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ABSTRACTABSTRACTABSTRACTABSTRACT

This dissertation proposes two internal analyses of market structure that

can be applied to widely available store-level brand sales and price data. The

methodologies, based on either a sales response model (a reduced-form model)

or a discrete choice formulation (a structural model), enable researchers to

identify the latent asymmetric competitive structure within a pre-defined market.

Chapter 2 estimates a market map of competitive brand relationships that

are assumed to jointly underlie cross-price elasticities, own-price elasticities, and

brand-specific intercepts in a sales response (i.e., market demand) model. The

methodology uses an adaptive Bayesian approach to stabilize the estimation of

demand parameters by sharing information across different brands and different

model components in a set of demand equations. Drawing upon recent

psychometric research, I express the asymmetries present in cross-price

elasticities as the difference between what I refer to as brand power parameters,

and I identify relationships between a focal brand’s power parameter, clout,

vulnerability, own-price elasticity, and spatial density. I apply the model

separately for two datasets that consist of weekly sales and prices for beer and

soft drinks.

Chapter 3 proposes a utility-based structural model and shows how the

combination of the aggregate scanner data and forced switching data can help

estimate a market map directly from a utility-based formulation. The utility

function specification accounts for both vertical and horizontal differentiation



across alternatives, and also incorporates consumer heterogeneity. The

specification is modeled to underlie both market outcomes (e.g., unit sales) and

forced switching behavior. Conceptually, the proposed model relates the

concept of asymmetric competition with fundamental parameters present in the

utility function.

The two models developed in this dissertation represent complementary

ways of conducting internal analysis of market structure. Chapter 4 discusses

the relative advantages and disadvantages of each for application in different

contexts. Chapter 1 introduces the topic of market structure analysis and

summarizes antecedent research streams that have addressed this topic.



ACKNOWLEDGEMENTACKNOWLEDGEMENTACKNOWLEDGEMENTACKNOWLEDGEMENT

I would like to thank my supervisors, Dr. Paul Messinger and Dr. Terry Elrod,

for their constant guidance, encouragement, and support during the course of my

study in the PhD program. I would also like to thank Dr. Joffre Swait and Dr.

Yuanfang Lin for their invaluable suggestions and encouragement. Besides, I

sincerely appreciate Professor Andrew Eckert and Professor Alan Montgomery,

who spent much time and effort providing helpful comments and suggestions for

the revision of this dissertation. Finally, I would like to thank my parents, my

sisters and brother-in-law, for their endless love and continuous support during

my work in the PhD years.



TableTableTableTable ofofofof ContentsContentsContentsContents

ChapterChapterChapterChapter TitleTitleTitleTitle PagePagePagePage

1 General Introduction 1

1.1 The Contribution of the Dissertation 1

1.1.1 Definition of Internal Market Structure

Analysis

1

1.1.2 Use of Aggregate Data 3

1.1.3 Prevailing Methods for Deriving

Market Structure From Aggregate

Data

4

1.1.4 The Dissertation’s Contribution 8

1.2 Literature Review 11

1.2.1 The Reduced-form Model 11

1.2.2 The Utility-based Model 20

1.3 Overview of the Dissertation 28

Bibliography 29

2 Essay 1: A Reduced Form Model of

Asymmetric Competitive Structure

37

file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls


Using Aggregate Data

2.1 Introduction 37

2.2 Modeling Framework 43

2.2.1 Decomposing Cross-Price Elasticities 45

2.2.2 Modeling the Symmetric and

Asymmetric Components of Cross-

price Elasticities

51

2.2.3 Modeling Own-price Elasticities and

Brand Intercepts

55

2.2.4 Modeling the Distribution of the

Dependent Variable

61

2.2.5 Summary of Model Components 63

2.3 Model Selection, Identification, and

Estimation

65

2.3.1 Model Selection 66

2.3.2 Model Identification 69

2.3.3 Model Estimation 70

2.4 Applications 75

file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls


2.4.1 Beer Market 75

2.4.2 Soft-drink Market 85

2.5 Conclusions 97

Bibliography 99

3 Essay 2: A Utility-based Model of

Asymmetric Competitive Structure

Analysis Using Aggregate Scanner

Data and Forced Switching Data

108

3.1 Introduction 108

3.2 The Forced Switching Data 112

3.3 Modeling Framework 116

3.3.1 Modeling Scanner Data 116

3.3.2 Modeling Forced Switching Data 122

3.4 Model Identification and Estimation 129

3.4.1 Model Identification 129

3.4.2 Model Estimation 130

3.5 Applications 132

file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls


3.6 Conclusions 139

Bibliography 142

4 General Conclusions 148

4.1 Conclusions of the Dissertation 148

4.1.1 Summary 148

4.1.2 Comparison of Two Models 150

4.1.3 Contributions Revisited 154

4.2 Limitations of Proposed Methods 155

4.3 Directions for Future Research 156

Bibliography 159

Appendix A Variable Definitions for Chapter 2 162

Appendix B Proofs of Propositions in Chapter 2 164

Appendix C Variable Definitions for Chapter 3 166

Appendix D Implied Product Interdependency in

Chapter 3

168

Appendix E Markov Chain Monte Carlo Algorithm

for the Proposed Model in Chapter 3

170

file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls


Appendix F Abbreviates for Brand Names in

Figure 2-4, 3-2, and 3-3

174

Appendix G Simulation Study for Chapter 3 175



ListListListList ofofofof TablesTablesTablesTables

TableTableTableTable TitleTitleTitleTitle PagePagePagePage

Table 2-1 Specification Decisions for the Model

Components

65

Table 2-2 Summary Measures for Beer Data 77

Table 2-3 Parameter Estimates for Beer Data 79

Table 2-4 Other Parameter Estimates for the Beer Data 80

Table 2-5 Summary Measures for Soft Drink Data 86

Table 2-6 Soft Drink Price Correlations 90

Table 2-7 Implied Soft Drink Cross-Price Elasticities 91

Table 2-8 Estimates of Weights for the Soft-drink Data 92

Table 2-9 Clout and Vulnerability 96

Table 3-1 Forced Switching Data 115

Table 3-2 Estimates of Utility Function Parameters from 2D

Model 133

Table 3-3 Implied Soft Drink Cross-Price Elasticities 138

file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls
file:///E:\content.xls


ListListListList ofofofof FiguresFiguresFiguresFigures

FigureFigureFigureFigure TitleTitleTitleTitle PagePagePagePage

Figure 2-1 Modeling Asymmetric Cross-price Elasticities

with a Dominance Brand

54

Figure 2-2 Modeling Own-price Elasticities with a Least

Vulnerable Brand

58

Figure 2-3 Plot of Beer Brand Locations in Model 3 83

Figure 2-4 Two-Dimensional Map for Soft Drinks 93

Figure 3-1 Ideal Point Model for Forced Switching Data 125

Figure 3-2 Two-Dimensional Map for Soft Drinks 135

Figure 3-3 Two-Dimensional Map solely from Forced Switching

Drinks

139



1

ChapterChapterChapterChapter 1111： GeneralGeneralGeneralGeneral IntroductionIntroductionIntroductionIntroduction

1.11.11.11.1 TheTheTheThe ContributionContributionContributionContribution ofofofof thethethethe DissertationDissertationDissertationDissertation

This dissertation describes two unified internal analyses of market

structure for inferring spatial representation of asymmetric brand competition

from aggregate data.

1.1.1.1.1.1.1.1.1.1.1.1. DefinitionDefinitionDefinitionDefinition ofofofof InternalInternalInternalInternal MarketMarketMarketMarket StructureStructureStructureStructureAnalysisAnalysisAnalysisAnalysis

In the academic literature, demand-side market structure analysis1 (Day,

Shocker & Srivastava, 1979) refers to the class of techniques developed so far to

help researchers and marketers understand the nature of competition in a

predefined market (Bucklin & Gupta 1999), through explaining the extent to

which the marketing offerings (e.g., products, services) under consideration are

substitutes (Elrod et al. 2002).2 The problem of identifying market structure helps

practitioners know which of their competitors are most affected by and which will

have a greater influence on their strategic behavior (Ruzo et al. 2006). Therefore,

market structure analysis is pertinent to a large number of marketing decisions

(Day, Shocker & Srivastava 1979) and is particularly “critical to the formulation

of a firm or a retailer’s own competitive strategy and the success or otherwise of

this strategy” (Baker 1985).

Market structure analyses are typically of two types: external and internal

(Carroll 1972). External analysis assumes that consumers’ choices and behaviors

1 Economists understand market structure mostly from the supply side, as in the degree to
which production is dominated by one or a handful of companies. Marketing researchers, on
the other hand, emphasize the demand-side explanation of market structure.
2 Elrod et al. (2002) also emphasize the importance of understanding the complementary
relationship among marketing offerings in market structure analysis. However,
complementary is not a research focus of this dissertation.
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evidencing underlying perceptions of brand substitutability are driven by brand

attributes, and the values of the brands on these attributes are known to

researchers. Examples of this approach that are of particular interest for my

purpose include Pinkse, Slade, and Brett (2002) and Pinkse and Slade (2004),

who assume that the brand-related parameters (e.g., price elasticities) of a demand

model are functions of a vector of distance measures calculated from certain pre-

specified brands attributes. In contrast, with internal analysis of market structure,

consumers’ choices and brand substitutability behaviors are explained by latent

dimensions, where the number of dimensions and the location of the brands on

these dimensions are determined solely by the data. Typically, managerial

judgment is needed to interpret these dimensions in terms of either observed or

unobserved brand attributes. An example of this approach that is quite relevant to

current dissertation is the choice map proposed by Elrod (1988a, 1988b). While

each approach has its own advantages, internal analysis of market structure is well

known for its capability of identifying some important dimensions that

researchers or marketers do not anticipate. For a detailed review and comparison

of external analysis and internal analysis of market structure, see Elrod (1991) and

Elrod et al. (2002).

The current dissertation focuses on internal analysis of market structure.

Such analyses yield market maps that spatially locate brands and subjects’

preferences in multidimensional latent attribute space. In these maps, brands that

are closer in distance to each other are generally assumed to be more similar and,

therefore, exhibit higher extent of competition. The interpretation of subjects’
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preferences for each brand along the brand attributes, on the other hand, is

determined by what spatial model is used, the two primary candidates being an

ideal point formulation (Coombs 1964) and a vector version (Slates 1960; Tucker

1960). With the ideal point formulation, brands that are closer in distance to an

ideal point in any direction within a market map are considered to be more

preferable by subjects; while for the vector version, brands positioned farther out

in the direction of a vector are more preferred by subjects. The underlying

assumption of this latter formulation is “the more the better.” Additionally, the

ideal-point model is more general than the vector model since the latter is

hierarchically nested within the former: as the ideal-point goes to infinity, the two

formulations become equivalent.

1.1.2.1.1.2.1.1.2.1.1.2. UseUseUseUse ofofofofAggregateAggregateAggregateAggregate DataDataDataData

Due to the importance of understanding market structure analysis, the past

two decades have witnessed numerous techniques using panel data or survey data

to facilitate the understanding of the market structure (e.g., choice map, Elrod

1988a, 1988b; Chintagunta 1994, Elrod & Keane 1995, DeSarbo et al. 1998, Park

& DeSarbo 2008).

Despite the rich information these disaggregate data contain and the

insights these techniques can provide us, in recent years, more and more attention

has been paid to aggregate data-based market structure analysis. Researchers are

aware that although marketers may often have the need to understand competitive

structure, the disaggregate data are generally expensive to collect, and are

typically available only for a relatively limited number of product categories,
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store, etc (Chen & Yang 2007). Besides, these data could suffer from the problem

of being “unrepresentative of population” (Bucklin and Gupta, 1999; Gupta and

colleagues, 1996; Bodapati & Gupta, 2004) and may lack time continuity (Nayga

1992). On the other hand, the aggregate data are detailed, timely and accurately

recorded; readily available; indicate what people actually do rather than what they

might do under certain circumstances; collected continuously, rather than at

discrete and perhaps infrequent intervals, and constitute a census of all

transactions rather than a statistical sample, which reduces sampling error

(Feenstra & Shapiro 2003). Hence, the aggregate data constitute a good and

sometimes even better alternative to both consumer panels and survey data. This

circumstance justifies interest in developing analytical tools focused on aggregate

data in managerial decision-making (a detailed review regarding the published use

of aggregate scanner data in various marketing areas can be found in Bucker &

Gupta 1999). Current development in aggregate data-based market structure

analysis, however, comes far from fully exploiting the potentialities of such data.

1.1.3.1.1.3.1.1.3.1.1.3. PrevailingPrevailingPrevailingPrevailing MethodsMethodsMethodsMethods forforforfor DerivingDerivingDerivingDeriving MarketMarketMarketMarket StructureStructureStructureStructure fromfromfromfrom
AggregateAggregateAggregateAggregate DataDataDataData

When aggregate data are used, the market structure analysis can be

generally built upon two models in the existing literature:

1. Reduced-form models. In these models, a system of aggregate demand

equations is estimated, one for each product. Each equation specifies the

demand for a product as a function of its own price, the prices of other

products and other variables (e.g, Allenby 1989; Cooper 1988;

Montgomery & Rossi 1999).
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2. Utility-based models. In these models, the aggregate sales observed in the

market arise from a population of heterogeneous consumers making

discrete choices based on a utility maximization framework (e.g., Berry

1994; Berry, Levinsohn & Pake 1995; Zenor & Srivastava 1993; Kim

1995).

Based on the type of the model used, market competition is typically measured

by either:

1. elasticity patterns, particularly cross-price elasticity patterns, in the sense

that products that compete more with each other tend to have higher

positive cross-price elasticity (e.g., Allenby 1989; Cooper 1988); or

2. covariance matrices of brand preferences, which have a factor structure

(i.e., vector model) with the values of the brands along the factors being

interpreted as brand locations in market maps. (Chintagunta 1999;

Chintagunta, Dube & Singh 2002, 2003).

These two approaches, with a few exceptions (e.g., Kamakura &

Srivastava 1986; Chintagunta, Dube & Singh (2002, 2003)), normally take a

multi-stage analysis of market structure, in the sense that the demand function

parameters are estimated in the first stage, and then post-analysis (using, for

example, a multi-dimensional scaling procedure) of cross-price elasticities or

brand preferences’ covariance matrix are conducted in the second stage to arrive

at a market map. Conceptually appealing as these approaches are, in practice, they

can suffer from the “too many parameters” problem: a system of J product

alternatives gives rise to 2J elasticities in the first approach, and J(J+1)/2
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covariances and variances in the second approach to estimate. When the number

of alternatives, J, grows, both the elasticity matrix and the covariance matrix

become increasingly difficult to identify. This estimation problem becomes

severe when marketing mix variables across alternatives tend to co-vary, a

common phenomenon, unfortunately, in an industry featuring a large number of

products.

A quick review of relevant literature shows that few researchers actually

focus their attention directly on analysis of market structure when aggregate data

are used. A large amount of research effort so far, instead, has been devoted to

estimating valid demand parameters with aggregate data. And I believe part of the

reason for this focus is due to the above mentioned problem and the logic that

without good estimation of demand function parameters, analysis of market

structure using either cross-price elasticities or brand preferences will be biased or

even impossible.

Furthermore, the lack of direct research focus on market structure analysis

gives rise to certain unaddressed research questions that partly motivate the

current dissertation. These questions can be categorized into two types: those

related with what information should be used to derive market maps; and those

regarding what spatial models should be adopted.

The first type of research questions includes two issues: (a) Why are

market maps typically derived only from cross-price elasticities (CPEs)? Intuition

tells us that own-price elasticities (OPEs) and even intercepts also carry important

market structure information. For example, a brand with higher absolute OPE
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should face more substitutes and, therefore, be close to more product alternatives

in a multidimensional attribute space. And (b) shouldn’t market maps to be used

to account for not only the covariance matrix of preferences, but also the mean

preferences of consumers in the market? Although the importance of explaining

the mean preferences of the population in terms of the common attributes has

been explicitly addressed when household level panel data is used (Elrod &

Keane 1995), studies using aggregate data have ignored it (Chintagunta 1999,

2001; Chintagunta, Dube & Singh 2002, 2003). The current dissertation takes a

position that emphasizes the complete account of market structure information in

a demand function. And there are at least two benefits for such an emphasis: (a)

empirically, the information is more completely and efficiently used to generate

market maps; and (b) conceptually, the model can be used to predict all (major)

brand-related parameters, as well as demand or shares for new or repositioned

brands once their positions on the common factors have been specified.

Based on the first type of questions, the second type of research questions

involves at least three different issues: (a) what spatial model formulations should

be used when all important brand-related parameters (intercepts and price

elasticities) are utilized to derive a market map in a reduced-form demand

function? (b) how can we understand and model the asymmetric substitution

pattern? And (c) why are the covariance matrices of brand preferences typically

assumed to have a vector structure? It is well-known that a vector model of

preferences assumes “the more the better,” and, therefore is more suitable for
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describing vertical differentiation.3 While for some attributes involving individual

“tastes” such as sweetness of temperature, which feature horizontal

differentiation4, an ideal-point formulation is more appropriate not only for

purposes of capturing the functional form, but also from the viewpoint of

interpretation (Kamakura & Srivastava 1986). Kamakura & Srivastava (1986)

constitutes the only paper that I am aware of adopting an ideal-point formulation

of preference using aggregate data. However, considering the fact that the two

types of characteristics, horizontal and vertical characteristics, are embodied

actually in most of the products in the market (Anderson, Palma & Thisse 1992,

Chapter 8), it appears that a utility-based model that can embody both vector and

ideal-point formulations would be more desirable.

1.1.4.1.1.4.1.1.4.1.1.4. ThisThisThisThis DissertationDissertationDissertationDissertation’’’’ssss ContributionContributionContributionContribution

As a point of departure from much of past research, this dissertation

focuses attention on internal analysis of market structure with aggregate data, and

tries to address all the above mentioned problems and research questions. The

methods proposed in this dissertation help one to infer a market map directly from

demand relationships, formulated in one of two ways: either as a reduced-form

demand model or in terms of the underlying utility structure. The methods,

therefore, are unified in nature, which is in direct contrast to the traditional multi-

stage analysis. The benefits of this unified approach are at least twofold: (a) the

approach enables more efficient usage of information (e.g., the avoidance of an

3 Vertical differentiation occurs in a market where products can be ordered according to their
objective quality from the highest to the lowest.
4 When products are different according to features that can't be ordered in an objective way, a
horizontal differentiation emerges in the market. (Piana 2003)
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errors-in-variables problem5); and (b) estimation of demand function parameters

is no longer a pre-requisite for conducting a market structure analysis.

Furthermore, the market map generated from each of the proposed methods has

two advantages: (a) it accounts for all (or most) important brand-related

competition information in a demand function; and (b) it explains the asymmetric

nature of competition.

The core of this dissertation involves two essays. The model developed in

the first essay is built upon the traditional sales response model and is elasticity-

based. Drawing upon research in economics, marketing and psychometrics, the

proposed methodology facilitates reliable estimation of the demand function and

at the same time derives a market structure map that (a) accounts for the

competition information embedded not only in cross-price elasticities, but also in

own-price elasticities and intercepts; (b) represents the competitive asymmetry; (c)

reasonably integrates common marketing specifications (e.g., vector and

dominant point formulations) to represent the various demand-model components

(e.g., own-price elasticities, competitive asymmetry feature). Conceptually, I

identify underlying relationships among some important marketing and

psychometric concepts: brand power, vulnerability, clout, and spatial density. The

approach to modeling proposed in this essay is closest to Pinkse, Slade, and Brett

(2002) and Pinkse and Slade (2004). One key difference is that their models

constitute external analysis, and mine is internal analysis of market structure.

5 An Errors-in-variables problem occurs when including exogenous variables known to
contain error. This problem is known to bring biased and inconsistent ordinary least square
estimates (Theil 1971) , and may cause non-concavity of the likelihood function when the
logit model is estimated with maximum likelihood method (McFadden 1974).
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The second essay builds upon a utility-based structural model. By

applying spatial models to preference parameters, I am able to derive market

structure maps directly from market demand data. The method proposed in this

essay is closely related to the choice map by Elrod (1988a, 1988b), to Kamakura

& Srivastava (1986), and also to Chintagunta, Dube & Singh (2002, 2003).

Nevertheless, my model differs from these models in the following dimension：

(a) choice map uses panel data, while mine uses aggregate data, (b) Kamakura &

Srivastava (1986) carry out an external analysis of preferences, while mine is

internal analysis; (c) Chintagunta, Dube & Singh (2002, 2003) use only the

covariance matrix to infer the market map, but mine takes more full account of

competition information in the utility function (wherein market structure is

assumed to underlie parameter means as well as covariances); and (d) all three

models adopt either the vector version or the ideal-point version of brand

preferences, while mine incorporates both spatial formulations in the same utility

function, which enables me to capture not only vertical characteristics but also

horizontal characteristics of a brand. Similar to the method proposed in first essay,

the market map generated is used to represent both types of characteristics.

Compared with other research in the literature, I use a different approach

to enable accurate estimation of heterogeneity parameters. Rather than rely on the

consumer demographic information, I make use of survey data, which takes the

form of forced switching data. I show how a utility formulation can be modeled in

a coherent way to underlie both the market outcome (e.g., unit sales) and the

forced switching behavior. Again, conceptually, the proposed model relates the
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asymmetric substitution pattern with key terms present in the utility function (i.e.,

those products attributes that mainly feature vertical differentiation).

1.2.1.2.1.2.1.2. LiteratureLiteratureLiteratureLiterature ReviewReviewReviewReview

In this section, I will provide a detailed literature review. As I have

discussed in section 1.1.3, few researchers actually take a direct market structure

focus when they estimate a demand function with aggregate data. however, I

believe it is important to discuss their work in detail and emphasize that this

research provides important conceptual and methodological insights to form the

basis for the current dissertation.

To be consistent with the discussion of section 1.1.3, the following

development will take two lines: one is based on a reduced-form model and

another is utility-based.

1.2.1.1.2.1.1.2.1.1.2.1. TheTheTheThe Reduced-formReduced-formReduced-formReduced-formmodelmodelmodelmodel

Marketing literature has witnessed a tradition of estimating a system of

demand equations, where quantity demanded of a product can be modeled as

decreasing in its own price and increasing in the prices of its rivals. A common

specification for this is the constant elasticity form, while alternate specifications

include linear and semi-log functional forms. The estimated cross-price

elasticities in particular give insights into the competitive market structure

through patterns of substitutability among the various brands. Higher positive

cross-price elasticity implies stronger competition between two brands. Since

cross-price elasticities alone do not directly characterize market structure,
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researchers in practice post-analyze these estimates using such tools as factor

analysis (e.g., Cooper 1988) or multidimensional scaling (e.g., Allenby 1989).

Certain limitations, however, arise from this approach:

1. TTTToooooooo manymanymanymany parametersparametersparametersparameters.... This problem can be severe when a market

contains many products (i.e., n is large) because the number of cross

elasticities grows in rough proportion to the square of the number of

products in the market. However, in industries characterized by horizontal

differentiation, the existence of large number of products is a common

feature.

2. UnreliableUnreliableUnreliableUnreliable estimatesestimatesestimatesestimates orororor infeasibilityinfeasibilityinfeasibilityinfeasibility ofofofof estimation.estimation.estimation.estimation. When no restrictions

are placed to the demand function, own- and cross-price elasticity

estimates may be of incorrect signs or of unreasonable magnitudes; e.g.,

positive own-price elasticities or negative cross-price elasticities

(Montgomery and Rossi 1999). When firms systematically adjust the

prices of all products in a product line in parallel or “lock-step,”

unreliability may become extreme and estimation of demand function may

even become infeasible due to severe multicollinearity. Often all prices

are the same within product lines that vary mainly along a horizontal

dimension, such as color, scent, or flavor (Draganska and Jain 2003). This

problem arises most often when using sales data from a single store, but it

can also arise when using sales data from a single chain.

It is important to point out here that for analysis of sales quantities, as in a

typical constant elasticity model, true cross-price elasticities can be
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negative even among substitutes due to category expansion effects

(Russell et al. 2008). This possibility means that the existence of negative

cross-price elasticities does not necessarily indicate unreliability of

estimation.

3. Multi-stageMulti-stageMulti-stageMulti-stage estimationestimationestimationestimation ofofofof MarketMarketMarketMarket Structure.Structure.Structure.Structure. Market structure analysis

based on post analyzing cross-price elasticities is multi-stage, and it gives

rise to several drawbacks. As in all multi-stage estimation approaches,

inefficiency arises because information about estimation error is not

passed from one stage to the next. In addition, this particular multi-stage

approach does nothing to solve the common problem of extreme

instability and even infeasibility of elasticity estimates at the first stage.

Constraints imposed at stage one can also be inconsistent with

assumptions made at stage two about market structure. Further, there is no

theoretical consensus for how to convert a matrix of elasticities into a

matrix of brand distances. Finally, such market structure analysis has been

linked only to cross-price elasticities, and not to own-price elasticities or

demand. As a result, multistage estimation approaches say nothing about

the change of own-price elasticities or intercepts of existing brands arising

from the introduction or deletion of a product from the market. Thus,

while such a multi-stage approach to estimation of market structure has

value in exploratory work, it is not a substitute for a unified model of

market structure.
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4. SymmetricSymmetricSymmetricSymmetric MarketMarketMarketMarket StructureStructureStructureStructure.... Current practice in the marketing

literature that tries to derive spatial representation of market structure from

cross-price elasticities is still preliminary as how to capture the

asymmetric competition between brands. This may lead some researchers

to simply focus on symmetric competition, which, however, may not

match the actual competitive interaction because the directional

competitive effects between any pair of brands are not usually the same

The techniques that have been developed so far for estimating

aggregate models are able to address some, but not all, of the above-

mentioned challenges. In the following sections, I focus, in particular, on

whether the past methods are (a) parsimonious, reliable, and feasible; (b) done

in multiple stages; and (c) able to incorporate explicitly the asymmetric nature

of competition embedded in cross elasticities.

Parsimony,Parsimony,Parsimony,Parsimony, ReliabilityReliabilityReliabilityReliability andandandand FeasibilityFeasibilityFeasibilityFeasibility ofofofof EstimationEstimationEstimationEstimation

As previously discussed, the challenges with these models include (a) is

the explosion in the number of parameters that need to be estimated as the number

of products increases and (b) the poor quality of estimates when data is at a low

level of aggregation such as store level (Montgomery and Rossi 1999). These two

problems are usually addressed together in past work, since the accomplishment

of parsimony can stabilize the variability in the model and improve the reliability

of the estimates. One useful approach to solving these problems is to impose

structural constraints on the pattern of cross-price elasticities exactly. For example,
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Allenby (1989) imposes IIA-style (independence of irrelevant alternatives6)

elasticity restrictions derived from a microeconomic model. This method is not

used in my paper for two reasons. First, it requires a preliminary analysis of

unconstrained cross-price elasticity estimates to identify hypothetical submarkets.

When such estimates are not immediately obtainable, as in one of my applications,

the method is not feasible. Second, my goal is to let the data drive the market

structure pattern across brands as much as possible, so I avoid imposing any a

priori structural constraints.

Another stream of literature, widely used when aggregate data is at the

chain level, involves imposing restrictions through a stochastic prior framework,

in which a Bayesian shrinkage technique is used to “borrow” information across

the units of analysis. Blattberg and George (1991), for example, shrink own-price

elasticities across stores or brands to single points (i.e., zero for instance).

Montgomery (1997) shrinks both own- and cross-price elasticities across stores

toward a regression line. Montgomery and Rossi (1999) use a differential

shrinkage approach, and impose prior information of price elasticities based on

restrictions imposed by additive utility models. Wedel and Zhang (2004), in a

study of cross-category price effects, use a two-component representation to

decompose the variability in price effects. The shrinkage technique is used to

pool data across items and hierarchically account for heterogeneity across stores.

All of the above analyses are done with data involving multiple brands and

multiple stores or chains.

6 The IIA property states that the relative probability of any two alternatives being chosen is
unaltered by the presence or absence of any other alternative from a choice set.
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Since the aggregate data I use in current dissertation comes from a single

store, and the only information I have is the units sales and prices for each brand,

I do not directly use these approaches. However, the methods proposed in this

dissertation do utilize a form of Bayesian shrinkage, more specifically, the

adaptive Bayesian shrinkage technique, to share information across brands, so as

to stabilize the brand-specific estimates. As background, a shrinkage estimator, in

statistics, is an estimator that improves on an estimate by combining it with other

related information. Adaptive Bayesian shrinkage improves on a Bayesian

estimate by combining it with information about other Bayesian estimates, by

supposing that they share a common prior distribution, and the hyper-parameters

of the common prior distribution are jointly determined with the family of related

Bayesian estimates. Adaptive Bayesian shrinkage is in contrast with the use of

separate informative priors for various parameters, which express specific,

definite information about a variable. This is also in contrast with the use of

weakly informative (uninformative) priors for various parameters, which do not

include other information, and which result in minimal shrinkage (information

sharing). Generally, the posterior distributions arising from adaptive Bayesian

shrinkage models tend to move (or shrink) away from the maximum likelihood

estimates towards their common mean. For detailed background regarding

adaptive Bayesian shrinkage, see Efron & Morris (1975), Rossi, Allenby &

McCulloch (2005), and Montgomery and Rossi (1999).

It is worth noting that it is also possible to achieve parsimony and

reliability of estimation by imposing Russell’s (1992) Latent Symmetric Elasticity
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Structure pattern (LSES) on market share price elasticities. The LSES model

includes Allenby’s (1989) approach as a particular case. In particular, in the

LSES model, the market share price elasticities are decomposed into two parts: a

symmetric substitution index revealing the strength of competition between brand

pairs, and a brand specific coefficient which reveals the overall impact of a brand

on its competitors. Parsimony and reliability are then realized either by directly

parameterizing the symmetric substitution index as the distances between brands

(Gonzalez-Benito et al. 2009), or by estimating the symmetric substitution index

using information from brand switching data (Bucklin, Russell & Srinivasan 1998;

Russell, Petersen & Divakar 2008). One advantage of the LSES model is that it

provides some theoretical guidance for how to derive competitive structure from a

matrix of elasticities. It does not require any prior knowledge of the possible

market structure pattern among the brands. I did try to apply the LSES model to

the data in the first essay. However, the model fails to converge for both datasets,

which seems to imply that the assumptions underlying the LSES model are too

restrictive for my data. Besides, the LSES model, like other past research, only

addresses the market structure information in cross-price elasticities, and, hence,

suffers from the problems I have discussed in section 1.1.3.

