

covariates and survival time, and a model that encompasses component-wise least squares as the 

base learner. 
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The overall gradient boosted model, Ὃὄ, is an additive model consisting of multiple base 

learners, 

Ὢ●  В Ὣ●Ƞ—        (3.3) 

 

where ὓ π is the number of base learners,  ᶰᴙ is the weight function associated with the 

model, and the function Ὣ is the base learner that is parameterized by the parameter, —. In 

regression gradient boosted models, specification of a loss function, ‰◐ȟὪ●ȟ—) is pertinent. 

The loss function must be a convex function [98] that can be drawn from the negative partial log-

likelihood function based on Cox PHM [104], 

 

●ȟὪ‰  ÁÒÇÍÉÎВ  Ὢ●░ ÌÏÇВ ὩὼὴὪ●     (3.4) 

 

To implement gradient boosting models in survival analysis, 

1. choose an initial Ὢ●, typically a value of zero, 

2. add a new base learner function at each iteration, keeping parameters and coefficients 

constant, 

3. find the base learner, Ὣ●Ƞ—, and its respective weight  , such that ‰ȟὪ●  is 

minimized, 

4. add the result, Ὣ●Ƞ—, from Step 3 to the model to create a new model based on the 

ά ρ  iteration, and 

5. repeat Steps 2 ï 4 until ‰ȟὪ●  cannot be minimized further or until iteration, ά, 

equals the stop iteration point, ὓ. 

  

Random Survival Forests 

Random survival forests have proven to be a favorable model when the proportional hazard 

assumption of Cox PHM is violated. Randomization in RSF is two-fold [66]. Firstly, a randomly 

drawn bootstrap sample of the data is used to grow the trees of the forest. Secondly, the trees 

depths are increased by using splitting nodes with randomly chosen covariates. 

 

The RSF algorithm is described by Ishwaran et al. [66] as follows: 
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1. Draw ὲ tree bootstrap samples from the original dataset using approximately 67% of the 

data (the remaining data is considered out-of-bag data), 

2. grow a survival tree for each bootstrapped sample where, at each node of the tree, 

covariates are randomly selected for testing the split, 

3. split on a covariate using the log-rank splitting rule where the covariate maximizes the 

survival differences across the daughter nodes, 

4. grow the trees to maximum depth, i.e., as close to saturation as possible where each 

terminal node has no less than the node size, Ὠ π, events,  

5. calculate the ensemble cumulative hazard function (CHF) estimate by combining the 

CHF from all trees, and 

6. using the out-of-bag data, calculate prediction error for the ensemble CHF. 

 

The log-rank splitting rule is the default splitting rule used as it provides the highest model 

accuracy when compared to the conservation of events, log-rank score, and log-rank 

approximation splitting rules  [44, 67]. The log-rank split at the value, ὧ, for covariate, ●, is, 

 

ὒὼȟὧ
В ȟ ȟ

В ȟ ȟ

      (3.5) 

 

Where Ὠȟ is the number of deaths at time, ὸ, and ὣȟ is the number of individuals in daughter 

node Ὦ, who are alive at or have an event at time ὸ. ὣ and Ὠ are defined as, 

ὣ ὣȟ ὣȟ       (3.6) 

ὣȟ ΠὝ ὸȟὼ ὧȟ    ὣȟ ΠὝ ὸȟὼ ὧ               (3.7) 

and, 

Ὠ Ὠȟ Ὠȟ      (3.8) 

 

where Ὕ is defined as the event time for individual l, in the case that the cable has failed, or right 

censored time, in the case that the cable has not failed at the end of the study. ȿὒὼȟὧȿ is the 

measure of node separation; the larger the value, the better the split is. The best split at a node is 
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found from the covariate, ὼᶻ, and split value, ὧᶻ, where ȿὒὼᶻȟὧᶻȿ ȿὒὼȟὧȿ for all ὼ and ὧ  

[67].  

 

The CHF is found for each terminal node, Ὤ, using the Nelson-Aalen estimator, 

 

Ὄ ὸ В ȟ

ȟ
ȟ

       (3.9) 

 

where all cases in Ὤ have the same CHF [66]. The out-of-bag ensemble CHF for instance, Ὥ, is 

then calculated over the average of ὄ survival trees by, 

 

Ὄᶻz ὸȿ●
В ȟ

В ȟ
     (3.10) 

 

where Ὅȟ ρ if instance Ὥ is an out-of-bag case for the ὲ  bootstrap sample, otherwise Ὅȟ π.  

