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Abstract

This thesis explores theoretical, computational, and practical aspects of con-

vex (shape-constrained) regression, providing new excess risk upper bounds, a

comparison of convex regression techniques with theoretical guarantee, a novel

heuristic training algorithm for max-affine representations, and applications in

convex stochastic programming.

The new excess risk upper bound is developed for the general empirical

risk minimization setting without any shape constraints, and provides a prob-

abilistic guarantee for cases with unbounded hypothesis classes, targets, and

noise models. The strength of the general result is demonstrated by applying

it to linear regression under the squared loss both for lasso and ridge regres-

sion, as well as for convex nonparametric least squares estimation, in each case

allowing one to obtain near-minimax upper bounds on the risk.

Next, cutting plane and alternating direction method of multipliers al-

gorithms are compared for training the max-affine least squares estimators;

estimators for which we provide explicit excess risk bounds. These techniques

are also extended for the partitioned convex formulation (which is shown to

enjoy optimal minimax rates). We also provide an empirical study of vari-

ous heuristics for solving the non-convex optimization problem underlying the

partitioned convex formulation.

A novel max-affine estimator is designed, which scales well for large sample

sizes and improves the generalization error of current techniques in many cases.

Its training time is proportional to the adaptively set model size, making it

computationally attractive for estimation problems where the target can be

efficiently approximated by max-affine functions.

Realistic convex regression applications are synthetized for the convex

stochastic programming framework such as an energy storage optimization

using a solar source with an Economy 7 tariff pricing model, as well as a

multi-product assembly problem of operating a beer brewery.
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Chapter 1

Introduction

This thesis considers theoretical and practical aspects of convex regression,

where the goal is to recover a hidden convex function from noisy measure-

ments. The discussion includes estimators that map the noisy sample to a

convex piecewise linear estimate with a guarantee that the error between the

estimate and the hidden convex target decreases as the number of observations

in the sample grows. As these methods are computationally too expensive for

practical use, their analysis is used for the design of a heuristic training algo-

rithm which is empirically evaluated in various applications.

1.1 Motivation

Convex (or equivalently concave) regression is a machine learning tool with

applications in econometrics, engineering, operations research, and possibly

more. Its usefulness was recognized early for describing economic relations by

imposing concave shape restrictions on utility functions (Afriat, 1967; Varian,

1982, 1984), but its further applications only arrived recently for geometric

programming modeling tasks (Magnani and Boyd, 2009; Hoburg and Abbeel,

2014), or stochastic programming planning problems (Cai, 2009; Hannah and

Dunson, 2011; Keshavarz, 2012; Nascimento and Powell, 2013; Cai and Judd,

2013; Hannah et al., 2014), although here the importance of convexity was

even discussed with the birth of dynamic programming (Bellman, 1957). The

computationally intense applications generate a demand for scalable, sample

efficient convex regression methods, which motivated this research to advance

theoretical understanding and to push practical methods forward.

1



1.2 Contributions

To understand the theoretical aspects of convex regression, we developed an

excess risk upper bound (Theorem 3.2) for empirical risk minimization, which

extends concentration-based arguments (Pollard, 1990; Dudley, 1999; Györfi

et al., 2002; Bartlett et al., 2005) to regression settings with unbounded func-

tion classes and noise distributions. To fill this gap in the literature, alter-

native methods appeared recently (Lecué and Mendelson, 2013; Mendelson,

2014; Liang et al., 2015), which, unlike our technique, still have to pose var-

ious statistical assumptions and cannot provide near-minimax guarantees for

the entire class of sub-Gaussian regression problems (Section 3.3.2). The new

result (Theorem 3.2) also extends our previous work (Balázs et al., 2015, The-

orem 3.1) by supporting general loss functions, estimates and targets with

unbounded magnitude, data-dependent hypothesis classes, and improving the

expected value result to a probabilistic guarantee.

Combining our excess risk upper bound (Theorem 3.2) with our results

on the universal function approximation property of max-affine representa-

tions (Lemma 5.2), as shown in Balázs et al. (2015), we provide an analysis

for convex nonparametric least squares estimation (Chapter 5) over uniformly

Lipschitz convex functions, and construct a max-affine estimator with near-

minimax rate (Theorem 5.6). This result also serves as the motivation for

more practical max-affine training algorithms developed in Chapter 6. More-

over, we apply our excess risk result for linear (convex) regression settings and

provide upper bounds for widely used practical methods such as lasso (Theo-

rem 4.3) and ridge regression (Theorem 4.5), extending recent developments

(Mendelson, 2014; Hsu et al., 2014) and nearly proving a conjecture on the

excess risk rate of slope-bounded linear regression (Shamir, 2015). These new

results form the basis of Balázs et al. (2016a).

In order to show that our upper bounds are tight, we also provide excess

risk lower bounds for both linear (Theorem 4.1) and convex nonparametric

regression (Theorem 5.1) by constructing examples (Figures 4.1 and 5.1) and

extending the probabilistic density estimation lower bound of Yang and Bar-

2



ron (1999, Proposition 1) to the linear case (Theorem 3.1 and Appendix D)

following their discussion in Section 7 of their paper.

For the training of max-affine estimators with an excess risk guarantee,

we demonstrate the overfitting robustness (Section 6.1.4) of alternating direc-

tion methods of multipliers algorithms (Mazumder et al., 2015) compared to

cutting plane interior point methods (Lee et al., 2013; Balázs et al., 2015).

This observation is used to propose a cross-validation scheme for learning the

Lipschitz factor (Section 6.1.5). Furthermore, we also extend these train-

ing techniques to solve convex formulations of the partitioned max-affine least

squares problem (Section 6.1.1) which is used to verify the fitting quality of

heuristic max-affine training algorithms (Sections 6.2 and 8.3).

To reduce the size of max-affine representations and the computation time

for practical applications with large samples, we propose an adaptive max-

affine partitioning algorithm (Section 6.2.3) by combining the alternating min-

imization scheme of the least squares partitioning algorithm (Magnani and

Boyd, 2009) and the cell splitting technique of the convex adaptive parti-

tioning method (Hannah and Dunson, 2013). While discussing the design of

these heuristic approaches (Section 6.2), we compare them empirically to some

max-affine estimators that come with excess risk guarantees on a few selected

synthetic problems (6.1), and conclude that adaptively tuning the complexity

of max-affine representations can significantly improve the generalization error

compared to uniform regularization techniques (Figures 6.6, 6.7 and 6.8).

We also provide an extensive empirical comparison of max-affine estima-

tors on randomly synthetized convex regression problems (Section 7.1), and on

a few applications (Sections 7.2 and 7.3) such as constructing so-called posyn-

omial approximations for geometric programming tasks (Section 7.2.2) for air-

craft wing design problems (Hoburg and Abbeel, 2014), and solving convex

stochastic programming models by the combination of convex regression and

approximate dynamic programming techniques (Hannah and Dunson, 2011;

Hannah et al., 2014) for energy storage optimization (Sections 2.3.1 and 7.3.1)

and factory operation (Sections 2.3.2 and 7.3.2). The results show that our

max-affine partitioning algorithm improves model size adaptation and reduces

3



the generalization error compared to alternative max-affine training algorithms

in many cases.

The adaptive max-affine partitioning algorithm in Section 6.2.3 and the

stochastic programming results in Sections 2.3 and 7.3 are also presented in

Balázs et al. (2016b).

1.3 Overview

The dissertation starts with motivating the convex regression setting by re-

viewing some applications in Chapter 2, continues with theoretical analysis in

Chapters 3 to 5, considers computational aspects in Chapters 6 and 7, and

concludes with future research directions in Chapter 8.

The theoretical analysis covers excess risk lower and upper bounds for em-

pirical risk minimization in Chapter 3, which are applied to linear regression

in Chapter 4, including lasso and ridge regression, as well as to convex non-

parametric least squares estimation in Chapter 5.

Computation of max-affine estimators with a convex training algorithm

and a theoretical guarantee on the excess risk is considered in Section 6.1,

where cutting plane and alternating direction method of multipliers techniques

are used to address the large-scale quadratic programming tasks that arise.

Section 6.2 covers more scalable heuristic methods which train compact max-

affine representations with reduced size, including the design of a novel state-

of-the-art algorithm.

The developed training methods are evaluated in Chapter 7, comparing

max-affine estimators and a few non-convex methods such as adaptive regres-

sion splines and support vector regression on both synthetic and real data sets.

Section 7.3 also compares max-affine estimators as a building block of approx-

imate dynamic programming algorithms in realistic stochastic programming

planning tasks such as solar energy production with storage management, and

the operation of a beer brewery.
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Chapter 2

Applications

In many practical settings, the regression function is known to comply with

some shape restrictions, such as monotonicity, convexity, in addition to satis-

fying some smoothness conditions (continuity, Lipschitzness, differentiability).

In this section, we shortly review a few applications, where the convex (or

equivalently concave) shape restriction applies.

2.1 Fitting concave utility functions

In economics, demand, production curves, and utility functions representing

rational preferences are usually modeled by concave, nondecreasing functions

(Afriat, 1967; Varian, 1982, 1984). In finance, portfolio selection and option

pricing models often have concavity restrictions (Merton, 1992), where the

nondecreasing property might be dropped in order to represent risk aversion.

As a concrete example, consider the estimation of average weekly wages

based on years of education and experience (Ramsey and Schafer, 2002, Chap-

ter 10, Exercise 29). A real data set, containing weekly wages in 1987 of

25,632 males between the age of 18 and 70 who worked in the US full-time

along with their years of education and experience, can be accessed as ex1029

in the Sleuth2 package of the R programming language. The average weekly

wages of this data set are depicted in Figure 2.1 (the 845 wage averages were

computed over a grid with cell size 1 × 1 years, and 13 worst outliers were

dropped). To produce the figure, the transformation x 7→ 1.2x was applied

to the education variable as suggested by Hannah and Dunson (2013, Sec-
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Figure 2.1: Average weekly wage data show a concave quadratic shape based
on years of experience and education.

tion 6.2). From the figure, it is apparent that a concave shape restriction

is reasonable constraint for this estimation problem (at least, after the said

transformation).

2.2 Convex approximation

In engineering applications, one often has to solve an optimization problem of

the form

min
x
f(x) s.t. gj(x) ≤ bj, j = 1, . . . ,m , (2.1)

where f : Rd → R is an objective function, gj : R
d → R are constraint func-

tions and bj ∈ R are some constants. When the functions f and gj have a

“nice” form (for example convex) and can be evaluated in “reasonable time”,

(2.1) can be solved in poly(m, d) time. When this is not the case, but the

functions are “close” to the desired “nice” form, (2.1) can be approximated

by replacing each function with its respective convex approximation. A sim-

ilar scenario occurs when f , g1, . . . , gm are convex or close, but some of the

6



functions f , g1, . . . , gm are unknown and only noisy observations on them are

available.

As an example, consider an aircraft design optimization problem presented

by Hoburg and Abbeel (2014, Section VI). As it turns out, this problem

“almost” takes the form of a generalized geometric program (GGP), where

x ∈ R
d
>0, the functions f : R

d
>0 → R>0, gj : R

d
>0 → R>0 are generalized

posynomials and bj = 1 for all j = 1, . . . ,m. (A posynomial is a polynomial

of positive variables with positive coefficients. A generalized posynomial is

a function of positive variables that can be obtained from posynomials us-

ing addition, multiplication, positive (fractional) powers, and maximum. We

omit further details here and point the reader to Boyd et al. (2007) for a tu-

torial on GGP.) An important property of generalized posynomials is that if

x 7→ f(x) is a generalized posynomial function then z 7→ ln f(ez) is convex,

where ez denotes a vector obtained by the coordinatewise exponentiation of

z. This suggests to solve GGP problems using interior point algorithms after

transforming (2.1) to a nonlinear convex optimization problem as

min
z

ln f(ez) s.t. ln gj(e
z) ≤ 0, j = 1, . . . ,m . (2.2)

If the transformed objective z 7→ ln f(ez) or some constraint function z 7→
ln gj(e

z) is not convex, but can be approximated by a convex function with

“good” accuracy, then convex regression techniques can be used to replace it

with its convex approximation.

For the aircraft design example, such a constraint is the drag breakdown

inequality (Hoburg and Abbeel, 2014, Equation 38), given as

drag coefficient ≥ induced drag + CDp
(CL, Re, τ) + nonwing form drag ,

where the profile drag coefficient CDp
(·, ·, ·), depending on the lift coefficient CL,

the Reynolds number Re and the wing thickness ratio τ , is not a generalized

posynomial, but “close”. This is shown by Figure 2.2 for a fixed τ , where the

profile drag coefficient was calculated by the XFOIL simulator (Drela, 1989)

as it has no analytical form. Notice that after a logarithmic transformation

as needed for (2.2), the profile drag coefficient CDp
for a fixed τ can be well-
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Figure 2.2: The logarithm of the profile drag coefficient (CDp
) shows an almost

convex shape in terms of the logarithm of the Reynolds number (Re) and the
logarithm of the lift coefficient (CL) for a fixed thickness ratio (τ = 10%).

approximated by a convex function to get an approximation of (2.2), which is

solvable efficiently by an interior point algorithm.

2.3 Convex stochastic programming

Our next example are T -stage stochastic programming (SP) problems (see

for example Ruszczyński and Shapiro, 2003; Shapiro et al., 2009; Birge and

Louveaux, 2011), where the goal is to find a decision x∗
1 solving the following

problem:

x∗
1 ∈ argmin

x1∈X1(x0,z0)

J1(x1) ,

Jt(xt)
.
= E

[
ct(xt,Z t) + min

xt+1∈Xt+1(xt,Zt)
Jt+1(xt+1)

]
,

(2.3)

with t = 1, . . . , T , x0, z0 some fixed initial values, XT+1(xT ,ZT )
.
= {⊥},

JT+1(⊥) .= 0, and Z1, . . . ,ZT a sequence of independent random variables.

We point out that (2.3) includes discrete-time finite-horizon Markov de-
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cision process formulations1 (see for example Puterman, 1994; Sutton, 1998;

Bertsekas, 2005; Szepesvári, 2010; Powell, 2011) after the state and action vari-

ables are combined into a single decision variable xt, and then reexpressing

the environment dynamics and action constraints by the decision constraint

functions Xt.

In this text, we consider only a subset of SP problems (2.3) when the cost

functions c1, . . . , cT are convex in xt, and graph(Xt(xt,Z t)) are convex sets

for all t = 1, . . . , T and all Z t realizations, where the graph of a set-valued

function C : X→ 2Y is graph(C)
.
=
{
(x,y) ∈ X×Y : y ∈ C(x)

}
. In this case,

Lemma E.2 (presented in the appendix) implies that the cost-to-go functions

Jt(·) are convex for all t = 1, . . . , T , hence we call these SP problems convex.

Numerous specific operations research problems take the form of a con-

vex SP problem including reservoir capacity management (Ruszczyński and

Shapiro, 2003, Example 2), the news vendor problem (Shapiro et al., 2009,

Section 1.2.1), multi-product assembly problems (Shapiro et al., 2009, Sec-

tion 1.3.3), portfolio selection (Shapiro et al., 2009, Section 1.4.2), the farmer’s

problem (Birge and Louveaux, 2011, Section 1.1a) and more. We provide two

specific examples in Sections 2.3.1 and 2.3.2.

One approach to deal with such SP problems (2.3) is to use approximate dy-

namic programming (ADP) methods (see for example Bertsekas, 2005; Powell,

2011; Birge and Louveaux, 2011; Hannah et al., 2014), which construct nested

approximations to the cost-to-go functions,

Ĵt(xt) ≈ E

[
ct(xt,Z t) + min

xt+1∈Xt+1(xt,Zt)
Ĵt+1(xt+1)

]
≈ Jt(xt) ,

backwards for t = T, T − 1, . . . , 1. When the cost-to-go functions Jt(·) are

convex (as for the examples below), imposing a convexity constraint for these

estimation problems is indeed justified, providing an important application

for convex regression. We will evaluate this approach with multiple convex

regression procedures later in Section 7.3.

1Also, SP problems can arbitrarily approximate infinite-horizon discounted problems by
using time-dependent cost functions and a large enough T .
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2.3.1 Energy storage optimization

Inspired by a similar example of Jiang and Powell (2015, Section 7.3), we

consider an energy storage optimization problem where a renewable energy

company makes a decision every hour and plans for two days (T = 48). The

company owns an energy storage with state s which can be charged with

maximum rate rc, using the company’s renewable energy source (E) or the

electrical grid that the company can buy electricity from while paying the

retail price (p). The goal is to maximize profit by selling electricity to local

clients on retail price (p) according to their stochastic demand (D) or selling

it back to the electrical grid on wholesale price (w). Electricity can be sold

directly from the renewable energy source or from the battery with maximum

discharge rate rd. The energy flow control variables, fes, fed, feg, fsd, fsg, fgs,

are depicted on Figure 2.3.

Figure 2.3: Flow diagram of a convex energy storage problem. The storage
state is s, its maximum charge and discharge rates are rc and rd, the action
variables are fes, fed, feg, fsd, fsg, fgs, the expected retail and wholesale prices
are denoted by r, w, and E,D are the stochastic energy production and de-
mand, respectively.

The SP model (2.3) of the energy storage problem can be formulated by

setting xt
.
= [st fes,t fed,t feg,t fsd,t fsg,t fgs,t]

> ∈ R
7
≥0, and Z t

.
= [Et+1 Dt+1]

>.

The cost function is defined as

ct(xt,Z t)
.
= pt(fgs,t − fed,t − fsd,t)− wt(feg,t + fsg,t) ,
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for all t = 1, . . . , T , and the dynamics and control constraints are described by

Xt+1(xt,Z t)
.
=








s
fes
fed
feg
fsd
fsg
fgs




∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s = st + fes,t − fsd,t − fsg,t + fgs,t,
fes, fed, feg, fsd, fsg, fgs ≥ 0,

0 ≤ s+ fes − fsd − fsg + fgs ≤ smax,
fes + fgs ≤ rc, fsd + fsg ≤ rd,

fes + fed + feg ≤ Et+1, fed + fsd ≤ Dt+1





,

for all t = 0, . . . , T − 1. To initialize the system, define x0
.
= [s0 0 . . . 0]>

and z0
.
= [d1 e1]

>, where s1 = s0 ∈ [0, smax] is the current storage level and

d1, e1 ≥ 0 are the currently observed demand and energy production, respec-

tively. This example is further specialized in Section 7.3.1 using a solar energy

source and an Economy 7 tariff pricing model.

Notice that the cost function ct(xt,Z t) is linear in xt and the dynamics

constraint xt+1 ∈ Xt(xt,Z t) is polyhedral in (xt,xt+1) for every realization

of Z t, hence the problem is convex if the random variables Z1, . . . ,ZT are

independent.2

2.3.2 Beer brewery optimization

Inspired by Bisschop (2016, Chapter 17), we consider the multi-product as-

sembly problem of operating a beer brewery which makes a decision in every

two weeks and plans for about one year (48 weeks, T = 24). The factory has

to order ingredients (stratch source, yeast, hops) to produce two types of beers

(ale and lager) which have to be fermented (for at least 2 weeks for ale and

6 weeks for lager) before selling. The states and actions of this process are

illustrated on Figure 2.4.

The decision variable xt is a 16 dimensional vector with the following com-

2The independence requirement on {(Et, Dt) : t = 1, . . . , T} could be relaxed by intro-
ducing extra variables in xt.
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The constraint on the dynamics of the system is given by

Xt+1(xt,Z t)
.
=








Fxt +Rur +Bub − Sus
ur
ub
us




∣∣∣∣∣∣∣∣

ur,ub ≥ 0, us ∈ [0,Dt+1],
Fxt +Bub − Sus ≥ 0,
Fxt +Rur +Bub ≤ kt+1




,

for all t = 1, . . . , T − 1, where Z t = Dt+1 ∈ R
2
≥0 is the stochastic beer

demand, kt+1 ∈ (R≥0 ∪ {∞})9 is the capacity bound, and the fermentation

matrix F ∈ {0, 1}9×16, the brewing matrix B ∈ R
9×2, the storage loading

matrix R ∈ {0, 1}9×3 and the selling matrix S ∈ {0, 1}9×2 are defined as

F
.
=




I3 03×13

06×3

0 0
1 1

02×4

04×2

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 1

06×7




,

B
.
=




−ba−bl
1 0
0 0
0 1
03×2



,

R
.
=

[
I3

06×3

]
,

S
.
=




03×2

0 0
1 0
0 0
0 0
0 0
0 1




,

where ba, bl ∈ R
3
≥0 are the required ingredients for brewing ales and lagers,

respectively. To initialize the system, define x0
.
= [s0 0 . . . 0]> and z0

.
= d1,

where s1 = s0 ≥ 0 is the current factory state and d1 ≥ 0 is the currently ob-

served beer demand. Further details for the parameter settings of this example

is given in Section 7.3.2.

Similar to the previous example above, the cost function is linear and the

dynamics constraint is polyhedral, hence the problem is convex if the demand

random variables Z1, . . . ,ZT are independent.
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Chapter 3

Regression analysis

In this chapter we discuss the sample complexity of empirical risk minimiza-

tion (ERM) estimators and analyze the worst-case excess risk convergence

rate for general regression settings (not just the convex case). We will apply

these results to linear least squares estimation (Chapter 4), and to convex

nonparametric regression (Chapter 5).

For the discussion, we need covering numbers and entropies, hence we

provide the definitions here. Let (P , ψ) be a nonempty metric space and

ε ≥ 0. The set {p1, . . . , pk} ⊆ P is called an (internal) ε-cover of P under ψ

if the ψ-balls of centers {p1, . . . , pk} and radius ε cover P : for any q ∈ P ,
mini=1,...,k ψ(q, pi) ≤ ε. The ε-covering number of P under ψ, Nψ(ε,P), is the
cardinality of the ε-cover with the fewest elements:

Nψ(ε,P) .= inf
{
k ∈ N

∣∣∣ ∃p1, . . . , pk ∈ P : sup
q∈P

min
i=1,...,k

ψ(q, pi) ≤ ε
}

with inf ∅ =∞. Further, the ε-entropy of P under ψ is defined as the logarithm

of the covering number, Hψ(ε,P) .
= lnNψ(ε,P). For convenience, we define

these quantities for the empty set to be zero, that is Nψ(ε, ∅) .= Hψ(ε, ∅) .= 0.

When the function class F ⊆ {X → R}, over some set X, is square inte-

grable with respect to some distribution PX, that is supf∈F ‖f‖PX
< ∞ holds

with ‖f‖2PX

.
=
∫
X
f 2(x) dPX(x), we use a shorthand notation to denote the

ε-entropy of F under ‖·‖PX
as HPX

(ε,F) .= H‖·‖P
X

(ε,F).
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3.1 The regression problem

We start with the formal definition of a regression problem, which is given by

a probability distribution µ over some set X×R with some domain X being a

separable Hilbert space,1 a loss function ` : R × R → [0,∞), and a reference

class F∗ ⊆ {X→ R}.
Then the task of a regression estimator is to produce a function f : X→ R

based on a training sample Dn .
= {(X 1,Y1), . . . , (X n,Yn)} of n ∈ N pairs

(X i,Yi) ∈ X×R independently sampled from µ (in short Dn ∼ µn), such that

the prediction error, `(Y , f(X )), is “small” on a new instance (X ,Y) ∼ µ with

respect to `.

