
Approximation Algorithms for Generalized Path Scheduling

by

Haozhou Pang

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science
University of Alberta

© Haozhou Pang, 2020

Abstract

Scheduling problems where the machines can be represented as the edges of a network

and each job needs to be processed by a sequence of machines that form a path in

this network have been the subject of many researches (e.g. flow shop is a special case

where the network as well as the sequence of machines for each job is a simple path).

In this thesis, we consider one such problem, called Generalized Path Scheduling

(GPS) problem, which can be defined as follows. Given a set of non-preemptive jobs

J and identical machines M (|J | = n and |M | = m). The machines are ordered on

a path. Each job j = {Pj = {sj, tj}, pj} is defined by its processing time pj and a

sub-path Pj from machine with index sj to tj (sj, tj ∈ M and sj ≤ tj) specifying

the order of machines it must go through. We assume each machine has a queue

of infinite size where jobs can sit in the queue to resolve conflicts. Two objective

functions, makespan and total completion time, are considered in this thesis.

In Chapter 2, we show that the GPS problem is NP-hard for both makespan and

total completion time objectives. To complement the hardness results, we present

several improved approximation for both objectives in Chapter 3. For the case of

number of machines being sub-logarithmic in the number of jobs, we present a PTAS

for both makespane and total completion time. This generalizes the result of Hall

[11] for the classic problem of Flow shop. For general m, we present a O(logm
log logm

)-

approximation algorithms for both objectives, which improve the previous best result

of [4].

ii

Acknowledgements

First and foremost, I would like to thank my supervisor, Mohammad R. Salavatipour.

He has everything one could ask for in an advisor: brilliant, approachable and patient,

methodical and good-tempered. He gives his students the maximal freedom to explore

and find their own interests, and at the same time, he serves as a solid backing and

a vast source of knowledge that constantly providing reassuring advice. This thesis

would not have been possible without his help.

I wish to thank my committee members, Zachary Friggstad and Guohui Lin, for

providing insightful suggestions that make this thesis a better one.

I would like to thank all members of the Theory group, with whom I have spent

countless hours learning, discussing, and joking. Thank you all for making my time

in the lab more enjoyable.

Last but not least, to my parents, Jianfeng Kong and Min Pang, and my parter,

Jin. They provided much emotional support at times when I needed the most. This

thesis is dedicated to them.

iii

Contents

1 Introduction 1

1.1 Scheduling Fundamentals . 2

1.2 Problem Formulation and Notations 3

1.3 Hardness Fundamentals and Approximation Algorithms 5

1.4 Literature Review . 6

2 Hardness Results 9

2.1 Makespan objective . 10

2.2 Min-sum objective . 11

3 Approximation Algorithms 20

3.1 A PTAS for the makespan objective when m is sub-logarithmic . . . 20

3.1.1 The outline scheme . 21

3.1.2 The PTAS . 27

3.2 A O(logm
log logm

)-approximation for makespan objective 29

3.2.1 Instances with h terminal machines 30

3.3 A PTAS for min-sum GPS when m is sub-logarithmic 33

3.3.1 Segmented GPS . 34

3.3.2 The PTAS . 36

3.4 An O(logm
log logm

)-approximation for min-sum GPS 42

4 Conclusions 45

iv

Bibliography 47

v

List of Figures

1.1 An instance of GPS that consists of three machines and two jobs. Job

j1 needs to be processed on M1, M2, and M3 and has processing time

p1 = 1. j2 needs to be processed on M2 and M3 and has processing

time p2 = 3. The smallest makespan is achieved by the schedule that

j1 get processed during [0, 1], [3, 4], [6, 7], and j2 get processed during

[0, 3], [3, 6], so the makespan is 7. The smallest total completion time is

achieved by the schedule that j1 get processed during [0, 1],[1, 2], [2, 3],

and j2 is processed during [2, 5], [5, 8], so the total completion time is 11. 4

2.1 An illustration of the instance of GPS reduced from a 3-Partition

instance. The given machines are M = {M1,M2, . . . ,M4t−2} and the

given jobs are J = {T1, . . . , Tt} ∪ {U1, . . . , U3t}. U-type jobs have span

1 and only need to be processed on M2t. T-type jobs have span 2t. . . 10

2.2 The reduced instance of GPS is represented by (a). And (b) shows the

timeline of machineMl, where the shaded areas are the gaps created

by the T-type jobs. (c) gives a closer look of each gap. The W-type

jobs check the existence of a partition. The V-type and X-type jobs

are used to fix T-type jobs. 12

3.1 the LP to assign small jobs. Recall that pj is the processing time of

job j, and Pj is the path of machines for job j. 23

vi

3.2 In this example, h = 3, the dark squares represent the terminal ma-

chines in the first layer, which partition the machines in to 3 segments.

The squares with crossed lines represent the second layer terminal ma-

chines. The corresponding groups of jobs are defined as G1 = {j1, j2}

and G2 = {j3, j4, j5}. 30

3.3 Partiton the time line into intervals of size δ, which is defined w.r.t. B1. 35

3.4 the modified LP. π new constraints are added to ensure that at least

ns
i = ni − nl

i small jobs are finished before time Bi. 36

vii

Chapter 1

Introduction

Scheduling problems are well-studied over the last several decades. One of the most

classical version of it is as follows: Given a set J of n jobs and a set M of m machines.

Each job j consists of a sequence of λj operations O1,j, O2,j, . . . , Oλj ,j. The amount of

time that job j takes to complete its operation Oi,j on machine Mi ∈ M is denoted as

pi,j. The goal of the problem is to find a feasible schedule that satisfies all constraints,

while trying to optimize some objective function.

A feasible schedule should describe the times when each job starts being processd on

each machine. Also, a feasible schedule should respect the following constraints: Each

machine can only process at most one job at a time. Each job can only be processed

by at most one machine at a time. More constraints can be added depending on

specific interests. For example, one can enforce that operations of a job need to

be processed in a specific order (known as precedence constraints), so an operation

cannot be processed until all its preceding operations are finished.

Scheduling problems have drawn much attention because of their wide applications

in many day-to-day situations. As an example, think of the given machines as routers

and jobs as messages to be sent from one router to another through a specified path.

A good scheduling algorithm can be applied here to send all messages efficiently.

Also, as studied in [5], imagine the given machines form a star graph and jobs are

supposed to start and end on leaves. This problem is closely related to the biprocessor

1

scheduling and data migration problem.

In Section 1.1 we introduce some basics about scheduling problems. Then, in

Section 1.2, we formally state the problem studied in this thesis and the notations that

are used. In Section 1.3, we give a brief introduction to approximation algorithms and

NP-hardness. Next, we review related works in the literature and their connections

to our problem in Section 1.4.

1.1 Scheduling Fundamentals

Many variants of the scheduling problem have arised in the past, and they can be

characterized by the three-field notation α|β|γ introduced by [10], where α describes

the machine enviroment, β describes the job type, and γ describes the optimalilty

criteria.

Machine enviroments: Problems can be characterized by the machines. For exam-

ple, when the processing time of job j on machine i, pij, is independent of machines,

i.e. pij = pj ∀i, then we say the machines are identical. If pij =
pj
si
, where si is

the speed of machine i, then we say the machines are related. Otherwise, they are

unrelated.

Job types: Jobs can be either preemptive or non-preemptive. In the non-preemptive

setting, suspension of a job in the middle of processing is not allowed. That is, once a

machine has started processing a job, it must continue running until the current job

is finished. If all jobs have the same processing time, then we have the unit processing

time case.

If the operations of a job can be processed in arbitrary order, then we get the open

shop problem. Conversely, if operations of a job has to be processed in some sopecific

order, then we get the job shop problem. A special case of job shop called the acyclic

job shop problem requires each job has at most one operation on each machine.

Jobs can also be made associated with release times rj and deadlines dj. They

enforce that job j cannot start being processed before rj and has to be finished before

2

dj. We can remove those two constraints by saying rj = 0 and dj = ∞, for all j.

Optimality criteria: The two common objective functions that we consider in this

thesis, which have been studied extensively in the literature, are the makespan and

total completion time. Let Cj be the completion time of job j (the time when j

finishes its last operation) in a given schedule. The makespan of the scehdule is

defined as Cmax := max{C1, . . . , Cn}, and the total completion time is defined as∑n
j=1 Cj. The latter is also referred as the min-sum objective in this thesis.

Other usual objectives include but not limit to min-max or min-sum version of

lateness Lj = Cj−dj, earliness Ej = max{0, dj−Cj}, and tardiness Tj = max{0, Cj−

dj}

1.2 Problem Formulation and Notations

The problems studied in this thesis have been studied in [5, 13]. Authors of [5] point

out that getting a constant factor approximation for acyclic flow shop with identi-

cal machines where the machines form a path and each job is assigned a subpath of

machines to be processed on is still an open problem. We call this problem Gen-

eralized Path Scheduling (GPS) problem, it is also known as message routing

along a directed path in [13]. It can be formally described as:

Definition 1 (Generalized Path Scheduling) Given a set of non-preemptive jobs

J (available at time 0) and identical machines M (|J | = n and |M | = m). The

underlying network of machines is a path. Each job j = {Pj = {sj, tj}, pj} is defined

by its processing time pj and a sub-path Pj from sj to tj (sj, tj ∈ M , and sj ≤ tj)

specifying the order of machines it must go through. Each machine has a queue of

infinite size where jobs can sit in the queue to resolve conflicts, jobs sitting in the queue

do not occupy the machine. We consider minimizing makespan (largest completion

time) and/or total completion time (also called min-sum).

3

Figure 1.1: An instance of GPS that consists of three machines and two jobs. Job j1
needs to be processed on M1, M2, and M3 and has processing time p1 = 1. j2 needs to
be processed on M2 and M3 and has processing time p2 = 3. The smallest makespan
is achieved by the schedule that j1 get processed during [0, 1], [3, 4], [6, 7], and j2 get
processed during [0, 3], [3, 6], so the makespan is 7. The smallest total completion
time is achieved by the schedule that j1 get processed during [0, 1],[1, 2], [2, 3], and j2
is processed during [2, 5], [5, 8], so the total completion time is 11.

The span of a job j, λj = tj − sj + 1, is the number of machines on the path of

j. The length of job j, Lj = pj · λj, is the minimum total time that job j needs to

complete. We say job j is delayed on machine i if the start time of j on i is strictly

greater than its arrival time. The completion time Cj of job j is then equal to its

length plus the total amount of time it has been delayed. The GPS problem is closely

related to the Flowshop Scheduling problem, except in GPS, jobs can start/end

at any machine. In Chapter 2, we show that the GPS problem is NP-hard for both

makespan and min-sum objectives. So we resign to good approximation algorithms

that run in polynomial time.

For the makespan objective, let C be the largest congestion over all machines (the

maximum total running time of jobs that use machine i over all machines) and D

be the maximum length over all jobs. Then clearly, both C and D are lower bounds

for the makespan of the optimal schedule. In [13], Koch et al. give another lower

bound on the minimum completion time on machines. Let k, l ∈ M with k ≤ l be

two machines and j ∈ J be a job that traverses both of these machines. Let Ck→l be

the total size of jobs passing k and l (their common congestion). Then the minimum

completion time of machine l, denoted by MAKl, is at least C
k→l + pj · (l − k).

4

1.3 Hardness Fundamentals and Approximation Al-

gorithms

The definitions here are from [25].