Multi-stageMulti-stageMulti-stageMulti-stageAnalysisAnalysisAnalysisAnalysis ofofofof ElasticityElasticityElasticityElasticity MatrixMatrixMatrixMatrix

The numerous elements in the elasticity matrix make it difficult to

conceptualize the nature of competition. Therefore, a useful elasticity-based

market structure analysis should be capable of both reliably estimating the

elasticities and inferring the market structure from the complex information
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present in the elasticity matrix. Existing models in the literature have achieved

these two goals mainly in a multi-stage process. Besides, in comparison with the

considerable effort employed in perfecting the estimation stage in the past,

modeling attempts in the analysis stage have been relatively limited.

Kamakura & Russell (1989) and Cooper (1988) introduce two summary

measures of brand competition for elasticity matrices, involving what they called

competitive clout and vulnerability. These two concepts help researchers assess

cross-brand effects in terms of either how a focal brand exerts influence on the

other brands in a market or how a focal brand is influenced by the other brands in

a market. Cooper (1988), utilizing these two concepts, proposes a three-mode

factor analysis technique for structured exploration of elasticities. His approach,

which presumes that elasticities can be feasibly estimated and that such estimates

are reliable, involves a two-stage estimation process. Allenby (1989) does not

rely on the reliability of the estimates to infer market structure. Actually, it is the

identification and testing nature of his approach that helps lead to reliable

estimates. However, again, this approach cannot address the feasibility of

estimation problem, and involves a three-stage estimation process. Gonzalez-

Benito et al. (2009), as discussed before, propose a one-stage estimation method,

but this method cannot address the feasibility issue of estimation either and is

applicable only when market share information is available.

It is noteworthy that none of the above work explores a market structure

map that can account for not only cross-price elasticities, but also own-price

elasticities and intercepts. Pinkse, Slade, and Brett (2002) and Pinkse and Slade
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(2004) are among the few researchers that explicitly relate those brand-related

parameters of a demand function to market structure information featured by

some common product attributes. However, their model involves an external

analysis of market structure, so the choice of attributes induces some level of

subjectivity, and when important attributes are omitted (possibly due to data

limitations), price elasticities derived from the model would be misleading.

AsymmetricAsymmetricAsymmetricAsymmetric PatternPatternPatternPattern inininin ElasticityElasticityElasticityElasticity MatrixMatrixMatrixMatrix

Competitive asymmetry is defined as the phenomenon that the degree to

which brand A may influence brand B does not equal the degree to which brand B

influences brand A (Desarbo, Grewal & Wind 2006). In terms of cross elasticities,

this asymmetric nature of competition implies that the impact of brand j’s price

change on brand i’s demand does not always equal the impact of brand i’s price

change on brand j’s demand. Such inherently asymmetric competitive patterns in

cross-price elasticities are well documented in the marketing literature (e.g.,

Desarbo, Grewal & Wind 2006, Blattberg & Wisnewski 1989). Despite the

existence of much research trying to empirically describe such asymmetric

patterns of competition in cross-price elasticities, a review of the extant literature

reveals only a few modeling attempts to explicitly analyze the asymmetry present

in cross-price elasticity matrices. Cooper (1988) provides an example of how the

asymmetric elasticity matrix can be structured by three-way factor analysis.

Russell’s (1992) LSES model captures the competitive asymmetry by including a

brand specific coefficient that reveals the overall impact of a brand on its

competitors. In contrast with this literature, the current dissertation uses the
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asymmetric multidimensional scaling (MDS)7 method developed in

psychometrics to model and depict the asymmetric substitution pattern across

brands. The benefits of this method are its simplicity and flexibility in terms of

the model form and the visualization of the asymmetries. And the particular

asymmetric MDS method I use provides a simple way to test the existence of

asymmetric effects in the model.

1.2.2.1.2.2.1.2.2.1.2.2. TheTheTheThe Utility-basedUtility-basedUtility-basedUtility-based modelmodelmodelmodel

In the market structure literature, one common approach to estimating

aggregate data that is in direct contrast with the reduced form method is a

structural approach, which is based on optimizing behavior of agents (e.g., utility

maximizing by consumers) (Chintagunta, Erdem, Rossi & Wedel 2006). More

specifically, when such an approach is adopted, a discrete choice model (e.g., a

logit or probit model) is developed at the individual level, a distribution of

consumer preferences over products is assumed, and these preferences are then

aggregated into a market-level demand system (Berry, Levinsohn & Pakes 1995).

The main issue when analyzing aggregate data with this kind of approach

concerns how to explicitly account for the heterogeneity (e.g., in preferences and

price sensitivities) across consumers and endogeneity of marketing mix variables

(i.e., the potential correlation of a brand’s price with other marketing activities not

incorporated in the model) in the utility function. Without controlling for these

issues, estimated model parameters are known to be biased (Villas-Boas & Winer

1999; Allenby & Rossi 1999) and therefore, any derived parameters such as price

7 The asymmetric multidimensional scaling is a method which is specifically designed to
analyze asymmetric relationships among members and display them graphically by plotting
each member in a certain multidimensional space (Saburi & Chino 2008).
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elasticities are biased too. For example, when heterogeneity is not accounted for

in a logit demand model, the IIA assumption applies, and the substitution pattern

between products is driven completely by market shares and not by how similar

the products are. In addition, strong economic implications arise that indicate that

lower priced products tend to have lower (absolute) own-price elasticities, which

implies higher markups in price. This implication, however, depends on the

functional form of how price enters into the utility function (see Nevo 2000 for a

detailed illustration of these problems).

Because of the importance of accounting for heterogeneity and

endogeneity problems in such models, most of the literature focuses its interest on

developing various estimation methods that could address either one or both of

the problems with aggregate date. So far, the proposed methods can be

categorized into three general groups: non-likelihood based estimation methods,

likelihood-based methods and Bayesian estimation methods. Although my

research focus is on internal analysis of preferences, correctly estimating the

utility function is also of interest to my research purpose in this dissertation.

Therefore, the remainder of this section will discuss the literature using these

three categories.

Non-likelihoodNon-likelihoodNon-likelihoodNon-likelihood BasedBasedBasedBased EstimationEstimationEstimationEstimation MethodMethodMethodMethod

The first literature relies on non-likelihood based estimation methods. In

this approach, model parameters are estimated by either minimizing the

discrepancy between observed market share and predicted market share or

equating the two by introducing the unobserved product characteristics into the
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utility function. While the former estimation strategy will yield estimates of the

parameters that determine consumers’ heterogeneity, it does not account for

endogeneity. In contrast, the latter strategy explicitly accounts for both issues.

This latter approach has its roots in Berry (1994) and Berry, Levinsohn & Pakes

(1995, henceforth will be referred to as BLP method), which has received wide

application in both economics and marketing (e.g., Nevo 2000; Nevo 2001;

Chintagunta 1999, 2001; Sudhir 2001).

In particular, the BLP method adds an unobserved brand characteristic in

the traditional utility function, and allows the related parameters to be correlated

with marketing mix variables such as prices, which leads to endogeneity problem.

Since no distribution is assumed on the unobserved brand characteristics, these

characteristics are actually estimated as fixed-effects. With aggregate data,

directly estimating the fixed effects of unobserved product characteristics can be

problematic due to the lack of degrees of freedom (i.e., for J brands and T time

periods (or markets), researchers need to estimate J times T number of fixed

effects). The BLP method (1995) then circumvents the direct estimation of fixed

effects by using a numerical inversion method together with GMM.

Not imposing distribution assumptions for the unobserved product

characteristics, constitutes the strength of the BLP method, since this implies that

it does not impose restrictions on the forms of pricing behavior. Park & Gupta

(2009) point out that the distribution imposed on unobserved product

characteristics may have important implications for pricing behavior.

Two shortcomings, however, are related with the BLP method (interested
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readers can refer to Park & Gupta 2009 for a much more detailed illustration).

First, the BLP method assumes no sampling errors in the observed market shares

of alternatives (in statistics, the sampling error or estimation error is the error

caused by observing a sample instead of the whole population). Randomness in

shares is assumed to come only from unmeasured product characteristics. If the

no-sampling-error assumption is invalid, the BLP is neither consistent nor

asymptotically normal (Berry, Linton & Pakes 2004). This restricts the

application of the BLP method to those applications where the underlying sample

of consumers is very large. Second, the BLP method is unable to recover

heterogeneity parameters precisely when only aggregate data are available

(Albuquerque and Bronnenberg 2006, Petrin 2002). To overcome this problem,

researchers typically combine aggregate data and consumer-level data (e.g.,

Goldberg 1995; Petrin 2002; Albuquerque and Bronnenberg 2005).

Two papers that are of particular interest to my purpose are Chintagunta,

Dube and Singh (2002, 2003), who use mixed logit utility specifications with

normally-distributed random coefficients to estimate heterogeneous demand

systems amenable to internal analysis of market structure with aggregate data.

These papers use particular specifications for the utility functions for the different

brands in a market. The covariance of the various brand-specific intercepts is

decomposed into a matrix of latent attributes for each of the brands in the market

and a vector of latent consumer tastes for these brands. This covariance structure,

assumed to hold for the population of households in the market, is then estimated.

One of these papers also includes covariates associated with particular stores,
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such as neighborhood demographics, as underlying the mean brand-specific

intercept and the mean marginal utility of income. These models differ from my

proposed model in that the latent product attributes in their models are assumed to

underlie only the covariance matrix of brand-specific intercepts (across brands);

whereas in my model, the latent product attributes for different brands are also

assumed to underlie the mean brand-specific intercepts. In addition, their model

essentially adopts a version of a vector model of brand preferences (i.e., a linear

latent structure underlying brand-specific intercepts), whereas while my model

incorporates both vector and ideal-point spatial formulations underlying the

brand-specific intercepts.

LikelihoodLikelihoodLikelihoodLikelihood BasedBasedBasedBased EstimationEstimationEstimationEstimation MethodMethodMethodMethod

The second approach is to specify a likelihood function for the aggregate

data. (e.g., Bodapati & Gupta 2004; Kim 1995; Zenor & Srivastava 1993). This

approach assumes that purchase of every unit of each brand each week is made

independently, and in aggregate, the data follows a multinomial process.

Compared to the BLP method, this approach explicitly takes the sampling error

into account. However, the performance of the aggregate model in recovering the

parameters relies on the validity of the multinomial assumption.

Bodapati & Gupta (2004) actually provide a justification for this

multinomial assumption (page 354): “under the assumption that the sample of

households that makes a trip to the store is small relative to the population of

shoppers, the sampling can be treated as being with replacement. Therefore, the

outcome of each trip is independent of the outcomes of other trips (conditional on
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model parameters), and the aggregate data are multinomial counts.” Kim (1995)

has further pointed out three factors that may violate this assumption. The first

factor is the correlation between the heterogeneity parameters and the unit

purchased. For example, if price-sensitive consumers tend to buy more units, a

demand model assuming multinomial assumption might overestimate the mean of

price sensitivity in the population. Second, the correlation between the

heterogeneity parameters and the purchase frequency also matters. For example, if

a price sensitivity consumer tends to make purchase more frequently, again, the

proposed demand model will overestimate the number of price-sensitive

households existing in the population, which leads to biased estimation for price

coefficients. The third factor is whether or not the households are exposed to

different marketing mix. Furthermore, the multinomial assumption actually

combines two sources of heterogeneity: within-household and between-household

heterogeneity. However, for mature products, within-household heterogeneity

might be limited (Kim 1995).

Further, when likelihood-based estimation strategy is adopted, two types of

heterogeneity structure have been explored in literature: parametric and semi-

parametric. Kim (1995) is an example who assumes continuous heterogeneity

structure and he uses a Maximum Likelihood estimation method. Some other

researchers apply a latent class model to the aggregate data (e.g., Besanko, Dubé,

and Gupta 2003; Draganska and Jain 2002; Seetharaman 2001; Zenor and

Srivastava 1993). For example, Zenor & Srivastava (1993) uncover the

heterogeneity in aggregate data by proposing a latent segment logit approach,
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which implies a semi-parameteric structure of heterogeneity. The Expected

Maximum Likelihood Method is used in the paper. Bodapati & Gupta (2004)

provide theoretical guidance for identifying latent class heterogeneity parameters

from aggregate level data. And they show that under specific assumptions and

when the household-level model is correctly specified, most of a latent-class

segmentation structure is recoverable with only store-level aggregate data,

although sometimes unreasonably large sample sizes are required.

It is worth mentioning that Kamakura & Srivastava (1986) propose an

interesting method that addresses the heterogeneity issue with aggregate data in

quite a different way. In particular, they present a multinomial ideal point probit

model and account for the heterogeneity by assuming a distribution of ideal points.

Their paper is similar to current dissertation, although they focus on external

analysis of preferences, while I focus on internal analysis of preferences. Besides,

my method is more general in the sense that my utility function incorporates and

combines features of both vector and ideal-point models.

Finally, there is research that addresses both endogeneity and heterogeneity

issues, constituting a likelihood-based correspondence to the BLP method, as, for

instance, Park & Gupta (2009). They propose a “simulated maximum likelihood”

method to estimate an aggregate Random Coefficient Logit model that considers

both endogeneity and heterogeneity. This can be seen as a generalization of the

approach from Petrin & Train (2004) and Villas-Boas & Winer (1999).

BayesianBayesianBayesianBayesianAnalysisAnalysisAnalysisAnalysis ofofofof RandomRandomRandomRandom CoefficientCoefficientCoefficientCoefficient LogitLogitLogitLogit (RCL)(RCL)(RCL)(RCL) ModelModelModelModel

It is worth mentioning that in recent years, several studies have performed
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Bayesian analysis of Random Coefficient Logit (RCL) model using aggregate data.

Some of them use a data augmentation idea in which the parameters of “pseudo”

consumers are estimated (i.e., by imposing typically a joint prior on these

parameters and estimating both these parameters and the hyperparameters as if it

were the disaggregate data that we observe) together with the set of parameters

used in inference. Chen & Yang (2007) propose such a model without considering

the endogeneity problem. And they augment the choices of R representative

consumers using a Metropolis-Hasting (MH) step. Musalem, Bradlow and Raju

(2009) propose a Gibbs Sampling alternative to Yang & Chen’s MH method,

which enables them to draw augmented individual choices directly from their full-

conditional posterior distribution. Another important contribution of Musalem et

al. (2009) is that they consider two alternative scenarios that generate the

observed aggregate data – one in which there are independent cross-sections of

consumers in each period (assuming a multinomial distribution of aggregate data)

and one in which there is a panel of consumers. And they show the methods used

for the estimation of the system of independent consumers can be used to estimate

the demand of consumers from the second system. This actually provides further

justification for the multinomial assumption of aggregate data.

Jiang, Manchanda & Rossi (2009) proposed a Bayesian analysis of the

aggregate RCL model based on distributional assumptions about the unmeasured

product characteristics. So their paper considers both the endogeneity and

heterogeneity issues. Similar to the BLP model, this approach assumes no

sampling error, and the model estimation involves inverting shares through the



28

BLP contraction mapping (Park & Gupta 2009).

The method proposed in current dissertation does not use the non-

likelihood based estimation method, since I do not have enough information to

calculate each brand’s market share. I instead use a likelihood-based method and

Bayesian analysis to facilitate the estimation.

1.3.1.3.1.3.1.3. OverviewOverviewOverviewOverview ofofofof thethethethe DissertationDissertationDissertationDissertation

This dissertation is organized as follows. Chapter 2 of the dissertation

develops the reduced-form-based market structure analysis. Chapter 3 illustrates

the utility-based analysis of market structure. In Chapter 4, I provide a brief

conclusion, including a synthesis of the two modeling approaches, a discussion of

the relative strengths and limitations of each, and a discussion of future needed

research.

For both Chapter 2 and Chapter 3, I apply the proposed models to analyze

cross-brand competition in two product categories, one is for beer products, and

the other is for the soft-drink category. While only aggregate scanner data is

available for the beer data, the soft-drink data come from two sources: store-level

scanner data containing weekly sales and price information, and forced switching

data describing consumers’ willingness to substitute from one product to another

when the former brand is assumed to be out of market.
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2.12.12.12.1.... IntroductionIntroductionIntroductionIntroduction

The problem of identifying competitive structure among brands in a

market (i.e., estimating a map of product differentiation) is important for

manufacturers, service providers, and retailers managing many aspects of

marketing strategy (pricing, brand repositioning, etc.). In addition, government

agencies need information about competitive structure in order to apply antitrust

laws concerning mergers and monopolization.

Extant methods in marketing for calibrating competitive structure maps

rely mainly on disaggregated data about consumers’ perceptions, preferences, and

choices (e.g., see Elrod et al. 2002) or on panel data (e.g., Hendry model; see

Butler and Butler 1970, 1971). These forms of data, however, may be unavailable,

costly, and unrepresentative of a market of interest. Scanner data at the store or

chain level, by contrast, are readily available from retailers and provide timely

information about the structure of competition specific to given localities. In this

article, I consider issues that arise when using store-level scanner data to estimate

competitive structure for a product category.

With market-level or store-level scanner data, a common approach to

calibrating market structure involves, first, estimating the parameters of a system

of demand equations that relate quantity demanded for each product to the prices

of the product and its rivals, and, then, post-processing the cross-price elasticity
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estimates to arrive at a structural map using such tools as factor analysis (e.g.,

Cooper 1988) or multidimensional scaling (e.g., Allenby 1989).

A problem with past applications of this approach is that market structure

has been linked only to cross-price elasticities, and not to own-price elasticities or

demand intercepts. By contrast, I think that competitive structure should underlie

all of these demand parameters. Standard marketing intuition, for example,

suggests that desirable brands (i.e., brands with high brand equity) might be

associated with large brand intercepts, low own-price elasticities (in absolute

value), and large cross-price effects on competitors’ quantities.

A second problem with the above approach is that it uses a sequence of

estimation steps (i.e., estimation of demand parameters in a first stage, and

analysis of market structure in a later stage), which gives rise to three

shortcomings: (a) conceptual inconsistency; (b) inefficient estimation; and even (c)

infeasibility of estimation. The first shortcoming pertains to the latter-stage

analysis making assumptions about competitive structure inconsistent with the

first-stage analysis (such as assuming that cross-price effects are symmetric). The

second shortcoming pertains to the estimation error not being passed from the first

model to the second. This estimation error can be substantial when the number of

brands is large which may lead to estimates that are unstable (i.e., high variance)

or unreliable (i.e., incorrect signs or unreasonable magnitudes) (Montgomery and

Rossi 1999). The third shortcoming pertains to the model in the first stage being

inestimable. This can occur when manufacturers change the prices of all their

brands in a product category in parallel, resulting in perfect price colinearity. The
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second data set analyzed in this article illustrates this problem.

The current article addresses these problems by (a) recognizing and

modeling explicitly the connections between the underlying competitive structure

and various brand-specific demand parameters, (b) estimating the demand

parameters and the underlying structural map in one step. My analysis provides

contributions at three levels: conceptual, methodological, and managerial.

Conceptually, the proposed model, built on related concepts in marketing,

economics, and psychometrics, establishes theoretical linkages between a market

structure map and own-price elasticities, cross-price elasticities as well as

intercepts in the demand model. Specifically, I show how the asymmetric feature

of competition contained in cross-price elasticities is related with some brands’

power parameters. And I then develop a proposition that shows the relationship

between my brand power parameter and the marketing concepts of competitive

clout and vulnerability (Cooper 1988; Kamakura and Russell 1989). I also

develop a second proposition that shows the relationship between own-price

elasticity, my brand power parameter, and the psychometric concept of spatial

density.

Methodologically, I derive a market structure map directly from demand

functions by utilizing two techniques – dimension reduction and adaptive

Bayesian shrinkage, which allow the estimation of cross-price elasticities even for

products that have highly collinear prices. Intuitively speaking, when price

histories are highly collinear, the cross-price elasticities are hard to be reliably

estimated since the information contained in the data itself (represented as the
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variation in the independent variables) is too limited. To enable estimation, some

extra information is needed. The techniques proposed here follow this logic by

borrowing information across different demand function parameters (through hard

constraints imposed by dimension-reduction) and across different brands (through

soft constraints imposed by Bayesian shrinkage). The underlying idea is that those

high-dimensional brand-specific demand function parameters (intercepts, price

elasticities) are determined by some common low-dimensional market map. A

product’s position on this map might tell information about the other products’

positions on the same map.

Since asymmetric multidimensional scaling literature is applied here to

help project demand parameters on the market map, the cross-price elasticities

estimated may be influenced by the functional form that I choose. On the other

hand, the extent of the information-sharing across brands’ positions is solely

determined by the data, therefore, the estimates do not rely on any utility theory

assumptions typically used in the literature (e.g., Montgomery & Rossi 1999).

A further methodological contribution is that I engage in model selection

from among common specifications in marketing well-suited to the modeling

purpose, including the vector model, a dominant point model, or a fully saturated

formulation (i.e., a formulation that uses separate parameters for each brand or

each pair of brands).

Managerially, analysts can use the proposed model to examine strategy

scenarios involving changing competitive positioning in order to predict the

impact on demand intercepts, own-price elasticities and cross-elasticities. And
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managers with access to scanner data at the store or chain level can also readily

use the proposed model to track changes over time in asymmetric competitive

structure.

Antecedents.Antecedents.Antecedents.Antecedents. My conceptual contribution builds on the work of Pinkse,

Slade, and Brett (2002) and Pinkse and Slade (2004), who are among the few

researchers that explicitly relate those brand-related parameters of a demand

function to market structure information featured by some common product

attributes. That work, however, requires collecting additional information

describing product-specific characteristics or attributes, and, therefore, is

constrained by the type of information that happens to be available. My approach,

by contrast, estimates latent product attributes and allows prominent features of

the data to emerge, without the influence of data-availability constraints.

My methodological approach of using adaptive Bayesian shrinkage to

obtain and stabilize brand estimates utilizes insights gained from prior research in

which Bayesian techniques are used to enable the estimation of parameters in the

presence of severe multicolinearity, such as with ridge regression (Hoerl and

Kennard 1970; Kubokawa and Srivastava 2004; Srivastava and Kubokawa 2005).

I also build on the use of Bayesian techniques in marketing to improve the quality

of demand parameters estimates (e.g., Blattberg and George 1991, Montgomery

1997, Wedel and Zhang 2004). My application of Bayesian analysis, in particular,

emphasizes its adaptive shrinkage nature in the sense that usage of informative

priors is avoided by estimating the parameters of these prior distributions and

using uninformative priors for the hyper-parameters that characterize these prior
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distributions. In this way, the degree of shrinkage employed by the model is

determined by the data in a fully Bayesian multi-level model. No shrinkage is a

feasible limiting case of this model due to the use of uninformative priors for the

hyper-parameters. My approach builds on the “adaptive shrinkage” idea originally

proposed by Efron & Morris (1975), and given detailed explanation by Rossi,

Allenby & McCulloch (2005) and also Montgomery and Rossi (1999). Later in

the essay, I will give a more thorough illustration about how the adaptive

Bayesian shrinkage approach is implemented in my model and how my

implementation differs from this previous literature.

My methodological approach of modeling cross-price elasticities and own-

price elasticities adapts ideas from the psychometric asymmetric similarity

literature (e.g., Young 1975; Chino 1978, 1990; Holman 1979; Weeks and Bentler

1982; Okada & Imaizumi 2007; Chino 2008). My modeling of price elasticities in

this way departs from Gonzalez-Benito et al. (2009), which constitutes the only

paper in marketing of which I are aware that also estimates a latent market

structure model directly from reduced-form based demand functions. 8 That paper

builds upon Russell’s (1992) Latent Symmetric Elasticity Structure pattern (LSES)

model, but, unlike my approach, the estimated competitive structure map only

underlies the cross-price elasticities (there is no information-sharing across brands

or across other parameters of the demand model).

8 I notice there exists another stream of research, which are built upon utility-based demand
function and also enable the direct derivation of a market map (Chintagunta, Dube, Singh
(2002, 2003), Kamakura & Srivastava 1986). However, I focus my attention in this chapter
solely on the reduced-form demand model, and leave any discussion regarding the utility-
based demand model to Chapter 3. Besides, comparison of these two types of demand model
will be provided in detail in Chapter 4.
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The rest of this essay is organized as follows. Section 2.2 introduces my

modeling framework and the various equation specifications that implement my

framework. Section 2.3 describes my approach to model selection, identification,

and estimation. Section 2.4 applies my modeling approach separately to two

different datasets both describing weekly grocery sales and prices: one dataset

describes beer sales in a test market in the U.S.; and the second dataset describes

soft drink sales in a supermarket in St. Louis. Section 2.5 concludes with a

summary of limitations of my approach and directions for future research.

2.2.2.2. 2222 ModelingModelingModelingModeling FrameworkFrameworkFrameworkFramework

My approach uses several demand model components to situate brands in

a multidimensional space. In particular, I assume that latent brand locations

underlie (a) the symmetric structure of cross-price elasticities (CPEs), (b)

asymmetric dominance relationships embedded within CPEs, (c) own-price

elasticities (OPEs), and (d) brand intercepts.

I consider a set of constant-elasticity demand equations9

0log( ( ) log( ) log) ( ) ( )i ii it ij ji t it
j i

tE q p p f CVα α β β
≠

= + + + +∑ , (2-1)

where , 1,...,i j n= ; 1,...,t T= ; n is the number of brands; T is the number of time

periods covered in the data; )( itE q is the expected unit sales for brand i at time t.

Expected unit sales is used here since the data used later constains zero quantity

demand. ijβ , i j≠ , are cross-price elasticities; iiβ are own-price elasticities; iα

9 The constant elasticity assumption can be a restrictive since structure is always the same for
price and income. I will consider trying other demand function forms to relax this assumption
in the future.
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are brand intercepts (mean-centered around 0α ); and itCV are covariates, possibly

time-dependent. I observe that in many standard econometric models, Equation

(2-1) takes a form where itq appears on the left-hand side in place of )( itE q and

an additive error term is included on the right hand side. I mean-centered log

prices across brands and time in my model; and, as a result, iα describes the log

sales differences across brands when all prices are set equal to the mean price in

the dataset (so iα can be interpreted as a measure of the attractiveness of brand i)

10.

My basic idea is as follows. I suppose that the parameters ijβ , iiβ , and iα

are functions of latent coordinates of the associated brands, where the coordinates

are described by 1M × vectors iθθθθ , for each brand 1,...,i n= . In particular, I

assume that the key parameters in (2-1) are described by the general relationships

( , )ij i jgβ = θ θθ θθ θθ θ , ( )ii iβ β= θθθθ , and ( )i iα α= θθθθ , (2-2)

where i j≠ . That is, the cross-price elasticity between brands i and j is described

by the relationship between the product locations iθθθθ and jθθθθ ; and the own-price

elasticity and brand-specific intercept for brand i are also influenced by the

product location iθθθθ . In this way, underlying structural information present in the

data may inform the estimation of multiple model components. As discussed in

the introduction, this is in the spirit of past work in marketing, which either post-

processed elasticity estimates (e.g., Allenby 1989) or which involved one-step

10 It is worth noting that when )( itCVf is also brand-dependent, appropriate mean-centering
may be necessary to maintain the interpretation of the intercepts.
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analysis of cross-price elasticities only (Gonzalez-Benito et al. 2009). This is also

in the spirit of work in economics by Pinske and Slade (2004), who assume that

relationships similar to g , β , and α are functions of measured product

characteristics. My point of departure is that g , β , and α are functions of latent

structural parameters, iθθθθ , 1, ,i n= … . Arriving at such latent structure is more

challenging, from an estimation perspective, than assuming that the structure is a

function of measured product characteristics. In principle, one could think of the

relationships ( )ii iβ β= θθθθ and ( )i iα α= θθθθ as reflective of brand equity (Aaker 1991,

1996 and Keller 1993) and ( , )ij i jgβ = θ θθ θθ θθ θ as reflective of brand substitutability

relationships.

In practice, the functions in (2-2) must be determined. This involves

selecting suitable specifications for g , β and α and, then, estimating these

specifications with the data. The following development outlines alternative

specifications suggested by the literature. (As a backdrop to this development,

Appendix 1 summarizes the notation of this paper.)

2222....2222....1111 DecomposingDecomposingDecomposingDecomposing Cross-PriceCross-PriceCross-PriceCross-Price ElasticitiesElasticitiesElasticitiesElasticities

In economics, the higher the cross-price elasticity between two brands,

assuming they are substitutes in the first place, the more substitutable they are for

each other. This constitutes my rationale for modeling ijβ as a function of the

proximity of the two brand locations iθθθθ and jθθθθ when I select a specification for

( , )ij i jgβ = θ θθ θθ θθ θ .
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Because ijβ is not necessarily equal to jiβ , it is desirable for an elasticity-

based market structure analysis to be able to explicitly capture asymmetries.

Indeed, competitive asymmetries in CPEs are well documented (DeSarbo, Grewal

and Wind 2006), and asymmetric patterns are shown to exist between high-share

vs. low-share brands (Sethuraman and Srinivasan 2002), high-quality vs. low-

quality brands (Blattberg and Wisniewski 1989), national vs. store brands

(Kamakura and Russell 1989), and high-priced brands vs. low-priced brands. To

model such asymmetries, Cooper (1988) describes how an asymmetric elasticity

matrix can be structured by three-way factor analysis. Similarly, Russell’s (1992)

LSES model and its applications (e.g., Gonzalez-Benito et al. 2009) capture

competitive asymmetry by including brand specific coefficients that reveal the

overall impact of a brand on its competitors. Innovative as they are, these two

approaches appear somewhat cumbersome to use directly as the basis for my

specification for ( , )ij i jgβ = θ θθ θθ θθ θ . Russell’s (1992) LSES model, for example,

requires CPEs to be market-share based, and, my starting point is instead the

standard econometric specification (2-1) for CPEs. And rather than build my

model around factor analysis (as Cooper 1988 does), I find it more convenient to

work in a multidimensional scaling context following the psychometric

asymmetric similarity literature.

