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Abstract

Data reconciliation and gross error detection are traditional methods toward

detecting mass balance inconsistency within process instrument data. These

methods use a static approach for statistical evaluation. This thesis is con-

cerned with using an alternative statistical approach (Bayesian statistics) to

detect mass balance inconsistency in real time.

The proposed dynamic Baysian solution makes use of a state space pro-

cess model which incorporates mass balance relationships so that a governing

set of mass balance variables can be estimated using a Kalman filter. Due to

the incorporation of mass balances, many model parameters are defined by

first principles. However, some parameters, namely the observation and state

covariance matrices, need to be estimated from process data before the dy-

namic Bayesian methods could be applied. This thesis makes use of Bayesian

machine learning techniques to estimate these parameters, separating process

disturbances from instrument measurement noise.
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Chapter 1

Introduction

1.1 Objective of this thesis

The objective of this thesis is to develop dynamic methods to address the
problem of mass balance inconsistency which is common to instrument data
within the chemical process industry. Due to the presence of noise within
instrument readings, data is often contaminated by random errors, but can also
be contaminated by gross errors which are less frequent but often times more
serious [22]. Examples of gross errors include process disturbances, instrument
bias, process leaks or departure from steady-state [22]. Instrument bias can
often be detrimental if it is used as an input for a control system, while process
leaks can often affect plant profitability and safety [8]. Thus in many cases,
process operation, safety, and bookkeeping can be improved by implementing
a method that can detect mass balance consistencies as soon as they occur.

Traditional methods of dealing with mass balance consistency are data
reconciliation and gross error detection. For a process operating at steady-
state, data reconciliation seeks to estimate the set of process values that are
most most likely to result in the observed instrument readings. Gross error
detection however, uses statistical testing procedures to identify data sets that
systematically violate mass balance principals. If a gross error is detected, the
corrupted data sets are removed and another attempt is made to estimate the
reconciled state.

1.2 Introduction to the Bayesian Philosophy

Data reconciliation and gross error detection are techniques typically per-
formed after the fact; however, there is a demand for implementing real-time
techniques to allow for earlier detection of gross errors which is the objective of
this thesis. The proposed dynamic approach can be performed using Bayesian
techniques.

The key element to Bayesian techniques is the application of Bayes’ theo-
rem:

P (h|e) =
P (e|h)P (h)

P (e)
(1.1)

where P (e|h) is the probability of the evidence given a hypothesis, and is
also referred to as the likelihood evidence, P (h) is the prior probability of the

1



hypothesis, P (e) is the probability of all possible evidence, or is often called
a normalizing constant to ensure that P (e|h) is a probability density function
that integrates to 1, and P (h|e) is the probability of the hypothesis given that
it is updated with new evidence, often referred to as the posterior probability.

Since the Bayesian philosophy focuses on updating prior hypothetical be-
liefs using new evidence, Bayesian techniques are an intuitive solution to dy-
namic estimation problems. Because Bayes’ theorem is naturally geared to-
ward diagnosing hidden causes of observed data, it is often helpful to represent
the problem as a Bayesian network, which organizes a set of related events in
terms of causality. Consider the example shown in Figure 1.1. If one looks at
the ground and finds that it is wet and that there are no shadows (possibly due
to cloud cover), one can speculate between whether or not it was caused by
rain or by a sprinkler. In order to use Equation (1.1) we need to know the prior
probability of Rain = T/F and Sprinkler = T/F which defines P (h). Further-
more, we also need to know the conditional probability of any combination of
Shadows = T/F, and Wet Ground = T/F given the possible combinations of
Rain = T/F and Sprinkler = T/F which defines P (e|h). Often times values of
P (e|h) are stored in a Conditional Probability Table (CPT). P (e) is simply the
sum of all possible values of P (e|h)P (h) so that probabilities are normalized.

Rain

Sprinkler

Shadow = F Wet Ground = T

Figure 1.1: Static Bayesian Example

When applied to a dynamic problem, hidden states (both continuous and
discrete) at the present time have an effect both on the current observations
and the state at the subsequent time interval. When evaluated in this manner,
these methods can be classified as Dynamic Bayesian Networks (DBNs). One
can convert the static problem in Figure 1.1 into the dynamic problem in
Figure 1.2. In this example, we now consider evidence observed 5 minutes
ago. If we observed no shadows and wet ground now, the evidence would point
toward rain. However, if 5 minutes ago we observed that there were shadows
and wet ground, the evidence 5 minutes ago would have pointed toward the
sprinkler. This would modify our prior belief toward rain in the current time
step, resulting in a stronger posterior belief of the wet ground being caused by
the sprinkler.

2



Rain

Sprinkler

Shadow = T Wet Ground = T

Rain

Sprinkler

Shadow = F Wet Ground = T

5 Minutes Ago Now

Figure 1.2: Dynamic Bayesian Example

1.3 Applying Bayesian Philosophy to Data Rec-

onciliation and Gross Error Detection

Data reconciliation is a steady-state estimation technique; it attempts to use
multiple instruments and combine them to estimate a more reliable steady-
state. This works under the assumption that the states are not changing.
State estimation however, already has a well established dynamic analogue,
that being the Kalman filter which was proposed by R.E. Kalman in 1960
[13]. One in determining this analogue, one must consider the key difference
between data reconciliation and Kalman filtering. Data reconciliation obtains
the estimate of a steady state that best explains all the collected data [8].
It assumes that the state does not change. However, the optimal Kalman
filter obtains the best estimate of the current state given the previous state
and its uncertainty [14], it allows assumes that the state can have pre-defined
dynamics for change, but is also subject to disturbances caused by various
inputs. Thus it weighs the evidence of change against the prior belief of change.

It has been proved that discrete-time Kalman filtering is consistent with
Bayes’ theorem [17]; in fact, Kalman filtering is a technique that can be used
to solve certain DBN structures that consist of Gaussian variables. However,
current solution methods to solving DBNs are more general, being able to
solve more complex model structures that include discrete-valued variables.
Nevertheless, the Kalman filter can easily be converted into a Bayesian network
as shown in Figure 1.3 where Gaussian variables are represented by elliptical
nodes, and A and C represent the state transition and observation matrices.

Without dynamic relationships, the state space model represented in Figure
1.3 simplifies to a factor model represented in Figure 1.4, where relationships
between individual latent variables x and observed variables y are explicitly
shown by scalars c[i,j].

Gross error detection makes use of statistical hypothesis testing to deter-

3



T(i-1) T(i)

X

Y Y

X

T(i+1)

Y

X

A A

C CC

Figure 1.3: Bayesian Network Example of Kalman Filter

x1

y2 y3

x2

y1

c[2,2]

y4

c[2,1]

c[3,2]

c[1,1] c[4,2]

Figure 1.4: Bayesian Network Example of Factor Model

mine whether there is enough evidence to reject the null hypothesis that no
gross errors exist. While this type of problem cannot be solved by means
of Kalman filtering, gross error detection can nevertheless be formulated as
a DBN. Gross error detection deals with a discrete state that can take two
possible values: 1, the existence of gross active gross errors, or 0 the absence
of active gross errors. Thus, the DBN can be formulated to use test results
and their accuracy to recursively monitor the evidence toward the existence of
active gross errors as shown in Figure 1.5. In this figure, B represents gross
errors and Bobs represents test results while A and C are CPTs pertaining to
the probability of switching and false test results respectively.

The end objective of this thesis is to formulate an algorithm that uses
a series of Bayesian networks to monitor gross errors such as process leaks
and instrument bias. Because of the nature of the problem it addresses, this
technique is inherently related to data reconciliation and gross error detection.
The overall procedure for the proposed method is discussed in Chapter 4 but
can be summarized in Figure 1.6.

Referring to Figure 1.6, Step (1) is performed by Kalman filtering. Due
to the fact that beliefs of the instrument reliability change, the state Kalman
filter must be appropriately modified according to the reliability audit results.
Step (2) uses state estimates to calculate and standardize the residual error.
Standardization diagonalizes the covariance matrix so that the statistical dis-
tance can be calculated for each individual instrument. Step (3) uses a Kalman
filter to smooth out random noise in the residual error estimates, enabling the
proposed method to be more sensitive to systematic error. Finally, Step (4)
uses filtered statistical distances to calculate P-values which can be used in
the DBN. The DBN is used to weigh the probability of the tests being wrong
against the probability of an uncorrected gross error existence switching be-
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C (CPT) C (CPT)

T(i) T(i+1)

A(CPT)
B B

B obs B obs

Figure 1.5: Gross Error Detection DBN

(1)
Updating Process and

Bias States

Time Step #1

(0)
New Y and I.R.

(2)
Statistical 
Distance Z

(3)
Z-Value Filtering

(4)
Instrument

Reliability Audit

Predict

Predict

Predict

Update

(1)
Updating Process and

Bias States

Time Step #2

(0)
New Y and I.R.

(2)
Statistical 
Distance Z

(3)
Z-Value Filtering

(4)
Instrument

Reliability Audit

Figure 1.6: Proposed Method

tween T or F.
This thesis applies the proposed method to an industrial solids handling

and slurry preparation system shown in Figure 1.7 which contains seven in-
struments:

1. Truckload values from WENCO Mining Database (WENCO y1)

2. Crusher Weightometer (WI 1) y2

3. Surge Level Indicator (LI 1 y3)

4. Mix Box Feed Conveyor Weightometer (WI 2 y4)

5. Slurry Flow Meter (FM S y5)
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6. Slurry Density Meter (DM S y6)

7. Water Flow Meter (FM W y7)

The principal concern for the industry are weightometers such as y2 and y4
which are often prone to sudden measurement error due to mechanical failure,
as well as y6 which tends to have a bias that gradually drifts. In terms of
reconciliation WENCO y1 data is problematic because it does not exhibit a
normal distribution, while the surge pile level indicator y3 is in units of %
Level with no discernable method to convert to mass units. Because of this,
both the WENCO data and level indicator data need to be conditioned.

Dump Pocket

Crusher

Surge Pile

Slurry Mix Box

Weightometer

Weightometer

Level Indicator

Water Flow
Meter

Slurry Flow
and Density
Meters

(1) WENCO

(2) WI 1

(3) LI 1

(4) WI 2

(5) FM S (6) DM S

(7) FM W

Figure 1.7: Solids Handling and Slurry Preparation

1.4 Outline of the thesis

This chronology of this thesis is based on the process that was required to
implement the proposed method. Because of this, the proposed method is not
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discussed until Chapter 4, as the model estimation in Chapter 3 and data con-
ditioning in Chapter 2 must be done before the solution can be implemented.
The order of prerequisite procedures is shown in Figure 1.8.

Implementation Procedure

WENCO Data Conditioning
(Chapter 2)

Level Indicator Data Conditioning
(Chapters 2 and 3)

Process and Instrument 
Variance Estimation

(Chapter 3)

Dynamic Bayesian
 Data Reconciliation and 

Gross Error Detection
(Chapter 4)

Figure 1.8: Implementation Prerequisite Scheme

Chapter 2 deals with conditioning mass balance information that arrives
in discrete loads so that it can be reconciled with continuous data later on in
Chapters 3 and 4. An industrial case study is shown where truck load mass
is recorded at the time it was dumped into a dump pocket. There is no level
indicator on this pocket, and thus it is difficult to perform short-term recon-
ciliation between truck load data and the downstream weightometers readings
without knowledge of the hopper contents. This can be resolved by taking
into account that truck loads are discrete and follow a binomial distribution,
and deriving an appropriate smoothing procedure. The other challenge that
is addressed in Chapter 2 is the conditioning of level indicator data by es-
timating an appropriate scaling factor. The method proposed in Chapter 2
uses Principal Component Analysis (PCA) to estimate the conversion factor
between between % capacity and mass.

Chapter 3 focused on the estimation of instrument and process variance
from industrial data. Mass balances were used to develop a factor model which
was applied to the data; this model was converted to a Bayesian network
so that Bayesian learning could be applied. The Bayesian network learning
method was used because it allowed the state observation matrix C to be
specified, thus constraining the process and instrument measurement noise
variance estimates to be consistent with mass balances. Bayesian learning must
be performed using a numerical method, a popular method, the Expectation
Maximization (EM) algorithm was used for this application. However, as with
many numerical estimation techniques, the EM algorithm requires an initial
value. Traditional Factor Analysis (FA) was used to obtain an initial value
for the problem. Because one cannot constrain FA results to be consistent
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with mass balances, estimates were not consistent for all instruments, but FA
results provided a very effective initial value for the Bayesian learning routine.

Chepter 3 also revisits the problem of conditioning the level indicator data.
Factor model principals were used to formulate a regression model in oder
to improve surge hopper capacity estimate that was previously calculated in
Chapter 2. The regression model proved to exhibit a strong fit toward the
industrial data, yielding results similar to the previous estimate but with much
more confidence.

Chapter 4 makes use of Bayesian learning techniques to estimate the state
covariance matrix in a state space model. The observation matrix was already
specified by process knowledge as in Chapter 3, while the state transition
matrix can be constructed using knowledge of the control system topology.
Thus, the only estimation necessary is the hidden state covariance which was
easily estimated using methods in Chapter 3. The rest of Chapter 4 formulates
a dynamic Bayesian approach to data reconciliation and gross error detection.

Data reconciliation was performed using a Kalman filter as a dynamic ap-
proach to estimate the hidden mass balance variables. Once the mass balance
state was estimated, the corresponding measurements were compared to the
state estimate in order to calculate residual errors. Residual errors were stan-
dardized and filtered using a second Kalman filter based on a random walk
model, and filtered estimates were then applied to a dynamic Bayesian network
that performed a running hypothesis test for the existence of gross errors. If
a gross error was detected, it was added as an augmented dynamic state until
a new estimate is stabilized, at which point, the gross error estimate would be
removed from the augmented state and remain as a constant correction factor.

1.5 Contributions of the thesis

The contributions of this thesis are summarized as follows:

• Conditioning discrete mass balance data (WENCO) using a smoothing
method based on the binomial distribution

• Conditioning unscaled instruments (level indicator) to have mass units
using repeated principal components and factor models

• Estimating process noise variance and instrument measurement noise
variance of steady-state data using Bayesian network learning

• Using FA results as initial values for process and instrument variance
estiamtion with Bayesian network learning

• Using Bayesian networks as a framework for a dynamic version of data
reconciliation and gross error detection

• Estimating gross errors in real time by adding them as augmented states
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Chapter 2

Reconciling continuum and
non-continuum data with
industrial application

Data reconciliation uses a least-squares approach to obtain a maximum-likelihood
estimate for hidden states [8]. Furthermore, gross error detection is based on
statistical tests, thus it is important to ensure that the residual errors follow a
normal distribution [22]. Ensuring normality of residual errors is usually not a
concern when reconciling data from continuous processes; however, difficulties
often occur when reconciling data and detecting gross errors from dissimilar
distributions. The first problem is that if any of the distributions are non-
normal, then the weighted least squares techniques are no longer maximum-
likelihood estimators [8]. The second problem is that if the distributions are
dissimilar, then it is most likely that residual errors are non-normal which
renders the popular Gaussian-based statistical tests as invalid.

This chapter focuses on smoothing data that is contaminated by a binomi-
ally distributed process so that it can be reconciled with normally distributed
data from continuous processes. A case study was done on a system where
non-continuum loads from a dump truck were to be reconciled with two down-
stream continuum weightometers. A smoothing technique was developed from
the binomial distribution in order to smooth out the contamination created
by the discrete nature of truckload arrivals. Regression analysis based on
principal components was used to evaluate the performance of the smoothing
algorithm. Furthermore, principal component regression methods were used
to condition unscaled level indicator data so that inferences on mass contents
could be made.

2.1 Introduction

Data reconciliation is a well established tool for process monitoring and optimi-
zation. A common application of data reconciliation is to increase the quality
of data for real time optimization of set points and plant model parameters [8].
Most of the focus is on reconciling random error and statistically identifying
the presence of gross errors from measurements by malfunctioning instruments
so that they do not have an effect on the reconciled measurement [24]. While
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the traditional method was to identify gross errors, eliminate the contaminated
measurements and restart the algorithm, [8] used an objective function based
on the contaminated Gaussian distribution. This was used to simultaneously
identify gross errors and perform data reconciliation without iterative steps
[8], [16].

Recently, work has been done in the DeBeers mine in integrating data from
various weightometers to obtain reconciled measurements [23]. The challenge
in this process however, is that due to numerous highly operative mechani-
cal components on weightometers, gross errors are fairly common. The most
common causes of gross error are conveyor belt vibration or misalignment, and
matter that has spilled onto a weighing component or has collected on the belt
itself. Gross errors can be significant, up to 20% and can accumulate rather
quickly [23]. In such a scenario it may be advantageous to use soft sensors to
estimate gross errors as a hidden state and to track propagation of error from
one measurement with respect to others.

A similar problem has been found in weightometers used by various facili-
ties within the Alberta Oil Sands industry. There were significant discrepancies
when weightometer data was compared to the WENCO database maintained
by mining operations. The WENCO database employs various measurement
methods including scales built into trucks, with GPS to record where loads are
dumped. Problems arise when smaller time windows are considered, as truck-
loads have a very random time delay between time dumped and time registered
by the weightometer. Because gross errors are relatively frequent and can de-
velop quickly, shorter time intervals are required in order to capture dynamics.
Thus it is important that WENCO data gets appropriately smoothed so that
reasonable comparisons can be made with downstream weightometer data. It
is also important that proper models be obtained for intermediate holding to
ensure mass balances closure.

The work covered in this chapter can be summarized by Figure 2.1, where
in Section (3) the smoothing algorithm is developed using process knowledge.
Section (4) applied this smoothing method to the WENCO data and observed
the conversion to normality. Section (5.1) introduced principal component
regression as a method to test the smoothing performance. Section (6) also
used principal component regression, but this was used to obtain a conversion
factor for conditioning the level indicator data.

(4) Condition WENCO 
Data Using Algorithm

(5.1) Introduce Principal
Component Regression

(PCR) Methodology

(6) Test Conditioned 
Data Results using PCR

(3) Develop Smoothing
Algorithm

(7) Use PCR at Different
Sampling Times to Condition

Level Indicator Data

Figure 2.1: Chapter Methodology
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2.2 Subsystem for Preliminary Analysis

The subsystem analyzed in this paper is shown in Figure 2.2. Intermediate
holding often poses a problem in completing mass balances. As seen in the
system schematic, there were two intermediate holding units; the dump pocket
which had no instrumentation, and the surge hopper which had a relative level
indicator.