 

Survival Support Vector Machine 

Survival analysis can be cast as a learning-to-rank problem; cables with a lower predicted 

survival time should be ranked before cables with longer survival time. However, in the case of 

censored data, which is highly pertinent to the analysis, pairwise samples used in model training 

that are both censored,   π, it is unclear whether the Ὥ-th sample is to be ranked before or 

after the Ὦ-th sample as the time to failure is unknown. The same applies to the pairwise 

comparison of one uncensored sample and one censored sample ( ρ ÁÎÄ  π). Thus, in 

model training, the set of valid pairwise comparable instances, ɪ, is given by [105], 

 

ɪ ÉȟÊ ȿ Ù Ùȟɿ ρȟ       (3.11) 

  

Training of a linear survival SVM requires solving and minimizing the loss function through 

Equation 3.12: 

ÁÒÇÍÉÎ
Ἷȟ

ρ

ς
Ἷ Ἷ Ễ 

ÒВ ÍÁØπȟρ Ἷ ὀ Ἷ ὀ ρ ÒВ ʁἿȟ Ùȟὀȟɿȟɴ   (3.12) 
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where, 

‒◌ȟ ώȟ●ȟ
ÍÁØπȟώ ◌● ὦ   ÉÆ  πȟ

ώ ◌● ὦ           ÉÆ  ρ
   (3.13) 

 

The model coefficient is defined as ◌ ɴ ᴙ , Ὠ-dimensional covariate vector, ●, and the 

survival time or time of censoring, ώ π. Of note is the hyper-parameter,  π, which 

determines the degree to which regularization is applied and the hyper-parameter ὶɴ πȟρ 

which reduces the model to a ranking objective if ὶ ρ or a regression objective if ὶ π. 

 

Kernel-based survival SVMs are a generalization of linear survival SVMs that can solve 

more complex data through the use of non-linear functions. 0ÏÌÓÔÅÒÌ et al. [105] describe this 

process as reformulating Equation 3.12 with respect to finding a function Ὢȡ…ᴼᴙ to a kernel 

function (Equation 3.14): Ὧȡ … …ᴼᴙ. Kernel survival SVMs, while more complex, use the 

kernel trick to represent the data through pairwise similarity comparisons between data instead of 

explicitly applying a transformation as would be done with a linear survival SVM. 

 

ὑὼȟὼ ɮὼ ɮὼ      (3.14) 

 

Various kernel functions can be employed in the kernel survival SVM, which may be 

disadvantageous to the selection of the most appropriate kernel for the application and for tuning 

hyper-parameters. All kernels shown in Table 3.3 are employed and tuned to provide the most 

accurate results for each model. 

 

Table 3.3: Kernel functions for survival SVM 

Kernel Function 

Linear ὑὼȟὼ ὼὼ  

Polynomial ὑὼȟὼ ὼὼ ὶ ȟ π  

RBF ὑὼȟὼ ÅØÐ ᷆ ὼ ὼ᷆ ȟ    π  

Sigmoid ὑὼȟὼ ÔÁÎÈ ὼὼ ὶ  
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Two-Stage Cox PHM and Random Survival Forest Model 

Both Cox PHM and RSF possess desirable features fit for survival analysis. Combining the 

models in a two-step approach has proven to be a robust model capable of generate highly 

accurate results [11]. In this approach, high-dimensional data is evaluated using Cox PHM to 

determine the covariates of most significance. This is done by evaluating ȿȿ values of each 

covariate and ranking them from high absolute value to lowest. The higher the value, the larger 

the influence of the covariate on the modelôs hazard, either in a negative or positive manner. By 

selecting the top ὲ covariates, RSF can be used to train and test the modelôs performance. The 

RSF stage is identical to that of the conventional RSF model. 

  

3.5 Performance Metrics 

 

Evaluating the performance of the models using comparable metrics is vital to understanding the 

capabilities of each model, as well as determining which model is best suited for analyzing the 

cable dataset presented. This is the basis of the third hypothesis.  

 

Concordance Index 

The C-index is designed to estimate the concordance probability 0ʂ –  Ὕ Ὕ  such that 

two independent instances are ranked based on risk scores, – and event or censoring time, Ὕ. The 

C-index is a generalization of the area under the ROC curve that accounts for censored data and 

represents the discriminatory power of a model. A model with perfect predictive accuracy is 

given a C-index value of 1, a model that does as good as random guessing has a C-index value of 

0.5, and a model that has no predictive capability has a value of 0.  