I follow a long history of consideration of systematic asymmetries in

proximity data11 (e.g., Young 1975; Chino 1978,1990; Saburi & Chino 2008), all

11 Proximity data is defined in Shepard (1972) as a rectangular matrix whose cells contain
measures of similarity between the row and column objects. Often the row and column
objects are the same.
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of which departs from traditional distance-based models of similarity (e.g.,

Shepard 1962a, 1962b; Tversky 1977). Several researchers in psychometrics have

proposed what is called the skew-symmetry model, which decomposes matrices of

(dis)similarity judgments among a set of objects into symmetric and asymmetric

components, and represents the latter parsimoniously by as few as one dimension

(e.g., see Weeks and Bentler 1982; Saito 1986; Saito and Takeda 1990; Satio 1991,

Okada and Imaizumi 1987). Some approaches go a step further in parsimony by

representing symmetric and asymmetric components in the same spatial

configuration. Examples include the slide-vector model (Zielman and Heiser

1993), multidimensional unfolding models (DeSarbo and Grewal 2007), the hill-

climbing model (Borg and Groenen 2005), and multidimensional scaling with a

dominance point (Okada and Imaizumi 2007). I will use this last approach below.

Yet another approach includes the additive similarity-bias model (see Holman

1979, Nosofsky 1991, Carroll 1976, and also Krumhansl 1978).

In particular, following the skew-symmetric approach, I write the matrix

of cross-price elasticities ,  ij i jβ ≠ , together with zero diagonal entries, as BBBB (i.e.,

the Greek letter capital beta). This constitutes an asymmetric proximity matrix. I

decompose this asymmetric matrix BBBB into symmetric and skew-symmetric

components, ( ') / 2= +B B BB B BB B BB B B  ( ') / 2+ − ≡ +Β Β S AΒ Β S AΒ Β S AΒ Β S A , which can be rewritten in

scalar notation as12

12 There might exist other ways to decompose the cross-price elasticities, for example, the
LSES structure proposed by Russell (1992), or SVD decomposition. The skew-symmetric
structure is used here since it is less restrictive compared to LSES model, and more tractable
than the SVD decomposition.
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ij ij ijs aβ = + , (2-3)

where ( ) / 2ij ij jis β β= + has the property of symmetry ( ij jis s= ) and

( ) / 2ij ij jia β β= − has the skew-symmetric property, ij jia a= − for all i j≠ . Note

that ijs describes the average level of competition between brands i and j, and ija

describes the dominance relationship between brands i and j. That is, when 0ija > ,

I have ij jiβ β> , and I can interpret brand j as being more dominant than brand i. 13

I assume that the symmetric similarity measure ijs is a decreasing linear

function of an underlying distance metric,

,   ij CPE ijs d i jφ= − ≠ , (2-4a)

where CPEφ is a constant and ijd is a traditional (symmetric) inter-point distance

between brands i and j.

Next, consistent with the common practice for the skew-symmetry model,

I model ija with a one-dimensional linear form

ij i ja x x= − + , (2-4b)

for all i and j, where ix and jx are coordinates of objects i and j on this one

dimension.

I combine (2-4a) and (2-4b) with (2-3) to yield

13 Here, I use the term “dominant relationship” to describe the dominance data, which in
current context can be represented by the skew-symmetric component of cross-price
elasticities. Consistent with the multidimensional literature, or in particular, Shepard’s (1972)
taxonomy of multivariate data used to derive spatial representations of structure, the
dominance data describe a square matrix whose rows and columns represent the same set of
alternatives, with each cell entries measure the extent to which the row alternative is preferred
to, is chosen over, defeats, or otherwise dominates the column object (MCGrath 1985).
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ij CPE ij i jd x xβ φ= − − + . (2-4)

Equation (2-4) constitutes my basic formulation for CPEs.

Prior to considering ways of modeling ijd and ix , I interpret this formulation. I

observe that i jx x> implies ij jiβ β< , so the price of brand j has less of an

influence on quantity demanded of brand i than the price of brand i has on the

quantity demanded of brand j. This fact allows us to interpret ix as the relative

dominance, or power, of brand i. I refer to ix as the brand power parameter of

product i.

My brand power parameter constitutes a one-dimensional measure that

accounts for the asymmetry in cross-price elasticities. If the impact of price

changes for brand i on the quantities demanded of other brands is consistently

higher than the impact of price changes of these other brands on the quantity

demanded of brand i, then the brand power parameter, ix , will be large. My

definition of brand power is in contrast to two other definitions of brand power.

(1) Na et al. (1999) measure “brand power image” as the weighted average of

measured brand attributes, benefits, or values. Although my brand power

parameter is not directly related to measured brand attributes, I will later show

that ix is modeled to be connected to a brand’s location on a market structure map

featured by some latent product characteristics. (2) Steenkamp and Dekimpe

(1997) operationalize power (of store vs. national brands) along two dimensions:

“intrinsic loyalty” (to a brand) is defined to be a brand’s ability to keep its current

customers; and “conquesting power” is “the proportion of the market's non-loyal
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customers that one is able to attract in a given time period.” It is worth noticing

that their dimensions, “intrinsic loyalty” and “conquesting power”, are closely

related to the familiar marketing concepts of competitive vulnerability and clout

(Cooper 1988; Kamakura and Russell 1989). And this coincides with my

proposition 1, as discussed below. Specifically, in the following proposition, clout

describes the extent to which a focal brand i exerts influence on all other brands;

and I define i ji
j i

Clout β
≠

= ∑ . Vulnerability describes the extent to which all other

brands collectively exert an influence on a focal brand; and I define

i ij
j i

Vul β
≠

= ∑ .14 I can now show the following intuitive relationships between ix

(power of brand i), ijβ (cross-price elasticity between brands i and j), iClout , and

iVul :

PropositionPropositionPropositionProposition 1.1.1.1. Equation (2-4) implies the following relationships:

(a) i jx x> implies ij jiβ β< for all i j≠ .

(b)
2
i i

i
Clout Vulx

n
−

= , if 0i
i
x =∑ .15 Here n is the total number of brands.

14 These definitions differ from Kamakura and Russell (1989), who define 2
i ji

j i
Clout β

≠

= ∑ and

2 i ij
j i

Vul β
≠

= ∑ , and from Cooper (1988), who defines 2 2 2 2,  i ji ii i ij ii
j i j i

Clout Vulβ β β β
≠ ≠

= + = +∑ ∑ .

Compared with their definitions, I believe mine are more suitable for quantity-based price
elasticities, which are not necessarily to be positive due to the category expansion effects
(Cooper 2002). Taking the squared value of cross-price elasticities when estimating clout and
vulnerability would mask this negative effect.
15 I can also relate the brand power parameter, xi, to an early model called the additive
similarity-bias model (Holman 1979; Nosofsky 1991), also known as a hybrid model (Carroll
1976). This model assumes that a proximity measure ijδ between two objects i and j is some
increasing function (often assumed linear, for simplicity) of a symmetric similarity measure,
ijs ; a row bias function, ir ; and a column bias function, jc : ijij i js r cδ = + + . The
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Proof. See Appendix B.

Discussion. Statement (a) allows us to interpret ix as a measure of brand power

of product i, as I noted earlier. Statement (b) indicates that higher clout and lower

vulnerability imply higher brand power, ix , as might be expected. Thus, my

proposed power parameter captures asymmetric pricing effects and links these

with the concepts of clout and vulnerability.

2.2.2.2.2222....2222 ModelingModelingModelingModeling thethethethe SymmetricSymmetricSymmetricSymmetric andandandandAsymmetricAsymmetricAsymmetricAsymmetric ComponentsComponentsComponentsComponents ofofofof Cross-Cross-Cross-Cross-

PricePricePricePrice ElasticitiesElasticitiesElasticitiesElasticities

I now consider modeling specifications for the symmetric and asymmetric

components, ijd and ix . Since the asymmetric component is relatively new to

marketing and economics, I devote more attention to this.

SymmetricSymmetricSymmetricSymmetric Component.Component.Component.Component. Note that the smaller the inter-brand distance,

ijd , the greater the cross-price elasticity, which constitutes greater substitutability

between these brands. In particular, following the traditional multidimensional

scaling (MDS) model (Shepard 1962a, 1962b), I assume that ijd is the Euclidean

distance (in an M-dimensional metric space) between brands i and j:

2
1
( )M

immij jmd θ θ
=

−= ∑ , (2-5)

where imθ describes the coordinate of brand i on dimension m.

Skew-SymmetricSkew-SymmetricSkew-SymmetricSkew-Symmetric Component.Component.Component.Component. I identify three ways of modeling the

justification for this form is that the row and column biases reflect distinguishing properties
of individual items. For such a model, I can show a third relationship: (c) xi = (ci – ri)/2, if

0i
i
x =∑ .
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brand power term, ix .

1. Estimate separate parameters, ix , for each i.

2. Express ix in terms of the brand locations imθ using a form of

dominance (ideal) point model:

2
11 ( )M

im mmi yx θω
=

−= − ∑ . (2-6)

3. Express ix in terms of the brand locations imθ using a vector model:

1
1

M

i m im
m

x υ θ
=

= ⋅∑ . (2-6’)

In specifications 2 and 3, 1 0ω ≥ , and my and 1mυ , 1,...,m M= , are all constants

to be estimated.

Operationally, when the number of brands in the market is small, it may be

feasible to estimate separate parameters, ix , for each i. Since the same basic

relationships among the brands are invariant with respect to an additive constant

added to ix ; for all i, without loss of generality, I set 0i
i
x =∑ as an identification

restriction for the first formulation. Note that if the number of brands is large, this

approach of estimating separate parameters, ix , for each i, may be undesirable.

The formulation in (2-6) above is a modified adaptation of Okada and

Imaizumi’s (2007) model of MDS with a dominance point. Here, the hypothetical

point of greatest dominance 1( ,... )MY y y= is situated in the same space as the

symmetric components, and the dominance parameters are structured in relation

to each brand’s distance to this point, Y . Since 1ω is restricted to be nonnegative,
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the closer a brand is to Y , the stronger the brand’s power. Furthermore, I can

interpret 1ω as the asymmetry weight because this represents the salience of the

asymmetric model component in describing the cross-price elasticity relationships.

When 1ω equals zero in the dominance point model, there is no asymmetry present

in the structure of cross-price elasticities.

It is worthwhile comparing (2-6) with the formulation used in Saburi &

Chino (2008). The latter adopts the model of Okada & Imaizumi (1987) to

represent the asymmetric proximity data, which models the skew-symmetric part

of this data matrix using a one-dimensional construct (a treatment similar to (2-

4b)), and interprets each object’s coordinates on this one-dimensional construct as

the radius of the circle attached to this object. An object with larger radius is

considered as more proximate to an object with smaller radius and vice versa. I do

not use this “radius” interpretation of skew-symmetric component for the

following reasons: (a) this “radius” interpretation is less parsimonious than the

formulation in (2-6). While the latter requires estimating only one more set of

locations (of the dominant point), which adds M (the number of dimensions)

parameters, the former involves estimating n independent radiuses for n

alternatives. As in a typical MDS method, M is usually much smaller than n. (b)

A test of the asymmetry is more straightforward and simpler in (2-6) than with the

radius interpretation. With (2-6), the significance of 1ω directly indicates the

salience of asymmetry effect, while in Saburi & Chino (2008), various

independent tests of asymmetry need to be developed.

I graph the assumed structure for the dominance point model, when M = 2,
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in Figure 2-1. Here, the smaller the distance 1/ix ω− , the larger xi, and the more

dominant is brand i.

Lastly, the vector model formulation (2-6’) describes an increasing

progression of magnitude of the dominance parameters ix , along the direction of

the estimated gradient vector 11 1( , , )Mυ υ… . Note that when 11 1( , , ) 0Mυ υ =… in the

vector model, there is no asymmetry present in the structure of the cross-price

elasticities. Also note that the vector model can be shown to be a limiting case of

the dominance-point model as the distance of the dominance point Y from the

origin approaches infinity.

FigureFigureFigureFigure 2-2-2-2-1111 ModelingModelingModelingModelingAsymmetricAsymmetricAsymmetricAsymmetric CPEsCPEsCPEsCPEs withwithwithwith aaaa DominanceDominanceDominanceDominance BrandBrandBrandBrand
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2θ

Brand i ( 1 2,i iθ θ )

Dominance brand Y ( 1 2,y y )
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1

ix
ω

−

1

jx
ω

−

Brand j ( 1 2,j jθ θ )
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2.2.2.2.2222....3333 ModelingModelingModelingModeling OwnOwnOwnOwn----PricePricePricePrice ElasticitiesElasticitiesElasticitiesElasticities andandandand BrandBrandBrandBrand InterceptsInterceptsInterceptsIntercepts

I now specify formulations for the other model components ( )ii iβ β= θθθθ

and ( )i iα α= θθθθ .

Own-PriceOwn-PriceOwn-PriceOwn-Price Elasticities.Elasticities.Elasticities.Elasticities. I note three ways to model own price elasticities:

1. Estimate separate parameters, iiβ , for each 1, ,i n= … .

2. Express iiβ in terms of the brand locations imθ using a form of ideal

(dominance) point model:

2
2 2

1
( ) , 0

M

ii OPE im m
m

zβ φ ω θ ω
=

− = + − >∑ . (2-7)

3. Express iiβ in terms of the brand locations imθ using a form of vector

model:

2
1

M

OPE m im
m

ii υβ φ θ
=

− = + ⋅∑ . (2-7’)

In specifications 2 and 3 above, 2ω is a constant constrained to be positive,

and OPEφ and 2 ,  1,...m m Mυ = are constants without sign constraints. All these

constants are to be estimated.

When the number of brands in the market is small, it may be simple

enough to estimate separate parameters, iiβ , for each i=1,…,n. The shortcoming

of this method, however, is that OPEs do not contribute to the estimation of the

market map as reflected in (2-5), therefore, cannot be explained by the derived

market map either. This undermines the usefulness of the market structure model

for making predictions for repositioned, new, or deleted brands because the effects
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of such changes on own price elasticities and therefore on demand cannot be

predicted.

Embedding the OPEs in competitive map solves this problem. Equations

(2-7) and (2-7’) achieve this by expressing own-price elasticities in terms of the

brand locations imθ . In particular, the formulation in (2-7) describes the magnitude

(i.e., absolute value16) of brand i’s own-price elasticity as a linearly increasing

function of the squared distance between the brand and the hypothetical brand on

the map located at 1( ,... )MZ z z= . The closer the brand to the hypothetical brand

1( ,... )MZ z z= , the smaller the OPE is in absolute value. By contrast, the vector

model describes an increasing progression of magnitude of the OPEs, iiβ , along

the direction of the estimated gradient vector 21 2( , , )Mυ υ… .

In order to interpret these formulations, I derive the following

relationships.

PropositionPropositionPropositionProposition 2.2.2.2. Assuming utility-maximizing consumers under a linear budget

constraint and writing the income elasticity of brand i as ig , I have

(a) ( )  ii ij i i i
j i

g Vul gβ β
≠

− = + = +∑ ; and (2-8)

(b) ( 1)ii i iiDenn nx gsityβ− = − − + , if 0i
i
x =∑ ; (2-9)

where iDensity ≡ ( / ( 1))CPE ijj i
d nφ

≠
− −∑ .

Proof. See Appendix B. [Note (a) arises from utility maximizing behavior under a

16 Since own-price elasticity should be negative, the negative of OPE equals its
absolute value.
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linear budget constraint; and (b) arises from (2-4).]

Discussion. I can make several observations from Proposition 2.

First, when the income effect ig is small, the OPE equals minus the

vulnerability of brand i, as an approximation.

Second, when OPEs are represented according to the ideal (dominance)

point formulation of (2-7) and income effects for the product category under study

are small (or similar across brands)17, the hypothetical brand 1( ,... )MZ z z= can be

interpreted as the least vulnerable brand on the map.

Third, according to Proposition 2 (b), when the income effect ig is small,

a brand’s own-price elasticity may be viewed as depending on at least two factors:

(i) its distinctiveness from all the other brands in the market, as indicated by a

spatial density measure, iDensity ≡ ( / ( 1))CPE ijj i
d nφ

≠
− −∑ ; and (ii) its

dominance parameter, ix . Thus, Proposition 2 (b) indicates that the lower the

spatial density around a product i, ceteris paribus, the less price sensitive the

product will be (- iiβ low in magnitude). Intuitively, a product that is relatively

unique will be less price elastic. Furthermore, the higher a product i’s power

relative to all other products, ceteris paribus, the less price sensitive the product

will be (i.e., the product will face inelastic demand.). Thus, a powerful product

will be less price elastic. I illustrate this idea of spatial density in Figure 2-2, in

which seven brands are shown, denoted by A, B, C…, G . Holding all the other

17 When the income effects are zero, the Slutsky equation together with the symmetry of
substitution terms for Hicksian demand (Varian 1992, pp. 120 and 123) implies symmetric
cross-price effects, i.e., i j j iq p q p∂ ∂ = ∂ ∂ . This suggests further constraints that could be
included in the model, which I do not impose in order to avoid loss of generality.
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factors constant, brand G should have the smallest absolute own-price elasticity

and the hypothetical brand Z (interpreted as having the “least vulnerable” possible

brand location) should be located in a sparse space, likely near brand G (or further

out southwest in the third quadrant). Furthermore, any two brands that are very

similar to each other should have similar own-price elasticities because brands

similar to each other should also have similar distinctiveness relative to other

brands.

Overall, my Propositions 1 and 2 enable us to establish the linkage

between cross-price asymmetries, clout, vulnerability, own-price elasticity, and

spatial density.

Note that my measure of spatial density (or distinctiveness) is similar to

that of Krumhansl’s (1978) distance-density model, in which an object’s

distinctiveness is related to the spatial density in a region surrounding it in the

multidimensional configuration, and this spatial density is measured by the sum of

FigureFigureFigureFigure 2222-2-2-2-2 ModelingModelingModelingModeling OPEsOPEsOPEsOPEs withwithwithwith aaaa LeastLeastLeastLeast VulnerableVulnerableVulnerableVulnerable BrandBrandBrandBrand
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a monotonically decreasing function of the distances of all other objects to the

focal object. In this context, the denser this region, the more difficult it is for an

object to distinguish itself.

It is worth noting further that the spatial density explanation of own-price

elasticity has also been alluded to in the economics and marketing literatures.

Pinkse and Slade (2004) allow a brand’s OPE to depend on the number of

neighbors that the brand has in an exogenously determined product-characteristic

space. In a related development, Bronnenberg and Vanhonacker (1996) examine

the implications of a consumer only responding to price variation of brands in the

consumer’s choice set (which they call local price response). They show that the

fewer the number of other brands appearing with a focal brand in a consumer’s

choice set, the lower the focal brand’s vulnerability (and OPE). They also argue

that the more frequently a focal brand appears with other brands in consumers’

choice sets, the higher the focal brand’s clout.

BrandBrandBrandBrand Intercepts.Intercepts.Intercepts.Intercepts. I next express the intercepts iα in (2-1) in terms of the

brand location parameters, ,  1,...,im m Mθ = . In particular, I suggest two ways of

modeling iα :

1. Estimate separate parameters, iα , for each 1, ,i n= … .

2. Express iα in terms of the brand locations 1iθ on the first dimension in

(2-4):

0 1 0, 0ii θα ω ω= ⋅ ≠ , (2-10)

where 1iθ is the coordinate of ith brand on the first dimension, which I interpret as
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“perceived attractiveness” for brand i. Linking the intercept iα to first dimension

1iθ aids in map interpretation, in the spirit of Bentler and Weeks (1978), who

proposed that for any multidimensional study, external information (i.e, prior

analysis, theory) if of vital importance. It can not only facilitate the interpretation

of the resulting configuration, but also help achieve parsimony of the model with

even improved model performance. The authors then introduced a class of

restricted MDS models wherein certain parameters may be fixed as known

constants, or imposed with the proportional constraints. In specific, the authors

suggested that when some scale is important to the psychological process which

produces a set of data, a dimension k may be added to the analysis, subject to the

restriction that the coordinates of the objects on this dimension k is proportional to

this scale.

Similar to my earlier treatment of OPEs, expressing intercepts in terms of

the brand locations in the market structure map is conceptually appealing because

a useful map of competition should have the possibility of accounting for all

brand-specific components in a model. Here I recognize that the brand’s perceived

attractiveness is an important attribute that influences the observed switching

patterns reflected in cross-price elasticities: two brands differing in perceived

attractiveness cannot have identical locations in a map that purports to explain

brand competition.

Covariates.Covariates.Covariates.Covariates. Lastly, one must determine the function f according to which

various covariates, itCV , enter the model in (2-1). For the two data sets considered
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later in this article, I model itCV to be time-specific18 and capture the two basic

classes of components of most time series patterns: trend and seasonality. The

former represents a “long term” movement that does not repeat within the time

range captured by the data. The latter repeats itself in systematic intervals over

time. These two components may coexist in my data. For example, for soft drink

data, sales of Coke can increase over time due to such factors as population

growth, but they still follow consistent seasonal patterns (e.g., the sales increase in

summer season, but decrease in winter season). In particular, I use the linear

function to capture the time trend, and assume the seasonal pattern follows sine

and cosine functions (Cowpertwait et al. (2009) page 101-102; Stolwijk et al.

(1999) ).19

1 2 3
2 ' 2 '( ) ' sin cos
52 52t
t tf CV t π πγ γ γ= + + (2-11)

where 1, ,i n= … , 1, ,t T= … , and t’ is the mean-centered t ( 't t t= − ). In (2-11),

t’ is divided by 52, which represents the periodicity of the cycle when dealing

with weekly data.

2.2.2.2.2.2.2.2.4444 ModelingModelingModelingModeling thethethethe DistributionDistributionDistributionDistribution ofofofof thethethethe DependentDependentDependentDependent VariableVariableVariableVariable

For packaged-goods data sets at the store or chain level, the quantity

18 When available,
itCV can also include other brand- and time- specific variables such as

display,features, store expenses, and etc.
19 It is well-known that sine and cosine functions can be used to build smooth variation into a
seasonal model. A sine wave with frequency f (cycles per sampling interval), amplitude A,
and phase shift φ can be expressed as

sin(2 ) sin(2 ) cos(2 )s cA ft ft ftπ φ α π α π+ = +
where cos( ), sin( )s sA Aα φ α φ= = . (Cowpertwait et al. (2009) page 101-102).
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demanded is integer-valued, with values ranging from 0 to several thousand. For

such data, two suitable modeling alternatives consist of the Poisson distribution

and the Negative Binomial distribution (NBD).

When the Poisson distribution is assumed to describe unit sales itq , the

probability mass function is

Pr( | ) ( ) exp( ) /( )!,itq
it it it it itq qλ λ λ= − 0itλ > , (2-12)

where itλ is the rate for this Poisson process. The expected sales in (2-1) is given

by ( )it itE q λ= =V(qit).

The Poisson model is sometimes restrictive, however, because it assumes

that the mean and the variance are both equal to λit. Often important determinants

of the mean are unobserved, causing the variance to exceed the fitted mean. In

such instances, the negative binomial distribution (NBD) may be used, which

generalizes the Poisson distribution by allowing the rates itλ to be distributed

according to a gamma distribution across the population of customers. The

gamma density is given by

1Pr( | , ) ( ) ( ) exp( ) / ( )it it it it it it
ρ ρλ ρ η η λ η λ ρ−= − ⋅ Γ , (2-13)

where itη is the scale parameter for the gamma distribution, differing across

brands and time, and ρ is the shape parameter. Combining Equations (2-12) and

(2-13) and integrating out λit yields the negative-binomial density

1 1Pr ( | , ) ( )( ) ( ) ,
1 11

itqit it
NBD it it

it it

qq ρρ η
ρ η

η ηρ
+ −

=
+ +−

0, 0itρ η> > . (2-14)

When the NBD model is adopted, the expected sales in (2-1) are given by E(qit) =
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ρ/ηit.

2.2.2.2.2.2.2.2.5555 SummarySummarySummarySummary ofofofof ModelModelModelModel ComponentsComponentsComponentsComponents

I conclude my discussion of model development by summarizing in Table

2-1 various possible model specifications that are alternatives to freely estimating

all the parameters of (2-1). Table 2-1 shows the decisions required for each model

component. Component 1 pertains to the integer dependent variable, which is

given either a Poisson or negative-binomial distribution (NBD). Component 2

involves the number of dimensions (M) for the symmetric CPE structure (the

“map”). Component 3 concerns whether the brand power parameter assumed to

underlie CPE asymmetries is dropped altogether, freely estimated, or embedded in

the map using a dominance-point or vector formulation. Component 4 addresses

whether the OPEs are freely estimated or included in the map using an ideal-point

or vector formulation. Component 5 describes the brand intercepts, which can be

freely estimated or tied to the horizontal axis of the map. This paper restricts

attention to formulations in Table 2-1 – which are all based on (2-1) and (2-11);

but I acknowledge that future research may wish to consider other formulations as

well.

The choice of model specification has an impact on the number of

parameters that need to be estimated. I briefly provide an overview of the number

of parameters that are implied by different model specifications. For Component

1, using the NBD formulation adds an additional parameter relative to the Poisson

distribution. Components 2 and 3 include alternatives to freely estimating ( 1)n n −

CPEs. Component 2 imposes a symmetric CPE structure involving approximately
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nM location parameters ( ;  1,... ;  1,...,im i n m Mθ = = ) – actually after the

identification restrictions described in Section 3.2 below, Component 2 involves

adding nM-(M-1)M/2 parameters. Component 3 (the skew-symmetric structure of

CPEs) adds either (a) n – 1 dominance parameters, ,  1, ,ix i n= … , (imposing

0x = ), (b) 1M + parameters (
1, , 1,...,my m Mω = ), or (c) M parameters (

1 , 1,...,m m Mυ = ).

Component 4 (the structure of OPEs) involves either (a) n OPE parameters

( ,  1, ,ii i nβ = … ), (b) 1M + parameters ( 2 , , 1,...,mz m Mω = ), or (c) M parameters

( 2 , 1,...,m m Mυ = ). Component 5 (the structure for the brand intercepts) entails either

(a) n separate intercept parameters ( ,  1, ,i i nα = … ) or (b) one parameter ( 0ω ) that

links the intercepts with the horizontal axis. Adopting parsimonious forms can,

therefore, reduce the parameter count of these five model components from as

many as 2n n+ to as few as 2 1 ( 1) / 2nM M M M+ + − − . Thus, for 20n = brands and

dimensionality 2M = , there are 420 brand-related demand parameters in a fully

saturated model and only 44 brand-related structural parameters in the most

parsimonious form. These calculations are based on a simple count of the number

of parameters in model components 2 through 5. These parameters constitute the

focal parameters of interest.
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TableTableTableTable 2222----1111 SpecificationSpecificationSpecificationSpecification DecisionsDecisionsDecisionsDecisions forforforfor thethethethe ModelModelModelModel ComponentsComponentsComponentsComponents

ModelModelModelModel ComponentComponentComponentComponent AlternativeAlternativeAlternativeAlternative FormulationsFormulationsFormulationsFormulations EquationEquationEquationEquation

1.1.1.1. DependentDependentDependentDependent variablevariablevariablevariable
distributiondistributiondistributiondistribution

(a) Poisson formulation
(b) Negative-binomial formulation

(2-12)
(2-14)

2.2.2.2. SymmetricSymmetricSymmetricSymmetric CPECPECPECPE
structurestructurestructurestructure

(a) Number of dimensions (M) for
map

(2-4a),
(2-5)1

3.3.3.3. Skew-symmetricSkew-symmetricSkew-symmetricSkew-symmetric CPECPECPECPE
structurestructurestructurestructure

(a) Leave ix out of model
(b) Freely estimate ix for each
brand i
(c) Dominance-point formulation
(d) Vector model formulation

–

(2-4)

(2-4),
(2-6)2

(2-4),
(2-6’)

4.4.4.4.ssss OPEOPEOPEOPE structurestructurestructurestructure (a) Freely estimate iiβ for each
brand i
(b) Dominance -point formulation
(c) Vector formulation

(2-1)

(2-7)
(2-7’)

5.5.5.5. InterceptInterceptInterceptIntercept structurestructurestructurestructure (a) Freely estimated iα for each
brand i,
(b) Make iα proportional to
horizontal axis

(2-1)

(2-10)

1The symmetric CPE structure is set in (2-3), (2-4a), and (2-5), assuming 0ija = Equation (2-5)

determines the structure underlying ijd .
2The asymmetric CPE structure is set, in particular, by (4b) – the relationship

ij i ja x x= − + , i j≠ — in Equation (2-4). Equation (2-6) and (2-6’) specify the structure

underlying ix .

2.32.32.32.3 ModelModelModelModel Selection,Selection,Selection,Selection, Identification,Identification,Identification,Identification, andandandand EstimationEstimationEstimationEstimation

Table 2-1 describes many possible model specifications. And I notice the

model selection process can be quite computationally demanding when the dataset

is large: with two to four options for each component of a demand model as in

Table 2-1, we face totally 48 combinations ( 2342 ××× ) of the model
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specifications. However, there are certain conceptual considerations that will

implicitly simplify this process. First, I believe it is always conceptually desirable

to pursue the most parsimonious model, the one in which full market structure

information (i.e., price elasticities and intercepts) are used to derive the market

map. Second, it is conceptually consistent to think own-price elasticity takes the

same formulation (a dominant point or a vector structure) as the power parameter

in cross-price elasticities. And these greatly reduce the model selection process to

a selection between a vector or a dominant point formulation, a choice a

researcher sometimes has to make even with a modeling attempt of disaggregate

data (Park, Desarbo, Liechty 2008).

However, in order to find good initial values for the most parsimonious

model, in terms of the order of estimation of models, I found it convenient to start

with a saturated model (with as many parameters as possible freely estimated),

and then to successively replace various model components with more

parsimonious formulations. By proceeding in this sequence, I could then

immediately identify problems with convergence and identification and trace

them to their causes.

2.3.12.3.12.3.12.3.1 ModelModelModelModel SelectionSelectionSelectionSelection

For model selection, I apply the deviance information criterion (DIC) to

focal parameters (Spiegelhalter et al. 2002). In particular, let D denote the mean

deviance for the model allowing all parameters to vary randomly according to

their posterior distributions. Let ϕ denote a vector of model parameters deemed

focal (i.e., parameters that are the purpose of the analysis), as distinct from other
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nuisance parameters. Finally, let ( )D ϕ denote the mean deviance for the model

holding focal parameters at their posterior means while allowing all other

parameters to vary randomly. Then the DIC is (Spiegelhalter et al. 2002)

2 ( )DIC D D ϕ= − . (2-15)

Generally, DIC is an adaptation of Akaike’s information criterion (AIC) to a

Bayesian context.