The risk of function f : X → R is defined as Rµ(f)
.
= E[`(Y , f(X ))]

and the cost of using a fixed function f is measured by the excess risk,

Lµ(f, f∗)
.
= Rµ(f)−Rµ(f∗), where f∗

.
= fµ,F∗ ∈ argminf∈F∗

Rµ(f) is a ref-

erence function.2 When f∗ also satisfies f∗ ∈ argminf∈{X→R}Rµ(f), it is

also called the regression function. Clearly, the two concepts coincide when

F∗ = {X→ R}. Also notice that not every f ∈ F∗ is a reference function.

An estimator hn is defined as a sequence of mappings h
.
= (hn)n∈N, where

hn : (X × R)n → {X → R} maps the data Dn into an estimate fn
.
= hn(Dn).

These estimates lie within some hypothesis class Fn ⊆ {X → R}, that is

fn ∈ Fn, where Fn might depend on the random sample Dn.
Finally, for a regression problem specified by (`, µ,F∗), the goal of an esti-

mator hn is to minimize the excess risk,

Lµ
(
hn(Dn), f∗

)
,

with high-probability or in expectation, where the random event is induced by

the random sample Dn and the possible randomness of the estimator hn.

1 All sets and functions considered are assumed to be measurable as necessary. To
simplify the presentation, we omit these conditions by noting here that all the measurability
issues can be overcome using standard techniques as we work with separable Hilbert spaces
(see for example, Dudley, 1999, Chapter 5).

2A straightforward limiting argument can be used if the minimums are not attained.
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3.2 Lower bounds on minimax rates

To measure the performance of an estimator, we need a baseline, for which we

use minimax rates. Formally, for a family of regression problems, represented

by a set of probability distributions M = {µ |µ is a distribution on X×R}, a
loss function `, and a reference class F∗, we define the minimax rate as

Rn(M, `,F∗)
.
= sup

{
rn

∣∣∣ inf
hn

sup
µ∈M

P
{
Lµ
(
hn(Dn), fµ,F∗

)
≥ rn

}
≥ 1/2

}
,

where the infimum over hn scans through all estimators mapping to {X→ R}.
We also say that an estimator has a near-minimax rate if it achieves the

minimax rate up to a polylogarithmic factor in the sample size n.

We only consider deriving lower bounds for the minimax rate with the

squared loss `sq(y, ŷ)
.
= |y − ŷ|2. For these settings, we use information the-

oretic developments based on Fano’s lemma and the Kullback-Leibler (KL)

divergence (Yang and Barron, 1999). This is well-suited for squared loss re-

gression settings with Gaussian noise, because the KL divergence of two Gaus-

sian random variables is equal to the squared distance between their means.

For a more thorough treatment of minimax lower bounds, we point to the work

of Guntuboyina (2011) or Chapter 2 of Tsybakov (2009).

The following result builds on a slightly modified version of the density

estimation lower bound of Yang and Barron (1999, Theorem 1), by making it

capable to handle linear settings as well. For this, we also use local entropies

(Yang and Barron, 1999, Section 7). For a (F , ψ) metric space, the ε∗-local

ε-entropy of F under ψ is defined by

H∗
ψ(ε, ε∗,F)

.
= sup

f∈F
Hψ

(
ε, {g ∈ F : ψ(f, g) ≤ ε∗}

)
,

and H∗
PX
(ε∗, ε,F) .

= H∗
‖·‖P

X

(ε∗, ε,F) for short. An important property of local

entropies is that they can be often upper bounded independently of the sample

size n for linear function classes as long as ε∗ and ε are kept on the same scale,

for example ε∗ ≈ ε ≈ 1/
√
n is used to prove Theorem 3.1a below.

Here, we present only the final result on the lower bound (Theorem 3.1).

The full proof is given in Appendix D to isolate some notation, which we do

not use elsewhere.
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Theorem 3.1. Let PX be a distribution on X, and for some σ > 0 define

M
σ
gs(F∗, PX)

.
=
{
µ
∣∣∣ (X ,Y) ∼ µ, Y = f∗(X ) + Z,

f∗ ∈ F∗, X ∼ PX, Z ∼ N
(
0, σ2

)}
.

Then for all distribution classes M ⊇M
σ
gs(F∗, PX), function sets F ⊇ F∗, and

v > 0, c2 ≥ c1 > 0, the following claims hold:

(a) If for some c0 > 0, v ln(c1/ε) ≤ HPX
(ε,F∗), H∗

PX
(ε∗, ε,F∗) ≤ v ln(c2ε∗/ε)

for all ε∗ ∈ (0, c0] and ε ∈ (0, c2ε∗], then Rn(M, `sq,F) ≥ 2σ2v/(c22 n)

holds for all n ≥ (4σ4 v/c22)max
{
32 · 24/v/c21, 1/c20

}
.

(b) If for some ε0 > 0, c1ε
−v ≤ HPX

(ε,F∗) ≤ c2ε
−v for all ε ∈ (0, ε0], then

for all n ∈ N, we have Rn(M, `sq,F) ≥ c∗ n
−2/(v+2) with

c∗
.
=
(
σ2c21/18

)1/v
max

{
1, ε20, 2σ

2
(
2σ2c22

)1/v
/ε20
}−1

.

Proof. See Appendix D (page 125). �

We will apply Theorem 3.1a for linear settings (Section 4.1), and Theo-

rem 3.1b to derive lower bounds for convex nonparametric regression problems

(Section 5.2).

3.3 Upper bounds for ERM estimators

Now we state our general excess risk upper bound for empirical risk minimiza-

tion (ERM) estimators. An estimate is called an α-approximate β-penalized

ERM estimate with respect to the function class Fn, in short (α, β)-ERM(Fn),
when its estimate fn ∈ Fn satisfies

Rn(fn) + β(fn) ≤ inf
f∈Fn

Rn(f) + β(f) + α , (3.1)

whereRn(f)
.
= 1

n

∑n
i=1 `(Yi, f(X i)) is the empirical risk of function f : X→ R,

β : Fn → R≥0 is a penalty function and α ≥ 0 is an error term. All α, β, and

Fn might depend on the sample Dn. When the penalty function is zero (that

is β ≡ 0), we simply call the estimator α-ERM(Fn).
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Our result will require a few conditions to hold on the random variables

Z(f, g) .
= `(Y , f(X )) − `(Y , g(X )), f, g : X → R, which are related to the

excess risk through Lµ(f, f∗) = E[Z(f, f∗)]. Similarly, we use the empirical

excess risk defined as Ln(f, f∗)
.
= Rn(f) − Rn(f∗) = 1

n

∑n
i=1Zi(f, f∗), where

Zi(f, f∗) .= `(Yi, f(X i))− `(Yi, f∗(X i)).

We also need sub-Gaussian random variables (see for example, Buldygin

and Kozachenko, 2000, Section 1.1). A real-valued random variableW is called

B-sub-Gaussian (or sub-Gaussian withB) when sups∈R E
[
es(W−EW)−s2B2/2

]
≤ 1

holds with some B ≥ 0. To simplify the calculations and extend the sub-

Gaussian property to random vectors W ∈ R
d, we use the Ψ2 Orlicz norm

defined as ‖W‖Ψ2

.
= inf{B > 0 : Ψ2(W/B) ≤ 1}, where Ψ2(x)

.
= e‖x‖

2 − 1

and inf ∅ .
= ∞. The norm ‖·‖Ψ2

provides an alternative characterization of

sub-Gaussian random variables, because W ∈ R is sub-Gaussian if and only if

‖W‖Ψ2
<∞.3 Furthermore, if ‖W‖Ψ2

<∞, then the coordinates of W ∈ R
d

are sub-Gaussian random variables. Sub-Gaussian random vectors and the

properties of the norm ‖·‖Ψ2
are reviewed in Appendix A.

To state our main result, we use the scaled cumulant-generating function

of a random variable W , which is defined as Ct[W ]
.
= (1/t) lnE

[
exp(tW)

]
for

any t > 0. Its properties are reviewed in Appendix B.

Finally, we are ready to state the promised result:

Theorem 3.2. Consider a regression problem (`, µ,F∗), an arbitrary reference

function f∗ in F∗, and an i.i.d. training sample Dn ∼ µn. Let Fn ⊆ {X→ R}
be a hypothesis class which might depend on the data Dn, and let fn be an

(α, β)-ERM(Fn) estimate (3.1). Furthermore, let F̂n,F ⊆ {X → R} be

two function classes, where F̂n might depend on Dn, but F might depend on

the sample only through its size n. Suppose that F̂n and F enclose Fn as

P
{
F̂n ⊆ Fn ⊆ F

}
≥ 1− γ/2 with some γ ∈ (0, 1), and the approximation er-

ror of F̂n to f∗ is bounded as P
{
inff∈F̂n

Ln(f, f∗) + β(f) + α ≤ B∗
}
≥ 1− γ/4

with some B∗ ∈ R. Finally, suppose that the following conditions are satisfied

for some metric ψ : F × F → R≥0 and F(r0) .= {f ∈ F : Lµ(f, f∗) > r0/n}
3The sub-Gaussian parameter and ‖·‖Ψ2

are not equal. For example, a centered Gaussian

random variable W ∼ N (0, σ2) is σ-sub-Gaussian, but only satisfies E
[
e3W

2/(8σ2)
]
= 2.
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with some r0 ≥ 0:

(C1) there exists G : X × R → R≥0 such that Z(f, g) ≤ G(X ,Y)ψ(f, g) a.s.

for all f, g ∈ F(r0),

(C2) there exists S ∈ (0,∞] such that the random variable Z(f, g) is sub-

Gaussian with Sψ(f, g) for all f, g ∈ F(r0),

(C3) there exists r ∈ (0, 1] and θ > 0 such that

sup
f∈F(r0)

E

[
exp

(
(r/θ)E[Z(f, f∗)]− (1/θ)Z(f, f∗)

)]
≤ 1 .

Then for all ε ≥ δ > 0, with probability at least 1− γ,

Lµ(fn, f∗) ≤
1

r

(
θHψ(ε,F)

n
+ 16S

∫ ε

δ

max

{√Hψ(z,F)
n

,
4S

θδ
z2
}
dz

+ 16δC 1
θ

[
G(X ,Y)

]
+B∗

)
+
r0 + 4θ ln(4/γ)

n
.

Furthermore, the result holds without Condition (C2) (that is when S = ∞)

with ε = δ defining ∞ · 0 = 0.

The proof of Theorem 3.2 is presented in Section 3.3.3.

We point out that if f∗ ∈ F̂n, the approximation term is upper bounded

by zero, that is inff∈F̂n
Ln(f, f∗) ≤ 0 a.s., and then Theorem 3.2 is an exact

oracle inequality. Otherwise, when f∗ 6∈ F̂n, Theorem 3.2 becomes an inex-

act oracle inequality. We use exact oracle inequalities to prove ERM upper

bounds for linear regression problems (Chapter 4), and inexact ones for convex

nonparametric cases (Chapter 5).

Notice that Conditions (C1) and (C2) are immediately satisfied when the

loss function ` is Lipschitz andX is bounded. Furthermore, Condition (C1) is a

generalization of the usual Lipschitz condition of the loss ` (see for example the

2nd condition in Section 5.2 of Bartlett et al. 2005), which allows Theorem 3.2

to deliver excess risk upper bounds for the (non-Lipschitz) squared loss over an

(unbounded) sub-Gaussian range (support of Y and the range of the functions

in the hypothesis class). For Condition (C3), we provide a detailed analysis

below in Section 3.3.1.
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The entropy integral in Theorem 3.2 is presented only for completeness, but

later we use only δ = ε and ignore Condition (C2). This integral can be used

for nonparametric settings to prove near-minimax bounds for ERM estimators

over infinite dimensional function spaces as long as the integral converges (as

δ → 0), which happens only up to a few dimensions d, where X ⊆ R
d. We

discuss this in more detail for convex nonparametric least squares regression

over convex, uniformly Lipschitz functions in Section 5.1, where the entropy

integral converges for d ∈ {1, 2, 3}, and diverges for d = 4 with a logarithmic

rate, which is still enough to prove a near-minimax rate. For d > 4, the

divergence is too fast and ERM is not able to deliver the near-minimax rate.

Finally, we mention that an upper bound on the expected excess risk

E[Lµ(fn, f∗)] can be obtained by integration. Transforming the probabilistic

bound P
{
Lµ(fn, f∗) ≤ b+ 4θ ln(4/γ)

n

}
≥ 1−γ with some b ≥ 0 and γ = 4e−n t/(4θ),

we get

E[Lµ(fn, f∗)]− b ≤ E
[
max{0, Lµ(fn, f∗)− b}

]

=

∫ ∞

0

P{Lµ(fn, f∗) > b+ t} dt

≤
∫ ∞

0

4e−n t/(4θ) dt =
16 θ

n
.

(3.2)

As the O(θ/n) rate cannot be exceeded by Theorem 3.2, our probabilistic

results also imply the same rate for the expected excess risk.

3.3.1 Analysis of the moment condition

Here we provide an analysis for Condition (C3) of Theorem 3.2. For this,

consider a regression problem (µ, `,F∗) with a reference function f∗ in F∗, a

function class F ⊆ {X→ R}, and some r0 ≥ 0, as needed for Theorem 3.2.

Then, we say that (µ, `,F(r0), f∗) satisfies the Bernstein condition (Bartlett

and Mendelson, 2006, Definition 2.6) if there exists some C > 0 such that for

all f ∈ F(r0), we have

E
[
W2

f

]
≤ C E

[
Z(f, f∗)

]
, Wf

.
= f(X )− f∗(X ) . (3.3)

When, next to the Bernstein condition (3.3) the loss function ` has a “sub-

Gaussian Lipschitz” property, Condition (C3) is satisfied as detailed by Lemma 3.3.
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For this, we also use the kurtosis about the origin of a random variable W
which is defined as K0[W ]

.
= E[W4]/E[W2]2.

Lemma 3.3. Let r0 > 0 and suppose that the Bernstein condition (3.3) holds

for (µ, `,F(r0), f∗) with some C > 0. Further, suppose supf∈F ‖Wf‖Ψ2
≤ B

holds with some B > 0, and |Z(f, f∗)| ≤ L(f,X ,Y)|Wf | a.s. for all f ∈ F(r0)
with some L : F × X× R→ R≥0 such that supf∈F ‖L(f,X ,Y)‖Ψ2

≤ R <∞.

Then (µ, `,F(r0), f∗) also satisfies Condition (C3) for any r ∈ (0, 1) with

θ ≥ 2tQnmax
{

3R2C
(t−1)(1−r) , 4BR

}
, t > 1, and

Qn
.
= ln

(
3min

{
sup

f∈F(r0)

K0[Wf ]
1
4 ,
nBR

r0

})
.

Proof. Let Zf .
= Z(f, f∗) and fix any f ∈ F(r0). Then by the definition of

F(r0), the Cauchy-Schwartz inequality, and Lemma A.2b for k = 1, we get

r0
n
≤ E[Zf ] ≤ E

[
|L(f,X ,Y)Wf |

]
≤ E

[
L2(f,X ,Y)

] 1
2 E
[
W2

f

] 1
2 ≤ RE

[
W2

f

] 1
2 ,

which implies E
[
W2

f

]
≥
(
r0/(nR)

)2
. Combining this with Lemma A.2b for

k = 2, we obtain 4
√
K0[Wf ] ≤ 4E

[
W4

f

]1/2(
r0/(nR)

)−2 ≤ (3nBR/r0)
2. Then,

by using Lemma A.5 with ln(4
√

K0[Wf ]) ≤ 2Qn, we get for all 2 ≤ k ∈ N

that

E
[
|Zf |k

]
≤ E

[
|L(f,X ,Y)Wf |k

]
≤ (k!/2)

(
12QnE

[
W2

f

]
R2
)(
8QnBR

)k−2
.

Hence, the conditions of Bernstein’s lemma (Lemma A.4) hold for Zf and

θ ≥ 8tQnBR with t > 1, so by (1− 8QnBR/θ)
−1 ≤ t/(t− 1), we obtain

E
[
e(r/θ)E[Zf ]−(1/θ)Zf

]
= e(r−1)E[Zf ]/θ E

[
e(E[Zf ]−Zf )/θ

]

≤ exp
(r − 1

θ
E[Zf ] +

6tQnR
2

(t− 1)θ2
E[W2

f ]
)

≤ exp

(
E[Zf ]
θ

(
r − 1 +

6tQnR
2C

(t− 1)θ

))
≤ 1 ,

where in the last step we applied the Bernstein condition (3.3) and the bound

θ ≥ 6tQnR2C
(t−1)(1−r) . �

In the following paragraphs, we present a few important examples which

satisfy the requirements of Lemma 3.3.
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Lipschitz losses

First, observe that if supf∈F ‖Wf‖Ψ2
≤ B, then the Bernstein condition (3.3)

always holds for any F(r0) with r0 > 0 and C = nB2/r0, as by Lemma A.2b

with k = 1, and 1 < (n/r0)Lµ(f, f∗) for any f ∈ F(r0), we have

E
[
W2

f

]
≤ B2 <

nB2

r0
Lµ(f, f∗) =

nB2

r0
E[Z(f, f∗)] .

Now consider a loss function `, which is R-Lipschitz in its second argument

satisfying |`(y, ŷ1)−`(y, ŷ2)| ≤ R |ŷ1− ŷ2| for all y, ŷ1, ŷ2 ∈ R. Then, we clearly

have Z(f, f∗) ≤ R |Wf | for any f ∈ F , so the requirements of Lemma 3.3 hold

and we obtain the following result:

Lemma 3.4. Let r0 > 0, supf∈F ‖Wf‖Ψ2
≤ B, and the loss function ` be

R-Lipschitz in its second argument. Then (µ, `,F(r0), f∗) satisfies Condi-

tion (C3) for any r ∈ (0, 1), t > 1, and θ ≥ 2tQnmax
{ 3n(BR)2

r0(t−1)(1−r) , 4BR
}
.

Proof. Based on the discussion above, apply Lemma 3.3 with C = nB2/r0 and

L(f,X ,Y) = R. �

For a successful combination of Theorem 3.2 and Lemma 3.4, one should

choose r0 to balance θ
n
Hψ(ε,F) = Θ

(
Qn(BR)2

r0
Hψ(ε,F)

)
with r0

n
, which is sat-

isfied if r0 = Θ
(
BR
√
nQnHψ(ε,F)

)
. This way the bound of Theorem 3.2

scales with BR
√
QnHψ(ε,F)/n, which cannot be improved in general.

For example, consider the estimation problem of a constant regression func-

tion f∗ in Fconst
.
=
{
f | ∃c ∈ [0, 1] : f(x) = c, ∀x ∈ X} on the unit domain

X = [0, 1] sampled uniformly X ∼ U(X) using a standard Gaussian noise

model Y = f∗(X ) + ξ with ξ ∼ N (0, 1). Then, for the absolute value norm

ψ(f, g) = |f(x) − g(x)|, we have Condition (C1) by G(X ,Y) = R. This is

matching for the 1-Lipschitz loss `(y, ŷ) = |y − ŷ|, for which Lemma 3.4 pro-

vides Condition (C3). Hence, as Hψ(ε,Fconst) = O
(
ln(1/ε)

)
by Lemma C.1

and Qn = Θ(1) for constant functions Fconst, the bound of Theorem 3.2 with

ε = δ = Θ(n−1/2) and r0 = Θ
(
BR
√
n
)
scales by n−1/2 up to logarithmic fac-

tors. This rate is near-minimax, as this problem is equivalent to estimating

the mean of a Gaussian random variable from i.i.d. samples for which the n−1/2

error guarantee is the best possible.
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Strongly-convex losses

Now consider a loss function `, which is η-strongly convex in its second argu-

ment, that is

`(y, λŷ1 + (1− λ)ŷ2) ≤ λ`(y, ŷ1) + (1− λ)`(y, ŷ2)−
ηλ(1− λ)

2
|ŷ1 − ŷ2|2

holds for all y, ŷ1, ŷ2 ∈ R and λ ∈ (0, 1). Then, if Rµ(f∗) ≤ Rµ

(
(f + f∗)/2

)

is satisfied for all f ∈ F(r0) with some r0 ≥ 0, the Bernstein condition (3.3)

holds with C = 4/η. To see this, proceed similarly to Bartlett et al. (2006,

Lemma 7) by using the strong convexity property of ` to get for all f ∈ F that

E
[
W2

f

]
≤ (4/η)

(
Rµ(f) +Rµ(f∗)− 2Rµ

(
(f + f∗)/2

))

≤ (4/η)
(
Rµ(f)−Rµ(f∗)

)
= (4/η)E

[
Z(f, f∗)

]
.

(3.4)

Furthermore, notice that if f∗ ∈ F ⊆ F∗ and F is midpoint convex, that is

f, g ∈ F implies (f + g)/2 ∈ F , or when f∗ is a regression function, then the

definition of f∗ implies Rµ(f∗) ≤ Rµ

(
(f + f∗)/2

)
for all f ∈ F , which makes

the Bernstein condition valid with C = 4/η for any r0 ≥ 0.

When the loss ` is also Lipschitz, we have Lemma 3.4 with C and r0

which are independent of n. However, Lipschitzness and strong convexity

hold simultaneously only for bounded problems when both the range of Y
and the estimators are bounded. Next, we review such an example by the

cross-entropy loss, and relax the Lipschitz requirement for the squared loss.

Cross-entropy loss

For regression problems with Y ∈ (0, 1) a.s., a reasonable choice might be the

cross-entropy loss defined as `ce(y, ŷ)
.
= y ln(y/ŷ)+(1−y) ln

(
(1−y)/(1−ŷ)

)
, for

y, ŷ ∈ (0, 1). Fix λ ∈ (0, 1/2) and consider estimates in F ⊆ {X→ [λ, 1− λ]},
which are λ-away from the boundary of (0, 1).

By having ∂z`ce(y, z) = z−y
z(1−z) and ∂zz`ce(y, z) = y

z2
+ 1−y

(1−z)2 , we get that

`ce over (0, 1) × [λ, 1 − λ] is 1/λ-Lipschitz and (1 − λ)−2-strongly convex in

its second argument. Hence, the conditions of Lemma 3.3 are satisfied with

B = 1− λ, C = 4(1− λ)2 due to (3.4), and L(X ,Y) = 1/λ.
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Squared loss

Finally, we consider the squared loss ` = `sq, which is 2-strongly convex, hence

(3.4) provides the Bernstein condition (3.3) with C = 2 when either F is

midpoint convex, or if f∗ is a regression function. Furthermore, the Bernstein

condition also holds with C = 1 if F is a closed, convex class (Lecué and

Mendelson, 2013, Theorem 6.1).

Because the squared loss is not uniformly Lipschitz over R, we have to ex-

ploit the relaxed Lispchitz condition of Lemma 3.3 for sub-Gaussian problems,

where supf∈F ‖Wf‖Ψ2
≤ B and ‖Y − f∗(X )‖Ψ2

≤ σ hold for some B, σ ≥ 0.

Then, write Z(f, f∗) =
(
Wf−2(Y−f∗(X )

)
Wf for all f ∈ F , and observe that

|Z(f, f∗)| ≤ L(f,X ,Y)|Wf | holds with L(f,X ,Y) =
∣∣Wf − 2

(
Y − f∗(X )

)∣∣.
Further, notice that Lemma A.2d implies supf∈F ‖L(f,X ,Y)‖Ψ2

≤ B + 2σ.