This system posed two major challenges. The first challenge was to find an
appropriate method to balance non-continuum truckload data with continuum
data downstream with no instrumentation on the dump pocket. Due to lack
of instrumentation, the contents of the dump pocket could not be measured
and therefore no intermediate data could be used to normalize the WENCO
data with downstream measurements.

WENCO

WI 1

LI 1

WI 2

Dump Pocket

Crusher

Surge Pile

Weightometer

Weightometer

Level Indicator

Figure 2.2: Solids Handling

The second challenge was to estimate the maximum capacity of the surge
pile or surge hopper. Level measurements were given on a scale of 0% to
100%; however, the maximum capacity was unknown. Previously, least squares
regression was used by process engineers to estimate the hopper size; however,
results were not useful due to least squares assumptions being invalid (that
independent variable is precisely known) and the fact that the correlation was
insignificant.

Choosing a reconciliation time window was the first step for this analy-
sis. Traditionally, such reconciliation happens on average over periods of 1-12
hours. This is generally because upstream and downstream equipment can ex-
perience significant time delays when reconciliation is employed over the entire
plant. However, since all processes within this subsystem are particularly close
together, smaller time intervals may still give intelligible results and capture
dynamic behavior. For this analysis, reconciliation occurs over one process
variable: the train mass flow rate. Within the solids handling system, there
are four measurements that take mass flow rate into account.
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1. mWENCO = vector of WENCO-Recorded Mass for given truckloads

2. ṁWI1 = vector of Mass Flow Rates for Crusher Weightometer

3. PLI = vector of Proportions in terms of Surge Hopper Capacity

4. ṁWI2 = vector of Mass Flow Rates for Mix Box Feed Weightometer

Many of these measurements cannot be directly used in a balance as they
estimate different system variable types. For direct comparison over a given
time window, dynamic measurements must be integrated, WENCO data must
be summed, and differences in surge pile level must be calculated and scaled
appropriately. Integrated mass values are denoted as Msubscript to denote a
vector of cumulative mass measurements over each of the ith standardized
time windows.

MWEN(i) =

Ti+1∑
t=Ti

mWENCO

MWI1(i) =

∫ Ti+1

Ti

ṁWI1dt

MLI = cH(PLI(t=Ti+1) − PLI(t=Ti))

MWI2(i) =

∫ Ti+1

Ti

ṁWI2dt

Since PLI is a proportional measurement, it must be scaled by cH which
represents the total surge hopper capacity; there was no prior information on
this value so cH must be estimated from the data. When all parameters are
defined, vectors of measurements can be directly compared in terms of the
mass balances. For example, the first equation is a mass balance comparison
between WENCO and the mix box feed conveyor taking into account the inter-
mediate surge hopper level. The second equation is an example of comparing
the vector of WENCO values and crusher conveyor. Even without measure-
ment noise these values are not exactly equal because transportation occurs
on conveyors and not pipes. Bulk mass accumulation of incompressible matter
is not possible in pipes but such unaccountable accumulation is possible for
conveyors. Furthermore, there is also a dump pocket that has unmeasured
intermediate holding which is also responsible for short term mass imbalance.

MWEN ≃ MWI2 + MLI

or

MWEN ≃ MWI1

In general, one does not need to include intermediate measurements be-
tween two references unless it affects mass balances such as intermediate stor-
age holding. However, ‘distance’ between two reference measurements in-
creases, process noise and time delay begin to play a more significant role.
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2.3 Conditioning Method for WENCO Input

While longer time intervals (1-12 hours) are conventional for data reconcili-
ation, short term reconciliation (10-60 minutes) is useful for capturing gross
error dynamics for a small system of adjacent instruments. If mass imbal-
ances are normal as well as measurement noise, conventional data reconcil-
iation techniques can still be directly applied; however, within this system,
non-normal WENCO data poses a problem for short-term reconciliation. Fig-
ure 2.3 displays a histogram of the raw WENCO data as well as that for the
weightomter over ten minute sampling intervals. Weightometer data is nearly
normal. However, the WENCO data is severely contaminated, and can be
represented by a combination of Gaussian distributions which is often referred
to as a Contaminated Normal distribution [8]. Each peak in the WENCO
data represents a mean for a discrete number of truckloads, in the WENCO
histogram in Figure 2.3, one can easily observe seven peaks with a possibility
of an eighth. Note that in this histogram the bin values are scaled in terms of
the process mean, thus the overall mean is centered at a value of 1.

0 0.5 1 1.5 2 2.5
0

100

200

300

400

Unsmoothed WENCO

0 0.5 1 1.5 2 2.5
0

100

200

300

Weightomter

Figure 2.3: WENCO and Weightometer Histograms

For smaller time intervals, one must take into account the discrete nature
of dump truck loads, and the inability to measure the contents of the dump
pocket, which renders the mass balance incomplete. A simple solution is to
apply a weighted average over past readings to mimic the behavior of the dump
pocket. Consider the Summed Truck Loads MWENti for a vector of summed
truckloads for past time intervals. The expected load response (ELR) for the
current time interval is given by the relation in (2.1).

ELR(ti) = w1MWEN(ti) + w2MWEN(ti−1) + ... + wiMWEN(ti−i) (2.1)

Because this system deals with relative weights, the sum of the weights
must be equal to 1. Common empirical methods are to use a simple average
over previous time windows or exponentially decreasing weights, for instance,
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1/2, 1/4, 1/8... This approach works well with dynamic systems, where the
next measurement is partially related to the previous one. Another possible
method is based on normal distributions with maximum weight at the time
delay. Intuitively, this approach requires a delay that is significantly larger
than the standard deviation (two or three times larger is feasible), otherwise,
future data may be needed to maintain normality. However, the governing pro-
cess behind this smoothing problem is binomial; thus the smoothing problem
should be appropriately derived.

In this problem, varying numbers of trucks arrive over the predefined time
intervals to dump material into a dump pocket. One popular method toward
modeling arrivals is to use a Poisson’s distribution shown in (2.2). This is the
classic solution to modeling probabilities of ‘rare events’ [10]. The Poisson’s
distribution yields a probability for a given number of ‘rare’ events k, and the
mean number of events for the corresponding time interval λ.

fPoiss(k, λ) =
λke−λ

k!
(2.2)

The emphasis of the Poisson distribution is on the event being ‘rare’, that
is, that the occurrence of events are independent. This has been used to model
telephone calls at a call center, and to some extent, airplane arrivals at minor
airports [10]. An event is ‘rare’ when the average number events is much
smaller than the practical limit. When using the minor airport example, if
the practical airplane frequency limit was 6 airplanes per hour, but only one
airplane arrived per day on average, using the Poisson distribution would be
appropriate because the time of one airplane arrival would be independent to
the time of the previous one.

However, for modeling arrivals for major airports, the Poisson distribution
is no longer valid as air traffic scheduling and controllers operate airports to
near capacity. This means that the time that the next airplane arrives, de-
pends on the time that the previous plane arrived and that there is a definite
possibility of the maximum frequency being reached. If there is a practical
maximum frequency of events, the binomial distribution shown in (2.3), be-
comes more appropriate.

fBin(k;n, p) =


0 k < 0

n!
k!(n−k)!

pk(1 − p)n−k 0 ≤ k ≤ n

0 k > n

(2.3)

Referring to (2.3), n represents number of trials, p is the probability of
getting an event, and k indicates the number of events. The binomial distri-
bution reduces to the Poisson distribution when p is very small and n very
large so that λ = np ≪ n. This occurs when the expected number of events
np is much less than the maximum n.

In the case of the WENCO truck load example, truck arrivals are not rare
events because the expected number of truckloads is not that much smaller
than the maximum. This means that the event of one truckload arrival is
dependent on the next, thus the binomial distribution better describes this
process. When using a binomial approach, n represents the maximum number
of truckloads possible (roughly six or seven loads per 10 minute interval accord-
ing to Figure 2.3), while p represents the expected proportion of truckloads
to arrive in terms of the maximum, and k is the query number of truck loads.
When formulated in this manner, it is synonymous to dividing the entire time
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interval by the maximum number of truckloads n to get n subintervals ; thus
for each subinterval, there is a possibility of one truckload arriving or not,
which is represented by the parameter p. This is the classic formulation for a
binomial distribution problem. With this in mind, the model takes the form
of (2.4), where nTL is the number of truckloads at a given time interval.

p(nTL = k) = fBin(k;n, p) (2.4)

Note that the parameter n depends on the length of the time window and
breaks down into two components: (1) the maximum number of truckloads
that can fit in the dump pocket (constant), and (2) the number of truckloads
that the conveyor belt can transport within a time window (time window
dependant). The calculation for n is shown in (2.5) while the proportion
constant p is shown in (2.6). Since n must be an integer, one should round
down as it is a maximum integer number of truck loads.

n =
mH + ṁC∆t

mTL

(2.5)

p =
ṁC∆t

n ·mTL

(2.6)

where

1. mH = maximum mass capacity of dump pocket

2. ṁC = mass flow rate of conveyor

3. ∆t = time interval of mass balance evaluation

4. mTL = expected mass per truck load

Note, as the time interval gets very large, the capacity of the pocket be-
comes less and less significant. If the conveyor belt runs at a steady continuous
pace which is equal to the average mass flow rate by the truckload, the residual
mass balance error between the truck loads and the conveyor at each inter-
val has an approximate binomial distribution. When recalling the expected
truck load mass and the number of truck loads nTL , the mass balance error
relationship is shown in (2.7).

ϵMB ≈ mTL(nTL − n · p) (2.7)

Residual errors must be normal under typical conditions in order for gross
error inference to be applicable. Thus the objective of the weighing function is
to provide a statistically sound method to obtain coefficients that best smooth
out the binomial nature. As an example, consider the dump pocket system
at an interval of 10 minutes, with a dump pocket having an 11.5 truckload
capacity. Analysis revealed that the conveyor transported mass at a rate of
4.5 loads per time window, yielding a maximum of 16 loads per time step. A
time delay of 6 minutes was estimated. Note that the time delay parameter
can be maximized, but dump pocket capacity does not guarantee convergence,
so a reasonable number must be assumed if prior information is unavailable.

The philosophy behind weighing is to determine the average weightometer
response for an unknown WENCO input. This overall weightometer response
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given WENCO input is mainly affected by the time delay and the dump pocket
capacity. Since they are independent, one can consider each effect separately
and then combine the results. The first case is to assume zero pocket capacity
and a fixed time delay. This assumes that once time delay is taken into account,
mass balances should always close. For example, if the time delay was 16
minutes on a 10 minute window, 0% of the input would be registered on
the first interval, 40% would be registered on the second and 60% would be
registered on the third. This simple relation can be summarized by (2.8).

pti(td,∆t, i) =


0 i < ( td

∆t
− 1)

td
∆t

− i td
∆t

− 1 ≤ i ≤ td
∆t

(i + 1) − td
∆t

td
∆t

≤ i ≤ td
∆t

+ 1
0 i > ( td

∆t
+ 1)

(2.8)

The other aspect to be considered was the most probable dump pocket
effect. Assuming no time delay, overload from this time interval can affect
the loads on the next time interval if a large amount of mass was dumped.
For example, if only one truck load was dumped during this time interval
(with an average of 4.5), then it would only have a partial effect on this time
interval, roughly a quarter in proportion to the mean. However, if five truck
loads were dumped, it would have a complete effect on this time interval and
a partial effect on the next. However, the effects must be weighed with the
probability of that particular number of trucks arriving. With probabilities
given by the binomial distribution, one can determine the average effect that
WENCO input on one interval would have on the successive weightometer
readings.

Matrix operations provide a convenient framework to describe the manner
in which a given number of truckloads affects multiple time windows. The
load effect matrix gives the individual effect of a given number of truckloads
for a given time interval. This can be later back multiplied by a vector of
probabilities for that given number of truckloads. The rows of this matrix
represent the time interval assuming no time delay (thus, the first row is the
overall effect of a truckload set on the same time interval, the second row
would be the effect on the next time interval, so on and so forth), the columns
represent the number of truckloads. So, for an i× j matrix, the elements are
constructed as follows.

Meff (i, j) =


0 j ≤ (n · p)(i− 1)

j
(n·p) − (i− 1) (n · p)(i− 1) < j < (n · p)(i)

1 (n · p)(i) ≤ j

(2.9)

Shown below, is an example of an approximated load effect matrix for
the case study system, with a 11.5 truckload dump pocket operating at 4.5
truckloads per interval.

0.2 0.5 0.7 0.9 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0.2 0.4 0.6 0.9 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0.1 0.3 0.6 0.8 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.3 0.5 0.7
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From this equation, it can be seen that the effects can range anywhere
between zero for “no effect” and 1 for “full effect” denoting the anticipated
effect of j truckloads on the ith time interval. This matrix is then multiplied
by a vector of probabilities given in (2.11). The vector is generated according
to (2.10) by applying the binomial distribution. The resulting vector is the
distribution arising from the assumed binomial nature of truckloads. Since the
result is a distribution, its elements must add up to 1.

Pbin(j) = fbin(j;n, p) (2.10)

Peff =
Meff × Pbin∑
Meff × Pbin

(2.11)

The final weighing coefficients are a combination of time delay and pocket
effect. Element wise, the final weighing parameters which are calculated as
follows:

w(i) = pti(i) + pti(i− 1) ∗ Peff (i− 1) + ... + pti(1) ∗ Peff (1) (2.12)

These values are used in (2.1) to calculate the expected mean effect of
WENCO input. Recall that optimization of unknown constants must be care-
fully performed as the objective could be insensitive toward certain parameters.
For example, if the objective is minimizing the standard deviation of the error
between weighted WENCO reading and weightometer, the maximum pocket
capacity cannot be well determined, as the mass balance standard deviation is
often insensitive with respect to dump pocket size when close to the optimal
region. Nevertheless, dead time parameters often converge, but these esti-
mates are usually more reliable with smaller time windows due to increasing
relative effects and greater sensitivity; still, estimations over excessively small
time windows tend to be susceptible to noise.

2.4 Binomial Distribution and its Effects on

Mapping

In general, trying to obtain statistically useful information from comparing
normal and non-normal data is difficult. However, if one smoothes out the
binomial tendencies of the truck loads with the appropriate weights, the re-
maining parameters that cause variance, for example, mass per truck load,
can be considered normal. Since converting binomial inputs to normal out-
puts is a function that the dump pocket physically performs, smoothing out
the binomial nature can be considered a statistical simulation. Nevertheless,
when time intervals get larger, the binomial distribution starts to gain a nor-
malized shape, and thus for time intervals beyond 30 minutes, smoothing is
not generally required. However, weighing profiles adjust accordingly; as the
time window increases, the vector of smoothing weights converges to 100%
weight on the first time interval. Weighing profiles from 10 to 120 minutes are
shown in Figures 2.4(a) to 2.4(d). The smoothing profiles in Figures 2.4(a)
and 2.4(b) were applied to WENCO data from a corresponding time inter-
val. Corresponding weightometer data was plotted against the smoothed and
unsmoothed values in Figures 2.5(a) to 2.5(d).
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Figure 2.4: Weighting Distribution for Increasing Time Intervals

From Figures 2.5(a) and 2.5(b) dramatic change can be seen in the normal-
ity of the data; binomial trends for unsmoothed data are clearly visible at the
10 minute interval. Of course, the data is normally distributed around each
binomial concentration as each truck does not dump exactly the same amount
of material into the dump pocket, but nevertheless, discrete trends are visible.
There is even a slight trend visible in the unsmoothed 30 minute data. How-
ever, for time intervals much larger than 30 minutes, the raw WENCO data
appears to be much more normal.

Figures 2.5(a) and 2.5(b) display readings relative to the mean, and illus-
trate how difficult it would be to estimate the mass flow by truckload given
the weightometer data, as significantly different truckload values yield similar
weightometer results. For example, from Figure 2.5(a), if the weightometer
mass was 1.0 means the most likely WENCO mass values would be centered
around 0 means, 0.3 means, 0.6 means, 0.9 means and so on. However, for the
same weightometer value of 1.0 means, the smoothed WENCO data in Fig-
ure 2.5(b) would have a value of roughly 1.0 means. Other predictions from
smoothed data also correspond well.

Predicting weightometer data from WENCO data without smoothing is
possible, but the distribution over every value of WENCO weight is not nec-
essarily accurate. Time intervals with large WENCO values are often followed
by intervals with values that are much smaller. The pocket smooths out these
values allowing for the weightometer to run at a constant rate. This often
leads to apparent idiosyncracies in the raw data. From the previous exam-
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(b) Smoothed Data at 10 minute
intervals
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(c) Unsmoothed Data at 30 minute
intervals
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(d) Smoothed Data at 30 minute
intervals

Figure 2.5: Effects of smoothing

ple, given that 0.5 means arrived by truckload, the expected weightometer
flow rate would be greater than 0.8 means. By observation, all weightome-
ter values seemed to be centered around 1 mean irrespective to the WENCO
value. The smoothing attempts to take irregular summed WENCO values
into account and allows the WENCO data to have an estimably unique map-
ping onto weightometer data. Other smoothing methods could also do this;
however, when using weights derived from statistically rigorous methods, it
reduces information loss from smoothing.

Due to the presence of a dump pocket, current WENCO values often de-
pend on previous ones; because of this, weightometer data is dependent on
more than just the single WENCO value at the same time interval. Weighing
profiles that take these dependencies into account will add information; how-
ever, a badly chosen weighing profile could emphasize nonexistent relationships
over existent ones, thus removing information. For example, a simple aver-
age over the past 90 minutes to predict the weightometer response for the
next 10 minutes would put far too much emphasis on measurements in the
distant past, which are often unrelated to response in question. This would
result in oversmoothing of the WENCO data, generating smoothed data that
fluctuated much less than the weightometer data; the slope of the elliptical
region for oversmoothed WENCO data vs. weightometer data would be steep
(much steeper than 1), indicating that variations in oversmoothed WENCO
data must be disproportionately scaled in order to predict weightometer data.
Since it is expected that WENCO and weightometer data would be consis-
tent, an ideal smoothing profile would generate an ellipse with a slope along
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the diagonal, as shown in Figure 2.5(b).
Smoothing profiles that result in coherent relationships suggest that infor-

mation has been added. Note that numerical values for the slope of elliptical
regions can be determined by PCR (principal component regression). While
the improvement in results have been showed qualitatively, PCA (principal
component analysis) and PCR can be used to quantitatively determine effects
of applying the derived weighing profiles.

