Improving the Update Complexity of Locally Repairable Linear
Block Codes in Distributed Storage Systems

by

Mehrtash Mehrabi

A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science

in

Communications

Department of Electrical and Computer Engineering
University of Alberta

© Mehrtash Mehrabi, 2017

Abstract

Distributed and cloud storage systems are used to reliably store large-scale data.
Erasure codes have been recently proposed and used in real-world distributed and cloud
storage systems such as Google File System, Microsoft Azure Storage, and Facebook
HDFS-RAID, for reliable data storage. Conventional erasure codes, however, are not
suitable for distributed storage systems, as they cause significant repair bandwidth and
disk I/O. As a solution, a class of erasure codes called locally repairable codes (LRCs)
have been proposed. Using LRCs repairing a failed storage nodes requires access to
only a small number of available nodes. This property of LRCs results in a relatively
low bandwidth and disk I/O operations for repairing a failed node. In this thesis, we
study update complexity of LRCs. Update complexity of an erasure code is a measure
of the computation, I/O and networking costs associated with updating an information
block in a distributed storage system. LRCs with low update complexities are desirable.
In this thesis, we derive lower bounds on update complexity of an important class of
LRCs. Then, we propose a new set of LRCs, and, using the bound, we show that our
designed codes have either optimal or near-optimal update complexities. Interestingly,
our proposed codes improve update complexity without sacrificing important code

parameters such as minimum distance, rate, or locality.

ii

Preface

The results presented in Chapter 3 were presented in IEEE 86th Vehicular Technology
Conference: VT'C2017-Fall. Some of the results of Section 4.1 were presented in IEEE
15th Canadian Workshop on Information Theory (CWIT 2017). Finally, the major
results presented in Chapter 4 were summited to IEEE Tranactions on Communications

in August 2017.

iii

“I would like to dedicate my work to my parents.”

iv

Acknowledgements

I want to use this opportunity to thank everyone who has helped me in preparation
of this work. First of all, I should thank my supervisors, Dr. Masoud Ardakani and
Dr. Majid Khabbazian, who have been my greatest helps during the past two years
in every aspect. Second, I want to thank the committee members, Dr. Hao Liang
and Dr. Pedram Mousavi, for dedicating their time and energy, reading my thesis and
providing their invaluable ideas. Then, I want to thank my parents for their supports
and also thank every teacher, professor or friend who has helped me learn something

new during all my years of education, fulfilling my thirst for knowledge.

List of Symbols

OF
[a]
|A|
G

> AR H o< w

Obxc
1a

Matrix transpose operation.iiiii it 5
The set of integers from one to a; [1,a] ={1,---,a}........................ 5
Cardinality of set Ao e 5
The generator matrix of size k X m 9
The parity check matrix of size (n — k) X m....oooiiiiiiiiiiiiiiiiiaen, 10
The information vector of size 1 X k. ... e 9
The encoded vector of size 1 X 7oo i 9
Rate of the code 5
Finite field with cardinality q........... i 5,6
Minimum distance of the code...... 2
Dimension of the code. 2
Length of the code ... e 2
A zero matrix of size b X €. ... 5
A column vector of ones with size @ L. 5
Identity matrix of Size @.o e 5
Tanner grapho e 10
Kronecker product e 5
A linear block code. e 9

vi

List of Abbreviations

GF(q)
I0/sec

DSS

HDD
HDFS

1/0
LRC
MDS

RAID
RGC
RS

SSD

ucC

Galois field of order q 7
Input/output operations per secondoiiiiiiiiiiiiiiiiiian 13
Distributed storage system 1
Hard disk drive 12
Hadoop distributed file system i 2
Input/output. .. c.ou e 2
Locally Repairable Code. i 2
Maximum distance separable i 2
Redundant array of independent disks.......... ool 2
Regenerating code. ... e 17
Reed-Solomon. ... 11
Solid state drive. i e 12
Update complexityoone e 4

vii

Table of Contents

Abstract

List of Symbols

List of Abbreviations

Introduction

1.1 Motivation
1.2 Related Work L
1.3 Our Contribution L o

1.4 Organization of Thesis L.

Background

2.1 Finite Field Fo(GF(q)) - . .« « v v v i i i e e i

2.2 Linear Blockcodes oo
2.2.1 Systematic Linear Block Codes
2.2.2 Maximum Distance Separable Codes (MDS codes)

2.3 Distributed Storage Systemso Lo
2.3.1 Hadoop Distributed File System (HDFS)

2.4 Frasure Coding in Distributed Storage Systems
2.4.1 Regenerating Codes (RGCs)
2.4.2 Locally Repairable Codes (LRCs)
2.4.3 Tanner Graph Representation for LRCs

viii

ii

vi

vii

2.44 Using LRCs in Real-World Distributed Storage Systems

3 Minimizing the Update Complexity of Facebook HDFS-RAID Locally

Repairable Code
3.1 Update Complexity Of Facebook HDFS-RAID LRC
3.2 Numerical Results

4 The problem of Update Complexity in LRCs

28

4.1 Bound On the Update Complexity (UC) Of An Important Class Of LRCs 28

4.2 Construction Of LRCs With Small UC
4.2.1 Construction of Our Proposed Optimal LRCs
4.2.2 Properties of Our Proposed Optimal LRCs

4.3 Numerical Results 0.

5 Conclusion

Bibliography

Appendices

A Proofs for Chapter 4
Al Proofof Theorem 4.1
A2 Proofof Theorem 4.2. e
A.3 General form of Algorithm 1 0L,

ix

34

41

42

46

List of Tables

2.2

3.1

4.1

Storage overhead and repair bandwidth of three erasure codes.

Comparison between two different LRCs with identical parameters as

the one used in Facebook HDFS-RAID in terms of update complexity. .

Comparison between u; of our proposed LRCs and other LRCs for

different practical code parameters.o

26

List of Figures

1.1

21
2.2
2.3

3.1

3.2

3.3

41

Simplified structures of two optimal (n, k,d,r) = (8,4,4,3) LRCs with
different update complexity. When one information block is updated,
the codes represented in Figs. 1.1a and 1.1b on average need (3 x 5 +
1x4)/4=4.75and (3 x4+ 1 x5)/4 = 4.25 encoded block updates,

respectively.o

A simple structure of HDFS with N racks, each including [data nodes.
Tanner graph of an optimal (n,k,d,r) = (12,7,5,4) LRC
Tanner graph of the (n,k,d,r;) = (16,12,4,6) LRC employed in
Microsoft Windows Azure Storage [1]

Tanner graph of the (n,k,d,r) = (16,10,5,5) LRC used in Facebook
HDFS-RAID. e
Tanner graph of our (n,k,d,r) = (16,10,5,5) LRC with minimum
possible uj equal tod =5. Lo L
The comparison between the required time to update the parity blocks
that must be updated when a subset of information blocks are changed,
in our (n,k,d,r) = (16,10, 5,5) LRC and the one that used in Facebook
HDFS-RAID. e

Tanner graphs of two optimal (n, k,d, r) = (8,4, 4, 3) LRCs with different
update complexity. When one information block is updated, the codes
represented in Figs. 4.1a and 4.1b on average need (3x5+1x4)/4 = 4.75
and (3 x 4+ 1 x 5)/4 = 4.25 encoded block updates, respectively.

4

13

29

4.2

4.3

4.4

Al

Construction of an (n,k,d,r) NO-LRC. There are m = [2] local and
n—k—m global parity nodes, where r+1 is cardinality of each local group
except the m—th local group where its cardinality is s =n mod (r +1). 30
Tanner graph of an (n,k,d,r) = (15,9,5,4) optimal LRC. In this figure,
the global check nodes are connected to variable nodes based on our
proposed method. Lo 38
Tanner graph of an (n,k,d,r) = (15,9,5,4) optimal LRC. In this figure,
each of the global check node are connected to k + 1 = 10 variable nodes. 38

Tanner graphs of two (n,k,d,r) = (16,10,5,5) LRCs used in Facebook
HDFS-RAID [2] with different update complexity. w; in the codes
represented in Figs. A.la and A.1b is 5 and 6, respectively. 52

Chapter 1

Introduction

1.1 Motivation

A distributed storage system (DSS) uses many storage devices, called data nodes, to
store data. Since hardware and software failures can result in data unavailability or
even permanent data loss, it is crucial to add redundancy to the stored data. This
way, lost data can be restored using the available redundancies. The simplest solution
for adding redundancy is to store multiple replicas of data. This simple solution,
known as the replication method, is widely used in DSSs [2]. However, with the rapid
growth of data and the significant storage overhead (and therefore maintenance cost)
of replication method, this solution is becoming less attractive.

Using channel codes (in particular, those suitable for recovering erasures, also known
as erasure codes) is another way for introducing redundancy in distributed and cloud
storage systems. FErasure codes can provide the redundancy needed in DSSs with
significantly lower storage overhead compared to the replication method. Recently,
systematic erasure codes! have been employed in real-world distributed and cloud
storage systems, such as Facebook HDFS-RAID [2]|, Google File Systems [3], and

Microsoft Windows Azure Storage [1]. In order to use an erasure code in a DSS, first,

'In systematic codes, information blocks can be directly stored and read with no encoding and
decoding processes. This is why, in DSSs, systematic codes are preferred to the non-systematic ones.
In this work, we only consider systematic erasure codes [1,2].

a stripe of data is split into k information blocks. Then, using an (n, k) erasure code,
n encoded blocks are generated from k information blocks and stored in n different
storage nodes. In systematic erasure codes, the set of n encoded blocks consists of all
the k information blocks plus n-k parity blocks. Each parity block is a function of the
information blocks.

The minimum distance of a code is the minimum Hamming distance between any
two codewords. By using an (n, k) erasure code with minimum distance d, the DSS is
able to tolerate up to d — 1 node failures. In an (n,k,d) erasure code, the minimum
distance d is bounded to

d<n-—k+1.

This bound is known as the Singleton bound. Maximum distance separable codes (MDS
codes) are a class of erasure codes that achieve the Singleton bound with equality, i.e.,
d=n—k+1.

One problem with using conventional erasure codes in DSSs is their high repair
cost. While, in the replication method, a failed node is recovered by accessing only
one available replica, in erasure codes, recovering one failure may need accessing many
nodes, resulting in huge amounts of disk I/O and data traffic. For example, MDS codes
provide the largest possible minimum distance for a given storage overhead "%k‘, but,
recovering even a single node failure needs access to k available nodes. Considering
the size of data centers, the traffic load caused by conventional optimal erasure codes
is significant [2]. Reducing the number of nodes that must be accessed during the
recovery process of a failed node is essential in reducing this traffic.