NP: A turing machine M is a polynomial-time verifier if for all input pairs (x, y) ∈

{0, 1}∗ it reads, M halts after p(|x|) steps where p is a polynomial function. A

language L is decidable by M if for all x ∈ {0, 1}∗,

• if x ∈ L, there exists y ∈ {0, 1}p(|x|) such that M accepts (x, y).

• if x /∈ L, for every y ∈ {0, 1}∗, M rejects (x, y).

The class NP is all languages decided by a polynomial-time verifier.

Reduction: Let L and L′ be two languages in NP, we say L reduces to L′ if there

exists a poly-time computable function f : {0, 1}∗ → {0, 1}∗ such that x ∈ L if and

only if f(x) ∈ L′. A language L is NP-hard if for all L′ ∈NP, L′ reduces to L. A

language is NP-complete if it is in the class NP and is NP-hard.

NP optimization problems: An NP optimization (minimization or maximization)

problem consists of the following components

• A set of all valid instances DΠ. Each valid instance I ∈ DΠ is recognizable in

polynomial time (in terms of the size of the input |I|).

• A set of feasible solutions SΠ(I) for each I ∈ DΠ, and the size of each solution

s ∈ SΠ(I), |s|, is polynomial in |I|

• A poly-time computable objective function f that assigns a non-negative ra-

tional value to each feasible solution s of instance I. For maximization (mini-

mization) problem, our goal is to find a feasible solution s that has the largest

(smallest) objective value. Such solution is called the optimal solution for I, we

denote its value by OPT (I) or simply OPT if the context is clear.

5

Approximation algorithms: However, many NP optimization problems are NP-

hard, meaning that it’s not possible to find the optimal solution for all instances in

polynomial time with the assumption P ̸=NP. Therefore, we try to find solutions that

are nearly good (with provable guarantee) in polynomial time. More precisely, we say

A is an α-approximation algorithm for problem Π if A runs in polynomial time and

for any instance I ∈ DΠ, it finds a feasible solution s such that f(s, I) ≤ α ·OPT (I)

if Π is a minimization problem; or f(s, I) ≥ OPT
α

if Π is a maximization problem. α

is called approximation ratio or performance ratio.

For an NP-hard optimization problem, the best approximaton algorithm that one

can hope for is a PTAS (Polynomial Time Approximation Scheme) (assuming P ̸=

NP), which is an algorithm A that for any instance I and any fixed value ϵ > 0,

it finds a solution s in polynomial time such that f(s, I) ≤ (1 + ϵ) · OPT (I). The

approximation ratio can be made arbitrarily close to 1 with a tradeoff of runtime (but

still polynomially bounded). If runtime of A is polynomially bounded by both |I| and

1/ϵ, we say A is a Fully Polynomial Time Approximation Scheme.

1.4 Literature Review

One of the most general version of scheduling problem is the job shop scheduling

with unrelated machines. The first polynomial time approximation algorithm for this

problem is an O(log2(mλmax)
log log(mλmax)

)-approximation (λmax is the maximum span) for the

makespan objective, given by [21]. Later, [9] improves the result by aO(log log(mλmax))

fator, this is also the best known result for this problem. If the amount of time that

every job takes to be processed on any machine is the same, then we get the packet

routing problem when machines are edges of a graph. Leighton et al. [16, 17] shows

that there always exist a schedule of length O(lb), where lb = max{C,D} is the trivial

congestion/dilation lower bound for makespan objective. Later, the authors in [12]

present a constructive algorithm that finds a schedule of length at most 8.84(C+D).

However, the algorithms for the unit-processing time case seem hard to be adapted

6

to the general processing time case, because they use the idea of iteratively parti-

tioning the schedule into frames (time intervals), and view each frame as a separate

scheduling problem where the origin of a packet is its location at the beginning of

the frame, and its destination is its location at the end of the frame. This could

be done because all operations have size 1 so no operations would straddle between

two frames. However, for the general processing time case, the frame size cannot be

smaller than pmax.

Li et al. [18] show that if there is a α-approximation w.r.t. the lower bound lb =

max{C,D} for the makespan objective, then there is a 2eα-approximation algorithm

for the min-sum objective (e is the euler’s number). This provides a framework of

converting the makespan objective to the min-sum objective without affecting the

approximation ratio asymptotically.

Acyclic job shop is a special case of the Job Shop problem, where each job can have

at most one operation on each machine. Feige et al. [3] give an O(log lb log log lb)-

approximation for the makespen objective of this problem. They also show the upper

bound is nearly tight by proving the existence of instances of shortest makespan

Ω(lb log lb
log log lb

) even when machines are identical. The GPS problem considered in this

thesis is a special case of the acyclic job shop, where the machines are identical and

form a path.

The best known result for the GPS problem is due to [5], they present an

O(min{log nλmax, log pmax})-approximation for (the more general problem of) acyclic

job shop with identical machines, under both the makespan and min-sum objective.

However, many special cases of GPS problem can actually be solved exactly in poly-

nomial time or have an O(1)-approximation algorithms. For example, if the network

of the machines form a rooted tree and all the job paths have to go through the root of

the tree, then the problem becomes the junction tree problem studied in [5], for which

they present a 4-approximation for makespan and 8e-approximation for min-sum. For

the special case where all jobs have the same processing time, [1, 15] show that the

7

greedy algorithm such that each machine processes the job with the largest number

of remaining machines (furthest-to-go) gives the optimal makespan. Conversely, [1]

shows shortest-to-go gives optimal min-sum for unit-processing time case. Moreover,

authors of [13] show that furthest-to-go algorithm computes the optimal makespan

on non-nested instances for general processing times; non-nested means there does

not exist two jobs j and j′ such that sj < sj′ and tj > tj′ (recall that si (tj) is the

index of the first (last) machine of job j). If all jobs need to be processed on all

(identical) machines from left to right, then the problem becomes the proportionate

flow shop. It is straitforward that any fixed priority rule would give optimal for the

makespan objective; for the (weighted) min-sum objective, [20] gives an exact algo-

rithm that runs in O(n2) time. Bi-directional version of the problem, where there are

jobs moving from left to right and right to left , can be dealt with by interleaving the

uni-directional algorithms

If m = O(1), then many scheduling problems admit better approximation ratios.

For example, [19] gives a PTAS for the open shop makespan minimization problem,

[21] gives a (2 + ϵ)-approximation algorithm for job shop, and [11] gives a PTAS for

the flow shop. Note that all the results disccussed are based on the fact that m is

fixed. Hall [11] introduces the notion of outline scheme, which is used in a couple of

our algorithms in a fundamental way in this thesis.

The scheduling problems where networks of machines have other specific structures

have been the subjects of many researches. For example, when the machines form

a grid, [14] shows that by applying the furthest-to-go algorithm vertically and hori-

zontally they get a 3-approximation for the makespan for unit processing time case.

Same approximation ratio applies to the rooted tree network, where jobs can either

go vertically upward, vertically downward, or upward-downward. When the network

of machines is a star and jobs start/end at leaves, [5] gives a 1.796-approximation

for the min-sum objective, and a 7.279-approximation for the general processing time

case.

8

Chapter 2

Hardness Results

In this chapter, we present some hardness results for theGeneralized Path Schedul-

ing problem for both makespan and min-sum objectives. The most important part

of an NP-hardness proof is the ‘reduction’, we need to show that a known NP-hard

problem A can be reduced to our problem B. The reduction is defined as given an

instance a of A we can construct an instance b of B s.t. a has a solution if and only

if b has a solution. Also, both the input size of b and the time for constructing b have

to be polynomially bounded by the input size of a. The ‘known problem’ that we use

to prove the NP-hardness of our problem is the 3-Partition problem, which is quite

commonly used to prove NP-hardness for different variants of scheduling problems.

See [26] for an example. Here we define the 3-Partition problem:

Definition 2 (3-Partition) Given 3t integers a1, a2, . . . , a3t and an integer b, can

we partition the 3t integers into t triples such that each triple has sum equal to b?

Note that the 3-Partition problem is strongly NP-hard, and assuming that each

ai satisfies b/4 < ai < b/2 does not affect the NP-hardness [8]. The general idea

of the reduction for both objectives is that we view the 3t integers as 3t jobs whose

processing times are equal to the values of the integers. Some other jobs are introduced

to create so called gaps on the timeline of machines so that a pre-defined bound D

can be achieved if and only if we can perfectly fill the gaps with the 3t jobs (i.e a

9

solution to the 3-Partition instance). Details of reduction are included in Sections

2.1 and 2.2.

2.1 Makespan objective

Theorem 3 The Generalized Path Scheduling makespan minimization prob-

lem is NP-hard.

Proof. Suppose we are given a 3-Partition instance a1, . . . , a3t, and b. We

construct the following instance of GPS that uses n = 4t jobs and m = 4t − 2

machines. The processing times and paths of jobs are specified as follows.

We define two classes of jobs: the T-type jobs and the U-type jobs where:

T = {Ti|1 ≤ i ≤ t},

U = {Ui|1 ≤ i ≤ 3t},

Ti has proc. time pTi
= b and path PTi

= {M2(t−i)+1),M4t−2i};

Ui has proc. time pUi
= ai and path PUi

= {M2t,M2t}.

Figure 2.1: An illustration of the instance of GPS reduced from a 3-Partition
instance. The given machines are M = {M1,M2, . . . ,M4t−2} and the given jobs
are J = {T1, . . . , Tt} ∪ {U1, . . . , U3t}. U-type jobs have span 1 and only need to be
processed on M2t. T-type jobs have span 2t.

And we define the bound D = 2bt. We argue that a schedule of makespan at most

D can be obtained if and only if the 3-Partition instance has a solution.

10

First suppose there is a good partition into triples of the desired form. Consider

the T-type jobs on machine M2t. Job Ti will arrive at machine M2t at time (2i −

1)b. Observe that every T-type job has length 2bt, so none of them can be delayed,

otherwise, the bound D is exceeded. More precisely, job Ti must use machine M2t

during time [(2i − 1)b, 2ib]. Therefore, there is a gap of size b between Ti and Ti+1

on machine M2t, and we can use the t triples of U-type jobs to fill the gaps. And the

makespan of the schedule is exactly D, as desired.

Conversely, Suppose there does not exist a good partition, then there is a U-type

job u that cannot be fitted into one of the gaps. Job u cannot delay T-type jobs so

u cannot start processing until time 2bt so the makespan is at least D + pu > D.

2.2 Min-sum objective

In this section, we show that the GPS min-sum minimization problem is also NP-hard.

The NP-hardness proof generalizes the idea in [7], which shows the NP-hardness of

the 2-machine flowshop problem. Similar to the proof of Theorem 3, we reduce the

3-Partition problem to the GPS min-sum minimization problem by using a class of

jobs to create gaps and using some other jobs to fill the gaps and check the existence

of a solution to the 3-Partition instance. The analysis is more involved.

Theorem 4 The Generalized Path Scheduling min-sum minimization problem

is NP-hard.