2.5 Principal Component Regression and Per-

formance Metrics

2.5.1 Principal Component Regression

Principal Component Analysis (PCA) is closely related to Factor Analysis (FA)
and is in fact, one possible method of calculating orthogonal factors [12]. Data
that can be correlated with many different variables can often be simplified
to a smaller dimensional space in the direction of a vector if certain variables
seem interdependent. In both PCA and FA, dependencies are represented by
a linear combination of variables that are explained by an underlying set of
orthogonal factors.

Principal component regression (PCR) has similar objectives to that of
partial least squares which is to project both observed and predicted variables
onto a new space. In general, it is used for bilinear factor models which can
be intuitively analyzed using PCA and FA [20]. PCR is a method based on
PCA that is used to describe p dimensional data into v dimensions with p-v
dimensional noise that is attributed to both variables. This is different from
ordinary least squares regression as it tries to reduce p dimensional data into v
dimensions with p-v dimensional noise that is attributed to only one variable,
which is predicted [12]. Thus, in least squares regression, all the noise is
attributed to the predicted variables and it does not take into account the fact
that both variables are noisy estimates of an underlying variable.

If there is significant noise within the predictors, the estimated parameters
will be biased toward conservative “shallow slope” results as predictor variable
inaccuracy reduces predictive power [9]. This effect is often called regression
dilution [5]. Geometrically, this can be interpreted by noting that minimizing
vertical distance between points and a line causes preference toward horizontal
lines, even if horizontal position of the points is not necessarily accurate. Or-
thogonal regression is a family of different methods that are used to minimize
the orthogonal distance; [2] describes many of these methods. However, since
the system is linear and PCR results have intuitive interpretations that align
with PCA and FA, PCR was the chosen as the regression method.

Consider the following model which is attributed to the industrial system.
Any underlying variable z is measured by two observations x and y. For
all operating conditions, x and y are considered to be normally distributed
around the true value z with respective measurement noises εxm and εym.
Furthermore, at constant operating conditions, the underlying variable z can
also be normal, with a mean around the desired condition z0 with a variance
of σ2

z .
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z ∼ N(z0, σ
2
z)[

xm − x0

ym − y0

]
=

[
ax
ay

]
z +

[
εym
εxm

]
(2.13)

Because PCR is a regression method that uses the eigenvectors to calculate
the slope, it is consistent and unbiased when noise is IID. Such results have
been proven, and one such proof is available in the appendix of [11]. It is also
recommended that variables be scaled when performing PCA or PCR if the
units are not commensurate [12].

2.5.2 PCR Performance Metrics

Regression models often use a metric called the regression factor to indicate
fit, a similar metric is often used in PCA. When all eigenvalues are arranged in
a vector and scaled so all elements add to one, each eigenvalue represents the
fractional variance that is taken into account by its corresponding eigenvec-
tor. Thus if zero eigenvalues exist, it means that some variables are linearly
dependent on others. In the ideal case, most of the data should be explained
by relatively few eigenvectors or principal components.

In order to obtain a performance metric on PCR, the number of compo-
nents must be chosen; since each component has an eigenvalue that pertains
to the degree of which that component explains variance, one merely adds all
elements of the scaled eigenvalues that belong to the subspace of interest. In
the case of a two-dimensional analysis, one scales a two-eigenvalue vector and
obtains the first entry. However, in the case of two-dimensional analysis, the
first principal component will never explain less than 50% of the variance, thus
users must incorporate this into their discretion when analyzing results. The
percent variance captured (PVC) is defined in (2.14).

PV C = (
λ1

λ2 + λ1

) × 100% (2.14)

where λ1 is the larger Eigenvalue and λ2 is the smaller Eigenvalue. Examples
of data with 54% and 74% Percent Variance Captured are shown in Figures
2.6(a) and 2.6(b).

While the PVC is a conventional metric for multiple dimensions, for the
case of PCR, it was useful to define two unconventional metrics. The first
metric is called the PRS (percent relative scatter), which is useful for data
sets that have a minimal zero value (as in the case of flow rate data). Because
of this, it would be expected that the mean would be significantly far away from
zero for the distribution to remain normal. If this is the case, the minor axis
length should be short enough to make zero readings sufficiently improbable.
This essentially is a comparison between the uncorrelated standard deviation
and the mean. For this case, PRS is defined in (2.15) as the 95% confidence
interval scalar (given by the adjusted F distribution) times the minor axis
length divided by the mean. Thus, for 100% PRS, impossible readings of less
than zero are 5% probable according to the multivariate normal distribution.
(2.15) is defined in terms of the mean WENCO reading. Generally, PRS values
close to or greater than 100% would suggest that the evaluation time window
is too small for measurements to be normal.
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Figure 2.6: Examples of percent variance capture

PRS =

√
λ2

µWEN

√
p(n− 1)

n− p
Fn,p,α × 100% (2.15)

where Fn,p,α is the inverse F-Distribution that defines the scalar for a confidence
level 1 − α. Note, for the case of multidimensional analysis, λ2 is replaced by
the summation of eigenvalues of the rejected principal components.

The other useful PCR performance metric that was derived was the PD
(percent definitiveness). It is similar to the PVC, except that it is standardized
so that the worst case scenario is 0% instead of 50% as in the case of bivariate
analysis. This metric is somewhat similar to the coefficient of determination
or R2 value often used in regression. The other trait that makes the PD metric
desirable is that its uncertainty can be easily calculated when performing two-
dimensional analysis. The PD is defined in (2.16). It is essentially a direct
comparison between the relative squared lengths of ellipsoid axes.

PD = (1 − λ2

λ1

) × 100% (2.16)

For multidimensional analysis λ1 can be replaced by the summed eigen-
values pertaining to the principal components kept while λ2 pertaining to the
discarded principal components. λ1 spans the total projected variance on to
all dimensions [12] and is thus similar to the SStot parameter in the analogous
case of the R2 calculation, while λ2 spans the unexplained or residual variance
which is often associated with SSerr. Thus the worst case scenario occurs
when λ1 = λ2 or SStot = SSerr. In the same way that SSerr is never greater
than SStot, λ2 is never greater than λ1.

As was previously mentioned, the PRS and the PD metrics have uncer-
tainty intervals that can be easily calculated. These intervals make use of the
property shown in (2.17), which pertains to eigenvalues of a covariance matrix.

ln
λ̂i

λi

∼ N(0,
2

n
) (2.17)

If the covariance matrix is full rank, then all eigenvalues are independent
and standard procedures apply in the addition of independent noise. Con-
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fidence intervals for PD and PRS can thus be calculated using confidence
intervals on λ.

2.6 Applying PCR to Verify Smoothing

The first application of PCR was to verify improvements of WENCO data by
smoothing using the binomial distribution method. Figures 2.7(a) and 2.7(b)
display results for PCR on unsmoothed data. Note, unsmoothed data is highly
non-normal and thus would not qualify for serious PCR. It is done to illustrate
the difficulty in mapping one variable onto another. Figures 2.7(c) and 2.7(d)
display results for PCR on smoothed data.
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(d) PCR of Smoothed Data

Figure 2.7: Examples of Varying Percent Definitiveness

Results shown in Figures 2.7(a) to 2.7(d) are of significant importance,
specifically, the results for smoothed data. It can also be seen from histograms
that after smoothing, WENCO data becomes far more normal, as the expected
binomial nature has been smoothed out in order to leave the remaining nor-
mality behind. Because both measurement methods are measuring the same
underlying quantity in the same units, it is known beforehand that the real
slope of the relationship is 1. If the calculated slope is the same as the expected
slope, the measurement noise is IID, both instruments have equal reliability.
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A slope flatter than expected indicates that the the x variable is the less pre-
cise observation (regression dilution), while a steeper slope indicates that the
y variable is the less precise observation.

After smoothing , WENCO-Weightometer data show that the slope of the
ellipsoid is close to 1, indicating that smoothed WENCO measurements now
have similar precision to the weightometer measurements. Furthermore, his-
tograms validate this by showing that the measurement variances between
data sets are similar. PD is still relatively low from a regression standpoint
(60%) but this is simply an indication that measurement noise is not negli-
gible compared to process noise. However, it is important to note that PD
increased after smoothing was applied, which indicates that smoothing added
information instead of simply smoothing the WENCO data so that it had the
appropriate variance.

2.7 Applying PCR to Estimate Surge Hopper

Scaling

Another challenge for preliminary analysis was to compare readings from the
second weightometer to Wenco data and readings from the first weightometer.
Between the two weightometers, there is a surge hopper that has a level indi-
cator. However, the level indicator gives % capacity readings, and the mass
for 100% is unknown and must be estimated. The scalar that is required to
convert percent readings into mass readings is referred to as the hopper scalar
cH ; rearranging the basic relationship with noise included, the model takes on
the form of (2.18) for the weightometer-weightometer comparison, and (2.19)
for the WENCO-weightometer comparison.

cH(∆MLI + εLI) = (MWei2 −MWI1) + (εWI2 − εWI1) (2.18)

cH(∆MLI + εLI) = (MWI2 −MWEN) + (εWI2 − εWEN) (2.19)

Because the weightometer-weightometer comparisons are more direct, (2.18)
is used as a basis for the parametric model in terms of the real mass balance
difference.

MLI = c−1
H z + εLI (2.20)

MWI2 −MWI1 = z + εWI2 − εWI1 (2.21)

While the objective of linear regression would be to choose a hopper scalar
value that would result in a minimal vertical distance from the line and all
the points, the objective for parameter estimation using PCR analysis is quite
different. If one scales the raw data, one scales both the hidden causal agent
and the noise. Thus there is a tradeoff in terms of matching the underlying
correlation and keeping noise to a reasonable level; to maximize bidirectional
prediction, the slope of the elliptical region should be equal to 1; thus the
objective is to choose a hopper scalar that causes this to happen. This is eas-
ily done by nonlinear equation solution methods. Figure 2.8 displays hopper
scalar estimates generated by this method at different time intervals. In this
Figure, the hopper scalar is estimated by comparing differences in weightome-
ter readings upstream and downstream. One should keep in mind that such
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results are obtained using a model that assumes % capacity is linearly depen-
dent on the material in the hopper. Estimated values for cH are a linearized
average over the entire operating range.
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Figure 2.8: Weightometer-Weightometer Based Estimates of Hopper Scaler

When performing PCR to estimate hopper scalars at different time inter-
vals, noise within the hopper level readings does not change in terms of time
interval because it is merely a difference between two instantaneous readings.
However, weightometer and WENCO readings are summed, so the base value
of the random error will increase over larger time windows, but the relative
error will decrease. So for excessively small time windows, the hopper level
readings will have much more noise than the weightometer readings, but for
large time windows, absolute noise from the weightometer readings will be
larger because of the summation of errors producing random walk. Since the
absolute imprecision of weightometer readings increases with increasing time
window, as time windows get larger, cH will be biased toward larger values.

Since there is no prior knowledge of measurement variance, there is no
method or metric to ensure that estimates for the hopper scalar are unbiased
at any given time window. However, multiple time windows can be considered.
PCR is used as an objective function to scale cH so that hopper data has an
elliptical slope of 1. This also causes the hopper level readings and weightome-
ter difference to have a similar absolute noise scale when taking into account
both measurement and process noise. When the mass change in the hopper
is much smaller than the weightometer difference error, definitiveness is likely
to be low since hopper level cannot account much for the weightometer error;
the converse, wherein weightometer difference is much smaller than the hop-
per level noise, would also yield relatively low definitiveness. So at small time
intervals weightometers are far more sensitive than level indicators, but at
large time intervals, level indicators are the far more sensitive measurements.
Definitiveness is optimized at the time interval where both instruments are
reasonably precise.

Percent definitiveness is an indication of relative dependency between ran-
dom errors; one of the properties of this system is that dependency is likely

25



to be maximized when the hopper is scaled correctly. Thus, as long as the
relative precision of the two instruments are not excessively dissimilar at the
optimal time interval, bias is reasonably small when PD is maximized. As-
suming similar relative precision at the optimal time interval is reasonable, as
relative precision is expected to be more dissimilar when time windows are
far from optimal. Furthermore, this assumption is practical because these two
measurement methods are both fairly direct measurements of mass, and thus
their inherent variance must be small enough to allow instruments to be useful,
but large enough to make them affordable; this makes significant measurement
disparity unlikely at the optimum.

Since the covariance matrix is random (as it follows a Wishart Distribu-
tion), it is also important to calculate confidence intervals of Percent Defini-
tiveness according to the eigenvalue distribution as shown in (2.17) to ensure
that there is adequate resolution for maximization. Figure 2.9 displays both
Percent Relative Scatter and Percent Definitiveness trends over increasing time
intervals with 90 and 95 percent confidence intervals plotted in dashed lines.
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Figure 2.9: PRS and PD for Weightometer-Weightometer Based Estimates

As one can see, Percent Definitiveness is maximized between intervals of 10
minutes to 30 minutes which would correspond to hopper scalar estimates of 70
to 85. While hopper estimates would be biased with biases changing over time,
the estimated hopper scalar allows for the best bidirectional prediction at that
time interval. Relative scatter is relatively close to its asymptotic minimum
at around 30 minutes which means that relative error between weightometer
readings will not be significantly reduced by further increasing of time inter-
vals beyond 30 minutes. Hypothetically, one could also use smoothed WENCO
readings vs. Weightometer readings to estimate hopper size but it is not advis-
able. Smoothed WENCO readings have inherently less resolution due to the
fact that smoothing causes all measurements to span more time intervals; in-
cluding weighted averages of data that is not directly dependent will obviously
reduce dependency and increase noise.

Figure 2.10 displays PRS and PD parameters for mass balances between
unsmoothed WENCO and the second weightometer and Figure 2.11 does the
same for smoothed WENCO data. It can be shown that smoothing increases
definitiveness between WENCO and weightometer data; however, since more
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Figure 2.10: PRS and PD for Weightometer-Unsmoothed WENCO Based
Estimates
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Figure 2.11: PRS and PD for Weightometer-Smoothed WENCO Based Esti-
mates

than one time interval goes into weighing, it is likely that the definitiveness
trends will have peaks that are less clear.

2.8 Conclusions

A weighing distribution was derived using the binomial distribution to estimate
the expected average effect of a random number of dump trucks arriving with
an expected time delay. It was shown through analyzing histograms that
this weighing distribution was adequate in normalizing the data. Principal
Component Analysis was also used to demonstrate that using this weighing
distribution does not result in excessive information loss, because the PCR
results of the smoothed data exhibited near ideal conditions, namely, a slope
of unity with increased definitiveness.
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PCR was also used as an alternative to regression modeling, since the data
was actually two measurements measuring the same underlying variable that
did not change drastically. It was found that the clearest covariance patterns
were found at intervals of 10 to 30 minutes, and it was at these time intervals
that the surge hopper parameter was estimated to be on the order of 70 to
85 tonnes per % capacity change. Although PCR-based parameter estimation
could not be guaranteed to remove bias on the real value, it is reasonable to
assume low bias at time windows with the highest definitiveness. Furthermore,
PCR took variance of both measurements into account to prevent excessive
noise of one variable to distort the prediction of the other, and thus, such
parameters optimize bidirectional prediction when noise is unknown.

1

1A version of this chapter has been accepted for publication. Gonzalez, Huang, Expejo,
Almaraj, Lam 2010. Computers and Chemical Engineering 38
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Chapter 3

Estimation of Measruement
Noise Variance and Bias Using
Bayesian Methods for Process
Data Reconciliation

This chapter enlarges the scope of the previous system to include more instru-
mentation. This is required because data reconciliation requires more than two
instruments to perform, since if the two measurements are different, there is
no objective method to determine which measurement was correct. Using the
smoothing techniques introduced in Chapter 1, WENCO data can be added as
one of seven instruments when the scope of solids handling system is increased.

A significant challenge to data reconciliation is in obtaining values for mea-
surement noise variance which allows us to attribute weight toward each mea-
surement when estimating the steady-state. Measurements that have more
noise variance are given less weight because they are less informative of the
state. The problem with directly estimating measurement noise variance from
process data is that the process is also subject to disturbance which indepen-
dently adds to the instrument noise, increasing the variance estimates for the
measurements. The focus of this chapter is on applying Bayesian learning to a
factor model based on mass balances in order to estimate process disturbance
and measurement noise variances.

Furthermore, by introducing the mass balance factor model, an alternate
method of estimating the hopper capacity constant cH is derived, discussed
and presented.

3.1 Introduction

Process instrumentation is a crucial element for controlling and monitoring
process control systems. However, instrumentation is subject to random mea-
surement error due to imprecision; and more seriously, it is often subject to
systematic gross errors caused by instrument bias (or in rare cases, process
leaks). Identifying true process operating points and detecting gross errors has
traditionally been performed by data reconciliation and gross error detection
techniques. However, conventional data reconciliation calculates a weighted
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average, where the weights are the inverse of the estimated measurement noise
variance. In practice, it is difficult to estimate measurement noise variance
from data because of the often inevitable presence of other process distur-
bances which contaminates these estimates.

Sets of process data contaminated by both process and measurement noise
can be described by a factor model based on mass balances. This type of
factor model has predefined relationships between the instruments and a set
of process variables. The task at hand is to estimate the combination of
process and measurement noise variances that best explains the data, a task
for which Bayesian learning is an appropriate tool. While the major focus
is on estimating process and measurement noise variance —a task that is
not explicitly attempted by data reconciliation methods— Bayesian learning
can also be used to estimate process means and instrument bias. A better
understanding of this work can be obtained by reviewing the progress of data
reconciliation.