More recently, locally repairable codes (LRCs) were suggested to reduce the number
of required nodes during the recovery process of a failed node [4-9]. An important
parameter of an LRC is its locality. The locality of an LRC, denoted by r, is defined
as the maximum number of nodes needed to be accessed in order to recover a missing
block. It is desirable to find LRCs that have a large minimum distance d as well as

a small locality r. Naturally, there is a bound on how much d can be improved for a

given n, k and r. In [4] and [5], the following bound is established,

dSn—k—[E]—FQ. (1.1)

r

LRCs that achieve this bound with equality are called optimal. It is verified that the
bound in (1.1) is tight if (r + 1) | n [5].

Besides network bandwidth and disk I/O, another important measure that should
be considered in designing LRCs is their update complexity. For a systematic (n, k, d, r)
optimal LRC, there exist n — k parity blocks constructed from k information blocks.
While some of these n — k parity blocks are constructed locally from a few blocks to
achieve the code locality, some other parity blocks are constructed globally to achieve
the required minimum distance. In the existing optimal LRCs, all the information
blocks are involved in these globally constructed parity blocks [10-12]. Consequently,
if only one information block is updated, all the global parity blocks have to be changed
resulting in a costly update process. Is it possible to generate more than one optimal
(n, k,d,r) LRC with different update complexity? If so, how can we find optimal LRCs
with small update complexity? The latter is the central question we study in this
thesis.

Fig. 1.1 shows the simplified structures of two optimal (n, k,d,r) = (8,4, 4, 3) LRCs.
These two LRCs are optimal, that is their minimum distance d achieves the bound (1.1)
with equality. In the LRC of Fig. 1.1a, all the information blocks are involved in the
two parity blocks P; and P;. However, in the LRC of Fig. 1.1b, only some information
blocks are involved in P3 and P,. In this example, if one information block is updated,

the LRC of Fig. 1.1b, on average, needs 12% less block updates.

1.2 Related Work

In [13], the authors define update complexity as the maximum number of encoded
blocks that must be changed when an information block is updated. They construct
update-efficient codes that have update complexity scaling sub-linearly with the code
length.

(1,)1, [0 11, J Jp, TP, o) (15 J1s L1, Jpy 0P, TP, JP,)

(a) (b)

Figure 1.1: Simplified structures of two optimal (n,k,d,r) = (8,4,4,3) LRCs with
different update complexity. When one information block is updated, the codes
represented in Figs. 1.la and 1.1b on average need (3 x 5+ 1 x 4)/4 = 4.75 and
(3x4+1x5)/4=4.25 encoded block updates, respectively.

The same definition of update complexity is used in [14, 15], where the authors
find proper sufficient conditions to achieve the optimum minimum distance and
update-efficiency. To achieve any significant rate with a low probability of error over
the binary erasure or binary symmetric channels, they show that the update complexity
must scale at least logarithmically in the block-length of the code. Also, they develop
tight upper and lower bounds on the number of remaining encoded blocks that are

required to recover a single missed encoded block.

1.3 Our Contribution

In this thesis, we study the problem of update complexity (UC) for systematic LRCs.
The contributions of this thesis are twofold. First, by taking an existing definition
of update complexity and generalizing it, we obtain both upper and lower bounds on
UC for an important class of LRCs. Second, we propose an algorithm to design LRCs
whose average UC is close or equal to the obtained lower bound.

Considering the size of practical codes, the saving gained by our proposed LRCs
can be significant. For example, the (n,k,d,r) = (16,10,5,5) LRC constructed by
our proposed algorithm and presented in Chapter 4 leads to more than 16% saving
in update complexity compared to the Facebook HDFS-RAID LRC [2]|, which has

identical parameters n, k, d and r. Moreover, due to the size of a data block (e.g., 256

MB in Facebook HDFS-RAID [2]) as well as the massive amount of the stored data in
real-world DSSs, even a small reduction in update complexity (UC) can yield significant
amount of saving as a single block update requires multiple read, download, and
write operations. We remark that our proposed codes improve UC without sacrificing
important code parameters such as minimum distance (d), rate (R= %), or locality (7).

Notations: We denote matrices and vectors by capital bold letters and bold letters,
respectively. F; and ® stand for a finite field of order g and Kronecker product,
respectively. I, and Opy. represent an identity matrix of size @ and a zero matrix
of size b x ¢, respectively. ()T and 1, represent matrix transpose operation and a

column vector of ones with size a, respectively. For an integer a, [a]= {1,--- ,a}. |A]

represents the cardinality of set A.

1.4 Organization of Thesis

The remainder of this thesis is organized as follows. In Chapter 2, we provide the
required preliminaries including some backgrounds in linear algebra, coding theory,
and storage systems. In Chapter 3, we formally define the update complexity and
as an example we study the update complexity of Facebook HDFS-RAID LRC and
propose a new LRC with the same code parameters with lower update complexity.
In Chapter 4, we obtain lower and upper bounds on update complexity of LRCs and
introduce our proposed LRCs with small update complexity and compare our proposed
LRCs with other conventional LRCs in terms of update complexity. Finally, in Chapter

5, we conclude the thesis and give some ideas to continue our studies.

Chapter 2

Background

This chapter includes some necessary definitions and assumptions required in the next
chapters. It also includes useful preliminaries and backgrounds on the topic of data

storage, coding theory and the application of data coding in DSSs.

2.1 Finite Field F,(GF(q))

Definition 2.1. Group: Defining a set of elements A on which a binary operation “x”
has been defined. The set A and the operation “«” constitute a group, denoted (A,x),

if the operation satisfy the following requirements.
(i) Closure: axbe A for all a,b € A.
(i) Associativity: (a+b)xc=ax (bxc) for all a,b,c € A.
(iii) Identity element: There exists e € A, such that exa=axe=a for alla € A,

(iv) Inverse element: For every element a € A, there exists a unique elementa™! € A,

such that axa™! = a~! x a = e (e is the identity element).

A group is called commutative or abelian if it further satisfies

(v) Commutativity: a*b=bxa for all a,b € A.

Example 2.1. The set of integers Z and the integer addition operation form an abelian
group, but, it cannot constitute an abelian group under integer multiplication operation

since there is no inverse element in G under multiplication operation.

Definition 2.2. Field: A set F together with two binary operations “+7” and “x” is
called a Field and is denoted by (F,+, x) if

(i) F and the addition operation “+” form an abelian group and the additive identity

element be “07,

(i) F — {0} (set F with no additive identity element) forms an abelian group under

multiplication operation “x” with multiplicative identity element “17,
(iii) For all a,b,ceF, (a+b)xc=axc+bxec.

Whenever set F contains a finite ¢ number of elements, the field is called finite field,
denoted Fq, where q is called the order of field F.

A finite field is sometimes referred to as Galois field, as it was first discovered by
Evariste Galois, as is denoted by GF'(q), where q denotes the order of the field. Each

element of a Galois field is called a symbol. A block is simply a vector of symbols.

Definition 2.3. Addition and multiplication modulo m (or mod m): Addition modulo

m is expressed as the following
a+b=c¢c modm,

and reads as “a+b is equivalent to ¢ mod m. With same expression for multiplication
modulo m, we have

axb=c¢c modm,

and reads as “a X b is equivalent to ¢ mod m.

The set {0,1,2,...p — 1}, where p is a prime power, constitute the field GF(p)

under modulo p addition and multiplication.

Example 2.2. GF(3) can be constructed by the set {0,1,2} and modulo 3 addition

and multiplication is shown in the following tables:

+/0 1 2 x |0 1 2
0|0 1 2 00 0 O
111 2 0 110 1 2
212 0 1 210 2 1

For every prime p and integer m, there is a finite field of order p™. The order of

any finite field is a power of a prime.

Definition 2.4. Primitive element: A primitive element of a finite field GF(q) is a
generator of the multiplicative group of the field. Let a € GF(q), be the primitive
element then we have a\971) = 1. Consequently, all the non-zero elements of GF(q)
can be written as powers of a. For example, 2 is a primitive element of the field GF(3)

and GF'(5), but not of GF(T7).

2.2 Linear Block codes

Erasure codes introduce controlled amount of redundancy to the original data,
providing the ability to recover the lost or unavailable data. A linear block code of
size n and dimension k, denoted (n,k) code, creates n encode blocks with applying
linear operations on k information blocks.

The simplest example of linear block codes, is the replication method, which is an
(n,1) erasure code. In an n-replication method, the original data is replicated n — 1
times and finally there are n replicas of the original data and thus, the storage overhead
is n — 1. Therefore, using this method, we are able to recover the original data in the
case of up to n— 1 block erasures. As mentioned earlier, 3-replication (which is a (3,1)

linear code) is widely used in practice [1,2].

2.2.1 Systematic Linear Block Codes

Let x = [z1,22,....,2k| € F;Xk represent the k information symbols. An (n,k)
systematic linear block code converts x into n encoded symbols y = [y;,¥2, ..., Un] €
F;x“ by multiplying = by a generator matrix G, that is y = xG. The vector y
is called codeword. The matrix G can be presented as G = [I,P] € IF‘;"X“', where
P e]F';Cx(n_k). The parity check matrix of the code is H = [-PT, 1, ;] € an—k)xn

satisfying GHT = 01x(n—k) and consequently, yHT = O1x (n—k)-

Definition 2.5. Hamming weight and Hamming distance: Let a be a vector. Then,
Hamming weight of a, denoted wt(a), is defined as the number of non-zero elements
in a. Hamming distance between two vectors a and b, is defined as wt(a — b) and

denoted d(a,b).

Definition 2.6. Minimum distance of code (d): The minimum distance d of an erasure
code is defined as the minimum Hamming distance between any two distinct codewords.
Any (n,k) erasure code with minimum distance d tolerates any d — 1 symbol erasures.

In an (n,k,d) erasure code, the minimum distance d is bounded to
d<n-—k+1.
This bound is known as the Singleton bound [16].

Definition 2.7. Tanner/Factor graph: Consider an (n,k) linear block code. Tanner
graph (Factor graph) T of this code is a bipartite graph with n variable nodes on
one side (usually shown by circles) and n — k check nodes on the other side (usually
shown by squares) [17,18]. The variable nodes represent the encoded symbols, and the
check nodes capture the dependencies between the encoded symbols. There exists an edge
between j-th (j € [n]) variable node and i-th (i € [n — k]) check node in the Tanner
graph if and only if element h;; (element of i-th row and j-th column of the parity
check matriz H) is non zero. Hence, the variable nodes connected to the same check
node are linearly dependent and in binary code, XOR of them is zero. Note that, there

can be many Tanner graph representation for a single code.