 

The C-index of the model is computed for every pair of cable instances, Ὥ and Ὦ, Ὥ Ὦ, by 

evaluating – and Ὕ. 

1. If   ρ, i.e., not censored, the pair ὭȟὮ is a concordant pair if – – and Ὕ

Ὕ, or a discordant pair if – – and Ὕ Ὕ 

2. If   π, i.e., censored, it is unclear which cable failed first and the pair is omitted 

from the computation 
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3. If, for example,  ρ ÁÎÄ  π, i.e., one cable is censored and the other is not and, 

a. Ὕ Ὕ, the pair is omitted from the computation 

b. Ὕ Ὕ, cable Ὥ failed first and the pair ὭȟὮ is a concordant pair if – –, or a 

discordant pair if – –. 

4. Compute the C-index as: 

# ÉÎÄÅØ
Π ÏÆ ÃÏÎÃÏÒÄÁÎÔ ÐÁÉÒÓ

Π ÏÆ ÃÏÎÃÏÒÄÁÎÔ ÐÁÉÒÓΠ ÏÆ ÄÉÓÃÏÒÄÁÎÔ ÐÁÉÒÓ
 

 

The above can be alternatively expressed by the formula [58, 116]: 

 

# ÉÎÄÅØ
В  Ͻ Ͻȟ

В Ͻȟ
          (3.15) 

 

Brier Score 

The Brier score is used as a performance metric for survival problems that incorporate censored 

data. It is defined as a measure of the square deviation of the survival estimate from the true 

probability of failure.  

 

The probability distribution of being non-censored until time ὸ, is given by the function 

Ὃὸ ὖὝ ὸ and the estimate of Ὃὸ is denoted as Ὃὸ. Incorporating the estimated 

survival function, Ὓὸȿὼ , the Brier score is described by, 

 

ὄὛὸ В

ừ
Ử
Ừ

Ử
ứ ὸὼ

       ÉÆ ὸ ὸȟ ρ

ȿ
             ÉÆ ὸ ὸ

π                    ÉÆ ὸ ὸȟ π

ȟȣȟ     (3.16) 

 

The Brier score evaluates the modelôs goodness of fit for a given time, ὸ, and is extended to be an 

overall measure for the modelôs prediction at all times- the integrated Brier score (IBS): 

 

ὍὄὛ ᷿ ὄὛὸÄὸ     (3.17) 
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3.5.1 Underlying Distribution Analysis 

The K-S test is employed to determine whether the empirical CDF generated by the model 

comes from a population with a specific distribution. The empirical CDF, by definition, is 

obtained through the survival function, 

 

Ὓὸ ÅØÐ (Ô       (3.18) 

 

where the hazard function, H(ὸ, is calculated directly from the modelôs output. The empirical 

CDF, Ὂὸ, by definition, is then solved through: 

 

Ὂὸ ὖὝ ὸ  ρ Ὓὸ    (3.19) 

  

The K-S test, while a robust distribution analysis tool, has several limitations: 

1. It has an increased sensitivity near the center of the distribution than at the tails, 

2. it only applies to continuous distributions, and 

3. the distribution must be fully specified, namely the location, shape, and scale parameters 

 

Two outputs are the resultant of performing a K-S test- the test statistic, Ὀ, and the 

significance, ὴ. The former is the absolute maximum supremum between the CDFs, defined as, 

 

Ὀ ÍÁØὊὣ ȟ Ὂὣ      (3.20) 

 

where ὣ ὣȟȣȟὣ are ὔ ordered data points. The closer the value of Ὀ to zero, the more likely 

that the empirical CDF was drawn from the same distribution. More specifically, pre-determined 

critical values, , determine whether the null hypothesis is rejected. For larger samples, the null 

hypothesis is rejected if, 

Ὀȟ ÌÎ Ͻ      (3.21) 
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where, ά ÁÎÄ ὲ are sample sizes for the two distributions. The latter is the conventional 

interpretation of the p-value. That is, the measurement used to validate a hypothesis. The p-value 

itself, is evidence against a null hypothesis; the smaller the p-value, the stronger the evidence is 

supporting the rejection of the null hypothesis.  

 

3.6 Summary of Methodology 

 

It is recognized that survival analysis follows a sequential approach to achieve the desired 

objective- a highly accurate model capable of strong predictive performance. Since the level of 

imbalance is known a priori, additional steps to further the performance of the models are added; 

the underlying limitation in survival analysis is mitigated using class balancing techniques. 

Various survival modelling techniques are employed as models of interest, based on prior 

performance in conventional survival analysis applications. 