The first generation of data reconciliation techniques [22] made use of sta-
tistical tests such as those implemented by [21], which obtains a chi-squared
value from the optimization of the mass balance-based objective function. A
later family of techniques proposed by [15] and [6] analyzed residuals of process
constraints and applied univariate tests to each measurement. More advanced
techniques for data reconciliation were proposed by [22] which used princi-
pal component analysis (PCA) to draw on principal relations between various
measurements. Prior to this, data reconciliation assumed that all hidden pro-
cess states were invariant and thus independent so that all variance can be
attributed to measurements. Using PCA implicitly allowed for the tests to
take process noise into account, and so considered common trends of the set
of measurements over time resulting in a more intelligent testing procedure.

Ozyurt and Pike [8] built on the objective function approach to detect
gross errors by introducing a framework based on the contaminated Gaussian
distribution; after this, Shladt and Hu [16] continued with the practical use of
data reconciliation to enhance soft sensors for key process measurements.

The Bayesian network approach for gross error detection (or bias detection
in the absence of process leaks) is closely related to the PCA method used by
[22] as it allows for the separation of process noise from measurement noise in
order to gain more informative estimates of gross errors. The main difference
between these techniques, however, is that the PCA method focuses on learn-
ing the covariance matrix from the data and afterward imposing mass balance
relationships, while Bayesian network techniques focus on learning a model
that is simultaneously consistent with mass balances and measurement noise
covariance. Mass balance factor models contain similar information to the
PCA method; however, mass balance factor models are more explicit in their
handling process disturbance covariance. These models can be used to apply
more advanced methods similar to [16], except in ways that are completely
consistent with Bayesian statistics.

This work has made two main contributions. The first contribution is the
use of Bayesian networks to separate and estimate measurement and process
variance using historical data as well as estimating process means and gross
errors. The second contribution is the method of estimating capacity parame-
ters by integrating process data over different time intervals and performing a
regression analysis on the covariance matrices; this was a secondary procedure
but necessary for practical application.

This chapter is divided into the following sections: A problem from indus-
try is shown in Section 2 with an introduction of the corresponding Bayesian
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network. Section 3 contains an overview of the EM algorithm, and the use of
PCA and FA to obtain an initial variance guess. Section 4 contains develop-
ment of gross error estimation from a defined Bayesian network. A simulation
of sequential variance and bias estimation is shown in section 5, while section
6 presents a framework for capacity regression. Finally, section 7 contains
an industrial application of capacity regression, variance estimation, and bias
estimation. Figure 3.1 displays the methodology in terms of key tasks; prereq-
uisite tasks are indicated by arrows; thus it is required that the parent task
be completed before undertaking the child task.

(3.1) Devellop Bayesian
Network From Factor

Model

(3.2) Introduce Bayesian
Learning using the 

EM Algorithm

(4) Introduce Factor
Analysis as Initial Vaue

Generator

(2.3) Develop Factor
Model

(3.4) Introduce Static
Data Reconciliation

Methodology

(5.1) Perform Variance
Estimation on

Simulated Data

(5.4) Perform Static
Data Reconciliation
on Simulated Data

(6.1) Introduce New
Level Conditioning

Method

(7) Perform Variance
 Estimation on 
Industrial Data

(7) Perform Static
 Data Reconciliation
on Industiral Data

Figure 3.1: Chapter 3 Methodology

3.1.1 A note on Notation

Numerical subscripts indicate the index of an array. For example C2 would
denote the second entry of a vector, while S12 would denote the first row second
column of a two dimensional array. Subscripts with curved brackets indicate
that the variable is defined or specified by the subscript variable within the
brackets (this is broader than traditional function notation). For example
ε(Σ) would indicate that ε is process noise that corresponds to the observation
covariance (measurement noise variances) Σ; another example would be σ2

2(∆t)

which indicates that measurement noise variance for σ2
2 is dependent on a

particular value of ∆t, in the same way σ2
2(1) would be the value of σ2

2 which

corresponds to ∆t = 1 (or 1 minute).
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3.2 Motivation

3.2.1 Industrial Example

As mentioned in the previous chapter, due to the nature of oil sands oper-
ations, weightometers are often unable to achieve their design performance
without excessive maintenance. Ultimately, work in this area can enable the
on-site monitoring of instrument performance and correction, which could re-
duce costs of maintenance and aid in dealing with the unavoidable presence of
weightometer error. Using the results from the previous chapter, the industrial
problem can be expanded so that WENCO and weightometer measurements
are compared against more instrumentation. Consider an oil sands slurry
preparation system shown in Figure 3.2 which contains seven instruments:

1. Truckload values from WENCO Mining Database (WENCO y1)

2. Crusher Weightometer (WI 1) y2

3. Surge Level Indicator (LI 1 y3)

4. Mix Box Feed Conveyor Weightometer (WI 2 y4)

5. Slurry Flow Meter (FM S y5)

6. Slurry Density Meter (DM S y6)

7. Water Flow Meter (FM W y7)

From the flow chart in Figure 3.2, WENCO data is available in a data base
which records the mass of each truckload and the time at which it is dumped
into the dump hopper. WI 1 is a weightometer on the crusher conveyor belt
which feeds into the surge pile. LI1 gives a reading on the relative level of the
surge pile (from 0-100%). Since this is a % capacity reading, one of the tasks
is to estimate its total capacity. WI 2 is a weightometer for the Mix Box feed
conveyor, which transports oil sand from the surge pile to the slurry mix box.
In this mix box, slurry is prepared by adding controlled amounts of water to
the oil sand. FM W measures the volumetric flow rate of water, and since the
density of water is known, conversion to mass flow is trivial. The volumetric
effluent slurry flow is measured by FM S, with the density measured by DM
S so that a mass flow rate can be calculated.

3.2.2 Problem Formulation

Mass balances serve as a method to keep track of process material over a
given time window ∆t. Since mass balances are an accumulative comparison
of mass flow over time, flow rates should integrated over time; compositions
and properties however, do not have rate-related units and should therefore
be averaged over time instead of integrated. Capacity values are inherently
cumulative mass values and thus should not be integrated; instead, they should
have a difference calculated between the beginning and end of the time interval.
The procedure for calculating the mass-balance observation vector Y is shown
in Equation (3.1) for the industrial example.
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Figure 3.2: Solids Handling and Slurry Preparation

Y1 (i) =

∫ ti+∆t

ti

WENCO dt

Y2 (i) =

∫ ti+∆t

ti

WI1 dt

Y3 (i) = cH(LI1(ti+∆t) − LI1(ti))

Y4 (i) =

∫ ti+∆t

ti

WI2 dt (3.1)

Y5 (i) =

∫ ti+∆t

ti

FMS dt

Y6 (i) =

∫ ti+∆t

ti
DMS dt

∆t

Y7 (i) =

∫ ti+∆t

ti

FMW dt
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Note, since LI1 gives readings in % capacity, it must be appropriately scaled by
cH to make the conversion to mass units. Since all instrument measurements
in Equation (3.1) contain noise, raw measurements can be treated as Gaussian
random variables. Due to the integration of noise, measurement noise variance
is dependent on the sample time interval ∆t; because of this, mass balance
variance estimates are only appropriate given a certain sampling time. The
only exception to this rule is intermediate holding which has no integration;
such observations would have constant variance regardless of ∆t.

3.2.3 Mass Balances, Factor Model Representation

Factor models can be used to represent the mass balance of a process at steady-
state. Factor models are composed of two main types of variables, hidden state
variables X, and observed variables Y that are affected by the hidden states.
Since the factor models of interest represent a mass balance, the hidden states
X are a set of minimal process parameters that define the mass balance. The
hidden states however, are subject to small amounts of process noise, even at
steady state. Because of control systems, noise within the hidden states are
cross-correlated, thus X can be represented by Equations (3.2) and (3.3).

n ∼ N(0, I) (3.2)

X = µ + Lxn (3.3)

where µ is the process mean vector at a given steady-state, n is a standardized
source of variability, and Lx is a loading matrix that produces cross-correlated
noise. In this way, cross correlated process noise δ can be summarized as
follows:

δ = Lxn (3.4)

Since n has covariance I, the covariance of δ can be determined as

ΣX = LxL
′
x (3.5)

For the industrial example, three hidden states are considered over a given
time period: X1 is the accumulated oil sand throughput (centered around the
slurry mix box), X2 is the accumulated water throughput, and X3 is the net
oil sand accumulation in the surge hopper.

The second part of the factor model deals with the observation varaibles
Y . Equation (3.7) below, is the general nonlinear representation of a factor
model with gross errors β which often represents instrument bias (or process
leaks in very rare cases).

ε ∼ N(0,ΣY ) (3.6)

Y = f(X) + β + ε (3.7)

where f(X) is a nonlinear observation function of the hidden state X, β rep-
resents gross errors, and Σ is the measurement noise covariance matrix. ΣY
is diagonal since it is assumed that measurement noises are mutually uncor-
related. Linear approximations of the observation model take the form shown
in the following equation.
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Y = CX + r + β + ε (3.8)

where C is an observation matrix of linearized coefficients and r is a vector of
linearized reference points. C and r can be calculated by means of a Taylor
series approximation given by the following equations:

Cij =
∂f(µ)i
∂µj

(3.9)

r = f(µ) − Cµ (3.10)

where f(µ)i is the ith element of f(µ) (where i ranges from 1 to the number
of instruments) and µj is the jth element of µ (where j ranges from 1 to the
number of hidden states).

For most measurements, Taylor series approximations are not necessary.
When measurements are a direct combination of the hidden states having
the same units, coefficients of C are simply 1. For example, Y2 is a direct
combination of the mass flow through the mix box and the mass accumulation
within the hopper. Linear combinations can also have simple unit conversions.
For example, Y5 is a volumetric reading that is affected by mass flow rates of
oil sand and water which are hidden states; the corresponding elements of C
are the specific volume of oil sand and water which serve as unit conversion
constants.

For this industrial example, a Taylor series approximation is only required
for the density meter which is dependent on oil sand mass flow X1 and water
mass flow X2 as shown in Equation (3.11).

ρslurry =
ρsandX1 + ρwaterX2

X1 + X2

(3.11)

Because there is no way to separate this equation into a linear combination of
X1 and X2, a Taylor series approximation has been applied.

3.2.4 Conversion to a General Factor Model

The mass balance factor model defined by Equations (3.3) and (3.8) is based
on a set of observation variables Y that are defined by a set of cross correlated
hidden variables X and an observation matrix C. However, general Factor
Analysis methods estimate loadings of hidden variables having a mean of 0
and a covariance of I, which is a property of the standardized variation source
n in Equation (3.3).

An general factor model can be obtained by substituting µ + Lxn for X
into Equation (3.8). This results in observations of Y being explained in terms
of standardized latent variables n instead of the state variables X

Y = C(µ + Lxn) + r + β + ε (3.12)

This results in Y having the following distribution

Y ∼ Np (Cµ + r + β , ΣY + C ′L′
xLxC) (3.13)
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where C and r are specified by process knowledge, so they do not need to
be estimated. The principal interest of this work is to estimate measurement
and process covariance, ΣY and L′

xLx in a way that is consistent with a mass
balance model structure. Estimating these parameters also allow us to obtain
a rudimentary estimate of instrument bias β.

3.2.5 Bayesian Networks

Estimating ΣY and LxL
′
x is done using a Bayesian network approach which

can explicitly estimate statistics of X as well as Y given X by allowing us to
fix the values of C. This results in variance estimates that are consistent with
the mass balance model structure.

A Bayesian network is a visual representation of causal relationships de-
noted by nodes and arrows; arrows always point from parent to child which
indicates the type of reasoning that must be done. If a parent value is known,
it can be used to predict the values of child nodes.

x1 x2 ... xn

Figure 3.3: Predictive Reasoning

If a child value is known as shown in Figure 3.4 it can be used to diagnose
the values of the parent nodes.

x1 x2 ... xn

Figure 3.4: Diagnostic Reasoning

A comprehensive description of Bayesian inference for Gaussian distribu-
tions can be found in [3].
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3.3 Bayesian Networks and Variance Estima-

tion

3.3.1 Bayesian Example

Consider the industrial example. In order to remove bias from the measure-
ments, means are subtracted so that we can focus on variance estimtion. This
converts Equations (3.3) and (3.8) to the form shown in Equations (3.14) and
(3.15).  x1 − x̄1

x2 − x̄2

x3 − x̄3

 =

 300 0 0
150 40 0
0 0 120

 n1

n2

n3

 (3.14)



y1 − ȳ1
y2 − ȳ2
y3 − ȳ3
y4 − ȳ4
y5 − ȳ5
y6 − ȳ6
y7 − ȳ7


=



1 0 1
1 0 1
0 0 1
1 0 0

1/2.1 1.0 0
Co Cw 0
0 1 0


 x1 − x̄1

x2 − x̄2

x3 − x̄3

+



ε1
ε2
ε3
ε4
ε5
ε6
ε7


(3.15)

where x1 represents overall oil sand flow, x2 represents water flow, and x3
represents hopper level change while yi represents an instrument output. Co
and Cw are parameters that are obtained by Taylor series approximations, and
are thus dependent on the operating condition.

The model from Equations (3.14) and (3.15) has the corresponding Bayesian
network shown in Figure 3.5. Note, solid arrows symbolize relationships that
are predetermined and broken ones symbolize relationships that need to be
learned. Likewise, solid nodes have known variance, but broken ones require
variance estimation. For clarity of relationship, in Figure 3.5, mutually corre-
lated variables are placed in the same node while uncorrelated are placed in
separate nodes.

3.3.2 Bayesian Parameter Learning with Hidden Vari-
ables

Data from this model contains underlying variables that are hidden (we treat
real states as hidden and measurements as observed) thus, the parameter esti-
mation methods must be able to deal with hidden variables. The most widely
used parameter estimation methods that can deal with hidden variables are
Gibbs Sampling (GS) and Expectation Maximization (EM) [14]. A popular
software used for Gibbs Sampling is WinBUGS, while the EM algorithm is
used in a Bayesian Network toolbox for MATLAB, written by Kevin Murphy
[18]. This work however, focuses on the use of the EM algorithm; detailed
information can be found in a paper published by Dempster, Laird and Rubin
[7]. Being an iterative approach, the EM algorithm obtains a new estimate of

parameters θ̂n+1 given a previous set of parameters θ̂n by successive substitu-
tion and maximization.
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Y1 Y2 Y4Y3 Y5 Y7Y6

X3

Gray Box Hidden Model

Observed Variables

X1
X2

Figure 3.5: Bayesian Representaion of Mass Balance Factor Model

θ̂n+1 = arg max
θ

[∫
P (X|Y, θ̂n) ln [P (Y,X|θ)] dX

]
(3.16)

where X is a missing or hidden variable, Y is a set of observed data, and θ̂ is
an estimate of the real parameter set θ. This process can be broken down into
two steps:

1. Expectation: When we have a set of initial values for θn, we can compute
the probability density function (PDF) P (X|Y, θ̂n) as a function of X,
conditioned by a set of parameters θn which are to be held constant.

P (X|Y, θ̂n) =
P (Y |X, θ̂n)P (X|θ̂n)∫
P (Y |X, θ̂n)P (X|θ̂n)dX

(3.17)

where θ̂n is a set of node-related parameters such as mean, variance
and path coefficients at iteration n, P (X|θ̂n) is the multivariate normal

PDF given by Equations (3.2) and (3.3), and P (Y |X, θ̂n) is another
multivariate normal PDF given by Equation (3.13). One should also

note that
∫
P (Y |X, θ̂n)P (X|θ̂n)dX is simply a normalization constant,

since θ̂n is constant and X is marginalized out; this results in Equation
(3.17) being a relatively simple function of X. At this point it is also
useful to note that

ln [P (Y,X|θ)] = ln [P (Y |X, θ)P (X|θ)] (3.18)

which makes explicit use of the model-defined PDFs P (Y |X, θ) and
P (X|θ); these are similar to those used in Equation (3.17), but allows
the parameters θ to vary. Combining Equations (3.17) and (3.18) and
marginalizing out X by integration results in the expectation shown be-
low.

EX|Y,θ̂n{lnP (Y,X|θ)} =

∫
P (X|Y, θ̂n) ln [P (Y,X|θ)] dX (3.19)
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This expectation is determined by the previous fixed parameters θ̂n and
the variable parameters θ which are to be optimized in the maximization
step.

2. Maximization: the objective function obtained in Equation (3.19) —a
function of θ since X was marginalized out— can be maximized accord-
ing to Equation (3.16).

Calculations involving Bayesian networks were done using the BNT which
is an open-source toolbox for MATLAB written by Kevin Murphy, and can be
found at the url in [19]. The files have been made open to the public via the
University of British Columbia Computer Science website as well as Google
Project Hosting. Details on software use are given by [19] and a paper has
been written on the subject [18]. The EM algorithm however, requires initial
values to which results can sometimes be sensitive.

3.3.3 Principal Component Analysis

Principal component analysis aims to break down the sample covariance matrix
into linearly independent components, and is often used as a first step toward
factor analysis to determine the number of latent variables. In general, the
goal of PCA is to rotate the axes of p-dimensional covariance matrix so as to
coincide with directions of maximum variability, resulting in a diagonal matrix
[12]. This allows greater variance to be described by a few major underlying
independent variables. Because measurements have very different scales and
variances, the standardized PCA method is used. Consequently, the sample
correlation matrix R is analyzed instead of the sample covariance matrix S.
R can be obtained by transforming S using Sy which is the main diagonal of
S. This transformation is shown in Equation (3.20).

R = S−1/2
y SS−1/2

y (3.20)

Let q ≤ p represent the number of principal components considered when
performing PCA. E(q) = e1, e2, ...eq would then be a matrix of q eigenvectors,
and Λ(q), a diagonal matrix of eigenvalues λ1, ..., λq of the correlation matrix R.
The correlation matrix R, can be redefined according to spectral decomposition
in Equation (3.21).

R = E(p)Λ(p)E
′
(p) (3.21)

L̃s = E(q)Λ
1/2
(q) (3.22)

R ≈ L̃s
′
L̃s (3.23)

where L̃s is matrix of factor loadings according to PCA, defined according to
Equation (3.22). Equation (3.23) should hold true as long as q is large enough
to capture sufficient variance. The objective is to find the minimal value of
q that would still capture most of the variance expressed in Equation (3.23).
PCA is actually an approximate factor analysis solution; the objective of PCA
is to determine an adequate number of factor loadings to use in factor analysis.
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3.3.4 Factor Analysis by Modified Principal Compo-
nents

While there are many methods to perform factor analysis (FA), the modified
PCA method was used for this chapter. This method of FA is similar to PCA
but accounts for noise within the individual observations (Y1...Yp) themselves,
which is denoted as Ψs. FA techniques attempt to separate R into its diago-
nal specific variance Ψs and its loading-based communality LsL

′
s as shown in

Equation (3.24).