Proof. For a given instance of 3-Partition a1, . . . , a3t and b, we define the

parameters that are used throughout the proof as:

u = 3tb+ 1

v = u+ 3tb+ tu+ t(t− 1)u(b+ 1)/2

g = uv + b+ 1

x = 2(t+ 2)g + v

11

We then construct the corresponding instance of the GPS problem (Fig. 2.2). The

machines M1,M2, . . . ,Mtg+1 form a path, and we introduce four classes of jobs:

(a)

(b)

(c)

Figure 2.2: The reduced instance of GPS is represented by (a). And (b) shows the
timeline of machineMl, where the shaded areas are the gaps created by the T-type
jobs. (c) gives a closer look of each gap. The W-type jobs check the existence of a
partition. The V-type and X-type jobs are used to fix T-type jobs.

12

T = {Ti|0 ≤ i ≤ t} |T | = t+ 1

X = {Xi|1 ≤ i ≤ v} |X| = v

V = {Vi|1 ≤ i ≤ (u− 3)t} |V | = (u− 3)t

W = {Wi|1 ≤ i ≤ 3t} |W | = 3t

The T-type jobs are used to create gaps. For all 0 ≤ i ≤ t, job Ti has processing time

pTi
= 1 and path PTi

= {M(t−i)g+1,Mtg+1}. Observe that if we ignore the presence

of other jobs, those t + 1 many T-type jobs create t gaps of size g − 1 on machine

Mtg+1. Those gaps will be used to test the existence of a solution to the 3-Partition

instance. For the ease of notation, we denote the last machine Mtg+1 by Ml.

However, for the gaps to be fixed, we need to ensure that every T-type job Ti, 0 ≤

i ≤ t, is scheduled on machine Ml immediately as soon as it becomes ready. To

achieve this, we introduce another class of jobs, the X-type jobs:

For all 1 ≤ i ≤ v, job Xi has processing time pXi
= x and path PXi

= {Ml,Ml}.

Intuitively, the X-type jobs only run on the last machine and their processing time x

is chosen to be large enough so that any reasonable schedule would process them at

the end. Moreover, the value of v is chosen such that if job Tt is delayed even for one

unit of time, the total completion time will exceed the pre-defined bound D.

The V-type jobs and W-type jobs are used to fill the gaps. For all 0 ≤ i ≤ (u−3)t,

job Vi has processing time pVi
= v and path PVi

= {Ml,Ml}; and for all 0 ≤ i ≤ 3t,

job Wi has processing time pWi
= v + ai and path PWi

= {Ml,Ml}, where the ai’s

come from the 3-Partition instance. The purpose of V-type jobs and W-type jobs

is that if there exists a good partition of integers into triples, then we can fit three

W-type jobs (representing the integers) and (u − 3) V-type jobs in the gap created

by Ti and Ti+1 (the gap size is g − 1 = uv + b, sum of W-type jobs is 3v + b, and the

sum of V-type jobs is (u− 3)v). Observe that we have in total u jobs inside each gap,

13

the value of u is chosen to ensure that each job Ti, for 0 ≤ i ≤ t − 1, is scheduled

immediately after it becomes ready on Ml. Therefore, a delay of even one unit of

time on those u many jobs would result in exceeding the pre-defined bound D on

total completion time.

Note that the number of jobs we have is (u+1)t+ v+1, and the number of machines

is tg + 1 (u, v, g are all poly(tb) based on their definitions). Therefore, the size of the

instance, though large, is still polynomially bounded by tb.

Combine the V-type jobs and W-type jobs as U-type jobs, i.e. U = V ∪W . We

define the bound on the total completion time by D = T̂ + X̂ + Û , where

T̂ =
t∑

i=0

(ig + 1) = t+ 1 +
t(t+ 1)g

2

X̂ =
v∑

i=1

(tg + 1 + ix) = v(tg + 1) +
v(v + 1)x

2

Û = 3tb+
t−1∑
i=0

[
u∑

j=1

(jv + ig + 1)

]

= 3tb+ tu+
t(t− 1)u(b+ 1)

2
+

tu(tu+ 1)v

2

Then it only remains to show that there exists a partition of integers into triples

with sum b if and only if there exists a schedule of total completion time at most D.

Suppose there is a good partition A1, A2, . . . , At such that Ai = {ai1 , ai2 , ai3} and∑3
j=1 aij = b for all i. Consider the following natural schedule: all T-type jobs start

running from their starting machine towards Ml since time 0 and never wait for any

other jobs. All X-type jobs start running one by one on Ml since time tg+1. Consider

machine Ml. There are t gaps of size g−1 = uv+b before time tg+1 between T-type

jobs. For each gap, we schedule (u − 3) V-type jobs and 3 W-type jobs (taken from

14

corresponding triple), which takes time exactly uv+ b. The feasibility of the schedule

should be straightforward to verify, because a good partition would suggest how to

fill those t gaps perfectly without conflicts.

The next step is to calculate the total completion time of the proposed schedule.

The sum of completion times of U-type jobs is:

∑
j∈U

Cj =
t−1∑
i=0

[
u∑

j=1

(jv + ig + 1) + 3ai1 + 2ai2 + ai3

]

<

t−1∑
i=0

[
u∑

j=1

(jv + ig + 1)

]
+ 3

3t∑
i=0

ai (2.1)

= Û

The first equality of (2.1) is because there are u many U-type jobs (u− 3 many V-

type jobs and three W-type jobs) between the gap created by Ti and Ti+1. Those u−3

many V-type jobs start running one by one since time (ig+1), and the three W-type

jobs are scheduled at the end. The order of the W-type jobs does not matter, without

loss of generality, we assume the job representing ai1 is scheduled first, followed by

ai2 and ai3 , that’s why we have the additive term 3ai1 + 2ai2 + ai3 in the equality.

Also, note that the sum of completion times of T-type jobs is exactly T̂ , and the

sum of completion times of X-type jobs is exactly X̂. Therefore, the total completion

time of the proposed schedule is less than T̂ + X̂ + Û = D, as wanted.

Conversely, suppose there is a schedule with total completion time upper bounded

by D. Then we show that there must exist a good partition. The basic idea is we

show the properties that a good schedule must have, then we are able to conclude

that if a good schedule exists, it must be like the one described in Fig. 2.2(b). Then

the desired partition will be given by the W-type jobs that are grouped in each gap.

For a job j, let S(j) denote the starting time of j on machine Ml. Without loss

of generality, we can make the following assumptions on the properties that a good

schedule should have:

15

Property 1: T-type jobs are not delayed on machines M1,M2, . . . ,Mtg. This is

because all T-type jobs have the same processing time and distinct starting machines.

So assuming all T-type jobs start running at time 0, they will never conflict with any

other jobs until the last machine Ml. This implies that Ti becomes ready on Ml at

time ig, for 0 ≤ i ≤ t.

Property 2: S(Ti) < S(Ti+1), for 0 ≤ i ≤ t. This is because all T-type jobs have

the same processing time. So if S(Tj) > S(Tj+1) for some j. We can just swap the

order of Tj and Tj+1 without changing the value of the solution.

Property 3: Similarly, we can order the X-type jobs such that S(Xi) < S(Xi+1),

1 ≤ i ≤ v − 1. Because all X-type jobs are identical.

Property 4: Let Σ be a good schedule having all previous properties, then all X-type

jobs must start running at or after time tg + 1 in Σ. i.e., S(Xi) ≥ tg + 1, 1 ≤ i ≤ v.

Suppose Σ is a minimum total completion time schedule satisfying all previous

properties, but there is a job Xi such that S(Xi) < tg + 1 in Σ. Consider the first

such job from X and so it must be X1. Moreover, by the time X1 finishes, all jobs are

ready to be scheduled on Ml. Therefore, in order to minimize the total completion

time, we must schedule those jobs by processing the faster jobs first. Next, we show

that if such a job X1 exists, then Σ cannot be a good schedule.

Note that the completion time of X1 is no earlier than x, and all other X-type jobs

must be scheduled at the end. So we can obtain a lower bound lb(X) on the total

completion time of X-type jobs:

lb(X) = x+
v−1∑
i=1

(x+ tg + 1 + ix) = X̂ − tg − 1

Since S(X1) < tg + 1, jobs Tt has to wait until X1 finishes on Ml. Also, the total

completition times of jobs T0, . . . , Tt−1 is at least
∑t−1

i=0(ig + 1). So we obtain a lower

16

bound lb(T) on the total completion time of T-type jobs:

lb(T) =
t−1∑
i=0

(ig + 1) + x = T̂ + (t+ 4)g + v − 1

Also, a trivial lower bound lb(U) on the total completion time of U-type jobs can

be obtained by viewing them all as V-type jobs (ignore the ai term of W-type jobs).

Then we can schedule them one by one:

lb(U) =
tu∑
i=1

(iv) =
tu(tu+ 1)v

2

= Û −
[
3tb+ tu+

t(t− 1)u(b+ 1)

2

]
  

δ

Therefore, the total completion time of Σ is at least: lb(T) + lb(X) + lb(U) =

T̂ +X̂+ Û+v−δ+4g−2. Since v > δ and 4g > 2, the total completion time exceeds

the bound D, so Σ cannot be a good schedule.

Property 5: Suppose Σ is a good scheduling with minimum total completion time.

Then 1○ S(X1) = tg + 1 and 2○ Ml is not idle before time tg + 1.

We first show 1○. From property 4 we know that S(X1) ≥ tg + 1. For the sake of

contradiction, suppose S(X1) > tg+1, then the total completion time of X-type jobs

is at least:

v∑
i=1

(tg + 2 + ix) = X̂ + v

The total completion time of T-type jobs is at least T̂ , and the lower bound lb(U) =

Û−δ (from Property 4) still holds. Adding them up, since v > δ, the total completion

time of Σ is greater than D. Hence Σ cannot be a good schedule.

For 2○, observe that the sum of processing times on Ml over all T-type and U-type

jobs is equal to t + 1 + (u − 3)tv + tb + 3tv, which is exactly tg + 1. From 1○ we

know that S(X1) = tg + 1. Therefore, if Ml is idle before time tg + 1, there will be

17

a job j that is faster than X1 but get processed after X1. So if we swap the order of

j and X1 on Ml, we get a feasible schedule with smaller total completion time. This

contradicts with the optimality of Σ.

Property 6: In a good schedule Σ, on machine Ml, every T-type job Ti is preceded

by exactly iu many U-type jobs, 0 ≤ i ≤ t. i.e., there are exactly u many U-type jobs

between Ti and Ti+1.

For the sake of contradiction, suppose job Ti is preceded by less than iu U-type

jobs. Then the total processing times of jobs that start on Ml before Ti is at most

i + (iu − 1)v + tb, which is less than ig. From Property 1 we know that Ti becomes

ready on Ml at time ig. So machine Ml is idle before time ig, so before tg + 1. This

contradicts with Property 5.

Conversely, suppose job Ti is preceded by more than iu U-type jobs. Then the total

processing times of jobs that start on Ml before Ti is at least i+(iu+1)v = ig−ib+v.

Therefore, S(Ti) ≥ ig − ib + v, and the total completion time of T-type jobs is at

least:

t∑
i=0

(ig + 1)− ib+ v = T̂ − ib+ v

By Properties 4 and 5, the total completion time of X-type jobs is at least X̂. The

lower bound lb(U) = Û − δ from Property 4 still holds here. Therefore, the total

completion time of Σ is at least

T̂ + X̂ + Û − ib+ v − δ

Recall that v = u+ 3tb+ tu+ t(t− 1)u(b+ 1)/2 = u+ δ. Since u > ib, this value

exceeds D, so Σ cannot be a good schedule.

Property 7: In a good schedule Σ, S(Ti) = ig, for 0 ≤ i ≤ t.