 

The methodology outlined in Figure 3.1 provides a novel approach to conducting a 

survival analysis to generate outputs from various combinations of class balancing techniques 

and survival models. The four-stage approach to modelling ensemble hazard and survival 

functions for cable instances is concluded with an approach to individualizing these functions for 

specific cable instances.  

 

This method builds off previous steps to create a model that outperforms conventional 

survival analysis techniques through the means of additional pre-processing measures and is 

validated through the comparative assessment of performance metrics for each model. 

 

The next chapter examines the implementation and results of the four-stage approach for 

cable survival data. 
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Chapter 4 
 

 

Experimental Results 

Chapter Three introduced a methodological approach to conducting a survival analysis of 

medium-voltage underground cables with the inclusion of class balancing techniques that aims to 

validate four hypotheses: 

 

1. cable properties have an observable effect on cable failure; 

2. class balancing has a positive outcome on the performance results of survival models; 

3. the performance of the models is comparable with the same metrics; and 

4. the model can be related to cables on an individual basis. 

 

This chapter outlines the results obtained from class balancing techniques, survival 

modelling, and performance evaluation for the medium-voltage underground cable dataset. 

Relationships between the choice of class balancing technique and survival model are drawn in 

an identifiable way through the use of performance metrics. Covariates of importance are 

examined and their respective influence on the hazard of specific cable instances are determined. 

Validation of the four hypotheses is simultaneously confirmed.  

 

4.1  Feature Identification 

 

Pair plots are created to identify statistical relationships between numerical variables including 

cable age, diameter, length, number of splices in the cable, and the number of cables in the 

configuration. 

 

From Figure 4.1, an apparent relationship exists between phase configuration and age. 

Cable failure is more commonly identified in a range of cable ages that are in a one-phase and 

three-phase configuration, whereas cables in a two-phase configuration do not experience failure 
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as commonly; the latter can be contributed to the minimal use of two-phase cable in the 

distribution network. Two-phase cable is only used wherever one-phase cable has diverged. 

Three-phase cable is used at substations and in commercial and industrial applications. One-

phase cable is abundantly used for most households and consumer level applications. The use of 

two-phase is, therefore, only required in areas in which customers are not in need of three-phase 

power and where one-phase power would not be sufficient. 

  

 Cables that contain more repair splices are less likely to experience failure because 

splices provide a cable with added longevity of operation by eliminating a damaged portion of 

cable with a new segment rather than replacement of the entire cable.  

 

Increasing geometric length of a cable shows a negative relationship with cable age; 

shorter cable ( υππ Í) instances possess a larger ratio of active cables when compared with 

larger cables ( υππ Í). 



 

47 

 

 

Figure 4.1: Seaborn pair plot of numerical covariates 

 

Categorical data are then investigated to gauge failure instances. Categorical data 

includes insulating material, conducting material, and burial arrangement. The conducting 

material is predominately aluminum in cables used by the utility provider, primarily due to it 

being a cost-efficient alternative to previously used copper conducting material, hence the larger 

proportion of aluminum-based cable compared to older, less frequently used, copper-based cable 

(Figure 4.2).  
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Figure 4.3 provides information pertaining to the number of instances of various 

insulating materials of cables in the dataset. Cross-linked polyethylene (XLPE) is the most 

common type of insulating material used for underground cable in the region. XLPE is extremely 

resistant to abrasion and general wear; it also provides resistance to elevated voltage, chemical 

contamination, and water ingress. XLPE is most commonly used with concentric neutrals (XLPE 

CN) when compared with longitudinal corrugated XLPE (XLPE LC Shield) and tree retardant 

XLPE (TRXLPE).  

 

Cables installed in a directly buried (DB) fashion are a more cost-efficient method of 

installation when compared with cable installed in a duct line conduit. Duct lines are used for 

specialty applications such as under roadways and from substations. Duct lines protect 

distribution cable from corrosion, temperature extremes, and seismic activity. Cables in duct 

lines are far more costly, with additional costs associated with manufacturing and installation 

duct lines prior to installing cable. Cable laid directly in the soil without a manufactured 

surrounding medium can be used in most situations. Due to the protective nature of cable 

insulation, cable that is directly buried still possesses resistance to the surrounding environment 

without the requirement for duct lines- the more common approach (Figure 4.4).  
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Figure 4.2: Conducting material instance count 

 

 

Figure 4.3: Insulating material instance count 

Failed 

Failed 
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Figure 4.4: Installation arrangement instance count 

 

Class Balancing 

Class balancing refers to balancing unequal proportions of samples. Methods exist both for 

increasing the number of samples in the minority class to balance that of the majority class and 

for decreasing the number of samples in the majority class to balance with the minority class. 