R ≈ LsL
′
s + Ψs (3.24)

Ls and Ψs are directly estimated from R using the iterative Principal Factor
Solution which can be found in [12]. Once Ψs and Ls have been estimated,
they can be converted to their unstandardized forms according to Equations
(3.25) and (3.26).

L = S1/2
y Ls (3.25)

Ψ = S1/2
y ΨsS

1/2
y (3.26)

(3.27)

FA makes estimates on the assumption that the model can take the form
of a zero-mean factor model as shown in Equation (3.28).

Ỹ ≈ Ln + ε(Ψ) (3.28)

where Ỹ is conditioned observation data (with zero mean), n a source of vari-
ation, identical to the n used in Equation (3.3), and ε(Ψ) is observation noise
with an estimated covariance Ψ. Ideally ε(Ψ) = ε but estimates of Ψ are not
constrained to be consistent with mass balances, thus one must distinguish
ε(Ψ) from ε. Because Equation (3.13) defines the distribution of a zero-mean
linear factor model, it is possible to perform a substitution to generate an FA
model. When subtracting the sample mean value of Y from Equation (3.12),
the factor model reduces to Equation (3.29).

Y − Ȳ = CLxn + ε (3.29)

If the data can be arranged in a manner that is consistent with Equation
(3.28), FA estimates the loading matrix L as well as the covariance of ε(Ψ).
It becomes clear from Equations (3.28) and (3.29) that FA makes an attempt
to estimate a value for L = CLx as well as ΣY = Ψ. The principal cause of
concern for using Ψ as an estimate for ΣY is the fact that black box estimation
methods such as FA cannot force consistency with the mass balance equation
structure onto estimates of L and Ψ. Particular trouble arises in the case
where measurements from one instrument appears to be relatively uncorrelated
with the others. When this happens, it is difficult to determine whether the
noise is coming from the measurement or from a separate hidden state n.
Nevertheless, measurements that cause such confusion are often the exception
and not the norm, thus as an initial guess for ΣY , Ψ is still valuable. The
subsequent Bayesian learning will essentially make corrections to Ψ by forcing
mass balance consistency to get Σ.
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3.4 Estimating the Gross Error Distribution

While the principal focus of this work is using Bayesian networks to estimate
process and measurement noise covariance, this method can also be used to
estimate gross errors such as instrument bias. Since covariance matrices are
now specified, the Baysian network can be simplified to a form as shown in
Figure 3.6

Gray Box Hidden Model

Observed Variables

X1...X3

B1...B7

Y1...Y7

Measurement Bias

Figure 3.6: Bayesian Representation with Bias

Because it is desirable to estimate instrument bias, sample means should
not be removed from observed data; thus, we revert to the direct use of Equa-
tions (3.3) and (3.8).

Gross error estimation can be performed through Bayesian learning in the
same manner as variance was learned. However, the gross error estimation
problem is not consistent with the FA structure because the new network has
more parent components than children. Due to this, FA cannot be used to
generate initial values.

The first step in this procedure is estimating the process mean µ as defined
in Equation 3.3. This can be done by specifying the gross error terms β as equal
to zero and learning the process mean. This is consistent with the preliminary
step for conventional data reconciliation which assumes that there are no gross
errors present; these estimates are weighted mean, weighed according to the
noise variance of the corresponding measurement. When learning the process
mean from the original data, the best initial value is the design specifications.
One can improve the steady-state estimate by simultaneously estimating the
steady-state mean with the gross error prior variance. This reduces the con-
tamination of the process mean from gross errors, giving a better steady state
estimate for the first step. The improvement comes from the fact that for
traditional methods, the only weighting factor that is taken into account is
the measurement noise variance. However, when learning the prior gross error
variance at the same time, the prior gross error variance that best explains
the data is also being taken into account when assessing instrument reliability.
Measurements that can be singled out as being inconsistent will have a cor-
respondingly large gross error prior variance, causing that instrument to have
less weight on the process mean estimate.

Once a process mean has been estimated, these values can be used to learn
the gross error mean and posterior gross error variance. From the gross error
mean and variance, hypothesis tests can be performed to determine whether
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Table 3.1: Variable Definitions

Symbol Mean S.D. Meaning

x1 1000 300 Real Oil Sand Flow
x2 500 155.2 Real Water Flow
x3 0 120 Real Hopper Level Change

y1 0 200 WENCO Database Value
y2 0 90 First Weightometer Readings
y3 0 130 Hopper Level Readings
y4 0 80 Second Weightometer Readings
y5 0 60 Slurry Flow Meter Readings
y6 0 0.2 Density Meter Readings
y7 0 50 Water Flow Meter Readings

β1 0 0 Bias
β2 -30 0 Bias
β3 0 0 Bias
β4 300 0 Bias
β5 -80 0 Bias
β6 -0.2 0 Bias
β7 0 0 Bias

or not a gross error of zero is within the suitable confidence level. If there are
any significant gross errors, one might want to re-learn the process mean after
replacing the gross error mean value of zero with the new gross error estimate
for that instrument.

3.5 Simulation of Overall Process

Before applying these methods to real process data, a simulation of the indus-
trial system was performed by generating data for a fictional operating point.
Verification of this method is best done through simulation since the true pa-
rameters are available beforehand in a simulation. The real parameters are
given in Table 3.1.

Note that gross errors were introduced into this simulation in the form of
instrument bias. Gaussian data was generated for the values of n and ε so that
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simulated values for X could be obtained using Equation (3.3) and Y could be
calculated according to the nonlinear model in Equation (3.7). 900 data points
were generated for the system. When performing appropriate substitutions to
Equations (3.3) and (3.7), simulated data can be directly calculated according
to Equations (3.30) and (3.31)

 x1

x2

x3

 =

 1000
500
0

+

 300 0 0
150 40 0
0 0 120

 n1

n2

n3

 (3.30)



y1
y2
y3
y4
y5
y6
y7


=



x1 + x3

x2 + x3

x3

x1

2.1−1x1 + 1.0−1x2

(x1 + x2)
−1(2.1x1 + 1.0x2)
1.0−1x2


+



200n4

90n5

130n6

80n7

60n8

0.2n9

50n10


(3.31)

where ni is randomly generated Gaussian noise with mean 0 and variance 1.
This simulation resulted in a correlation matrix given in Table 3.2.

Table 3.2: Correlation Matrix for Direct Nonlinear System

y1 y2 y3 y4 y5 y6 y7

1.00 0.83 0.15 0.78 0.79 -0.03 0.72
0.83 1.00 0.17 0.89 0.88 -0.03 0.82
0.15 0.17 1.00 -0.07 -0.07 -0.02 -0.07
0.78 0.89 -0.07 1.00 0.94 -0.03 0.86
0.79 0.88 -0.07 0.94 1.00 -0.05 0.91

-0.03 -0.03 -0.02 -0.03 -0.05 1.00 -0.07
0.72 0.82 -0.07 0.86 0.91 -0.07 1.00

As mentioned before, all relationships are linear except for the case of
y6. Performing a Taylor series approximation around the operating points
x1 = 1000 and x2 = 500 yields the following parameters: Csand = 1.836× 10−4

and Cwater = −4.492 × 10−4.

3.5.1 Variance Estimation Results: EM by Uninformed
Initial Guesses

When performing parameter estimation, it was found that certain parameters
were sensitive to initial values. Most parameters were well-converged except y4
and y7. Again, if the initial values are not carefully considered, the model may
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assume that one instrument is unduely precise in measuring the corresponding
underlying variable. A summary of results can be found in Table 3.5.

3.5.2 Variance Estimation Results: PCA and FA Re-
sults

PCA was performed with the intent of determining how many hidden vari-
ables were needed to explain the covariance (or correlation) matrix. Figure
3.7(a) displays a plot of % variance explained by the nth principal compo-
nent. Because improvements were marginal after three principal components,
three underlying variables are sufficient for this model (which happens to be
the number of hidden process states). From these results, it was shown that
roughly 92.1% of the variance can be explained using three principal compo-
nents.
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Figure 3.7: FA Validation using PCA

Table 3.3 displays principal components labeled by their scores in the units
of % variance explained.

Table 3.3: PCA vectors by decreasing PC

Variable 62.5% 15.4% 14.3% 3.8% 2.1% 1.2% 0.8%

y1 0.42 -0.16 -0.05 0.82 0.33 0.10 0.05
y2 0.45 -0.14 -0.04 0.00 -0.42 -0.77 -0.05
y3 0.01 -0.95 -0.09 -0.24 0.04 0.17 0.01
y4 0.46 0.10 -0.01 -0.11 -0.49 0.47 0.55
y5 0.46 0.11 0.01 -0.19 -0.06 0.34 -0.78
y6 -0.03 0.11 -0.99 -0.04 0.03 0.00 0.00
y7 0.44 0.12 0.03 -0.47 0.69 -0.15 0.26
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When using three factors (as decided from PCA), roughly 98.4% of the
variance can be explained by three factors when independent noise was taken
into account. One can now use this information to construct a network model.
From the overall assumption that three hidden variables cause measurement
noise variance, the corresponding Bayesian network is shown in Figure 3.8.
Note that the network is simplified by omitting connections between nodes
with negligible correlation.

Y1 Y2 Y4Y3 Y5 Y7Y6

n2

Black Box Hidden Model

Observed Variables

n1 n3

Figure 3.8: Approximate Factor Analysis Model

Factor loadings along with the estimated standard deviation are displayed
in Table 3.4. Note that these are scaled so that underlying factors have a
mean of zero and standard deviation of 1, according to Equation (3.29). Real
values for CLx are presented in Table 3.4 with the sample standard deviation
calculated from simulated data.

Because loadings were known beforehand through mass balances, the prin-
cipal interest is in estimating measurement noise variance. Overall, noise val-
ues produced by FA are fairly close to the simulated values. The only issues
lie within the noise variance for y3 and y6, both of which are severely underes-
timated; this is because the instruments y3 (surge level) and y6 (density) are
relatively uncorrelated with the rest of the instruments. If an instrument is
relatively uncorrelated with the others, FA will attempt to heavily associate
this independency toward a separate underlying cause ni and reduce the effect
of ni on other measured variables. This is easily seen in Table 3.5 where the
variance for x3 is highly overestimated because x3 is the only hidden variable
that has a significant effect on y3. Increasing the variance for x3, and reducing
its effects on other variables explains away much of the independent noise of
the y3 measurements.

With the measurement noise variance calculated, the variance of hidden
variables can be estimated either by analyzing the loadings or by subtracting
measurement noise variance from the measurement variance. Since measure-
ment noises were assumed to be uncorrelated with process noise, Equation
(3.32) can be used to estimate process noise variance.

σ2
measured = σ2

process + σ2
instrument (3.32)

Results from FA are compared with other results in Table 3.5.
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Table 3.4: Loadings and Noise from FA Estimation vs. Simulated Values

Est L1 L2 L3 Sim L1 L2 L3

y1 335.8 -54.9 -20.55 y1 300 -120 0
y2 336.3 -53.4 -20.04 y2 300 -120 0
y3 4.5 -158.4 -28.2 y3 0 -120 0
y4 316.2 33.6 -2.03 y4 300 0 0
y5 282.7 30.8 4.16 y5 292.9 0 40
y6 -0.01 0.04 -0.185 y6 0.0012 0 -0.0195
y7 124 14.1 5.58 y7 150 0 40

3.5.3 Variance Estimation Results: Bayesian Learning
with FA Initial Values

While FA results were suboptimal, they were found to be an effective starting
point for Bayesian learning by means of the EM algorithm. Bayesian learning
did not bring a dramatic improvement of variance estimation for most instru-
ments when compared to FA initial values. However, it significantly improved
variance estimates for difficult-to-estimate instruments such as y3 and y6, lead-
ing to a much more reliable estimation overall. A summary of all results is
shown in Table 3.5.

Table 3.5: Summary Table of Variance Estimates

Variable Simulated σ EM FA EM with FA

x1 319 314 333 314
x2 161 180 155 174
x3 117 126 161 121

y1 222 207 212 203.7
y2 99.9 105 102 94.3
y3 144 133 62.8 114.1
y4 88.8 2.25 94.2 89.8
y5 66.6 83.7 62.9 56.9
y6 0.222 0.221 0.063 0.220
y7 55.5 14.7 59.9 47.69
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3.5.4 Bias Estimation: Bayesian Learning Results

After the variance parameters were estimated, Bayesian learning was used
to estimate gross errors from bias. A summary of results is given in Table
3.6. Mean and standard deviation values were given and estimation error
percentiles were calculated according to the normal distribution. Since the
initial guess of bias was zero, the bias estimates were somewhat conservative.

Table 3.6: Estimated Bias from Bayesian Learning (Zero Bias Initial)

Variable Simulated EM σβ Percentile Err

β1 0 -15.2 122 10.5
β2 -30 -58.5 58.8 37.2
β3 0 29.9 76.8 30.3
β4 300 235 50.6 79.8
β5 -80 -104 43.4 42.7
β6 -0.2 -0.223 0.199 9.02
β7 0 4.58 33.3 10.9

Because β4 was significant, a second learning iteration was used by using
this bias estimate instead of zero for the prior bias mean. Estimates shown in
Table 3.7 gave improved bias estimation results since the estimated state was
less contaminated.

Table 3.7: Estimated Bias from Bayesian Learning (Modified Bias Initial)

Variable Simulated EM σβ Percentile Err

β1 0 -15.7 118 10.6
β2 -30 -58.7 57.0 38.5
β3 0 -7.01 74.3 7.52
β4 300 275 49.0 38.8
β5 -80 -96.5 41.9 30.5
β6 -0.2 -0.211 0.199 4.18
β7 0 -4.38 33.2 10.8
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3.6 Special Case, Capacity with no Scaling

3.6.1 Time Dependency As Information

With this factor model framework and philosophy, we can re-visit the previous
problem of estimating the hopper constant cH . Recall that hopper level indica-
tor gave a % capacity reading, but the maximum capacity was not known. As
before, the aim is to obtain a hopper scalar cH that would enable the reliable
estimation of the real surge hopper mass accumulation x3 using surge hopper
level readings y3.

x3 = cHy3 (3.33)

Returning to the industrial example in Figure 3.2, consider a subsystem
that focuses on WI1, LI1 and WI2 where an intermediate holding vessel is
placed between two streams; for this subsystem, the observation vector Y is
redefined as follows.

y1 (i) = LI1(ti+∆t) − LI1(ti) (3.34)

y2 (i) =

∫ ti+∆t

ti

WEI1-WEI2 dt (3.35)

Traiditonally, cross-calibration can be done by a comparison of means for
flow measurements; however, proper cross-calibration can be difficult for ca-
pacity units because they have zero mean. Furthermore, if the process variance
is much less than the measurement noise variance (as in a steady-state pro-
cess), instrument measurement correlation is very low resulting in imprecise
estimates of capacity constants. Attempts toward direct regression were made
in the previous chapter; however, regression results changed over the different
sampling time intervals ∆t due to the fact that observation noise levels for
weightometers were dependent on ∆t. An approximate solution was obtained
by using the regression results from the time interval that gave the strongest
correlation.

The factor model approach in Equations (3.3) and (3.8) can be applied to
this system to obtain the model shown in Equation (3.36)

x = Lx(∆t)n (3.36)(
y1
y2

)
=

(
C1

C2

)
x +

(
ε1

ε2(∆t)

)
where subscript (∆t) indicates that the corresponding variable is dependent
on ∆t, x is a single hidden state —the real surge hopper accumulation— and n
is standard Gaussian noise with mean of 0 and variance of 1. y1 represents the
difference in surge hopper readings while y2 is the summed difference between
weightometer readings. C, is the observation matrix and Lx(∆t) is the load-
ing on the process noise (which is equal to the standard deviation of x) and
is dependent on ∆t; ε2(∆t) is the measurement noise from the weightometer
difference and is also a function of ∆t while ε1, the hopper level noise, has
constant variance for all values of ∆t. The expected covariance structure from
this model is represented in Equation (3.37).
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cov(y) =

(
σ2
1 + C2

1L
2
x(∆t) C1C2L

2
x(∆t)

C1C2L
2
x(∆t) σ2

2(∆t) + C2
2L

2
x(∆t)

)
(3.37)

The covariance at one time interval specifies 3 combinations of parameters,
but there are 5 unknown parameters ( Lx(∆t), C1, C2, σ2

1, and σ2
2(∆t)). Thus

a solution from a straightforward mass balance factor model is unavailable.
Nevertheless, because some parameters vary with ∆t while others do not, it is
possible to use this information to perform a regression analysis.

Before solving this problem, some parameters can be specified. Continuous
flow measurements give direct units; thus C2 has a value of 1 by definition,
while C1 is equal to c−1

H since C1 converts x values to y and cH converts y values
to x. When making appropriate substitutions for C1 and C2, Equation (3.37)
reduces to (3.38). Let S(∆t) be the sample covariance matrix of instrument
data, sectioned off according to a given sampling time ∆t; its expected value
according to this model is defined as

E(S(∆t)) =

(
σ2
1 + c−2

H L2
x(∆t) c−1

H L2
x(∆t)

c−1
H L2

x(∆t) σ2
2(∆t) + L2

x(∆t)

)
(3.38)

Sample covariance matrices are directly available for chosen values of ∆t;
because of this, it is possible to exploit this model structure and perform
regression for covariance values over different values of ∆t. Since a 2 × 2
covariance matrix has three unique entries, there are three possible regression
equations.

S11(∆t) ≃ σ2
1 +

1

c2H
L2
x(∆t) (3.39)

S12(∆t) ≃ 1

cH
L2
x(∆t) (3.40)

S22(∆t) ≃ σ2
2(∆t) + L2

x(∆t) (3.41)

where Sij(∆t) is the entry corresponding to the ith row and jth column of the
sample covariance matrix S(∆t); recall that subscript (∆t) denotes that this
variable is a function of ∆t. The direct values for L2

x(∆t) are not available, but

Equation (3.40) indicates that values for 1
cH
L2

x(∆t) can be directly obtained from
the sample covariance matrix. By substitution, relations shown in Equations
(3.39) to (3.41) can be reduced to the models shown in Equations (3.42) and
(3.43).