18

From Property 1, S(Ti) ≥ ig. For the sake of contradiction, suppose S(Ti) > ig for

some i. By Property 6, there are exactly u many U-type jobs between Ti and Ti+1.

So the total completion time of those u jobs is at least
∑u

j=1(ig + 2+ jv). Therefore

we obtain another lower bound on the total completion time of U-type jobs:

lb(U) =
t−1∑
i=0

[
u∑

j=1

(jv + ig + 1)

]
+ u

= Û − 3tb+ u (2.2)

= Û + 1

The additive u in the first equation of (2.2) is because all the u jobs between Ti

and Ti+1 are additionally delayed by at least one unit of time. Combining with the

lower bounds on T-type and X-type jobs, the total completion time of Σ is at least

T̂ + X̂ + Û + 1 > D, so Σ is not a good schedule.

After showing the properties that a good schedule must have, we are ready to

prove Theorem 4. Suppose there exists a good schedule Σ, then in Σ, job Ti starts

processing on machine Ml at time ig, so there is a gap of size g− 1 = uv+ b between

Ti and Ti+1. Also, there are exactly u many U-type jobs between Ti and Ti+1, recall

that V-type jobs have processing time v and W-type jobs have processing time v+ai,

where ai is between
b
4
and b

2
, so there must be exactly three W-type jobs inside each

gap. These disjoint triples of W-type jobs form the desired partition. This completes

the NP-hardness proof and concludes this chapter.

19

Chapter 3

Approximation Algorithms

Showing that the GPS problem is strongly NP-hard for both makespan and min-sum

objectives implies that it is not possible to solve the problem exactly in polynomial

time unless P = NP. Instead we look at solving the problem approximately, and

efficiently. Several approximation algorithms are presented in this chapter.

In Section 3.1, we show that if the number of machines m is sub-logarithmic in the

number of jobs n, more preciselym = O(log
1/6 n

log logn
), then we have a (1+ϵ)-approximation

(PTAS) for themakespan objective. Then in Section 3.2, we use this as a subroutine to

get an O(logm
log logm

)-approximation for the general setting, which improves the previous

best result by a double logarithmic factor. Next, in Section 3.3, we discuss the

approximation algorithm for min-sum objective when m = O(log
1/6 n

log logn
), for which we

introduce a new variant of the GPS problem, called the segmented GPS problem and

we give a (1 + ϵ)-approximation for it. This problem is important as we use it to

convert the makespan objective to min-sum objective, i.e., the min-sum version of

GPS can be reduced to this problem by small loss. Finally, in Section 3.4, we present

an O(logm
log logm

) for min-sum GPS for general m.

3.1 A PTAS for the makespan objective when m

is sub-logarithmic

The main theorem that we prove in this section is the following:

20

Theorem 5 There is a PTAS for GPS with makespan objective when m = O(log
1/6 n

log logn
).

The algorithm is built based on outline scehme and linear program. Similar ideas

have been used in [11, 19] to design PTAS for the flow shop and open shop problems

when m = O(1). The general framework is to label the jobs as big and small based

on their processing times. It can be shown that the number of big jobs cannot be

too large so we can guess (enumerate) their schedule on the machines with a good

accuracy. For small jobs, we schedule them by using a Linear Programing (LP)

relaxation and rounding with small error.

3.1.1 The outline scheme

Definition 6 An outline scheme partitions all feasible solutions into classes (out-

lines), such that solutions that get grouped together share some common characteris-

tics.

The outline scheme should suggest a natural way to obtain a good schedule. Our

goal is to show that: 1○ The number of outlines is polynomially bounded. 2○ For

each outline, we can generate a schedule such that the makespan of the schedule

is approximately (1 + ϵ) as good as the optimal schedule in this outline. Since the

optimal schedule must be contained in one of those outlines, by enumerating all of

them, we are guaranteed to find a nearly good schedule.

Suppose we have an upper bound T on the length of the optimal schedule T ∗. Such

an upper bound can be obtained by using a naive algorithm that simply processes

operations starting from M1 and move to the next machine if all operations on the

current machine are finished. Therefore T = mT ∗ is always a valid upper bound.

Then we partition the time line from 0 to T into κ intervals of size δ = T
κ
, and we

refer the interval [(k − 1)δ, kδ) as the k-th δ-interval, 1 ≤ k ≤ κ. Values of δ and κ

are to be determined.

Also, we classify the jobs into big and small jobs. The big jobs are those with

21

processing time ≥ γ, and small jobs are those with processing time < γ. The value

of γ will be specified later. Then we are ready to formally define the outline scheme.

Each outline consists of:

• The δ-interval in which each operation of a big job begins.

• For each machine and δ-interval, the approximate (rounded up to the nearest

multiple of γ) amount of time allocated to the operations associated with small

jobs that begin in that δ-interval.

Therefore, the outline specifies which δ-interval each operation of each big job

should begin in, and how much small-jobs-time is allocated for each δ-interval on

each machine. The reason that we label jobs as big and small is because we cannot

afford to guess too much detail on every job. Instead, for the small jobs, whose order

of scheduling do not impact the overall length significantly, we can schedule them

approximately by using an LP. How many outlines do we need to guess? Suppose the

number of big jobs is L, then the number of possible assignments of big-job operations

to δ-intervals is at most κmL. And observe that the number of possible assignments

of small-jobs-time to intervals is at most (δ
γ
+1)mκ. Therefore, the number of outlines

is bounded by:

κmL(δ/γ + 1)mκ.

For a given outline, we introduce a Linear Programing to determine the assignment

of small-job operations to δ-intervals. Let J1, J2, . . . , Jn′ be the small jobs, and job Ji

is to be processed on machines Mi1 , . . . ,Miλi
(recall λi ≤ m is the span of job Ji) in

the specified order. Then we construct an LP with the following variables:

xj,(t1,t2,...,tλj)
, j = 1, . . . , n′, 1 ≤ t1 ≤ t2 ≤ · · · ≤ tλj

≤ κ

22

∑
t1,t2,...,tλj

xj,(t1,t2,...,tλj)
= 1, j = 1, . . . , n′,

∑
{j|M1∈Pj}

pjxj,(...,k,...) ≤ αk
1, k = 1, . . . , κ,

∑
{j|M2∈Pj}

pjxj,(...,k,...) ≤ αk
2, k = 1, . . . , κ,

... ∑
{j|Mm∈Pj}

pjxj,(...,k,...) ≤ αk
m, k = 1, . . . , κ,

x ≥ 0.

Figure 3.1: the LP to assign small jobs. Recall that pj is the processing time of job
j, and Pj is the path of machines for job j.

where xj,(t1,t2,...,tλj)
= 1 means that job Jj is assigned to δ-interval t1 on machine

Mj1 , t2 on machine Mj2 , and so on. We use αk
1, α

k
2, . . . , α

k
m to denote the amount

of time (for small jobs) assigned (by outline) to the k-th δ-interval on machines

M1,M2, . . . ,Mm, respectively. We want to find a basic feasible solution against the

constraints in Fig. 3.1.

The first and last constraints ensure that the operations of all small jobs are

assigned to some δ-intervals, and all constraints in the middle ensure that the small-

job-time in the solution in each interval on each machine is no more than the value

described by the outline.

Observe that the LP has n′ + mκ constraints and at most n′κm variables. A

basic feasible solution of this LP is guaranteed to have at most n′ + mκ positive

variables. Also, each job must have at least one positive variable associated with it.

This is because of the first constraint of the LP. Thus, A job that receives fractional

assignment must have at least one more positive variable. Combining with the fact

that the bfs has at most n′+mκ positive variables, we know that such a solution can

have at most mκ jobs that actually receive fractional assignments and the remaining

23

small jobs will have unique integral assignment to δ-intervals. Let’s just ignore the

small jobs that received fractional assignments. They will be appended to the end of

the schedule with a cost of at most (mκ+m− 1)γ.

For the remaining jobs (big jobs + small jobs with integral assignments), we de-

scribe a two-step algorithm to construct a schedule based on their assignments to

δ-intervals.

In the first step, we ‘greedily’ schedule each machine independently. For a machine

Mi, we order the operations assigned to each δ-interval such that the longest operation

is the last. More precisely, let I be the set of indices k such that there are some

operations assigned to the kth δ-interval in the first step schedule. Then we schedule

the operations in the order of their indices in I where operations in kth δ-interval

start at time σk and end at time τk, where

σk = max{(k − 1)(δ + γ),max1≤h≤k−1,h∈I{τh}},

τk becomes well-defined once we defined σk. Another way to view the first step

schedule is that: for machine Mi, all operations assigned in the first δ-interval get

scheduled first as a block with no idle time in between, followed by the operations in

the second δ-interval, and so on. Within each block, we schedule the largest operation

the last. Therefore, jobs in each block do not overlap, and they are not scheduled

before the specified starting time.

Let Σ be the optimal schedule in a fixed the outline, and let T̃ be its length. We

focus on a specific machine Mi. Let sk and (tk) denote the start time and (end time)

of the first and (last) operations during the kth δ-interval in Σ. Then:

Lemma 7 for all k, σk ≤ sk + (k − 1)γ, and τk < tk + kγ

Proof. First observe that for any k ∈ I, τk − σk < tk − sk + γ. This is because

jobs in each block get scheduled with no idle time in the first step schedule, and the

additional γ comes from rounding up the small-job-time to the nearest multiple of γ.

24

We prove the first inequality in the lemma by induction. With the smallest k ∈ I,

we have σk = (k − 1)(δ + γ), which is at most sk + (k − 1)γ. Then, inductively:

σk = max{(k − 1)(δ + γ),max1≤h≤k−1,h∈I{τh}}

= max{(k − 1)(δ + γ),max1≤h≤k−1,h∈I{σh + (τh − σh)}}

≤ max{(k − 1)(δ + γ),max1≤h≤k−1,h∈I{sh + (h− 1)γ + (th − sh + γ)}}

≤ (k − 1)γ +max{(k − 1)δ,max1≤h≤k−1,h∈I{sh + (th − sh)}}

≤ sk + (k − 1)γ

Since τk − σk < tk − sk + γ, we have τk < tk + kγ, which completes the proof.

Corollary 8 Lemma 7 implies that the makespan of the first step schedule is at most

T̃ + κγ.

However, notice that the first-step schedule is very likely an infeasible schedule,

because we only focus on each machine individually, so the operations of a job might

get processed on different machines at the same time (overlaps). The second step

of the algorithm is to remove the potential overlaps of operations by delaying the

operations on Mi by 2(i−1)(δ+γ) units of time, for i = 2, . . . ,m. We will eventually

show that the schedule after injecting delays on every machine will be feasible, but

before that we need to prove the following lemma first:

Lemma 9 Consider operations inside an arbitrary kth δ-interval on a arbitrary ma-

chine in the first step schedule. (1) Each large operation starts processing during

[(k− 1)(δ+ γ), k(δ+ γ)). (2) And each small operation starts and finishes processing

during[(k − 1)(δ + γ), k(δ + γ) + γ).

Proof. It is clear that all these operations start at or after (k − 1)(δ + γ). Then

it remains to show that they don’t start (end) too late. We consider the following

25

two cases. First, suppose there exists an large operation. Observe that all large

operations are scheduled in the same δ-interval in Σ (recall Σ is the optimal schedule

in the outline) as well. Let Oj be the operation that was scheduled the last in our

algorithm (it is the largest), then it suffices to show Oj starts before time k(δ + γ)).