AIC (Akiake’s Information Criteria) is defined as the deviance of a model

plus two times the number of parameters estimated. It is designed to identify the

“best” model, where best is taken to be the model that has the highest likelihood

for additional data generated by the same process. Since AIC was developed in a

frequentist and nonhierarchical modeling context, all parameters are estimated as

fixed effects. The near equivalent in a Bayesian context is a model in which all

parameters are given uninformative priors. For such a model, AIC and DIC agree.

However, most Bayesian models are hierarchical. That is, some parameters (such

as the means of observed responses) are given distributions that are not

uninformative and in fact are often functions of other, higher-level, parameters

which also have distributions. In such cases, direct application of AIC is

insufficient for two reasons. First, the number of parameters being estimated is

unknown ex ante because the prior distributions for parameters introduce

information sharing (and hence dependence) in their estimates. Thus the effective

number of parameters being estimated is less than the number of parameters that

appear in the model. Spiegelhalter et al. solve this problem using (2-15). Second,

the criterion of best model is no longer clear, because a model’s ability to predict
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depends upon which parameter estimates are held constant when making these

predictions. In other words, models often contain nuisance parameters in addition

to the parameters central to the purpose of the analysis (focal parameters).

Spiegelhalter et al. recommend that the second term in (2-15) be calculated with ϕ

including only focal parameters that are constant. If all focal parameters are given

uninformative prior distributions, then they may be simply counted and AIC can

be used instead of (2-15).

A popular alternative to AIC and DIC in a non-Bayesian context is BIC

(Schwarz, 1978), and in a Bayesian context is the mean posterior of the likelihood

of the data holding no parameters constant (the Bayes factors approach). Under

certain conditions, these criteria will identify the true model from those estimated

with probability one as the sample size grows to infinity, and no modeling

purpose need be specified. However, DIC avoids assuming that one of the models

considered is true, and instead chooses which model is best for a specific

modeling purpose. Also, unlike BIC and Bayes factors, DIC is not subject to

Lindley’s paradox, so it can be used to compare models that make some use of

weakly informative priors.

My purpose in modeling competitive market structure is to estimate all

parameters characterizing the competitive map together with any brand-specific

parameters in (2-1) that the researchers may have chosen to estimate

independently of the competitive map (such as brand-specific intercepts). Thus,

for my analysis these parameters are the focal ones. Calculating DIC using (2-15)

requires first estimating all parameters, and then rerunning the model holding
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focal parameters at their posterior means (and letting nuisance parameters vary

randomly). The DIC statistic produced by WinBUGS (Lunn et al. 2000) in the

course of estimation of all parameters does not suffice. The program does not

know the modeling purpose. Instead, it guesses that the purpose is to estimate the

means of the observed responses, i.e., E(qit) for (2-1). I accordingly had to

calculate DIC by hand (with a routine I wrote) using (2-15).

2.3.22.3.22.3.22.3.2 ModelModelModelModel IdentificationIdentificationIdentificationIdentification

As with all MDS procedures, my model requires identification conditions

in order to obtain unique estimates. From (2-5), I see that .1 . .[ ,... ,..., ]m Mθ θ θΘ =

enters into the model mainly through the distance ijd . However, inter-brand

distance calculations are invariant to orthogonal, scale-preserving rotations of the

brand locations given in ΘΘΘΘ and to mirror-image “flips” of the map. Therefore,

some constraints must be imposed in order for the model to be identified. In

particular, for the matrix of parameter locations ΘΘΘΘ , I fix the elements above the

diagonal to be zero and the diagonal elements to be positive. When M=2, this

involves imposing the constraints 12 11 220,  0,  and 0θ θ θ= > > .20 Generally for any

dimensionality M, this involves imposing M(M+1)/2 constraints. In particular, for

M>2, 0, 1,... 1; 1,..., ,  and 0jm mmj M m j Mθ θ= = − = + > . In addition, the

indeterminacy of the origin is resolved by requiring that
1

0, 1,2.
M

im
i

mθ
=

= =∑

20 Occasionally, instead of imposing a constraint of the form 0mmθ > , it is more convenient

to impose a constraint that im jmθ θ> for two arbitrarily selected brands i and j . This
equally well can avoid lack of model identification due to mirror-image “flips” of the map.
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2.3.32.3.32.3.32.3.3 ModelModelModelModel EstimationEstimationEstimationEstimation

I adopt a hierarchical Bayes modeling approach which I estimate using a

Markov Chain Monte Carlo (MCMC) method. The hierarchical Bayes method is a

powerful tool that recognizes that a family of parameters may be theoretically

related and that can express such relationships with rich statistical formulations

(Gelman and Hill, 2006). This section demonstrates the approach for the

particular focal specification described in Table 1 by Components 1b, 2(M=2), 3d,

4c, 5b – analogous development applies for other specifications from Table 1.

The hierarchical Bayes version of the NBD model for my unit sales data is

as follows. Using ∆ to represent all parameters, I can write the posterior

distribution as

Pr( , ,{ },{ }|{ , , }) Pr( | )Pr( | , )Pr( | ,{ , }) ( ) ( )it it it t it it it it it t
t i

q p t q p tρ η λ λ λ η ρ η π ρ π⋅ ⋅∆ ∝ ∆ ∆∏∏
, (2-16)

with Pr( | )it itq λ from (2-12); Pr( | , )it itλ η ρ from (2-13), and Pr( |{ , })it tp tη ⋅

constituting the conditional distribution of the scale parameter for the gamma

distribution of itλ . ( ), ( )π ρ π ∆ are prior distributions for the shape parameter, as

well as the demand model parameters. I specify an uninformative gamma prior for

~ (0.01,0.01)dgammaρ . The heart of the model concerns my formulation of the

conditional distribution Pr( |{ , })it tp tη ⋅ and the prior distribution for ∆ .

It is worth mentioning that the multiplication of likelihood functions in (2-

16) assumes demands are independent over time. This assumption may be

violated when demands are influenced by factors such as inventory effect.



71

Ignoring the possible existence of autocorrelation would lead to inconsistent

estimates of price elasticities, which, under the context of current paper, implies

that the estimated market structure map will be biased too. Therefore, although

assuming independence over time simplifies the estimation problem and helps me

focus attention on market structure related concepts, it certainly constitutes a

potential limitation of current research. How to combine the time-series

techniques and my proposed model is a topic that merits future attention.

HardHardHardHard constraintsconstraintsconstraintsconstraints.... I begin my characterization of the prior distribution of

itη under the focal specification by recognizing a set of conditional relationships

arising from the applicable model equations, as follows.

ConditionalConditionalConditionalConditional RelationshipRelationshipRelationshipRelationship ApplicableApplicableApplicableApplicable EquationsEquationsEquationsEquations

. . 0 1 2 3|{ , }, , ,{ }, , , ,it t i ii ip tη α β β α γ γ γ ; (2-1) & (2-14)

1 1 2 2| , , , , , ,ij i j i j i j CPEx xβ θ θ θ θ φ , j i≠ ; (2-4)

1 2 11 12| , , ,i i ix θ θ υ υ ; (2-6’) (2-17)

211 2 22| , ,, ,ii i i OPEυ υ φβ θ θ ; and (2-7’)

1 0| ,i iα ωθ . (2-10)

For example, Equation (2-1) establishes the relationship between the standard

demand parameters (together with price data) and log(E(qit)), which, in turn, is

related to ηit, once I recognize that E(qit) = ρ/ηit , under the NBD model (of

Equation (2-14)). Similarly, Equations (2-4), (2-6’), (2-7’) and (2-10) link the

CPEs, power parameters, OPEs, and demand intercepts, respectively, to the
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underlying locations 1 2( , )i iθ θ and 1 2( , )j jθ θ of brands i and j. Recognizing these

hard constraints, I complete the characterization of the distribution of ηit by

specifying priors for the constant coefficients and the brand-specific coefficients

in the model.

PriorsPriorsPriorsPriors forforforfor brand-invariantbrand-invariantbrand-invariantbrand-invariant coefficientscoefficientscoefficientscoefficients.... I assume weakly informative

priors for all brand-invariant coefficients not subscripted by a particular brand) in

the model (e.g., 0 11 12 21 22 0 1 2 3, , , , , , , , , ,CPE OPEα φ φ υ υ υ υ ω γ γ γ ). For example, I assume

that 4
0 ~ (0,10 )Nα .21

PriorsPriorsPriorsPriors forforforfor brand-specificbrand-specificbrand-specificbrand-specific coefficients.coefficients.coefficients.coefficients. I use a hierarchical Bayesian

structure to describe the brand-specific parameters not predetermined by the

assumed hard constraints (in (2-17)). I describe my approach for the estimation of

brand locations imθ ( 1, 2...,i n= , 1,...,m M= ). The basic idea is to recognize that

the brand locations imθ , 1, 2...,i n= , in a given dimension m, are related; and these

locations may be reasonably thought of as having been drawn from a common

underlying distribution. This allows for information sharing across brands

(because the hyper-parameters of the common underlying distribution are jointly

estimated with the estimates of the locations imθ , 1, 2...,i n= , themselves). Since

the level of information sharing is determined by data (with the common

distribution itself is estimated), this approach is referred to as adaptive Bayesian

shrinkage. 22

21 Although not necessary for the focal model (Components 1b, 2(M=2),3d,4c,5b in Table 1),
some other model formulations require imposing suitable sign constraints on the coefficients.
22 For the focal specification of this section, the only brand-specific coefficients not predetermined
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Thus, I do not estimate the brand locations using informative priors, or

using weakly informative priors, as in (2-18),

4~ (0,10 ),  1, 2...,im N i nθ = . (2-18)

I, instead, estimate brand locations using a prior with hyper-parameters that

are, themselves, given weakly informative priors on brand locations, as in (2-19):

2

4

~ ( , )

~ (0,10 )
~ (0,50)

im m m

m

m

N
N
Unif

θ µ σ

µ
σ

. 1, 2...,i n= (2-19)

Following Gelman and Hill (2006), a broad uniform prior is used for the standard

deviation of θim.

The distributions in (2-19) imply a prior distribution for θim that is

virtually identical to (2-18). (The mean is the same and the variance is one percent

larger.) However, (2-18) asserts the brand locations have nothing in common —

that they are independently distributed. That is, it assumes that knowing the θim

values for any n – 1 of the brands provides no information about the value for the

remaining brand. Equation (2-19) makes no such assumption. Rather than assert,

as in (2-18), that 0mµ = and 100mσ = , (2-19) estimates these values. Although

the values of these two parameters assumed by (2-18) both lie well within the

prior distributions given by these hyper-parameters in (2-19), comparison of these

assumed values to their posterior densities invariably shows that the assumed

by the hard constraints are the brand locations imθ — all other brand-specific coefficients are
conditional on the brand locations imθ (or on constant coefficients) through the constraints in (2-
17). Thus, for the focal specification of this section, adaptive Bayesian shrinkage is used only for
the brand locations imθ . For other specifications in Table 2-1, however, hard constraints do not
necessarily predetermine OPEs, brand intercepts, or the power parameters, ix . When this is the
case, adaptive Bayesian shrinkage is applied for estimating such families of coefficients.
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value 100mσ = in (2-18) lies well outside its 95% credible intervals.

The advantage of using (2-19) is that it allows for shrinkage of the brand

parameters towards a common mean mµ estimated by the data whenever mσ ≪

50, and since the common mean mµ is given a weakly informative prior, its

estimate is determined by the data. However, if the θim values are greatly different

from each other, then the posterior estimate of mσ can be much larger than 100,

which implies a prior for θim that is even less informative than (2-18).

Of course, many Bayesian models in marketing (and elsewhere) estimate

distributions for model parameters (Rossi and Allenby 2003), but they generally

do so when those model parameters are viewed as random effects. In such models,

the parameters of the underlying distribution ( mµ and mσ ) are regarded as focal.

When the purpose, instead, is to estimate those model parameters themselves (i.e.,

when the θim values for the 1,2...,i n= brands are focal), then a weakly

informative prior such as (2-18) has been used, mirroring a fixed-effects

specification. In such cases, I suggest that a prior for parameters should be

estimated (as in (2-19)). This is the position taken by Gelman and Hill (2006, p.

246), who argue that the latter approach should be taken, regardless of the focus.

However, two conditions should be met: (a) weakly informative distributions

should be used for the prior distribution’s hyper-parameters. This ensures that the
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estimated prior subsumes both the fixed-effect and random-effect specifications.

(b) There must be at least two (latent or observed) variables that share this prior

distribution. Otherwise there is no opportunity for sharing information among

parameters, and (2-19) is simply an inefficient means for implementing (2-18).

I note that the advantages of an “adaptive shrinkage” approach for the

estimation of demand models such as (2-1) have been demonstrated by

Montgomery and Rossi (1999). Their implementation differs from my in several

respects, however. First, they employ adaptive shrinkage for some parameters but

not others, whereas I apply it consistently to all parameters that satisfy the two

criteria (a) and (b) above. Second, they make use of informative priors at the

highest level of the hierarchy, whereas I use pre-specified weakly informative

priors at the highest level throughout. Third, they use strong additive utility as

their theoretical model wherein all competitive effects are through the income

effect only. This precludes differential competition among brands. The model here

allows for some brands to compete more closely than others, and asymmetrically.

2.42.42.42.4ApplicationsApplicationsApplicationsApplications

I now apply the model and estimation methods to two very different data

sets: one is informative about brand-specific parameters, and the other has price

histories that are perfectly collinear in thirteen of twenty-one dimensions.

2.42.42.42.4.1..1..1..1. BeerBeerBeerBeerMarketMarketMarketMarket

I estimate my model using data from Information Resources consisting of

aggregate weekly store-level scanner data for beer in a test market in the US from

1989 to 1996. The data set contains 365 weekly observations on unit sales, price,
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and other variables. I considered the top five brands: Budweiser, Miller, Busch,

Old Milwaukee and Milwaukee’s Best. Price is the inflation-adjusted average

weekly price per ounce.

I used the same brand-level data that formed the basis for Srinivasan, et

al.’s (2000) analysis. Those authors first created brand-level variables from SKU-

level variables.23 This aggregation from SKUs (stock keeping units) to brands

may be subject to aggregation bias due to possible heterogeneity among

promotional variables (Christen et al., 1997; Pesaran and Smith, 1995). Srinivasan

et al. (2000) control for this bias by performing pooling tests to determine whether

it was reasonable to pool the different varieties for a brand; over 95% of sales

could be pooled.24 They also found that this data set produced elasticities that

matched prior estimates (e.g., Tellis, 1988), which also alleviated this concern to

some extent. The benefit of aggregating from SKUs to brands is that it avoids

problems associated with colinearity and a large state space, pointed out by

Kopalle et al. (1999) and Bucklin and Gupta (1999). Indeed, my analysis of the

second soft-drink data set will illustrates how severe colinearity can make

estimation problematic, and we show how our modeling framework can assist

with estimation. We begin with the less challenging beer data set.

Table 2-2 below reports some descriptive statistics for the data:

23 I am indebted to Information Resources and the authors of this article for making these
aggregated brand-level data available.
24 Christen et al. (1997) point out that the aggregation bias is likely to be quite small in data
characterized by three conditions: frequent promotions, frequent price cuts, and small own
price elasticities. We note that the first two conditions are met for the beer data.
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TableTableTableTable 2-22-22-22-2 SummarySummarySummarySummaryMeasuresMeasuresMeasuresMeasures forforforfor BearBearBearBear DrinksDrinksDrinksDrinks

Budweiser Miller Busch Old
Milwaukee

Milwaukee’s
Best.

MeanMeanMeanMean
QuantityQuantityQuantityQuantity 1097 589.5 1170 575.8 1404

MeanMeanMeanMean
PricePricePricePrice 10.61 7.64 9.78 6.41 7.47

S.S.S.S. D.D.D.D. ofofofof
PricePricePricePrice 0.88 0.81 1.17 0.54 0.70

MinimumMinimumMinimumMinimum
ofofofof PricePricePricePrice

7.33 5.15 7.39 4.65 5.95

MaximumMaximumMaximumMaximum
ofofofof PricePricePricePrice

12.56 9.9 12.31 7.71 9.49

NumberNumberNumberNumber
ofofofof PricePricePricePrice
ChangesChangesChangesChanges

218 216 233 170 205

ModelModelModelModel Selection.Selection.Selection.Selection. My model selection process (described earlier)

identified the following three models, which I will compare: 25

ModelModelModelModel 1.1.1.1. This comprises the NBD model of (2-14), together with the

following demand equation (arrived at by combining (2-1) and (2-11)):

0 1 2 3
2 ' 2 'log(1/ ) log( ) log( ) ' sin cos
52 52i ii it ij it

j i
it

t tp p t π πη α α β β γ γ γ
≠

= + + + + + +∑ ,

(2-1’)

where 1, ,5;  1, ,365;i t= … = … 't t t= − (mean-centered); and prices are

inflation-adjusted and also mean-centered across time and brands. This is a

standard demand model in the literature. I estimate this model by imposing

weakly informative priors for all demand parameters, which therefore leads to

25 In this application, Model 1 is the fully saturated model, consisting of model components (1,
2, 3a, 4a, 5a) in Table 2. Model 2 consists of model components (1, 2, 3d, 4a, 5a) in Table 2.
Model 3 consists of model components (1, 2, 3d, 4c, 5b).
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estimates that are equivalent to the ML estimators. Notice that in the above

equation, I drop the shape parameter ρ to add simplicity, since it is treated as a

fixed effect and only influences the constant term on the RHS.

ModelModelModelModel 2.2.2.2. This comprises Model 1 together with the additional elements:

ij CPE ij i jd x xβ φ= − − + , i j≠ (2-4)

2
1
( )M

immij jmd θ θ
=

−= ∑ (2-5)

1
1

M

i mm
m

ix θυ
=

= ⋅∑ (2-6’)

In this model, market structure is used to explain (only) the symmetric and

asymmetric competitive patterns in CPEs. The adaptive Bayesian shrinkage

approach is applied when estimating brands locations, OPEs, and brand intercepts.

ModelModelModelModel 3.3.3.3. This comprises Model 2 together with the following additional

elements:

2
1

,
M

OPE m imii
m

φ υ θβ
=

= + ⋅− ∑
(2-7’)

0 1i iα ω θ= , 0 0ω ≠ (2-10)

For this model, the estimates of brand locations, θim, underlie all brand-related

parameters in the demand function. The adaptive Bayesian shrinkage approach is

applied when estimating the brand locations. Conceptually, I find this to be the

most desirable model.

Tables 2.2 and 2.3 show estimates using WinBugs 1.4.3 of these three

models. Model 1 yields DIC of 17407. Models 2 and 3 have DIC of 17403 and

17405, respectively, which suggests that two dimensional models work better.
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TableTableTableTable 2-32-32-32-3 ParameterParameterParameterParameter EstimatesEstimatesEstimatesEstimates forforforfor BeerBeerBeerBeer DataDataDataData
Model 1 Model 2

(M=2)
Model 3:

(M=2)
Intercepts Budweiser 1.28*1.28*1.28*1.28* 1.36*1.36*1.36*1.36* 1.33*

Miller -0.88*-0.88*-0.88*-0.88* -0.96*-0.96*-0.96*-0.96* -0.93*
Busch 0.82*0.82*0.82*0.82* 0.81*0.81*0.81*0.81* 0.93*
Old Milwaukee -1.31*-1.31*-1.31*-1.31* -1.35*-1.35*-1.35*-1.35* -1.35*
Milwaukee’s Best 0.100.100.100.10 0.13*0.13*0.13*0.13* 0.02*
Weight 3ω 0.07*0.07*0.07*0.07*

Own-Price Budweiser -4.33*-4.33*-4.33*-4.33* -4.25*-4.25*-4.25*-4.25* -4.28*
(OPEs)** Miller -4.80*-4.80*-4.80*-4.80* -5.14*-5.14*-5.14*-5.14* -5.21*

Busch -3.19*-3.19*-3.19*-3.19* -3.36*-3.36*-3.36*-3.36* -3.72*
Old Milwaukee -3.43*-3.43*-3.43*-3.43* -3.53*-3.53*-3.53*-3.53* -3.48*
Milwaukee’s Best -3.91*-3.91*-3.91*-3.91* -3.89*-3.89*-3.89*-3.89* -3.67*
Weight 1

21υ 1.08*1.08*1.08*1.08*
Weight 2

22υ 2.16*2.16*2.16*2.16*
Cross-Price  [ , ]ij i Budweiser j Millerβ = = 0.63*0.63*0.63*0.63* 0.50* 0.40*
(CPEs)**  [ , ]ij i Budweiser j Buschβ = = 0.190.190.190.19 0.08 0.16*

 [ ,  ]ij i Budweiser j Old Milwaukeeβ = = 0.030.030.030.03 -0.04 -0.09
 [ , '  ]ij i Budweiser j Milwaukee s Bestβ = = -0.21-0.21-0.21-0.21 -0.02 0.12
 [ , ]ij i Miller j Budweiserβ = = 0.270.270.270.27 -0.21 -0.48*
 [ , ]ij i Miller j Buschβ = = -2.05*-2.05*-2.05*-2.05* -1.07* -0.92*
 [ ,  ]ij i Miller j Old Milwaukeeβ = = -0.77*-0.77*-0.77*-0.77* -0.89* -0.91*
 [ , '  ]ij i Miller j Milwaukee s Bestβ = = -0.27*-0.27*-0.27*-0.27* -0.90* -0.86*
 [ , ]ij i Busch j Budweiserβ = = 0.070.070.070.07 0.60* 0.65*
 [ , ]ij i Busch j Millerβ = = 0.48*0.48*0.48*0.48* 0.17 0.44*
 [ ,  ]ij i Busch j Old Milwaukeeβ = = 0.080.080.080.08 0.13 0.25*
 [ , '  ]ij i Busch j Milwaukee s Bestβ = = -0.07-0.07-0.07-0.07 0.16 0.49*
 [  , ]ij i Old Milwaukee j Budweiserβ = = -0.06-0.06-0.06-0.06 0.71* 0.57*
 [  , ]ij i Old Milwaukee j Millerβ = = 0.36*0.36*0.36*0.36* 0.58* 0.62*
 [  , ]ij i Old Milwaukee j Buschβ = = 0.90*0.90*0.90*0.90* 0.36* 0.42*
 [  , '  ]ij i Old Milwaukee j Milwaukee s Bestβ = = 0.93*0.93*0.93*0.93* 0.85* 0.53*
 [ '  , ]ij i Milwaukee s Best j Budweiserβ = = 0.040.040.040.04 0.74* 0.64*
 [ '  , ]ij i Milwaukee s Best j Millerβ = = 0.27*0.27*0.27*0.27* 0.58* 0.53*
 [ '  , ]ij i Milwaukee s Best j Buschβ = = 1.18*1.18*1.18*1.18* 0.39* 0.52*
 [ '  ,  ]ij i Milwaukee s Best j Old Milwaukeeβ = = 0.99*0.99*0.99*0.99* 0.85* 0.39*

Brand Power Budweiser 0.13* 0.08*
Miller 0.49* 0.52*
Busch -0.13* -0.17*
Old Milwaukee -0.24* -0.24*
Milwaukee’s Best -0.25* -0.18*
Asymmetry Weight 1 [ 11υ ] 0.56*0.56*0.56*0.56* 0.41*0.41*0.41*0.41*
Asymmetry Weight 2 [ 12υ ] 0.210.210.210.21 0.96*0.96*0.96*0.96*

Coordinates Budweiser 0.25*0.25*0.25*0.25* 0.193*0.193*0.193*0.193*
Miller 0.310.310.310.31 -0.136*-0.136*-0.136*-0.136*
Busch 0.090.090.090.09 0.135*0.135*0.135*0.135*
Old Milwaukee -0.34*-0.34*-0.34*-0.34* -0.196*-0.196*-0.196*-0.196*
Milwaukee’s Best -0.32*-0.32*-0.32*-0.32* 0.0030.0030.0030.003

Coordinates Budweiser 0*** 0***
Miller 0.68*0.68*0.68*0.68* 0.61*0.61*0.61*0.61*
Busch -0.52*-0.52*-0.52*-0.52* -0.24*-0.24*-0.24*-0.24*
Old Milwaukee -0.07-0.07-0.07-0.07 -0.18*-0.18*-0.18*-0.18*
Milwaukee’s Best -0.09-0.09-0.09-0.09 -0.19*-0.19*-0.19*-0.19*

Number of (in(in(in(in boldboldboldbold above)above)above)above) 30303030 21212121 14141414
* The 95% credible interval excludes zero.
** The CPEs and Brand Power parameters in the last two columns and the OPEs and Intercepts in the last

column are derived from the related underlying parameters (shown below them in bold in this table).
***Identification constraint.



80

TableTableTableTable 2-42-42-42-4 OtherOtherOtherOther ParameterParameterParameterParameter EstimatesEstimatesEstimatesEstimates forforforfor thethethethe BeerBeerBeerBeer DataDataDataData
Model 1 Model 2

(M=2)
Model 3
(M=2)

Covariates 1γ 0.004 0.006 -0.002
2γ 0.006 0.003 0.008
3γ -0.09* -0.09* -0.095*

Shrinkage Parameters ( )a 1σ 1.42
(1.18)

0.1834
(0.1275)

2σ 0.95
(2.04)

0.8191
(1.043)

NBD Model parameter ρ 22.72* 20.96* 20.47*
DICDICDICDIC 17407174071740717407 17403174031740317403 17405174051740517405

( )a σ1 and σ2 are the standard deviations of θ.1 and θ.2, respectively.
These parameters are constrained to be nonnegative. We report (in
parentheses) the posterior standard deviations of these estimates.

It is worth mentioning that the beer data that I obtained for analysis

already aggregated all SKUs for the same manufacturer with correlated price

history. This was done by Srinivasan, et al.’s (2000) to permit estimation by

standard models. Since some structural information is lost during this aggregation,

it is not a surprise to see that DIC for second model is slightly, although not

significantly better than Model 3.

Overall, I observe that DIC favors both structural models (Models 2 and 3)

over Model 1. 26 A close examination of Models 2 and 3 shows that most of the

underlying structural parameters are estimated significantly (zero being outside

their 95% credible intervals). Also, all own price elasticities are negative and in

ranges similar to previous analyses (Tellis 1988). I further note evidence of

seasonality, which is to be expected for beer consumption.

26 As a rule of thumb provided by Spiegelhalter et al. (2002), models with DIC difference
within the 1-2 DIC units of the "best" model are almost as well supported as the best model.
Those within 3-7 units of the "best" model are substantially less well supported, and those
more than 7 units worse than the "best" model have essentially no support.
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I emphasize that even when I impose underlying structure for the CPEs,

OPEs, and intercepts, my methodology also recovers implied estimates for the

CPEs, OPEs, and intercepts. That I get these implied estimates as a byproduct of

the estimation procedure constitutes one of the strengths of MCMC Bayesian

methodology. I observe that the estimated values of the intercepts and OPEs are

generally robust across Models 1, 2, and 3, even though the later two models

impose substantial underlying structure. Furthermore, that the intercepts are as

similar in Model 3 as with the other two models, suggests that interpreting axis

one of the underlying Euclidean map as describing the intercept does not

undermine my estimation. Lastly, many of the CPEs are robust across the three

models, and where there are very large changes, the CPE in Model 1 was not

significant to begin with. So imposing structure appears to be improving the

accuracy of estimation of the cross-price elasticities. Moreover, Models 2 and 3

are very similar in estimates, and imposing structure on the intercepts and OPEs

does not appear to change the underlying structure for the CPEs (both the

symmetric structure and skew-symmetric brand power estimates). These are

reassuring checks. Furthermore, notice that the hyperparameter estimates of

brands location variances on each dimension, 1σ and .2θσ , are small, which

indicates that shrinkage plays a role in estimating the brands’ locations (Table2.4).

ManagerialManagerialManagerialManagerial Implications.Implications.Implications.Implications. Examining the underlying structure, I note that

the OPEs are all significantly negative and reasonable, and the CPEs evidence

various cross-price effects, some symmetric and others asymmetric. For example,

Old Milwaukee and Milwaukee’s Best are close symmetric substitutes with each
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other. On the other hand, Budweiser and Miller are more characterized by one-

directional substitutability, where the price of Miller has significant effects on

Budweiser’s sales, but the price of Budweiser has less of an effect on Miller’s

sales.

As Model 3 is conceptually my most desirable model (I do not try more

than two dimensions, as with only five brands, dimensions more than two can be

difficult to reliably estimate), I provide a biplot based on this model. Figure 3

displays the five brand locations and three variables (own-price elasticity, brand

power, perceived attractiveness) on two latent attribute dimensions (Figure 2-3).

Here, brands are displayed as points while the three variables are displayed as

arrows. The horizontal dimension is interpreted as “perceived attractiveness” in

accordance with specification component 5b (of Table 1). Several conclusions can

be drawn from this map.
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FigureFigureFigureFigure 2-3.2-3.2-3.2-3. PlotPlotPlotPlot ofofofof BeerBeerBeerBeer BrandBrandBrandBrand LocationsLocationsLocationsLocations inininin ModelModelModelModel 3333
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First, this figure gives brand locations 1 2( , )i iθ θ for each brand i. Recall

that the symmetric part of the cross-elasticity between any two products is

modeled by the Euclidean distance in the map between the brands. Thus Old

Milwaukee and Milwaukee’s Best are quite similar, while Miller is distinct from

all other brands.

Second, the angle between arrows approximates the correlation between

the variables (i.e., the smaller the angle, the higher the correlation). I can see from

Figure 3 that “brand power” is highly correlated with “own-price elasticities,” and

both are positively correlated with “perceived attractiveness”. This means that
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brands with more power have less elastic OPEs and are more attractive, which, as

expected, reflects Proposition 2. It is also worth noticing two other findings. (a)

Since the angle between a vector and an axis indicates the importance of the

contribution of the corresponding variable to the axis dimension, I see that the

second dimension is more strongly related to brand power and OPEs. (b) Since

the length of an arrow is equal to the variance of the corresponding variable, it

seems that the “perceived attractiveness” dimension is not that important for these

data.