S11(∆t) ≃ σ2
1 +

1

cH
S12(∆t) (3.42)

S22(∆t) ≃ σ2
2(∆t) + cHS12(∆t) (3.43)

The model shown in Equation (3.42) can be used directly for regression
the since surge level indicator variance σ2

1 and the surge hopper scalar cH
are independent of ∆t; however, weightometer variance σ2

2(∆t) is an unknown
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function of ∆t. If σ2
2(∆t) and L2

x(∆t) are not independent, regression is not

possible. Thus, due to direct knowledge of time independence, Equation (3.42)
is much more suitable for regression analysis.

3.6.2 Regression Results Using Industrial Process Data

Using industrial data, the first task was to perform regression analysis on
Equation (3.42) in order to get an estimate of cH . Figure 3.9(a) displays the
data for linear regression and parameter estimation results for cH as well as
σ2
1. Both figures pertain to time intervals between 4 and 30 minutes. Figure

3.9(a) shows a very clear linear trend, which results in a precise value of the
cH parameter which is the inverse of the slope. Since the σ2

1 parameter is
somewhat insignificant at this scale, confidence intervals were wider. For this
time interval region, it was also found in Figure 3.9(b) that weightometer
variance σ2

2(∆t) was linear with respect to ∆t2.
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Figure 3.9: Regression Analysis for Noise

In order to get a better estimate of σ2
1, data points were generated using

smaller time windows, as it is within these time windows that the parameter
is better defined. Data was generated for time intervals of 2 to 10 minutes.
Confidence intervals for σ2

1 were much tighter, and marginal plots of σ2
1 showed

little trend activity.
Now that this method has been verified to accurately determine the surge

hopper scalar, FA and Bayesian learning can be performed on industrial data.

3.7 Industrial Application

For the industrial case, the variance and bias of instruments were estimated
in the same manner as the simulation. Special attention was paid toward
obtaining a data set wherein measurements followed a multivariate normal
distribution. Summaries for the resulting measurement noise variance are
shown in Table 3.7. One observation was that WENCO variance was quite
substantial.
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Figure 3.10: Regression focusing on VH estimation

Table 3.8: Estimated Variance from Bayesian Learning (FA Initial)

Variable FA EM with FA

x1 386 246
x2 40.8 55.8
x3 423 329

y1 364 429
y2 151 179
y3 153 207
y4 51 104
y5 11.2 12.2
y6 0.011 0.102
y7 9.75 18.1

After the variance parameters were estimated, bias means and variances
were obtained in the same manner as before using Bayesian learning with re-
sults shown in Table 3.7. σβPrior represents the RMS error of each instrument,
which includes both random and systematic error; the RMS error is used to
adjust the instrument measurement weight for the first state estimate. µβ is
the estimated mean gross error while σβPosterior represents random error of
each instrument after the state is estimated. Percentiles in the confidence
result . The major concern from the industrial standpoint was the second
weightometer Y4, which was reported to have biases of up to +30%. One can
see from the results that the corresponding bias β4 has substantial bias with
a confidence of 99.997%. This result has been confirmed by engineers within
the industry.
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Table 3.9: Industrial Estimated Variance from Bayesian Learning

Variable σβPrior µβ σβPosterior Percentile

β1 250 47.6 237 15.9
β1 260 80.9 242 26.2
β1 2.17 -0.01 2.1 0.27
β1 357 306 80.6 100.0
β1 22.6 -15.2 14.6 70.3
β1 0.18 -0.16 0.13 78.8
β1 19.7 5.22 14.4 28.4

3.8 Conclusions

While Bayesian learning is capable of optimizing parameters in a way that is
consistent with both mass balances and measurement covariance, this method
comes at a price of requiring an initial value. However, FA is capable of ob-
taining effective initial values. When FA is used to initialize Baysian learning,
results tend to converge well since Bayesian learning can force mass balance
consistency onto estimations. Results for this method were consistent both in
simulation and in practice.

When trying to obtain adequate scaling for capacity, the mass balance fac-
tor model is adequate in specifying a regression model with respect to the time
window. The independency of capacity measurement variance with respect to
∆t allowed the use of linear regression analysis to obtain an estimation of the
scaling factor. Such an approach can solve the problems of implementing the
Bayesian learning approach when intermediate holding measurements are not
properly scaled.

1

1A version of this chapter has been accepted for publication. Gonzalez, Huang, 2010. Indus-
trial Engineering and Chemistry Research

52



Chapter 4

Dynamic Bayesian Approach to
Instrument Performance
Monitoring and Correction

This chapter applies results from the previous chapter to employ a Bayesian
methodology to detect instrument gross errors and to estimate them in real
time; the algorithm consists of four steps. The first step uses a mass balance
based Kalman filter to estimate the hidden state, while the second step uses the
estimated states and their covariance to calculate standardized residual errors.
The third step uses another Kalman filter to estimate systematic trends in the
residual errors. The final step calculates P-values from traditional hypothesis
test procedures, and uses a dynamic Bayesian network to refine statistical
evidence from hypothesis tests. This method is tested on a simulation and
then applied to industrial data. Simulations demonstrate that this method is
able to detect rapidly propagating gross errors, but as one would expect, there
is a tradeoff between precision and the speed of detection. In the presence of
multiple gross errors, as in the case of industrial data, this method tends to
prioritize correcting large gross errors first.

4.1 Introduction

The previous chapter focused on the use of Bayesian learning techniques to
identify noise and gross error parameters of a static process model based on
mass balances. The method introduced in this chapter makes use of Bayesian
learning to estimate a dynamic model which is used to detect gross errors in
real time. This method is inherently related to data reconciliation and gross
error detection; as mentioned before, traditional data reconciliation techniques
attempt to find the hidden steady-state that best explains the data, while
gross error detection performs statistical tests on measurements do determine
if there is any systematic deviation from the reconciled steady state. Upon the
detection of significant gross errors, suspicious measurements are discarded and
data reconciliation is then re-performed with corrupted instruments removed.

The proposed method is a dynamic analogue of the traditional methods.
A dynamic model based on mass balances is learned, and a Kalman filter is
used to replace data reconciliation in order to obtain a reconciled dynamic
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state estimate. Gross error detection is performed by filtering residual errors
and calculating P-values according to the normal distribution; these P-values
are used to enter evidence into a Dynamic Bayesian Network (DBN) which
is a way of monitoring test results over time, checking for systematic unusual
behavior. When gross errors are detected, the Kalman filter is modified in
order to heavily penalize the corrupted instruments. The proposed method
however, performs an additional task of correcting a corrupted instrument by
estimating a corresponding gross error term so that a corrected instrument
can be re-introduced into the state estimate.

The focus of this chapter is the practical application of a dynamic data
reconciliation and gross error detection algorithm, similar to the objectives
given in [16]. The difference is that this algorithm is inherently tailored to-
ward a dynamic process and is consistent with Bayesian statistics. The key
advantage to the proposed dynamic method is that it can detect the sudden
development of gross errors in real time. Consequently, while multiple gross
errors can be a problem in the static case, the dynamic method deals with
errors as soon as they occur; this enables the dynamic method to deal with
multiple gross errors in small manageable (or observable) groups. Figure 4
displays the methodology shown in this chapter.

(2.1) Define Step (1)
State Kalman Filtering

(3.1) Define Step (2)
Residual Errors

(4.1) Define Step (3)
Error Kalman Filtering

(5.1) Define Step (4)
Gross Error Detection

(6.1) Tune Step (3)

(6.2) Tune Step (1)

(7) Perform Tests on
Simulated Data

(8) Perform Tests on 
Industrial Data

(2.4) Observability
Criteria

Figure 4.1: Chapter 4 Methodology

The four steps are briefly introduced in the Algorithm Overview section.
In Section 2.1 Kalman filtering is introduced as a state estimation tool for
Step (1), note that the instrument noise and process disturbance covariances
are tuned using methods introduced in Chapter 3. Because this method adds
gross errors as augmented states, the observability criteria must be introduced
in Section 2.4. Section 3.1 addresses the calculation and standardization of
residual errors done in Step (2) while Section 4.1 introduces the filtering pro-
cedure in Step (2) that filters these standardized residual errors. Finally, in
Section 5.1, the Dynamic Bayesian Network is introduced as a tool for a dy-
namic version of hypothesis testing in Step (4). Section 6.1 uses principles
addressed in Step (4) to develop an objective-based tuning method in Step
(3). Section 6.2 uses results from the tuning of Step(3) to derive a tuning
method for gross error state variance in Step (1). Finally, Sections 7 and 8
discuss results from simulation tests and industrial applications respectively.

54



4.1.1 Algorithm Overview

A schematic of the algorithm is shown in Figure 4.2. For each time step,
the algorithm performs the following procedure: (1) Update the process and
gross error states as new observations of instrument reliability become avail-
able; note that instruments that are determined as unreliable have a weighing
penalty applied, and dynamic gross error states are only applied to unreliable
instruments. (2) Calculate the statistical distance of each measurement. It
is similar to data reconciliation techniques proposed by [22]. (3) Update the
continuous gross error state, which serves as a filter for statistical distance
results. (4) Perform an instrument reliability audit, using a DBN to track test
results. This step consists of using filtered Z-values to test both the existence
of a bias change and the nonexistence of a bias change; the successful test is
the one which has a stronger P-value. The P-values are also used to enter the
evidence into the DBN, which is then used to audit the instruments for reli-
ability. Results from the reliability audit are used to assign reliability states
for the next time step.

(1)
Updating Process and

Bias States

Time Step #1

(0)
New Y and I.R.

(2)
Statistical 
Distance Z

(3)
Z-Value Filtering

(4)
Instrument

Reliability Audit

Predict

Predict

Predict

Update

(1)
Updating Process and

Bias States

Time Step #2

(0)
New Y and I.R.

(2)
Statistical 
Distance Z

(3)
Z-Value Filtering

(4)
Instrument

Reliability Audit

Figure 4.2: Visual Representation of Algorithm

One might try to simultaneously estimate the hidden process state as well
the complete gross error states, eliminating steps (2) (3) and (4); however, as
shown later, estimating a complete set of gross errors in addition to the hidden
state causes the system to become unobservable.

It would also be possible to construct a large Switching Kalman filter which
includes reliability states that can modify the Kalman filter. This would also
eliminate steps (2) (3) and (4), but such an approach would be severely limited
in two ways: (1) Computational power is exponential in terms of the number
of instruments used; this is a severe limitation as gross error correction requires
the use of a significant number of instruments in order to be reliable. (2) Un-
reliable instruments cannot be significantly penalized since actual instrument
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noise variance must increase substantially in order for large penalization to be
favored. Because of these two drawbacks, the proposed method was developed
in order to reduce the computational burden, and to allow the instrument cor-
rection algorithm to err on the side of caution by heavily penalizing unreliable
instruments.

4.2 Step(1) State Estimateion

Process model formulation deals with specifying a model and estimating model
parameters so that step (1) in Figure 4.2 can be performed. While the previous
chapter used a factor model for static conditions; dynamic conditions are now
used which means that a state-space model is more appropriate. The first step
uses a Kalman filter as a dynamic data reconciliation method. Some attempts
have been previously made to use Kalman filtering for data reconciliation;
however, its implementation has been limited due to difficulties in tuning the
process model [1]. Because of this, an algorithm entitled Dynamic Data Rec-
onciliation (DDR) has been developed by [1]. However, the Bayesian learning
method discussed in Chapter 3 can be applied to dynamic models in order to
overcome such tuning difficulties. This allows for the feasible application of
the Kalman filter.

4.2.1 Static Observation Model

In the most general sense, the vector of observed measurements Y are a non-
linear function g(X) of the hidden states X with added gross errors β and
uncorrelated instrument noise v.

Y = g(X) + β + v (4.1)

Because gross error detection is based on mass balances, X is a minimal set
of mass process variables that complete the mass balance. This methodology
deals with linear systems, thus the nonlinear function g(X) must be linearized
by a first order Taylor Series expansion. This way, the function g is approxi-
mated by a linear observation matrix C and a first-order linearization reference
r.

g(X) ≈ CX + r (4.2)

The visual representation of this static model can be represented by a Bayesian
network with gross errors as shown in Figure 4.3. As in the previous chapter,
Bayesian networks can be used to model causal relationships between random
variables; nodes represent sets of variables, and arrows indicate the causal
relationship.

Note that the node sizes as well as C and I are given in terms of the
industrial example.

4.2.2 Hidden Dynamic Process Model

Because this method deals with a dynamic problem, the dynamic propagation
of the states f(X) must also be considered in Equation (4.3)

X(t) = f(X(t−1), µX) + wX(t) (4.3)
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Figure 4.3: Static Bayesian Network

where wX(t) is cross-correlated process noise at time t, and µX is a process
operating condition or steady-state. Combining Equations (4.1) and (4.3)
results in a state-space model.

In practice, f(X) and g(X) are handled differently. On one hand, because
g(X) deals with instrument relationships toward hidden process states, the
function g(X) is relatively well understood. Most of the time, the relationship
between the instrument observation and the hidden state is linear; however,
nonlinear instruments can be adequately approximated by a Taylor Series ap-
proximation. On the other hand, f(X) is a dynamic function of hidden states;
the true process model is often times not well understood. Furthermore, be-
cause it deals with relationships between time steps, f(X) is highly dependent
on the time window ∆t. For any known f(X), the linear model is obtained by
means of a Taylor Series approximation about the process steady-state.

X(t) ≈ A(X(t−1) − µX) + µX + wX(t) (4.4)

It is also common practice to remove the steady-states from the Y obser-
vations in order to simplify the model for X.

X(t) ≈ AX(t−1) + wX(t) (4.5)

For most cases, the purpose for the dynamic hidden state is to track the process
operating point, which could be changed by the plant operator or slightly
affected by process noise. A mixed model comprised of random walk states
and tracking states is ideal for this application. Independent variables are
assigned a random walk model; these variables are often flow rates of limiting
reagents which are subject to plant scheduling. However, some variables are
controlled in order to accommodate changes in the random walk variable.

For example, if the oil sand flow rate x1 was scheduled, but a constant
slurry density was required, then the water flow rate x2 would track the oil
sand flow rate x1 which is assume to exhibit random walk. Thus the steady-
state of x2 is the value that maintains the desired ratio of x̄2/x̄1. x3 is the
surge hoper accumulation and essentially independent of x1 and x2; however,
it is constrained by the maximum hopper capacity and thus follows a fading-
memory assumption rather than random-walk. These conditions result in the
following hidden state model.
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 x1(t)

x2(t)

x3(t)

 =

 K1 0 0
(1 −K2)

x̄2

x̄1
K2 0

0 0 K3

 x1(t−1)

x2(t−1)

x3(t−1)

+ wX(t) (4.6)

where K1, K2 and K3 are constants between 0 and 1 which pertain to the
degree of memory of each variable (1 denotes a random walk state, and 0
denotes a static state). Because x1 is the random-walk variable, K1 has a
value of 1 by definition. Of particular interest is state x2, where x̄2/x̄1 denotes
the desired ratio between x2 and x1 to be maintained by the control system. In
this way, for a given value of x1, the controller will react in a way to preserve
the ratio between x1 and x2. K2 is related to how well the controller adjusts x2
to maintain its desired proportion to x1 (K2 = 0 for perfect tracking, K ≈ 1
for laggy or imprecise control).

While can also use Bayesian learning to estimate A, but this often results
in a process being centered around a mean value. Specifying a model similar
to Equation (4.6) allows the mean to move; using this type of model allows the
dynamic state estimation to be more consistent with traditional data recon-
ciliation, which estimates states with no prior knowledge of the process mean.
When combined with the observation model in Equation (4.1), a state space
model is created which has the dynamic Bayesian network (DBN) represen-
tation shown in Figure 4.4. Note that DBNs are recursive representations of
static Bayesian networks; hidden states at time Tk are considered parents of
the hidden states at time Tk+1.

X1...X3

Y1...Y7

C (7x3)

X1...X3

Y1...Y7

C (7x3)

T(i) T(i+1)

A (3x3)

Figure 4.4: Dynamic Bayesian Network without Gross Errors

4.2.3 Augmented Gross Error States

In order to obtain dynamic estimates of gross errors (or instrument bias), they
must be included in the state space model as augmented states. The gross
error terms themselves are assumed to follow a random walk model shown in
Equation (4.7)

β(t) = Iβ(t−1) + wβ(t) (4.7)
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When gross errors are detected, the corresponding gross error states are
included in the process model given by Equation (4.6) as augmented states,
resulting in Equation (4.8) below.

(
X(t)

β(t)

)
=

(
A 0
0 Iβ(a)

)(
X(t−1)

β(a,t−1)

)
+

(
wX(t)

wβ(t)

)
(4.8)

Y(t) =
(
C IY (a)

)( X(t)

β(a,t)

)
+ β(s) + vY (t)

where a is a set of indices pertaining active gross error states, s is a set of
static gross error states, Iβ(a) is an identity matrix with the same length of
a, and IY (a) is the ath columns of an identity matrix of the same length as
Y . In this way, if instruments 3 and 6 were found to have active gross errors,
a = (3, 6), s = (1, 2, 4, 5, 7), Iβ(a) would be a 2 × 2 identity matrix, and IY (a)

would be the 3rd and 6th columns of IY (IY is an identity matrix having the
same length as Y ). For notational convenience, we will use A(a) and C(a) to
represent augmented matrices that are specified by the indicated active gross
errors a.

(
X(t)

β(t)

)
= A(a)

(
X(t−1)

β(a,t−1)

)
+

(
wX(t)

wβ(t)

)
(4.9)

Y(t) = C(a)

(
X(t)

β(a,t)

)
+ β(s) + vY (t)

This can also be converted to a DBN as shown in Figure 4.5, which displays
the case for all bias states being active. Note that in this figure, (a) pertains
to the active gross errors while (s) pertains to the static gross errors, or gross
errors that are not active. The node B(s) is a static node and is thus noise
free as it acts as a static parameter.