From lemma 7, we know τk < tk + kγ, also there is some operation Oj′(pj ≥ pj′) is

scheduled the last and completes at tk in Σ. Also, Oj′ starts before time kδ. Therefore,

the last operation of this interval starts at time τk − pj < tk + kγ − pj′ < k(δ + γ).

The other case is when all operations are small (< γ). In this case , tk < kδ + γ,

so by lemma 7: τk < tk + kγ < k(δ + γ) + γ. This completes the proof.

Now we are ready to prove that the resulting schedule after step 2 is feasible.

Lemma 10 After delaying the operations on Mi by 2(i − 1)(δ + γ) units, for i =

2, . . . ,m, the resulting schedule is feasible.

Proof. The schedule we obtained from first step is conflict-free, but it is still

likely infeasible because there might be a job starting on a machine before its previous

operation finishes on the previous machine (the job starts before it becomes available).

In step two, we delay operations in M2 by 2(δ + γ), jobs in M3 by 4(δ + γ), and so

on. So the makespan of the schedule increases by at most 2(m− 1)(δ + γ). And we

show that the schedule after injecting delays is feasible.

Consider an arbitrary job j, and two consecutive operations of j on machine Mi

and Mi+1, call them Oj,i, and Oj,i+1. It suffices to prove that these two operations

are scheduled in order and do not overlap.

First consider the case when j is a big job. Suppose Oj,i is assigned to kth δ-interval

and Oj,i+1 is assigned to the lth δ-interval (l ≥ k). By Lemma 9, the difference of

their starting time is at least (l − k − 1)(δ + γ), i.e. in the worst case Oj,i+1 starts

on Mi+1 (δ + γ) units before Oj,i starts on Mi in the first step schedule. Note that

operations on Mi+1 are delayed by 2(δ + γ) more units relative to operations on Mi

26

in step two, so once the delays have been injected, Oj,i and Oj,i+1 will be scheduled

in order and do not overlap.

Another case is when j is a small job, and we still use Oj,i and Oj,i+1 to denote the

two consecutive operations of j. And suppose Oj,i is assigned to kth δ-interval and

Oj,i+1 is assigned to the lth δ-interval (l ≥ k). Again by Lemma 9, after the delays

have been injected, Oj,i will complete before (k+2(i− 1))(δ+ γ) + γ, and Oj,i+1 will

start at or after time (2i+k−1)(δ+γ). Since (2i+k−1)(δ+γ) > (k+2(i−1))(δ+γ)+γ,

Oj,i and Oj,i+1 will be scheduled in order and do not overlap.

Combining previous lemmas, we obtain the following theorem:

Theorem 11 For a given δ, and γ and an outline with an associated optimal schedule

of length T̃ , we can generate a feasible schedule of length:

T̃ + κγ + 2(m− 1)(γ + δ) + (mκ+m− 1)γ

Proof. The additive κγ follows from Corollary 8, second term 2(m − 1)(γ + δ)

follows from Lemma 10, and (mκ+m−1)γ comes from the fractional small jobs that

get appended at the end.

3.1.2 The PTAS

Now, we are ready to complete the proof of Theorem 5. Let δ = Tϵ
u
, and γ = Tϵ2

uv
.

The value of u and v will be specified later. So the additive error from Theorem 11

becomes:

κγ + 2(m− 1)(γ + δ) + (mκ+m− 1)γ

=
u

ϵ
· Tϵ

2

uv
+ 2(m− 1)(

Tϵ(v + ϵ)

uv
) + (

mu

ϵ
+m− 1)

Tϵ2

uv

=

[
3mϵ+ 2mv + (m+ 1)u− 3ϵ− 2v

uv

]
ϵT

27

Moreover, recall that T is the upper bound of T̃ , suppose T = βT̃ , such β is at

most m. Let L be the number of large jobs, then L is at most mT̃
γ

= muv
βϵ2

, therefore

the total possible number of assignments of large operations to δ-intervals is at most

κmL.

The number of small-job-time that we assign to each δ-interval is δ
γ
+ 1 = v

ϵ
+ 1

(because we round it up to multiple of γ), so the number of possible assignments of

small-job-time to each machine during each interval is at most (v
ϵ
+ 1)mκ. Therefore,

the total number of outlines is at most:

(u
ϵ

)m2uv/ϵ2 (v
ϵ
+ 1
)mu/ϵ

For sufficiently large u, v, for example, u = 4(m− 1)β and v = 2(m + 1)β + (3
2
)ϵ,

then the additive error becomes:

Error =

[
3mϵ+ 4m(m+ 1)β + 3mϵ+ 4(m+ 1)(m− 1)β − 3ϵ− 4(m+ 1)β − 3ϵ

8(m+ 1)(m− 1)β2 + 6(m− 1)βϵ

]
· ϵβT̃

=

[
8(m+ 1)(m− 1)β + 6(m− 1)ϵ

8(m+ 1)(m− 1)β2 + 6(m− 1)ϵβ

]
· ϵβT̃

= ϵT̃

Therefore, we can guarantee the additive error is at most ϵT̃

Runtime: The runtime is given by the number of outlines that we need to consider

multiplied by the time needed to solve an individual outline. First note that the num-

ber of outlines is O(m/ϵ)O(m6/ϵ2). For each outline, we need to find a basic feasible

solution for the associated LP; recall that the LP has n+ mu
ϵ

constraints and at most

num

ϵm
variables. By using the LP solver from [24], we can solve the LP in time O(N3.5),

where N is the input size. Therefore the total runtime is O(N3.5(m/ϵ)O(m6/ϵ2)). Sup-

pose m = O(log
1/6 n

log logn
), the total runtime becomes:

28

O(N3.5m(m6)) = O

⎛⎝N3.5

(
log1/6 n

log log n

)logn/ log6 logn
⎞⎠

= O
(
N3.52

logn

log6 logn
(log log1/6 n)

)
= O(N3.5n)

Therefore, the total runtime is polynomially bounded.

Observation: If we define big jobs to be those with maximum processing time (over

their spans of machines) at least γ, and small jobs are those with maximum processing

time < γ, then the PTAS actually holds even on unrelated machines setting (when m

is sublogarithmic), which generalizes the result of Hall [11] for the classical problem

of flow shop.

3.2 A O(logm
log logm)-approximation for makespan ob-

jective

In this section, we prove

Theorem 12 For GPS with makespan objective, there is an O(logm
log logm

)-approximation.

Consider the special case of the GPS problem where there are h machines, called

terminal machines, such that any job j has to start/end at one of the hmachines. This

special case by itself is quite interesting because if one can have a good approximation

for this special case, then the algorithm for this special case can be adapted to solve

the general problem, as follows.

For a given instance, we select h machines that equally partition the machines into

h segments (as in Fig. 3.2). For all jobs whose span crosses these h machines (i.e.

uses machines in two segments), we group them into group G1. So all the jobs in

29

Figure 3.2: In this example, h = 3, the dark squares represent the terminal machines
in the first layer, which partition the machines in to 3 segments. The squares with
crossed lines represent the second layer terminal machines. The corresponding groups
of jobs are defined as G1 = {j1, j2} and G2 = {j3, j4, j5}.

J −G1 have their spans entirely within one segment and those that fall into different

stgments, can be scheduled independently (as their paths do not overlap). For each

segment, we again select h machines (to partition that segment into equal size sub-

segments) and all jobs in J−G1 that pass any one of the secondary terminal machines

(h2 many) form group G2. And we do this recursively. Eventually, we have O(loghm)

groups. Also, by losing a constant factor, we can assume that jobs among a group

have to start/finish at one of the h terminal machines. This is because the instance

where there is a machine that is used by all jobs is a special case of the junction

tree problem studied in [5]. Therefore we can use their two-stage algorithm and in

≤ 2OPT time send all jobs to their first terminal machines; once all jobs reach their

last terminal machines on their paths, it takes at most 2OPT time to deliver them to

the final destinations. Suppose we have an ρ-approximation for a single group of jobs,

then if we schedule all groups sequentially, we obtain an O(logh m · ρ)-approximation

for the general case. Therefore, the problem becomes how large can we push the value

of h to? and what’s the best value for ρ we can get for an individual group?

3.2.1 Instances with h terminal machines

In this section, we show how one can extend the idea of the PTAS in Section 3.1 to

solve the instances with h terminal machines. Similarly, suppose we have an upper

bound T on the makespan of the optimal schedule, and we partition the time line

from 0 to T into κ intervals of size δ = T
κ
.

The definition of a job being big or small is slightly different. Suppose the h

terminal machines partition the machines into h equal-size segments (except the last

30

one). A job j is big if the time it takes to travel a segment is ≥ γ (i,e, pj× segment

size ≥ γ). Otherwise, we say the job is small.

Each outline should specify:

• The δ interval in which a big job starts running on a terminal machine.

• For each terminal machine and δ-interval, how much time is allocated to small

jobs that begins in that δ-interval, rounded up to the nearest multiple of γ.

Suppose the number of big jobs is L, the number of guesses of the starting time

interval of all big jobs is at most κhL; also, the number of possible assignments of

small-job-time to δ-intervals is at most (δ/γ + 1)hκ. So the number of outlines is at

most:

khL(δ/γ + 1)hκ

For the small jobs, we again construct an LP as in Section 3.1 and find a basic

feasible solution of it. Then we have at most hκ jobs that actually receive fractional

assignments, we can ignore them for now and append them at the end of the schedule

with a cost at most (hκ+ h− 1)γ.

For all big jobs and small jobs with integral assignments, we schedule them accord-

ing to their assignments to δ-intervals in two steps. In the first step, we schedule each

segment independently. For a fixed segment, let Mi be the first machine (a terminal

machine) of this segment. We order the jobs assigned to each δ-interval according to

their processing times and send them based on faster first. Let σk be the time when

the first job in the kth δ-interval begins on the first machine of the segment, and let

τk be the time when the last job in the kth δ-interval finishes on the last machine of

the segment.

Let Σ be the optimal schedule in the outline that we are focusing on, say the

makespan of Σ is T̃ . Similarly, we define sk and (tk) to be the start time (end time)

31

of the first (last) job during the kth δ-interval of Σ on the same segment. Then we

show the following:

Lemma 13 For all k, σk ≤ sk + (k − 1)δ, and τk < tk + kγ

Proof. One important observation is that ∀k, τk−σk < tk−sk+γ. This is given by

the fact that faster first algorithm gives optimal solution for flowshop with identical

machines. That is, if we consider the jobs that traverse a specific segment during a

specific δ-interval, view it as an instance of flowshop with identical machines. The

schedule defined by faster first is no worse than the optimal schedule. The additive γ

comes from the rounding error. The rest of proof is analogous to the proof of Lemma

7, hence omitted here.

Then we can conclude the makespan of the schedule obtained from the first step is

at most T̃ + κγ. However, this schedule is likely to be infeasible because we schedule

each segment independently without caring about their consistency. The second step

is to inject delays to jobs so that the jobs in the resulting schedule are processed

in order. We delay operations on the second terminal machine by 2(δ + γ), delay

operations on the third terminal machine by 4(δ+ γ), and so on. So eventually, if we

consider two adjacent terminal machines, operations on the later one are delayed by

2(δ + γ) units relative to the previous terminal machine. And we need to show:

Lemma 14 After delaying the operations on the ith terminal machine Mhi
by 2(i−

1)(δ + γ) units of time, for i = 2, . . . , h. The resulting schedule is feasible.