Putting these together, we obtain the following result:

Lemma 3.5. Consider a regression problem, for which either f∗ is a regression

function and F is an arbitrary class, or f∗ ∈ F and F is midpoint convex.

Further, suppose that supf∈F ‖Wf‖Ψ2
≤ B and ‖Y − f∗(X )‖Ψ2

≤ σ hold with

some B, σ ≥ 0. Then (µ, `sq,F(r0), f∗) satisfies Condition (C3) for any r0 > 0

and r = 1/2 with θ ≥ 240Qnmax{B, σ}2.

Proof. Based on the discussion above, simply apply Lemma 3.3 with C = 2,

t = 10, and R = 3max{B, σ}. �

Later, we use Lemma 3.5 for Theorem 3.2 to derive near-minimax rates

by an exact oracle inequality for linear regression settings (Lemma 4.2) such

as lasso and ridge regression, and by an inexact oracle inequality for convex

nonparametric sieved least squares estimation (Theorem 5.6).

3.3.2 Connection to the literature

Here we relate our main regression result (Theorem 3.2) to the literature.

For bounded problems, when both the hypothesis class F and the response

Y are uniformly bounded, the most common approach is to localize and bound

the Rademacher complexity around the optimum f∗. Such results, including
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Bartlett et al. (2005, Section 5.2) and Koltchinskii (2011, Chapter 5), pro-

vide exact oracle inequalities for strongly convex, uniformly Lipschitz losses

(including the squared loss over a bounded domain) by using the Bernstein

condition (3.3) with r0 = 0, and uniform boundedness on F and Y . Our re-

sult, Theorem 3.2 combined with Lemma 3.3, relaxes the uniform Lipschitz

property of the loss function, and extends these developments to sub-Gaussian

classes F (that is when Wf is sub-Gaussian) and Y .
We mention that there are extensions to sub-Gaussian noise (that is when

Y − f∗(X ) is sub-Gaussian) for uniformly bounded hypothesis classes F and

regression function f∗. Consider the following random-fixed design decompo-

sition for the squared loss and an ERM(F) estimate fn,

Lµ(fn, f∗) = ‖fn − f∗‖2PX
≤ sup

f∈F

{
‖f − f∗‖2PX

− 2 ‖f − f∗‖2Pn

}
+ 2 ‖fn − f∗‖2Pn

,

where ‖g‖2Pn

.
= 1

n

∑n
i=1 g

2(X i) is the empirical L2-norm based on the sam-

ple Dn. Then the random design part (left subexpression) could be bounded

by Theorem 3.3 of Bartlett et al. (2005), while the fixed design part (right)

could be handled by Theorem 10.11 of van de Geer (2000). Alternatively,

Corollary 1 of Györfi and Wegkamp (2008) could be also used to derive an

inexact oracle inequality (when the bound depends on the approximation er-

ror of F to the regression function and its coefficient is larger than 1) for the

expected excess risk E[Lµ(fn, f∗)] using the squared loss with sub-Gaussian

noise and uniformly bounded F . However, these results cannot handle un-

bounded classes F , data-dependent classes (they use F̂n = Fn = F), and do

not provide exact oracle inequalities.

There has been a lot of emphasis lately to develop exact oracle inequalities

without the uniform boundedness restriction on F , especially for linear regres-

sion settings. Lecué and Mendelson (2013) introduced an alternative technique

to local Rademacher complexities and proved exact oracle inequalities with the

squared loss for sub-Gaussian classes and noise. Recently, Liang et al. (2015)

modified the local Rademacher complexity results, still for the squared loss,

making them capable to even reach beyond the sub-Gaussian case, including

some heavy-tailed distributions. However, these results depend on a uniform
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bound on the kurtosis, supf∈F K0[Wf ] ≤ K < ∞. This dependence is ei-

ther ignored (Lecué and Mendelson, 2013, Theorem A) or linear (Liang et al.,

2015, Theorem 7). As K can grow arbitrarily large, even for bounded prob-

lems, these results cannot provide near-minimax rates for all sub-Gaussian (or

even bounded) problems for which K might scale with the sample size n lin-

early (see the example in Section 4.1.2). Compared to these results, the bound

of Theorem 3.2 grows only logarithmically in K (see θ in Lemma 3.3), which

allows us to eliminate this dependence altogether by suffering a ln(n) penalty

for the excess risk bound in the worst case.

We also mention the work of Mendelson (2014, Theorem 2.2), which proves

an upper bound on the squared deviation of an ERM estimate fn using the

squared loss ` = `sq and f∗, that is E
[
W2

fn

]
with Wfn

.
= fn(X ) − f∗(X ),

instead of the excess risk Lµ(fn, f∗). However, as pointed out by Shamir (2015,

Section 1), the squared deviation can be arbitrarily smaller than the excess

risk.

Finally, we mention that Theorem 3.2 is a significant extension of our

previous result (Balázs et al., 2015, Theorem 3.1) by supporting many loss

functions beyond the squared loss, sub-Gaussian settings for unbounded, data-

dependent hypothesis classes, and improving the expected value result to a

probabilistic guarantee.

3.3.3 Proof of the upper bound

In this section, we finally prove our main result, Theorem 3.2, our upper bound

on the excess risk of ERM estimators.

The strategy is to first decompose the excess risk to “supremal” and ap-

proximation error terms. Then we reduce the former to a general concen-

tration inequality (Lemma 3.6) and upper bound the latter using the ERM

property (3.1).

First, use the union bound with P{F̂n ⊆ Fn ⊆ F} ≥ 1 − γ/2, and
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Lµ(f, f∗) ≤ r0/n for all f ∈ F \ F(r0), to get

P

{
Lµ(fn, f∗) > b+

B∗
r

+
r0
n

+
ln(4/γ)

t

}

≤ γ

2
+ P

{
Lµ(fn, f∗) I{F̂n ⊆ Fn ⊆ F(r0)} > b+

B∗
r

+
r0
n

+
ln(4/γ)

t

}
,

(3.5)

for any b, t > 0. Next, recall the definition of the empirical excess risk

Ln(f, f∗)
.
= Rn(f) − Rn(f∗), and notice that if F̂n ⊆ Fn ⊆ F(r0) holds,

we can use the (α, β)-ERM(Fn) property (3.1) with any nonnegative penalty

function β ≥ 0 to decompose the excess risk as

Lµ(fn, f∗) = Lµ(fn, f∗)−
1

r
Ln(fn, f∗) +

1

r
Ln(fn, f∗)

≤ 1

r
sup
f∈Fn

{
rLµ(f, f∗)− Ln(f, f∗)

}
+

1

r
inf
f∈Fn

Ln(f, f∗) + β(f) + α

≤ 1

r
sup

f∈F(r0)

Γr(f,Dn) +
1

r

(
inf
f∈F̂n

Ln(f, f∗) + β(f) + α
)
,

where Γr(f,Dn) .= rLµ(f, f∗)−Ln(f, f∗). Combining this with (3.5), using the

union bound with P
{
inff∈F̂n

Ln(f, f∗)+β(f)+α > B∗
}
≤ γ/4, and Markov’s

inequality, we obtain

P

{
Lµ(fn, f∗) > b+

B∗
r

+
r0
n

+
ln(4/γ)

t

}

≤ 3γ

4
+ P

{1
r

sup
f∈F(r0)

Γr(f,Dn) > b+
r0
n

+
ln(4/γ)

t

}

≤ 3γ

4
+
γ

4
E

[
e(t/r) supf∈F(r0)

Γr(f,Dn)
]
e−tb .

(3.6)

Then notice that we get a bound on the excess risk Lµ(fn, f∗) with probability

at least 1− γ for any b and t which satisfies Ct

[
e(1/r) supf∈F(r0)

Γr(f,Dn)
]
≤ b. To

find such values b and t, we use the following concentration inequality:

Lemma 3.6. Let (P , ψ) be a separable metric space,4 W be a random variable

on some set W, and Γ : P ×W → R be a function. Furthermore, define the

function Λ(p, w)
.
= Γ(p, w) − E[Γ(p,W)] for all p ∈ P, w ∈ W, and suppose

there exist τ : W→ [0,∞), S ≥ 0 and θ > 0 satisfying the following conditions

for all p, q ∈ P:
4In a separable metric space, we have a countable dense bases. So the suprema over P

could be redefined over a countable set, keeping the resulting random variable measurable.
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(a) Λ(p,W)− Λ(q,W) ≤ ψ(p, q)τ(W) a.s.,

(b) Λ(p,W)− Λ(q,W) is centered sub-Gaussian with Sψ(p, q),

(c) E
[
exp

(
Γ(p,W)/θ

)]
≤ 1.

Then, for all 0 < δ ≤ ε and t ∈ (0, 1/(2θ)],

Ct

[
sup
p∈P

Γ(p,W )

]
≤ θHψ(ε,P) + 16S

∫ ε

δ

max
{√
Hψ(z,P), 8tSz2/δ

}
dz

+ 8δC2t[τ(W )] .

Furthermore, the result holds without Condition (b) (that is S = ∞) with

ε = δ defining ∞ · 0 = 0.

The proof of Lemma 3.6 is postponed to Section 3.3.4.

Recall that Rµ(f) − Rµ(f∗) = Lµ(f, f∗) = E[Z(f, f∗)]. Using this, Γr

can be rewritten for any f as Γr(f,Dn) = rE
[
Z(f, f∗)

]
− 1

n

∑n
i=1Zi(f, f∗).

Then, define Λ(f,Dn) .
= Γr(f,Dn) − E[Γr(f,Dn)], and observe that for all

f, g ∈ F(r0), we have Λ(f,Dn) = E
[
Z(f, f∗)

]
− 1

n

∑n
i=1Zi(f, f∗), and

Λ(f,Dn)− Λ(g,Dn) = E
[
Z(f, g)

]
− 1

n

n∑

i=1

Zi(f, g) . (3.7)

Hence, Condition (C2) implies that Λ is the sum of n independent and centered

(Sψ(f, g))-sub-Gaussian random variables. Then by Lemma A.1f, Λ is also

centered sub-Gaussian with Sψ(p, q)/
√
n, and so Λ satisfies Lemma 3.6b for

P .
= F(r0) and W .

= Dn with S/
√
n.

Next, using Condition (C1), we can upper bound (3.7) by τ(Dn)ψ(f, g),
where τ(Dn) .

= 1
n

∑n
i=1

{
E[G(X i,Yi)] + G(X i,Yi)

}
. Then Lemma 3.6a also

holds for Λ.

Finally, using the i.i.d. property of the sample Dn and Condition (C3), we

have for any f ∈ F(r0) that

E

[
eΓr(f,Dn)/(θ/n)

]
=

n∏

i=1

E
[
e(r/θ)E[Z(f,f∗)]−(1/θ)Zi(f,f∗)

]
≤ 1 , (3.8)

so Γr satisfies Lemma 3.6c with θ/n.
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Hence, all the requirements of Lemma 3.6 hold, and with t
.
= n/(2θ) we

obtain

Ct

[
sup

f∈F(r0)

Γr(f,Dn)
]
≤ θHψ(ε,F)

n
+ 16S

∫ ε

δ

max

{√Hψ(z,F)
n

,
4S

θδ
z2
}
dz

+ 16 δC1/θ

[
G(X ,Y)

]
,

where we also used Hψ(z,F(r0)) ≤ Hψ(z,F) and

Cn/θ

[
τ(Dn)

]
= E

[
G(X ,Y)

]
+ Cn/θ

[ n∑

i=1

G(X i,Yi)
]
≤ 2C1/θ

[
G(X ,Y)

]
,

due to E[G(X ,Y)] ≤ C1/θ[G(X ,Y)], Lemma B.2 and the i.i.d. property of the

sample Dn. Combining this with (3.6), we get the claim of Theorem 3.2.

3.3.4 Suprema of empirical processes

In this section, we prove Lemma 3.6, which we used in Section 3.3.3 as the main

tool to prove Theorem 3.2. For this, we start with finite class lemmas, then

adapt the classical chaining argument (for example, Pollard, 1990, Section 3;

van de Geer, 2000, Chapter 3; Boucheron et al., 2012, Section 13.1) to our

setting, and finally put these together to prove Lemma 3.6.

First, consider the well-known inequality about the maximum of finitely

many sub-Gaussian random variables (for example, Cesa-Bianchi and Lugosi,

1999, Lemma 7; Boucheron et al., 2012, Theorem 2.5), adapted to the cumulant

generating function.

Lemma 3.7. Let P be a finite, nonempty set (that is 1 ≤ |P| <∞), σ ∈ [0,∞)

and Wp be centered σ-sub-Gaussian random variables for all p ∈ P. Then

Ct

[
maxp∈PWp

]
≤ max

{
σ
√

2 ln |P|, tσ2
}
for all t > 0.

Proof. Let s
.
=
√

2 ln |P|/σ. Then bounding maxp∈P xp by ln
∑

p∈P e
xp , and

using the sub-Gaussian condition on Wp, we have

Cs

[
max
p∈P
Wp

]
=

1

s
lnE

[
expmax

p∈P
sWp

]

≤ 1

s
ln
∑

p∈P
E
[
esWp

]
≤ ln |P|

s
+
sσ2

2
= σ

√
2 ln |P| .
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Then the claim follows for t ≤ s by monotonicity, Ct[·] ≤ Cs[·]. Otherwise,

for t > s, we have t2σ2/2 > ln |P|, hence by a similar derivation we obtain

Ct

[
maxp∈PWp

]
≤ (1/t) ln |P|+ tσ2/2 ≤ tσ2. �

When a moment condition, similar to Condition (C3), is satisfied for Wp,

Lemma 3.7 can be strengthened by the following result (for further explana-

tion, see the discussion after the lemma).

Lemma 3.8. Let P be a finite, nonempty set (that is 1 ≤ |P| < ∞), and

Wp be random variables such that maxp∈P E
[
exp(Wp/θ)

]
≤ 1 holds for some

θ > 0. Then Ct

[
maxp∈PWp

]
≤ θ ln |P| for all t ∈ (0, 1/θ].

Proof. Bound maxp∈P xp by ln
∑

p∈P e
xp , and use the moment condition on

Wp, to obtain

C1/θ

[
max
p∈P
Wp

]
= θ lnE

[
expmax

p∈P
Wp/θ

]
≤ θ ln

∑

p∈P
E
[
eWp/θ

]
≤ θ ln(|P|) .

Then the claim follows for t ≤ 1/θ by the monotonicity of s 7→ Cs[W ]. �

To see that Lemma 3.8 is indeed stronger than Lemma 3.7 for our pur-

poses, notice that they scale differently in their parameters θ and σ when

applied to averages of independent random variables. If W (1)
p , . . . ,W (n)

p are

n ∈ N independent centered σ-sub-Gaussian random variables, their aver-

age, 1
n

∑n
i=1W

(i)
p is a (σ/

√
n)-sub-Gaussian random variable (Lemma A.1f).

On the other hand, it is straightforward to show (as we did by (3.8)) that if

W (1)
p , . . . ,W (n)

p are n independent (not necessarily centered) random variables

with E
[
exp(W (i)

p /θ)
]
≤ 1, then their average satisfies the moment condition

with θ/n. This speed-up, from σ√
n
ln |P| to θ

n
ln |P|, will allow us to derive

better bounds when the moment condition (C3) holds.

We now extend Lemma 3.7 to infinite classes by adapting the chaining ar-

gument to the cumulant-generating function. The proof goes along the devel-

opment of Lemma 3.4 of Pollard (1990), replacing the packing sets by internal

covering numbers (for better numerical constants) and the sample continuity

condition by uniform Lipschitzness (for truncating the integral at δ). The re-

sult is also similar to Proposition 3 of Cesa-Bianchi and Lugosi (1999), which
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works for the sub-Gaussian case, and uses external covering numbers with a

slightly different chaining argument.

Lemma 3.9. Let (P , ψ) be a separable metric space, W be a random variable

on some set W, and Λ : P ×W → R be a function. Furthermore, suppose

there exist τ : W → [0,∞), β ≥ 0, p0 ∈ P and S ≥ 0 for which the following

conditions hold for all p, q ∈ P:

(a) Λ(p,W)− Λ(q,W) ≤ ψ(p, q)τ(W) a.s.,

(b) Λ(p,W)− Λ(q,W) is centered sub-Gaussian with Sψ(p, q),

(c) β ≥ supp∈P ψ(p, p0).

Then, for all δ ∈ (0, β/2] and t > 0,

Ct

[
sup
p∈P

Λ(p,W)

]
≤ 4S

∫ β/2

δ

max
{√

2Hψ(z,P), 7tSz2/δ
}
dz

+ 4δC2t[τ(W)] + C(β/δ)t

[
Λ(p0,W)

]
.

Additionally, the result holds without Condition (b) (that is when S =∞) with

δ = β/2 defining ∞ · 0 = 0.

Proof. If there exists z ∈ (δ, β/2] such that Nψ(z,P) =∞, then the integral is

infinite and so the claim is trivial. The claim is also trivial for β = 0 or S = 0.

So assume that 0 < β, S ∈ (0,∞) and Nψ(z,P) <∞ for all z ∈ (δ, β/2].

Let m ∈ N be such that 2δ ≤ β/2m < 4δ. Now let P0 = {p0}, ε0 = β,

εk = β/2k and Pk be an εk-cover of P under ψ having minimal cardinality for all

k ∈ {1, . . . ,m}. Notice that P0 is an ε0-cover by Condition (c). Furthermore,

let γk = 2tβ/εm−k = 2t2m−k and qk(p) ∈ argminq∈Pk
ψ(p, q) be the closest

element to p ∈ P in Pk for all k = 0, . . . ,m.

Fix some k ∈ {0, . . . ,m − 1} and p ∈ Pk+1. When k = 0, we have

ψ(p, qk(p)) = ψ(p, p0) ≤ β = ε0, while for k > 0, the definition of Pk im-

plies that ψ(p, qk(p)) ≤ εk. So by Condition (b), Λ(p,W) − Λ(qk(p),W) is a

centered εkS-sub-Gaussian random variable. Combining this with Lemma 3.7,

using Cγ[Z1+Z2] ≤ C2γ[Z1]+C2γ[Z2], which holds for any γ > 0 and random
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variables Z1,Z2, we can chain maximal inequalities for all k = 0, . . . ,m− 1 as

Cγk+1

[
max
p∈Pk+1

Λ(p,W)

]

= Cγk+1

[
max
p∈Pk+1

{
Λ(qk(p),W) + Λ(p,W)− Λ(qk(p),W )

}]

≤ Cγk

[
max
p∈Pk

Λ(p,W)

]
+ Cγk

[
max
p∈Pk+1

{
Λ(p,W)− Λ(qk(p),W)

}]

≤ Cγk

[
max
p∈Pk

Λ(p,W)

]
+max

{
εkS
√

2 ln |Pk+1|, γkε2kS2
}

= Cγk

[
max
p∈Pk

Λ(p,W)

]
+ εkSmax

{√
2 lnNψ(εk+1,P), γkεkS

}
.

(3.9)

Using Condition (a) and γm = 2t, we further have

Ct

[
sup
p∈P

Λ(p,W)

]

= Ct

[
sup
p∈P

{
Λ
(
qm(p),W

)
+ Λ(p,W)− Λ

(
qm(p),W

)}]

≤ C2t

[
max
p∈Pm

Λ(p,W)

]
+ C2t

[
sup
p∈P

{
Λ(p,W)− Λ

(
qm(p),W

)}]

≤ Cγm

[
max
p∈Pm

Λ(p,W)

]
+

(
sup
p∈P

ψ
(
p, qm(p)

))
C2t

[
τ(W)

]
.

(3.10)

By ψ(p, qm(p)) ≤ εm < 4δ, the second term can be bounded by 4δC2t[τ(W)].

To bound the first term, we use (3.9) repeatedly with k = m− 1,m− 2, . . . , 0,

γ0 = 2tβ/εm ≤ (β/δ)t and γkεk = 8tε2k+1/εm ≤ (4t/δ)ε2k+1 to get

Ct

[
sup
p∈P

Λ(p,W)

]
< S

m−1∑

k=0

εkmax
{√

2 lnNψ(εk+1,P), (4tS/δ)ε2k+1

}

+ 4δC2t[τ(W)] + C(β/δ)t[Λ(p0,W)] .

Now notice that (β3/2) 2−3(k+1) = (12/7)
∫ β 2−(k+1)

β 2−(k+2) z
2 dz, and the nondecreas-

ing property of covering numbers implies

εkmax
{√

2 lnNψ
(
εk+1,P

)
, (4tS/δ)ε2k+1

}

= 4
β

2k+2
max

{√
2 lnNψ

(
β/2k+1,P

)
, (4tS/δ)

(
β/2k+1

)2}

≤ 4

∫ β/2k+1

β/2k+2

max
{√

2 lnNψ
(
z,P

)
, (7tS/δ)z2

}
dz ,
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for all k = 0, . . . ,m− 1. Combining this with δ ≤ β/2m+1 proves the claim for

all δ ∈ (0, β/2] and S ∈ (0,∞).

Finally notice that for δ = β/2 (that is m = 0), we use only (3.10) and

ignore Condition (b) altogether, hence justifying the 0 · ∞ = 0 convention for

the S =∞ case. �

Now we extend the improved finite class lemma (Lemma 3.8) to infinite

classes and prove Lemma 3.6. The idea behind the proof is to apply Lemma 3.8

in the first step of the chain and the previously developed chaining technique

(Lemma 3.9) to the remainder.

Proof of Lemma 3.6. Fix 0 < δ ≤ ε. When Nψ(z,P) =∞ for some z ∈ (δ, ε],

the claim is trivial, so we can assume that Nψ(z,P) <∞ for all z ∈ (δ, ε].

Let Pε be an ε-cover of P under ψ with minimal cardinality and define

qp ∈ argminq∈Pε
ψ(p, q), the closest element to p ∈ P in Pε. Due to Jensen’s

inequality and Condition (c), E[Γ(p,W)] ≤ 0 holds for all p ∈ P . Define5

q∗p ∈ argmaxq∈P:ψ(q,qp)≤ε E[Γ(q,W)]. Then, for all p ∈ P , due to ψ(qp, p) ≤ ε,

E[Γ(p,W)] ≤ E[Γ(q∗p,W)]. Further, ψ(p, q∗p) ≤ ψ(p, qp) + ψ(qp, q
∗
p) ≤ 2ε so

P∗
ε
.
=
{
q∗p : qp ∈ Pε

}
is a 2ε-cover of P under ψ with |P∗

ε | = |Pε| = Nψ(ε,P).
Now, for the first step of the chain, consider the following decomposition,

sup
p∈P

Γ(p,W)

= sup
p∈P

{
Γ(q∗p,W) + Γ(p,W)− Γ(q∗p,W)

}

≤ max
q∈P∗

ε

Γ(q,W) + sup
p∈P

{
Λ(p,W)− Λ(q∗p,W) + E

[
Γ(p,W)− Γ(q∗p,W)

]}

≤ max
q∈P∗

ε

Γ(q,W) + sup
p∈P

{
Λ(p,W)− Λ

(
q∗p,W

)}
. (3.11)

Then by Lemma 3.8 and Condition (c), we obtain for any 2t ≤ 1/θ that

C2t

[
max
q∈P∗

ε

Γ(q,W)

]
≤ θ ln |P∗

ε | = θ lnNψ(ε,P) . (3.12)

The rest of the proof is about to upper bound the scaled cumulant of the

supremal term on the right side of (3.11), C2t

[
supp∈P Λ(p,W) − Λ(q∗p,W)

]
,

using the chaining result of Lemma 3.9.