 

Due to the nature of real-world survival data, class balancing is conducted solely on the 

basis of failed (#ÌÁÓÓ  ρ) and active cable (#ÌÁÓÓ  π) status, with the proportion of active 

cable being far greater than that of failed cable in the dataset (Figure 4.5 (a)). Under-sampling 

techniques (Figure 4.5 (b)-(d)) remove instances from the majority class until the number of 

failed and active cable is equivalent. This, however, is not the case in Tomek Links, which, as 

discussed in Section 3.3, is a modification of the nearest-neighbour rule whereby instances of 

opposite classes that are nearest-neighbours are used to eliminate instances of the majority class. 

In doing so, Tomek Links do not provide a true class balance, but instead create a larger distance 

between classes in the feature space for a potentially more accurate analysis. Both over-sampling 

techniques (Figure 4.5 (e)-(f)) create an equal ratio of failed and active cable by adding instances 

to the minority class. In random over-sampling, random minority class instances are duplicated 

Failed 
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to equate the minority and majority class instances. In the SMOTE technique, synthetic instances 

with slight variation to original instances are created in the minority class. This is beneficial for 

minimizing overfitting issues. Numerical results for the transformed data using class balancing 

techniques is summarized in Table 4.1.  

 

 (a) 

 

 (b) 

 

 (c) 

 

 (d) 

 

 (e) 

 

 (f) 

 

Figure 4.5: Ratio of censored and uncensored samples for (a) unbalanced data, 

(b)-(d) under-sampling methods, and (e)-(f) over-sampling methods 
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Table 4.1: Resampled data count using class balancing 

Balancing Technique Original Training Data  Resampled Training Data 

Random Under-Sampling 

0: 4888 

1: 587 

0: 587 

1: 587 

Tomek Links 0: 4747 

1: 587 

NearMiss 0: 587 

1: 587 

Random Over-Sampling 0: 4888 

1: 4888 

SMOTE 0: 4888 

1: 4888 

 

In the pre-processing stage, the class balancing techniques are applied to the dataset after the 

train-test data split to ensure that duplicated instances in both under-sampling and over-sampling 

methods are not present in both the training and test data.  

 

4.2  Survival Assessment 

 

The data pre-processing stage leads into the construction and evaluation of various survival 

models using numerous performance metrics concurrently. The nine survival models used with 

the five class balancing techniques are compared against the unbalanced (original) dataset as a 

benchmark. 

 

4.2.1 Optimization of Hyperparameters 

Models that require additional parameterization of the number of estimators used include RSF, 

and gradient boosted models using both regression trees and least squares base learners. The 

number of estimators used in the model has a direct correlation to the C-index output from fitting 

the test data.  
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To determine the number of estimators that provides the largest C-index value, the 

number of estimators, i.e., the number of trees, in RSF is varied from 10 to 500 in increments of 

10, and from 500 to 900 in increments of 100. Similarly, the number of estimators in gradient 

boosted models vary from one to 200, in increments of 10. C-index values for a range of 

estimators for RSF, gradient boosted model with regression tree base leaners and with least 

squares base learners using SMOTE balancing are given in Figure 4.6, 4.7, and 4.8, respectively. 

 

a) 

 

b) 

  

Figure 4.6: C-index values corresponding to the number of estimators ranging (a) 

between [10,500], and (b) [500,900] for a random survival forest model 

 

 

Figure 4.7: C-index values corresponding to the number of estimators in a 

regression tree base learner gradient boosted model 
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Figure 4.8: C-index values corresponding to the number of estimators in a least 

square base learner gradient boosted model 

 

4.2.2 Concordance Index Results 

Briefly, the C-index is a goodness of fit statistic that is used to measure the degree of 

agreement between the risk score generated and the time-to-failure. This is a metric that 

evaluates the predicted output of the model; a C-index value of one indicates perfect predictive 

accuracy of the test data. Table 4.2 summarizes the C-index results from the permutations of 

class balancing techniques and survival models. The C-index values in Table 4.2 are generated 

from the models with optimized hyperparameters as described in Figures 4.6-4.8 above and for 

models that do not require hyperparameter optimization.  