Proof. Consider an arbitrary job j and its operations traveling two adjacent

terminal machines Mhi
and Mhi+1

. Observe that all operations of job j in the segment

starting with machineMhi
must be scheduled in order because we schedule them based

on faster first. So it remains to show that after injecting the delays, j doesn’t start

32

on Mhi+1
before all previous operations are finished. The rest of proof is analogous

to the proof of Lemma 10.

Therefore, the final schedule is of length at most T̃ + κγ +2(h− 1)(δ+ γ) + (hκ+

h− 1)γ. For sufficiently small δ = O(Tϵ
h
) and γ = O(Tϵ2

h2), the additive error becomes

ϵT̃ . Moreover, the total number of outlines is O(h(h6)). Suppose h is sub-logarithmic,

say h = log1/6 m
log logm

, then the runtime becomes polynomially bounded. This implies a

O(loghm · ρ) = O(logm
log logm

)-approximation for the general problem, which completes

the proof of Theorem 12.

3.3 A PTAS for min-sum GPS when m is sub-

logarithmic

Recall that the completion time Cj of a job j is the time when the last operation of j

finishes processing. The makespan objective aims at minimizing the completion time

of the whole system. On the other hand, the min-sum objective aims at minimizing

the average completion time over all jobs.

In this section, we study the approximability of the min-sum objective. The idea

of designing approximation algorithms for the min-sum objective by using algorithms

for the min-max (makespan) variants have been used extensively for various problems

such as scheduling and vehicle routing problems (to name a few see [2, 5, 18, 22]).

Here we borrow ideas from [22], which designs a PTAS for the minimum latency

traveling repairman problem on Euclidean metrics by reducing it to a variant of

min-max version of it. This technique is used to design algorithms for many other

problems, see [6, 23] for an example. First in subsection 3.3.1, we introduce a variant

of the GPS problem, called the segmented GPS problem and we give a PTAS for it

when m = O(log1/6 n/ log log n). Then in subsection 3.3.2, we use it as a subroutine

to prove the following:

33

Theorem 15 There is a PTAS for GPS with min-sum objective whenm = O(log
1/6 n

log logn
).

3.3.1 Segmented GPS

First we define an interesting variant of the GPS problem called the segmented GPS

as follows.

Definition 16 (segmented GPS) An instance of segmented GPS is given by a set

of m identical machines that form a path, and also a set of n jobs each needs to be

processed on a sub-path. Also, for some constant π, given bounds B1 ≤ B2 ≤ · · · ≤ Bπ

such that Bi/Bi−1 = η where η is a constant, and given numbers n1 ≤ n2 ≤ · · · ≤

nπ = n. A feasible solution is a schedule such that at least ni jobs are finished within

the first Bi units of time for all i ∈ {1, . . . , π}, and the length of the schedule is at

most Bπ. We say an algorithm gives an α-approximation if for any feasible instance

it finds a schedule that finishes at least ni jobs within αBi units of times.

In this subsection, we focus on approximating the segmented GPS problem, the

consequences of it will be discussed later in next subsection.

Theorem 17 There is an (1 + ϵ) approximation for the segmented GPS when m =

O(log
1/6 n

log logn
).

The algorithm also adapt the idea of outline scheme. Intuitively, we again partition

the time line from 0 to Bπ into polynomially many δ-intervals, and we use the notion

of big and small to classify jobs so that we can afford to fully guess the assignment of

big jobs to δ-intervals. For small jobs, we guess approximately the amount of time

that is allocated for them on each δ-interval and each machine, and we then assign

small jobs by an LP.

However, we define δ w.r.t. B1 instead of Bπ. This gives us better precision so that

the additive error at the end depends on B1, so is relatively small. Also, at the same

time, the number of δ intervals doesn’t blow up, the number is at most ηπ (which is

34

a constant since both η, π are constants) times what we used to have. Moreover, for

the same reason, we define γ w.r.t. B1. The number of large jobs L is also ηπ (which

is a constant) times what we used to have.

Figure 3.3: Partiton the time line into intervals of size δ, which is defined w.r.t. B1.

More precisely, Let δ = B1ϵ
u

and γ = B1ϵ2

uv
, as before, u = O(m) and v = O(m)

are linear functions of m to be specified later. The number of δ-intervals is κ =

ηπB1

δ
= uηπ

ϵ
. An outline specifies the δ-interval in which an operation of a big jobs

begins in, and amount of time that is allocated to small job in each interval on each

machine, rounded to nearest multiple of γ. Therefore, the total number of outlines is

κmL(δ
γ
+ 1)mκ = O(m(m6)), which is polynomially bounded as m = O(log

1/6 n
log logn

).

Assume we know the assignment of big jobs. As before, we process the operations

assigned to each δ-intervals such that the longest operation is the last. Then, for

each bound Bi, we know the number of large jobs nl
i that are finished before Bi.

Therefore, when we assign small jobs, we modify the LP in Figure. 3.1 by adding π

extra constraints to ensure that x values that fall in the first Bi units of time is at

least ns
i = ni − nl

i (see Figure 3.4 for the full LP).

Such LP has n′ +mκ + π constraints and at most n′κm variables (recall n′ is the

number of small jobs). A basic feasible solution of this LP is guaranteed to have at

most mκ+π small jobs that actually receive fractional assignments and the remaining

small jobs will have unique integral assignment to δ-intervals. We can simply ignore

the fractional small jobs for now, because we can append them all at the end of B1

with a cost of at most (mκ+π+m−1)γ (which is at most ϵB1, based on the discussion

in Section 3.1.2). Call this schedule the first-step schedule, then it finishes at least ni

jobs before time Bi, for i = 1, . . . , π, as wanted. But it may not be feasible. In order

35

∑
t1,t2,...,tλj

xj,(t1,t2,...,tλj)
= 1, j = 1, . . . , n′,

∑
{j|M1∈Pj}

pjxj,(...,k,...) ≤ αk
1, k = 1, . . . , κ,

∑
{j|M2∈Pj}

pjxj,(...,k,...) ≤ αk
2, k = 1, . . . , κ,

... ∑
{j|Mm∈Pj}

pjxj,(...,k,...) ≤ αk
m, k = 1, . . . , κ,

∑
{j|tλj ·δ≤Bi}

xj,(...,tλj)
≥ ns

i , i = 1, . . . , π,

x ≥ 0.

Figure 3.4: the modified LP. π new constraints are added to ensure that at least
ns
i = ni − nl

i small jobs are finished before time Bi.

to turn it into a feasible schedule, we need to inject delays to machines.

Lemma 18 After delaying the operations on machine Mi by 2(i − 1)(δ + γ) units,

for i = 2, . . . ,m. The resulting schedule becomes feasible. And the delays only stretch

the schedule by a factor of (1 + ϵ).

Proof. The proof is analogous to the proof of Lemma 7 and Theorem 11.

Theorem 17 follows immediately from the above discussion.

3.3.2 The PTAS

The main theorem that we prove in this subsection is:

Theorem 19 If there is a polynomial time α-approximation algorithm for the seg-

mented GPS problem, then there is a polynomial time (1 + ϵ)α-approximation algo-

rithm for the GPS min-sum minimization problem.

Then Theorem 15 follows immediately from Theorems 17 and 19.

36

Proof of Theorem 19 is built upon ideas of [22] for minimum latency traveling

repairman problem on Euclidean metrics. First we show that:

Lemma 20 With a (1 + ϵ)-factor loss, we may assume that the makespan of the

optimal schedule is polynomially bounded in m,n.

Proof. Let pmax, pmin be the largest and smallest processing times, respectively.

One can assume that pmin ≥ ϵpmax/(mn), otherwise all jobs with processing times

smaller than ϵpmax/(mn) can be removed, then they can be added to any schedule

of the rest of jobs right before a job of size pmax and this will increase the total

completion time of the schedule by at most a (1 + ϵ) factor. With this assumption,

we can scale processing times so that pmin = 1 and pmax ≤ mn/ϵ.

Now, we are ready to present the reduction. Consider the time points t1, t2, . . . , tΓ,

where t1 = 1 and ti/ti−1 = (1 + ϵ)π, for some constant π that only depends on ϵ. We

can assume Γ = O(logmn) by the previous lemma. The part of schedule between ti

and ti+1 is called the ith subschedule. We call a schedule is well-structured if each

subschedule processes a subset of jobs completely. That is, if a job j starts processing

at or after time ti, it has to be finished on all its span before ti+1. We first show that

we can reduce the solution space to only the well-structured schedules by losing an

ϵ-factor. This allows us to deal with each subschedule independently. Moreover, the

time frame between ti and ti+1 can be further partitioned into π sub-intervals such that

the ratio of the end time and start time of each sub-interval is (1+ϵ). Therefore, each

subschedule can be viewed as an instance of the segmented GPS problem. However,

we cannot afford to guess the subset of jobs to be processed on every subschedule,

but we show that, for large enough π, in the ith subschedule we can simply re-do all

the jobs that have been processed in the previous subschedules. As a result, we don’t

need to know the set of jobs to be processed on each subschedule, instead, we use

Dynamic Programming to enumerate the number of jobs to be processed, which can

be done in polynomial time. The first step is the following lemma.

37

Lemma 21 There is a (1 + ϵ)-approximate well-structured schedule OPT ′.

Proof. We prove this by showing that we can modify an optimal schedule to

satisfy the desired property and the total completion time of the modified schedule

only increases by an ϵ factor. Assume 0 < ϵ ≤ 1 and π = O(1/ϵ2) is a constant

depending on ϵ only. Let h be a random offset chosen u.a.r. in {0, 1, . . . , π − 1}. Let

Ai = (1 + ϵ)(i−1)π+h, for i ≥ 0.

Consider an optimal schedule OPT (use opt to denote its value), and let OPTi

be the partial schedule restricted to the jobs that finish no later than Ai, for i =

1, . . . ,Γ = O(logmn). The modified schedule OPT ′ with value opt′ is constructed

by concatenating partial schedules OPTi sequentially such that OPTi starts at time

ti = cAi−1, for i = 1, . . . ,Γ and some constant c. Observe that a job j that appears

in OPTi will also appear in OPTi′ for i
′ > i, the completion time of a job is defined

by its first appearance.

We first prove that OPT ′ is feasible. For that, we need to show ti ≥ ti−1 + Ai−1

for all i, i.e. c/(c− 1) ≤ Ai−1/Ai−2 = (1+ ϵ)π. For this inequality to hold, it’s enough

to take π ≥ log c−log(c−1)
log(1+ϵ)

= O(1
ϵ
).

Next, let Cj and C ′
j be the completion time of job j in OPT and OPT ′, respectively.

In order to show E[opt′] ≤ (1+ ϵ)opt, it’s sufficient to show E[C ′
j] ≤ (1+ ϵ)Cj, for any

job j.