4.2.4 Observability

Augmented gross error states are added when residual error tests indicate that
unknown gross errors are present, but these states are removed when tests
indicate that the gross errors have been accounted for. It is important that
these augmented gross error states only be included when necessary; including
all gross error models into the augmented state will cause the model to become
unobservable. This can be shown by applying an observability criterion; [4]
contains a number of different observability criteria on page 171 of his book,
the most convenient form for this application is shown in Equation (4.10). A
linear system is observable if

O =

(
A− λI

C

)
(4.10)

has full column rank for every eigenvalue λ, where O is a simplified observ-
ability matrix. When applying a complete set of hidden gross error states, the
simplified observability matrix becomes
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B(s) B(s)

I (s) I (s)

I (s)

C (a) 

Figure 4.5: Dynamic Bayesian Network with Gross Errors

O =

 A− λIX 0
0 IY − λIY
C IY

 (4.11)

where IX is an identity matrix with the same length as X, and IY is an identity
matrix with the same length as Y . From this matrix, one can see that IY forms
a basis of C, and that IY − λIY forms a basis for 0 at all values of λ, the only
basis in the left columns that is not formed by the right is A − λIX . Thus
O will have full column rank only if A − λIX has full column rank for every
eigenvalue λ; this is by definition impossible because the values of λ for A
are the ones that cause A − λIX to have a zero determinant and hence, an
incomplete rank.

This result of non-observability when introducing a full set of gross error
states is the intuitive consequence of trying track p + n independent states
with only p instruments. Any set of gross error states that allow IY (a) to form
a basis for C is thus a sufficient condition to cause the linear system to be
unobservable.

While analyzing the observability matrix in Equation (4.11) shows that
complete set of gross error states is a sufficient condition to cause unobserv-
ability, it is not a necessary condition. If there is insufficient instrument redun-
dancy, there could be a single gross error state that could cause the system to
be unobservable. This causes gross errors for that particular instrument to be
unobservable even if all other instruments were functioning properly. Thus, it
is important to ensure that every gross error is observable. This can be done
by setting the bias index a to every possible single instrument index, and then
calculating the simplified observability matrices according to Equation (4.12)

O =

(
A(a) − λI

C(a)

)
(4.12)
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If instrument redundancy is greater than minimal, the model will be observable
for many different multi-instrument combinations of a; this method is able to
simultaneously detect any combination of instrument gross errors a for which
the model is observable.

When augmented gross error states are activated as hidden states, they
will converge to a value that minimizes the residual error. It is also helpful
to increase the corresponding instrument noise variance elements of RY to RỸ
when a gross error has been detected. RỸ is the instrument noise covariance
of unreliable instruments, which can be obtained by scaling the original value
of RY by an gross error penalization constant kerr.

RỸ = kerrRY (4.13)

Using RỸ instead of RY will reduce the effects of contaminated instruments
on the estimation of the hidden process state X.

4.2.5 Model Estimation

In the previous chapter, RY was only estimated for the static case but for the
dynamic case, estimates of RY are still valid because there is no change in
the observation variance (instrument noise variance) of Y given X. Thus, the
only additional parameter to be estimated is QX . After parameters have been
estimated, performing Step (1) is a simple application of the Kalman filter.

4.3 Step (2) Residual Error Distance

4.3.1 Residual Error

For detecting gross errors, conventional methods rely mostly on calculating the
statistical distance between the instrument readings and the expected readings
given the reconciled state estimate. A similar approach is used in Step (2) for
the dynamic case, however, a Kalman filter is used to determine the hidden
reference state instead of data reconciliation. For each state estimate, the
expected process measurements and their uncertainty can be obtained by pos-
terior state distributions. The difference between the measurements and the
estimated reference value is the residual error ∆r, which is defined according
to Equation (4.15).

∆r(t) = Y(t) − C(a)X̂(a,t) − β(s) (4.14)

For simplicity of derivation and notation, we teat observations Y as if biases
were already removed, and hidden states X as if active biases are part of the
state.

∆r(t) = Y(t) − C(a)X̂(t) (4.15)

When calculating the residual error, one cannot use the real values of X(t) di-

rectly, but one can use the posterior Kalman filter estimate X̂(t) which contains

estimation noise. However, noise in X̂(t) and Y(t) are dependent, and must be
broken down into independent components.

61



X̂(t−1) = X(t−1) + δ(t−1) (4.16)

X̂(t) = X(t) + δ(t) (4.17)

X(t) = A(a)X(t−1) + wX(t) (4.18)

Y(t) = C(a)X(t) + vY (t) (4.19)

From these four equations, we can see that the previous state estimate X̂(t−1)

is contaminated by the previous state estimate error δ(t−1), the current state

estimate X̂(t−1) is contaminated by the current state estimate error δ(t). While
δ(t) and vY (t) are dependent, δ(t−1), wX(t) and vY (t) are all independent; thus,
the task is to break the covariance of ∆r(t) into terms that are contaminated
by independent noise.

From the Kalman filter, the current state estimate is calculated from the
current instrument observations and the previous state estimate as follows:

X̂(t) = AX̂(t−1) + K(Y(t) − CAX̂(t−1))

Substituting in Equations (4.16) and (4.19) yields,

X̂(t) = A(X(t−1) + δ(t−1)) + K
[
(CX(t) + wX(t)) − CA(X(t−1) + δ(t−1))

]
Further substitution of Equation (4.17) for X̂(t) (and canceling out CAX(t−1)),
and the substitution of Equation (4.18) for X(t) on the right yields

AX(t−1) + wX(t) + δ(t) = AX(t−1) + KvY (t) + KCwX(t) + (I −KC)Aδ(t−1)

which can be solved for δ(t), breaking it down into its independent components.

δ(t) = KvY (t) + (I −KC)(Aδ(t−1) − wX(t)) (4.20)

With δ(t) being broken down into independent noise components, we can
now return to Equation (4.15). By canceling out CX(t) from the right hand

side of Equation (4.15), the expression for ∆̂r is reduced to

∆̂r(t) = vY (t) − Cδ(t) (4.21)

Since vY (t) and δ(t) are dependent, the expression for the residual error must
be broken down into independent components by substituting Equation (4.20)
for δ(t) and collecting terms:

∆̂r(t) = (I − CK)vY (t) + C(I −KC)(wX(t) − Aδ(t−1)) (4.22)

All noise terms are independent, so the covariance is a linear combination of
these terms. The covariance of vY (t) and wX(t) were already given as RY and
QX respectively, while the covariance of δ(t−1) is actually PX(t−1) which is the
posterior state estimate covariance given by the Kalman filter for the previous
step. Also, the effects of active gross error states are explicitly taken into
account.
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Σr(t) = (I − C(a)K(a))(RY )(I − C(a)K(a))
T + (4.23)

C(a)(I −K(a)C(a))(A(a)PX(ā,t−1)A
T
(a) + QX(ā))(I −K(a)C(a))

TCT
(a)

where PX(ā,t−1) is the posterior state covariance given by the Kalman filter
with penalization scaling removed from the gross error states, and K(a) is the
optimal Kalman gain. When determining the value of Σr, one should recall
that the posterior covariance PX(ā,t−1) is updated at each time step and the
Kalman gain K(a) changes according to the active gross error states.

A proper understanding Equation (4.23) requires a book-keeping exercise.
When observations are penalized, the corresponding value for RY is replaced
with a fictionally large value RỸ . This is done to prevent unreliable obser-
vations from corrupting the state estimate. However, these corrupted obser-
vations must be used to estimate the corresponding gross errors; in order for
the penalized observations to have an effect on gross error state estimates, the
gross error states must also be penalized themselves. This results in QX(a) and
PX(a,t−1) also having fictionally large variances.

Since residual errors are used to detect systematic error, the residuals
should be standardized in terms of the actual random errors and state un-
certainty. Thus for Equation (4.23) QX(ā) should have entries of 0 for all
columns and rows that pertain to β(a), while the covariance of X should re-
main unchanged. PX(ā,t−1) however reflects state uncertainty. For β(a), en-
tries in PX(a,t−1) are fictionally large, so they must be divided by kerr so that
only the actual uncertainties in β(a) are taken into account. Once again, en-
tries of PX(a,t−1) that pertain to X should remain unchanged when calculating
PX(ā,t−1).

4.3.2 Statistical Distance

The residual error can be standardized by Σr(t) to determine the statistical
distance for each individual observation. A popular distance to use is the
Mahalanobis distance. For the univariate case, the Mahalanobis is simply he
difference between the observation and the expected value µ divided by the
standard deviation σ.

dM = z = σ−1(y − µ) (4.24)

Because there is only one component, the z value is equal to the Maha-
lanobis distance. For the multivariate case, the Mahalanobis distance is defined
as

DM =
√

∆T
r Σ−1

r ∆r (4.25)

This distance however, can be broken down component-wise to calculate
the statistical distance of each element of ∆r(t)

Z(t) = Σ
−1/2
r(a,t)∆̂r(t) (4.26)

where Z is a vector of statistical distances, having a covariance matrix of I,

and where Σ
−1/2
r(a,t) is calculated by spectral decomposition since Σr(a,t) is positive

definite.
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4.4 Step (3) Systematic Error Updating, Fil-

tering Z-Values

When residual errors are due to random noise, Z vector has a covariance ma-
trix of I due to standardization. However, gross errors will not be detectable
unless their statistical distance is significant compared to random error. Nev-
ertheless, we can detect small systematic offsets in the standardized residual
Z by applying another Kalman filter based on a random walk model. Such
filtering allows us to detect smaller gross errors; however, there is a tradeoff
between the precision and the speed at which this error can be detected. The
state space model is shown in Equation (4.27).

Zu(t) = Zu(t−1) + wz(t) (4.27)

Z(t) = IZu(t) + vz(t)

where wz(t) represents disturbances in the standardized systematic gross error
Zu(t), and v(z) is the random noise in the values of Z(t) caused by instrument
observations. These noise terms are distributed as follows:

wz(t) ∼ N (0, QZ) (4.28)

vz(t) ∼ N (0, RZ) (4.29)

RZ = I (4.30)

where QZ is a diagonal covariance matrix with entries less than 1 and rep-
resents noise attributed to gross error changes. In reality QZ is nearly zero
except during times where gross errors change significantly, but specifying
small average increases precision by filtering out noise in Z. When apply-
ing the a Kalman filter based on Equation (4.27), QZ is a tuning parameter;
smaller values allow for greater precision in detecting gross errors, but could
potentially slow down detection. Obtaining optimal values of QZ based on
specifications is discussed later.

In Equation (4.29), the observation noise is defined by the covariance ma-
trix RZ = I. This is due to the fact that when there is no systematic variation,
standardization causes cov(Z(t)) = I. The Kalman filter based on Equation

(4.27) returns the state estimates Ẑ(t) and the diagonal posterior covariance
matrix PZ(t).

4.5 Step (4) Reliability Audit through Hypoth-

esis Testing

4.5.1 Recursive Hypothesis Testing

The Kalman filter in step (3) filters values of Z in order to obtain a corre-

sponding filtered posterior estimate Ẑ and a posterior covariance estimate PZ .
Ẑ is standardized by PZ according to
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ẐS(t) = P
−1/2
Z(t) Ẑ(t) (4.31)

Since the states are independent, PZ is diagonal, and the univariate procedure
can be equivalently applied. Let pz(t) be the square-root of each diagonal entry
of PZ(t), then

ẑS(t) =
ẑ(t)
pz(t)

(4.32)

Normal percentile values (P-values) can be calculated from standardized resid-
ual errors by using the error function.

Pvalue = 1 − erf

(
|ẑ(t)|

pz(t)
√

2

)
(4.33)

A simple method to perform instrument reliability auditing is to choose a min-
imum P value of α that would trigger the flagging of a corrupted instrument.
This confidence level α (the probability of a false-positive result) would corre-
spond to a particular absolute Z-value that would serve as a cutoff threshold
value.

A more rigorous approach would be to employ a discrete-valued DBN which
acts as a Kalman filter for discrete states, allowing the management of prob-
abilistic evidence from P-values over time and reducing the frequency of false
alarms. Traditional statistical hypothesis testing would require that we treat
one state as being the null hypothesis; for this case, the null hypothesis would
state that there are no unidentified gross errors. However, the DBN does not
make the distinction between null and alternate hypothesis, and instead, allows
us to consider previous probabilistic evidence as priors. Unlike the traditional
method which only considers evidence toward the alternate hypothesis (that
being “there is an unknown gross error”), the Bayesian method allows us to
simultaneously consider evidence toward both the existence and the nonexis-
tence of unknown gross errors.

The discrete valued DBN uses a direct application of Bayes’ Theorem

P (h|e) =
P (e|h)P (h)

P (e)
(4.34)

where P (h|e) is the probability of the hypothesis given the evidence, or the
posterior probability, P (h) is the prior probability of the hypothesis or the prior
probability, P (e|h) is the probability of the evidence given the hypothesis, or
the likelihood, and P(e) is the total probability of the evidence, which serves
as a normalization factor. The corresponding Bayesian Network is given for
the problem in Figure 4.6.

Because every step has a simple 3-node chain inference, updating P (B = T )
with evidence is a simple application of Bayes’s rule. An example of this
application can be found in [14]. Once observing positive or negative test
results for observed gross error Bobs we can use the Bayesian network to update
our belief of condition B = T . Updating our believe of an unaccounted gross
error (B = T ) requires knowledge of the conditional probability for these
related events which is often shown in a conditional probability table (CPT).
This is related to the state transition matrix for a state-space model; the CPT
is thus labeled as A and is calculated as follows:
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Figure 4.6: Dynamic Bayesian Network without Bias

A =

(
P (B(t+1) = T |B(t) = T ) P (B(t+1) = T |B(t) = F )
P (B(t+1) = F |B(t) = T ) P (B(t+1) = F |B(t) = F )

)
(4.35)

Values for A are often treated as tuning parameters which dictate how much
evidence is required in order to change our belief in the discrete gross error
state. A second CPT, labeled C can be interpreted as the reliability of the
test in performing a statistical inference.

C =

(
P (Bobs = T |B = T ) P (Bobs = T |B = F )
P (Bobs = F |B = T ) P (Bobs = F |B = F )

)
(4.36)

If one assumes that the prior gross error distribution is normal, C matrix
entries have a visual representation shown in Figure 4.7. The probability of a
false positive is the area under ‘filtered Z posterior’ curve that lies outside a
given Z value; by contrast, the probability of a false negative is the area under
the ’standardized gross error prior’ curve that lies inside the same Z value.
The optimal threshold value is the Ẑ value at which false positive and false
negative probabilities are equal.

4.5.2 C Matrix Based on Fixed P-Values

When using fixed P-Values, one applies a hypothesis test, and the observed
result (T or F) is then used for the discrete Bayesian network. The probability
of false positives P (Bobs = T |B = F ) is set by the confidence level α at which
we reject the null hypothesis that unaccounted gross error is zero. In fact,

α ≡ P (Bobs = T |B = F ) (4.37)

nevertheless, determining the probability of false negatives requires the stan-
dardized prior distribution of the possible values of gross error. The prior
distribution of the gross error β0 is given by

β0 ∼ N(0,Σβ0) (4.38)

where Σβ0 is a diagonal covariance matrix for the prior gross error distribution.
The prior gross error distribution can be standardized in the same way that Y

66



Filtered Z 
Posterior Distribution

Standardized 
Gross Error 
Prior Distribution

Threshold Z Value

False Negative Region

False Positive Region

Figure 4.7: Visual Representation of Gross Error Hypothesis Test

values were standardized. Firstly, one must take the diagonal matrix Σβ0 and
convert it to a vector of standard deviations σ⃗β0 . Applying Equation (4.39)
standardizes these values into the Z-value space as was done to the residual
errors in Step (2).

σ⃗β0S = Σ
−1/2
r(∞)σ⃗β0 (4.39)

where Σr(∞) is the residual error covariance matrix at steady-state with no
active bias. Σr(∞) is used instead of Σr(t) so that the statistical distance of σ⃗β0

from 0 is conserved for static gross error conditions, preventing state uncer-
tainty from relaxing confidence requirements for gross error detection. Using
the standardized values σβ0S, entries of the C matrix can be calculated accord-

ing to Equations (4.40) to (4.43). The optimal cutoff values ẐO would be the
threshold value, which causes P (Bobs = T |B = F ) = P (Bobs = F |B = T ).
Equivalently, the threshold value would cause the C matrix to be symmetric.

P (Bobs = T |B = F ) = 1 − erf

(
|ẑO|

pz(∞)

√
2

)
(4.40)

P (Bobs = T |B = T ) = 1 − P (Bobs = T |B = F ) (4.41)

P (Bobs = F |B = T ) = erf

(
|ẑO|

σβ0S

√
2

)
(4.42)

P (Bobs = F |B = F ) = 1 − P (Bobs = F |B = T ) (4.43)

where pz(∞) is the the steady-state value of the posterior standard deviation
used in Equations (4.32) and (4.32), obtained using the diagonal matrix PZ(∞)

given by Step (3). Recall that the posterior covariance PZ(t) changes during
the Kalman filter startup period; however, it eventually reaches a steady-state
value. Thus, it is best to calculate the optimal value ẐO using the steady-state
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values of PZ(∞). One should also keep in mind that since there is a hypothesis
test for each instrument, a discrete DBN must be made for each individual
instrument, each with its own C matrix.

4.5.3 C Matrix Based on Adaptive P-Values

While using fixed P-Values can slightly reduce computational demand, using
adaptive P-Values is more rigorous and can significantly increase the informa-
tion that is introduced toward the discrete DBN. The difference in methodol-
ogy is that for every step, a new C matrix is calculated according to Equations
(4.44) to (4.47). Thus, instead of using optimal values of ẐO and steady state

values of pz(∞) for all cases, the posterior filtered values Ẑ and pz(t) are directly
applied for every step.