Third, the points (brands) in the biplot can be projected perpendicular on

the arrows, and the position of the points along the arrow gives information of the

value of the brands on corresponding variables. As I expected, Miller has greater

asymmetric dominance than Budweiser, which in turn has greater dominance than

the other three brands. Notice the estimates of asymmetry Weights on both

dimensions in CPE are significantly different from zero (Table 2-4), which means

that competitive asymmetry is an essential feature of this product category.

Similarly, Miller has the greatest OPE in absolute value, followed by Budweiser,

and then the other three brands. And finally, the brand intercepts (attractiveness),

which are proportional to the horizontal axis, Budweiser is represented as the

most popular (or mass marketed) brand, along with Busch.

Overall, Figure 2-3 presents a picture of quality tiers. Budweiser appears

to be popular, attracting a broad market, but Miller is a beer with greater

asymmetric dominance over Budweiser even if it has a smaller market share.

There is, thus, a smaller quality market, of which Miller is one brand. Budweiser
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is at the center. Among the lower dominance segment, consisting of Busch,

Milwaukee’s Best, and Old Milwaukee, Busch has the highest share. This is

intuitive, and perhaps sums up insights that resonate with beer drinkers.

2.42.42.42.4.2.2.2.2 Soft-drinkSoft-drinkSoft-drinkSoft-drinkMarketMarketMarketMarket

I now turn to analysis of store level aggregate data for carbonated soft

drinks (CSD). My selection of context was motivated in part by proposed soft-

drink mergers in 1986 when the Federal Trade Commission deterred PepsiCo's

proposed acquisition of Seven-Up Co. by threatening antitrust litigation. Unable

to similarly dissuade Coca-Cola Co., the FTC went to court to block Coca-Cola

Co.'s proposed acquisition of Dr Pepper (FTC v. Coca-Cola Co. 641 F. Supp.

1128; D.D.C. 1936). The FTC justified these actions by citing Section 7 of the

Clayton Act, claiming in both antitrust issues, that the acquirer and acquiree were

selling in the same line of commerce, defined in these cases as “the national

carbonated soft drink market.” I wish to answer a simple yet important question:

To what extent do the brands carried by the four soft-drink manufacturers

compete with each other?

DataDataDataData Description.Description.Description.Description. The data, recorded using the scanner UPC (Universal

Product Code) system from a St. Louis supermarket, describes weekly quantity

sales and price of the same two liter soft drinks analyzed in the survey and covers

63 weeks commencing 2/22/88. There are in total 48 brands included in our

dataset. We focus our analysis on the following 20 brands of four major

manufacturers:

PepsiCo:PepsiCo:PepsiCo:PepsiCo: Pepsi, Diet Pepsi, Pepsi Free, Diet Pepsi Free, Mountain Dew,
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Lemon Lime Slice, Diet Lemon Lime Slice

Coca-ColaCoca-ColaCoca-ColaCoca-Cola Co.:Co.:Co.:Co.: Coke, Diet Coke, Caffeine-Free Coke, Caffeine-Free Diet,

Coke, Cherry Coke, Diet Cherry Coke, Sprite, Diet Sprite, MR. PiBB

DrDrDrDr PepperPepperPepperPepper Co.:Co.:Co.:Co.: Dr Pepper, Diet Dr Pepper

Seven-UpSeven-UpSeven-UpSeven-Up Co.:Co.:Co.:Co.: 7-Up, Diet 7-Up

The remaining low sales brands (all shares less than 1.5%) were combined

into a single “other” brand with price calculated as the average (quantity Weighted)

price of the constituent products. A preliminary examination of the data shows

that the average Weekly sales ranged from 838 for Pepsi to 5 for Mr.PiBB.

Table 2-5 below reports some descriptive statistics for the data:

TableTableTableTable 2-52-52-52-5 SummarySummarySummarySummaryMeasuresMeasuresMeasuresMeasures forforforfor SoftSoftSoftSoft DrinksDrinksDrinksDrinks DataDataDataData

PepsiPepsiPepsiPepsi DietDietDietDiet
PepsiPepsiPepsiPepsi

Mount,Mount,Mount,Mount,
DewDewDewDew

PepsiPepsiPepsiPepsi
FreeFreeFreeFree

DietDietDietDiet
PepsiPepsiPepsiPepsi
FreeFreeFreeFree

LemonLemonLemonLemon
LimeLimeLimeLime
SliceSliceSliceSlice

DietDietDietDiet
LemonLemonLemonLemon
LimeLimeLimeLime
SliceSliceSliceSlice

MeanMeanMeanMean
QuantityQuantityQuantityQuantity 838 425 72 215 347 54 72

MeanMeanMeanMean PricePricePricePrice 1.123 1.124 1.124 1.123 1.124 1.126 1.121

S.S.S.S. D.D.D.D. ofofofof
PricePricePricePrice 0.232 0.232 0.232 0.232 0.232 0.253 0.253

MinimumMinimumMinimumMinimum
ofofofof PricePricePricePrice

0.71 0.7 0.71 0.7 0.71 0.69 0.69

MaximumMaximumMaximumMaximum
ofofofof PricePricePricePrice

1.49 1.49 1.49 1.49 1.49 1.49 1.49

NumberNumberNumberNumber ofofofof
PricePricePricePrice

ChangesChangesChangesChanges

9 8 8 8 8 8 7

CherryCherryCherryCherry
CokeCokeCokeCoke

DietDietDietDiet
CherryCherryCherryCherry
CokeCokeCokeCoke

CokeCokeCokeCoke DietDietDietDiet
CokeCokeCokeCoke

Caff.Caff.Caff.Caff.
FreeFreeFreeFree
CokeCokeCokeCoke

Caff.Caff.Caff.Caff.
FreeFreeFreeFree
DietDietDietDiet
CokeCokeCokeCoke

SpriteSpriteSpriteSprite

MeanMeanMeanMean
QuantityQuantityQuantityQuantity 47 63 770 453 52 425 158
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MeanMeanMeanMean PricePricePricePrice 1.170 1.170 1.170 1.170 1.170 1.170 1.088

S.S.S.S. D.D.D.D. ofofofof
PricePricePricePrice 0.240 0.240 0.240 0.240 0.240 0.240 0.234

MinimumMinimumMinimumMinimum
ofofofof PricePricePricePrice

0.69 0.69 0.7 0.7 0.69 0.7 0.69

MaximumMaximumMaximumMaximum
ofofofof PricePricePricePrice

1.49 1.49 1.49 1.49 1.49 1.49 1.49

NumberNumberNumberNumber ofofofof
PricePricePricePrice

ChangesChangesChangesChanges

10 10 10 10 11 10 10

DietDietDietDiet
SpriteSpriteSpriteSprite

Mr.Mr.Mr.Mr.
PiBBPiBBPiBBPiBB

Dr.Dr.Dr.Dr.
PepperPepperPepperPepper

DietDietDietDiet
Dr.Dr.Dr.Dr.
PeppPeppPeppPepp
erererer

7-Up7-Up7-Up7-Up DietDietDietDiet 7-7-7-7-
UpUpUpUp OtherOtherOtherOther

MeanMeanMeanMean
QuantityQuantityQuantityQuantity 144 5 61 35 104 61 521

MeanMeanMeanMean PricePricePricePrice 1.088 1.426 1.420 1.420 1.388 1.388 0.986

S.S.S.S. D.D.D.D. ofofofof
PricePricePricePrice 0.233 0.118 0.219 0.219 0.232 0.232 0.124

MinimumMinimumMinimumMinimum
ofofofof PricePricePricePrice

0.69 0.98 0.98 0.98 0.88 0.88 0.44

MaximumMaximumMaximumMaximum
ofofofof PricePricePricePrice

1.49 1.49 1.69 1.69 1.69 1.69 1.249

NumberNumberNumberNumber ofofofof
PricePricePricePrice

ChangesChangesChangesChanges

10 3 8 8 9 9 63

An important feature of my data is the presence of perfect multicolinearity

among the products within a line of products sold by each of the four major

companies. As shown in Table 2-6, the prices of the 21 brands vary in only 8

dimensions! From a managerial perspective, these product lines are being priced

as groups—with identical prices over the course of the year. This parallel pricing

of products within product lines or groups presents a challenge for estimation. A

second challenge for this data set is that I estimate locations of 21 brands
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(including “other).27 I show below how the information sharing feature of my

modeling framework can enable estimation of the underlying structure among the

brands – despite the presence of severe multicolinearity and the large number of

brands.

ModModModModelelelel EstimationEstimationEstimationEstimation ResultsResultsResultsResults. In general, I recommend using the NBD

model above. However, when the information in the data is limited, the NBD

model can suffer from an over-fitting problem, whereby the resulting map

describes random error or noise rather than the underlying relationship. Therefore,

for the soft drink data, I adopt only the Poisson distribution (2-12) for the

dependent variable. So, instead of (2-1’) above, I use the analogous form

0 1 2 3
2 ' 2 'log( ) log( ) log( ) ' sin cos
52 52i ii it ij ii

j
t t

i

t tp p t π πλ α α β β γ γ γ
≠

= + + + + + +∑ ,

(2-1’’)

where ( )it itE qλ ≡ ; i, j = 1, …, 21; t = 1, …, 63; 't is mean-centered ( 't t t= − );

and prices are mean-centered across time and brands.

Given the limitations of this data, the fully saturated model is not

estimable, and I instead started by estimating a model that drops the cross-price

elasticities ( 0 for all ij i jβ = ≠ ) but retains the other terms in (2-1’’). That is, this

base model has components 1a, M = 0, 3a, 4a and 5a (see Table 2-1). The DIC for

this model is 88059, with 42 parameters estimated. Many of the models for M = 1

27 A managerially interesting feature is that the Coke and Pepsi lines are negatively correlated,
apparently due to an implicit understanding between these companies that they offer
alternative price promotions. In addition, the Sprite and Slice groups are closely correlated
with the Pepsi and Coke groups, respectively, as I might expect.
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or 2 and with partially saturated terms (Components 3b, 4a, or 5a) were not

estimable, but the dominance-point formulations (3c and 4b) were estimable and

worked better than the vector counterparts. The model with components 1a, 2

(with M = 1), 3c, 4b, and 5b has a deviance of 86568 and DIC of 86584, with 25

focal parameters estimated,28 while the M = 2 version of this model has a

deviance of 76320 and DIC of 76340, with 47 focal parameters estimated, which I

report on below. Different from the beer data, the DIC difference here is much

bigger, this is due to the Poisson distribution used here, which does not account

for the over-dispersion effect.

Table 2-7 shows the estimated price elasticities from the two-dimension

model. Own-price elasticities are all less than –1 and, consistent with previous

literature on this industry (Dube 2004, 2005), own-price elasticities are very

elastic, ranging from –2.5 to –5.5. In addition, the absolute values of cross-price

elasticities are an order of magnitude smaller than the own-price elasticities, as

expected and as found for the beer data. There are, however, many negative cross-

price elasticities, which can arise when category expansion effects overwhelm

substitution effects between brands (Russell et al. 2008). Both Diet 7Up and Diet

Dr. Pepper have fairly large negative effects on the unit sales of many other

brands, which seems to indicate that the price reduction of these two brands might

benefit the whole category.

28 The effective number of parameters estimated for both one-dimensional and two-
dimensional models will be smaller, as Bayesian shrinkage imposes information-sharing
across parameters.
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TableTableTableTable 2-62-62-62-6 SoftSoftSoftSoft DrinkDrinkDrinkDrink PricePricePricePrice CorrelationsCorrelationsCorrelationsCorrelations29292929

29 “Other” refers to the composite of private labels, generics, and lesser known brands. Note the cases of correlation of 1 are identical prices to within one cent (except for
one case of a 3-cent price difference in week 55 for Caffeine-free Diet Coke).

Manufacturers

Diet Caff.-

Diet Lemon Lemon Diet Caff.- Free Diet

Diet Mount Pepsi Pepsi Lime Lime Cherry Cherry Diet Free Diet Diet Mr. Dr. Dr. Diet
Products Pepsi Pepsi Dew Free Free Slice Slice Coke Coke Coke Coke Coke Coke Sprite Sprite PiBB Pepper Pepper 7-Up 7-Up Other

Pepsi Co.

Pepsi 1 1 1 1 1 0.7 0.7 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.2 -0.2 -0.1 0.1 0.1 0.1 0.1 0.2
Diet Pepsi 1 1 1 1 1 0.7 0.7 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.2 -0.2 -0.1 0.1 0.1 0.1 0.1 0.2
Mountain Dew 1 1 1 1 1 0.7 0.7 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.2 -0.2 -0.1 0.1 0.1 0.1 0.1 0.2
Pepsi Free 1 1 1 1 1 0.7 0.7 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.2 -0.2 -0.1 0.1 0.1 0.1 0.1 0.2
Diet Pepsi Free 1 1 1 1 1 0.7 0.7 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.2 -0.2 -0.1 0.1 0.1 0.1 0.1 0.2

Lemon-Lime Slice 0.7 0.7 0.7 0.7 0.7 1 1 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 0 0 -0.3 -0.2 -0.2 -0.1 -0.1 0.3
Diet Lemon-Lime Slice 0.7 0.7 0.7 0.7 0.7 1 1 -0.2 -0.3 -0.3 -0.3 -0.3 -0.3 0 0 -0.2 -0.1 -0.1 -0.1 -0.1 0.3

Coca-Cola Co.

Cherry Coke -0.4 -0.4 -0.4 -0.4 -0.4 -0.3 -0.2 1 1 1 1 1 1 0.7 0.7 0.1 -0.1 -0.1 -0.2 -0.2 -0.2
Diet Cherry Coke -0.4 -0.4 -0.4 -0.4 -0.4 -0.3 -0.3 1 1 1 1 1 1 0.7 0.7 0.1 -0.1 -0.1 -0.2 -0.2 -0.2
Coke -0.4 -0.4 -0.4 -0.4 -0.4 -0.3 -0.3 1 1 1 1 1 1 0.7 0.7 0.1 -0.1 -0.1 -0.2 -0.2 -0.2
Diet Coke -0.4 -0.4 -0.4 -0.4 -0.4 -0.3 -0.3 1 1 1 1 1 1 0.7 0.7 0.1 -0.1 -0.1 -0.2 -0.2 -0.2
Caffeine-Free Coke -0.4 -0.4 -0.4 -0.4 -0.4 -0.3 -0.3 1 1 1 1 1 1 0.7 0.7 0.1 -0.1 -0.1 -0.2 -0.2 -0.2
Caff-Free Diet Coke -0.4 -0.4 -0.4 -0.4 -0.4 -0.3 -0.3 1 1 1 1 1 1 0.7 0.7 0.1 -0.1 -0.1 -0.2 -0.2 -0.2

Sprite -0.2 -0.2 -0.2 -0.2 -0.2 0 0 0.7 0.7 0.7 0.7 0.7 0.7 1 1 0 0 0 0 0 -0.3
Diet Sprite -0.2 -0.2 -0.2 -0.2 -0.2 0 0 0.7 0.7 0.7 0.7 0.7 0.7 1 1 0 0 0 0 0 -0.3

Mr. PiBB -0.1 -0.1 -0.1 -0.1 -0.1 -0.3 -0.2 0.1 0.1 0.1 0.1 0.1 0.1 0 0 1 0.2 0.2 0.1 0.1 0.2

Dr Pepper Co. Dr. Pepper 0.1 0.1 0.1 0.1 0.1 -0.2 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 0 0 0.2 1 1 0.9 0.9 -0.1
Diet Dr. Pepper 0.1 0.1 0.1 0.1 0.1 -0.2 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 0 0 0.2 1 1 0.9 0.9 -0.1

Seven-Up
Co.

7-Up 0.1 0.1 0.1 0.1 0.1 -0.1 -0.1 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 0 0 0.1 0.9 0.9 1 1 0.1
Diet 7-Up 0.1 0.1 0.1 0.1 0.1 -0.1 -0.1 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 0 0 0.1 0.9 0.9 1 1 0.1

Other 0.2 0.2 0.2 0.2 0.2 0.3 0.3 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.3 -0.3 0.2 -0.1 -0.1 0.1 0.1 1
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TableTableTableTable 2-72-72-72-7 ImpliedImpliedImpliedImplied SoftSoftSoftSoft DrinkDrinkDrinkDrink Cross-PriceCross-PriceCross-PriceCross-Price ElasticitiesElasticitiesElasticitiesElasticities

Pepsi
Diet
Pepsi

Mountai
n Dew

Pepsi
Free

Diet
Pepsi
Free

Lemon
-Lime
Slice

Diet
Lemon
-Lime
Slice

Cherr
y

Coke

Diet
Cherr

y
Coke Coke

Diet
Coke

Caffeine
-Free
Coke

Caff-
Free
Diet
Coke Sprite

Diet
Sprite

Mr.
PiBB

Dr.
Peppe

r

Diet
Dr.

Peppe
r 7-Up

Diet
7-Up Other

Pepsi -3.91 -0.40 0.50 0.71 -0.57 0.17 -0.27 0.14 0.44 0.95 -0.43 -0.25 0.65 0.69 -0.89 0.02 0.67 -1.16 0.63 0.01 0.63
Diet Pepsi -0.36 -4.09 0.03 -0.30 0.81 -0.64 0.55 0.50 -0.26 -0.38 0.91 0.58 -0.63 0.38 0.39 0.04 0.59 0.16 0.67 -1.20 0.56
Mountain
Dew 0.12 -0.39 -3.77 0.46 -0.52 0.31 0.00 0.46 0.68 0.09 -0.44 0.01 0.05 0.87 -0.72 0.49 0.83 -0.99 0.67 -0.33 0.50
Pepsi Free 0.59 -0.46 0.71 -3.94 -0.62 0.43 -0.20 0.24 0.70 0.56 -0.51 -0.19 0.58 0.78 -0.88 0.22 0.73 -1.16 0.63 0.09 0.55
Diet Pepsi
Free -0.43 0.91 0.00 -0.35 -4.35 -0.67 0.60 0.51 -0.29 -0.45 0.87 0.63 -0.69 0.34 0.56 0.06 0.55 0.33 0.62 -1.24 0.50
Lemon-
Lime Slice 0.28 -0.57 0.80 0.67 -0.70 -4.63 -0.16 0.30 0.88 0.26 -0.62 -0.16 0.37 0.71 -0.89 0.44 0.66 -1.16 0.51 0.24 0.36
Diet
Lemon-
Lime Slice -0.43 0.35 0.22 -0.24 0.30 -0.43 -4.12 0.81 -0.08 -0.45 0.28 0.96 -0.62 0.49 0.25 0.40 0.68 -0.02 0.66 -1.09 0.45
Cherry
Coke -0.31 0.02 0.40 -0.08 -0.08 -0.25 0.52 -3.72 0.09 -0.33 -0.05 0.52 -0.47 0.63 -0.21 0.53 0.80 -0.48 0.72 -0.91 0.48
Diet
Cherry
Coke 0.27 -0.47 0.89 0.66 -0.61 0.60 -0.10 0.37 -4.09 0.24 -0.52 -0.08 0.28 0.81 -0.81 0.44 0.76 -1.09 0.61 -0.03 0.46
Coke 0.97 -0.40 0.49 0.71 -0.57 0.16 -0.28 0.13 0.43 -3.93 -0.43 -0.25 0.66 0.68 -0.89 0.01 0.66 -1.16 0.63 0.01 0.63
Diet Coke -0.35 0.94 0.01 -0.31 0.80 -0.66 0.51 0.47 -0.28 -0.37 -4.13 0.54 -0.63 0.37 0.37 0.01 0.57 0.15 0.66 -1.20 0.56
Caffeine-
Free Coke -0.42 0.37 0.22 -0.23 0.32 -0.44 0.94 0.80 -0.09 -0.44 0.29 -4.08 -0.62 0.49 0.25 0.38 0.68 -0.02 0.67 -1.09 0.46
Caff-Free
Diet Coke 0.80 -0.52 0.58 0.85 -0.68 0.40 -0.32 0.12 0.59 0.79 -0.56 -0.30 -4.33 0.67 -0.97 0.09 0.63 -1.25 0.55 0.34 0.51
Sprite 0.04 -0.30 0.60 0.26 -0.45 -0.05 -0.01 0.43 0.33 0.01 -0.35 0.01 -0.12 -3.21 -0.69 0.28 0.93 -0.96 0.78 -0.61 0.61
Diet Sprite -0.56 0.68 -0.01 -0.43 0.74 -0.67 0.73 0.56 -0.31 -0.58 0.63 0.75 -0.79 0.29 -4.86 0.15 0.49 0.71 0.53 -1.30 0.36
Mr. PiBB -0.22 -0.23 0.63 0.10 -0.33 0.09 0.31 0.73 0.37 -0.25 -0.30 0.31 -0.30 0.69 -0.42 -4.19 0.76 -0.68 0.61 -0.63 0.38
Dr. Pepper -0.13 -0.25 0.42 0.06 -0.39 -0.25 0.04 0.45 0.13 -0.15 -0.30 0.06 -0.31 0.78 -0.63 0.20 -3.07 -0.91 0.81 -0.82 0.60
Diet Dr.
Pepper -0.63 0.65 -0.08 -0.50 0.72 -0.74 0.67 0.50 -0.39 -0.65 0.61 0.68 -0.86 0.22 0.91 0.09 0.42 -5.25 0.45 -1.38 0.30
7-Up -0.11 -0.11 0.31 0.01 -0.26 -0.35 0.08 0.43 0.03 -0.13 -0.16 0.10 -0.34 0.69 -0.54 0.11 0.87 -0.82 -2.80 -0.88 0.74
Diet 7-Up 0.53 -0.71 0.58 0.74 -0.86 0.66 -0.40 0.06 0.66 0.52 -0.75 -0.39 0.72 0.56 -1.10 0.13 0.51 -1.38 0.39 -5.22 0.31
Other 0.06 -0.05 0.31 0.11 -0.22 -0.32 0.03 0.36 0.06 0.04 -0.09 0.06 -0.20 0.68 -0.54 0.05 0.82 -0.81 0.91 -0.79 -2.46
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Table 2-8 provides the estimates of three Weights ( 1 2 3, ,w w w ) associated

with skew-symmetric component, own-price elasticities, and intercepts

respectively—cf. (2-6), (2-7), and (2-10)—as well as their corresponding standard

deviations. All of these estimates are statistically significant, and I can conclude

that asymmetry is an essential feature for my cross-price elasticities matrix.

TableTableTableTable 2-82-82-82-8 EstimatesEstimatesEstimatesEstimates ofofofofWeightsWeightsWeightsWeights forforforfor thethethethe Soft-drinkSoft-drinkSoft-drinkSoft-drink DataDataDataData

1w
Asymmetry

Weight

2w
Own-price Elasticity

Weight

3w
Intercept
Weight

Posterior Mean 0.58 2.27 4.17
Posterior St. Dev. 0.01 0.07 0.18

Figure 2-4 gives the estimated two-dimensional map (please refer to

Appendix F for the corresponding brand names to the abbreviations in the Figure),

which displays the 21 brands’ locations and the two hypothetical brands locations

(red circles) on two latent dimensions (describing the Dominance Brand Y and the

Least Vulnerable Brand Z, respectively). The horizontal dimension is restricted to

be proportional to the brand intercepts. From Figure 2-4, I observe some

interesting findings.
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FigureFigureFigureFigure 2-42-42-42-4 Two-DimensionalTwo-DimensionalTwo-DimensionalTwo-Dimensional MapMapMapMap forforforfor SoftSoftSoftSoft DrinksDrinksDrinksDrinks

First, the horizontal dimension distinguishes the coke vs. non-coke

products, with majority of the coke products considered superior to non-coke

products. Here I interpret “perceived attractiveness” as increasing as I move to the

right on the horizontal axis.

Second, the distance between points reflects the perceived similarity

between the corresponding two brands and the competition between them. Figure

2-4 indicates that Pepsi and Coke are in head-to-head competition in both

dimensions. On the other hand, Diet Pepsi, Diet Coke and Diet Pepsi Free are all

diet products and they are similar, although they seem to share a different

submarket from Pepsi and Coke. Dr. Pepper products are in direct competition

with Sprite products and 7UP, with Diet Dr.Pepper competes with Diet Spirit,

while Dr.Pepper competes with both Sprite and 7UP. Furthermore, there seems to

be a close relationship between Cherry Coke products and Lemon-Lime Slices
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products. However, the structure of this competition seems somewhat

counterintuitive, as Cherry Coke is in direct competition with Diet Lemon-Lime

Slice, while Diet Cherry Coke with Lemon-Lime Slice. A probable explanation

might be that there exist features other than Diet vs. Non-Diet that play a role in

this competitive pattern.

Third, concerning brand power and own-price elasticity, the power of a

brand should be interpreted as related to the distance between a brand and the

hypothetical brand labeled as “Y” (the left circle), where a brand’s power is larger,

the closer the brand’s location is to “Y”. Similarly, the brand that is closest to the

hypothetical brand labeled as “Z” (the right circle) in the map is considered the

least sensitive to its own-price changes and also least vulnerable to other brands’

price changes. As I can see from the map, most of the Coke and Pepsi products

have relatively lower vulnerability, measured as smaller absolute value of own-

price elasticity. This effect might be due to the high market share of these

products, and also the relatively sparse spatial density of these products. The

sparse spatial density of these products can be attributed to the fact that the Coke

and Pepsi products have been differentiated (e.g., diet vs. non-diet, caffeine vs.

caffeine-free, etc) so well that finer submarkets are formed among them than other

companies’ products. Besides, the low average prices of these products may also

play a role. When prices are already low (average $1.1 per 2 liter), consumers’

sensitivity to these products’ price reductions would be very low. Now consider

the power of all brands on the market. An interesting finding is that the brands

with the highest power are 7UP, and Dr. Pepper, rather than Coke and Pepsi
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(because 7Up and Dr. Pepper are closest to the hypothetical Dominance Brand Y).

Since both 7UP and Dr. Pepper are also quite near the least vulnerable brand Z, I

can conclude that these two brands’ high power is mainly due to their low

vulnerability (rather than their high clout). One explanation for their low

vulnerability can be that both 7UP and Dr. Pepper position their brands quite

differently from the other brands in the market. In addition, these two brands are

closer to non-coke products on the left panel of the Figure than those coke

products on the right, but closer in “perceived attractiveness” to coke products.

Pepsi and Coke, one the other hand, also have relatively low vulnerability, but

their power (and their clout) appears less than that of 7Up and Dr. Pepper. On the

other hand, both have very high brand intercepts (as shown by their position on

the right on the horizontal axis).

Fourth, MrPiBB seems like a true outlier in the soft drink market. It does

not exert influence on other brands, nor is it influenced by them. From the

consumers’ perspective, it has the lowest “perceived attractiveness” level but

highest average price. This is a classic niche brand that enjoys a quasimonopoly,

albeit with a very small segment.

Last, I derive each brand’s average clout and vulnerability (Table 2-9). Recall

the definition of clout and vulnerability are:
J

i ji
j i

Clout β
≠

= ∑ and
J

i ij
j i

Vul β
≠

= ∑ .

The entries in the table are actually iClout
J

and iVul
J

.
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TableTableTableTable 2-92-92-92-9 CloutCloutCloutClout andandandand VulnerabilityVulnerabilityVulnerabilityVulnerability

Pepsi
Diet
Pepsi

Mountain
Dew

Pepsi
Free

Diet
Pepsi
Free

Lemon-
Lime
Slice

Diet
Lemon-
Lime
Slice

Cherry
Coke

Diet
Cherry
Coke Coke

Vul/21 0.29 0.31 0.28 0.32 0.32 0.33 0.31 0.25 0.32 0.29
Clout/21 0.17 0.15 0.54 0.33 0.06 0.09 0.35 0.58 0.37 0.15

Diet
Coke

Caffeine-
Free
Coke

Caff-Free
Diet
Coke Sprite

Diet
Sprite

Mr.
PiBB

Dr.
Pepper

Diet
Dr.
Pepper 7-Up

Diet
7-Up

Othe
r

Vul/21 0.30 0.31 0.32 0.19 0.32 0.28 0.12 0.30 0.12 0.29 0.14
Clout/21 0.11 0.37 0.05 0.72 -0.12 0.40 0.79 -0.36 0.74 -0.36 0.59

AntitrustAntitrustAntitrustAntitrust Implications.Implications.Implications.Implications. The findings from the model provide us an

interesting feature of the competition in late 80’s soft drink market: products that

belong to 7Up and Dr. Pepper companies compete with each other, but in quite a

different market than products of both the Coca-Cola and Pepsi companies. A

direct implication of this finding is that the approval of both PepsiCo's proposed

acquisition of Seven-Up Co and Coca-Cola Co.'s proposed acquisition of Dr

Pepper may not necessarily “substantially lessen competition, or to tend to create

a monopoly” in the soft drink market. Actually, with both the economies of scale

and economies of scope, consumers may even benefit from these acquisitions.

This would not be true if the mergers were between Pepsi and Coca Cola, or

between 7Up and Dr.Pepper, since in either case, the competition happens within

the same strategic submarket.

It is worth mentioning that the outcome in this industry was that a third

party, Hicks and Haas, had, by October of 1986, acquired Dr Pepper, A&W Root

Beer, and 7 Up, making Hicks and Haas the third largest U.S. soft drink maker.

My finding, however, provides contrary evidence that this outcome may not be
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better than permitting the previous two merger proposals to have become realized.

2.52.52.52.5 ConclusionsConclusionsConclusionsConclusions

This essay presents a unified framework for estimating a market-structure

map that (a) represents the perceived substitutability between brands; (b) accounts

for cross-price elasticity asymmetries; (c) reasonably integrates common

marketing specifications (e.g., vector and dominant point formulations) to

represent the various demand-model components; and (d) facilitates the

estimation of price elasticities in the presence of severe colinearity in prices and

other data limitations. From a microeconomic perspective, I identify underlying

relationships between measures of cross-price elasticity, brand power,

vulnerability, clout, own-price elasticity, and spatial density. From a

methodological perspective, I demonstrate an adaptive Bayesian approach to

estimation that shares information across different brands and different terms in a

set of demand equations.

This framework can be applied to inform marketing managers who are

selecting prices for the brands in their existing product lines and who are setting

the positioning of new brands. The framework is also relevant to policy makers

applying antitrust policy relating to mergers and to monopolization. I apply this

approach to beer and soft-drink data sets and arrive at plausible estimates in light

of both economic theory and past marketing literature.