5If such q∗p element does not exist, one can choose another element which is arbitrary
close to the supremum and shrink the gap to zero at the end of the analysis.
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LetK .
=
{
(p, q∗p) : p ∈ P

}
⊂ P×P∗

ε and choose p0 ∈ argmaxp∈P∗
ε
E[Γ(p,W)]

so that p0 = q∗p0 (since ψ(qp0 , p0) ≤ ε), implying (p0, p0) ∈ K. Further, define

Λ̃
(
(p1, q

∗
1), w

) .
= Λ(p1, w)− Λ(q∗1, w) ,

ψ̃
(
(p1, q

∗
1), (p2, q

∗
2)
) .
= min

{
ψ(p1, p2) + ψ(q∗1, q

∗
2), 4ε

}
,

for all (p1, q
∗
1), (p2, q

∗
2) ∈ P × P∗

ε , and w ∈W. Now notice that (P × P∗
ε , ψ̃) is

a metric space6, and by (p0, p0) ∈ K, for any (p, q∗p) ∈ K we have that

Λ̃
(
(p0, p0),W

)
= 0 a.s. , ψ̃

(
(p0, p0), (p, q

∗
p)
)
≤ 4ε , (3.13)

hence, ψ̃ and (p0, p0) satisfies Lemma 3.9c with β = 4ε. Since ψ(p, q∗p) ≤ 2ε

holds for all (p, q∗p) ∈ K, Condition (b) implies for all (p, q∗p), (h, q
∗
h) ∈ K that

Λ̃
(
(p, q∗p),W

)
− Λ̃

(
(h, q∗h),W

)
= Λ(f,W)− Λ(h,W) + Λ(q∗h,W)− Λ(q∗p,W)

is sub-Gaussian with
(
ψ(p, h) + ψ(q∗h, q

∗
p)
)
S ,

Λ̃
(
(p, q∗p),W

)
− Λ̃

(
(h, q∗h),W

)
= Λ(p,W)− Λ(q∗p,W) + Λ(q∗h,W)− Λ(h,W)

is sub-Gaussian with
(
ψ(p, q∗p) + ψ(q∗h, h)

)
S ≤ 4εS ,

hence, Λ̃ and ψ̃ satisfies Lemma 3.9b with S. Similarly, Condition (a) implies

that

Λ̃
(
(p, q∗p),W

)
− Λ̃

(
(h, q∗h),W

)
= Λ(p,W)− Λ(h,W) + Λ(q∗h,W)− Λ(q∗p,W)

≤
(
ψ(p, h) + ψ(q∗h, q

∗
p)
)
τ(W) a.s. ,

Λ̃
(
(p, q∗p),W

)
− Λ̃

(
(h, q∗h),W

)
= Λ(p,W)− Λ(q∗p,W) + Λ(q∗h,W)− Λ(h,W)

≤
(
ψ(p, q∗p) + ψ(q∗h, h)

)
τ(W) ≤ 4ε τ(W) a.s. ,

so Λ̃ and ψ̃ satisfies Lemma 3.9a with τ .

Then the requirements of Lemma 3.9 hold (using P ← K, Λ← Λ̃, ψ ← ψ̃,

p0 ← (p0, p0), β ← 4ε, δ ← 2δ), and by (3.13), C(ε/δ)t[Λ̃((p0, p0),W)] = 0 for

any t > 0, so we get

C2t

[
sup
p∈P

{
Λ(p,W)− Λ

(
q∗p,W

)}]
= C2t

[
sup
κ∈K

Λ̃(κ,W)

]

≤ 4S

∫ 2ε

2δ

max
{√

2 lnNψ̃(z,K), 4tSz2/δ
}
dz + 8δC4t[τ(W)] .

(3.14)

6To prove the triangle inequality, use min{a+b, c} ≤ min{a, c}+min{b, c} for a, b, c ≥ 0.
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It remains to bound the entropy of (K, ψ̃). For any z ∈ (2δ, 2ε], let Pz be a

z-cover of P under ψ with minimal cardinality and define Kz .
= Pz×P∗

ε . Then

Kz is an external z-cover of K in the metric space (P × P∗
ε , ψ̃), which means

that Kz might not be a subset of K, but for any κ ∈ K there exists κ̂ ∈ Kz
for which ψ̃(κ, κ̂) ≤ z. Then, as |Kz/2| = |Pz/2| · |P∗

ε | ≤ Nψ(z/2,P)2, using
the relation between internal and external covering numbers (Dudley, 1999,

Theorem 1.2.1), we get

√
2 lnNψ̃(z,K) ≤

√
2 ln |Kz/2| ≤ 2

√
lnNψ(z/2,P) . (3.15)

Then, applying Ct[·] to (3.11), Lemma B.1d, and plugging in (3.12),(3.14) and

(3.15), we get the claim of Lemma 3.6. �
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Chapter 4

Linear least squares regression

Here we provide an analysis for the so-called linear least squares regression

setting, which uses the squared loss (` = `sq) and considers ERM estimators

over affine hypothesis classes for sub-Gaussian regression problems defined as

M
B,σ,d
subgs(F∗)

.
=
{
µ
∣∣ (X ,Y) ∼ µ, X ∈ R

d, Y ∈ R,

‖X − EX‖Ψ2
≤ B, ‖Y − fµ,F∗(X )‖Ψ2 ≤ σ

}
,

with some sub-Gaussian parameters B, σ > 0, and an affine reference class

F∗ ⊆ Faff
.
= {x 7→ a>x+ b, x ∈ R

d}.
In this chapter, we use least squares estimators (LSEs), that is ERM esti-

mators (3.1) using the squared loss, over some hypothesis class within affine

functions Fn ⊆ Faff. These LSEs are compared to the best estimate in the

constrained class FL,paff

.
= {x 7→ a>x + b : ‖a‖p ≤ L} ⊂ Faff with some L > 0

and p ∈ {1, 2}, that is we set F∗
.
= FL,paff and so f∗ = fµ,FL,p

aff
.

As pointed out by Shamir (2015, Section 1), simultaneous scaling of the

bounds B and L by scaling the random variable X as cX in µ and the weights

of affine estimators a as a/c using some c > 0 does not change the problem,

so we can assume without loss of generality that B
.
= 1.

We point out that the linear regression setting is a special case of convex

regression (as affine estimates are convex) and includes nonlinear regression

scenarios using finite feature expansions. To see this, consider an estimation

problem of some d′ dimensional regression function over some domain X
′ ∈ R

d′

using data D′
n
.
= {(X ′

i,Yi) : i = 1, . . . , n} ⊆ (X′ × Y)n. The data set D′
n can be

transformed by a feature map Φ asDn .
= {(X i,Yi) : X i = Φ(X ′

i), i = 1, . . . , n},
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where the components of Φ : Rd′ → R
d are given as Φ(x′) = [φ1(x

′) . . . φd(x
′)]>

with some φj : R
d′ → R function for all j = 1, . . . , d, which reduces the non-

linear estimation problem to linear regression. However, to make the analysis

of this chapter work for these cases, the feature map Φ has to be indepen-

dent of the sample D′
n, which guarantees that the random elements (X i,Yi)

of Dn remain independent. Because of this, linear regression is often referred

as parametric regression emphasizing that the model parameter Φ is fixed and

not adaptive to the sample.

Notice that the estimates f ′
n(x

′)
.
= Φ(x′)>a over the original domain X

′

remain convex if φj is convex for all j = 1, . . . , d and the slope parameters

a = [a1 . . . ad]
> ∈ R

d of the linear estimates fn(x)
.
= x>a = f ′

n(x
′) defined

over the feature space X
.
= {x = Φ(x′) : x′ ∈ X

′} are restricted to be nonneg-

ative on coordinates j ∈ {1, . . . , d}, where the feature map φj is nonlinear. As

such constraint (similar to a ≥ 0) would barely decrease the entropy of the

class FL,paff , the bounds of this chapter are valid for convex parametric regression

settings as well.

Finally, it is known that some regularization is needed in order to en-

sure the finiteness of the excess risk for linear regression settings (Huang and

Szepesvári, 2014, Example 3.5). We address this by considering two regular-

ization schemes, lasso (Section 4.2.1) and ridge regression (Section 4.2.2), both

are being widely used in practice.

4.1 Lower bound on the minimax rate

First, we present two examples to derive a lower bound on the minimax rate

for sub-Gaussian linear regression problems M1,σ,d
subgs(FL,paff ). Both examples, pre-

sented in the following sections, describe realizable settings when the regres-

sion function lies within the hypothesis class FL,paff . The combination of these

examples, (4.1) and (4.2), provides the following result:

Theorem 4.1. For all n ≥ 57 · 24/dd3σ2/L2,

Rn

(
M

1,σ,d
subgs(FL,paff ), `sq,FL,paff

)
≥ max{L2/4, (2/9)dσ2}

n
.
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Theorem 4.1 is comparable to Theorem 1 of Shamir (2015) which is valid for

σ-bounded noise settings (so slightly different than the unbounded Gaussian

example in Section 4.1.1), expected excess risk (so being weaker than our

high-probability lower bound), and any sample size n, but requires an extra

condition as L ≥ 2σ.

4.1.1 Gaussian example

Let X ∼ PX be a d-dimensional, centered random variable with indepen-

dent Gaussian coordinates having variance B̂2 .
= 1/(4d) > 0, so we have

E
[
XX

>] = B̂2Id and ‖X‖Ψ2
≤ 1. Consider the set of Gaussian problems

M
σ
gs(FL, PX)

)
as for Theorem 3.1 with FL,plin

.
= {x 7→ a>x : ‖a‖p ≤ L} ⊂ FL,paff

and f∗ ∈ FL,plin . Then, notice that Mσ
gs(FL,plin , PX) ⊂M

1,σ,d
subgs(FL,paff ).

For any f, g ∈ Faff, represented by f(x)
.
= a>

f x and g(x)
.
= a>

g x, we have

‖f − g‖PX
= E

[
|f(X )− g(X )|2

]1/2

= E
[
(af − ag)

>
XX

>(af − ag)
]1/2

= B̂ ‖af − ag‖ ,

which implies thatHPX
(ε,FL,plin ) = H2

(
ε/B̂,P

)
with P .

= {a ∈ R
d : ‖a‖p ≤ L}.

Similarly, ‖f‖PX
≤ ε∗ holds if and only if ‖af‖ ≤ ε∗/B̂. Hence, by Lemma C.1

and ‖·‖ ≤ ‖·‖p, we get H∗
PX
(ε, ε∗,FL,paff ) = H∗

‖·‖(ε/B̂, ε∗/B̂,P) ≤ d ln(3ε∗/ε) for

all ε ∈ (0, 3ε∗] and ε∗ > 0. Further, by Lemma C.1 and ‖·‖p ≤
√
d ‖·‖, we

have d ln(d−1/2B̂L/ε) ≤ H‖·‖(ε/B̂,P) = HPX
(ε,FL,paff ) for all ε > 0. Then

by Theorem 3.1 (with c0 ← ∞, c1 ← d−1/2B̂L, c2 ← 3), we get for all

n ≥ 57 · 24/dd3 σ4/L2 that

Rn

(
M

σ
gs(FL,paff , PX), `sq,FL,paff

)
≥ 2d σ2

9n
. (4.1)

4.1.2 Bernoulli example

Let u ∈ R
d be an arbitrary unit vector such that ‖u‖1 = ‖u‖ = 1 holds, and

consider the following regression problem class:

M
L
bni

.
=
{
µ
∣∣ (X ,Y) ∼ µ, f∗(x) = a∗u

>x, a∗ ∈ {−L,L},

Y = f∗(X ), x0 = 0, x1 = u/
√
2,

P{X = x0} = 1− r, P{X = x1} = r, r ∈ (0, 1)
}
.
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As these problems are noiseless, ‖a∗u‖ = a∗ ‖u‖p = L by the choice of u,

‖X − EX‖2 ≤ ‖X‖2 ≤ 1/2 a.s. implies ‖X − EX‖Ψ2
≤ 1, and f∗ ∈ FL,paff , we

have M
L
bni ⊂M

1,σ,d
subgs(FL,paff ).

Clearly, as the problems in M
L
bni are noiseless, an optimal estimator can

fit f∗ perfectly when the sample contains both points x0 and x1. However,

having only x0 present in the sample would make any estimate fn ∈ FL,paff

choosing the value fn(x1) without any hint. So for this case, by the symmetry

of {−L,L}, the best estimate regarding the minimax error is fn = 0, as shown

on Figure 4.1.

Figure 4.1: Worst case Bernoulli example of estimating a linear function.
Without seeing the value of f∗ at x1, no estimate fn can decide between the
cases f∗ = f

(1)
∗ and f∗ = f

(2)
∗ . Then the best choice regarding the minimax

error is fn(x1) = fn(x0) = 0 and so fn = 0.

Hence, we can lower bound the excess risk for this example as

sup
µ∈ML

bni

Lµ(fn, f∗) ≥ sup
a∗∈{−L,L}

r∈(0,1)

r |(0− a∗u)>u|2 I{En} = sup
r∈(0,1)

r
L2

2
I{En} ,

where En denotes the event En
.
=
{
X 1 = · · · = X n = x0

}
. Then, by choosing

r
.
= 1− 2−1/n to satisfy P{En} = (1− r)n = 1/2, and using r ≥ 1/(2n) due to

Lemma F.1, we get

Rn

(
M

L
bni, `sq,FL,paff

)
≥ L2

4n
. (4.2)

Finally, we point out that ERM upper bounds scaling linearly with the

kurtosis bound supf∈F K0[Wf ] (including Theorem A of Lecué and Mendelson
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2013, and Theorem 7 of Liang et al. 2015) do not provide a near-minimax rate

for the class ML
bni. To see this, use Lemma F.1 to get

sup
f∈FL,p

aff

K0[Wf ] ≥ K0

[
0− a∗u>

X
]
=

r (a∗/
√
2)4

(
r (a∗/

√
2)2
)2 =

1

r
≥ n

ln 2
.

Hence, no result scaling polynomially as a function of supf∈F K0[Wf ] can de-

liver a near-minimax rate for these problems. Fortunately, the logarithmic

dependence on the kurtosis bound of Lemma 3.3 will allow us to derive near-

minimax ERM upper bounds using Theorem 3.2 for the entire sub-Gaussian

problem class M1,σ,d
subgs(FL,paff ).

4.2 Near-minimax upper bounds for LSEs

In this section we derive upper bounds on the excess risk for (α, β)-ERM(FL,paff )

estimators (3.1) on sub-Gaussian regression problemsM1,σ,d
subgs(FL,paff ) with squared

loss (` = `sq) using the uniformly L-Lipschitz affine class F∗ = FL,paff and the

reference function f∗ = fµ,FL,p
aff

. The result (Lemma 4.2) is applied to two prac-

tical scenarios, ERM with explicit Lipschitz constraint (lasso) in Section 4.2.1,

and ‖·‖2-penalized ERM(FL,paff ) estimation (ridge regression) in Section 4.2.2.

For the analysis, we only consider penalty functions β : Faff → R≥0, which

are independent of the estimate’s bias term, so satisfy ∂
∂b
β(x 7→ a>x+ b) = 0.

Now introduce the following linear function classes:

FL,p,µaff (t)
.
=
{
x 7→ a>(x− EX ) + b : ‖a‖p ≤ L, b− EY ∈ [−t, t]

}
,

FL,p,naff (t)
.
=
{
x 7→ a>(x−X ) + b : ‖a‖p ≤ L, b− Y ∈ [−t, t]

}
,

where t ∈ R≥0 ∪ {∞}, X .
= 1

n

∑n
i=1 X i and Y .

= 1
n

∑n
i=1 Yi. For convenience,

we also use FL,p,naff

.
= FL,p,naff (0). Observe that FL,p,naff (t) is a data-dependent

approximation to FL,p,µaff (t), and using the bias independence of the penalty

term β, we have

E[Y − a>
X ] = argmin

b∈R
E

[
|a>

X + b− Y|2 + β(x 7→ a>x+ b)
]
,

so f∗ = fµ,FL,p
aff

= fµ,FL,p,µ
aff (t) holds for any t ≥ 0. For a similar reason, an

(α, β)-ERM(FL,p,naff (t)) estimator is also (α, β)-ERM(FL,p,naff ) for any t ≥ 0.
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Because distribution µ is unknown, estimators cannot be represented by

the class FL,p,µaff (t), just by its data-dependent approximation FL,p,naff (t). How-

ever, as the quantities EX and EY are “well-approximated” by X and Y for

sub-Gaussian random variables X and Y , the function classes FL,p,µaff (t) and

FL,p,naff (t) are “close” with high-probability. More precisely, it is possible to

show (see the proof of Lemma 4.2) that P{F̂n ⊆ Fn ⊆ F} ≥ 1− γ/2 holds for

function classes F̂n .
= FL,p,µaff (0), Fn .

= FL,p,naff (tn), and F .
= FL,p,µaff (2tn), where

tn
.
= Θ

(
max{L, σ}

√
ln(1/γ)/n

)
.

Hence, our general regression result (Theorem 3.2) is applicable for the

function sets F̂n, Fn, F , and provides an upper bound for the (α, β)-ERM(Fn)
class which is satisfied by (α, β)-ERM(FL,p,naff ) estimates. For this, we still have

to show that Conditions (C1) and (C3) hold,1 for which we provide the details

by the following result:

Lemma 4.2. Consider any sub-Gaussian problem µ ∈ M
1,σ,d
subgs(FL,paff ) with the

squared loss (` = `sq), f∗ = fµ,FL,p
aff

, and an (α, β)-ERM(FL,p,naff ) estimate fn

with penalty term β : Faff → R≥0 satisfying ∂
∂b
β(x 7→ a>x + b) = 0 and

P
{
β(f∗) + α > B∗

}
≤ γ/4. Then for all γ > 0 and n ≥ d ln(1/γ), we have

with probability at least 1− γ that

Lµ(fn, f∗) = O

(
dθ

ln
(
n/(dγ)

)

n
+B∗

)
,

where θ = Ω
(
Qnmax{L, σ}2

)
and Qn = O(ln(n)) as defined for Lemma 3.3.

Proof. We prove the claim by applying Theorem 3.2 for the function classes

F̂n, Fn, and F as defined above, and using our previous observations that

f∗ ∈ F̂n and fn is also (α, β)-ERM(Fn).
To prove the required high-probability relationship of F̂n, Fn, and F , write

the optimal estimator as f∗(x) = a>
∗ (x − EX ) + EY with some a∗ ∈ R

d

satisfying ‖a∗‖p ≤ L. Next, apply Hölder’s inequality with ‖·‖q ≤ ‖·‖ for

q
.
= p/(1− p) ∈ {2,∞} to obtain

|Y − EY| =
∣∣Y − f∗(X ) + a>

∗ (X − EX )
∣∣

≤ |Y − f∗(X )|+ L‖X − EX‖ .
(4.3)

1Condition (C2) will be ignored by setting ε
.
= δ and S

.
=∞.
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Furthermore, by (4.3), Lemma A.2d and Lemma A.3, we also have
∥∥L‖X − EX‖+ |Y − EY|

∥∥
Ψ2
≤ 2L‖X − EX‖Ψ2 + ‖Y − f∗(X )‖Ψ2 ≤ t0 ,

(4.4)

with t0
.
= 3max{L, σ}

√
8d/n. Then, by the definition of F̂n,Fn,F and

Lemma A.2a with (4.4), we get for any γ > 0, and tn
.
= t0

√
ln(4/γ) that

P
{
F̂n ⊆ Fn ⊆ F

}
≥ 1− P

{
L‖X − EX‖+ |Y − EY| > tn

}

≥ 1− 2e−t
2
n/t

2
0 = 1− γ/2 .

Write f, f∗ ∈ F as f(x)
.
= a>(x− EX ) + b and f∗(x)

.
= a>

∗ (x− EX ) + b̂.

Observe that by Hölder’s inequality and ‖·‖q ≤ ‖·‖, we have

|Wf | = |f(X )− f∗(X )| = |(a− a∗)
>(X − EX )| ≤ 2L ‖X − EX‖ .

To verify Condition (C3), pick f ∈ F arbitrarily, and use (a+ b)2 ≤ 2a2 + 2b2

with Jensen’s inequality, to show that Wf is sub-Gaussian, that is

E
[
eW

2
f
/B2

n
]
≤ E

[
e8L

2‖X−EX‖2/B2
n
]
e8t

2
n/B

2
n ≤ 2 ,

with Bn
.
= 4max{L, tn}, where tn is set as given above for the definition of Fn.

Further, as f∗ ∈ F̂n ⊆ F and the function set F is convex, the requirements of

Lemma 3.5 are satisfied, and we get Condition (C3) with r0 = 6max{Bn, σ}2,
r = 1/2, and any θ ≥ 240Qnmax

{
Bn, σ}2, where Qn ∈ [ln 2, lnn] as defined

for Lemma 3.3.

Next, to show Condition (C1), write g ∈ F as g(x)
.
= â>(x − EX ) + b̂.

Using |Y − EY| ≤ L ‖X − EX‖ + |Y − f∗(X )| similar to (4.3), and Hölder’s

inequality with ‖·‖q ≤ ‖·‖ again, we obtain

Z(f, g) =
(
f(X )− g(X )

)(
f(X ) + g(X )− 2Y

)

=
(
(a+ â)>(X − EX ) + b+ b̂− 2Y

)(
(a− â)>(X − EX ) + b− b̂

)

≤
(
2L ‖X − EX‖+ 4tn + 2|Y − EY|

)2
ψ(f, g)

≤
(
3L ‖X − EX‖+ 4tn + 2|Y − f∗(X )|

)2
︸ ︷︷ ︸

.
=G(X ,Y)

ψ(f, g) ,

where ψ(f, g)
.
=

√
‖a− â‖2/(4L2) + |b− b̂|2/(4tn)2 is a metric on F . As

the radius of F under ψ is bounded by 5/4, that is supf∈F ψ(f, 0) ≤ 5/4,
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we have by Lemma C.1 that Hψ(ε,F) ≤ (d + 1) ln
(
4/ε
)
for all ε ∈ (0, 4].

Furthermore, as ‖G(X ,Y)‖Ψ2
≤ 11tn, Lemma B.4 implies C 1

θ

[
G(X ,Y)

]
≤ θ

for any θ ≥ (11tn)
2.