P (Bobs = T |B = F ) = 1 − erf

(
|ẑ(t)|

pz(t)
√

2

)
(4.44)

P (Bobs = T |B = T ) = 1 − P (Bobs = T |B = F ) (4.45)

P (Bobs = F |B = T ) = erf

(
|ẑ(t)|

σβ0S

√
2

)
(4.46)

P (Bobs = F |B = F ) = 1 − P (Bobs = F |B = T ) (4.47)

In order to determine whether to observe Pobs = T or Pobs = F , one must
calculate the probabilities in Equations (4.44) and (4.46). If the probability
of a false positive (Equation (4.44)) is smaller than that of a false negative
(Equation (4.46)), observing a ‘positive’ is more informative; otherwise, it
is best to observe a ‘negative’. The advantage to this approach is that the
strength of a positive or negative result is adjusted according to the filtered Z
values.

4.6 Tuning Steps (1) and (3)

4.6.1 Tuning Step (3)

While the use of a Kalman filter for the standardized residual errors Z has
been discussed in Step (3), determining a suitable value for the model variance
QZ is not a trivial procedure. There are three parameters that can affect
the resulting Z-value filter: the gross error threshold value (determined by
the minimum detectable gross error βmin), the fractional allowance of false
positives α, and the prior standard deviation of gross errors σ⃗B0. However,
because this method is constrained to have a predetermined threshold value
as the point where P (Bobs = T |B = F ) = P (Bobs = F |B = T ), specifying any
two of these values would define a third. This can be shown mathematically.
The value for α is implicitly specified by the equality constraint in Equation
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(4.48) resulting in explicit specifications in Equations (4.49) and (4.50).

P (Bobs = F |B = T ) = P (Bobs = T |B = F ) (4.48)

α = P (Bobs = T |B = F ) (4.49)

α = P (Bobs = F |B = T ) (4.50)

Let the vector of threshold Z values be defined as

ZSp = Σ
−1/2
r(∞)βmin (4.51)

The probability terms in Equation (4.48) have already been defined by Equa-
tions (4.44) and (4.46); by making the appropriate substitutions,

1 − erf

(
|zSp|

pz(∞)

√
2

)
= erf

(
|zSp|

σβ0S

√
2

)
(4.52)

where zSp is the scalar value of the vector ZSp for any given element. The
specifiers σβ0S and zSp are related to α by using Equations (4.40) and (4.42) to
make appropriate substitutions for P (Bobs = T |B = F ) and P (Bobs = F |B =
T ) into Equations (4.49) and (4.50).

α = 1 − erf

(
|zSp|

pz(∞)

√
2

)
(4.53)

α = erf

(
|zSp|

σβ0S

√
2

)
(4.54)

These equations can be rearranged to solve for zSP

|zSp| =
√

2pz(∞)erf
−1 (1 − α) (4.55)

|zSp| =
√

2σβ0Serf
−1 (α) (4.56)

The desired posterior standard deviations pz(∞) define the desired posterior
covariance PZ(∞) for the end of Step (3). Values of pz(∞) are obtained by
making appropriate substitutions and can be defined in the three following
ways

pz(∞) =
|zSp|

√
2erf−1

(
1 − erf

(
|zSp|

σβ0S

√
2

)) (4.57)

pz(∞) =
zSp√

2 erf−1 (1 − α)
(4.58)

pz(∞) = σβ0S
erf−1 (α)

erf−1 (1 − α)
(4.59)

Equation (4.57) was obtained by solving Equation (4.50) for pz(∞), Equation
(4.58) was obtained by solving Equation (4.55) for pz(∞), and Equation (4.59)
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was obtained by setting Equations (4.55) and (4.56) equal to each other and
solving for pz(∞). Equations (4.57), (4.58) and (4.59) specify the posterior Z
variance PZ(∞), however, the Kalman filter requires that we specify the model
covariance QZ . Because the posterior covariance changes as the Kalman filter
runs through iterations, one cannot choose a single value for QZ that would
yield the design criteria at all times. However, the posterior Z variance does
converge to a steady-state value.

In general, the posterior covariance of the Kalman filter Pt is related to the
prior covariance Pt−1 according to Equation (4.60).

P(t) = (I − (AP(t−1)A
T + Q)CT (C(AP(t−1)A

T + Q)CT + R)−1C)

×(AP(t−1)A
T + Q) (4.60)

where A is the state transition matrix, C is the observation matrix, Q is the
process noise covariance and R is the observation noise covariance. In the Z-
value Kalman filter, A and C are both equal to 1. Furthermore, the observation
noise variance RZ is replaced with RZ = I. At steady-state, P(t) = P(t−1) =
PZ(∞); by making substitutions for the standardized residual model and solving
the equation component-wise. Let pz(∞), qz, and rz represent the square-root
of any given diagonal component of PZ(∞), QZ , and RZ respectively.

p2z(∞) =

(
1 −

pz(∞)2 + q2z
p2z(∞) + q2z + 1

)
(p2z(∞) + q2z) (4.61)

Solving for q2z yields

q2z =
p4z(∞)

1 − p2z(∞)

(4.62)

(4.63)

Note that each element of PZ(∞) must be less than 1; this is the maximum
value of uncertainty PZ(∞) that can be obtained from a random walk model
with RZ = I. This is not a major issue; it simply means that there is a limit
to the posterior estimate uncertainty that the model in Equation (4.27) can
have. If the specifications of α, zSp and σβ0S result in values of PZ(∞) that is
greater than the limit, then these specifications are too lenient to result in a
model that is consistent with Equation (4.27). Specification of QZ can also be
done as a matrix operation.

QZ = (PZ(∞) − I)−1P 2
Z(∞) (4.64)

4.6.2 Tuning Step (1)

Since QZ determines the speed at which gross errors can be detected, it can
also be used to specify the speed at which gross errors are corrected in Step (1).
Recall that we have not yet specified a value for Qβ which is the covariance
for wβ in Equation (4.7). In order to determine Qβ from QZ two facts about
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residual errors must be recalled: when biases are static, (1) residual errors ∆r(t)

have covariance Σr and (2) standardized residual errors Z(t) have covariance
RZ = I. Active gross errors must have a proportional effect on both the
residual error and the standardized residual error.

Σ−1
r(∞)Qβ = (I)−1QZ (4.65)

Because Qβ is a diagonal matrix, a matrix Ψr(∞) containing the diagonal
elements of Σr(∞) must be used. Furthermore, because instruments that are
associated with active gross errors are penalized by kerr, the Qβ used in the
Kalman filter must be multiplied by the same constant. This way, corrupted
instruments will have reduced effect on process state estimates, but will not
have a reduced effect on gross error state estimates.

Qβ = kerrΨr(∞)QZ (4.66)

However, appropriate values of Qβ are often quite small due to the fact that
gross errors are not common. In reality, while average values of Qβ are small,
local values can become quite large during the event of a significant and sud-
den change in gross error. By using information in the filtered standardized
residual errors Ẑ, the parameter Qβ can be varied so that it can quickly track
large and sudden gross errors.

Before a gross error can be identified, the values of Ẑ must be allowed to
diverge. Because the estimates Ẑ track disturbances from wz(t), for squared

values of Ẑ that are significantly larger than the diagonal elements of PZ[i,i],
the local value of Qβ can be approximated as

Q̂β[i,i](t) = kpkerrΨr[i,i](∞)(Ẑ
2
[i](t) − PZ[i,i](t)) (4.67)

where kp is a proportionality constant. The relationship is approximately
proportional due to the fact that it takes a certain amount of time to detect
a major gross error. In the time it takes to detect a gross error, the values of
Ẑ are allowed to diverge, and will do so at a rate that is proportional to the

local value of Q
1/2
β (which is proportional to the gross error magnitude). In

practice, due to the nature of P-values and the DBN in Step (4), when gross

errors are larger than 3Q
1/2
β , increasing the size of the gross errors will have a

marginal effect on the time required to detect the gross error. Nevertheless,
the adjustments for the local values of Qβ tend to be conservative due to the

fact that the values of Ẑ have slightly less time to propagate before gross error
compensation takes place. Adjusting the value of Qβ is only recommendable
when the difference in Equation (4.67) is positive, resulting in the following
heuristic:

If Ẑ2
[i](t) > PZ[i,i](t)

Q̂Z[i,i] = QZ[i,i] + kp(Ẑ
2
[i](t) − PZ[i,i](t)) (4.68)

Otherwise
Q̂Z[i,i] = QZ[i,i] (4.69)
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Table 4.1: Variable Definitions

Symbol Mean S.D. Meaning

x1 1000 300 Real Oil Sand Flow
x2 500 155.2 Real Water Flow
x3 0 120 Real Hopper Level Change

y1 0 200 WENCO Database Value
y2 0 90 First Weightometer Readings
y3 0 130 Hopper Level Readings
y4 0 80 Second Weightometer Readings
y5 0 60 Slurry Flow Meter Readings
y6 0 0.2 Density Meter Readings
y7 0 50 Water Flow Meter Readings

With this adjusted value for QZ , the local estimate Q̂β can be specified

Q̂β = kerrΨr(∞)Q̂Z (4.70)

In practice, kp is a tuning parameter that can be obtained using a given value
for the switching probability in Step (4). Once properly tuned, the time re-
quired to correct a gross error is much less dependent on the gross error mag-
nitude. Furthermore, once gross error estimation process begins, updates in
gross error estimates will reduce the values of Ẑ2

[i], reducing the local estimates

for Q̂β. This allows for more precise estimation of β later on, once the major
corrections have taken place.

Using Equation (4.66) to define Q̂β is sufficient for gross errors that tend to
be small or constant in magnitude. However, for systems with gross errors that

have unpredictable magnitudes exceeding Q
1/2
β , using Equation (4.70) is more

recommendable as it allows for appropriate adjustment in the local values of
Q̂β.

4.7 Simulation of Dynamic System

A hypothetical operating point was considered for this system with means and
variances as shown in Table 4.7.

A simulation of the system was performed by sequential generation of Gaus-
sian random variables n and applying the parameters in Table 4.7 to Equations
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(4.5) and (4.1), resulting in Equations (4.71) to (4.73); this generated values
of ideal process measurements.

wX =

 300 0 0
150 40 0
0 0 120

 n1

n2

n3

 (4.71)

 x1(t+1)

x2(t+1)

x3(t+1)

 = (0.7)I

 x1(t)

x2(t)

x3(t)

+ (0.3)

 1000
500
0

+ wX (4.72)



y1(t)
y2(t)
y3(t)
y4(t)
y5(t)
y6(t)
y7(t)


=



x1(t) + x3(t)

x2(t) + x3(t)

x3(t)

x1(t)
x1(t)

2.1
+

x2(t)

1.0
2.1x1(t)+1.0x2(t)

x1(t)+x2(t)

1.0−1x2


+



200n4

90n5

130n6

80n7

60n8

0.2n9

50n10


(4.73)

After this, a constant bias with a magnitude of -2 standard deviations was
added to instrument Y4 (the second weightometer) at 20 time steps, and a bias
with a magnitude of +2 standard deviations was added to instrument Y6 (the
density meter) at 120 time steps. The gross error detection filter was tuned so
that α = 0.05 at a magnitude of 0.18 standard deviations. Note that specifying
the desired detection level and the false positive allowance α assumes no prior
knowledge of possible gross error values. This approach simply assigns a prior
distribution that has a significance level α for a given magnitude of gross error.

The discrete-valued Bayesian network was tuned according to Equation
(4.35) with P (B(t+1) = T |B(t) = F ) = 10−10 and P (B(t+1) = F |B(t) = T ) =
10−10, which corresponds to a switching probability of 10−10. Small values
were used for the switching probability in order to reduce the number of false
positives. Since no prior assumptions were made about the possible magni-
tudes of the gross errors, adjustable values of Q̂β were used, and kp was tuned
based on simulations with gross errors of 4 standard deviations. This resulted
in kp = 0.05. The simulation results are shown in Figures 4.8 and 4.9.

In general, the algorithm performed quite well despite using a simulation
that was designed to test its limits. There was some trouble when random
errors in Y2 and Y7 tripped the correction alarm; this was most likely due to
imperfect estimates of errors in Y4 and Y6 causing mild corruption in the state
estimates. However, problems in Y2 and Y7 occurred at a time when most
gross errors were accounted for resulting in relatively little corruption in the
reference state estimate; thus, they re-converged to a reasonable value. This is
why fast detection and correction are important to ensure as little as corruption
as possible; as long as state estimates are not significantly corrupted, flagged
instruments will re-converge to their proper values. Problems can still occur
however, if biases are introduced to the system in an unobservable manner;
this simply means that there are too many active bias states to ensure an
uncorrupted state estimate.

False alarm rates can also be reduced by using low switching probabilities
as was used in this simulation (a switching probability of 10−10). Low switching
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Figure 4.8: Gross Error Tracking (instruments 6 and 4)

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1
Bias Probability

Time Steps

P
ro

ba
bi

lit
y

 

 
Y

1

Y
2

Y
3

Y
4

Y
5

Y
6

Y
7

Figure 4.9: Gross Error Probability (instruments 6 and 4)

probabilities also result in a delayed response, as is apparent in Figure 4.8; this
is because it takes a considerable amount of time to obtain enough evidence
of bias to overcome the prior beliefs against switching. Delayed switching is a
consequence of caution against false alarms. However, one must take caution
not to set switching probabilities too low since delayed detection also means
that the state estimate is corrupted for a longer period of time. Allowing
for longer corruption periods can sometimes result in detecting the wrong
gross error if there is not a high degree of instrument redundancy. From
Figure 4.8, one can observe that at this error magnitude, detection occurs
within approximately 30 time steps with no incorrectly identified instruments
shortly after the major corruption occurred. This indicates that these tuning
parameters allowed the algorithm to be resilient to corruption.
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4.8 Preliminary Industrial Application

This technique was also applied to an industrial process. However, because
this was a scheduled industrial process where dynamic model was not known
beforehand, the hidden state model was defined according to Equation (4.6)
instead of Equation(4.71). The corresponding constants were set to the fol-
lowing values: K1 = 1, K2 = 0.1, and K3 = 0.3. The first case was applied
to Train 2, a system wherein the second weightometer Y4 was of primary con-
cern; bias was for Y4 reported to be on the area of 30%. Unfortunately, no
data was found wherein the bias significantly shifted, thus there are many
simultaneous biases in place at the start of this data. This method assumes
that there is no bias at startup; however, in the case of simultaneous biases
at startup, it tends to prioritize the correction of obvious bias before correct-
ing less detectable bias, mitigating contamination from multiple simultaneous
biases. Samples were taken at 10 minute intervals.

Figure 4.10(a) displays results for Train 2, where it appears that Y4 clearly
shows bias even at the 10 minute interval level. There also appears to be minor
problems with the density meter, which is not uncommon (the density meter
was more of concern for Train 3).

This method was also applied to Train 3 where it was reported that the
second weightometer Y4 was also having trouble, but that this bias tended
to propagate as a slow drift. More trouble however, was noticed in the data
where the density meter was well calibrated for when the system was off and
the density was pure water, but not so well calibrated for measuring slurry
density. In order to illustrate weightometer drift, data was taken at much
longer time intervals (4 hour sampling time) and results are shown in Figure
4.10(b).

One would notice from the results in Figure 4.10(b) that the bias estimate
for Y6 is very sensitive toward on/off operating conditions. Corresponding
state estimates were not included so as not to disclose proprietary process
information; nevertheless, it was found that the bias estimate for Y6 tended
to sharply decrease when the system was turned off, but would quickly return
to the previous estimate when the process resumed normal operation. This
indicates that the instrument is well calibrated for when the system is turned
off, but that it is poorly calibrated for when the system is running. These
trends may also suggest that the bias for Y6 is a function in terms of the state
as opposed to an additional constant. Identifying a consistent bias estimate
for this case would require prior knowledge of the bias function of the state
and the use of nonlinear state estimation techniques.

4.9 Conclusions

A methodology for the real-time detection and and quantification of instru-
ment gross error has been developed using dynamic Bayesian methods. Fur-
thermore, a sound methodology has been derived that tunes this procedure
according to two of three possible specifications: (1) desired detection margin,
(2) α which corresponds to desired fraction of instrument noise and gross error
rejection, and (3) the prior gross error distribution.

From simulations it has been shown that the proposed algorithm is able
to detect rapidly-propagating instrument error, and to selectively quantify it
without contaminating error estimate of other instruments. In the industrial
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(a) Gross Error Tracking Train 2
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(b) Gross Error Tracking Train 3

Figure 4.10: (Industrial Application)

case where simultaneous errors are present, it has been shown to give higher
priority to instruments that exhibit major gross errors.
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Chapter 5

Conclusions

5.1 Concluding Remarks

The main contributions of this thesis can be summarized as follows:

• Deriving a method of smoothing out process data contaminated by a
discrete process using the Binomial distribution for the purpose of data
reconciliation

• Combining Bayesian learning (via EM algorithm) with black box FA
initial values in order to estimate variance parameters for a gray box
factor model based on mass balances

• Using Bayesian Learning with known instrument variance to perform
data reconciliation and gross error detection

• Using a Dynamic Bayesian network based on residual error P-values for
gross error detection

• Using a mass balance Kalman filter tuned by Bayesian learning for data
reconciliation

• Conditionally adding gross error states to the mass balance Kalman filter
as augmented states

• Justifying conditional gross error estimation for mass balance Kalman
filter by investigating observability criteria

• Tuning the dynamic method based on common engineering specifications

5.2 Recommendations for future work

Research initiatives on the topic of the current research and the following
related field are worthy of future investigations:

• There has been no theoretical development for tuning the switching pa-
rameters for the discrete DBN. It has been noticed that for any given
switching parameter and size of gross error, there is a value of QZ that
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minimizes detection time. This is because decreasing the values of QZ
increases the resolution of the residual errors, allowing for the evidence
requirements to switch the DBN to be met faster; however, small values
of QZ means it takes more time for the filtered residual errors to reach
a point where the evidence is significant. Being able to determine the
optimal value of QZ for a given error magnitude and switching parame-
ter may give insight to simultaneously tuning the Z-value filter and the
discrete DBN to ensure harmonized results.

• This work has only considered the identification of gross errors; however,
no attempt has been made to distinguish between instrument bias and
process leaks. The use of fault diagnosis techniques to distinguish be-
tween the two types of gross errors may be worth investigating.

• Another more difficult uninvestigated problem would be to use Bayesian
techniques to distinguish state discrepancies that are caused by process
leaks, and discrepancies that are caused by bias instruments serving as
inputs to control systems. This would be more difficult than distinguish-
ing between leaks and single instrument biases, because both events may
affect multiple instruments.
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