 

Results for Unbalanced Data 

The C-index of survival models trained on the unbalanced dataset indicate that the models 

perform strongly, given the data presented [25, 68]. RSF outperforms all models, with a C-index 

value of 0.8321. This includes outperforming the two-stage Cox PHM/RSF model slightly (#

ÉÎÄÅØπȢψσρρ, indicating that the reduction of covariates does not improve the C-index of the 

model. This is because RSF was designed for scaling up with high-dimensional data and a large 

sample size [67].  
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The Cox PHM model generates a C-index value of 0.5- equivalent to that of flipping a 

coin. Several factors may contribute to the poor performance of the model. Computation of Cox 

PHM requires the inverse of a matrix, which only exists if the matrix is of full rank. With the 

increased number of covariates and instances, columns may be linearly dependent on one 

another, resulting in a matrix that is potentially not full rank. The model then requires a 

penalization parameter, , for regularization to penalize values in attempt to maintain a full rank 

matrix and generate a C-index value and avoid model errors. Aside from the high dimensional 

nature of the data, at some level the covariates used are likely to be correlated, which contributes 

to co-linearity issues commonly found in Cox PHM [141]. Issues pertaining to the model could 

have also arisen if the proportional hazards assumption is violated; this assumes that all instances 

have the same relative hazard function but differ only in the functionôs scaling factor. These are 

but several potential explanations for the poor performance of Cox PHM. 

 

The success of gradient boosted model lies in the base learner used. Given that RSF is 

fundamentally an ensemble regression tree, using regression tree base learners produces C-index 

values larger than those of Cox PHM and Survival SVMs. Regression tree base learner gradient 

boosting outperforms the least squares base learner gradient boosted model, with respect to C-

index for unbalanced data. The regression tree base learner model uses target values rather than 

threshold value constraints which simplifies the problem using equality constraints whereas least 

squares base learners operate by minimizing the sum of squared errors. By minimizing the 

squared error, the model effectively reduces misclassification rates to the best of the modelôs 

ability. 

 

Kernel survival SVMs indicate slightly lower C-index values when compared with other 

models, with the sigmoid kernel providing the poorest accuracy among the entire test set, for 

both unbalanced and unbalanced data1. The linear survival SVM outperforms all kernel survival 

SVMs, generating a slightly higher C-index than both the third-degree polynomial and the 

sigmoid kernel survival SVMs. This result concurs with the notion that the dataset is more 

linearly separable when described in the feature space compared to other kernel-based survival 

 
1 This excludes the Cox PHM results (# ÉÎÄÅØπȢυππ due to the inherent flaw within the modelôs ability to 
bypass assumptions and correctly interpret the input data. 
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SVMs. A kernel density plot is derived from the test data used for survival SVMs, shown in 

Figure 4.9. The kernel density plot visualizes the dispersion of test data over cable age. Peaks in 

the distribution at certain cable ages indicate where the number of instances is most 

concentrated. The dispersion of failed and active cables, from Figure 4.9, indicate that the 

instances can be largely separated with a linear kernel with minimal overlap, except at a cable 

age of 45 years.  

The third-degree polynomial and sigmoid kernel survival SVMs are non-parametric, and 

their complexity grows with the size of the training dataset. Computationally speaking, it is more 

expensive to compute the kernel survival SVMs and requires the projection of the data into a 

higher dimensional space where the data can then be linearly separable. Tuning the 

hyperparameters in the kernel survival SVMs is also extremely tedious, with more 

hyperparameters requiring tuning. The resultant is a model that is overfit, with lesser accuracy.  

 

 

Figure 4.9: Kernel density plot for survival SVM test data 

 

Results for Balanced Data  

The C-index results for various class balancing methods indicate several notable features 

seen in Table 4.2. Firstly, based on the C-index, RSF outperforms or performs on par with all 

other models in all class balancing techniques, with only slightly lesser values than the two-stage 

model with Tomek Links (23& # ÉÎÄÅØ πȢψσρρ) and random over-sampling (23& #

ÉÎÄÅØ πȢψπψσ)- a difference in C-index of 0.0003 and 0.0039 for the two models, 
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respectively. The findings that RSF performs greater than or equal to the other survival models 

with respect to C-index concurs with the results from other studies [1, 11, 67]. 

 

Second, Cox PHM using random under-sampling, random over-sampling, and SMOTE 

do not possess the same issues associated with that of the unbalanced, Tomek Links, and 

NearMiss models in which the C-index results are equivalent to random guessing. C-index 

values for Cox PHM with random under-sampling, random over-sampling, and SMOTE are 

0.768, 0.765, and 0.769, respectively. 

 

The results of gradient boosted models and survival SVMs, both linear and kernel, follow 

the same patterns as described for the models using the unbalanced dataset indicating 

consistency in the testing methods and further, the consistency in the results.  