I acknowledge limitations of this study and directions for extension of this

research. The model proposed in this paper assumes that a stationary market

structure exists over time. And this assumption certainly makes the method more
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suitable for a mature product category. In particular, it would be desirable do the

following: (a) add covariates in the model such as promotions and displays (and

the lack of such information may create imprecision or bias in the estimation of

such elements as brand intercepts); (b) analyze the time dimension more explicitly,

including lagged effects; (c) consider alternative functional forms (other than (2-1)

and (2-5)); and (d) develop flexible, utility-maximization-based models, capable

of estimating market structure that could also be useful for simulating consumer

welfare effects for policy purposes (Bronnenberg et al. 2005). Concerning this last

point, such utility-based models would serve as a complement to the price-

elasticity, market-demand-based approach of the current paper.

Overall, price elasticities provide important information about competition

in a market, and the availability of detailed scanner data in nearly all retail outlets

serves as a potential source of this information. I look forward to continued work

on elasticity-based market structure analysis that more fully exploits the

potentialities of such data.
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In Chapter 2, I described an approach to internal analysis of market

structure based on the reduced-form demand structure common in economics, I

now turn to an approach to internal analysis of market structure which focuses on

embedding market structure into consumer's utility functions themselves, in the

spirit of the choice modeling literature. The reason I propose these two different

approaches is to provide researchers different angles to view similar research

question, and also to address different research needs, as each method has its own

weaknesses and advantages.

In particular, as with all other reduced-form models, the model proposed in

Chapter 2 has the advantages of being flexible, requires fewer (and weaker)

consumer-level behaviour assumptions, is not sensitive to measurement error in

the left-hand side variables (Berry 1994), and lets the data “speak.” However,

how to address the change of the resultant market map in response to the addition

or deletion of products can be challenging . The utility-based approach, on the

other hand, does not suffer from this limitation. And as a structural model,30 the

utility-based approach has the benefit of being parsimonious. The market

structure derived in this way is also more stable, since the addition or deletion or

reposition of a brand will not fundamentally change the derived market structure.

30 By structural models, I mean those models that “use a behavioural specification of
economic agents (consumers and/or firms) to derive a relationship between endogenous and
exogenous variables that may be observed by an empirical researcher” (Mazzeo 2006)
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Furthermore, the model does not “run the risk of producing misleading forecasts

of the effects of policy/strategic changes that change the stochastic context in

which the decisions are made” (Chintagunta, Erdem, Rossi & Wedel 2006).

However, the disadvantage of this approach is that its performance actually relies

on the validity of discrete choice assumptions, such as that choice be constrained

to be “single-item single-unit.” For some product categories where this

assumption does not hold, the reduced-form-based approach may be better than

the utility-based approach. For a detailed comparison of reduced-form and

structural models, see Chintagunta, Erdem, Rossi & Wedel (2006) and Mazzeo

(2006).

In both economics and marketing, estimating a utility-based demand

function using aggregate data is not new (e.g., Berry 1994; BLP 1995; Kim 1995;

Zenor & Srivastava 1993; Kamakura & Srivastava 1986; Chen & Yang 2007;

Musalem, Bradlow and Raju 2007). The main focus of this literature is on how to

account for the heterogeneity and/or the endogeneity problem so as to derive valid

estimates of demand parameters. Since sometimes, aggregate data alone may not

enable precise estimates of heterogeneity parameters, previous researchers have

used consumer-level data (e.g., Goldberg 1995, Albuquerque and Bronnenberg

2005) or the distribution of consumer-level data (e.g., Petrin 2002) to facilitate the

analysis of aggregate data. Although the current essay is built upon this literature,

my research interest focuses on internal analysis of market structure directly from

demand function with aggregate data. This focus puts this research in direct

contrast with the external analysis of preference in Kamakura & Srivastava (1986),
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and also to the choice map with panel data (Elrod 1988a, 1988b). Similar to

Chapter 2, the current essay emphasizes the importance of utilizing all market

structure information in the utility function (i.e., both mean preferences in the

population and the covariance matrix of preferences) to derive the market map,

therefore is also different from Chintagunta et al. (2002, 2003). But more

explicitly than in Chapter 2, the proposed utility function has the flexibility of

incorporating both vertical latent characteristics (taking the form of a vector

formulation) and horizontal latent characteristics (taking the form of an ideal-

point formulation). This differs from all previously mentioned work that use

either the vector model (Chintagunta et al. 2002, 2003) or the ideal point model

(Kamakura & Srivastava 1986) of preferences is assumed. The market map

generated is able to represent both types of attributes. Moreover, rather than

relying on the consumer-level information to augment the aggregate data (as done

in some past work), and relating this information directly with the heterogeneity

parameters in the utility function, I propose ways to combine aggregate data with

survey data (i.e., forced switching data, defined below) to help estimate not only

consumer heterogeneity but also the latent market map in the utility function.

Brand switching data is an important source that has been used to form

proximity measures in marketing research (Lehmann 1972; Desarbo & Manrai

1992; Chintagunta 1998). Forced switching data, as one form of brand switching

data, measures the substitutability relationships between pairs of brands by

providing the probabilities of switching to products in the situation where an

individual’s most preferred product is assumed (forced) to be not available. In the
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literature, forced switching data had been used to judge a predefined market

structure by conducting a series of classical hypothesis tests (Urban, Johnson &

Hauser 1984). The basic logic is that when a specific set of submarkets exist, the

forced switching probability should be different from what is predicted only by

market share information. That is, we should observe

 if j is in the same submarket as i
1

 if j is NOT in the same submarket as i
1

j
ij

i

j
ij

i
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MS
MS

p
MS

>
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The implication here is that brands that have more commonality will have higher

than average forced switching probability. However, when the purpose of the

research is to identify the market structure, this method (which requires

hypothesizing a market structure) is not effective anymore, and usually MDS

techniques can be adopted instead. Nevertheless, ambiguity still exists about how

to transform an asymmetric matrix of forced switching probabilities into a

symmetric distance measure to be used with MDS methods. For example, some

researchers might convert the forced switching matrix into a distance measure by

simply averaging the switching probability matrix with its transpose or forming a

symmetric matrix using the switching frequency. Notice that this approach treats

any asymmetry as noise. A behavioral justification that can also account for

asymmetry in this kind of data is therefore of theoretical interest.

In this essay, I will propose a behavioral justification that helps establish a

linkage between aggregate data and forced switching data. The intuitive idea

behind this method is that consumers’ brand preferences give us important market
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structure information regarding brands’ proximities in some latent attribute space,

and the same proximity relationship across brands influences the consumers’

forced switching behavior. Furthermore, since the utility function I propose

embodies both the vector model and the ideal-point model to incorporate vertical

and horizontal characteristics, I am able to show that it is the vertical

characteristic that governs the observed asymmetric pattern in forced switching

data.

The rest of this essay is organized as follows. Section 3.2 introduces the

forced switching data. Section 3.3 illustrates my modeling framework. Section

3.4 describes my approach to model selection, identification, and estimation.

Then in section 3.5 my modeling approach is applied to the soft drink aggregate

data and the forced switching data. Section 3.6 concludes with a summary of

limitations of my approach and directions for future research.

3.3.3.3.2222 TheTheTheThe ForcedForcedForcedForced SwitchingSwitchingSwitchingSwitching DataDataDataData

The data I use for this essay belong to the same industry as studied in

Chapter 2: the Carbonated Soft Drinks, and come from two sources: aggregate

scanner data and forced switching data. The former has been given detailed

illustration in Chapter 2 (section 2.5.2). Therefore in this section, I will focus

only on the second data type, in which consumers were surveyed to determine

their willingness to substitute from one product to another. The data were

collected in 1988, the same year when the aggregate data was collected. In
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particular, after giving a brief introduction and showing the respondent a list of

47 two-liter soft drinks, the consumers were asked: 31

QuestionQuestionQuestionQuestion 1.1.1.1. Do you purchase any of the products in this list at least once a

month? Which ones?

[The ith answer is coded as product i.]

QuestionQuestionQuestionQuestion 2.2.2.2. Now assume that one day, while shopping for (product i), you find

that there are no more (product i)s on the shelf. Which product in

this list would you be most likely to purchase instead of (product i)?

The researchers then repeated Question 2 for each product mentioned in response

to Question 1. An answer to Question 1 and the associated answer to Question 2

represent a forced switch from one soft drink to another.

The data were collected in an intercept survey conducted outside the same

St. Louis supermarket (again, the same supermarket where the aggregated data

were collected) during a one week period. Of the 1,180 shoppers approached,

455 (38.5%) responded; an additional 267 (22.6%) were willing to respond but

did not purchase any of the listed products. On average, each of the 455

respondents indicated that he or she purchased 2.44 different two-liter soft drink

brands a month.

Table 3-1 shows the survey responses for 20 of the key products involved

in the FTC v.Coca-Cola Co. litigation. A row corresponds to a soft drink that a

respondent selects in answer to Question 1 (“purchase at least once a month”).

31 The product list actually contained 48 products. We noticed, however, that many
respondents meant Coke Classic, but said Coke when they saw the product ‘Coke’ on the list.
We, thus, treat Coke and Coke Classic as one single product, call that product ‘Coke,’ and
perform the analysis using 47 products. The survey was conducted from September 30
through October 6, 1988.
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Let kN denote the number of times the product in the kth row was chosen as an

answer to Question 1 (see the left-hand column). A column corresponds to a soft

drink that a respondent selects as an answer to Question 2 (“most likely to

purchase instead”). I let kjN denote the number of times the product in the jth

column was chosen instead when the product in the kth row was not on the shelf.

The entry in the Sprite row and 7-Up column, for example, indicates that of the

Nk = 41 respondents that purchase Sprite “at least once a month,” Nkj = 22 would

be “most likely to purchase” 7-Up “instead” if Sprite were not on the shelf. It is

worth noting that although the forced-switching data is not readily available, it

does provide potential information for strategic stockouts.
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QuestionQuestionQuestionQuestion 1111
QuestionQuestionQuestionQuestion 2222

ResponsesResponsesResponsesResponses ResponsesResponsesResponsesResponses

(Ni) (Nij)

Row
Total Pepsi

Diet
Pepsi

Mount.
Dew

Pepsi
Free

Diet
Pepsi
Free

Lemon
Lime
Slice

Diet
Lemon
Lime
Slice

Cherry
Coke

Diet
Cherry
Coke Coke

Diet
Coke

Caff.-
Free
Coke

Caff.-
Free
Diet

Coke Sprite
Diet

Sprite
Mr.

PiBB
Dr.

Pepper

Diet
Dr.

Pepper 7-Up
Diet
7-Up Other

Pepsi 148 0000 1 1 3 0 1 0 5 0 84 3 1 0 0 0 1 3 0 5 1 39

Diet Pepsi 110 6 0000 1 1 1 1 0 0 1 4 57 0 2 2 0 0 3 3 0 4 24

Mountain Dew 29 1 1 0000 0 0 4 0 0 0 3 0 0 0 1 0 0 2 1 1 0 15

Pepsi Free 24 3 2 0 0000 0 1 0 0 0 2 2 7 0 0 0 0 0 0 0 0 7

Diet Pepsi Free 21 1 1 0 1 0000 0 0 0 0 0 6† 1 9 0 0 0 0 0 0 1 1

Lemon-Lime Slice 7 0 0 0 0 0 0000 0 0 0 0 0 0 0 1 1 0 0 0 2 1 2

Diet Lemon-Lime Slice 3 0 1 0 0 0 0 0000 0 0 0 0 0 0 0 2 0 0 0 0 0 0

Cherry Coke 25 7 0 0 0 0 0 0 0000 0 5 0 0 0 1 0 0 0 0 1 0 11

Diet Cherry Coke 15 2 1 0 0 0 0 0 0 0000 0 4 0 0 0 0 0 1 1 0 0 6

Coke 168 103 2 0 0 0 0 0 4 0 0000 5 1 1 3 1 1 6 0 4 0 37

Diet Coke 140 4 74 1 1 2 0 0 1 4 5 0000 0 3 3 2 0 0 5 1 3 31

Caffeine-Free Coke 16 4 0 0 6 1 0 0 0 0 2 0 0000 0 0 0 0 0 0 0 0 3

Caff-Free Diet Coke 45 3 5 0 1 14 0 0 0 0 2 3 0 0000 0 2 0 0 1 1 0 13

Sprite 41 0 0 2 0 0 3 0 0 0 4 1 2 0 0000 2 0 1 0 22 1 3

Diet Sprite 15 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0000 0 0 0 0 7 4

Mr. PiBB 3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0000 1 0 0 0 1

Dr. Pepper 59 6 2 2 0 1 0 0 2 1 8 3 0 0 0 0 11 0000 0 1 0 22

Diet Dr. Pepper 12 0 2 0 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0000 1 0 6

7-Up 51 1 0 1 0 0 6 0 0 0 2 1 0 0 25 0 0 0 0 0000 1 14

Diet 7-Up 30 1 1 0 0 0 0 3 0 0 2 1 0 1 1 8 0 0 0 0 0000 12

Other 147 14 5 2 3 1 2 0 3 0 23 5 0 2 3 2 2 2 0 5 2 71

Column Total 1109 157 98 10 16 21 19 4 16 6 147 93 12 18 40 20 15 19 11 44 21 322

TableTableTableTable 3333-1-1-1-1 ForcedForcedForcedForced SwitchingSwitchingSwitchingSwitching DataDataDataData
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3333....3333 ModelingModelingModelingModeling FrameworkFrameworkFrameworkFramework

In this section, a utility function that incorporates both vertical

characteristic (using vector model) and horizontal characteristics (using ideal-

point model) is developed, and assumed to underlie both aggregate demand data

and forced switching data. The incorporation of consumer heterogeneity in the

utility function permits flexible substitution patterns across alternatives. And the

vertical characteristic, interpreted here as quality, explains the observed

asymmetric switching patterns in forced switching data.

3.3.13.3.13.3.13.3.1 ModelingModelingModelingModeling ScannerScannerScannerScanner DataDataDataData

UUUUtilitytilitytilitytility structurestructurestructurestructure.... Concerning notation, let Tt ,...,1= weeks;

Ii ,...,1= individuals; Jjk ,...,1, = brands; Mm ,...,1= latent dimensions for a

market structure space; jmθ the mth coordinate for brand j; imw is the mth ideal

point coordinate for individual i; jα describes the quality level of product j; ν

describes the consumer i’s marginal willingness-to-pay for quality, assumed to be

the same across consumers; β describes price sensitivity, again assumed to be the

same across consumers; jtpln is the log price for product j at week t. And further

let α denote the J x 1 vector of quality measures, mθ the

J x 1 vector of brands’ coordinates on mth latent dimension,

and [ ]Mm θθθ .......1=Θ . Finally, let ),...,,...,( ..1. Tt qqqq = ,

with [ ]Jttt qqq ...1. = ; and ),...,,...,( ..1. Tt pppp = , with [ ]Jttt ppp ...1. = .

I define the latent utility derived by consumer i from consuming product j



117

at week t as given by the following function:

ijtjt

M

m
imjmjijt pwu εβθνα +−−−= ∑

=

ln)(
1

2 , (3-1)

Some important conceptual issues need to be emphasized for my utility

function in Equation (3-1). First, the utility function combines both vertical (i.e.,

α ) and horizontal characteristics 32 (i.e., Mmm ,...,1=，θ ), reflecting the fact that

these two types of characteristics are embodied actually in most of the products in

the market (Anderson, De Palma & Thisse 1992, Chapter 8). The vertical

characteristic is interpreted as quality, although it captures more subtle concepts

such as a brand image, attractiveness, familiarity, etc. No matter what

interpretation is given to this attribute, the essence of it is that the consumers have

a common ordering of the brands in terms of this feature, and when all brands are

priced at the same level, all consumers agree that more of this feature is always

better, even though they may vary in their willingness to pay for this feature. On

the other hand, horizontal characteristics find their origin in consumers’ taste

dispersion, as reflected by the ideal-point framework in the utility function

(Shocker and Srinivasan 1979).

Second, although I use the term “ideal point” for .iw in Equation (3-1), it is

better interpreted as the feasible ideal point, or, more accurately, an attraction

point. An ideal brand would have infinite quality at zero price, which is not very

relevant for consumer choice. By contrast, an attraction brand would be the most

preferred brand that lies in the market map spanning all brands. Notice a

32 Throughout this dissertation, the words characteristics, features, and attributes all share the
same meaning.
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consumer's attraction brand is not unique, and could differ across purchase

occasions. The non-uniqueness property of the attraction brand explains why in

reality, we observe different brands being chosen by different consumers in

different occasions. For simplicity, from now on, I would still use “ideal point”

terminology, although what I really mean is the attraction point.

Third, although this non-traditional utility function blends itself well in

the product differentiation literature in both economics and marketing (e.g.,

Anderson, De Palma & Thisse 1992; Sutton 1986; Vandenbosch & Weinberg

1995), there are two differences that need to be emphasized here: (a) in the

current essay, I model both types of characteristics as latent. In particular, the

horizontal differentiation of the products is assumed to be explained by M latent

characteristics ( Mmm ,...,1=，θ ), and the vertical differentiation is captured by

one latent variable (α ). Therefore, the approach adopted here focuses on internal

analysis of preferences (Elrod 1991). It is worth mentioning that adding observed

attributes is also possible for this utility function. The observed attributes can be

included directly in the right-hand side of the Equation (3-1), or used to explain

the latent attributes by adding another hierarchical level in the model structure.

The current paper, however, only focuses on latent attributes for simplicity. (b)

The horizontal characteristics and the vertical characteristic are not necessarily

unrelated to each other. Specifically, in this essay, I will explore modeling the

vertical feature as spanned by the same characteristics space of the horizontal

differentiation. That is, we will consider the case

∑
=

=
M

m
jmmj

1
θγα , (3-2)
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One potential advantage of this specification is its parsimony, in the sense

that it reduces the number of parameters that require estimates, especially when

the number of differentiated products is large in the market. Another more

important advantage is that it helps researchers to use a single spatial map to

explain all brand-related differences, so now the effect of the repositioned, new

or deleted brands on quality level can also be predicted. I acknowledge that there

certainly exist some contexts that quality is simply a unique feature, and the

specification in (3-2) will not work. And under these circumstances, researchers

can always estimate α as separate parameters from Mmm ,...,1=，θ , otherwise

any attempt that tries to impose the specification in (3-2) may lead to insignifant

parameter estimates for Mmm ,...,1=，γ , and poor model performance. However

for a product cateogry featured mainly by horizontal differentiation, we can put

forward conceptual justification for this specification. For example, in the soft

drink industry, quality may be more likely to be related with such concepts as

consumers’ perceived attachment or familiarity to a certain brand, which may

connect to such horizontal features as cola vs. non-cola, name of manufacturers,

or even spatial density (see section 2.3.3 for a detailed illustration of spatial

density concept) which is captured in a spatial map of horizontal characteristics.

Fourth, consumer heterogeneity in the current essay is said to be described by a

consumer’s ideal point (i.e, MmNiwim ,...,1;,...,1, == ) with respect to the

horizontal characteristics Mmm ,...,1=，θ . Inclusion of this heterogeneity is

necessary for avoiding the unreasonable substitution pattern across brands

implied by the IIA assumption of a standard logit model (Berry 1994; BLP 1995).
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In fact, it can be shown that the heterogeneity of preferences implies that the

choice probability for a given alternative j will depend not only on its own

position on the structural map ( Mmjm ,...,1=，θ ), but also on the other

alternatives’ position (see Appendix D for more detailed illustration, which is

logically quite similar to Kamakura & Srivastava 1986). Finally, both

willingness-to-pay (i.e., ν ) and price sensitivity parameter (i.e., β ) are assumed

here to be the same across consumers for simplicity. I also consider adding the

heterogeneity in these two parameters a future extension of current work. It is

worth noting that when quality α is treated as a latent variable and modeled as in

Equation (3-2), and the willingness-to-pay parameter ν is considered a fixed

effect, we will have an identification problem of estimating both ν and

Mmm ,...,1=，γ . So from now on, I will drop ν from the equation (3-1).

Fifth, although my proposed utility function assumes ideal-point model

for horizontal characteristics, the formulation actually accommodates linear or

monotonically increasing preferences, which occur when the ideal points go to

infinity (Carrol 1972, Kamakura & Srinivasan 1986). And when this happens,

the utility function in Equation (1) will solely depend on vector formulation.

Furthermore, according to Kamakura & Srinivasan (1986): “a distribution of

ideal points located at infinity or substantially beyond the relevant range of the

attribute space would approximate a random distribution of linear preferences.”

AggregateAggregateAggregateAggregate ChoiceChoiceChoiceChoice Probability.Probability.Probability.Probability. Assuming ijtε in the utility function is

distributed independently according to a Type I Extreme Value distribution with

mean zero and unit scale parameter, and combining Equation (3-1) and (3-2), the
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probability ijtρ , that the ith consumer in period t chooses brand j, is then given by

∑ ∑∑

∑∑

= ==

==

−−−

−−−
= J

l
lt

M

m
imlm

M

m
lmm

jt

M

m
imjm

M

m
jmm

ijt

pw

pw

1 1

2

1

1

2

1

)ln)(exp(

)ln)(exp(

βθθγ

βθθγ
ρ (3-3)

Since the data we observe is aggregate level, it is not possible for us to

estimate imw for each household. Hence I impose distributions for these

parameters across households, with the parameters for these distributions

estimated instead, when applicable. Specifically, I rewrite Equation (3-3) as

∑ ∑∑
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ρ , (3-3’)

and denote ),|( Ωwwf , where w is M by 1 vector, a multivariate normal

distribution with mean vector w and variance-covariance matrix Ω . Then by

integrating the probability in Equation (3-3’) over the proposed multivariate

normal distribution, we derive the aggregate probability function for choosing

each brand j at week t,

dwwwf
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(3-4)

where ],...,[ 1 Mγγγ = . I acknowledge the potential limitation of assuming a
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multivariate normal distribution for heterogeneity parameters. A bi-modal

distribution or multi-model distribution may better describe this dataset. However,

I leave this conjecture for future research.

Multinomial-distributedMultinomial-distributedMultinomial-distributedMultinomial-distributed AggregateAggregateAggregateAggregate SalesSalesSalesSales Data.Data.Data.Data. In this section,

consistent with the common practice of marketing literature (Kim 1995; Zenor &

Srivastava 1993; Bodapati & Gupta 2004), I assume that the units of brand i

purchased at week t are independently made by itq distinct number of households,

with each household purchases at most one unit of a product at each week.

Therefore the observed aggregate unit sales itq come from a multinomial

distribution in which probabilities are given by Equation (3-4). (For a detailed

discussion regarding the multinomial distribution assumption for aggregate data,

please refer to section 1.2.2) That is, we have

∑
=

=ΩΘ
J

j
jtttjtt qQQ,wplmultinomiaq

1
.    ),),,,,,((~ βγρ

with the density function given by

jtqJ

j
tjt

Jttt

t
tt ,wp

qqq
Q,wpq ∏

=

ΩΘ=ΩΘ
1

.
21

.. ),,,;(
!!...!

!
),,,|Pr( βγρβγ， . (3-5)

So the likelihood function for aggregate data would be

∏
=

ΩΘ=
T

t
tt ,wpq

1
..agg ),,,|Pr(L βγ， (3-6)

3.3.3.3.3333.2.2.2.2 ModelingModelingModelingModeling thethethethe ForcedForcedForcedForced SwitchingSwitchingSwitchingSwitching DataDataDataData

UtilityUtilityUtilityUtility StructureStructureStructureStructure andandandand ForcedForcedForcedForced SwitchingSwitchingSwitchingSwitching Probability.Probability.Probability.Probability. The marketing

literature has witnessed a long history of relating observed brand-switching data

with brands similarity, which is measured either directly by the distances between
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pairs of brands (Lehmann 1972; Desarbo & Manrai 1992; Chintagunta 1998), or

indirectly by brands’ substitutability pattern such as price elasticities (Bucklin,

Russell & Srinivasan 1998). The basic assumption underlying this literature is

that consumers are more likely to switch between brands which are more similar

to each other than those which are less similar (Urban, Johnson & Hauser 1984;

Novak & Stangor 1987). Based on this assumption, and given the utility structure

in Equation (3-1), I assume that when consumers’ first priority brand k is out of

the market, they would choose a brand j that has the closest distance to k in the M-

dimensional structural map when every other factor (i.e., quality level, prices) is

set to be equal. Following this logic, a consumer at week t will choose a brand

that maximizes his/her utility function of the form (combining Equation (3-1) and

Equation (3-2))

kjptu ijtjt
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, εβθθθγ . (3-7)

Therefore, the probability of brand j being chosen when the k as the first option is

out of market will be
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Since we have IID Type I extreme value distribution with mean zero and unit

scale parameter for ijtε , we have:
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And when kj = , we have the following equation due to the nature of the forced

switching data:

 0, =− jjπ . (3-8b)

Further, notice that the assumed relationship between brands’ similarity and

switching pattern is consistent with the substitutability pattern implied by the

utility function. Specifically, in section 3.3.1 and Appendix D, I show that, when

consumer heterogeneity is included in the utility function, two brands that

“resemble” each other tend to have higher covariance in utilities, therefore higher

substitutability.

Two issues need to be emphasized for the utility function in Equation (3-7).

First, this utility function does not consider consumers’ variety-seeking behavior

(Chintagunta 1998), and it implies that given a mature product category crowded

with competitors, the chosen brand ought to be close to the feasible ideal brand on

that occasion. The first limitation serves as a future extension of current research.

While for the second point, Figure 3-1 illustrates the idea in a three-brand

scenario, where brand A is chosen initially. And when it is removed from the

market, it serves as an approximation to the feasible ideal point for the consumer.

Now, any brand (in this example, brand B) that is closest to it in this metric space

would have higher probability to be chosen, of course conditional on all other

factors being the same (e.g., quality, prices). This is actually the position taken by
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Lehmann (1972), who proposes that the last-period choice is an indicator of an

individual’s ideal point. Intuitively speaking, there might exist some brand that,

when consumers stick to their true feasible ideal point (i.e., .iw ), actually generates

higher utility than brand B. In reality, however, certain concerns may prevent

consumers from engaging totally independent new search based on utility

function (3-1): the consumption inertia due to, for example, switching cost;

uncertainty related with the true ideal point; the salience of certain attributes

associated with the first chosen brand A; and the correlation among alternatives,

etc.

Dim 1

Dim 2

A
B

C

FigureFigureFigureFigure 3333-1-1-1-1 IdealIdealIdealIdeal PointPointPointPoint ModelModelModelModel forforforfor ForcedForcedForcedForced SwitchingSwitchingSwitchingSwitching DataDataDataData

Second, the utility function in (3-7) says consumers, when making a

switch, consider not only the similarity of the new brand with the first priority

brand k, but also the quality and price level. So when two brands that have the

same distance to k, only the brand that has the highest quality-price ratio will be
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chosen. And this also implies that for any two brands j and k, the forced switching

probabilities are not symmetric, that is  || ,, tt jkkj −− ≠ ππ . In particular, by

appropriate rearranging the components in Equation (3-8), we derive the

following formula

kj
dW

dW
t J

kl
lklt

jkjt
kj ≠

−

−
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− ，  
)exp(

)exp(
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with ∑∑
==
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M

m
kmjmjkjt
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m
jmmjt dpW

1

2

1
)(   ),lnexp( θθβθγ . Here 0>jtW is the

weight for brand j, and is related with brands’ quality-price ratio level. This

formulation coincides with Shepard (1957)’s suggestion regarding adding weights

to distance measure to control the asymmetric pattern in observed stimulus and

response matrix. Furthermore, Equation (3-8a) also assumes that a brand’s price

only linearly affects the utility, therefore, consumers, when making comparison

between two brands, do not make price-based adjustments for each attribute

dimension jmθ .

It is worth mentioning that the above equation (3-8’’) also implies the

observed asymmetry in forced switching probability is resulted from two sources:

(1) weight differences (i.e., ktjt WW ≠ ): products that have higher weight tend to

be more dominant (powerful) in the market; (2) product’s weighted proximity to

all other alternatives in the market: products that are more close to all the other

brands, especially those brands that have higher power (i.e., denser space in

metric space) have lower corresponding forced switching probabilities
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AggregateAggregateAggregateAggregate ForcedForcedForcedForced SwitchingSwitchingSwitchingSwitching Probability.Probability.Probability.Probability. Notice that the forced

switching probability in Equation (3-8) is time-specific ( jtpln ).33 Since the

forced switching data we observe is usually collected at one time, it is not

possible for us to know exact jtp information. One approach to solve the time-

dependent problem is to calculate the weighted average of prices over time for

each alternative, with the weight depending on quantity purchased for this

alternative at each time. 34 The number of weeks used for this calculation can be

set to equal the total number of weeks for the aggregate scanner data. Intuitively,

for a product category featured mainly by vertical differentiation,

including jtpln is important, since it can explain why most of the times we

observe consumers only switch between products that have similar quality level.

However, when it concerns a horizontally differentiated product category, as in

soft drink industry, a more simple way would be simply dropping this price term

from Equation (3-8), since most of the products may be priced very similar,

especially when they are within the same product line. Besides, different brands

may take turns frequently engaging in promotion activities (e.g., Pepsi and Coke

in my data set), so in long run, the difference in their average prices may be small

enough to be ignored by consumers. Specifically, when applying the soft drink

33 When heterogeneity is added to the willingness-to-pay parameter, the forced switching
probability is also individual-specific.
34 Using weighted average of prices may not always be a good idea, as it may put too much
weight for prices at discount period. For certain product category (e.g., luxury brand),
consumers may take the prices that appear most frequently during a specific period of time as
the prices considered in their forced switching behavior.
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data, instead of Equation (3-8a), I estimate
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MultinomialMultinomialMultinomialMultinomial DistributedDistributedDistributedDistributed Forced-SwitchingForced-SwitchingForced-SwitchingForced-Switching Frequencies.Frequencies.Frequencies.Frequencies. In this section,

the notation is consistent with section 3.3. I assume that when brand k was chosen

as a first priority, the observed frequency kjN of switching from k to brand j

follows a multinomial distribution in which probability is given by Equation (3-

8’’’). Let [ ]kJkk. ,...,NNN 1= , and [ ]..1 J,...,NNN = , then we have,

0,),),,((~
1

,. ==Θ ∑
=

− kk

J

j
kjkkkjk NNNNlmultinomiaN γπ ,

with the density function given by
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So the likelihood function for forced switching data would be

∏
=

Θ=
J

k
kN

1
.swi ),|Pr(L γ . (3-10)

The multinomial assumption treats every observed switching comes from

an independent consumer. 35 This assumption might still be valid, however, if we

consider different first choices for a consumer come from the needs for different

household members or for different usage occasions. And these different needs

result in multiple ideal points (Lee et al. 2002) for second choice.