For an arbitrary job j, let i′ be the first index such that Ai′ ≥ Cj. Thus, job j is

first processed by OPTi′ in OPT ′. Let (1 + ϵ)q−1 < Cj ≤ (1 + ϵ)q for some integer

q ≥ 0. Then the expected value of Ai′ over all possible values that h can take is:

E[Ai′] =
1

π

π−1∑
h=0

(1 + ϵ)q+h =
(1 + ϵ)π+q−1 − (1 + ϵ)q

πϵ
<

(1 + ϵ)π+q

πϵ

38

Observe that the completition time of job j in OPT is Cj, and j is scheduled by OPTi′

in OPT ′, so the completition time j in OPT ′ is C ′
j = ti′ +Cj, i.e. ti′ = C ′

j −Cj. Also,

recall that ti′ = cAi′−1 =
cAi′

(1+ϵ)π
, therefore,

E[C ′
j]− Cj = E[ti′] =

c

(1 + ϵ)π
E[Ai′]

<
c

(1 + ϵ)π
· (1 + ϵ)π+q

πϵ

=
c(1 + ϵ)q

πϵ

<
c(1 + ϵ)

πϵ
Cj.

The error is within an ϵ factor if π ≥ c(1+ϵ)
ϵ2

= O
(

1
ϵ2

)
, as desired. We can assume

the inequalities still hold without expectation by trying all values of h.

So using Lemma 21 we can focus on well-structured solutions. The proof of the

lemma shows that solution OPT ′ is 1○ well-structured ; 2○ each subschedule processes

all jobs that appear in previous subschedules. Therefore, let Dj be the completion

time of jth job on the first subschedule that processes at least j jobs in OPT ′, we

know that
∑n

j=1 Dj =
∑

j∈J C
′
j ≤ (1 + ϵ)opt. Therefore, in order to find such an

OPT ′, we can search for a solution among all schedules satisfying 1○ and 2○ that

minimizes
∑n

j=1Dj. We show this can be done by a DP that runs in polynomial time

if we have an algorithm for the following subproblem.

Definition 22 (The subproblem) An instance of the subproblem is given by i ∈

{1, . . . ,Γ} and integers n′ ≤ n′′ ∈ {0, 1, . . . , n}. A solution is a schedule that starts

at time ti and finishes before time ti+1 that processes exactly n′′ jobs. The goal is to

find a schedule that minimizes the total completion time of jobs n′ + 1, . . . , n′′. For

any feasible instance (i, n′, n′′), let Subi(n
′, n′′) denote its optimal value.

39

We say an algorithm is (α, β)-approximation for the subproblem if for any feasible

instance (i, n′, n′′), it find a schedule that starts at time αti and finishes before time

αti+1, and the total completion time of jobs n′ + 1, . . . , n′′ is at most αβSubi(n
′, n′′).

Lemma 23 If there is an (α, β)-approximation for the subproblem, then there is an

αβ(1 + ϵ)-approximation for the GPS min-sum minimization problem.

Proof. Suppose there is an (α, β)-approximation algorithmAlg. And letAlgi(n
′, n′′)

be the value returned by Alg on instance (i, n′, n′′). For any sequence 0 ≤ n̂1 ≤ · · · ≤

n̂Γ = n, we have

Γ∑
i=1

Algi(n̂i−1, n̂i) ≤ αβ
Γ∑

i=1

Subi(n̂i−1, n̂i)

The solution is simply concatenating the schedules returned by Alg on (i, n̂i−1, n̂i).

The sequence of n̂i’s that minimizes the total completion time can be found by the

following DP: let Algi(n
′′) = Algi(0, n

′′). For all n′′ ≤ n and for i = 2, . . . ,Γ, let

Algi(n
′′) = min

n′≤n′′
Algi−1(n

′) +Algi(n
′, n′′).

Therefore, the minimum is given by AlgΓ(n), and the DP has Γn2 entries (Γ

choices for i and n′, n′′ ≤ n). Let n∗
1, . . . , n

∗
Γ be the values returned by the DP that

minimize
∑Γ

i=1Algi(n̂i−1, n̂i), and let ni be the number of jobs finished in OPTi.

Thus, the total completion time of the solution that we find is at most:

Γ∑
i=1

Algi(n
∗
i−1, n

∗
i) ≤

Γ∑
i=1

Algi(ni−1, ni)

≤ αβ
Γ∑

i=1

Subi(ni−1, ni)

= αβOPT ′

≤ αβ(1 + ϵ)OPT

40

Now, we are ready to complete the proof for Theorem 19 by showing that:

Lemma 24 If there is an α-approximation for the segmented GPS problem, then

there is an (α, 1 + ϵ)-approximation for the subproblem.

Proof. Given an instance (i, n′, n′′) of the subproblem. We define the time points

t
(h)
i for h = 1, 2, . . . , π, such that

t
(h)
i = (1 + ϵ)hti.

Naturally, the bounds in the segmented GPS problem are defined as Bh = t
(h)
i − ti,

and the numbers of jobs that have to be finished before every bound, nh, can take

all possible values as long as n1 ≤ · · · ≤ nπ = n′′. This create O(nπ) instances

of segmented GPS. We use the α-approximation algorithm to solve all of them and

simply return the one with smallest total completion time over jobs n′ + 1, . . . , n′′.

Let Sub be an optimal solution of the subproblem instance and let Subi(n
′, n′′)

be its value. Consider the number of jobs that are finished before Bh, h = 1, 2, . . . , π

in Sub. This is among the enumerated instances of segmented GPS. Let Alg be

the α-approximation on the enumerated instance that is consistent with Sub, where

consistent means the number of jobs finished between Bi and Bi+1 in Alg is the

same as in Sub, and denote the value of Alg by Algi(n
′, n′′). Let Alg start at

time αti, because the makespan of Alg is at most α(ti+1 − t1), so Alg finishes

before time αti+1 and it processes exactly n′′ jobs. Therefore, it only remains to show

Algi(n
′, n′′) ≤ α(1 + ϵ)Subi(n

′, n′′).

Let CAlg
j and CSub

j be the completion time of the jth job in Alg and Sub, respec-

tively. Suppose Bi−1 ≤ CSub
j ≤ Bi, then we have αBi−1 ≤ CAlg

j ≤ αBi = α(1+ ϵ)Bi−1

(since Bi/Bi−1 = (1 + ϵ)). Therefore, CAlg
j ≤ α(1 + ϵ)CSub

j , for j ∈ {1, . . . , n′′}. This

implies Algi(n
′, n′′) ≤ α(1 + ϵ)Subi(n

′, n′′), as desired.

41

Theorem 19 follows from Lemmas 21, 23, and 24. Combining with the (1 + ϵ)-

approximation for the segmented GPS problem from Section 3.3.1, we obtain a PTAS

for the GPS min-sum minimization problem for sub-logarithmic m.

Runtime: The number of subproblems that we need to consider is O(Γn2) =

O(n2 logmn), and for each subproblem, we enumerate O(nπ) = O(n1/ϵ2) instances

of segmented GPS. Therefore, the total runtime is Õ(n2 logmn) multiplied by the

runtime of the algorithm that approximates the segmented GPS problem.

3.4 An O(logm
log logm)-approximation for min-sum GPS

In this section, we prove

Theorem 25 For GPS with min-sum objective, there is an O(logm
log logm

)-approximation.

As discussed earlier, the framework of using a min-max solver as a blackbox to

approximate a min-sum objective has been used in the past extensively. To apply

that here we first define the following variant of the problem:

Definition 26 (Throughput Maximization Given Bound B) Given an instance

of the GPS problem and a bound B, what is the maximum number q of jobs that can

be finished before this bound?

An α-approximation for this problem is an algorithm that finishes q jobs within

time αB.

For the ease of notation, we denote this problem as problem A. Then

Lemma 27 If there is an α-approximation for problem A, then there is an O(α)-

approximation for the min-sum objective.

Proof. Given a black box that can approximate problem A within factor α, we

can obtain an O(α)-approximation for the min-sum objective as follows. Let Sj be

42

the set of jobs that finish between time 2j and 2j+1 in the optimal schedule (regarding

min-sum), and let nj = |Sj|. Therefore, by invoking the solver for problem A, for

each j, we can find a maximum set of jobs Qj with size qj that can be scheduled

within time α2j+1.

Our solution to the min-sum objective is the following: for j = 1, 2 . . . , schedule

the jobs in Qj as suggested by the solver of problem A. Note that a job might be

scheduled multiple times in different Qj’s, the completion time of a job is the first time

when it is completely scheduled. Consider the ith job that finishes in our schedule,

say i ∈ Sj. Then the completion time of ith job in the optimal schedule is at least

2j. Consider the set of jobs Qj and note the qj ≥ i. Therefore the completion time

of the ith job in our schedule is at most α
∑j+1

k=1 2
k ≤ α2j+2. That is, the average

completion time of our schedule is at most 4α times the value of the optimal solution.

This completes the proof. The constant 4 can be further optimized to 3.59, but it

doesn’t help the ratio asymptotically, hence details are omitted.

So it is enough to get an O(logm
log logm

)-approximation for problem A (for general m).

The algorithm is similar to the one in Section 3.4, so we only provide a sketch here.

First, we select h = O(log
1/6 m

log logm
) terminal machines that partition the machines into h

equal size segments. Group the jobs that cross the terminal machines together and

do it recursively, we obtain ∆ = O(logh m) = O(logm
log logm

) classes of jobs. Let OPT

be an optimal schedule that completes q = q1 + · · ·+ q∆ jobs before given bound B,

where q is the maximum possible jobs that can be finished before time B and qi is

the number of jobs from class i. Consider the instance of problem A on a single class

of jobs. Similarly we consider the segment between two terminal machines as the

role of a single machine and define δ and γ accordingly. Then each instance can be

viewed as a special case of the segmented GPS problem (discussed in Section 3.3.1)

when π = 1, so the PTAS for the segmented GPS problem can be applied here. That

is, given bound B and let q∗i be the maximum number of jobs that can be finished

43

before B if we only consider jobs in class i, we have an algorithm that finishes q∗i

jobs before time (1 + ϵ)B. Note that q∗i ≥ qi. Therefore, if we apply the PTAS on

every class of jobs to obtain the q∗i many jobs from each class i and sequentially glue

them together, then we get a schedule that finishes q∗1 + · · ·+ q∗∆ ≥ q1 + · · ·+ q∆ = q

jobs before time (1+ ϵ)∆B, which is a ∆ = O(logm
log logm

)-approximation for problem A.

Combining with the result from Lemma 27, we get an O(logm
log logm

)-approximation for

min-sum objective (for general m), which completes the proof of Theorem 25.

44

Chapter 4

Conclusions

In this thesis, we studied the Generalized Path Scheduling problem, which is proved

to be NP-hard for both makespan and total completion time objectives (min-sum)

in Chapter 2. Then in Chapter 3, we proposed several improved approximation

algorithms for it.

For the case when the number of machines m is sub-logarithmic in the number of

jobs, we presented a PTAS for both objectives. The PTAS for the makespan objective

was built based on the notion of outline scheme and Linear Programming. Intuitively,

we label the jobs as big and small and show that the number of big jobs is not too

large so that we can afford to enumerate the scehdule of big jobs and do the small jobs

by an LP. The PTAS for the total completion time objective is given by showing that

with an O(ϵ) loss, we can reduce the min-sum version of the problem to a so-called

segmented version, which can be solved by an algorithm similar to the PTAS for the

makespan objective.