Finally, we can apply Theorem 3.2 with ε
.
= δ ignoring Condition (C2)

with S =∞, choosing δ
.
= d/n, to get with probability at least 1− γ that

Lµ(fn, f∗) ≤ 2

(
θHψ(ε,P)

n
+ 16εC 1

θ
[G(X ,Y)] + B∗

)
+
r0 + 4θ ln(4/γ)

n

≤ 2θ

n

(
(d+ 1) ln(4n/d) + 16d+ 1 + 2 ln(4/γ)

)
+ 2B∗ ,

which proves the claim with θ = Ω(Qn t
2
n) = Θ

(
Qnmax{L, σ}2

)
thanks to

n ≥ d ln(1/γ). �

4.2.1 The lasso

Here we specialize Lemma 4.2 to train an affine LSE with ‖·‖p-bounded slope

without using any penalty term (β
.
= 0). For p = 1, this technique is called

lasso (Tibshirani, 1996, 2011). The result is the following:

Theorem 4.3. Consider any sub-Gaussian problem µ ∈ M
1,σ,d
subgs(FL,paff ) with

the squared loss (` = `sq), F∗ = FL,paff , f∗ = fµ,FL,p
aff

, and an α-ERM(FL,p,naff )

estimate fn with any α having P
{
α = Ω

(
dmax{L, σ}2 ln(n/(dγ))/n

)}
≤ γ/4.2

Then for all γ > 0 and n ≥ d ln(1/γ), we have with probability at least 1 − γ
that

Lµ(fn, f∗) = O

(
dQnmax{L, σ}2 ln

(
n/(dγ)

)

n

)
,

where Qn = O(ln(n)) as defined for Lemma 3.3.

Proof. The claim follows directly from Lemma 4.2 by using the zero penalty

function β = 0 to obtain P{β(f∗) + α > B∗} = P{α > B∗} ≤ γ/4 for some

B∗ = Θ
(
dmax{L, σ}2 ln(n/(dγ))/n

)
.

�

Notice that Theorem 4.3 provides the O(ln(n)/n) rate for any regression

problem in M
1,σ,d
subgs(FL,paff ) regardless of the magnitude of the kurtosis bound

2For example, α = 1
n

(
1
n

∑n
i=1 |Yi − Y|2

)
works.
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supf∈FL,p
aff

K0[Wf ], which is not true for Theorem A of Lecué and Mendelson

(2013) applied to the linear class FL,paff (see Section 4.1.2 for an example).

Furthermore, for p = 2, the bound of Theorem 4.3 is comparable to the

conjecture of Shamir (2015) stating that ERM estimates achieve optimal ex-

pected excess risk up to logarithmic factors. Here, our bound is slightly weaker

than this by scaling with dmax{L, σ}2 instead of max{L2, dσ2}.

4.2.2 Ridge regression

Now we consider replacing the Lipschitz constraint to the quadratic penalty

βλ(x 7→ a>x + b)
.
= λ ‖a‖2, and consider the ridge regression (Hoerl and

Kennard, 1970) estimate fλn satisfying the (0, βλ)-ERM(Faff) property (3.1).

This can be computed in closed-form as fλn (x)
.
= a>

n (x−X ) + Y with

an
.
=
(
λId +

1

n

n∑

i=1

(X i−X )(X i−X )>
)−1( 1

n

n∑

i=1

(X i−X )(Yi−Y)
)
, (4.5)

where Id denotes the d× d identity matrix.

We only analyze estimate fλn for problems µ ∈ M
1,σ,d
subgs(Faff) for which the

reference function f∗ = fµ,Faff
, written as f∗(x)

.
= a>

∗ (x−EX ) +EY , satisfies
‖a∗‖ ≤ L for some L > 0. For such settings, we use λ

.
= λ0

4nL2

∑n
i=1 |Yi − Y|2

with some λ0 ∈ (0, 1], so Lemma F.2 with (4.5) bounds the Lipschitz factor of

the ridge regression estimate fλn as ‖an‖ ≤
√

1
4n

∑n
i=1 |Yi − Y|2/λ = L/

√
λ0.

Then we apply Lemma 4.2 with the common Lispchitz bound on fλn and f∗

given as max{‖an‖ , ‖a∗‖} ≤ L/
√
λ0, and obtain the following result:

Theorem 4.4. Consider any distribution µ ∈M
1,σ,d
subgs(Faff) such that ‖a∗‖ ≤ L,

the squared loss (` = `sq), F∗ = Faff, f∗ = fµ,Faff
, and a (0, βλ)-ERM(Faff)

estimate fn with λ = λ0
4nL2

∑n
i=1 |Yi − Y|2 and some λ0 ∈ (0, 1]. Then for all

γ > 0 and n ≥ d ln(1/γ), we have with probability at least 1− γ that

Lµ(fn, f∗) = O

((d ln(n)
n

max
{
L2/λ0, σ

2
}
+ λ0 max{L, σ}2

)
ln
(
n/(dγ)

))

= O
(
ln(n)max{L, σ}2 ln

(
n/(dγ)

)√
d/n

)
,

where λ0 =
√
d/n for the second result.
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Proof. In order to apply Lemma 4.2, we first need to upper bound βλ(f∗).

For this, set B∗
.
= λ0κ ln(8/γ) with any κ ≥ 16max{L, σ}2. Then, by using

βλ(f∗) ≤ λL2, Markov’s inequality, (a + b)2 ≤ 2a2 + 2b2, Jensen’s inequality

twice, |Y − EY|2 ≤ 2|Y − f∗(X )|2 + 2L2 ‖X − EX‖2 similar to (4.3), and the

Cauchy-Schwartz inequality, we get

P
{
βλ(f∗) > B∗

}
≤ P

{ 1

nκ

n∑

i=1

|Yi − Y|2 > ln(8/γ)
}

≤ γ

8
E

[
e

1
nκ

∑n
i=1 |Yi−Y|2

]
≤ γ

8
E

[
e

2
nκ

∑n
i=1{|Yi−EY|2+|Y−EY|2}

]

≤ γ

8
E

[
e

4
κ
|Y−EY|2

]
≤ γ

8
E

[
e

16
κ
|Y−f∗(X )|2

] 1
2
E

[
e

16L2

κ
‖X−EX‖2

] 1
2 ≤ γ

4
.

As βλ does not depend on the bias term of affine estimators we use Lemma 4.2

with Lipschitz bound max{‖a∗‖ , ‖an‖} ≤ L/
√
λ0, error term α = 0, and

P{βλ(f∗) > B∗} ≤ γ/4 to get with probability at least 1− γ that

Lµ(fn, f∗) = O

(
dθ

ln
(
n/(dγ)

)

n
+B∗

)
,

where θ = Ω
(
Qnmax

{
max{Lλ−1/2

0 }, σ
}2)

. Finally, we get the claim by

B∗ = Θ
(
λ0 max{L, σ}2 ln(1/γ)

)
. �

With λ0 =
√
d/n, Theorem 4.4 provides a suboptimal O

(
ln(n)/

√
n
)
rate

for ridge regression. Notice that if we had ‖an‖ ≤ L with high-probability, we

could improve the rate of Theorem 4.4 to O(1/n) up to logarithmic factors.

However, when the feature covariance matrix is well-conditioned, we can use

Theorem 4.4 to prove such a Lipschitz bound and improve the rate of fλn .

Formally, suppose that the covariance matrix of the features X is positive

definite E
[
(X − EX )(X − EX )>

]
� ηµId with smallest eigenvalue ηµ > 0.

Then, we can use Theorem 4.4 with λ0 =
d ln(n)
n

ln
(
n
dγ

)
to get the excess risk

bound Lµ(f
λ
n , f∗) = O(L2) with high-probability for a sufficiently large n satis-

fying d ln(n)
n

max{L, σ}2 ln2
(
n
dγ

)
= O(L2).3 This improves the Lipschitz bound

to ‖an‖ = O
(
(1 + η

−1/2
µ )L

)
with probability at least 1− γ/2, which does not

diverge for λ0 → 0 as n→∞, so can be used to improve the excess risk bound.

The details are provided by the following result:

3When n is not large enough, the desired rate follows immediately.
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Theorem 4.5. Consider any distribution µ ∈M
1,σ,d
subgs(Faff) such that ‖a∗‖ ≤ L

and E
[
(X − EX )(X − EX )>

]
� ηµId, the squared loss ` = `sq, F∗ = Faff,

f∗ = fµ,Faff
. Take a (0, βλ)-ERM(Faff) estimate fn with λ = λ0

4nL2

∑n
i=1 |Yi − Y|2

and set λ0 =
d ln(n)
n

ln
(
n
dγ

)
for some γ > 0. Then for all n ≥ d ln(2/γ) such

that λ0 ≤ 1, we have with probability at least 1− γ that

Lµ(fn, f∗) = O
(
d ln(n)max

{
(1 + η−1/2

µ )L, σ
}2 ln

(
n/(dγ)

)

n

)
.

Proof. First, notice that if d ln(n)
n

max{L, σ}2 ln2
(
n
dγ

)
= Ω(L2) is satisfied, then

Theorem 4.4 immediately provides the claim with λ0 = d ln(n) ln(n/(dγ))/n.

Otherwise, we have d ln(n)
n

max{L, σ}2 ln2
(
n
dγ

)
= O(L2).

Next, use (4.4) with Lemma A.2a to get with probability at least 1− γ/2
that

∣∣a>
∗ (X − EX ) + Y − EY

∣∣2 = O
(
dmax{L, σ}2 ln(1/γ)/n

)
= O(L2).

Then, either E
[
|(an−a∗)

>(X −X )|2
] 1

2 ≤
∣∣a>

∗ (X −EX )+Y−EY
∣∣/4 = O(L)

holds, or if not, we have

E
[
W2

fλn

]
= E

[
|(an − a∗)

>(X −X ) + a>
∗ (X − EX ) + Y − EY|2

]

≥ E
[
|(an − a∗)

>(X −X )|2
]
/2 .

(4.6)

Now use the Bernstein condition (3.3) which is satisfied for the squared loss

` = `sq and the convex hypothesis class Faff with C = 2, Theorem 4.4 with

λ0 = d ln(n) ln
(
n/(dγ)

)
/n and d ln(n)

n
max{L, σ}2 ln2

(
n
dγ

)
= O(L2), and (4.6)

to get with probability at least 1− γ/2 that

O(L2) = CLµ(f
λ
n , f∗) ≥ E

[
W2

fλn

]
≥ E

[
|(an − a∗)

>(X −X )|2
]
/2 .

Hence, in either way, we have E
[
|(an − a∗)

>(X −X )|2
]
= O(L2) with proba-

bility at least 1− γ/2.
Next, observe that

E
[
(X −X )(X −X )>

]
= E

[
(X −EX )(X −EX )>

]
+ (X −EX )(X −EX )>,

where the expectations are taken with respect to X only. So by the positive

definiteness of the covariance matrix and the triangle inequality, we have

E
[
|(an − a∗)

>(X −X )|2
]
≥ ηµ ‖an − a∗‖2 ≥ ηµ

∣∣ ‖an‖ − ‖a∗‖
∣∣2 ,
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implying that ‖an‖ = O
(
(1 + η

−1/2
µ )L

)
with probability at least 1− γ/2.

Then, we have Lµ(f
λ
n , f∗) ≤ Lµ(f

λ
n , f∗)I

{
fλn ∈ FL,2,naff

}
with probability at

least 1− γ/2 for Lipschitz bound L
.
= O

(
(1+ η

−1/2
µ )L

)
, so we get the claim by

applying Lemma 4.2 with γ ← γ/2 and bounding the regularization term βλ

with probability at least 1 − γ/8 by βλ(f∗) = Θ
(
λ0L

2 max{L, σ}2 ln(1/γ)
)
as

shown in the proof of Theorem 4.4. �

Finally, we note that Theorems 4.4 and 4.5 are comparable to the work of

Hsu et al. (2014, Remarks 4 and 12). Our results provide the same rates in d

and n, and cover the more general sub-Gaussian setting instead of using the

boundedness assumption.
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Chapter 5

Convex nonparametric

least squares regression

In this chapter we apply the general regression analysis of Chapter 3 to convex

nonparametric least squares estimation settings. Here we discuss regression

problems (Section 3.1) with the squared loss ` = `sq, and set the reference class

as F∗
.
= {X→ R}, so every reference function f∗ is also a regression function.

Furthermore, we assume that the domain X ⊆ R
d is convex, and there exists

a convex regression function f∗, that is f∗ ∈ Fcx
.
= {f : X→ R | f is convex}.

Similar to the linear case (Chapter 4), we need a bound on the slope of f∗

and the estimates for the derivation of excess risk bounds (see the discussion

in Section 5.1 for more details). To formalize such a slope bound, denote the

subdifferential (subgradient set) of a convex function f : X→ R at x ∈ X by

∂f(x)
.
=
{
s ∈ R

d | ∀z ∈ X : f(z) ≥ f(x) + s>(z − x)
}
.

Then define the smallest subgradient of f at x with respect to the Euclidean

norm ‖·‖ by ∇∗f(x) .
= argmins∈∂f(x) ‖s‖. As ∂f(x) is a closed, convex set

(Rockafellar, 1972, Page 215), and ‖·‖ is strictly convex, ∇∗f(x) is well-defined
if f is subdifferentiable at x, that is ∂f(x) 6= ∅, because in this case the

minimizer in the definition of ∇∗f(x) exists and is unique. Otherwise, when

∂f(x) = ∅, we set ∇∗f(x) .
= ∞ · 1, so we can compactly write the set of

subdifferentiable convex functions with bounded slope (L ∈ R>0 ∪ {∞}) as

FLcx
.
=
{
f ∈ Fcx

∣∣∣ sup
x∈X
‖∇∗f(x)‖ < L

}
.
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The goal of this chapter is to derive sample efficient nonparametric esti-

mators for the class of convex sub-Gaussian regression problems given as

M̂
B,σ,d
subgs(FLcx)

.
=
{
µ
∣∣ (X ,Y) ∼ µ, X ∈ R

d, Y ∈ R, ‖X − EX‖Ψ2
≤ B,

f∗ ∈ argmin
f∈{X→R}

Rµ(f) ⊂ FLcx, E
[
e|Y−f∗(X )|2/σ2∣∣X

]
≤ 2
}
.

Notice that for all problems in M̂
B,σ,d
subgs(FLcx), f∗ is an L-Lipschitz, convex regres-

sion function satisfying f∗ ∈ FLcx. For these estimation tasks, we use max-affine

functions, formed by the maximum of finitely many hyperplanes, which are

able to achieve a near-minimax rate.

5.1 Max-affine functions

for nonparametric estimation

It is well-known that one can find convex α-ERM(Fcx) estimators (3.1) among

max-affine functions. The reason is that any α-ERM(Fcx) estimate fn can be

linearized above the data points X 1, . . . ,X n and approximated from below by

taking the maximum of these linearizations (first-order Taylor approximation)

as fn(x) ≥ maxi=1,...,n a
>
i (x−X i) + fn(X i) with subgradients ai ∈ ∂fn(X i).

Because such a max-affine approximation attains the same values as fn at

the points X 1, . . . ,X n, it also attains the same empirical risk, so it is an

α-ERM(Fcx) estimate as well.

Hence, one can solve the infinite dimensional α-ERM(Fcx) optimization

problem by searching through the finite dimensional space of max-affine rep-

resentations fn(x) = maxk=1,...,n a
>
k (x−X i) + bk, and computing the solution

by the following quadratic program (for example, Holloway, 1979; Boyd and

Vandenberghe, 2004, Section 6.5.5; Kuosmanen, 2008):

min
a1,...,an,

b1,...,bn

n∑

i=1

(Yi − bi)2 subject to

bi ≥ a>
k (X i −X k) + bk , i, k = 1, . . . , n .

(5.1)

In (5.1), the objective value is the empirical risk Rn(fn) and the constraints en-

force that the i-th hyperplane placed over X i is also active at X i by providing

the value of fn at X i, that is fn(X i) = maxk=1,...,K a>
k (X i −X k) + bk = bi.
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Although max-affine ERM(Fcx) estimators are consistent (Seijo and Sen,

2011; Lim and Glynn, 2012), their slope can be arbitrarily large near the

boundary of the sample, and so their excess risk might become arbitrarily

large too. Moreover, Balázs et al. (2015, Section 4.3) provided an example as

shown on Figure 5.1 for which any ERM(Fcx) estimate has an infinite expected

excess risk E[Lµ(fn, f∗)].

Figure 5.1: Worst case example of overfitting by unregularized max-affine
estimators. As X 1 gets close to X 2, the slope of the estimate fn between
(X 1,Y1) and (X 2,Y2) grows to infinity, and so does the distance between fn
and f∗ as indicated by the gray area.

To discuss Figure 5.1, take the unit domain X
.
= [0, 1], and let X ∈ X,

Y ∈ {−1,+1} be independent uniform random variables (so f∗ = 0). Further,

let n ≥ 2, and define the event

En
.
=
{
X 1 ∈ [1

4
, 1
2
], X 2 ∈ [1

2
, 3
4
], X 3, . . . ,X n ≥ 3

4
, X ≤ 1

4
,

Y1 = +1, Y2 = . . . = Yn = −1
}
.

Then P{En} = (1/4)n+1(1/2)n > 0, and using the observation that any

ERM(Fcx) estimate fn minimizing the excess risk on [0, 1
4
] is linear in [0,X 2],

we can lower bound the expected excess risk as

E
[
Lµ(fn, f∗)

]
≥ E

[(2X −X 1 −X 2

X 1 −X 2

)2 ∣∣∣∣En
]
P{En}

≥ E

[
1

4(X 1 −X 2)2

∣∣∣∣En
]
P{En} =∞ .

Also notice that a finite high-probability excess risk bound cannot exist either,

otherwise (3.2) would imply finite expected excess risk as well.
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To avoid infinite excess risk, one can regularize by bounding the slope with

some L ∈ R>0, and adapting (5.1) to compute an α-ERM(FLcx) estimate. For

a bounded domain X ⊂ R
d, Lim (2014) showed that such an α-ERM(FLcx)

estimate fn satisfies

Lµ(fn, f∗) =





OP

(
n−4/(d+4)

)
if d < 4,

OP

(
ln(n)n−1/2

)
if d = 4,

OP

(
n−2/d

)
if d > 4,

(5.2)

where the stochastic growth notation Wn = OP(rn) holds for some random

variables Wn, and constants rn > 0, n ∈ N, if there exists c > 0 such that

lim supn→∞ P{|Wn| ≤ c rn} = 1. Similar bounds have been proved for the

expected excess risk E[Lµ(fn, f∗)] by Balázs et al. (2015, Section 4.2), which

are ln(n) factor weaker than (5.2), but their dependence on d is also shown

to scale only polynomially in d. However, the rates given by (5.2) for d > 4

are weaker than the minimax rate of the problem class M̂
B,σ,d
subgs(FLcx) which is

of order n−4/(d+4) as shown below in Section 5.2.

The phase transition in the bound (5.2) at d = 4 happens because the

class of uniformly L-Lipschitz, convex functions FLcx becomes large enough to

make the entropy integral in Theorem 3.2 diverge for d > 4 with a polynomial

rate. This phenomenon is well-known for nonparametric settings (for example

regression over Sobolev spaces, see van de Geer, 2000, Page 188), and might

be avoided by sieved ERM estimation (van de Geer, 2000, Section 10.3) when

the hypothesis class FLcx is further restricted to balance the estimation and

approximation error terms, θHψ(ε,F)/n and B∗ in Theorem 3.2, respectively,

by choosing ε and F̂n appropriately.

In particular, Balázs et al. (2015, Section 4.4) has shown for the bounded

case that estimators restricting FLcx to max-affine functions with at most

dnd/(d+4)e hyperplanes (instead of n as used for (5.1)) achieve a near-minimax

rate for any d ∈ N. After discussing the minimax lower bound in Section 5.2

and the approximation properties of max-affine representations in Section 5.3,

we study the theoretical properties of these sieved max-affine ERM estimators

in Section 5.4 by extending their analysis for sub-Gaussian convex problems

M̂
B,σ,d
subgs(FLcx) from the bounded case.
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5.2 Lower bound on the minimax rate

To derive a lower bound on the minimax rate for convex nonparametric re-

gression, we consider Gaussian problems as required for Theorem 3.1. For this

we need an asymptotic bound on the entropy of FLcx, for which Guntuboyina

and Sen (2013) proved1 that HPX0
(ε,FLcx) = Θ(ε−d/2) for a sufficiently small

ε > 0 if X is bounded and PX0 is the uniform distribution on X. Combining

this with Theorem 3.1b, we obtain a lower bound on the minimax rate (Balázs

et al., 2015, Theorem 4.1) as presented by the following result:

Theorem 5.1. For a sufficiently large n,

Rn

(
M

σ
gs(FLcx, PX0), `sq, {X→ R}

)
= Ω

(
n−4/(d+4)

)
.

As Mσ
gs(FLcx, PX0) ⊂ M̂

B,σ,d
subgs(Fcx), the lower bound of Theorem 5.1 holds for

convex sub-Gaussian regression problems as well. The rest of the chapter is

devoted to show that there exist sieved max-affine estimators which achieve

this minimax rate up to logarithmic factors, so implying that the lower bound

on the minimax rate of Theorem 5.1 is tight.

Finally, we mention that the entropy of the class Fcx (FLcx without the

Lipschitz bound) over the unit ball domain X is only Hψ(ε,Fcx) = Θ(ε1−d)

(Gao and Wellner, 2015, Corollary 1.4 and Theorem 1.5). Then, the minimax

risk is also weaker in this case. In fact Han and Wellner (2016, Theorems 2.3

and 2.4) showed that Rn

(
M

σ
gs(Fcx, PX0), `sq, {X → R}

)
= Θ

(
n−2/(d+1)

)
up to

logarithmic factors. Hence, the Lipschitz restriction is necessary to keep the

minimax rate independent from the shape of the domain boundary.

5.3 Max-affine approximations

To construct sample efficient sieved ERM estimators with max-affine represen-

tations, we need to understand their approximation accuracy to the function

1Guntuboyina and Sen (2013) proved the lower bound without the Lipschitz bound,
which is a larger function class. However, in the proof of their Theorem 3.3, they construct
a packing subset by functions having a 2-bounded Lipschitz constant with respect to ‖·‖.
These functions could be rescaled appropriately to deliver our statement. For the upper
bound, simply consider the sup-norm result, Theorem 3.2 in their paper.
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class FLcx. Hence, we now study the approximation properties of the following

max-affine class with functions represented by the maximum of at most K ∈ N

affine functions,

FK,Lma (x0)
.
=
{
h : X→ R

∣∣∣h(x) = max
k=1,...,K

a>
k (x− x0) + bk, ‖ak‖ ≤ L

}
,

where x0 ∈ X is some reference point. To emphasize the “owner function” of

the parameters ak, bk, we sometimes write ak(h), bk(h) to refer the quantities

satisfying h(x) = maxk=1,...,K ak(h)
>(x− x0) + bk(h).

Then consider the following result (Lemma 5.2), which describes the ap-

proximation accuracy of FK,Lma (x0) to FLcx over a bounded domain. This lemma

is a slight modification of Lemma 4.1 in Balázs et al. (2015), which transfers

the convex set estimation result of Bronshteyn and Ivanov (1975) to convex

functions over a bounded domain. Then main trick of the proof is to construct

a cover over a subset of Rd, which covers both X∩B2(x0, R) and the gradient

space {∇∗f(x) : x ∈ X ∩ B2(x0, R)} of a convex function f ∈ FLcx. This way

we can double the approximation rate for the convex case, providing O(K−2/d)

accuracy instead of the weaker O(K−1/d) which is the approximation rate of

piecewise linear functions to Lipschitz continuous ones (Cooper, 1995).

Lemma 5.2. For each f ∈ FLcx there exists hf ∈ FK,Lma (x0) such that

sup
x∈X∩B2(x0,R)

∣∣f(x)− hf (x)
∣∣ ≤ 36LRK−2/d .