Example 2.3. In an (n,k,d) = (5,3, 3) systematic code in Fy2, let the generator matriz
G be

[10032}
G=1010 2 2P

22 -
l00131|

1X3 be the information symbol vector. Then, the encoded symbol

Let x = [z1,x9, 73] € F,3

vector (i.e., the codeword) y is generated as

y = xG = [z1, 22,23, 321 + 222 + 323,221 + 229 + 23].

In other words, y = [y1, Y2, Y3, Y4, ¥s| = |21, Z2, x3, 3z1+222+ 323, 221+ 222 +23] €]Fé;s

It can be easily shown that, information symbols x,,x9 and x3 can be recovered by

accessing any n — d + 1 = 3 encoded symbols. For example, you can construct y, by

y1,y2 and ys, that is y4 = 3y1 + 2y2 + 3ys3.

2.2.2 Maximum Distance Separable Codes (MDS codes)

Linear block codes that achieve the Singleton bound with equality are called MDS
(maximum distance separable) codes. MDS codes provide the largest possible minimum
distance for a given storage overhead ";‘,f In an MDS code, recovering a block requires

accessing n — d + 1 = k other blocks.

Definition 2.8. Reed-Solomon (RS) codes: An important class of MDS codes proposed
in [19] is RS codes. An (n,k) RS code has the parity check matriz Hgg = [¢(~D0~1] ¢
an—k)xn? where i € [1,n— k], j € [1,n], and z is a primitive element in Fq. In matric
Hpgs, any sub-matriz of size (n— k) X (n—k) is full-rank and thus, everyn—k=d—1
column of Hprs are independent. In order to find the systematic form of the parity

check matriz Hrs, we can easily multiply the inverse form of an (n — k) X (n — k)

sub-matriz of Hrpg by Hpg.

The significant cost of recovery a single data block is a major drawback of RS codes.
For an (n, k) RS code, in order to recover one single data block, k available data blocks

must be accessed and downloaded. This results in a high traffic load between data

10

nodes which is not desirable in real-world DSSs. Consequently, recently some DSSs
have switched from RS codes to new classes of erasure codes to reduce their overall

costs [1-3]. In the following examples we review some RS codes that were used in some

real-world DSSs.

Example 2.4. Facebook HDFS-RAID used an (n,k) = (14,10) RS code with minimum

distance d =14 — 104+ 1 =5 in 2012 [2]. The storage overhead of this code is 141_010 =

40%. Using this code, 10 data blocks must be accessed to recover a single failed data

block.

Example 2.5. An (n,k,d) = (9,6,4) RS code has been used in Google File System,
since 2011 [3]. The storage overhead of this RS code is 22 = 50%, and its minimum
distance is equal to d = n — k 4+ 1 = 4. Furthermore, siz data blocks must be accessed

and downloaded to recover a single failed/missed data block.

2.3 Distributed Storage Systems

This section is including the description of some important data storage systems such
as hard disk drive (HDD), solid state drive (SSD), and redundant array of independent
disks (RAID).

In the following, we formally define HDD and SSD which are the two widely used
storage devices. Then, we introduce data stripping and data mirroring as two popular
storage techniques which are useful in description of different types of RAID known as

the important data storage system.

Definition 2.9. HDD: A storage device made by a set of accumulated disks is known
as a HDD. Each disk is containing some tracks, which are concentric circles, where
data is stored. In a HDD, the read/write operation is performed by mechanical arms

with two heads, each on one side of a disk.

Definition 2.10. SSD: A storage component, constructed by microchips is called a
SSD. A SSD has no moving arm and an embedded controller processor is responsible

for read /write operations. Compared to HDDs, SSDs are faster in read/write operations

11

and they are more energy efficient and are providing safety against magnetism effects

with a low failure rate.

Definition 2.11. Data stripping and data mirroring (replication): In order to store
data in a storage device, a stripe of data is partitioned into some blocks and each data
block is stored on a HDD. This process is called data stripping and based on the number
of HDDs, it can boost throughput (I/O operation per sec). The main drawback of data
stripping is the unavailability of data in the case of even a single disk failure.

Data mirroring is the process of data replication in more than one disk providing

high tolerance against failure.

Example 2.6. Considering two HDDs, each is running at 100 10/sec (I/O operation
per sec). Then, using a data stripping process on these two HDDs, we are able to boost

throughput to 200 10 /sec.

Definition 2.12. RAID: An array of HDDs used to improve throughput and enhance
the tolerance against fatlure is known as RAID. In the following, we review some types

of RAID.

e RAID 0: Storing data blocks uniformly in more than one disk with no redundant
data. A RAID using n disk drives can improve 1/0 by a factor of n. RAID 0 is

beneficial in the case of need for high 1/O performance.

e RAID 1: Improving the read performance by running mirroring process on data.
Hence, data can be read by accessing any single disk. Whenever high reliability

and simple read process is crucial, RAID 1 is useful.

e RAID 2: Using Hamming code in bit-level instead of block-level to detect errors.
Today, HDDs are also profit from applying Hamming code in bit-level to find

erasures and thus RAID 2 is no longer in use.

e RAID 3: Providing the data stripping process in byte-level and assign a single
disk to store parity checksum and consequently, it can recover data in the case of

at most one disk failure.

12

Name node

(master)

Rack 1 Rack 2 Rack N

Figure 2.1: A simple structure of HDF'S with IV racks, each including ! data nodes.

e RAID 4: Same as RAID 3 but in block-level and today, is totally obsolete.

e RAID 5: Storing the parity checksum in more than one disk by performing data
stripping process in block-level. RAID 5 is able to tolerate one single disk failure
in the array and compare to RAID J, it enhances the data read performance by

involving all drives to read data.

e RAID 6: Performing a block-level data stripping process and stores two parity

checksum in many dicks, causing tolerating up to two disk failures in the array.
e RAID 10: Mizing RAID 0 and RAID 1, providing both data stripping and data
mirroring methods increasing read and 1/0 performance, respectively.
2.3.1 Hadoop Distributed File System (HDFS)

HDFS is a master /slave system which is used to store large-scale data in a reliable way.
HDFS uses one master node and N racks, where each rack has a separate network and

power cable and consists | data nodes. Fig. 2.1 shows a simple structure of HDF'S.

Example 2.7. Facebook data center uses a HDFS with 100 racks, each rack with 30

13

data nodes. Fach data node has 20 TB storage capacity and thus, the overall storage
capacity of the HDFS is 100 x 30 x 20 TB = 60 PB [2].

In HDFS, master node is called name node. Name node is an administrator
computer providing some principal data such as file directory of the stored data.
Providing the backups of these name nodes is useful to recover the missed data and
consequently, improving the reliability.

Data is stored in the data nodes. Data nodes send report to name node frequently
to update their status. They also communicate with each other to, for example, store
redundant data. In such storage systems, data node failures occur frequently due to
several reasons such as hardware/software problems associated with the underlying
network or data nodes. In order to recover the lost/erased data and make HDFS
reliable, redundancy is required. For example, the approach of keeping several replicas
of data in distinct data nodes, known as replication, is widely used [2].

Consider HDF'S illustrated in Fig. 2.1. Assume the data nodes 2, [+ 1 and NI each
have a replica of a data block .A. Then, if one of these data nodes, for example, [+ 1-th
data node fails, the data block A can be recovered by accessing data node 2, or data
node NI. Although, this 3-replication method offers a simple implementation, it results
in a high storage overhead of 200%. As mentioned earlier, recently, systematic erasure
codes have been proposed and used in DSSs to decrease storage overhead. In the
following section, we provide some more details about the benefits of using systematic

erasure codes in such storage systems.

2.4 Erasure Coding in Distributed Storage Systems

Systematic erasure codes have been used in real-world cloud storage systems such
as Facebook HDFS-RAID [2], Microsoft Windows Azure Storage [1], and Google
File System [3]. In systematic codes, information blocks are stored and read with
no encoding and decoding processes. This is why, in DSSs, systematic codes are
preferred to the non-systematic ones. In this work, we only consider systematic erasure

codes [1,2].

14

In a DSS, in order to store a stripe of data of size L symbols by an (n, k) systematic
linear block code, first, the stripe is partitioned into k data blocks each of size | = %
symbols. Assume that z;; is i-th symbol of j-th data block, where i € [I] and j € [k].
Then, x; = [Zj1, - ,Tik] € Fé.x"’. The coded vector y; = [yi1," - ,¥in| €]F}‘.x“ is
generated as y; = x;G = x;[I, P], where G is the generator matrix of the (n,k)
systematic linear block code. Then, matrix Y € IFf;,x“ is constructed by stacking [
encoded vectors y;. Each column of Y is an encoded block which is stored in a data
node. Without loss of generality and for simplicity, from now on, we assume that [= 1.
Therefore, the terms block and symbol can be used interchangeably.

Distributed storage systems that use systematic erasure codes, are able to reduce
the costly storage overhead and adjust the reliability level. The n-replication method
has a considerable storage overhead of n — 1 which can be moderated to ";,f by using
an (n,k,d) erasure code. The storage overheads of real-world DSSs that use erasure
codes such as Facebook HDFS-RAID [2], Microsoft Windows Azure Storage [1], and
Google File System [3] are 60%, 33%, and 50%, respectively.

Furthermore, the DSS using an (n, k, d) erasure code is capable of adjusting the level
of reliability. Since, an (n, k, d) can tolerate up to d— 1 symbol erasure, by changing the
minimum distance d of code, we can improve the fault tolerance level of the DSS. The
minimum distance of the erasure codes used in Facebook HDFS-RAID [2], Microsoft
Windows Azure Storage [1], and Google File System [3] are 5, 4, and 4, respectively.

Although, erasure codes decrease the costly storage overhead, they introduce new
shortcomings. In the following, we review some of these shortcomings, as well as the
solutions proposed in the literature.

One of the shortcomings of erasure codes is their high disk I/O operations required
in a block recovery process. Recently, a class of erasure codes have been proposed to
reduce this disk I/O overhead [20-22]. There is still no general bound on the minimum

number of disk I/O operations required to recover a failed data block [23].

15

2.4.1 Regenerating Codes (RGCs)

One of the shortcomings of traditional erasure codes is their high repair bandwidth.
Repair bandwidth is referred to the required amount of data download from the active
data nodes during the recovery process of a single failed data block. For example, in an
(n, k,d) MDS code, recovering one single data black requires accessing and downloading
k data blocks. To reduce the high repair bandwidth of MDS codes, yet preserve their
optimum minimum distance, a class of erasure codes, named regenerating codes (RGCs)
have been proposed. A general lower bound on the repair bandwidth of erasure codes
was proven in [23]. Erasure codes that achieve this bound and thus, have the minimum

repair bandwidth are called RGCs.