For general m, we proposed two O(logm
log logm

)-approximation algorithms for the GPS

problem under both objectives, which improve the previous best result of [5] by a

double logarithmic factor. The idea of the algorithm for makespan is that we show if

one can get a ρ-approximation for the instances with h terminal machines, then there

is an O(ρ logh m)-approximation for the general instances. And we prove that we can

set h = O(log1/6m/ log logm) and have ρ = O(1). Moreover, we showed that how

45

one can turn an α-approximation algorithm for makespan to an O(α)-approximation

algorithm for min-sum objective, which leads to an approximation algorithm for min-

sum with the same asymptotic approximation ratio.

Future directions: The problem of getting an O(1)-approximation algorithm for the

GPS is still open for both objectives. The furthest-to-go algorithm seems plausible

as it gives the optimal makespan for the non-nested instances [13] and we do not

know any example showing that the congestion/dilation lower bound is violated by

more than a small constant factor by the furthest-to-go algorithm. It is also worth

pointing out that, for the makespan objective, if one can show every fixed priority gives

O(1)-approximation for instances in which all jobs have the same end machine, then

furthest-to-go gives O(1)-approximation for GPS. This is because for any machine

Mi in a GPS instance, if Ji is the set of jobs that use Mi, then none of the jobs

in Ji will be delayed by any job in J − Ji before machine Mi. The priority among

jobs in Ji is defined by their destinations. Therefore, if every fixed priority gives

O(1)-approximation for instances with same end machine, then the furthest-to-go

algorithm gives O(1)-approximation for the completion time of every machine, hence

for the makespan of the schedule.

Another research direction is extending the current results to more general settings.

For example, what if the machines are unrelated? Suppose we don’t bound m, if we

still use the current method of partitioning the jobs into groups and solve them sep-

arately, then each instance of h terminal machines becomes an instance of the classic

flow shop problem, for which we do not know any O(1)-approximation algorithm.

Therefore, the extension still requires new ideas. Generalizing the current results to

a more complicated network, say a tree, is also an obvious direction. However, if we

look at a machine Mi, jobs that use Mi might come from multiple different machines,

so extra care is needed to ensure the feasibility when designing algorithms.

46

Bibliography

[1] A. Antoniadis, N. Barcelo, D. Cole, K. Fox, B. Moseley, M. Nugent, and K.
Pruhs, “Packet forwarding algorithms in a line network,” Latin American Sym-
posium on Theoretical Informatics. Springer Berlin Heidelberg, 2014.

[2] K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar, “Paths, trees, and mini-
mum latency tours,” in 44th Symposium on Foundations of Computer Science
(FOCS 2003), 11-14 October 2003, Cambridge, MA, USA, Proceedings, IEEE
Computer Society, 2003, pp. 36–45. doi: 10.1109/SFCS.2003.1238179. [Online].
Available: https://doi.org/10.1109/SFCS.2003.1238179.

[3] U. Feige and C. Scheideler, “Improved bounds for acyclic job shop scheduling,”
pp. 624–633, 1998.

[4] Z. Friggstad, A. Golestanian, K. Khodamoradi, C Martin, M. Rahgoshay, M.
Rezapour, M. R. Salavatipour, and Y. Zhang, “Scheduling problems over a
network of machines,” Approximation, Randomization, and Combinatorial Op-
timization. Algorithms and Techniques (APPROX/RANDOM), 2017.

[5] Z. Friggstad, A. Golestanian, K. Khodamoradi, C. S. Martin, M. Rahgoshay,
M. Rezapour, M. R. Salavatipour, and Y. Zhang, “Scheduling problems over
a network of machines,” J. Sched., vol. 22, no. 2, pp. 239–253, 2019. doi: 10.
1007/s10951-018-0591-z. [Online]. Available: https://doi.org/10.1007/s10951-
018-0591-z.

[6] I. Gamzu and D. Segev, “A polynomial-time approximation scheme for the
airplane refueling problem,” J. Sched., vol. 22, no. 1, pp. 119–135, 2019. doi:
10.1007/s10951- 018- 0569-x. [Online]. Available: https://doi.org/10.1007/
s10951-018-0569-x.

[7] M. R. Garey, D. S. Johnson, and R. Sethi, “The complexity of flowshop and
jobshop scheduling,”Mathematics of Operations Research, vol. 1, no. 2, pp. 117–
129, 1976. [Online]. Available: https : //EconPapers . repec . org/RePEc : inm:
ormoor:v:1:y:1976:i:2:p:117-129.

[8] M. R. Garey and D. S. Johnson, Computers and intractability: a guide to the
theory of NP-completeness, ser. Mathematical sciences. New York, NY: Free-
man, 1979. [Online]. Available: https://cds.cern.ch/record/210237.

[9] L. A. Goldberg, M. Paterson, A. Srinivasan, and E. Sweedyk, “Better approxi-
mation guarantees for job-shop scheduling,” pp. 599–608, 1997.

47

https://doi.org/10.1109/SFCS.2003.1238179
https://doi.org/10.1109/SFCS.2003.1238179
https://doi.org/10.1007/s10951-018-0591-z
https://doi.org/10.1007/s10951-018-0591-z
https://doi.org/10.1007/s10951-018-0591-z
https://doi.org/10.1007/s10951-018-0591-z
https://doi.org/10.1007/s10951-018-0569-x
https://doi.org/10.1007/s10951-018-0569-x
https://doi.org/10.1007/s10951-018-0569-x
https://EconPapers.repec.org/RePEc:inm:ormoor:v:1:y:1976:i:2:p:117-129
https://EconPapers.repec.org/RePEc:inm:ormoor:v:1:y:1976:i:2:p:117-129
https://cds.cern.ch/record/210237

[10] R. Graham, E. Lawler, J. Lenstra, and A. Rinnooy Kan, “Optimization and
approximation in deterministic sequencing and scheduling : A survey,” English,
Annals of Discrete Mathematics, vol. 5, pp. 287–326, 1979, issn: 0167-5060.
doi: 10.1016/S0167-5060(08)70356-X.

[11] L. A. Hall, “Approximability of flow shop scheduling,” Math. Program., vol. 82,
pp. 175–190, 1998. doi: 10.1007/BF01585870. [Online]. Available: https://doi.
org/10.1007/BF01585870.

[12] D. G. Harris and A. Srinivasan, “Constraint satisfaction, packet routing, and
the lovasz local lemma,” in Symposium on Theory of Computing Conference,
STOC’13, Palo Alto, CA, USA, June 1-4, 2013, D. Boneh, T. Roughgarden, and
J. Feigenbaum, Eds., ACM, 2013, pp. 685–694. doi: 10.1145/2488608.2488696.
[Online]. Available: https://doi.org/10.1145/2488608.2488696.

[13] R. Koch, B. Peis, M. Skutella, and A. Wiese, “Real-time message routing and
scheduling,” Approximation, , and Combinatorial Optimization. Algorithms and
Techniques, 2009.

[14] D. Kowalski, Z. Nutov, and M. Segal, ““scheduling of vehicles in transporta-
tion networks,” International Workshop on Communication Technologies for
Vehicles, 2012.

[15] D. R. Kowalski, E. Nussbaum, M. Segal, and V. Milyeykovski, “Scheduling
problems in transportation networks of line topology,” Optimization Letters,
vol. 8, pp. 777–799, 2014.

[16] F. T. Leighton, B. M. Maggs, and S. B. Rao, “Packet routing and job-shop
scheduling in o(congestion+dilation) steps,” Combinatorica, 1994.

[17] T. Leighton, B. Maggs, and A. Richa, “Fast algorithms for finding o(congestion
+ dilation) packet routing schedules,” English (US), Combinatorica, vol. 19,
no. 3, pp. 375–401, 1999, issn: 0209-9683. doi: 10.1007/s004930050061.

[18] W. Li, M. Queyranne, M. Sviridenko, and J. Yuan, “Approximation algorithms
for shop scheduling problems with minsum objective: A correction,” Journal of
Scheduling, vol. 9, pp. 569–570, 2006.

[19] S. Sevastianov and G. Woeginger, “Makespan minimization in open shops : A
polynomial time approximation scheme,” English, Mathematical Programming,
vol. 82, no. 1-2, pp. 191–198, 1998, issn: 0025-5610. doi: 10.1007/BF01585871.

[20] N. Shakhlevich, H. Hoogeveen, and M. Pinedo, “Minimizing total weighted
completion time in a proportionate flow shop,” Journal of Scheduling, 1998.

[21] D. B. Shmoys, C. Stein, and J. Wein, “Improved approximation algorithms for
shop scheduling problems,” 1994.

48

https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.1007/BF01585870
https://doi.org/10.1007/BF01585870
https://doi.org/10.1007/BF01585870
https://doi.org/10.1145/2488608.2488696
https://doi.org/10.1145/2488608.2488696
https://doi.org/10.1007/s004930050061
https://doi.org/10.1007/BF01585871

[22] R. Sitters, “Polynomial time approximation schemes for the traveling repairman
and other minimum latency problems,” in Proceedings of the Twenty-Fifth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland,
Oregon, USA, January 5-7, 2014, C. Chekuri, Ed., SIAM, 2014, pp. 604–616.
doi: 10.1137/1.9781611973402.46. [Online]. Available: https://doi .org/10.
1137/1.9781611973402.46.

[23] R. Sitters and L. Yang, “A $(2 + ϵ)$-approximation for precedence constrained
single machine scheduling with release dates and total weighted completion
time objective,” CoRR, vol. abs/1706.07604, 2017. arXiv: 1706.07604. [Online].
Available: http://arxiv.org/abs/1706.07604.

[24] P. M. Vaidya, “Speeding-up linear programming using fast matrix multiplica-
tion (extended abstract),” in 30th Annual Symposium on Foundations of Com-
puter Science, Research Triangle Park, North Carolina, USA, 30 October - 1
November 1989, IEEE Computer Society, 1989, pp. 332–337. doi: 10 .1109/
SFCS.1989.63499. [Online]. Available: https://doi.org/10.1109/SFCS.1989.
63499.

[25] V. V. Vazirani, Approximation Algorithms. Berlin, Heidelberg: Springer-Verlag,
2001, isbn: 3540653678.

[26] W. Yu, H. Hoogeveen, and J. K. Lenstra, “Minimizing makespan in a two-
machine flow shop with delays and unit-time operations is np-hard,” Journal of
Scheduling, vol. 7, no. 5, pp. 333–348, Sep. 2004, Copyright - Kluwer Academic
Publishers 2004; Last updated - 2014-08-30.

49

https://doi.org/10.1137/1.9781611973402.46
https://doi.org/10.1137/1.9781611973402.46
https://doi.org/10.1137/1.9781611973402.46
http://arxiv.org/abs/1706.07604
http://arxiv.org/abs/1706.07604
https://doi.org/10.1109/SFCS.1989.63499
https://doi.org/10.1109/SFCS.1989.63499
https://doi.org/10.1109/SFCS.1989.63499
https://doi.org/10.1109/SFCS.1989.63499

	Introduction
	Scheduling Fundamentals
	Problem Formulation and Notations
	Hardness Fundamentals and Approximation Algorithms
	Literature Review

	Hardness Results
	Makespan objective
	Min-sum objective

	Approximation Algorithms
	A PTAS for the makespan objective when m is sub-logarithmic
	The outline scheme
	The PTAS

	A O(logmloglogm)-approximation for makespan objective
	Instances with h terminal machines

	A PTAS for min-sum GPS when m is sub-logarithmic
	Segmented GPS
	The PTAS

	An O(logmloglogm)-approximation for min-sum GPS

	Conclusions
	Bibliography