Furthermore, 0 ≤ f(x)− hf (x) ≤ 2L(R+ ‖x− x0‖) holds for all x ∈ X, and

bk(hf )− f(x0) ∈ [−2LR, 0] for all k = 1, . . . , K.

Proof. Fix f ∈ FLcx arbitrarily and recall that ‖∇∗f(x)‖ ≤ L for all x ∈ X.

Let t > 0 to be chosen later, XR
.
= X ∩ B2(x0, R) and define the mapping

ν(x)
.
= x+ t∇∗f(x) for any x ∈ XR. Notice that by the convexity of f , ν is an

injective function (that is ν(x) = ν(z) ⇐⇒ x = z for all x, z ∈ XR) because

f(z) ≥ ∇∗f(x)>(z − x) + f(x) (by convexity of f)

= ‖z − x‖2 /t+∇∗f(z)
>(z − x) + f(x) (by ν(x) = ν(z))

≥ ‖z − x‖2 /t+ f(z) , (by convexity of f)
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which holds only if x = z.

Now define Rt
.
= R + tL, K .

= {ν(x) : x ∈ XR} ⊆ B2(x0, Rt) and for

some ε > 0 to be chosen later, let Kε ⊆ K be a
√
ε-cover of K under ‖·‖.

Furthermore, let Xε
.
= {ν−1(z) : z ∈ Kε}, where ν−1 denotes the inverse of ν

(which is invertible on K because it is injective on XR). Then by Lemma C.1,

|Xε| = |Kε| = N‖·‖(
√
ε,K) ≤ (9R2

t /ε)
d/2 for all ε ∈ (0, 9R2

t ].

Next we show that Kε induces two
√
ε-covers, one on XR and one on the

scaled gradient space {t∇∗f(x) : x ∈ X}. For this, the convexity of f implies

(
∇∗f(x)−∇∗f(z)

)>
(x− z) = ∇∗f(x)>(x− z) +∇∗f(z)

>(z − x)

≥ f(x)− f(z) + f(z)− f(x) = 0 ,
(5.3)

for any x, z ∈ X. Let x̂
.
= argminz∈Xε

‖x− z‖ for any x ∈ X (if multi-

ple minima exist, fix one arbitrarily). Notice that if x ∈ XR, we also have

‖ν(x)− ν(x̂)‖ ≤ √ε due to the construction of Kε. Hence, by (5.3), we obtain

‖x− x̂‖2 + t2 ‖∇∗f(x)−∇∗f(x̂)‖2

≤ ‖x− x̂‖2 + 2t
(
∇∗f(x)−∇∗f(x̂)

)>
(x− x̂) + t2 ‖∇∗f(x)−∇∗f(x̂)‖2

= ‖ν(x)− ν(x̂)‖2 ≤ ε ,

for any x ∈ XR. So we have ‖x− x̂‖ ≤ √ε and t ‖∇∗f(x)−∇∗f(x̂)‖ ≤
√
ε.

Now we construct a max-affine approximation to f . Choose ε ∈ (0, 9R2
t ]

to satisfy K = (9R2
t /ε)

d/2 ≥ |Xε| and a set XK
.
= {x̂1, . . . , x̂K} such that

Xε ⊆ XK . Notice that x̂ ∈ XK for all x ∈ XR. Then consider the max-affine

function hf (x)
.
= maxk=1,...,K f(x̂k) +∇∗f(x̂k)>(x− x̂k). Using the convexity

of f , we have for all x ∈ X that

0 ≤ f(x)− hf (x) ≤ f(x)− f(x̂)−∇∗f(x̂)
>(x− x̂)

≤ ∇∗f(x)>(x− x̂)−∇∗f(x̂)
>(x− x̂) =

(
∇∗f(x)−∇∗f(x̂)

)>
(x− x̂) ,

(5.4)

which implies f(x)−hf (x) ≤ 2L(‖x− x0‖+R). Additionally, if x ∈ XR, use

the Cauchy-Schwartz inequality for (5.4) to get

0 ≤ f(x)− hf (x) ≤
1

t

(
t ‖∇∗f(x)−∇∗f(x̂)‖ ‖x− x̂‖

)
≤ ε/t .

Then, rearranging K = (9R2
t /ε)

d/2, we obtain the bound in the claim over XR

by ε = 9R2
tK

−2/d and t
.
= R/L as supx∈XR

|f(x)−hf (x)| ≤ ε/t = 36RLK−2/d.
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Finally, let bk
.
= f(x̂k)+∇∗f(x̂k)

>(x0− x̂k) and ak
.
= ∇∗f(x̂k), so we have

hf (x) = maxk=1,...,K a>
k (x − x0) + bk. Clearly, ‖ak‖ ≤ L so hf ∈ FK,Lma (x0).

Furthermore, by the convexity of f , bk ≤ f(x0) and

bk = f(x̂k)− f(x0) + f(x0) +∇∗f(x̂k)>(x0 − x̂k)

≥ f(x0) +
(
∇∗f(x0)−∇∗f(x̂k)

)>
(x̂k − x0) ≥ f(x0)− 2LR ,

which proves the claim for bk(h). �

5.4 Near-minimax upper bounds

for max-affine LSEs

Here we provide the main convex regression result of this thesis (Theorem 5.6),

that is an excess risk upper bound for α-ERM
(
FK,Lma (X )

)
max-affine estimators

and sub-Gaussian convex regression settings µ ∈ M̂
B,σ,d
subgs(FLcx) with squared loss

(` = `sq). We show that by using K = dnd/(d+4)e hyperplanes these max-affine

estimators achieve a minimax rate n−4/(d+4) up to logarithmic factors.

To derive the excess risk bound, we use Theorem 3.2. However, as the

entropy of the hypothesis class FK,Lma (X ) is infinite due to the unbounded

magnitude of its functions, Theorem 3.2 cannot be applied directly. To handle

this, first we show that max-affine ERM estimators in FK,Lma (X ) lie in some

data-dependent set Fn with a bounded magnitude such that Fn approximates

any regression function f∗ ∈ FLcx with enough accuracy. Then, we can find

a data-independent envelope F of Fn such that Fn ⊆ F holds with high-

probability, and class F has an appropriately bounded entropy.

Let fn(x) = maxk=1,...,K a>
k (x−X ) + bk be an α-ERM(Fn) estimate, and

observe that its offset terms, bk ∈ R, k = 1, . . . , K, are unconstrained by

the definition of FK,Lma (X ). To derive a bound on the offset terms bk, we

use the α-ERM(Fn) property (3.1), and drop every hyperplane out of the

representation of fn, which are not active at any point X 1, . . . ,X n. Formally,

we assume that for all k ∈ {1, . . . , K} there exists i ∈ {1, . . . , n} such that

fn(X i) = a>
k (X i−X )+ bk. This assumption is not restrictive as dropping the

inactive hyperplanes from the representation of fn does not affect the empirical
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risk Rn(fn). We also use this assumption in the rest of the section without

further notice. Then, Lemma 5.3 proves a bound on the bk terms.

Lemma 5.3. If fn is an α-ERM
(
FK,Lma (X )

)
estimate (3.1) for ` = `sq with

any α ≤ 2(LXmax)
2, then fn satisfies the α-ERM(Fn) property as well with

Fn .
=
{
f ∈ FK,Lma (X ) : |bk(f)− Y| ≤ 5LXmax +

√
2Rn(f∗), k = 1, . . . , K

}
,

where Xmax
.
= maxi=1,...,n‖X i −X‖.

Proof. Let fn(x) = maxk=1,...,K a>
k (x −X ) + bk be an α-ERM

(
FK,Lma (X )

)
es-

timate and l ∈ {1, . . . , K}. Take some j ∈ {1, . . . , n} for which the l-th

hyperplane is active on X j, that is fn(X j) = a>
l (X j−X )+bl. Using this, the

triangle inequality with the Lipschitz property of fn, and the Cauchy-Schwartz

inequality, we get

|bl − Y| = |fn(X j)− Y + a>
l (X j −X )|

≤ |fn(X j)− fn(X ) + fn(X )− Y|+ LXmax

≤ |fn(X )− Y|+ 2LXmax

=
∣∣∣fn(X )− 1

n

n∑

i=1

fn(X i) +
1

n

n∑

i=1

fn(X i)− Y
∣∣∣+ 2LXmax

≤
∣∣∣ 1
n

n∑

i=1

fn(X i)− Yi
∣∣∣+ 3LXmax

≤
√
Rn(fn) + 3LXmax .

(5.5)

Observe that any constant function including f0(x)
.
= f∗(X ), x ∈ X,

is in FK,Lma (X ). Hence, using the α-ERM
(
FK,Lma (X )

)
property (3.1) of fn,

(a+ b)2 ≤ 2a2 + 2b2, the Lipschitz property of f∗ with α ≤ 2(LXmax)
2, we get

Rn(fn) ≤ Rn(f0) + α =
1

n

n∑

i=1

∣∣Yi − f∗(X i) + f∗(X i)− f∗(X )
∣∣2 + α

≤ 2Rn(f∗) +
2

n

n∑

i=1

∣∣f∗(X i)− f∗(X )
∣∣2 + α ≤ 2Rn(f∗) + 4(LXmax)

2 ,

which implies the claim by
√
a+ b ≤ √a+

√
b. �

Next, we show that Fn preserves the universal approximation properties

of max-affine functions FK,Lma (X ) to uniformly Lipschitz, convex maps FLcx
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as shown by Lemma 5.2. For the proof, we take a subset of Fn which still

preserves approximation quality, but by being independent of Y1, . . . ,Yn, it
also let us exploit the properties of the squared loss for the sub-Gaussian

setting (Lemma F.3). The details are given by the following result:

Lemma 5.4. For any µ ∈ M̂
B,σ,d
subgs (FLcx), γ > 0 and α ≤ 2(LXmax)

2K−4/d,

P

{
inf
f∈Fn

Ln(f, f∗) + α > B∗

}
≤ γ

4
,

where B∗
.
= max

{
8(362 + 1)(LB)2K−4/d, 2σ2/n

}
ln(8n/γ).

Proof. First, consider the class

F̂n .
=
{
f ∈ FK,Lma (X ) : |bk(f)− f∗(X )| ≤ 2LXmax, k = 1, . . . , K

}
,

and notice that F̂n ⊆ Fn, because by Jensen’s inequality, the triangle inequal-

ity with the Lipschitzness of f∗, and the Cauchy-Schwartz inequality, we have

|f∗(X )− Y| ≤ 1

n

n∑

i=1

∣∣f∗(X )− f∗(X i) + f∗(X i)− Yi
∣∣

≤ LXmax +
1

n

n∑

i=1

|f∗(X i)− Yi| ≤ LXmax +
√
Rn(f∗) .

Next, let h∗ ∈ FK,Lma (X ) be the max-affine approximation to f∗ ∈ FLcx
as given by Lemma 5.2 with x0 = X and R = Xmax, which also provides

bk(h∗) − f∗(X ) ∈ [−2LXmax, 0] for all k = 1, . . . , K, so we have h∗ ∈ F̂n.
Additionally, the approximation bound for h∗, provided by Lemma 5.2, and

the bound on α implies

inf
f∈F̂n

2

n

n∑

i=1

|f(X i)− f∗(X i)|2 + α ≤ 2(362 + 1)(LXmax)
2K−4/d .

Further, Xmax ≤ maxi=1,...,n ‖X i − EX‖+‖X−EX‖ ≤ 2maxi=1,...,n ‖X i − EX‖
due to Jensen’s inequality, so we also have

E
[
eX

2
max/(2B)2

]
= E

[
max
i=1,...,n

e‖X i−EX‖2/B2
]
≤ 2n . (5.6)

Hence, by using Lemma F.3 with T = α, R = 8(362 + 1)(LB)2K−4/d and

c = 2n, we get the claim for B∗. �
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In order to provide a data-independent, high-probability envelope of Fn, we
replace its sub-Gaussian quantities X , Y by their limit values EX , EY , respec-
tively, and the bound on the offset terms by an appropriate data-independent

value t > 0. Formally, we consider the envelope Fn ⊆ F(t) with

F(t) .=
{
f ∈ FK,Lma (EX ) : |bk(f)− EY| ≤ t, k = 1, . . . , K

}
.

The details, providing the value of t with respect to the sample size n and the

probabilistic guarantee γ are given by Lemma 5.5.

Lemma 5.5. Let µ ∈ M̂
B,σ,d
subgs (FLcx), γ > 0 and α ≤ (LXmax)

2. Then we have

P{Fn ⊆ F(t)} ≥ 1− γ/2 with t
.
= 4max{11LB, 2σ}

√
ln(4
√
n/γ).

Proof. Let X̂max
.
= maxi=1,...,n ‖X i − EX‖, and notice that Xmax ≤ 2X̂max due

to Jensen’s inequality implying ‖X − EX‖ ≤ X̂max. Then, we also have

P{Fn ⊆ F(t)} ≥ P
{
L‖X − EX‖+ |Y − EY|+ 5LXmax +

√
2Rn(f∗) ≤ t

}

≥ 1− P
{
11LX̂max + |Y − EY|+

√
2Rn(f∗) > t

}
. (5.7)

Next, we bound the sub-Gaussian parameter of |Y −EY|+
√
2Rn(f∗). For

this, first decompose |Y −EY| using the triangle inequality with the Lipschitz

property of f∗ and E[‖X − EX‖] ≤ B by Lemma A.2b for k = 1, to get

|Y − EY| ≤ |Y − f∗(X )|+ |f∗(X )− f∗(EX )|+ |f∗(EX )− E[f∗(X )]|

≤ |Y − f∗(X )|+ L ‖X − EX‖+ LB .
(5.8)

Further, Jensen’s inequality implies ‖
√
Rn(f∗)‖Ψ2 ≤ ‖Y − f∗(X )‖Ψ2

≤ σ and
∥∥Y − EY

∥∥
Ψ2
≤ ‖Y − EY‖Ψ2

. Then, use ‖X − EX‖Ψ2
≤ B with Lemma A.2d

to obtain ‖|Y − EY|+
√
2Rn(f∗)‖Ψ2 ≤ 2(LB + σ).

Finally, using this sub-Gaussian property we bound the probability of (5.7).

For this, we also use (a + b)2 ≤ 2a2 + 2b2, Markov’s inequality, the Cauchy-

Schwartz inequality, and (5.6), to obtain

P
{
11LX̂max + |Y − EY|+

√
2Rn(f∗) > t

}

≤ P
{
(11LX̂max)

2 + (|Y − EY|+
√
2Rn(f∗))

2 > t2/2
}

≤ E
[
e2(11LX̂max)2/m2]1/2

E

[
e2
(
|Y−EY|+

√
2Rn(f∗)

)2
/m2
]1/2

e−t
2/(2m2)

≤ 2
√
n e−t

2/(2m2) = γ/2 ,

where m
.
=
√
2max{22LB, 2(LB + σ)} and t = m

√
2 ln(4

√
n/γ). �
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Then, we are about to apply our general regression result Theorem 3.2

as specialized for the squared loss by Lemma 3.5 to prove an upper bound

on the excess risk of max-affine estimators for sub-Gaussian convex regression

settings. For this, we ignore Condition (C2) by setting δ = ε, and provide

Conditions (C1) and (C3) using the sub-Gaussian property of the quantities

Wf
.
= f(X ) − f∗(X ), f ∈ F(t) which is implied by Lipschitzness and the

sub-Gaussian distribution of X . The details are given by Theorem 5.6.

Theorem 5.6. Consider the squared loss (` = `sq), and a sub-Gaussian convex

regression problem µ ∈ M̂
B,σ,d
subgs (FLcx). Further, let fn be an α-ERM

(
FK,Lma (X )

)

estimate with K
.
= dnd/(d+4)e and α ≤ (LXmax)

2K−4/d. Then, for any γ > 0,

we have with probability at least 1− γ that

Lµ(fn, f∗) = O
(
max{LB, σ}2 n−4/(d+4) ln(n) ln(n/γ)

)
.

Proof. Let F .
= F(t) be the high-probability envelope of Fn as given for

Lemma 5.5, and fix f ∈ F arbitrarily. First, we prove thatWf is sub-Gaussian.

Notice, that for the squared loss (` = `sq) and the regression function f∗,

we have E[Y ] = E[f∗(X )]. Hence, using the Lipschitz property of f∗ with

E[‖X − EX‖] ≤ B, we get |E[Y ]− f∗(EX )| = |E[f∗(X )− f∗(EX )]| ≤ LB.

Then, using that f ∈ F satisfies |f(X )− EY| ≤ L ‖X − EX‖+ t, we obtain

|Wf | =
∣∣f(X )− E[Y ] + E[Y ]− f∗(EX ) + f∗(EX )− f∗(X )

∣∣

≤ t+ LB + 2L ‖X − EX‖ ,
which implies that ‖Wf‖Ψ2

≤ t+ 3LB.

Next, we prove Condition (C1). For this, represent any f, f̂ ∈ F as

f(x)
.
= maxk=1,...,K a>

k (x− EX ) + bk, f̂(x)
.
= maxk=1,...,K â>

k (x − EX ) + b̂k.

Then for any x ∈ X, we have

|f(x)− f̂(x)| ≤ max
k=1,...,K

∣∣(ak − âk)
>(x− EX )

∣∣+ |bk − b̂k|

≤
(
2L ‖x− EX‖+ 2t

)
ψ(f, f̂) ,

with metric ψ(f, f̂)
.
= maxk=1,...,K

{‖ak−âk‖
2L

+ |bk−b̂k|
2t

}
. Then, we get

|Z(f, f̂)| =
∣∣(f(X ) + f̂(X )− 2E[Y ]− 2(Y − EY)

)(
f(X )− f̂(X )

)∣∣

≤
(
2L ‖X − EX‖+ 2t+ 2|Y − EY|

)∣∣f(X )− f̂(X )
∣∣

≤ G(X ,Y)ψ(f, f̂) ,
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with G(X ,Y) .= 4
(
L ‖X − EX‖+ t+ |Y − EY|

)2
, which is Condition (C1).

To prove Condition (C3), we use Lemma 3.5 for the squared loss `sq and

the regression function f∗. To use the lemma, we have ‖Wf‖Ψ2
≤ t + 3LB,

‖Y − f∗(X )‖Ψ2
≤ σ, r0 = 3LB implying Qn ≤ ln(n), so we obtain Condi-

tion (C3) for any θ ≥ 240Qnmax{t+ 3LB, σ}2.
Further, we have to bound the entropy Hψ(ε,F), and C1/θ[G(X ,Y)]. For

the entropy, notice that the radius of
{

ak

2L
: ‖ak‖ ≤ L

}
with respect to ‖·‖Ψ2

is bounded by 1/2, and the same is true for
{
bk−EY

2t
: |bk −EY| ≤ t

}
using the

metric | · |. Hence, we can take ε/2-covers of these sets for all k = 1, . . . , K and

use Lemma C.1 to show Hψ(ε,F) ≤ K(d + 1) ln(3/ε) for all ε ∈ (0, 3]. Next,

to bound C1/θ[G(X ,Y)], observe that ‖Y − EY‖Ψ2
≤ 2LB+ σ holds by (5.8).

Then, ‖
√
G(X ,Y)‖Ψ2 ≤ 2(3LB+t+σ), which implies that C1/θ[G(X ,Y)] ≤ θ

for any θ ≥ 4(3LB + t+ σ)2.

Finally, we are ready to apply Theorem 3.2 and putting the pieces together.

For this, we set δ
.
= ε (so ignoring Condition (C2) with S

.
= ∞), r

.
= 1/2,

K
.
= dnd/(d+4)e, ε .

= n−4/(d+4) = Θ(K/n) = Θ(K−4/d), and use r0 = 3LB,

θ = O(t2) = O
(
max{LB, σ}2 ln(n/γ)

)
, Lemma 5.4 with B∗ = O

(
θ K−4/d

)
,

Lemma 5.5, and the bounds Hψ(ε,F) = O
(
dK ln(1/ε)

)
, C1/θ[G(X ,Y)] ≤ θ,

to get with probability at least 1− γ that

Lµ(fn, f∗) ≤ 2

(
θHψ(ε,F)

n
+ 16εC 1

θ
[G(X ,Y)] + B∗

)
+
r0 + 4θ ln(4/γ)

n

= O

(
θdK ln(1/ε)

n
+ θK−4/d +

LB + θ ln(1/γ)

n

)
,

which proves the claim with d ln(1/ε) = 4d
d+4

ln(n) = O
(
ln(n)

)
. �

Considering the minimax lower bound of Theorem 5.1, Theorem 5.6 proves

a near-minimax rate for α-ERM
(
FK,Lma (X )

)
max-affine estimates on the class

of convex sub-Gaussian regression problems. This result extends Theorem 4.2

of Balázs et al. (2015) by replacing the bounded domain X with a sub-Gaussian

one, dropping the uniform boundedness constraint on the hypothesis class and

the regression function, and providing a probabilistic guarantee instead of the

weaker expected value result (3.2).
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Chapter 6

Computation of

max-affine estimators

In this chapter, we discuss the computational properties of multivariate max-

affine estimators represented by at most K ∈ N hyperplanes as fn(x) =

maxk=1,...,K a>
k x+bk, x ∈ R

d where the parameters {K, (ak, bk) : k = 1, . . . , K}
are trained on the dataset Dn = {(X i,Yi) : i = 1, . . . , n}.

To discuss the training algorithms, we will use four examples, referred to as

discussion problems. Two of them have smooth quadratic regression functions

(f fq
∗ , f

hq
∗ ), while f lfq

∗ , f lhq
∗ are their linearized variants:

f fq
∗ (x)

.
= (1/2)x>H∗x+ f>

∗ x+ c∗ ,

fhq
∗ (x)

.
= (1/2)x>

+H∗x+ , x+
.
= max{0,x} ,

f lfq
∗ (x)

.
= max

k=1,...,K∗

∇f fq
∗ (x∗

k)
>x+ f fq

∗ (x∗
k) ,

f lhq
∗ (x)

.
= max

k=1,...,K∗

∇fhq
∗ (x∗

k)
>x+ fhq

∗ (x∗
k) .

(6.1)

Here x ∈ R
d, d ∈ N, 0 � H∗ ∈ R

d×d, f∗ ∈ R
d, c∗ ∈ R, and K∗ ∈ N,

x∗
1, . . . ,x

∗
K∗
∈ R

d are all fixed.1 For all problems, the data points are drawn

from the uniform distribution U(X) over a bounded convex domain X ⊆ R
d

and the noise model is simply Gaussian, that is Y − f∗(X ) ∼ N (0, σ2).2 We

also rotate each problem instance by a random orthogonal matrix (Stewart,

1980, Section 3), that is replace f∗ by x 7→ f∗(Q
>x) on each run, which

1We use h∗
k,l

.
= I{k = l} + (k + l)−1, f∗

k
.
= k/d, c∗

.
= −d and H∗ = [h∗

k,l]k,l=1,...,d,

f∗ = [f∗
1 , . . . , f

∗
k ]

>. Further, we define K∗

.
= d+ 3 as x∗

k
.
= ek − (k/d)1 for all k = 1, . . . , d,

and x∗
d+1

.
= 0, x∗

d+2
.
= −1, x∗

d+3
.
= 1, where ek is the k-th standard basis in R

d.
2We set X

.
= [−2, 2]d and σ

.
= 1.
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increases the variance of the results for algorithms that are not rotationally

invariant.