2.4.2 Locally Repairable Codes (LRCs)

Another drawback of using conventional erasure codes, is their associated repair locality.
Repair locality is defined as the number of active data nodes that must be accessed
to recover a single missed data block. Recently, locally repairable codes (LRCs) have
been proposed to decrease the repair locality. LRCs is a class of codes offering low
repair locality and bandwidth as well as moderate storage overhead. In the following

we define the code locality as an important measure of performance in erasure codes.

Definition 2.13. Code locality: In an (n, k) linear block code, r; (denoting the locality
of the i-th encoded block) is defined as the minimum number of other blocks needed for
recovering y; (i-th encoded block). In other words, in the case that y; is missing, at least
r; other blocks are required to reconstruct it. Locality of a code, denoted r, is defined
as the mazimum of r; for i € [n], i.e. T = 1;161%;]1 ri. LRCs are a class of codes that are
designed to have small r.

LRCs achieve a smaller code locality at the cost of smaller code minimum distance.

The following bound on the minimum distance of LRCs was proven in [4,5].

dSn—k—[E]—FQ. (2.1)

r

LRCs that achieve this bound with equality are called optimal. Using optimal LRCs

16

in distributed and cloud storage systems leads to high tolerance against node failures,
improved storage efficiency, repair bandwidth, and disk I/O. In the following table, we

compare the storage overhead and repair bandwidth of three erasure codes.

Replication method LRCs RS codes

Storage overhead High Reasonable Low

Repair bandwidth Low Reasonable High

Table 2.2: Storage overhead and repair bandwidth of three erasure codes.

There are many recent works about LRCs in the literature. An upper bound on
the minimum distance of LRCs is established in [24]. Unlike (2.1), this upper bound
takes the field order into account. In [7-9], in order to decrease the computational
complexity associated with coding, LRCs over small fields are proposed. In [6], a class
of LRCs called t-LRCs are introduced. in t-LRCs, for any missing block, there exists
t disjoint group of blocks; each group can be used to fully recover the missing block.

By generalizing (2.1), an upper bound on the minimum distance of t-LRCs is proposed

in [6].

2.4.3 Tanner Graph Representation for LRCs

Tanner graphs can capture the locality of an erasure code. For example, suppose that
the Tanner graph of a code is such that every variable node is connected to a check
node of degree at most r + 1. Then the locality of the code must be at most . To
construct and analyze LRCs, we work on their Tanner graphs, and use several terms

that we define next.

Definition 2.14. Information and parity nodes: Consider the Tanner graph associated
with a systematic (n, k) linear block code. Among all the n variable nodes, the k variable
nodes that correspond to the k information blocks are called information nodes, and are
represented by white (unshaded) circles in the Tanner graph. The remaining n — k

variable nodes correspond with the n — k parity blocks. We call these variable nodes

17

parity nodes, and represent them by shaded circles in the Tanner graph (see Fig. 2.2

as an example).

Definition 2.15. Local and global check nodes: In the Tanner graph of an (n,k,d,r)
LRC, among n — k check nodes, a minimal set of check nodes, where each having at
most r + 1 edges to achieve the code locality, that cover all variable nodes are called
local check nodes. Check nodes which are not local are called global. For example, in
Fig. 2.2, the check nodes that are below the variable nodes are local check nodes and

the rest are global.

Definition 2.16. Local and global parity nodes: Parity nodes associated with local
check nodes are called local parity nodes; other parity nodes (i.e., those associate with

global check nodes) are called global parity nodes.

Definition 2.17. Local and mized group: In the Tanner graph of an (n,k,d,r) LRC,
variable nodes connected to a local check node constitute a local group. Therefore, a
failed variable node can be reconstructed within its local group. Note that the locality r;
of each variable node is the size of its local group minus one. Local groups containing

global parity nodes as well as local parity nodes are called mized groups.

To generate an LRC, one can first construct a Tanner graph. The Tanner graph
will determine the zero elements of the parity check matrix of the code. The non-zero
elements can then be chosen randomly from non-zero elements of a finite field. If the
order of the finite field used is large enough, the correspoinding constructed code will
have the optimal minimum distance, with high probability. After constructing the
Tanner graph of an (n, k,d,r) LRC, the zero and non-zero elements of the parity check
matrix are determined H € an—k)xn. Consequently, in this work, we mainly focus
on the Tanner graphs of LRCs. The following example illustrate how an LRC can be

constructed given a Tanner graph.

Example 2.8. Fig. 2.2 illustrates the Tanner graph of an (n,k,d,r) = (12,7,5,4)
LRC. In this Tanner graph there are 5 squares and 12 circles representing check

nodes and variable nodes, respectively. Among all the 12 variable nodes in the Tanner

18

Figure 2.2: Tanner graph of an optimal (n, k,d,r) = (12,7,5,4) LRC

graph, the 7 unshaded circles represent the information nodes and the 5 colored circles
represent parity nodes. Also, the 3 parity nodes that are distinguished by gray color are
local parity nodes and others are global parity nodes. The three squares drawn bellow
the variable nodes (circles) are local check nodes as their degree is at most r +1 = 5,
and they cover all the variable nodes (that is, every variable node is connected to at
least one of them). The other 2 check nodes (the top two squares) are global check nodes
linked to all information nodes. The parity check matriz H €]ngw, corresponding to

Tanner graph in Fig. 2.2, is

hl 1 hl,g h13 h14 0 0 0 hlg 0 0 0 0

0 0 hgzs O hes hog haz

0 hag 0 0 0

Ho = 0 0 0 hza O 0 hzr O 0 hzio h3in hsio

hsg has haz haa has hag hgyr 0O 0 0 hgnn hajo
0

hsi hs2 hs3s hsa hss hse hsz 0 0 hsi1 hsaio

To make sure that the minimum distance of the LRC corresponding to the parity matriz
Hy is maximized, the non-zero elements of Ho, i.e., hij , fori e [1,5] and j € [1,12],

should be selected randomly from a sufficiently large finite field.

2.4.4 Using LRCs in Real-World Distributed Storage Systems

Microsoft Windows Azure Storage and Facebook HDFS-RAID are two examples of

real-world distributed storage systems that are using LRCs. We will cover the LRC

19

Figure 2.3: Tanner graph of the (n,k,d,r;) = (16,12,4,6) LRC employed in Microsoft
Windows Azure Storage [1]

used in Facebook HDFS-RAID in details in Chapter 3, and show how we can improve
its update complexity. The LRC used in Windows Azure Storage is explained in the

next example.

Example 2.9. Microsoft Windows Azure Storage is configured by an (n,k,d,r;) =

(16,12,4,6) LRC, where r; denotes the locality of information nodes. This LRC has

the storage overhead 161_212 = 33% and has been used since 2012. Fig. 2.3 illustrates

the Tanner graph of this LRC, where all the 12 information nodes have locality 6. The
local parity nodes are Iy and l. The global parity nodes g1 and g2 are linear function
of all information nodes. In this code, the locality of 14 variable nodes including 12
information nodes and two local parity nodes is 6 and locality of two global parity nodes

is 12.

20

Chapter 3

Minimizing the Update
Complexity of Facebook
HDFS-RAID Locally Repairable
Code

In this chapter we discuss the impact of improving update complexity in energy saving.
In particular, we propose some results about the update complexity of Facebook
HDFS-RAID LRC. Before employing the (n,k,d,r) = (16,10,5,5) LRC in Facebook
HDFS-RAID, in 2011 an (n,k,d) = (14,10,5) RS code was used. Although, the
mentioned LRC increased the storage overhead from 40% to 60%, it reduced the code
locality considerably.

Data, hence parity blocks, are frequently updated in many applications. Hence,
codes with efficient update complexity are desirable as they require fewer I/O
operations. This also results in energy saving at data centers [25]. Moreover, a code
with minimum update complexity requires less time to update all parity blocks and
thus can complete the operation faster. Also, since the power usage of hard-drives in
idle mode is less than read/write mode [26], improving the update efficiency of LRCs

result in lower power consumption by data nodes.

21

3.1 Update Complexity Of Facebook HDFS-RAID LRC

In this section, we study the update complexity of Facebook HDFS-RAID LRC.
Then, we propose a new LRC with the same parameters (n,k,d,r) as the Facebook
HDFS-RAID LRC, but with minimum possible update complexity. We start with
defining the update complexity.

In [13], [14] and [15], update complexity is defined as the maximum number of blocks
needed to be updated when any single information block is changed. Thus, update
complexity for a code C with generator matrix G is equal to the maximum weight of
the rows of G, where the weight of each row is the number of nonzero elements of that
row. This definition can be extended to the case where multiple information blocks are
changed. Let w; denote the set of blocks that need to be updated when i-th, i € [k],

information node is changed. For a set S C [k], we define

Ws = Jw (3.1)
ieS
and
Ug = E“WS“:

where E[] denotes expected value, expectation is taken over all subsets of [k] of size z,
and information block changes are assumed i.i.d. The parameter u, can be thought of
as the average number of nodes that need to be updated when z information blocks are
changed. In the following, we improve u; for z = 1. The reason that we focus on this
special case is that i) considering (4.1), reducing u; can lead to smaller u, for z > 1;
ii) w1 is the dominant term in update complexity when updates are not frequent (i.e.,
when multiple block updates in a single stripe is unlikely). By the above definition, u;
in (n, k) code with generator matrix G, where G = [Ix, Ppy (n—r)], is equivalent to the
average weight of rows of matrix P plus one.

By the definition of code’s minimum distance, changing an information block leads
to changing at least d encoded blocks including d — 1 parity blocks and one information
block, thus we have

uy > d.

22

The minimum distance of the (n,k,r,d) = (16,10,5,5) LRC used in Facebook
HDFS-RAID is 5. By the above inequality, the minimum average update complexity
that can be achieved in a code with minimum distance d = 5 is u; = 5. The update
complexity of the Facebook HDFS-RAID LRC is u; = 6, as will be shown later. Our
main contribution is designing an (n,k,r,d) = (16,10,5,5) LRC with the minimum
possible update complexity of u; = 5. We remark that, as proven in [2,27], the largest
possible minimum distance for the code parameters (n, k,r) = (16,10,5) isd = 5, which
is achieved by both our proposed LRC, and the LRC used in Facebook HDFS-RAID.