35 The forced switching data I use in this essay actually permited consumers to pick more than
one brand as their first priority.
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Finally, combining the aggregate scanner data and forced switching data,

the total likelihood function would be
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(3-11)

3333....4444 ModelModelModelModel IdentificationIdentificationIdentificationIdentification andandandand EstimationEstimationEstimationEstimation

3.4.13.4.13.4.13.4.1 ModelModelModelModel IdentificationIdentificationIdentificationIdentification

My model focuses on the internal analysis of preference, and notice the

latent parameters in the model include the heterogeneous ideal-

points ],...,[' 1 Mwww = , and the brand location matrix [ ]Mm θθθ .......1=Θ .

As I discussed before, I assume the M by 1 ideal-point vector w follows a

multivariate normal distribution with mean w and variance-covariance matrix Ω

(i.e, ),|( Ωwwf ). The brand location parameters [ ]Mm θθθ .......1=Θ enter

the equation (3-1), (3-2), (3-7), mainly through the ideal-point formulation. They

are subject to the same flipping, rotation as well as location problems of a typical

inter-brand distance calculation. Therefore, following Elrod (1988b), to solve the

rotational problem of the map, Ω is constrained to be diagonal with the form

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=Ω

2
M

2
2

2
1

000
....00

0

σ

σ
σ

.

This constraint is without loss of generality. The covariance matrix Ω measures

the degree of dispersion of the ideal-points over the attribute space. The smaller

the 2
mσ the more homogeneous consumers’ preferences are along the mth attribute



130

dimension. Further, similar to section 2.4.2, for the origin indeterminacy, I impose

a restriction on the coordinates for each dimension such

that .,...,1,0
1

Mm
J

j
jm ==∑

=

θ To solve the flipping problem, I constrain M stimulus

coordinates to lie in the positive orthant of the derived space. For instance, with

M=2, I constrain the elements of Θ on the diagonal on the positive real line

(i.e, ，， 00 2211 >> θθ ).

Finally, to summarize the notation of the heterogeneity distribution, I can

write

),....,,|(),|( 22
1 Mwwfwwf σσ=Ω (3-12)

3.4.23.4.23.4.23.4.2 ModelModelModelModel EstimationEstimationEstimationEstimation

Similar to Chapter 2, a hierarchical Bayesian modeling approach is

adopted and MCMC method is used to facilitate the estimation. The model

selection is mainly to select the number of dimensions M. Again, since adaptive

Bayesian shrinkage (see section 2.4.3) is used in estimating the brands locations,

the number of parameters being estimated is hard to calculate exactly. So the DIC

for focal parameters (see section 2.4.1) is applied for the purpose of model

selection.

Given Equation (3-11) and (3-12), the joint posterior distribution for our

model is as follows
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where (.)  φ is the prior distribution for the corresponding parameters. In

particular, the second line of Equation (3-14) gives the joint likelihood function of

the data; the third line the prior distribution for the focal parameters of the model;

the fourth line the prior for the hyper-parameters. I adopt the adaptive Bayesian

shrinkage idea discussed in section 2.4.3 when estimating Θ , that

is, 20jm m( ) ~ N( , )φ θ τ . Then I assign weakly informative priors on all the hyper-

parameters and the other parameters. That is, for βγ ,, mm w , a univariate normal

distribution )10,0( 4N is imposed; while for all standard deviance parameter,

2
mσ , 2

mτ , an inverse gamma distribution is imposed, say, 2 ~ (0.01,100)m Gσ − ,

with the second term in the gamma distribution a scale parameter. Finally, since

no analytical solution exists for the integrations in Equation (3-4), numerical

integration is used.

The estimation of the proposed model is carried out by setting up a series

Markov chain and iteratively sampling from the conditional distributions of model

parameters. The draws for the parameters are complicated due to the

approximation in Equation (3-4), so the Metropolis-Hasting algorithm is used
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throughout the whole simulation process (for details, see Appendix E).

3333....5555ApplicationApplicationApplicationApplication

The model is applied to the data from the carbonated soft drink industry,

which consists of the aggregate weekly store-level scanner data and the forced

switching survey data. The MCMC algorithm is implemented in R, and for one-

dimensional model, the total deviance is 78158.24 and DIC is 78181. The number

of focal parameters are 24. While for two-dimensional model, deviance is

69385.04 and DIC is 69430.05. The number of focal parameters are 47. To

facilitate better comparison across models in this Chapter and Chapter 2, I further

decompose total deviance of the model into two parts: the deviance for soft drink

data and the deviance for forced switching data. In particular, for one-dimensional

model, the deviance for soft drink data is 72775.84 and for forced switching data

is 5382.38. For two-dimensional model, the total deviance is with soft drink data

65986.05 and forced-switching data 3398.988. This suggests the two-dimensional

model works much better than one-dimensional model. So I report the findings

from the two-dimensional model in the following paragraphs.

Table 3-2 shows the estimated utility function parameters from the two-

dimensional model.
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TableTableTableTable 3-23-23-23-2 EstimatesEstimatesEstimatesEstimates ofofofof UtilityUtilityUtilityUtility FunctionFunctionFunctionFunction ParametersParametersParametersParameters fromfromfromfrom 2D2D2D2DModelModelModelModel
Posterior Mean
(Posterior Sd.)

Price sensitivity β 5.7 (0.021)∗

Quality coefficients
1γ -0.89 (0.057) ∗

2γ 2.23 (0.053) ∗

Heterogeneity Parameters
for Ideal Points

1w 1.07 (0.029) ∗
2
1σ 0.51 (0.011) ∗

2w -0.04 (0.027)
2
2σ 0.36 (0.012) ∗

Hyperparameters
(Shrinkage effects) 2

1τ 0.82 (0.29) ∗
2
2τ 0.57 (0.20) ∗

Brands Locations First Dimension Second Dimension
Pepsi 1.31 (0.04) ∗ 1.24 (0.03) ∗

Diet Pepsi 0.31 (0.03) ∗ 0.44 (0.02) ∗
Mountain Dew -0.35 (0.06) ∗ -0.63 (0.03) ∗

Pepsi Free 0.16 (0.04) ∗ -0.06 (0.02) ∗
Diet Pepsi Free 0.3 (0.03) ∗ 0.26 (0.02) ∗
Lemon-Lime

Slice
-0.4 (0.05) ∗ -0.87 (0.03) ∗

Diet Lemon-
Lime Slice

-0.38 (0.06) ∗ -0.73 (0.03) ∗

Cherry Coke -0.44 (0.07) ∗ -0.78 (0.03) ∗
Diet Cherry

Coke
-0.13 (0.05) ∗ -0.75 (0.03) ∗

Coke 1.11 (0.04) ∗ 1.49 (0.03) ∗
Diet Coke 0.36 (0.03) ∗ 0.66 (0.02) ∗

Caffeine-Free
Coke

0.63 (0.05) ∗ -1.29 (0.03) ∗

Caffeine-Free
Diet Coke

0.49 (0.04) ∗ 0.53 (0.02) ∗

Sprite -0.12 (0.06) ∗ -0.29 (0.03) ∗
Diet Sprite -0.97 (0.05) ∗ -0.15 (0.02) ∗
Mr. PiBB -2.34 (0.04) ∗ -0.09 (0.06)
Dr. Pepper -0.53 (0.05) ∗ 0.15 (0.02) ∗

Diet Dr. Pepper -0.67 (0.08) ∗ -0.21 (0.02) ∗
7-Up 1.49 (0.03) ∗ -0.35 (0.02) ∗

Diet 7-Up 1.06 (0.04) ∗ -0.55 (0.03) ∗
Other -0.91 (0.02) ∗ 1.98 (0.03) ∗

DIC 69430.05
∗ The 95% credible interval excludes zero.
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All parameters in the table, except the population mean of ideal-point on

the second dimension, are significant in the sense that their corresponding 95%

credible interval excludes zero. In particular, consumers exhibit high price

sensitivity in the data, consistent with previous literature on this industry (e.g.,

Dube 2004, 2005). 2
mσ is a measure of consumers’ heterogeneity of ideal-point on

mth dimension of the latent characteristic space. The results (0.51 for 2
1σ and 0.36

for 2
2σ ) indicates some heterogeneity in the distribution of consumers’ ideal-

points on both dimensions. It is interesting to point out that both quality

coefficients are significant different from zero, implying for soft drink product

category, spanning quality on the horizontal characteristic space is a valid

assumption. And it also implies that asymmetry is an essential feature for my

cross-price elasticities matrix. Finally, I find strong shrinkage effects across

brands.

Brand location estimates in Table 3-2 do not provide us a good

interpretation of the market structure. A better alternative is to generate a two-

dimensional map based on these estimates as in Figure 3-2, which displays the 21

brands’ locations on two latent dimensions and represents vertical characteristic

“quality” using an arrow. From Figure 3-2 (please refer to Appendix F for the

corresponding brand names to the abbreviations in the Figure), I observe some

interesting findings, some of which are comparable with those corresponding ones

in Chapter 3 (section 2.4.2).
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FigureFigureFigureFigure 3-23-23-23-2 Two-DimensionalTwo-DimensionalTwo-DimensionalTwo-Dimensional MapMapMapMap forforforfor SoftSoftSoftSoft DrinksDrinksDrinksDrinks
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First, since the angle between an arrow and an axis indicates the

importance of the contribution of the corresponding variable to the axis dimension

(i.e., the smaller the angle is, the higher the importance), we can see that “quality”

is highly correlated with the vertical dimension. Besides, since the length of the

arrow is equal to the variance of the corresponding variable, it seems that the

“quality” is an important attribute for these data. Notice, the “quality” attribute in

the utility function governs the observed asymmetric switching pattern in the

forced switching data.

Second, the horizontal dimension distinguishes the coke vs. non-coke

products. Since the brands in the figure can be projected perpendicular on the

arrow, and the position of the brands along the arrow gives information of the
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value of the brand on corresponding variables, we can see that majority of the

coke products are considered superior (higher quality) to non-coke products. In

particular, Coke and Pepsi are of the highest quality (e.g., familiarity, etc) level

compared with the other nineteen soft drink products.

Third, the distance between points reflects the perceived similarity

between the corresponding two brands and the competition between them. Figure

3-2 indicates that Pepsi and Coke are in head-to-head competition in both

dimensions. On the other hand, Diet Pepsi, Diet Coke and Diet Pepsi Free are all

diet products and they are similar, although they seem to share a different

submarket from Pepsi and Coke. Dr. Pepper products are in direct competition

with Sprite products, with Diet Dr.Pepper competes more with Diet Spirit.

Furthermore, there seems to be a close relationship between Cherry Coke

products and Lemon-Lime Slices products. Notice these findings are consistent

with what I get in Figure 2-4.

Fourth, the (bold) dot in Figure 3-2 represents the average consumers’

ideal point in the population. An interesting finding here is that although both

Coke and Pepsi are considered as superior in terms of quality level, they are not

actually that close to consumers’ ideal-points in terms of the horizontal

characteristics. Consumers seem to prefer those Coke and Pepsi products that are

either diet or Caffeine-free, or both. Besides, consumers do like 7-Up products,

although these products seem to be considered as low quality. This finding seems

to imply that “quality” in current context may be more likely related with such

concepts as low familiarity, the low brand equity, or market share, etc .
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Fifth, consistent with the Figure 2-4, MrPiBB is a true outlier in the soft

drink market. It is far away from the rest of the products. From the average

consumers’ perspective, it is not that desirable, so it is definitely not a mainstream

product. However, it is considered with a moderate quality level, which might

reflect the fact that this brand enjoys some brand loyalty in a quasimonopoly,

although small segment.

Finally, I employ the following definition of aggregate demand price

elasticities, and report them in Table 3-3.

ln ( )
. (1 ) ( | , ) ,
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∑ ∑ ∑
, and jP is the average price over

time. The parameters used in the above equation are calculated posterior means.

Since forced switching data is used to help derive these posterior means, they do

not directly, but indirectly, influence the aggregate price elasticities. Again, from

Table 3-3, we can see that own-price elasticities are very elastic, ranging from -

2.5 to -5.6. Besides, the cross-price elasticities are all positive, a natural result

from a utility-based framework, with comparable magnitudes with Dube (2005).
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TableTableTableTable 3-33-33-33-3 ImpliedImpliedImpliedImplied SoftSoftSoftSoft DrinkDrinkDrinkDrink Cross-PriceCross-PriceCross-PriceCross-Price ElasticitiesElasticitiesElasticitiesElasticities

Pepsi
Diet
Pepsi

Mountai
n Dew

Pepsi
Free

Diet
Pepsi
Free

Lemon
-Lime
Slice

Diet
Lemon
-Lime
Slice

Cherr
y

Coke

Diet
Cherr

y
Coke Coke

Diet
Coke

Caffeine
-Free
Coke

Caff-
Free
Diet
Coke Sprite

Diet
Sprite

Mr.
PiBB

Dr.
Peppe

r

Diet
Dr.

Peppe
r 7-Up

Diet
7-Up Other

Pepsi -3.88 0.47 0.02 0.16 0.36 0.01 0.01 0.01 0.01 1.39 0.53 0.01 0.53 0.08 0.02 0.00 0.02 0.01 0.08 0.04 0.13
Diet Pepsi 0.76 -4.98 0.10 0.39 0.60 0.06 0.08 0.05 0.08 0.62 0.67 0.02 0.63 0.29 0.13 0.00 0.07 0.04 0.05 0.05 0.30
Mountain
Dew 0.17 0.64 -5.41 0.58 0.63 0.19 0.25 0.17 0.21 0.13 0.48 0.06 0.46 0.58 0.38 0.01 0.13 0.10 0.04 0.05 0.14

Pepsi Free 0.48 0.72 0.17 -5.19 0.66 0.11 0.15 0.10 0.13 0.37 0.61 0.04 0.59 0.42 0.19 0.00 0.10 0.06 0.06 0.06 0.21
Diet Pepsi
Free 0.68 0.72 0.12 0.42 -5.07 0.07 0.10 0.07 0.09 0.54 0.65 0.03 0.62 0.32 0.14 0.00 0.08 0.04 0.06 0.05 0.26

Lemon-
Lime Slice 0.13 0.60 0.32 0.59 0.62 -5.48 0.28 0.19 0.23 0.10 0.43 0.06 0.43 0.61 0.42 0.02 0.14 0.11 0.04 0.06 0.11

Diet
Lemon-
Lime Slice

0.15 0.62 0.30 0.58 0.63 0.20 -5.43 0.18 0.22 0.11 0.46 0.06 0.45 0.59 0.40 0.02 0.14 0.10 0.04 0.06 0.13

Cherry
Coke 0.13 0.61 0.31 0.58 0.61 0.21 0.28 -5.50 0.22 0.10 0.44 0.06 0.43 0.60 0.44 0.02 0.14 0.11 0.03 0.05 0.12

Diet
Cherry
Coke

0.20 0.65 0.28 0.60 0.65 0.19 0.25 0.17 -5.48 0.14 0.48 0.07 0.48 0.58 0.31 0.01 0.12 0.09 0.05 0.07 0.11

Coke 1.72 0.48 0.02 0.15 0.35 0.01 0.01 0.01 0.01 -4.24 0.55 0.01 0.52 0.07 0.02 0.00 0.02 0.01 0.05 0.03 0.20
Diet Coke 0.88 0.69 0.08 0.34 0.57 0.04 0.06 0.04 0.06 0.74 -5.02 0.02 0.63 0.24 0.10 0.00 0.07 0.03 0.05 0.04 0.34
Caffeine-
Free Coke 0.34 0.64 0.25 0.62 0.67 0.18 0.23 0.15 0.22 0.19 0.46 -5.60 0.52 0.55 0.17 0.00 0.08 0.06 0.12 0.12 0.03

Caff-Free
Diet Coke 0.93 0.69 0.08 0.35 0.57 0.05 0.07 0.04 0.06 0.74 0.66 0.02 -5.06 0.24 0.10 0.00 0.06 0.03 0.06 0.05 0.26

Sprite 0.29 0.70 0.23 0.55 0.66 0.15 0.20 0.13 0.17 0.23 0.56 0.05 0.54 -5.19 0.27 0.01 0.12 0.08 0.04 0.06 0.20
Diet Sprite 0.12 0.58 0.28 0.47 0.54 0.19 0.25 0.18 0.17 0.12 0.45 0.03 0.40 0.52 -5.02 0.05 0.17 0.13 0.01 0.03 0.33
Mr. PiBB 0.01 0.15 0.41 0.21 0.16 0.31 0.39 0.31 0.17 0.01 0.10 0.01 0.08 0.43 2.01 -5.45 0.24 0.28 0.00 0.00 0.16
Dr. Pepper 0.26 0.70 0.20 0.48 0.62 0.12 0.17 0.12 0.13 0.24 0.59 0.03 0.52 0.45 0.34 0.01 -5.56 0.08 0.02 0.03 0.43
Diet Dr.
Pepper 0.17 0.64 0.26 0.51 0.60 0.17 0.23 0.16 0.17 0.15 0.51 0.04 0.46 0.52 0.48 0.03 0.15 -5.59 0.02 0.04 0.29

7-Up 1.40 0.57 0.06 0.33 0.53 0.04 0.05 0.03 0.06 0.74 0.51 0.05 0.61 0.19 0.03 0.00 0.03 0.01 -5.43 0.15 0.03
Diet 7-Up 0.91 0.65 0.12 0.45 0.62 0.08 0.10 0.07 0.11 0.51 0.54 0.06 0.62 0.32 0.08 0.00 0.05 0.03 0.19 -5.56 0.04
Other 0.40 0.57 0.04 0.21 0.41 0.02 0.03 0.02 0.02 0.48 0.62 0.00 0.46 0.15 0.14 0.00 0.09 0.03 0.00 0.01 -3.74
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In order to see what is the information from forced-switching data versus

the sales data, I also estimate a two-dimensional market map (Figure 3-3) using

solely the former dataset based on the Equation (3-8a’’).

FigureFigureFigureFigure 3-3-3-3-3333 Two-DimensionalTwo-DimensionalTwo-DimensionalTwo-Dimensional MapMapMapMap solelysolelysolelysolely fromfromfromfrom ForcedForcedForcedForced SwitchingSwitchingSwitchingSwitching DrinksDrinksDrinksDrinks
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3333....6666 ConclusionConclusionConclusionConclusion

In the current essay, I propose a utility-based model of competitive

structure that accounts for and spatially represents both vertical (quality) and

horizontal characteristics, where I show how the vertical characteristics govern

observed asymmetric substitution patterns of the data. I estimate my model

jointly with two datasets, aggregate store-level purchase data and forced

switching survey (stated preference) data. To facilitate estimation with such two
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kinds of data, I develop a conceptual linkage between these two kinds of

data. The intuition idea behind our modeling approach is that consumers' actual

purchase behavior for brands gives us important market structure information

regarding brands' proximities in some latent attribute space, and the same

proximity relationships across brands influence the consumers' forced switching

behavior. By imposing a particular distribution on latent ideal points, I am able to

estimate heterogeneity in the proposed model. The model results are shown to be

quite consistent with those from Chapter 2.

There are a few caveats of the model that I want to address. The first

concern is the identification issue that would exist in Equation (3-1) when

Equation (3-2) applies. Specifically, the first term jνα (or
1

M

m jm
m

γ θ
=

∑ ) and the

linear component of the second term after being decomposed in Equation (3-1),

1
2

M

jm m
m

wθ
=

∑ , may not be separately identified. To solve this problem, extra

information is necessary. One possible source of such information is from the

forced switching data. In particular, I may impose the constraint such as

firstw E( )θ= ,,,, where firstθ denotes the first chosen brand’s location in the map.

Besides this identification issue, the second limitation is that the model

only estimates the heterogeneity in ideal points, leaving willingness-to-pay and

price sensitivity parameter homogeneous. This might lead to bias in estimated

demand parameters and price elasticities. Since the datasets in current research

evidences the perfect multicollinearity problem, estimating heterogeneity of price

sensitivity is difficult. How to efficiently use the information in forced switching
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data to help identify the heterogeneity in these two parameters becomes a

potential future research topic. Third, the model ignores the possible variety-

seeking behavior among consumers. Fourth, the validity of the model relies on

how multinomial assumption holds for our two data sets and on the extent to

which the “single-item” assumption holds.

Despite these limitations, the proposed model appears to open up new

opportunities for researchers interested in using aggregate data to explore

asymmetric competitive patterns in markets.
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CCCChapterhapterhapterhapter 4444 GeneralGeneralGeneralGeneral ConclusionConclusionConclusionConclusionssss

4.14.14.14.1 ConclusionConclusionConclusionConclusion ofofofof thethethethe dissertationdissertationdissertationdissertation

4.1.14.1.14.1.14.1.1 SummarySummarySummarySummary

Understanding the extent to which different brands compete with each

other in a pre-defined product market is important to marketing managers,

researchers and policy makers. The market structure analysis facilitates this

understanding via constructing the market map which locates brands in a multi-

attribute space. The introduction of the scanning system in mid-1970s provided

easy access to the store-level aggregate data which opened tremendous

possibilities for developing aggregate data-based tools of market structure

analysis. The purpose of this dissertation is to exploit the potential of store-level

aggregate data in identifying the pattern of inter-brand rivalry.

Two methods have been proposed in current dissertation for this purpose.

Built upon either a reduced-form model or a utility-based formulation, these two

methods differ mainly on what information is used to generate market maps: the

cross-price elasticity matrix or estimated utility paramters. Despite this difference,

they share some common features: (a) both methods are unified (i.e., one-stage),

in the sense that the estimation of demand function and the derivation of a market

map are achieved in one step; (b) both methods provide internal analysis of

market structure, so the number of the dimensions in the market map and the

location of the brands on these dimensions are determined by the aggregate data

(i.e., aggregate sales data in Chapter 2; aggregate sales data and aggregate choice

data in Chapter 3); (c) both methods explicitly address the asymmetric feature of
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competition, and represent it in the same market space that is typically used to

account for symmetric proximity data.

In particular, the first method, built upon a sales response model, estimates

a market map that is assumed to jointly underlie cross-price elasticities, own-price

elasticities, and brand-specific intercepts. Drawing upon recent psychometric

research, I express the asymmetries present in cross-price elasticities as the

difference between what I refer to as brand power parameters. Two propositions

are proposed to identify relationships between a focal brand’s power parameter,

clout, vulnerability, own-price elasticity, and spatial density. I apply the model

separately for two datasets that consist of weekly sales and prices for beer and soft

drinks. One main finding is that the comparison between the proposed model and

the saturated model favors the former. Besides, the market maps generated from

both data sets provide interpretable results.

The second method, built upon a utility-based structure, derives a market

map that can account for both horizontal characteristics (i.e., attribures that are

horizontally differentiated) and vertical characteristics (attributes evidencing

vertical differentiation) in the utility function. I show how the combination of

aggregate scanner data and forced switching data can help estimate a market map

directly from the utility function while accounting for consumer heterogeneity.

Conceptually, the proposed model shows how the asymmetric feature of

competition, represented by the asymmetric switching pattern in forced switching

data is related to the vertically differentiated attributes in the utility function.

Applying the model to weekly sales data and forced switching data for soft drinks,
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I recover the demand system.

4.1.24.1.24.1.24.1.2 ComparisonComparisonComparisonComparison ofofofof TwoTwoTwoTwoModelsModelsModelsModels

Generally, there are at least six criteria that one can use to assess the

relative advantages and disadvantages of different models: (a) a more

parsimonious model is better; (b) a model with good agreement with data (fit) is

better; (c) a model built upon the theory is better; (d) a model requiring fewer

assumptions is better; (e) a model requiring less data is better; and (f) a model that

can answer a research question directly is better than indirectly doing so (Vapnik

1998). I apply these criteria sequentially to the two models of this dissertation as

follows.

First, both methods achieve similar levels of parsimony: for the soft drink

data, for example, the two-dimensional model in Chapter 2 relies on 47 focal

parameters, the same number of parameters as the corresponding model in

Chapter 3.

Second, a direct comparison between the deviance of the soft drink data in

Chapter 2 and Chapter 3 implies that the utility-based model is better (e.g., the

deviances of two-dimensional model specifications for soft drink data are 76,320

in Chapter 2 and 65,986.05 in Chapter 3). However, this difference is probably

due to the fact that the Chapter 3 analysis explains sales conditional on observed

category volume (by using the Multinomial distribution), whereas the Chapter 2

analysis explains category volume as well (by assuming a Poisson distribution).

In fact, despite this difference, these two methods estimate brand positioning

maps with quite consistent market structure results. For example, both Figure 2-4
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and Figure 3-2 indicate the following: (i) Pepsi and Coke are the head-to-head

competitors; (ii) Mr. PiBB is an market outlier; (iii) products within the Dr.

Pepper product line or the Sprite Product line compete with each other, although

Figure 2-4 seems to further differentiate this submarket into (Diet Sprite vs. Diet

Dr. Pepper) and (Sprite vs. Dr. Pepper); (iv) Lemonlime Slice products, Mountain

Dew, and Cherry Coke products belong to the same market, although, again,

Figure 2-4 seems to provide further differentiation; (v) major Diet Coke products

(Diet Pepsi, Diet Coke, Caffeine-free Diet Pepsi) are close competitors.

Third, in terms of the criteria of (c) (theory driven) and (d) (fewer

assumptions), each approach has its own strengths and weaknesses.

In particular, the method proposed in Chapter 2, as a typical reduced-form

model, prioritizes fit to the empirical data and let the data “speak.” Furthermore,

it relies on few behavioral assumptions and allows for flexible functional forms.

By assuming that the price-elasticities and intercepts are driven by some latent

brand attributes, the researchers are able to, without the need of re-estimating the

demand function every time, predict the potential optimum competitive position

(e.g., defined by the power, the clout and the vulnerability) of a new entrant, and

its impact on the existing brands’ own-price elasticities (e.g., through the concept

of spatial density). When the research focus is on analyzing the marketing

structure, this method therefore can avoid the “static measure” problem36 of the

cross-price elasticities to some extent. This idea would also be of importance to

antitrust authorities. In its Notice to Agreements of Minor Importance, the

36 Cross-price elasticities are said to be “static” measures, since over time new entrants or
departures from a market may affect the cross-elasticity between any two alternatives.
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European Court Commission (1986) stated that deciding whether products are

interchangeable “must be judged from the vantage point of the user, normally

taking the characteristics, price and intended use of the goods together.” (Massey

2000).

On the other hand, the utility-based approach proposed in Chapter 3 is

theory-based and more capable of explaining cross-price elasticities as the result

of consumers’ optimizing behavior. By directly relating the market map with

consumers’ preference parameters, the calibrated market structure is more

intuitive and stable (om the face of changes in brand offerings) than the method in

Chapter 2. The main problem of this method, however, is that the model relieson

more behavioral assumptions than the first model. It imposes relatively strong

assumptions on consumers’ heterogeneity parameters. And it is more suitably

applied to cases where demand for a set of goods is mutually exclusive. In some

product categories, where consumers may be variety-seeking, imposing the

single-unit, single-brand purchase assumption of the discrete choice model will

generate biased consumer responses to marketing mix variables (Hendel 1999;

Kim et al. 2002, 2006; Dube 2004,2005; Bhat & Sen 2006). Besides, the model

also relies on the heterogeneity distribution assumption. Therefore, the

performance of this utility-based approach does rely on the validity of the

underlying assumptions.

Fourth, the method in Chapter 2 has a lower data requirement. The data

(i.e., the soft drink sales data) used in this dissertation suffers from a severe

multicollinearity problem. The model in Chapter 2 can estimate the demand



153

function and the market map with only aggregate sale data. However, this is not

the case in Chapter 3. It is well-known that estimating the heterogeneity

parameters from a discrete choice demand function can be challenging with only

aggregate sales data (Albuquerque and Bronnenberg 2006, Petrin 2002),

especially when the data contains limited information (Kim 1995). To overcome

this problem, researchers typically combine the aggregate data and consumer-

level data (e.g., Goldberg 1995; Petrin 2002; Albuquerque and Bronnenberg 2005).

For my case, the perfect multicollinearity in the data aggravates this difficulty of

estimation. In order to recover the true distribution of heterogeneity, adding a

second data source becomes a necessity in the current context.

Finally, I believe the choice between these two methods should be made

based upon the researcher’s primary research interest (underlying the need for a

market map). When the interest is to understand a brand’s market performance,

such as its power, its vulnerability, or to estimate the price elasticities, say, for

antitrust purpose, the method in Chapter 2 would be preferred. When the research

interest is on understanding consumers’ intrinsic preferences, and other

parameters of the utility function, or inferences at the individual or segment level,

the method in Chapter 3 might be better.

In summary, it is hard to tell which method proposed in the dissertation is

the better one, as each wins for certain criteria, but loses on others. This

dissertation is the first analysis, as far as I know, which provides a side-by-side

comparison of a reduced-form-based market structure analysis with a utility-based

market structure analysis.
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4.1.34.1.34.1.34.1.3 ContributionsContributionsContributionsContributions RevisitRevisitRevisitRevisitedededed

The dissertation provides conceptual, methodological and managerial

contributions to the aggregate data-based market structure analysis literature.

Conceptually, the dissertation emphasizes the importance of utilizing as much

market structure information as possible in deriving market maps, an issue that

has not been given enough attention in past literature. A complete account of

competitive information in a market structure map maximizes efficient

information usage and increases the usability of the derived market maps.

Furthermore, the current dissertation accommodates both vector

formulation and ideal-point formulation to derive market maps, and shows how

each formulation (in the first method) or the combination of both (in the second

approach) help us formalize theoretical linkages among many familiar

competitive structure concepts: (a) competitive asymmetry, brand power, clout,

vulnerability; (b) own-price elasticity, vulnerability, spatial density; (c) vertical

differentiation, horizontal differentiation, asymmetric brand switching, etc. And

the dissertation draws upon the knowledge from not only marketing literature, but

also economic and psychometric literature.