We emphasize that the problems (6.1) were selected to illustrate some

major issues of max-affine estimators. The smooth quadratic target f fq
∗ is

“difficult” to represent “accurately” by a max-affine function, while its trun-

cated version fhq
∗ has a large flat plateau maximizing the chance of overfitting

the noise at the boundary, similar to the case shown on Figure 5.1. Finally,

a “good” max-affine estimator should be able to improve the rate for the lin-

earized versions f fq
∗ , fhq

∗ when the regression function can be represented by

only a few hyperplanes.

For all of our numerical experiments, the hardware has a Dual-Core AMD

Opteron(tm) Processor 250 (2.4GHz, 1KB L1 Cache, 1MB L2 Cache) with

8GB RAM, which scored around 2 GFLOPS on the benchmark of Moler (1994)

using randomly generated dense matrices of size 15000× 15000. The software

uses MATLAB (The MathWorks, Inc., 2010), sometimes C (Stallman et al.,

2007), and the MOSEK Optimization Toolbox (MOSEK ApS, 2015).

6.1 Max-affine LSEs

Recall from Section 5.1 that one can find max-affine LSEs with at most n

hyperplanes by reformulating the non-convex max-affine optimization problem

as a convex quadratically constrained quadratic program (QCQP),

min
a1,...,an,

b1,...,bn

n∑

i=1

(
max
j=1,...,n

a>
j X i + bj − Yi

)2
(6.2)

such that for all j = 1, . . . , n : ‖aj‖ ≤ L ,

= min
a1,...,an,

b1,...,bn

n∑

i=1

(a>
i X i + bi − Yi)2 such that for all i, j = 1, . . . , n : (6.3)

a>
i X i + bi ≥ a>

j X i + bj , ‖ai‖ ≤ L .

The resulting estimate fn(x) = maxi=1,...,n a
>
i x+bi enjoys the worst case excess

risk upper bound (5.2), and (6.3) can be solved in O(d2n5) time using interior

62



point methods (Boyd and Vandenberghe, 2004, Section 11.5).3 Together, the

risk guarantee and the polynomial computation time makes this estimator

attractive. However, even if the computational cost is only a worst-case upper

bound on dense QCQP problems (so it is unlikely to be tight here), problem

(6.3) still gets too large for today’s QCQP solvers even for modest sample

sizes.4 This motivated research on alternative solution techniques such as

cutting plane methods (Section 6.1.2), and alternating direction method of

multipliers (ADMM) algorithms (Section 6.1.3).

6.1.1 Partitioned max-affine LSEs

Before discussing solution methods, we generalize problem (6.3) to find hy-

perplanes over an arbitrary fixed partition of the data points (Balázs et al.,

2015, Section 4.4). This problem is also convex and will be useful later for

partitioning max-affine estimators (Section 6.2).

Fix a partition P
.
= {Ck : k = 1, . . . , K} of the index set {1, . . . , n}, that is

∪Kk=1Ck = {1, . . . , n} and Ck∩Cj = ∅ if and only if k 6= j for all k, j = 1, . . . , K.

We say that a max-affine function f(x) = maxk=1,...,K a>
k x + bk induces P if

a>
kX i+bk ≥ a>

j X i+bj holds for all k, j = 1, . . . , K and i ∈ Ck. Then consider

the following QCQP problem of finding max-affine LSEs inducing P :

min
a1,...,aK,

b1,...,bK

K∑

k=1

∑

i∈Ck

(vi − Yi)2 such that for all k, j = 1, . . . , K, i ∈ Ck :

vi = a>
kX i + bk ≥ a>

j X i + bj, ‖ak‖ ≤ L .

(6.4)

Notice that if K = n and P = P1:n
.
=
{
{1}, . . . , {n}

}
, then the two prob-

lems (6.3) and (6.4) are identical, so the latter problem is indeed more general.

Hence, it is enough to discuss solution methods for (6.4) in the following sec-

tions and run the algorithms with P = P1:n for solving (6.3).

As shown by Theorem 5.6, there exists a near-optimal max-affine estimator

with at most dnd/(d+4)e hyperplanes. If we knew a partition P induced by such

3An upper bound on the number of arithmetic operations needed to solve a convex QCQP
problem, min

x∈RN
1
2x

>Hx + f>x subject to 1
2x

>Qjx + g>
j x ≤ cj for j = 1, . . . ,M with

0 � H,Q1, . . . , QM , is O(N2M1.5).
4For our hardware/software setup (page 62), direct solution of (6.3) took the QCQP

solver 34–74 times more time for d = 8 and n = 500 on problems (6.1) than for alternative
techniques, and run out of the 8GB memory for n = 1000.
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a near-optimal estimator, we could compute the estimator itself by solving

problem (6.4). Unfortunately, finding such a partition is far from trivial, and

according to our knowledge, there is no algorithm today that could do this

efficiently. Still, since every max-affine function induces a partition, (6.4)

can be useful for improving partitioning max-affine estimators (Section 6.2)

by providing a tool to efficiently find the best possible fit for their induced

partitions, justifying the study of this problem.

6.1.2 Cutting plane methods

The key observation for solving (6.4) using cutting plane (CP) techniques (Lee

et al., 2013) is that the hyperplane constraints a>
kX i + bk ≥ a>

j X i + bj are

often redundant in the sense that by solving

min
a1,...,aK,

b1,...,bK

K∑

k=1

∑

i∈Ck

(vi − Yi)2 such that for all (k, i, j) ∈ I :

vi = a>
kX i + bk ≥ a>

j X i + bj, ‖ak‖ ≤ L ,

(6.5)

we often obtain the same solution as for (6.4) with a well-chosen constraint

set I ⊂ I∗ .
= {(k, i, j) : k, j = 1, . . . , K, k 6= j, i ∈ Ck} having |I| � n(K − 1).

In particular for the univariate case (d = 1), one can order the cells (non-

overlapping intervals) by some permutation l1, . . . , lK of 1, . . . , K, and verify

the hyperplane constraints a>
lk
X i + blk ≥ a>

j X i + bj, i ∈ Clk only for the

neighbors j ∈ {lk − 1, lk + 1}, so using a constraint set of size |I| = 2(K − 1).

However, ordering the cells is not possible for the multivariate case (d ≥ 2), and

there can be hyperplanes with arbitrary number of neighbors. Still, in many

cases it might be enough to check the hyperplane constraints for fewer than

n − 1 other points in {X i : i 6∈ Ck} for each cell k = 1, . . . , K. For example,

consider estimating a truncated Euclidean cone over a 2 dimensional domain X

as shown by Figure 6.1, where the base hyperplane can have arbitrary many

neighbors, but the radial hyperplanes have only three.

Unfortunately, finding a set I with the fewest elements that makes (6.5)

equivalent to (6.4) is far from trivial, hence we resort to heuristic methods.

For this, we consider the CP scheme of Lee et al. (2013) adapted to (6.5) by
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We compare these heuristics on the four discussion problems (6.1) when

P = P1:n and a problem specific tight Lipschitz upper bound L = L∗. The

results are summarized by Figure 6.2, which shows that (6.7) constructs a

smaller constraint index set I and performs fewer number of iterations, which

makes it slightly more scalable with the sample size n. The result also shows
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Figure 6.2: Empirical comparison of constraint selection heuristics for the
max-affine LSE computed by cutting plane methods on the discussion prob-
lems f fq

∗ , f
hq
∗ , f lfq

∗ , f lhq
∗ . The dimension is d = 8 and the sample sizes are

n = 100, 250, 500, 750, 1000, 1250, 1500. Averages of 100 experiments with
standard deviation error bars are shown for the training times (in minutes),
the number of iterations, and the number of constraints used in the last iter-
ation of the algorithm.

that the number of constraints necessary for solving (6.3) is far less than O(n2),

in fact an O(dn) bound looks reasonable for these examples. However, despite

of this reduction of the computational effort, the training times presented

by Figure 6.2 indicate that the CP methods scale poorly with the sample

size n. The reason is that interior-point QCQP solvers form and factorize

a sparse Hessian matrix, and this calculation eventually becomes too slow

even with O(dn) constraints. Hence, we consider a Hessian-free optimization
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method next, which is capable to trade numerical accuracy for computational

efficiency.

6.1.3 Alternating direction methods of multipliers

As an alternative to cutting plane (CP) methods, one can use alternating direc-

tion method of multipliers (ADMM) algorithms, which are easier to scale as the

problem size grows by parallelization and trading numerical accuracy for com-

putational efficiency. ADMM algorithms lie in the intersection of augmented

Lagrangian methods (see for example Bertsekas, 1996), and decomposed op-

timization techniques (see for example Bertsekas and Tsitsiklis, 1997), and

inherit their advantageous properties such as weak convergence requirements

by making the dual problem differentiable, and efficient parallelization (Boyd

et al., 2010). We are not the first to consider ADMM to solve (6.3): a decom-

position method was previously proposed by Aybat and Wang (2014), and an

ADMM algorithm was considered by Mazumder et al. (2015). Here we adapt

the latter ADMM algorithm to solve the partitioned LSE problem (6.4).

Consider the augmented Lagrangian function of (6.4) defined as

Lρ(A, b,v, S, η) .=
1

2

n∑

i=1

(vi − Yi)2

+
n∑

i=1

K∑

k=1

ηik
(
sik + a>

kX i + bk − vi
)

+
ρ

2

n∑

i=1

K∑

k=1

(
sik + a>

kX i + bk − vi
)2
,

(6.8)

where A
.
= (a1, . . . ,aK), b

.
= (b1, . . . , bK), v

.
= (v1, . . . , vn), ρ > 0 is the

penalty parameter, S
.
= (sik)i=1,...,n,k=1,...,K are slack variables such that sik ≥ 0

with sik
.
= 0 if i ∈ Ck, and η = (ηik)i=1,...,n,k=1,...,K are the dual variables. The

ADMM algorithm performs a primal-dual optimization of the augmented La-

grangian function just like augmented Lagrangian methods, further decompos-

ing the primal step into blockwise operations in a way that the subproblems

admit efficient (often closed form) solutions, also allowing easy paralleliza-

tion. In order to solve problem (6.4), an ADMM algorithm can consider the
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following subproblems in each iteration:

A← argmin
A
Lρ(A, b,v, S, η) (6.9)

such that ‖ak‖ ≤ L for all k = 1, . . . , K ,

(b,v)← argmin
b,v

Lρ(A, b,v, S, η) , (6.10)

S ← argmin
S≥0

Lρ(A, b,v, S, η) such that sik = 0 if i ∈ Ck (6.11)

for all i = 1, . . . , n, k = 1, . . . , K ,

ηik ← ηik + ρ
(
sik + a>

kX i + bk − vi
)

(6.12)

for all i = 1, . . . , n, k = 1, . . . , K .

This can be transformed into Algorithm 6.2 shown below by observing that

problem (6.9) can be decomposed componentwise solving for each ak sepa-

rately, problems (6.10) and (6.11) admit closed-form solutions,5 and by intro-

ducing the scaled dual-variables η̂ik
.
= ηik/ρ.

Although the optimization problem (6.9) in step 4 of Algorithm 6.2 does not

admit a closed-form solution in general when L <∞, it has been well-studied

for trust-region optimization algorithms and can be solved efficiently with high-

accuracy by a variant of Newton’s root-finding method such as Algorithm 4.3

of Nocedal and Wright (2006). Hence, the iteration cost of Algorithm 6.2 is

dominated by O(nK) in the usual case when n ≥ d2 (not counting the O(d3)

factorization cost of matrix
∑n

i=1 X iX
>
i , which can be done offline).

Notice that we only used an iteration limit t∗ as a termination condition for

Algorithm 6.2. The reason is that although ADMM algorithms are guaranteed

to converge to the global optimum, their convergence is quite slow and as such

it becomes impractical to wait for convergence to “happen”. Hence, instead

of using optimality conditions to derive stopping rules (Boyd et al., 2010,

Section 3.3), we terminate after a fixed number of iterations. Because of this,

the empirical risk using ADMM is often larger than the excess risk of the

5To solve the quadratic optimization (6.10) for variable [b v]>, use the inverse Hessian

matrix

[
nρ IK −ρ1K×n

−ρ1n×K (1 +Kρ)In

]−1

=

[
1
nρIK + 1

n1K×K
1
n 1K×n

1
n 1n×K

1
1+Kρ

(
In + Kρ

n 1n×n

)
]
. Then

unvectorize the solution and use the zi, wk quantities for all k = 1, . . . ,K and i = 1, . . . , n
as defined by steps 5 and 6 in Algorithm 6.2 to form the solution (shown by steps 7 and 8).

68



1. input: training set Dn, Lipschitz bound L, partition P ,
dual stepsize ρ, iteration number t∗

2. initialize a0
k, b

0
k, v

0
i , s

0
ik, η̂

0
ik appropriately (for example to zero)

3. for t = 0, 1, . . . , t∗ − 1 do

4. at+1
k ← argmin

ak:‖ak‖≤L

1
2
a>
k

( n∑
i=1

X iX
>
i

)
ak+

n∑
i=1

(
η̂tik+s

t
ik+b

t
k−vti

)
X

>
i ak

for all k = 1, . . . , K

5. zi ← Yi

ρ
+

n∑
k=1

(
η̂tik + stik +X

>
i a

t+1
k

)
for all i = 1, . . . , n

6. wk ← −
n∑
i=1

(
η̂tik + stik +X

>
i a

t+1
k

)
for all k = 1, . . . , K

7. bt+1
k ← wk

n
+ ρ

n

( n∑
i=1

zi +
K∑
k=1

wk

)
for all k = 1, . . . , K

8. vt+1
i ← ρ

1+Kρ

(
zi +

Kρ
n

n∑
i=1

zi

)
+ ρ

n

K∑
k=1

wk for all i = 1, . . . , n

9. st+1
ik ← max

{
0, −

(
η̂tik +X

>
i a

t+1
k + bt+1

k − vt+1
i

)}
I{i 6∈ Ck}

for all i = 1, . . . , n and k = 1, . . . , K
10. η̂t+1

ik ← η̂tik +
(
st+1
ik +X

>
i a

t+1
k + bt+1

k − vt+1
i

)

for all i = 1, . . . , n and k = 1, . . . , K
11. end for

12. output: hyperplane slopes at∗1 , . . . ,a
t∗
K , and heights bt∗1 , . . . , b

t∗
K

Algorithm 6.2: Alternating direction methods of multipliers (ADMM) algo-
rithm training a max-affine LSE with K hyperplanes over a fixed partition P .

estimator computed by the CP method (such as Algorithm 6.1 combined with

an interior-point algorithm for step 7). However, besides the computational

cost of ADMM scales better in terms of the dimension d and the sample size n,

stopping ADMM early seems to significantly decrease the excess risk as well,

an effect that was studied previously by a number of authors, including Zhang

and Yu (2005) (in the context of boosting) and Yao et al. (2007) (in the context

of gradient descent and linear prediction).

Parameter ρ has two roles in Algorithm 6.2 as scaling the penalty of the

primal objective and being the step size of the dual update. Because we

expect ADMM to slow down around constraint violation magnitude 10−4, we

use ρ
.
= 0.01, which seems to serve the two roles reasonably. We did not

observe any improvement to this by using an adaptive technique for setting ρ

as surveyed in Boyd et al. (2010, Section 3.4.1).

We compare ADMM and CP methods on the discussion problems (6.1)
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and present the results by Figure 6.3. For this, we use ADMM with P = P1:n,
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Figure 6.3: Comparison of linear and max-affine LSEs computed by cutting
plane (CP) method and ADMM, running for n or 2n iterations on the discus-
sion problems f fq

∗ , f
hq
∗ , f lfq

∗ , f lhq
∗ . The dimension is d = 8 and the sample sizes

are n = 100, 250, 500, 750, 1000, 1250, 1500. Averages of 100 experiments with
standard deviation error bars are shown for the training times (in minutes),
the empirical risk Rn(fn), and the excess risk Lµ(fn) with ` = `sq measured
on 106 new samples for each experiment.

a problem specific tight Lipschitz bound L = L∗, and terminate it after t∗ = n

or t∗ = 2n iterations.6 Furthermore, we use CP with P = P1:n, L = L∗, and

the constraint selection method (6.7) only, but the empirical and excess risks

are very similar for (6.6) as well. Finally, we also include ridge regression (see

Section 4.2.2) with a small regularization parameter β = 10−6 for numerical

stability to serve as a baseline. As Figure 6.3 shows, ADMM indeed scales

better in terms of the sample size n by losing some on the training accuracy.

More significantly, observe that the CP method provides a significantly worse

excess risk than even ridge regression on problem fhq
∗ , which indicates serious

overfitting on the large flat plateau of the regression function. Thus, the less

6We also center the X i, Yi values and scale them by maxi=1,...,n ‖X i‖, and
maxi=1,...,n |Yi|, respectively.
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accurate solution of ADMM enjoys significantly smaller excess risk, and even

doubling the number of iterations in the stopping conditions makes a little

difference.

To conclude, it seems that early stopping of ADMM reduces the chance

of overfitting, which is a great advantage compared to CP methods. To un-

derstand this effect better, in the next section we experiment with a problem

where the upper bound on the Lipschitz factor is dropped (that is L = ∞),

for which we expect that the chance of overfitting is much larger.

6.1.4 Training without the Lipschitz factor

So far we have used a tight Lipschitz upper bound L for each regression prob-

lem, but this value is often not available in practice. Dropping L, that is

solving (6.3) with L =∞ accurately, would usually lead to an estimator with

a very large excess risk on many noisy problems such as (6.1). The cause of

overfitting is that the slope of this estimator can grow unbounded and perfectly

fit the training data at the boundary, as illustrated on Figure 5.1.

In fact, recent work by Han and Wellner (2016) based on Gao and Wellner

(2015) shows that without a Lipschitz bound but assuming bounded functions,

the complexity of the shape of the domain of the convex function influences

the convergence rate of any method. In particular, for domains with smooth

boundaries the minimax rate worsens by roughly a factor of two in the expo-

nent to Θ(n−2/(d+1)), a strong indication that giving up on a known Lipschitz

factor may present significant challenges.

An additional complication is that even if we could learn the Lipschitz

bound L correctly (for example by cross-validation), the max-affine LSE (6.3)

might still suffer from serious overfitting on problems with flat and steep re-

gions at the boundary, similarly as shown by the results for fhq
∗ on Figure 6.3.

However, recall that ADMM solution of (6.3) provided significantly better ex-

cess risk by not optimizing the empirical risk too accurately. By the next

experiment, we measure this tradeoff between empirical and excess risks and

the overfitting robustness of (6.3) solved by ADMM for problems (6.1).

The experiment shown by Figure 6.4 measures the training accuracy (de-
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Figure 6.4: Measurements of training accuracy ∆Rn(fn) and excess risk Lµ(fn)
as a function of the iteration number of ADMM. Averages of 25 experi-
ments with standard deviation error ranges are shown on discussion prob-
lems f fq

∗ , f
hq
∗ , f lfq

∗ , f lhq
∗ . The dimension is d = 8 and the sample sizes are

n = 250, 500, 1000. The excess risk Lµ(fn) is measured on 105 new samples
for each experiment.

noted by ∆Rn(fn)) as the empirical risk difference of the ADMM and CP

solutions, and the excess risk in each iteration of ADMM using P = P1:n,

L =∞, and t∗ = n. The baseline for the training accuracy is computed by the

CP using P = P1:n, (6.7), and L = L∗ set tightly for each problem. Observe

that ∆Rn(fn) is sometimes negative indicating that the ADMM empirical risk

is smaller than the CP one due to ADMM’s L =∞ setting. We also note that

ADMM’s slope is bounded on these examples as maxk=1,...,K ‖ak‖ ≤ 2.4L∗

suggesting that a theoretical guarantee might be still valid.

Furthermore, Figure 6.4 also illustrates the overfitting behavior of ADMM.

Notice that the saturation of the excess risk is “long” and overfitting is “slow”,

at least over the training horizon of n steps. The fact that overfitting is worse

for the linearized problems f lfq
∗ and f lhq

∗ makes sense as the regression functions

of these problems are max-affine functions with only d + 3 = 11 hyperplanes
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implying faster convergence to the “saturation” of the excess risk and leaving

more time for overfitting to accumulate. However, this also suggests that

overfitting of ADMM can be controlled by the number of iterations which

might be tuned by cross-validation.

6.1.5 Cross-validating ADMM algorithm

To tune the number of iterations for ADMM Algorithm 6.2, we consider cross-

validation, where we train multiple ADMM instances simultaneously and mea-

sure their cross-validated error.

To describe the algorithm, we suppose that the dataDn is already randomly

shuffled uniformly. First, the data is splitted into u∗ equal subsets (the last one

might be smaller) indexed with the nonempty, disjunct sets Fu, u = 1, . . . , u∗

satisfying ∪u∗u=1Fu = {1, . . . , n}. Then the algorithm runs u∗ instances of

ADMM producing estimates f 1
n, . . . , f

u∗
n such that the u-th instance uses all

but the u-th subset for training and estimates the risk Rµ(f
u
n ) on the “hold out

data” indexed by Fu using Rµ(f
u
n ) ≈ R̂Fu

(fun )
.
= 1

|Fu|
∑

i∈Fu
(fun (X i)− Yi)2. In

each iteration, the cross-validation error is computed by 1
u∗

∑u∗
u=1 R̂Fu

(fun ) and

the process is stopped if it has not been improved in the last twait steps. The fi-

nal max-affine model is produced by running a single instance of ADMM on the

full data set Dn for as many iterations as used for the lowest cross-validation

error obtained previously.

The following experiment compares the CP method and ADMM, with and

without using a tight problem-specific Lipschitz bound L∗ and the above dis-

cussed cross-validation technique. The results are presented on Figure 6.5.

Here the CP algorithm used P = P1:n, L = L∗, and ADMM used P = P1:n,

t∗ = n, and L = L∗ or L = ∞, respectively. The cross-validated ADMM

(cvADMM) used P = P1:n, L = ∞, and twait = 100 with u∗ = 5 or u∗ = 10,

respectively (these values for u∗ are chosen as a “standard choice”, and twait

is set to the reciprocal of the dual step size 1/ρ). At the end of each training

process, we dropped all hyperplanes that did not have any influence on the

empirical risk, hence the max-affine models usually have slightly less than n

hyperplanes.
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Figure 6.5: Performance of ADMM and cross-validated ADMM without using
the Lipschitz bound on discussion problems f fq

∗ , fhq
∗ , f lfq

∗ , f lhq
∗ . The dimension

is d = 8 and the sample sizes are n = 100, 250, 500, 750, 1000, 1250, 1500.
Averages of 100 experiments with standard deviation error bars are shown for
training times (in minutes), model size, and excess risk Lµ(fn) measured on
106 new samples for each experiment.

Figure 6.5 shows that dropping the Lipschitz bound for ADMM makes it

overfit more on the f lfq
∗ and f lhq

∗ problems, just as it was noted when discussing

Figure 6.4 earlier. However, Figure 6.5 also confirms that the overfitting of

ADMM can be “eliminated” by learning an appropriate iteration number using

cross-validation.