In order to find an (n, k,r,d) = (16, 10,5, 5) LRC with minimum update complexity
u; = 5, we need to construct a generator matrix in which the wight of every row is
equal to d = 5. Currently, the generator matrix G associated with the (16,10, 5,5)
LRC used in Facebook HDFS-RAID [2] is G = [0, P1ox16], where

pii 0 pi3 pua pis Pis
P21 0 po3 paa p2s Pos
P31 0 p3z p3a P35 P3e
pa1 0 pa3s paa pas Pas
ps1 0 ps3s Psa Pss Pse
Pioxi6 = :
0 ps2 P63 DPea DPes De6
0O pr2 pr3 pra Ps Pie
O ps2 ps3 psa P85 D=6
0 po2 po3 pos Pos Ppos

0 Pio2 P1o3 Pio4a Pios P10o6

and p;; € Fas6\{0}. The weight of each row of G is 6, hence the code’s update
complexity is 6, which is one more than the minimum possible update complexity for
a code with minimum distance d = 5. The Tanner graph associated with matrix G is
also shown in Fig. 3.1.

Instead of working directly with a generator matrix and minimizing the weight

of its rows, in our approach, we first construct a Tanner graph 7 for the given code

23

Figure 3.1: Tanner graph of the (n,k,d,r) = (16,10,5,5) LRC used in Facebook
HDFS-RAID.

parameters (n, k,r,d) = (16, 10,5,5), and then derive a generator matrix from it. While
constructing a Tanner graph, we have to ensure the minimum distance constraint is

satisfied; for that we use the following theorem from [28].

Theorem 3.1. [28] There is an erasure code with minimum distance d associated
with Tanner graph T iff every v check node of T cover v + k wvariable nodes, where
yeEn—k—d+2,n—k|

Proof. Please see the proof in [28]. O

By Theorem 3.1, in the Tanner graph 7 for an (n,k,d,r) = (16,10,5,5) LRC, a
necessary condition to satisfy minimum distance d = 5 is that any collection of v = 3
check nodes including two local check nodes and one global check node cover at least
¥+ k = 3+ 10 = 13 variable nodes. To satisfy this condition, the single global check
node in any such collections must be connected to all the variable nodes of the local
group outside the collection with at most d — 2 = 3 exceptions. In other words, at least
3 variable nodes in each local group have to be connected to each of the 3 global check
nodes. To have a Tanner graph achieving u; = 5, after constructing 3 local groups by
3 local check nodes we connect each global check to exactly » — d + 3 information nodes
with smallest degree in each local groups. Then, if there is any information nodes not

connected to at least 2 global check nodes, we connect it to another global check node

24

Figure 3.2: Tanner graph of our (n, k,d,r) = (16,10, 5,5) LRC with minimum possible
uq equal to d = 5.

to have connection with at least 2 global check nodes. Consequently, each variable node
will have connection with 2 global and 2 local check nodes and thus, weight of each
row in parity-check matrix P will be 4. By following these steps we derive a Tanner
graph with u; equal to d = 5. The constructed Tanner graph is shown in Fig. 3.2. It is
easy to verify that when this necessary condition is satisfied, then every -y check node,
v € [3,6], covers at least v + 10 variable nodes. Hence, using Theorem 1, minimum
distance d = 5 is guaranteed.

After constructing the Tanner graph, in order to have a code, we need an explicit
generator matrix, or equivalently a parity-check matrix. As mentioned earlier, a Tanner
graph determines the zero elements of the parity check matrix H. To find the nonzero
elements of H, one can pick random numbers from a sufficiently large finite field.
Finding the smallest finite field order needed for explicit code construction can be
a very difficult problem [29]. Here, we were able to find a proper generator matrix

over GF(2*). The generator matrix of an (n, k,d,r) = (16,10, 5,5) LRC found by the

25

program is: G = [L1o, P] where

13 0 10 0 7 10
10 0 12 0 14 3

15 0 7 6 0 5

4 0 0 12 5 10
0 15 3 0 7 11
0 12 11 0 7 3
0 5 13 9 0 2
0 10 0 15 8 14

0 15 0 12 5 11

We remark that, the elements of the generator matrix of the LRC used in Facebook
HDFS-RAID come from GF(2%). Since the code is based on a (n,k,d) = (14,10,5)
Reed-Solomon code [2], the smallest finite field order that can be used in the code is
GF(2%), which is the finite field used in our proposed LRC.

3.2 Numerical Results

In this section we provide some comparisons between our proposed (n,k,d,r) =
(16,10,5,5) LRC and the one currently used in Facebook HDFS-RAID.
In the following table we compare the u; and uy for our proposed (n,k,d,r) =

(16,10,5,5) LRC and the LRC used in Facebook HDFS-RAID.

Type of code (nk,dyr) | w U9

Facebook HDFS-RAID LRC | (16,10,5,5) | 6 | 7.556

Our proposed LRC (16,10,5,5) | 5 | 7.267

Table 3.1: Comparison between two different LRCs with identical parameters as the

one used in Facebook HDFS-RAID in terms of update complexity.

26

g
o

§ —=Qur prohosed (n,k,d,r) = (16,10,15,5) LRC
@ _,_The currect (n,k,d,r) = (16,10,5,5) LRC
@ used in Facebook HDFS-RAID i
S, —
o e
el /./
> ==
% } / e
S5 e
£ e
g /",/' _,-f“'fff
= i
(<8
3 9 = == /
‘6 - ,/
W /’ —
14} o
E //’f =
505 — e
8 r
o

200 400 600 80 1000 1200 1400 1600 1800 2000
number of changed information blocks

Figure 3.3: The comparison between the required time to update the parity blocks that
must be updated when a subset of information blocks are changed, in our (n,k,d,r) =

(16,10,5,5) LRC and the one that used in Facebook HDFS-RAID.

Observing the above table, our proposed (n,k,d,r) = (16,10,5,5) LRC improves
the update complexity by 16.67% and 3.82% for w; and wus, respectively without

sacrificing other code parameters such as code size n, code dimension k, code rate
k

o> minimum distance d, and locality .

Fig. 3.3 shows the time required to complete a sequence of single information
block change requests for our proposed LRC as well as the LRC used in Facebook
HDFS-RAID. The z-axis shows the number of information block change requests in
the sequence. Recall that each single information block change requires, on average,
updating u; blocks. We run this simulation on a system with Intel core i7 6700HQ
CPU and 16GB RAM, and set the size of each blocks to 94 bytes. This comparison
shows that our proposed code results in more than 30% saving in update time required
for a sequence of 1000 information block change requests as well as 94 KB saving in disk
I/O and network bandwidth. Please also note that in the clusters used in Facebook
HDFS-RAID, the size of each block is 256 MB, which results in a higher gap between

the running time performances of the two LRCs.

27

Chapter 4

The problem of Update
Complexity in LRCs

In this chapter, we study the problem of update complexity (UC) for any systematic
LRCs. By using the definition of update complexity that we proposed in Chapter 3,
in first step we obtain both upper and lower bounds on UC for an important class of
LRCs. Then, we propose an algorithm to design LRCs whose average UC is close to

the obtained lower bound.

4.1 Bound On the Update Complexity (UC) Of An
Important Class Of LRCs

Here, first we repeat the definition of update complexity from Chapter 3. Let w; denote
the set of variable nodes that need to be changed when the ith, 7 € [k], information
node is updated. Recall that the encoded vector y is equal to xG. When the ith
element of the information vector x is updated, the jth element of y is changed iff
Gli, j] (i.e., the jth element of the ith row of G) is non-zero. Therefore, |w;| is equal
to the weight of the i-th row in the generator matrix.

For a set S C [k], we define
Ws=Jw (4.1)

ieS

28

Figure 4.1: Tanner graphs of two optimal (n, k,d,r) = (8,4,4,3) LRCs with different
update complexity. When one information block is updated, the codes represented in
Figs. 4.1a and 4.1b on average need (3 x5+1x4)/4=4.75and (3x4+1x5)/4 =4.25
encoded block updates, respectively.

and

Ug = E“WS“:

where E[-| denotes expected value. Here, the expectation is taken over all subsets of
[k] of size z, chosen uniformly at random. The parameter u, can be thought of as
the average number of variable nodes that need to be changed when z information
nodes are updated. In the following example, we compute the update complexity of

two different LRCs with an identical code parameters and different Tanner graphs.
Example 4.1. In Fig.4.1, Tanner graphs for two different (n,k,d,r) = (8,4,4,3)
LRC's are shown. We have

lw1| + |wa| 4 |ws| + |wy]
4 H

w = E[|Ws[] =

Therefore, for the LRC shown in Fig.4.1a, we get uy = (3 x 5+ 1 x 4)/4 = 4.75, while
for the LRC shown in Fig.4.1b we have ui = (3 x 4+ 1 x 5)/4 = 4.25. Notice that the

two codes have identical parameters (n,k,r,d), yet the second code enjoys a lower UC.

In the following, we define an important class of LRC. First, we study the problem
of UC in this class, and later we extend our results to other LRCs.

Non-overlapped LRCs (NO-LRCs): This is an important class of LRCs which has
been the focus of many influential studies (e.g., [10-12,30]). In a NO-LRC, all the local

29

Figure 4.2: Construction of an (n,k,d,r) NO-LRC. There are m = [;35] local and
n — k —m global parity nodes, where r 4+ 1 is cardinality of each local group except the
m—th local group where its cardinality is s =n mod (r + 1).

groups or non-overlapping. All local groups are of size r + 1, except at most one local
group whose size s, 1 < s <7+ 1.

By the above definition, we have
s=n mod (r+1),

and among the total (n— k) check nodes, there are [2] local and n—k— [7] global
check nodes (see Fig. 4.2 as an example).

To study the UC of NO-LRCs and seek NO-LRCs that have low UC, we first start
with studying a special variable node arrangement for NO-LRCs. Later, we will show
how this arrangement helps us to establish our bounds.

The structure shown in Fig. 4.2 represents an (n, k,d,r) NO-LRCs with a special
variable node arrangement. In this structure, based on the construction of NO-LRCs,
n encoded nodes are partitioned into [%1 — 1 local groups of size r + 1 and one
local group of size s (s = n mod (r + 1) # 1) called the defective group. Each local
group has a local parity node, denoted by [;, where i € [[%H Also, each local group
except mixed groups and the defective local group has r information nodes. Among
all structures representing an (n, k,d,r) NO-LRCs, the above structure minimizes the
number of mixed groups, which is the first step towards reducing UC. Note that in this

structure, there is at most one mixed group containing both information and global

parity nodes. We call this group infomized group® .