 

Table 4.2: Test data concordance index results 

 

Model 

Method/ 

Imbalance 

Technique 

RSF 

Cox 

PHM 

Two-Step 

Approach 

Gradient 

Boosted Cox 

w/ Regression 

Tree Base 

Learner 

Gradient 

Boosted 

Cox w/ 

Least 

Square 

Base 

Learner 

Linear 

Survival 

SVM 

Linear 

Kernel 

Survival 

SVM 

3rd Degree 

Polynomial 

Kernel 

Survival SVM 

Sigmoid 

Kernel 

Survival 

SVM 

Original 0.8321 0.5000* 0.8311 0.8095 0.7958 0.7699 0.7241 0.7239 0.5014 

RUS 0.8092 0.7679 0.8013 0.7839 0.7867 0.7482 0.7240 0.7239 0.5008 

Tomek 

Links 0.8311 0.5000* 0.8314 0.8075 0.7964 0.7875 0.7241 0.7239 0.5008 

NearMiss 0.8079 0.5000* 0.7906 0.7565 0.7948 0.7636 0.7240 0.7239 0.5000 

ROS 0.8083 0.7653 0.8122 0.7800 0.7857 0.7513 0.7240 0.7239 0.5519 

SMOTE 0.8096 0.7694 0.8017 0.7696 0.7841 0.7467 0.7240 0.7239 0.7198 

 

The results from Table 4.2 seemingly indicate that the models that perform most 

accurately in terms of C-index values are those in which the models operate on unbalanced data, 

with the RSF model outperforming all methods with all balancing techniques. Naive selection, 

however, of a model based on a single performance metric does not provide enough information 

to determine the best model for the dataset; hence, the analysis of the integrated Brier score.  
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4.2.3 Integrated Brier Score Results 

While the results of the C-index provide discriminative power, i.e., ranking C-index scores to 

compare models, the analysis of integrated Brier score (IBS) provides insight into both 

calibration and discrimination power of the model. Recall, an IBS value ɴ πȟρ closer to zero 

indicates perfect calibration and discrimination ability and the perfect overall performance of the 

survival models.  

 

The C-index results indicate that the accuracy of models used on unbalanced data is 

greatest, the IBS values prove otherwise. The resultant IBS values found for each model are 

outlined in Table 4.3. It should be prefaced that survival SVMs can only predict a relative risk 

score and not a probability, therefore the IBS cannot be computed for survival SVMs and is thus 

omitted in the analysis [139].  

 

The unbalanced RSF and two-stage models produce C-index values of 0.8321 and 

0.8311, however the IBS values are 0.0392 and 0.4000, respectively; greater than the IBS values 

found using the same models that are balanced, implying a better fitting model for the dataset 

when employing class balancing in the pre-processing stage of the method in terms of 

classification and discrimination power, i.e., the IBS. 

 

Models that produced the best IBS, i.e., the lowest scores, include SMOTE with gradient 

boosted regression tree base learners and SMOTE-RSF, )"3πȢπςφσ ÁÎÄ πȢπςφρ, respectively, 

as well as random over-sampling with a regression tree gradient boosted model ()"3πȢπςφπ 

and random under-sampling with Cox PHM ()"3πȢπςφυ. 

 

Issues arising with the C-index in certain Cox PHM balancing methods, i.e., Tomek 

Links and NearMiss, as well as Cox PHM with unbalanced data also translate into greater IBS 

values indicative less predictive performance and calibration of these models. 

 

 Other models incorporating Tomek Links class balancing produce IBS values similar to 

those of models with unbalanced data. NearMiss also produces high IBS scores compared to 

other class balancing methods. The former is likely due to the nature of Tomek Links and the 
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inability to provide a truly balanced dataset for the modelôs learning stage. Hence, the results are 

similar to that of the unbalanced dataset, where the proportion of censored samples remains far 

greater than that of the uncensored samples. NearMiss operates similar to Tomek Links in that 

majority class instances are removed to create greater dispersion between opposite classes. This 

could be indicative of the IBS results generated by NearMiss models being similar to Tomek 

Links balancing models and unbalanced data models. Both of the class balancing methods 

experience the same phenomenon as the unbalanced dataset in the Cox PHM. 