Methodologically, the Markov Chain Monte Carlo (MCMC) methods are

adopted throughout the dissertation to help simulate complex, nonstandard

multivariate distribution. The adaptive Bayesian shrinkage approach is used in a

way that enables consistent information sharing across brands in the demand

function by using weakly informative priors for hyperparameters throughout.
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This shrinkage idea, combined with the information sharing obtained by utilizing

all market structure information embedded in major brand-specific parameters,

help stabilizing the estimates and achieves parsimony in the estimation process.

Managerially, the proposed methods enable managers with access to

scanner data at the store level to track changes over time in asymmetric

competitive structure; the methods are also useful for predicting the demand for

existing and new products offered in existing markets. Specifically, the market

map derived in the utility-based approach indicates the ideal points of consumers

in terms of horizontal characteristics and the ideal vector of quality. Brands that

are closer to the ideal points and project farther out on the quality vector are more

preferable for consumers and, therefore, tend to yield highest market share. For

the reduced-form-based model, the market map also provides the position of a

hypothetical brand with the highest dominance and another hypothetical brand

with the least vulnerability in the market. Any brand that is closer to both

hypothetical brands should be more optimal to marketers. Further, analysts can

use this method to examine strategy scenarios involving changing competitive

positioning in order to predict the impact on demand intercepts, own-price

elasticities, and cross-elasticities.

4444....2222 LimitationsLimitationsLimitationsLimitations ofofofof ProposedProposedProposedProposed MethodsMethodsMethodsMethods

Besides the limitations that have already been discussed at the close of

each chapter, other limitations that are important and sometimes common to both

methods include the following:

Interpreting the axes of the map can be difficult. The proposed methods
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are internal analysis of market structure, therefore the axes of market maps

derived need to be labeled by some external means. To label the axes, researchers

can examine the location of the brands in the map and check for correlation with

the brands’ observed attributes. Or a more systematic labeling procedure may be

conducted: for example, model the brands' location as a linear function of the

observed attributes. However, neither method guarantees the existence of a

satisfactory interpretation of the axes.

The assumption of stationary preferences is restrictive. Both methods

proposed in current dissertation assume stationarity of market maps over time,

which implies that consumers’ preferences are also stable. This assumption may

be violated by factors such as consumers’ variety-seeking behavior. To reduce the

chance of seriously violating this assumption, the period of observations should

be restricted to relatively short periods of time, and frequently-purchased products

may be suitable product categories for study.

The imposed distribution governing consumers’ ideal-points may be

misspecified. In Chapter 3, I assume consumers’ ideal-point on each dimension of

the market map is normal distributed. This assumption may be violated when

multiple ideal-points exist in the population. Under this situation, a mixture of

normal priors for consumers’ preferences may be more appropriate.

4444....3333 DirectionsDirectionsDirectionsDirections forforforfor FutureFutureFutureFuture ResearchResearchResearchResearch

The dissertation raises the following potential future research directions:

Generalizing the proposed methods to chain-level data. The proposed

methods in current dissertation are developed to deal with store-level data.
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However, much aggregate data available to marketers are actually chain-level.

From a manager’s perspective, a market structure analysis that identifies store-

specific inter-brand rivalry enables micromarketing strategies and therefore is

usually more desirable. Previous research provide various insights in this area (e.g,

Chintagunta et al. 2002, 2003; Montgomery 1997; Montgomery & Rossi 1999).

Combining my proposed methods with the ideas of this past work to facilitate

chain-level market structure analysis would constitute an interesting future

research area.

Enriching the utility-based model with more flexible distribution

assumptions for consumer heterogeneity. When aggregate data is used, consumer

heterogeneity has been handled in different ways in previous literature. Some

previous research estimate heterogeneity using latent class models, assuming the

existence of a finite number of segments with their own parameters (e.g., Besanko,

Dubé, and Gupta 2003; Draganska and Jain 2002; Seetharaman 2001; Zenor and

Srivastava 1993). Others specify a particular functional form for the parameters

of the heterogeneity distribution and use consumer-level data to help estimate

these parameters (e.g., Goldberg 1995; Petrin 2002; Albuquerque and

Bronnenberg 2005). When conducting internal analysis of market structure,

Chintagunta et al. (2002, 2003), similar to my model, impose a multivariate

normal distribution on consumers’ brand perceptions. One interesting extension

would be to assume that brand perceptions are drawn from a mixture of normal

distributions, with parameters of these distributions following some function of

consumer demographic information.
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Utilizing the information in forced-switching data to help estimate the

heterogeneity in the willingness-to-pay parameters. One limitation of my

proposed model in Chapter 3 is that the willingness-to-pay parameter is treated as

constant across consumers. Estimating heterogeneity in this parameter can be

challenging since it enters the utility functions for both aggregate data and the

forced-switching data. How to efficiently use the information in forced-switching

data to help estimate the heterogeneity in this parameter then becomes a future

extension of current research.

Accounting for the endogeneity problem in the utility function. Some of

the previous research that tries to utilize aggregate data to estimate a utility-based

demand function deals with not only heterogeneity but also endogeneity (i.e., a

situation where the marketing-mix variables could be correlated with the error

terms in the latent utilities (Villas-Boas & Winer 1999). Failure to account for this

endogeneity can bias the parameter estimates of the marketing-mix variables

(BLP 1995). The current dissertation does not deal with this problem due to the

lack of data, however, studying how my proposed methods can be combined with

approaches proposed in literature to deal with both heterogeneity and endogeneity

problems would be desirable.

Overall, this dissertation adds to the market structure analysis literature by

proposing two aggregate data-based techniques to help managers, researchers and

policy makers understand asymmetric competition among brands. I look forward

to continued progress on unified analysis of asymmetric market structure.
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AppendixAppendixAppendixAppendixAAAA.... VariableVariableVariableVariable DefinitionsDefinitionsDefinitionsDefinitions forforforfor ChapterChapterChapterChapter 2222

FocalFocalFocalFocal VariablesVariablesVariablesVariables

itp price of brand i at time t (log

prices are mean centered)

itq unit sales of brand i at time t

DemandDemandDemandDemand EquationEquationEquationEquation ParametersParametersParametersParameters

0α overall intercept of demand

function

iα brand-specific intercept (mean-

centered)

iiβ own-price elasticity of brand i

ijβ cross-price elasticity between

brands i and j

itCV covariate in ith brand equation at

time t

f functional form of covariate

term(s)

LatentLatentLatentLatent StructuralStructuralStructuralStructural ParametersParametersParametersParameters

imθ location of brand i on mth

dimension

iθθθθ location (vector) of brand i

g specification linking ijβ and the

relationship between iθθθθ and jθθθθ

β specification linking iiβ and iθθθθ

α specification linking iα and iθθθθ

ΒΒΒΒ    (capital beta) asymmetric matrix

of cross-price elasticities, with

diagonal elements zero

ijs ( ) / 2ij jiβ β≡ +

SSSS symmetric matrix with typical

element ijs

ija ( ) / 2ij jiβ β≡ −

AAAA skew-symmetric matrix with

typical element ija

IndicesIndicesIndicesIndices

n number of brands in market

i index of brand, i 1, ,n= …

j index of brand, i 1, ,n= …

T number of Weeks in data set

t index of Week, t 1, ,T= …

t’ is mean-centered version of index

t

M number of dimensions in

structural map

m index of map dimension,

m 1, ,M= …

CovariatesCovariatesCovariatesCovariates (time(time(time(time dependent)dependent)dependent)dependent)

1γ the coefficient for sine time trend

2γ the coefficient for cosine time

trend
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3γ the coefficient for linear time

trend

UnderlyingUnderlyingUnderlyingUnderlying StructuralStructuralStructuralStructural ModelModelModelModel

ParametersParametersParametersParameters

CPEφ constant in specification for ijβ

OPEφ constant in specification for iiβ

ijd inter-point distance between iθθθθ

and jθθθθ

ix brand power parameter for brand i

0ω Weight in brand-specific intercept

1ω Weight of dominance-point model

for ix

2ω Weight of ideal-point model for

iiβ

[ ]mY y= most powerful location,

m 1, ,M= …

[ ]mZ z= least vulnerable location,

m 1, ,M= …

1mυ mth coefficient of vector model for

ix

2mυ mth coefficient of vector model for

iiβ

DistributionDistributionDistributionDistribution ParametersParametersParametersParameters

ijλ the rate parameter of poison

distribution

ijη expected value for gamma

distribution

ρ The shape parameter of gamma

distribution

HyperHyperHyperHyper ParametersParametersParametersParameters

mµ hyper-parameter (prior mean) for

brands’ coordinates on mth

dimension

mσ hyper-parameter (prior standard

deviation) for brands’ coordinates

on mth dimension

Brand-RelatedBrand-RelatedBrand-RelatedBrand-Related MeasureMeasureMeasureMeasure

iClout ji
j i
β

≠

≡ ∑ , iVul ij
j i
β

≠

≡ ∑

iDensity ≡ ( / ( 1))CPE ijj i
d nφ

≠
− −∑
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AppendixAppendixAppendixAppendix BBBB.... ProofsProofsProofsProofs ofofofof PropositionsPropositionsPropositionsPropositions inininin ChapterChapterChapterChapter 2222

ProofProofProofProof ofofofof PropositionPropositionPropositionProposition 1.1.1.1. (a) This fact was established in the discussion following

(2-4), which I restate here. Suppose i jx x> . Equation (2-4) states that

1ij ij i jd x xβ φ= − − + . Then I have

1ij ij i jd x xβ φ= − − + < 1 1ij j i ji j i jid x x d x xφ φ β− − + = − − + = .

The first and last equalities are restatements of Equation (2-4); the inequality

arises from i jx x> ; and the next to last equality arises from the symmetry of

ij jid d= . So ,   ij ji i jβ β< ≠ .

(b) From the definition of clout and vulnerability, and after substitution (2-4),

1

1

[ ( )]

          ( 1) ( 1)

n n

i ji ji j i
j i j i

n n

ji j i
j i j i

Clout d x x

n d x n x

β φ

φ

≠ ≠

≠ ≠

= = − − +

= − − − + −

∑ ∑

∑ ∑

1

1

( )

          ( 1) ( 1)

n n

i ij ij i j
j i j i

n n

ij i j
j i j i

Vul d x x

n d n x x

β φ

φ

≠ ≠

≠ ≠

= = − − +

= − − − − +

∑ ∑

∑ ∑

Subtracting the second equation from the first yields

1 1

1

{( 1) ( 1) } {( 1) ( 1) }

                     = 2 2( 1) 2 2 .

n n n n

i i ji j i ij i j
j i j i j i j i

n n

j i j i
j i j

Clout Vul n d x n x n d n x x

x n x x nx

φ φ
≠ ≠ ≠ ≠

≠ =

− = − − − + − − − − − − +

− + − = − +

∑ ∑ ∑ ∑

∑ ∑

When 0i
i
x =∑ , 2 .i i iClout Vul nx− = So .

2
i i

i
Clout Vulx

n
−

=

(c) [in Footnote 13] The additive similarity-bias model can be transformed into

skew-symmetric model by properly decomposing its bias component.

( ) ( )( ) ( )
2 2 2 2

j j j ji i i i
ij iji j ij i j

r c c rr c c rs r c s s x x
+ −+ −

+ + = + + − + = − +
,

where
( )( )

2 2
j ji i

ijij

r cr cs s
++

= + + , and ( )
2

i i
i

c rx −
= . Thus, I can interpret each
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brand’s dominance effect (i.e., ix ) as the half of the difference between its column

and row bias (i.e.,
2

i i
i

c rx −
= ). Done.

ProofProofProofProof ofofofof PropositionPropositionPropositionProposition 2.2.2.2. (a)(a)(a)(a) Assuming utility-maximizing consumers under a

linear budget constraint, I evoke the microeconomic property of demand

homogeneity of degree zero in prices and income (because, for example, doubling

all prices and incomes would have no real effect). This property arises directly

from standard utility maximization under a linear budget constraint, and it can be

shown to apply at the individual consumer level and at the market level. This

property implies that, for any good, the sum of the own price elasticity and all of

cross price elasticities equals minus the income elasticity. That is,

0ii ij i
j i

gβ β
≠

+ + =∑ .

Note that ij
j i
β

≠
∑ is my definition of vulnerability of brand i. Thus, I have (2-8),

( )  ii ij i i i
j i

g Vul gβ β
≠

− = + = +∑ . (2-8)

Incidentally, for some categories it is approximately true that 0ig = ,

(b)(b)(b)(b) From (2-4) and (2-8), I have

1

( )

       ( 1)

       ( 1)

i i i

i

i

ii ij CPE ij i j CPE ij i j
j i j i j i j i j i j i

CPE ij i i j i
j i j i j i

n

CPE ij i j
j i j

d x x d x x

n d x x

g g g

x

x

g

g

x

n d n x

β β φ φ

φ

φ

≠ ≠ ≠ ≠ ≠ ≠

≠ ≠ ≠

≠ =

− = + = − − + + = − − + +

= − − − − + + +

= − − − + +

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑

∑ ∑

( 1) i i iI j
j

n nDensity xx β+ += − − ∑ ,

where iDensity ≡ ( / ( 1))CPE ijj i
d nφ

≠
− −∑ . And, without loss of generality, if

1
0

n

j
j
x

=

=∑ , we have (2-9), which I repeat below:

( 1)ii i iiDenn nx gsityβ− = − − + . (2-9)
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FocalFocalFocalFocal VariablesVariablesVariablesVariables

itp price of brand i at time t

itq unit sales of brand i at time t

UtilityUtilityUtilityUtility FunctionFunctionFunctionFunction ParametersParametersParametersParameters

u utility level

v willingness-to-pay for consumer i

imw consumer i’s ideal point on mth

dimension

β consumers’ price sensitivity

ε utility function residual

mγ the weight of quality measure on

the mth horizontal characteristic.

ρ the choice probability of aggregate

data

η the price elasticities

LatentLatentLatentLatent StructuralStructuralStructuralStructural ParametersParametersParametersParameters

Θ location matrix

imθ location of brand i on mth

dimension

iθθθθ location (vector) of brand i

jα brand j’s quality

IndicesIndicesIndicesIndices

J number of brands in market

j,k index of brand, Jkj ,...,1, =

i index of consumers, Ii ,...,1=

T number of weeks in data set

t index of week, t 1, ,T= …

M number of dimensions in

structural map

m index of map dimension,

m 1, ,M= …

tQ the total number of unit sales at

week t

kN the number of times that brand k

is chosen as the first option in

forced switching data

kjN the number of times that brand j

is chosen instead when k was not

on the shelf in forced switching

data

DistributionDistributionDistributionDistribution ParametersParametersParametersParameters

w the mean vector for ideal-point

parameters
2

mσ the dispersion parameter for ideal-

point parameters on mth

dimension

Ω the distribution parameter for imw

π the distribution function for forced

switching probability

f the distribution function for
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heterogeneity parameters

φ the prior distribution function

Pr the density function for

multinomial distribution

L the likelihood function

HyperHyperHyperHyper ParametersParametersParametersParameters

.τ hyper-parameter (prior standard

deviation) for various parameters

Brand-RelatedBrand-RelatedBrand-RelatedBrand-Related MeasureMeasureMeasureMeasure

Weight for brand j at time t

)lnexp( jtjjt pW βνα −=
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The discussion is similar to Kamakura & Srivastava (1986). Specifically,

to show the effect of preference heterogeneity on product substitution pattern,

first remember that the utility function has the following form:

2

1

M

ijt i j jm im jt ijt
m

u ( w ) ln pν α θ β ε
=

= − − − +∑ ,

where ijtε is distributed independently according to a type I Extreme Value

distribution with mean zero and unit scale parameter. And I assume some

distributions for consumer heterogeneity parameters. In particular, since jα is a

latent variable, without loss of generality, we can assume )1,(~ vNvi . Further I

assume a multivariate normal distribution of ideal points, that is, we can write

im m imw w e ,= + where

=mw mean coordinate of ideal points on latent dimension m;

=ime random disturbance for consumer i, relating to mth dimension. And these

disturbances follow a multivariate normal distribution with mean zero and a

diagonal covariance matrix (again, this form of covariance matrix is assumed

without loss of generality (Elrod, 1988b)).

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=Ω

2
M

2
2

2
1

000
....00

0

σ

σ
σ

Finally, I assume Mmev imi ,...,1,0),cov( =∀= . Now the utility function becomes

2

1

2 2 2

1

2 2 2

1 1 1 1 1

1

2 2 2

2 2

  2

M

ijt i j jm m im jt ijt
m

M

jt i j jm m im m jm im jm m im ijt
m

M M M M M

jt jm m m jm m im im
m m m m m
M

i j im jm ijt
m

u ( w e ) ln p

ln p ( w e w e w e )

ln p w w w e e

e

ν α θ β ε

β ν α θ θ θ ε

β θ θ

ν α θ ε

=

=

= = = = =

=

= − − − − +

= − + − + + − − + +

= − − − + − −

+ + +

∑

∑

∑ ∑ ∑ ∑ ∑

∑
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So the randomness of the utility function enters into the utility function mainly

through the last three components (i.e.,
1

2
M

i j im jm ijt
m
eν α θ ε

=

+ +∑ ) of the right-hand

side equation. Notice, since the term ∑∑∑
===

−−−
M

m
im

M

m
imm

M

m
m eeww

1

2

11

2 2 enters all

alternatives’ utility function, it is easy to show that the proposed model is

equivalent to a multinomial logit model with utility function for alternative j

equals to

ijt

M

m
jmimji

M

m
jmm

M

m
jmjtijt evwpu εθαθθβ ++++−−= ∑∑∑

=== 111

2 22ln'

with

∑

∑∑

=

==

+=

++++=

M

m
kmjmmkj

ikt

M

m
kmimkiijt

M

m
jmimjiiktijt evevuu

1

2

11

4

)}2(),2cov{()','cov(

θθσαα

εθαεθα

Therefore, the choice probability for a given alternative j will depend not only on

its own position on the structural map ( Mmjm ,...,1=，θ ) and its quality level

( jα , if it is unrelated with Mmjm ,...,1=，θ ), but also on the other alternatives’

position and quality level.
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The joint posterior of all parameters in the model is given by
2 2 2 2

1 1

2 2
1

1 1 1

2 2

1 1 1

2

1

1

jt kj

M M

T J J J
q N

jt jt M j , k kj
t j k j k

M M M

mm m m
m m m
M

m
m

p( , , ,w, ,..., , ,..., | q,N )

( p ; , , ,w, ,..., ) ( N ; , )

( ( ) ) ( | ,m ,..,M ) ( )( ( w ) )( ( ) )

( )

γ β σ σ τ τ

ρ γ β σ σ π γ

φ γ φ τ φ β φ φ σ

φ τ

−
= = = ≠

= = =

=

Θ ∝

Θ Θ

Θ =

∏∏ ∏∏

∏ ∏ ∏

∏

The estimation of the model parameters proceeds by recursively sampling

from the following distributions:

First consider demand parameters ( β , 1M×γ , Θ ).

1. Generating β

The posterior of β conditional on all other parameters is proportional to

1 1

,
jtqT J

jt
t j

{ ( rest ) } ( )ρ β φ β
= =

∏∏

where rest means other parameters in the likelihood. I use Metropolis-Hasting

algorithm to generate draws of β with a random walk chain. Let )( pβ denote the

previous draw, and then the next draw )(nβ is given by
( n ) ( p )

ββ β ς= + ,

with the accepting probability α given by

1 1

1 1

,
1

,

jt

jt

qT J
( n ) ( n )

jt
t j

qT J
( p ) ( p )

jt
t j

( rest ) ( )
min{ }

( rest ) ( )

ρ β φ β
α

ρ β φ β

= =

= =

=
∏∏

∏∏
， .

And βς is a draw from the (0, )N sβ , and sβ is the scaling constant, and set to
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achieve the acceptance rates close to the target value of 0.25 (same for all the

other scaling parameters below).

2. Generating 1M×γ

The posterior of mγ conditional on all other parameters is proportional to

1 1 1

,  ,  
kj jtN qJ J T J

j , k m jt m m
k j k t j

{ ( rest ) } { ( rest ) } ( )π γ ρ γ φ γ−
= ≠ = =

∏∏ ∏∏

I generate the candidate draw of 1M×γ from the distribution
( n ) ( p )

m m γγ γ ς= +

And the accepting probability α is given by

1 1 1

1 1 1

,  ,
1

,  ,

kj jt

kj jt

N qJ J T J
( n ) ( n ) ( n )

j , k m jt m m
k j k t j

N qJ J T J
( p ) ( p ) ( p )

j , k m jt m m
k j k t j

{ ( rest ) } { ( rest ) } ( )
min{ }

{ ( rest ) } { ( rest ) } ( )

π γ ρ γ φ γ
α

π γ ρ γ φ γ

−
= ≠ = =

−
= ≠ = =

=
∏∏ ∏∏

∏∏ ∏∏
， .

3. Generating Θ

As discussed in section 3.5.1, the brand coordinates parameters can be

separated into two parts: one with no constraints, the other with constraints on the

positive orthant. Let jm( c )θ denotes those constrained brand coordinates;

jm( nc )θ those unconstrained brand coordinates.

For jm( nc )θ , the posterior distribution conditional on all other parameters is

proportional to

2

1 1 1

 |
kj jtN qJ J T J

j, k m jt m m m
k j k t j
{ ( rest ) } { ( rest ) } ( )π θ ρ θ φ θ τ−

= ≠ = =

⋅∏∏ ∏∏， ，

where the prior distribution is normal 2 2  ~ 0jm( nc ) m m( | ) N( , )φ θ τ τ . I find it is more

efficient to generate the candidate draw of ( n )
jm( nc )θ from the distribution

2 2  ~ 0( n ) ( p ) ( p )
jm( nc ) m m( | ) N( , )φ θ τ τ

And the accepting probability α is given by
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1 1 1

1 1 1

1

kj jt

kj jt

N qJ J T J
( n ) ( n )

j , k jm( nc ) jt jm( nc )
k j k t j

N qJ J T J
( p ) ( p )

j , k jm( nc ) jt jm( nc )
k j k t j

{ ( rest ) }{ ( rest ) }
min{ }

{ ( rest ) }{ ( rest ) }

π θ ρ θ
α

π θ ρ θ

−
= ≠ = =

−
= ≠ = =

=
∏∏ ∏∏

∏∏ ∏∏

， ，

，

， ，

.

This is the third family of Metropolis-Hasting algorithms, as described by Chibs

and Greenberg (1995, p.330).

For jm( c )θ , similar to the treatment in Park, Desarbo & Liechty (2008), I

adopt a random-walk Metroplis-Hasting algorithm with a weakly informative

gamma prior 0 01 0 01jm( c )( ) ~ G( . , . )φ θ and a gamma proposal to generate the

candidate draw. The proposal density takes the form

2 1( n ) ( p )
jm( c ) jm( c ) ( p )

jm( c )

~ G( k , )
k

θ θ
θ

Again the scaling parameter k is set to achieve an adequate acceptance rate. And

the accepting probability α is given by

1 1 1

1 1 1

             

kj jt

kj jt

J J T J
N q( n ) ( n )

j , k jm( c ) jt jm( c )
k j k t j
J J T J

N q( p ) ( p )
j , k jm( c ) jt jm( c )

k j k t j

( n ) ( p ) ( n )
jm( c ) jm( c ) jm( c )

( p )
jm( c )

( ,rest ) ( ,rest )
min{

( ,rest ) ( ,rest )

( )p( | )
( )p(

π θ ρ θ
α

π θ ρ θ

φ θ θ θ
φ θ

−
= ≠ = =

−
= ≠ = =

=

×

∏∏ ∏∏

∏∏ ∏∏

1( n ) ( p )
jm( c ) jm( c )

, }
| )θ θ

.

Second, consider the heterogeneity parameter (w,Ω ).

4. Generating w

The posterior of w conditional on all other parameters is proportional to

1 1

 

                                 

jtqT J

jt
t j

{ ( w,rest ) } ( w )ρ φ
= =

∏∏

I use Metropolis-Hasting algorithm to generate draws of w with a random walk

chain. Let
( p )
w denote the previous draw, and then the next draw

( n )
w is given by
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( n ) ( p )

ww w ς= + ,

with the accepting probability α given by

1 1

1 1

1

jt

jt

qT J ( n ) ( n )
jt

t j
qT J ( p ) ( p )

jt
t j

( w ,rest ) ( w )
min{ }

{ ( w ,rest ) } ( w )

ρ φ
α

ρ φ

= =

= =

=
∏∏

∏∏
，

where 0w w~ N( ,s )ς , and ws is the scaling constant.

5. Generating

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
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⎢
⎢

⎣
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=Ω
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2
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....00
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σ
σ

I use the similar strategy with jm( c )θ here for 2
Mσ . In particular, And a random

walk gamma proposal is adopted to generate draws:

2 2 2
2 2

2

1( n ) ( p )
m m ( p )

m

~ G( k , )
k

σ σ
σ

− −
−

And the accepting probability α is given by

2
2 2 2

1 1
2 2 2

2

1 1

1

jt

jt

T J
q( n )

jt m ( n ) ( p ) ( n )
t j m m m
T J ( p ) ( n ) ( p )

q( p ) m m m
jt m

t j

( ,rest )
( )p( | )min{ , }
( )p( | )( ,rest )

ρ σ
φ σ σ σ

α
φ σ σ σρ σ

− − −
= =

− − −

= =

=
∏∏

∏∏

Finally, the hyperparameters, 2
mτ , are generated using Gibbs Sampler,

where the candidate draws are derived from the following full conditional

posterior distributions:

2 ( ) ( )

( ) 2
( )

1| ~ ( 0.01, )
2 ( )

100
2

n p
m m

p
im nc

i

J TIGτ θ
θ

−
+

+
∑

where T is the number of constrained parameters.
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AppendixAppendixAppendixAppendix FFFF AbbreviatesAbbreviatesAbbreviatesAbbreviates forforforfor BrandBrandBrandBrand NamesNamesNamesNames inininin FigureFigureFigureFigure 2-42-42-42-4 andandandand 3-23-23-23-2

Pepsi "Pepsi"

Diet Pepsi "DPepsi"

Mountain Dew "MDew"

Pepsi Free "PepsiFr"

Diet Pepsi Free "DPepsiFr"

Lemon-Lime Slice "LLSlice"

Diet Lemon-Lime Slice "DLLSlice"

Cherry Coke "ChCoke"

Diet Cherry Coke "DChCoke"

Coke "Coke"

Diet Coke "DCoke"

Caffeine-Free Coke "CFCoke"

Caff-Free Diet Coke "CFDCoke"

Sprite "Sprite"

Diet Sprite "DSprite"

Mr. PiBB "MrPiBB"

Dr. Pepper "DrPepp"

Diet Dr. Pepper "DDrPepp"

7-Up "7UP"

Diet 7-Up "D7UP"

Other "Other"
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In order to verify the validity of MH algorithm in Appendix E, I perform

the following simulation experiment. Using the estimates in Table 3-2, where

1.07 0.51 0
5.7, ( 0.89,2.23), ~ ( , ),

0.04 0 0.36
r c w MVNβ

⎡ ⎤ ⎡ ⎤
= = − ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

and the θ values equaling the

brands locations estimates in the table, I simulate the aggregated data by

generating 1000 consumers’ ideal-points for each of the 63 weeks, and simulate

the forced switching data by assuming the existence of 1109 consumers with their

first choices the same as the original dataset. The MH algorithm proposed in

Chapter 3 is then used on these two simulated datasets, and the results reported

below indicate that the true parameters can be recovered, with all true parameters

within 95% credible interval.

EstimatesEstimatesEstimatesEstimates ofofofof UtilityUtilityUtilityUtility FunctionFunctionFunctionFunction ParametersParametersParametersParameters fromfromfromfrom 2D2D2D2Dmodelmodelmodelmodel
Posterior Mean

(2.5%-97.5%

credible interval)

Price sensitivity β 5.73 (5.65, 5.81)

Quality coefficients
1γ -0.75 (-0.97, -0.52)

2γ 2.32 (2.18, 2.46)

Heterogeneity Parameters

for Ideal Points
1w 0.95 (0.84, 1.06)

2
1σ 0.47 (0.37, 0.57)

2w -0.1 (-0.27, 0.07)

2
2σ 0.25 (0.135, 0.365)

Brands Locations First Dimension Second Dimension

Pepsi 1.39 (1.26, 1.47) 1.16 (0.97, 1.35)

Diet Pepsi 0.34 (0.22, 0.46) 0.38 (0.33, 0.47)

Mountain Dew -0.33 (-0.49, -0.18) -0.63 (-0.70, -0.56)

Pepsi Free 0.03 (-0.06, 0.164 ) -0.03 (-0.09, 0.02)
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Diet Pepsi Free 0.37 (0.27, 0.46) 0.23 (0.17, 0.29)

Lemon-Lime

Slice

-0.29 (-0.47, -0.03) -0.93 (-0.99, -0.83)

Diet Lemon-Lime

Slice

-0.32 (-0.61, -0.1) -0.77 (-0.88, -0.61)

Cherry Coke -0.62 (-0.89, -0.40) -0.73 (-0.87, -0.59)

Diet Cherry Coke -0.19 (-0.53, 0.06) -0.78 (-0.88, -0.61)

Coke 1.26 (1.07, 1.34) 1.45 (1.33, 1.57)

Diet Coke 0.41 (0.32, 0.48) 0.62 (0.56, 0.74)

Caffeine-Free

Coke

0.33 (-0.02, 0.68) -1.27 (-1.40, -1.18)

Caffeine-Free

Diet Coke

0.57(0.42, 0.66) 0.46 (0.40, 0.56)

Sprite -0.10 (-0.17, 0.009) -0.30 (-0.35, -0.25)

Diet Sprite -1.04 (-1.18, -0.80) -0.09 (-0.23, 0.02)

Mr. PiBB -2.29 (-2.4, -2.12) 0.02 (-0.1, 0.14)

Dr. Pepper -0.51 (-0.62, -0.42) 0.19 (0.12, 0.28)

Diet Dr. Pepper -0.70 (-0.90, -0.45) -0.15 (-0.29, -0.02)

7-Up 1.49 (1.24, 1.64) -0.38 (-0.46, -0.31)

Diet 7-Up 0.96 (0.74, 1.25) -0.58 (-0.66, -0.50)

Other -0.78 (-0.90, -0.67) 2.14 (1.93, 2.35)

Deviance 7188.8773
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