!There is no infomixed group, if r | k.

30

Let
z1=n mod (r+1),

zg=d—2 mod (r+1)

and

z;.-,:k—i—[k—‘.

r
These defined variable are useful in following lemma which is from [27].

Lemma 4.1. In an (n,k,d,r) NO-LRC where z, < z3 or even z3 = 0, the largest

minimum distance d is one less than the upper bound (1.1), which is

k
d=n—k— H +1.
On the other hand, in an (n,k,d,r) NO-LRC where z1 > z3 # 0, the upper bound (1.1)

is achieved and the largest minimum distance d s

d:n—k—[ﬁ]w.

r

Proof. The proof is provided in [27]. O

To establish the bounds on the UC, we need to know the exact number of global and
local parity nodes. The number of local parity nodes is [%1 The following lemmas

determine the number of global parity nodes in terms of code parameters.

Lemma 4.2. In an (n,k,d,r) NO-LRC with the largest minimum distance d, where

ok] a1 [

z1 < z3, we have

Proof.
k 1
d=n—k—[-|+1<n—k1+-)+1.
T r
Hence,
1
dgn—k(1+;)+1<d+1
and
k<n(le—)—(@d-1)1- —)<—" 4k
- r+1 r+1 r+1)

31

Therefore,

d_lgn—k— n < r —|—d—1—d_1

d—1-— .
r+1 r+1 r+1 r+1

By taking the floor of both sides of the inequality, we get

[a-1- 2 < |n-k- 2| < | a1 4.

r+1 _*r—i—l r+1 r+1
We have
d—1 d—1
e
and
d—1 d—1
[r—:1+d_1_r—+1j <1+d-1— LH].
Thus,
d—1—[f;i]gn—k—[ﬁ]amq—[%]. (4.2)

By (4.2) and the fact that n — k — [-25 | is an integer, we get

n
r+1

d—
ke [e [

1

Lemma 4.3. It was verified in [27] that in an (n, k,d,r) LRC with the largest minimum

distance, where zy > z3 or z1 = 0, we have

d—
n—k-[q]=d-2- {rﬂ’

Proof. The proof is provided in [27]. O

Consequently, based on the obtained results, in an (n, k,d,r) NO-LRC the number
of global check nodes, denoted ¢, is

ézn_k_[rj—l—‘

We can determine the exact value of ¢ based on previous lemmas. The total number

of mixed groups, denoted A, is

32

Consequently, the infomixed group, if exists, has ¢ — (A — 1)r global parity nodes and
one local parity node. Thus, there are r +1 — (¢ — (A — 1)r) — 1 information nodes in

the infomixed group. The total number of information nodes is

k:dr—tl]_/_[r

where the first term is the number of information nodes in non-mixed groups, the

2Z1
r+1

])?+(r—¢+()\—l)r)+[](Zl—l),

51

+1
second term is that in infomixed group and third term is that in the only defective
local group. Now by using the given properties of NO-LRCs, in the following theorem,

we establish both lower and upper bounds on the number of parity nodes that need to

be changed when a subset S of information nodes are updated.

Theorem 4.1. For an (n,k,d,r) NO-LRC, let S be an arbitrary subset of [k| with
|S| = z. Then,

d+{3:35i9}suwﬂ5d+&

r

where A = [%—I and § = min (;t:, [l —)..)_

Proof. Please see Appendix A.1. |

The following corollary directly follows from Theorem 4.1.

Corollary 4.1. For an (n,k,d,r) NO-LRC, we have
—(r)—
it FB (rA - ¢)

. |sue<d+o,

where A = [Q—I, and § = min (;t:, [l —)..)_

r

Next, we improve the bound on u, for x = 1. The reason that we focus on this
special case is that i) considering (4.1), reducing u; can lead to smaller uy for z > 1;
ii) w1 is the dominant term in UC when updates are not frequent (i.e., when multiple
block updates in a single stripe is unlikely); iii) the new bound leads to a design of

NO-LRCs with near-optimal /optimal u;.

Theorem 4.2. For an (n,k,d,r) NO-LRC, u; is bounded as

o LE

2 <u <d+1,

33

where A = [%—I and
n= ma;(([),r(d— 1)— (o +7— 1))

Proof. Please see Appendix A.2. U

By Theorem 4.1, we have d < u;. This lower bound is is improved by by an extra
term in Theorem 4.2. In the following section, we propose a class of NO-LRCs whose

uq matches or is very close to the new lower bound obtained in Theorem 4.2.

4.2 Construction Of LRCs With Small UC

Here, we present our proposed LRCs using their Tanner graphs. Our proposed LRCs
follow the structure of NO-LRCs. They benefit from a small u;, close or even equal
to the lower bound obtained in Theorem 4.2. In other words, in comparison with the
existing LRCs, our proposed LRCs require accessing and changing a smaller number

of encoded blocks in the case of information block updates.

4.2.1 Construction of Our Proposed Optimal LRCs

In order to construct our proposed LRCs, first, n variable nodes are partitioned into
[%1 local groups each containing r + 1 variable nodes except the defective local
group which has 21 (21 # 1) variable nodes. Hence, there are [77] local check nodes
associated with the [%1 local groups, and each local group constructs one local parity
block. The remaining n— k — ([%]) = ¢ check nodes construct ¢ global parity blocks
which are placed in the mixed groups (Fig. 4.2).

By Theorem 4.1, we have d < |Ws| < d + 1, when |S| = 1. This implies that
updating a single information block requires updating either d or d+ 1 encoded blocks.
Therefore, to minimize u;, we have to find Tanner graphs with minimum number
of information nodes whose update requires changing d + 1 variable nodes. While
constructing such Tanner graphs, we have to ensure the minimum distance constraint

is satisfied, and for that we Theorem 3.1.

34

By Theorem 3.1, a necessary condition to achieve minimum distance d for our
proposed LRCs is that any collection of n—k—d+2 check nodes consisting of n—k—d+1
local check nodes and a single global check node cover at least n— (d—2) variable nodes.
The number of local groups outside the selected collection is [%1 —(n—k—d+1)=
d—1— ¢. To satisfy this condition, the single global check node in any such collections
must be connected to all the variable nodes of the local groups outside the collection
with at most d — 2 exceptions. In other words, at least (r +1)(d — 1 —¢) — (d — 2)
variable nodes of any set of d — 1 — ¢ local groups have to be connected to each of the

¢ global check nodes. Algorithm 1, presented next, is based on this idea.

4.2.2 Properties of Our Proposed Optimal LRCs

In the following, we verify some important properties of our proposed LRCs generated

by Algorithm 1.

Proposition 4.1. The (n,k,d,r) NO-LRCs constructed by Algorithm 1 based on the
structure of NO-LRCs have minimum distance d equal to n—k—[%]+2 or n—k—[%]+1.

Proof. For an (n,k) erasure code with Tanner graph 7, if any ¢ variable nodes are
connected to ¢ distinct check nodes, where ¢ € [d — 1], then any ¢ variable nodes can
be recovered using equations associated with the distinct check nodes. This implies that
the code can recover up to any d — 1 failures and therefore, it has minimum distance d.

In our proposed LRCs, every information node is connected to at least ((d — 2 —
A) +A) +1 =d— 1 distinct check nodes, where A\ = [%] Also, each of the n — k
parity nodes is connected to exactly one distinct check node. Hence, any d — 1 variable
nodes are connected to at least d — 1 distinct check nodes and our proposed code has

minimum distance d.]

Remark 4.1. Our proposed optimal LRCs improve the UC compared to the existing
solutions. The construction of our proposed LRCs ensures that not all information
nodes are involved in global check nodes. In fact, it tries to keep the number of

information nodes involved in any given global check node small. This means a small

35

Algorithm 1 Construction of NO-LRCs with small UC

First, construct local groups based on the structure of a NO-LRC depicted in Fig. 4.2.
e Connect each of the ¢ global check node to a distinct global parity node located in
the mixed groups.

e Connect all the information nodes of the infomixed group, if exists, to all the ¢ global

check nodes.

for i € [[15]], do
Choose [z——]| information nodes in the i-th local group and connect them to
all the ¢ global check nodes. Connect each of the other information nodes in
i-th local group to ¢ — 1 global check nodes that have the smallest degree. (n =

max (0, rd—1)— ¢(¢p+r— 1)))

end

number of global parity blocks need update when information blocks are updated. In the
case of one information block update, our construction achieves the minimum average
number of parity block updates. Based on the bounds in Theorem 4.2, if n = 0, then the
required update when any single information node is changed is d. Also if n # 0, then

u1 = d + a, where since there are more zeros in the generator matriz of our proposed

LRC than the LRCs constructed in [11], o in our LRCs is lower.

The following remark identifies a condition under which our proposed codes achieve

H]Id.

Remark 4.2. Based on Theorem 4.2, in the LRCSs that n = 0 we can achieve u; = d

which is the smallest possible uy. This happens when in an NO-LRC we have
r(d—1)< ¢(¢+r—1),

where ¢ is the number of global check nodes or n — k — [%1 in an NO-LRC. For
instance, in the NO-LRC'’s that d > r 4+ 3 we can easily show that the above inequality
can be achieved and consequently, we have 1 = 0 resulting uvy = d. Also, in the

NO-LRCs that d < v+ 3 we have ¢ = d — 2 and consequently in the case that
r<(d—2)(d-3)

is achieved, we have n = 0 resulting u; = d.

36

Remark 4.3. As discussed in Theorem 4.2, uy in NO-LRCs is at most d+1. However
there is a class of NO-LRCs where uy is at most d and consequently, there is no way
to remove any edge without sacrificing minimum distance and improve uy. In these
NO-LRCs there are at most d — 1 parity blocks that must be updated in the case that
one information block is changed. Hence, the total number of all ¢ global parity blocks
and the A local parity blocks of the mized groups and the single local parity block located

in the same group as the updated information block have to be d — 1 and we have
o+A+1=d-1,

resulting

¢

¢+[ﬂ —d—2.

Based on Remark 4.3, we know that in a NO-LRC whenever we have
o+A+1#d—-1,

we are able to remove some redundant edges between information nodes and global
check nodes and consequently reducing u;.

Note that the only part of Algorithm 1 with super linear complexity is the loop.
The number of iterations of the loop is [%1, and the number of operations performed
in each iteration is O(¢ - 7). Since ¢ < n, the complexity of the loop is O(n?).

In Appendix A.3, we present a generalization of Algorithm 1, which constructs any

(n, k,d,r) LRCs for any given structure of local groups.