 

Table 4.3: Test data integrated Brier score results 

 

Model 

Method/ 

Imbalance 

Technique RSF 

Cox 

PHM 

Two-Step 

Approach 

Gradient 

Boosted Cox 

w/ Regression 

Tree Base 

Learner 

Gradient 

Boosted Cox 

w/ Least 

Square Base 

Learner 

Linear 

Survival 

SVM 

Linear 

Kernel 

Survival 

SVM 

3rd Degree 

Polynomial 

Kernel 

Survival SVM 

Sigmoid 

Kernel 

Survival 

SVM 

Original 0.0392 0.0517 0.0400 0.0398 0.0412 - - - - 

RUS 0.0274 0.0265 0.0275 0.0299 0.0272 - - - - 

Tomek 

Links 0.0379 0.0487 0.0382 0.0378 0.0390 - - - - 

NearMiss 0.0335 0.0412 0.0363 0.0315 0.0296 - - - - 

ROS 0.0289 0.0267 0.0312 0.0260 0.0269 - - - - 

SMOTE 0.0261 0.0279 0.0270 0.0263 0.0283 - - - - 

 

4.2.4 Processing Speed 

To gauge model performance given the dataset and the ability to scale up where additional data 

may be implemented, the run time, averaged across five runs, is computed under the SMOTE 

balancing techniques. The SMOTE technique is used as it provides the largest training dataset, 

with the largest number of unique instances; recall, techniques such as random over-sampling 

duplicate data instances rather than creating synthetic points as in SMOTE. The run times, 

determined on a 4 core, 8 GB RAM, 4.0 GHz processing speed workstation, are presented in 

Table 4.4. 

 

The Cox PHM and linear survival SVM models have the quickest run time by a large 

margin, compared to all other survival models. The most accurate models in terms of C-index 

and IBS, i.e., RSF and the gradient boosted models, have a longer run time, with RSF requiring 
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approximately twice as much time to formulate a model compared with the gradient boosted 

model with regression tree base learners.  

 

Table 4.4: Survival model average run time 

Survival Model Run Time 

RSF 6 min 35 sec 

Cox PHM 11 sec 

2-Step Approach 10 min 21 sec 

Gradient Boosted Model w/ Reg. Tree 3 min 23 sec 

Gradient Boosted Model w/ LS 12 min 15 sec 

Linear Survival SVM 6 sec 

Kernel Survival SVM 2 min 32 sec 

 

4.2.5 Variable Importance 

Variable importance is determined for the survival models given the respective covariates used 

in the dataset. The results in Table 4.5 are determined using the RSF model with SMOTE class 

balancing. Positive scores indicate that the C-index score decreases when the feature is removed 

and therefore the feature contributes to the accuracy of the model. Scoring weights close to zero 

contain little-to-no useful information in the model and may be omitted from the model with 

minimal consequence. The weight associated with covariates refers to the average decrease of 

the test data C-index, and conversely the average increase of the C-index if the removed feature 

weight is positive and negative, respectively. For example, removing the cable length covariate 

from the datasets, on average, decreases the C-index by 0.0989 points 

 

From Table 4.5, the cable length is of most importance to the construction of the model, 

followed by cable diameter, number of splices, and number of cables in the configuration. 

Features that contain little-to-no importance to the model include cables that are in a duct line 

arrangement, as well as various insulating materials. This is due to the minimal number of 

instances of these properties when compared to their counterparts, recall Figure 4.2 ï 4.4. 
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Table 4.5: Feature importance and weighting of covariates 

 

 

To further the understanding of variable importance, the SMOTE with Cox PHM model 

is analyzed for the log hazard ratio that corresponds to the  value of the covariate. The log 

hazard ratios of the covariates are summarized in Table 4.6. Positive log hazard ratio suggests 

increased risk associated with the covariate on the cableôs failure likelihood, whereas negative 

log hazard ratios indicate a smaller risk.  

 

Notable comparisons can be drawn when comparing various cable properties. Cables 

with aluminum conducting material (LHR = πȢυσρτ) possess a greater risk factor when 

compared with copper conducting material (LHR =  πȢφχφπȢ While aluminum conducting 

material is lighter in weight and more susceptible to bending for installation, copper conducting 

material has a lower impedance and can carry a higher capacity, making copper conductors 

slightly smaller than aluminum conductors of the same current capacity. 

 

Cables that are directly buried (LHR = πȢρτυρ) are more prone to failure than cables that 

are encased in a duct line (LHR =  πȢπωφω). This is because directly buried cable is more likely 

to experience thermal bottlenecking due to soil characteristics and thermal resistivity. Organics 

in the soil impact the ability of the cables heat removal. Duct lines, on the other hand, are a more 

consistent environment, where the surrounding medium is air and, in some cases, water. Duct 






