4.3 Numerical Results

In this section, the update complexity of optimal LRCs designed using our proposed
algorithms in previous sections are numerically compared with those of conventional
optimal LRCs with the same (n, k,r, d) parameters.

First we study one code in detail. Fig. 4.3 depicts the Tanner graph of an optimal
(n,k,d,r) = (15,9,5,4) LRC, which is obtained using Algorithm 1. In this example,
we have

a=6, B(d—2—) =8.

37

Figure 4.3: Tanner graph of an (n,k,d,r) = (15,9,5,4) optimal LRC. In this figure,
the global check nodes are connected to variable nodes based on our proposed method.

Figure 4.4: Tanner graph of an (n,k,d,r) = (15,9,5,4) optimal LRC. In this figure,
each of the global check node are connected to k + 1 = 10 variable nodes.

Hence, the condition in Remark 4.2 is satisfied, and all the information nodes are
involved in d = 5 variable nodes.

Now let us compare u; and uy of this code (denoted as LRC,) with u; and uy of
another optimal (n, k,d,r) = (15,9, 5,4) LRC (LRC3) designed using the conventional
approach of connecting global check nodes to k41 variable nodes illustrated in Fig. 4.4.

Let uLBC1 and uLRC2 denote the average update complexity of LRC;, and LRCj,

respectively. We have

38

and

d+8(d+1
ul RO — %ﬂ —d+0.89 = 5.89.

Furthermore,

9
uchl =(26 x 7+ 10 x 8)/ (2) =727

and

9
ubBC — (20 x 7+ 16 x 8)/ (2) — 7.4,

By Corollary 4.1, we have u; > 5, and ug > 7. Therefore, our constructed optimal
LRC (i.e., LRC) achieves the bound on u; by 15.11% reduction on u; of LRCs.
Moreover, our code reduces the gap to bound on us from 0.44 to 0.27 (more than 38%).
We would like to emphasize that these improvements are obtained without sacrificing
other parameters of LRC5 such as its rate, dimension, locality and minimum distance
and also both of them can be constructed over GF(2%) which is the suggested field size
for them in [11].

In Table 4.1, we compare the update complexity u; of some codes designed through
Algorithm 1 and the conventional LRCs which connect global check nodes to all
information nodes. In this comparison, we consider typical minimum distance of
d = 4 or d = 5, and design codes of length between n = 12 and n = 18. All these
LRCs are NO-LRCs (i.e., have non-overlapped local groups and the largest possible
minimum distance). It can be seen here that our proposed codes always improve
update complexity wu;.

Note that the output of Algorithm 1 is a Tanner graph, which determines the
non-zero elements of the parity-check matrix our LRC. To achieve the promised
minimum distance, the non-zero element of the parity-check matrix can be selected
randomly from a large enough finite field. In theory, the size of finite field required
in our LRCs can be larger than what is used in existing explicit LRC constructions.
However, our simulation results show that our LRCs do not require large finite field
sizes for a wide range of practical code lengths (8 < n < 20), and minimum distance
d € {3,4,5}. In fact, in our extensive simulation, we could not spot a single case where

our code requires a larger finite field size than its counterpart LRC in Tamo and Barg

39

Para:;eters uq of our uy of the

(n,k,d,) proposed | conventional| improvement
LRCs LRCs LRCs

(12,7,4,3) 4.28 4.86 11.93%

(15,10,4,4) 4.4 4.8 8.33%

(16,10,4,3) 4.3 4.9 12.24%

(16,10,5,5) 5 6 16.66%

(18,12,5,5) 5 5.83 14.24%

(18,13,4,5) 4.46 4.77 6.5%

Table 4.1: Comparison between u; of our proposed LRCs and other LRCs for different
practical code parameters.

construction. This suggests that, at least for current practical code parameters, our
algorithm does not sacrifice finite field size for update complexity. As an example, a
generator matrix in GF(13) found in our simulations for (n,k,d,r) = (12,7,4,3) is

G = [I7, P] where

[11 0 10 0 9]
1n1 0 5 3 7
5 0 0 7 8
P—lo 5 7 0 3
0 3 11 12 8
011 0 2 7
0 0 11 6 7

For the same parameters (i.e., (n,k,d,r) = (12,7,4,3)), the finite field order needed

for code construction by Tamo and Barg [11] is at least 13.

40

Chapter 5

Conclusion

The class of locally repairable codes (LRCs) is an important class of erasure codes to
store data efficiently in DSSs. In this thesis, first we studied the update complexity
of the (n,k,d,r) = (16,10,5,5) LRC used in Facebook HDFS-RAID. Using the same
code parameters, we constructed a new LRC with more than 16% improved update
complexity. Then, we established bounds on the update complexity of an important
class of LRCs. Furthermore, we proposed a class of LRCs with small update complexity.
In fact, our codes could achieve the lower bound on the update complexity associated
with one information block update. We identified some of the cases where our proposed
codes achieves the lower bound u; = d on the update complexity. Considering the
recent usage of LRCs in practice, e.g. in Facebook HDFS-RAID and Windows Azure
Storage, our results is also of interest from a practical point of view, as it can lead to

lower power 1/O operations, hence lower power consumption in data centers.

41

Bibliography

[

[4]

[6]

C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, S. Yekhanin
et al., “FErasure coding in Windows Azure storage” Proc. USENIX Annual
Technical Conference, pp. 15-26, 2012.

M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis, R. Vadali,
S. Chen, and D. Borthakur, “Xoring elephants: Novel erasure codes for big data,”
Proc. VLDB, vol. 6, no. 5, pp. 325-336, 2013.

D. Ford, F. Labelle, F. Popovici, M. Stokely, V.-A. Truong, L. Barroso, C. Grimes,

” Proc.

and S. Quinlan, “Availability in globally distributed storage systems,
USENIX Symposium on Operating Systems Design and Implementation, pp.

61-74, 2010.

P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the locality of codeword
symbols,” Information Theory, IEEE Transactions on, vol. 58, no. 11, pp.
6925-6934, Nov 2012.

D. Papailiopoulos and A. Dimakis, “Locally repairable codes,” Information
Theory, IEEE Transactions on, vol. 60, no. 10, pp. 5843-5855, Oct 2014.

I. Tamo, A. Barg, and A. Frolov, “Bounds on the parameters of locally recoverable
codes,” IEEE Transactions on Information Theory, vol. 62, no. 6, pp. 3070-3083,
June 2016.

42

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

S. Goparaju and R. Calderbank, “Binary cyclic codes that are locally repairable,”
in Information Theory (ISIT), 2014 IEEE International Symposium on, June 2014,
pp. 676-680.

M. Shahabinejad, M. Khabbazian, and M. Ardakani, “An efficient binary locally

”

repairable code for hadoop distributed file system,” Communications Letters,

IEEE, vol. 18, no. 8, pp. 1287-1290, Aug 2014.

T. Ernvall, T. WesterbAdck, R. Freij-Hollanti, and C. Hollanti, “Constructions and
properties of linear locally repairable codes,” IEEE Transactions on Information

Theory, vol. 62, no. 3, pp. 1129-1143, March 2016.

N. Silberstein, A. Rawat, O. Koyluoglu, and S. Vishwanath, “Optimal locally

repairable codes via rank-metric codes,” pp. 1819-1823, July 2013.

I. Tamo and A. Barg, “A family of optimal locally recoverable codes,” Information

Theory, IEEE Transactions on, vol. 60, no. 8, pp. 4661-4676, Aug 2014.

I. Tamo, D. Papailiopoulos, and A. Dimakis, “Optimal locally repairable codes
and connections to matroid theory,” in Information Theory Proceedings (ISIT),
2013 IEEE International Symposium on, July 2013, pp. 1814-1818.

N. P. Anthapadmanabhan, E. Soljanin, and S. Vishwanath, “Update-efficient codes

il

for erasure correction,” in Communication, Control, and Computing (Allerton),

2010 48th Annual Allerton Conference on, Sept 2010, pp. 376-382.

A. Mazumdar, G. W. Wornell, and V. Chandar, “Update efficient codes for error
correction,” in Information Theory Proceedings (ISIT), 2012 IEEE International
Symposium on, July 2012, pp. 1558-1562.

A. Mazumdar, V. Chandar, and G. W. Wornell, “Update-efficiency and local
repairability limits for capacity approaching codes,” IFEEE Journal on Selected

Areas in Communications, vol. 32, no. 5, pp. 976-988, May 2014.

R. Singleton, “Maximum distanceq-nary codes,” IEEE Transactions on

Information Theory, vol. 10, no. 2, pp. 116-118, April 1964.

43

[17]

18]

[19]

[20]

(21]

(22]

23]

R. Tanner, “A recursive approach to low complexity codes,” IEEE Transactions

on Information Theory, vol. 27, no. 5, pp. 533-547, Sep 1981.

F. R. Kschischang, B. J. Frey, and H. A. Loeliger, “Factor graphs and the
sum-product algorithm,” IEEE Transactions on Information Theory, vol. 47, no. 2,
pp. 498-519, Feb 2001.

I. S. Reed and G. Solomon, “Polynomial codes over certain finite field,” Journal

of The Society for Industrial and Applied Mathematics, vol. 8, 1960.

K. V. Rashmi, N. B. Shah, and K. Ramchandran, “A piggybacking design
framework for read-and download-efficient distributed storage codes,” in 2013

IEEFE International Symposium on Information Theory, July 2013, pp. 331-335.

K. Rashmi, P. Nakkiran, J. Wang, N. B. Shah, and K. Ramchandran,
“Having your cake and eating it too: Jointly optimal erasure codes for i/o,
storage, and network-bandwidth,” in 13th USENIX Conference on File and
Storage Technologies (FAST 15). Santa Clara, CA: USENIX Association,
2015, pp. 81-94. [Online]. Available: https://www.usenix.org/conference/fast15/

technical-sessions/presentation /rashmi

K. V. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and K. Ramchandran,
“A solution to the network challenges of data recovery in erasure-coded distributed
storage systems: A study on the facebook warehouse cluster,” in Presented as
part of the 5th USENIX Workshop on Hot Topics in Storage and File Systems.
San Jose, CA: USENIX, 2013. [Online]. Available: https://www.usenix.org/
conference/hotstoragel3/workshop-program /presentation/Rashmi

A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchandran,
“Network coding for distributed storage systems,” IEEE Transactions on
Information Theory, vol. 56, no. 9, pp. 4539-4551, Sept 2010.

44

https://www.usenix.org/conference/fast15/technical-sessions/presentation/rashmi
https://www.usenix.org/conference/fast15/technical-sessions/presentation/rashmi
https://www.usenix.org/conference/hotstorage13/workshop-program/presentation/Rashmi
https://www.usenix.org/conference/hotstorage13/workshop-program/presentation/Rashmi

[24]

[25]

[26]

27]

28]

29]

[30]

V. Cadambe and A. Mazumdar, “An upper bound on the size of locally recoverable

codes,” in 2013 International Symposium on Network Coding (NetCod), June 2013,

pp. 1-5.

M. Dayarathna, Y. Wen, and R. Fan, “Data center energy consumption modeling:
A survey,” IEEE Communications Surveys Tutorials, vol. 18, no. 1, pp. 732-794,
Firstquarter 2016.

J. Zedlewski, S. Sobti, N. Garg, F. Zheng, A. Krishnamurthy, and R. Wang,
“Modeling hard-disk power consumption,” in Proceedings of the 2Nd USENIX
Conference on File and Storage Technologies, ser. FAST ’03. Berkeley, CA, USA:
USENIX Association, 2003, pp. 217-230.

M. Mehrabi and M. Ardakani, “On minimum distance of locally repairable codes,”
in IEEE 15th Canadian Workshop on Information Theory (CWIT 2017), Quebec
city, Canada, Jun. 2017, pp. 36-40.

M. Shahabinejad, M. Khabbazian, and M. Ardakani, “On the average locality of
locally repairable codes,” IEEFE Transactions on Communications, vol. PP, no. 99,

pp. 1-1, 2017.

I. Tamo, D. S. Papailiopoulos, and A. G. Dimakis, “Optimal locally repairable
codes and connections to matroid theory,” in 2013 IEEE International Symposium

on Information Theory, July 2013, pp. 1814-1818.

M. Shahabinejad, M. Khabbazian, and M. Ardakani, “A class of binary
locally repairable codes,” Communications, IEEE Transactions on, accepted for

publication, 2016.

45

Appendices

46

Appendix A

Proofs for Chapter 4

A.1 Proof of Theorem 4.1

Here, we prove Theorem 4.1. First, we state a lemma to find the minimum number of

parity nodes required to be connected to each information node.

Lemma A.1. In the Tanner graph associated with an (n,k,d,r) NO-LRC shown in
Fig. 4.2, any information node of non-infomized and infomized groups is connected to

at least d and ezactly d variable nodes, respectively.
Proof. The generator matrix associated with the NO-LRC related to Fig. 4.2 is

G = I, P] e FF*",

kx (n—k)

where P = [P,P3] € Fy is the parity matrix generator. Matrix P; €
k 1=
Iqu (=l), which generates the local parity nodes of the [37| — A non-mixed groups,

can be presented as

kx([7271-3)

I[n1x1®1r w

0z -1)x ([271-2-1) 1211

mn
T+1

Ora-¢)x(I:271-1)

As well, matrix P € IE'J;X(‘;"—'—A) generates the local parity nodes of A mixed groups and

also the global parity nodes. Observe that the i-th row of P; has one non-zero element

47

for i € [k — rA + ¢] and the last rA — ¢ rows of Py are all zero. In order to satisfy the
minimum distance constraint, each row of G must have at least d non-zero elements.
Considering the first k — rA + ¢ rows of G, each row has two nonzero elements from
I and Py. Thus, the first k — rA 4+ ¢ rows of P2 must have at least d — 2 non-zero
elements. From the definition of A and ¢ we also know that A + ¢ = d — 1. Hence,
the first £ — rA + ¢ rows of Py must have at most one zero element. Note that the
last A — ¢ rows of P have no non-zero elements. Hence, the last rA — ¢ rows of P2
are non-zero. Note that if rA — ¢ > 0, i.e., there exists an infomixed group, we have
¢+ A =d— 1. Thus, P has d — 1 columns; and all d — 1 elements of the last rA — ¢

rows of P9y are non-zero.]

Proof of Lower bound:

According to Lemma A.1, each row of G has at least d non-zero elements. Thus,
any information node update leads to at least d variable node updates. Regarding Fig.
4.2, rA— ¢ information nodes located in the infomixed group are involved in the A local
parity nodes and ¢ global parity nodes. Hence, information nodes associated with
the infomixed group require exactly d variable node updates which is the minimum
required updates. Now, assume that the number of information nodes to be updated
is less than or equal to the number of information nodes associated with the infomixed
group, i.e., # < rA—¢. Then, assuming all the x information nodes are in the infomixed
group, the lower bound on UC associated with = information node updates is d. On
the other hand, if the number of information nodes to be updated exceeds the number
of information nodes associated with the infomixed group, i.e if x > rA — ¢, we assume
that 7\ — ¢ information nodes are in the infomixed group and the remaining z —rA+¢
information nodes are in non-mixed groups. Note that if an information node associated
with non-mixed groups is updated, then its local parity node has to be updated too.
Thus, in this case, the total number of local parity nodes which have to be updated is

[w—‘ and the lower bound on |Wg| is obtained as |[Wg| > d + [W]

Proof of Upper bound:

In order to obtain the upper bound on |[Wg|, we assume that the z information

48

nodes in S are located in z distinct local groups. By Lemma A.l, any information
node update requires at least d variable node updates. Assuming that z < [%] — A,
among all z information node updates, there exists only one information node update
in each local group. Thus, in this case, the number of local parity node updates is

exactly z. On the other hand, if z > [-Z5] — A, each of the non-mixed groups has

T+
exactly one local parity node update. Hence, the upper bound on |Wjs| is obtained as
[Ws| <d+6, where § = z if # < [[Z7] — A and § = [[Z5] — A otherwise. Observe that
for x > [%] — A, d+ 60 =n—k+ 1 which is the amount of all parity nodes plus the

changed information node.

A.2 Proof of Theorem 4.2

By Theorem 4.1, we know that updating an information node requires updating either
d or d+ 1 parity nodes. In order to follow Theorem 3.1, we need the minimum required
connections in any set of d — 1 — ¢ non-mixed groups. In the following, first, we state
a lemma to find the minimum number of information nodes involved in d + 1 variable
nodes in any set of d — 1 — ¢ non-mixed groups. Then, by using this lemma, we prove

the established lower and upper bounds.

Lemma A.2. Within any collection of d — 1 — ¢ non-mized groups in an (n,k,d,r)
NO-LRC (Fig. 4.2), the minimum number of information nodes, denoted n, constructed

exactly d 4+ 1 variable nodes is

'r;:ma;(([),r(d—1)—¢(¢+7’—1)).

Proof. In an (n,k,d,r) NO-LRC, there are ¢ global check nodes. By Theorem 3.1,
a necessary condition for a NO-LRC to achieve the minimum distance d is that any
collection of check nodes consisting of n —k —d+1 local check nodes and a single global
check node cover at least n — (d — 2) variable nodes. The local groups that not covered

by the selected local check nodes is

n—k—¢—(n—k—-d+1)=d—1-—¢.

49

Hence, the selected global check node can have no connection with at most d— 2 variable

nodes in any set of d — 1 — ¢ local groups containing
d—2—(d—1-¢)=¢—1

information nodes and d — 1 — ¢ local parity nodes. Consequently, in order to have
the minimum possible connections between global check nodes and information nodes,
there must be at least ¢p— 1 information nodes which have no connection with a specific

global check node. Hence, in order to satisfy this condition we need at least

¢(¢—1)

information nodes in any set of d — 1 — ¢ local groups. We also know that there are

r(d — 1 — ¢) information nodes in any set of d — 1 — ¢ local groups. Thus, whenever

r(d—1-¢)<¢(6—-1)

is satisfied, every information node is constructing exactly ¢ —14+A+1+1 = d variable

nodes which is minimum possible number. On the other hand, if

r(d—1-¢)>¢(¢-1),

then we need extra r(d — 1 — ¢) — ¢(¢ — 1) connections to satisfy minimum distance
constraint which forces r(d — 1) — ¢(¢ + r — 1) information nodes to get involved in
construction of exactly d + 1 variable nodes.

Thus, the minimum number of information nodes in any collection of d — 1 — ¢ local

groups constructing d + 1 variable nodes, denoted by 7, is

'r;:ma;(([),r(d—1)—¢(¢+7’—1)).
O

By Lemma A.2, the minimum total number of information nodes constructing

=-1-A
exactly d + 1 variable nodes is equal to n[%‘%J Hence, we have

[rL-'_A [r:tn -I_A
B+ D+ G0 F ks
U s

k k

50

Algorithm 2 Construction of LRCs with small UC for a given local groups

e Choose the minimum set of local groups containing at least ¢ variable nodes except
their local parity nodes together to be considered as the mixed groups. Connect each
of the ¢ global check node to a distinct global parity node in the mixed groups.

for i € [[2]], do

if There is any information node in i-th local group then

Connect max (0, r— L%ﬁf‘)” information nodes in i-th local group to all

the global check nodes. (O; is the number of variable nodes in i-th local group
shared with other local groups)

Connect the remaining information nodes to at most ¢ — 1 global check nodes
with the smallest degree.

end
end
for j € [¢], do
if Any set of n —k — d+1 local check nodes and j-th global check node do not cover
at least n — d + 2 variable nodes then
Connect j-th global check node to sufficient information nodes with the smallest
degree.
end
end
Therefore,
[#5]
d+ d_kl_*b <up <d+1.

A.3 General form of Algorithm 1

In this section, we propose an algorithm to improve the UC of any LRC with given local
groups. This algorithm is the extended version of Algorithm 1 considering the overlaps
between local groups. Here, we show the number of shared variable nodes between i-th
local group with others by O;. In the following we propose an example of the LRC
with overlaps used in Facebook HDFS-RAID [2] which is an (n, k,d,r) = (16,10, 5,5)
LRC where (r + 1) { n.

Example A.l1. Using Algorithm 2, we can itmprove the UC of the (n,k,d,r) =
(16,10,5,5) LRC used in Facebook HDFS-RAID [2] from w1 = 6 to w1 = 5. Fig.

A.1 shows the Tanner graphs of this code in two structure. The generator matriz of

51

(b)

Figure A.1: Tanner graphs of two (n,k,d,r) = (16,10,5,5) LRCs used in Facebook
HDFS-RAID [2] with different update complexity. u; in the codes represented in Figs.
A.la and A.1b is 5 and 6, respectively.

this code found by the program is: G = [I1o, P] where

(13 0 10 0 7 10
10 0 12 0 14 3
5 0 7 6 0 5
5 0 0 10 5 12
4 0 0 12 5 10
0 15 3 0 7 11
0 12 11 0 7 3
0 5 13 9 0 2

0 10 0 15 8 14

52