We mention that our cross-validated ADMM implementation follows a

“naive” approach, so its training time scales linearly in u∗. Although it seems

unlikely that ADMM training could be turned entirely incremental in terms of

reducing training time by combining models trained on separate subsets of the

data, it might happen that a divide and conquer technique could significantly

speed up this process, similar to the procedure of Joulani et al. (2015).

Finally, we point out that after dropping the “unused” hyperplanes (which

do not influence the empirical risk), the size of the max-affine models on Fig-
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ure 6.5 are still very close to n, far exceeding the optimal size dnd/(d+4)e sug-
gested by Theorem 5.6. Hence, in the rest of the chapter, we discuss max-affine

estimators that aim to improve the excess risk by reducing the number of hy-

perplanes.

6.1.6 Partitioning by the L1–L2 penalty term

One idea for reducing the number of hyperplanes in max-affine LSE models and

keeping the theoretical guarantee is to intoduce a penalty term on the scaling

of the error term α = O(n−4/(d+4)) of Theorem 5.6. The point is to choose

the penalty term so to encourage sparsification of the hyperplanes. Here, we

shortly discuss the L1–L2 penalty, which modifies the max-affine LSE training

(6.2) as

min
a1,...,an,

b1,...,bn

n∑

i=1

(
max
j=1,...,n

a>
j X i + bj − Yi

)2
+ β

n∑

j=1

‖aj‖ , (6.13)

using some regularization parameter β > 0. This scheme applies an L1-penalty

over the hyperplanes and an L2-penalty to their slopes individually, so it en-

courages sparsification and maintains rotational invariance.

Unfortunately, (6.13) cannot be rewritten to a convex form as (6.3) because

the penalty term influences the locations where the hyperplanes are active

(active means providing no lower value than any other hyperplane). To see why

this is a problem, notice that the convex form (6.3) enforces the i-th hyperplane

to be active at X i, but usually this cannot be maintained when ai = 0 (only

around the minimum). Hence, such a convex form cannot sparsify and so it is

not equivalent to (6.13) which would surely start dropping hyperplanes as the

regularization parameter β is set large enough.

One might still wonder whether (6.13) could be used for a postprocessing

step. The idea is to train a max-affine LSE (6.3) in the first step, then filter

the hyperplanes by locally solving (6.13), starting from the LSE solution. But

as we observed, the local training in the second step does not maintain mono-

tonicity (using a larger β should eliminate more hyperplanes), so it is unclear

how one could select the appropriate level of regularization (learning β) in a

reliable way to control the number of hyperplanes.
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At this point, we reach the boundary of when a theoretical guarantee can

be shown to hold on the risk of the studied estimators. From now, we turn to

heuristic approaches that train max-affine models with significantly less than

n hyperplanes. Although theory will be still used as a guide (for example to set

some parameter values), the emphasis shifts to computational efficiency and

adaptation for problems where max-affine estimators can exceed beyond worst-

case excess risk convergence rates, at least empirically on problems needed for

our applications.

6.2 Heuristic max-affine estimators

In this section we consider max-affine estimators using fewer hyperplanes than

samples. By using smaller models, we hope for a computationally cheaper

training process and for an improved excess risk on problems where “small”

max-affine representations provide “sufficient” accuracy (for example f lfq
∗ and

f lhq
∗ ). Formally, we consider the following optimization problem,

min
M

n∑

i=1

(
fn(M ;X i)− Yi

)2
(6.14)

where M
.
= {(ak, bk) : k = 1, . . . , K}, fn(M,x)

.
= maxk=1,...,K a>

k x + bk, and

the model size K = |M | is less than the sample size n.

Let us first point out the difference between the partitioned LSE problem

(6.4) and (6.14): the former searches among max-affine estimators that induce

a fixed partition, while the latter considers any max-affine estimators inducing

arbitrary partitions with size no larger than some fixed limit. Unfortunately,

this generality does not come for free. In particular, we are not aware of any

convex reformulation of (6.14). Hence, we only consider models that induce a

partition in a finite partition space that is constructed in some heuristic way

during the training process.

We also point out that the partition size K can also be learned from the

data as well. Recall that max-affine LSEs having a near-optimal worst-case

convergence rate exist with K = dnd/(d+4)e hyperplanes (Theorem 5.6). Fur-

thermore, when the regression function admits a “good” max-affine approxi-
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mation with “not too many” K∗ hyperplanes, the estimators using about the

same O(K∗) number of hyperplanes can significantly improve the worst-case

rate of Theorem 5.1 to O(K∗ ln(n)/n). Hence, we limit the number of hyper-

planes to 1 ≤ K ≤ dnd/(d+4)e.
Finally, we mention that one can solve the partitioned LSE problem (6.4)

using the induced partition of a max-affine estimator to refine the estimate

produced by a heuristic training method. We consider this approach for each

training algorithm in the following sections.

6.2.1 Least squares partition algorithm

The Least Squares Partition Algorithm (LSPA, Magnani and Boyd, 2009) is

a variation of the K-means clustering method that uses a greedy alternating

optimization technique.

Initialized by some partition P0 of {1, . . . , n}, LSPA alternates between

two steps. In the “update step” LSPA fits a max-affine modelMt
.
= {(atk, btk) :

k = 1, . . . , Kt} given a fixed partition Pt = {Ct1, . . . , CtKt
} by fitting each cell

individually using ridge regression (with some small regularizer β for stability):

atk
.
=
(∑

i∈Ct
k

∆ik∆
>
ik + βId

)−1∑

i∈Ct
k

∆ikYi , ∆ik
.
= X i −X

t
k ,

btk
.
=

1

|Ctk|
∑

i∈Ct
k

Yi − (X t
k)

>atk , X
t
k
.
=

1

|Ctk|
∑

i∈Ct
k

X i , k = 1, . . . , Kt .
(6.15)

In the “assignment step” LSPA regroups the data according to the induced

partition of the max-affine model Mt:

Ĉt+1
k

.
=
{
i = 1, . . . , n

∣∣X>
i a

t
k + bk = fn(Mt;X i)

}
, k = 1, . . . , Kt ,

Pt+1 =
{
Ct+1
1 , . . . , Ct+1

Kt+1

} .
=
{
Ĉt+1
1 , . . . , Ĉt+1

Kt

}
\ {∅} ,

(6.16)

where ties are broken arbitrarily. The pseudocode of LSPA is given as Algo-

rithm 6.3.

As the alternating optimization of LSPA is not guaranteed to converge, the

algorithm is terminated after twait iterations counted from the last improve-

ment of the emirical risk. An undesirable property of LSPA is that it is very

sensitive to the initial partition P0, because fitting a “bad cell” can produce
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1. input: training set Dn, partition P0, regularizer β, iterations twait
2. t← 1, tmax ← twait, M∗ ← ∅, E∗ ←∞
3. while t ≤ tmax do

4. Mt ← fitting of partition Pt by (6.15) with β
5. Et ← Rn

(
fn(Mt; · )

)
using ` = `sq

6. if Et < E∗ then

7. M∗ ←Mt, E∗ ← Et, tmax ← t+ twait
8. end if

9. Pt+1 ← induced partition of Mt by (6.16)
10. t← t+ 1
11. end while

12. output: model M∗ = {(a∗
k, b

∗
k) : k = 1, . . . , K∗}

Algorithm 6.3: Least Squares Partition Algorithm (LSPA) training a max-
affine estimator by alternating optimization.

a hyperplane which becomes the only active one, thereby inducing a partition

having only one cell and eliminating all other hyperplanes in a single step. For

this reason, Magnani and Boyd (2009) propose restarting Algorithm 6.3 mul-

tiple times from random Voronoi partitions and tracking the best max-affine

model having the smallest empirical risk over the whole training process. They

did not provide any guideline for setting the size of the initial Voronoi parti-

tions K0.

Here, we propose initializing LSPA by random Voronoi partitions with

K0
.
= dnd/(d+4)e cells which is the largest number needed for worst-case perfor-

mance (Theorem 5.6). Furthermore, we draw the centers of the cells uniformly

from {X 1, . . . ,X n} without repetition as mentioned by Balázs et al. (2015,

Section 5). Formally, we set

P0
.
= {C01 , . . . , C0K0

} , and for all k = 1, . . . , K0,

C0k
.
=
{
j = 1, . . . , n

∣∣ ‖X ik −X j‖ = min
l=1,...,K0

‖X l −X j‖
}
,

(6.17)

where i1, . . . , iK0 ∈ {1, . . . , n} are drawn uniformly without repetition (that is

ik = il if and only if k = l, for all k, l = 1, . . . , K0).

The following experiment compares LSPA (with twait = 10, β = 10−6, and

various restart numbers R = 10, 30, 50) to cross-validated ADMM (cvADMM,

Section 6.1.5) on problems (6.1). The results presented on Figure 6.6, show

that LSPA improves the excess risk compared to cvADMM for problems f lfq
∗
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Figure 6.6: Comparison of LSPA and cross-validating ADMM (cvADMM) on
discussion problems f fq

∗ , fhq
∗ , f lfq

∗ , f lhq
∗ for dimension d = 8 and sample sizes

n = 100, 250, 500, 750, 1000, 1250, 1500. Averages of 100 experiments with
standard deviation error bars are shown for training times (in seconds), model
size, and excess risk Lµ(fn) with ` = `sq measured on 106 new samples for each
experiment.

and f lhq
∗ where the max-affine representation is exact, otherwise it is worse for

problems f fq
∗ and fhq

∗ . While the LSPA model size is significantly larger for f fq
∗ ,

fhq
∗ than for f lfq

∗ , f lhq
∗ as it is needed for a more accurate representation, it is

still far below the bound dnd/(d+4)e suggested by Theorem 5.6 which explains

the underfitting effect on these “difficult” problems. However, working with

such reduced model sizes LSPA trains much faster than the algorithms we

considered in Section 6.1, even for R = 50 repetitions which looked quite

stable for these examples.

Figure 6.6 also presents an LSPA variant (LSPA+) that performs a post-

processing step by solving the partitioned LSE problem (Section 6.1.1) over

the partition induced by the max-affine estimator obtained by LSPA. For this,

we use ADMM with a slightly different stopping rule, that terminates the al-

gorithm when the change in the empirical risk and the amount of constraint
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violations drop under some threshold (we use 10−6, dictated by that for 64 bit

floats 10−8 ≈ √ε where ε is the machine precision). Surprisingly, LSPA+ barely

changes the performance of LSPA regarding empirical and excess risks, indi-

cating that the least squares fit of the LSPA partition is “nearly” a local

optimum.

To summarize, LSPA works well for the examples (6.1), but it is unclear

how many restarts are necessary in general and the algorithm might overfit

by producing cells with too few data points. The following methods try to fix

these issues by constructing the partition “more carefully”.

6.2.2 Convex adaptive partitioning algorithm

The Convex Adaptive Partitioning (CAP) algorithm (Hannah and Dunson,

2013) proposes an incremental cell splitting partitioning technique and com-

bines it with an LSPA step. Over the iterations, CAP also maintains a min-

imum cell size which makes hyperplane fitting more “reliable” and improves

robustness against overfitting.

CAP builds the partition incrementally in each iteration by splitting one

cell using a linear cut. Because there are too many such linear cuts, CAP

considers only a subset along specific directions and a few cut points. Formally,

CAP splits the k-th cell along the j-th coordinate and v-th “knot” as

C ′k
.
=
{
i ∈ Ck : a>

kX i + bk ≥ ckjv
}
, C ′K+1

.
=
{
i ∈ Ck : a>

kX i + bk > ckjv
}
,

ckjv
.
=

v

v∗ + 1
min{Xij : i ∈ Ck}+

(
1− v

v∗ + 1

)
max{Xij : i ∈ Ck} , (6.18)

where X i = [Xi1 . . .Xid]>, j = 1, . . . , d, and v = 1, . . . , v∗. Among the Kdv∗

possible cuts, only those partitions PK+1
.
= (PK \ {Ck}) ∪ {C ′k, C ′K+1} are con-

sidered for which the new cells C ′k, C ′K+1 also maintain the minimum size s∗.

Then the new cells are fitted by ridge regression and the model with the lowest

empirical risk is selected. Finally, at the end of the CAP iteration, an LSPA

step is performed for the chosen model, when the induced partition of the

hyperplanes maintains the minimum cell size requirement.

The CAP max-affine training method is shown as Algorithm 6.4. In each

iteration, CAP adds one new cell to the current partition and also adds one
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new hyperplane. The new partition is obtained by splitting a cell (step 5),

1. input: training set Dn, minimum cell size s∗, knot number v∗
2. P1 ← single cell partition {{1, . . . , n}}
3. M1 = {(a1, b1)} ← hyperplane fitting P1

4. for K = 2, 3, . . . do
5. {PK} ← propose new partitions by splitting the cells of PK−1

as described by (6.18) using v∗ and s∗
6. stop if proposal set {PK} is empty
7. {MK} ← compute new models using MK−1

by fitting the new cells of the partitions in {PK}
8. (MK , PK)← model and its partition in {MK ,PK}

with the smallest empirical risk
9. P̂K ← induced partition of MK by (6.16)

10. if every cell of P̂K has size at least s∗ then

11. PK ← P̂K , MK ← fitting of partition P̂K by (6.15) with β = 0
12. end if

13. end for

14. M∗ ← select the best model from M1, . . . ,MK

which minimizes the approximate GCV error
15. output: model M∗ = {(a∗

k, b
∗
k) : k = 1, . . . , K∗}

Algorithm 6.4: Convex Adaptive Partitioning (CAP) algorithm training a
max-affine estimator by incremental cell splitting.

and the new model is created by taking the old one and fitting the two cells

of the split (step 7). Then the best model is selected among all proposed

ones with the lowest empirical risk (step 8). At the end, an LSPA iteration is

performed, but accepted only if the induced partition satisfies the minimum

cell size requirements (steps 9 to 12). The algorithm terminates when there

are no more possible splits due to the minimum cell size requirement (step 6)

and finally returns the best model minimizing an approximate version of the

Generalized Cross-Validation (GCV) error (step 14) as described by Hannah

and Dunson (2013, Section 5).

We tested CAP on our discussion problems (6.1) and summarize the results

on Figure 6.7. We ran CAP with knot number v∗ = 10, and set the minimum

cell size s∗
.
= max{2(d+1), n/(D∗ ln(n))} withD∗ = 3 orD∗ = 10, as suggested

by Hannah and Dunson (2013, Section 3.1).7 Here we point out that the choice

of s∗ is crucial for the behavior of CAP. First, the definition of s∗ upper bounds

7Their paper has a typographical error having min instead of max in the definition of s∗.
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Figure 6.7: Comparison of CAP, LSPA (R = 50), and cvADMM (u∗ = 10)
on discussion problems f fq

∗ , fhq
∗ , f lfq

∗ , f lhq
∗ . The dimension is d = 8 and the

sample sizes are n = 100, 250, 500, 750, 1000, 1250, 1500. Averages of 100
experiments with standard deviation error bars are shown for training times
(in seconds), model size, and excess risk Lµ(fn) measured on 106 new samples
for each experiment.

the number of hyperplanes by D∗ ln(n). Then, because CAP terminates only

when there are no more splits available, this logartihmic bound on the model

size is also the cause of its attractive speed. This can be observed on Figure 6.7

showing that on all problems regardless of the size of the final max-affine model

using D∗ = 10 is significantly slower than D∗ = 3. Furthermore, the results

also show that using larger models increase the variance of CAP for problems

with small max-affine regression functions.

Figure 6.7 also shows a CAP variant (CAP+) which performs a post–

processing step by ADMM Algorithm 6.2 in the same way as it has been

performed for LSPA in Section 6.2.1. Similar to LSPA+, CAP+ provides only

a small variance improvement for the excess risk.

To summarize, CAP can provide a training speedup compared to LSPA

by restricting its search process for models with smaller sizes. However, even
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a slight change of the model size bound can increase the training time by

much, even if the proposed bound is logarithmic in the sample size n, which is

significantly less than dnd/(d+4)e, the optimal value suggested by Theorem 5.6.

To address this issue, we describe another algorithm in the next section which

drops the logarithmic model size restriction.

6.2.3 Adaptive max-affine partitioning algorithm

In this section we present a new algorithm, called Adaptive Max-Affine Parti-

tioning (AMAP), which combines the partitioning technique of CAP, LSPA,

and the cross-validation scheme of cvADMM. Our goal is to adapt the model

size and the training speed to the regression problem.

Similar to CAP, AMAP builds the model incrementally by splitting a cell

and improving the partition using LSPA. The AMAP model improvement

step is given by Algorithm 6.5. AMAP performs coordinatewise cell splitting

(steps 5 to 15), just as CAP, however, AMAP makes the split always at the

median (steps 6 and 7) instead of checking multiple cut points. This saves

computation time, but can also create worse splits. To compensate for this

loss in quality, AMAP runs a restricted version of LSPA (steps 18 to 23) not

just for a single step as CAP, but until the candidate model improves the

empirical risk and its induced partition satisfies the minimum cell requirement

(step 23). We also mention that indices {i ∈ Ck : Xij = mj} are assigned to

Cle and Cgt (step 7) in order to preserve the minimum cell requirement.

Notice that the difference between M ′ and M is only two hyperplanes

(step 10), so the number of arithmetic operations for computing E ′ (step 11)

can be improved from O(nKd) to O(nd). Further, the cost of ridge regressions

(steps 8 and 9) is O(|Ck|d2). Hence, the computational cost of the entire cell

splitting process (steps 2 to 17) is bounded by O(max{K, d}d2n). For the

LSPA part, the partition fitting (step 21) is O(nd2) and the error calculation

(step 22) is O(nKd). So, the cost of a single LSPA iteration (steps 19 to 22)

is bounded by O(max{K, d}dn), implying that the cost of Algorithm 6.5 is

bounded by O
(
max{tLSPA, d}max{K, d}dn

)
, where tLSPA denotes the number

of LSPA iterations.
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1. input: training set Dn, model M = {(ak, bk) : k = 1, . . . , K},
partition P = {C1, . . . , CK}, empirical risk E,
minimum cell size s∗, regularizer β

{cell splitting}
2. M ′

∗ ←M,E ′
∗ ← E, P ′

∗ ← P
3. for all k = 1, . . . , K do

4. if |Ck| ≥ 2s∗ then

5. for all j = 1, . . . , d do

6. mj ← median({Xij : i ∈ Ck})
7. Cle ← {i ∈ Ck : Xij ≤ mj}, Cgt ← {i ∈ Ck : Xij ≥ mj}
8. (ale, ble)← ridge regression on {(X i,Yi) : i ∈ Cle} with β
9. (agt, bgt)← ridge regression on {(X i,Yi) : i ∈ Cgt} with β
10. M ′ ←

(
M \ {(ak, bk)}

)
∪ {(ale, ble), (agt, bgt)}

11. E ′ ← Rn

(
fn(M

′; · )
)

12. if E ′ < E ′
∗ then

13. M ′
∗ ←M ′, E ′

∗ ← E ′, P ′
∗ ← (P \ {Ck}) ∪ {Cle, Cgt}

14. end if

15. end for

16. end if

17. end for

{running LSPA}
18. repeat

19. M∗ ←M ′
∗, E∗ ← E ′

∗, P∗ ← P ′
∗

20. P ′
∗ ← induced partition of M∗ by (6.16)

21. M ′
∗ ← fitting of partition P ′

∗ by (6.15) with β
22. E ′

∗ ← Rn

(
fn(M

′
∗; · )

)

23. until minC∈P ′
∗
|C| ≥ s∗ and E ′

∗ < E∗
24. output: model M∗, partition P∗, empirical risk E∗

Algorithm 6.5: Adaptive max-affine partitioning (AMAP) model improvement
step using incremental cell splitting and LSPA.

One problem with this algorithm is that coordinatewise cell splitting is

not rotation invariant. To fix this, we run AMAP after a pre-processing step,

which uses thin singular value decomposition (thin-SVD) to drop redundant

coordinates and align the data along a rotation invariant basis. Formally,

let the raw (but already centered) data be organized into X ∈ R
n×d and

y ∈ R
n. Then, we scale the values [Y1 . . .Yn]> .

= y/max{1, ‖y‖∞}, and

decomposeX by thin-SVD asX = USV >, where U ∈ R
n×d is semi-orthogonal,

S ∈ R
d×d is diagonal with singular values in decreasing order, and V ∈ R

d×d
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is orthogonal. Coordinates related to zero singular values are dropped8 and

the points are scaled by S as [X 1 . . .X n]
> .
= US/max{1, S11}, where S11 is

the largest singular value. Now observe that rotating the raw points X as

XQ with some orthogonal Q ∈ R
d×d only transforms V to Q>V and does not

affect the pre-processed points X 1, . . . ,X n. Finally, we note that thin-SVD

can be computed using O(nd2) arithmetic operations (with n ≥ d),9 which is

even less than the asymptotic cost of Algorithm 6.5.

AMAP is presented as Algorithm 6.6, and run using uniformly shuffled

(and pre-processed) data Dn and a partition {F1, . . . , Fu∗} of {1, . . . , n} hav-
ing about equally sized cells as described in Section 6.1.5. As before, the

regularizer β (we use 10−6) is set to a small value only to ensure numerical

stability.

For model selection, AMAP replaces the approximate GCV scheme of CAP

by u∗-fold cross-validation (steps 9 to 20) and terminates when the cross-

validation error (step 15) of the best model set M∗ (steps 8 and 17) cannot

be further improved for twait iterations, similarly as done by cvADMM. At the

end, the final model is chosen from the model set M∗ with the best cross-

validation error, and minimizes the empirical risk on the entire data (step 21).

AMAP starts with models having a single hyperplane (steps 2 to 7) and

increments each model by at most one hyperplane in every iteration (step 12).

Notice that if AMAP cannot find a split for a modelMu to improve the empir-

ical risk Eu, the update for model Mu (steps 12 and 13) can be skipped in the

subsequent iterations as Algorithm 6.5 is deterministic. We also mention that

for the minimum cell size, we use s∗
.
= max{2(d+1), dlog2(n)e} allowing model

sizes up to O
(
nd/(d+4)/ ln(n)

)
, which is enough for near-minimax performance

(Theorem 5.6).

An empirical comparison of AMAP, CAP, LSPA, and cvADMM is provided

by Figure 6.8 on the four discussion problems f fq
∗ , fhq

∗ , f lfq
∗ , and f lhq

∗ . Observe

that the computational cost of AMAP grows with the model size, preserving

8By removing columns of U and V , and columns and rows of S.
9First decompose X by a thin-QR algorithm in O(nd2) time (Golub and Loan, 1996,

Section 5.2.8) as X = QR, where Q ∈ R
n×d has orthogonal columns and R ∈ R

d×d is upper
triangular. Then apply SVD for R in O(d3) time (Golub and Loan, 1996, Section 5.4.5).
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1. input: training set Dn, minimum cell size s∗,
folds F1, . . . , Fu∗ , iterations twait, regularizer β

{initialization}
2. for u = 1, . . . , u∗ do

3. Pu ← {Fu} with Fu .
= {1, . . . , n} \ Fu

4. Mu = {(au1 , bu1)} ← ridge regression on {(X i,Yi) : i ∈ Fu} with β
5. Eu ← |Fu|−1

∑
i∈Fu
|fn(Mu;X i)− Yi|2

6. Eu ← |Fu|−1
∑

i∈Fu
|fn(Mu;X i)− Yi|2

7. end for

8. M∗ ← {M1, . . . ,Mu∗}, E∗ ← 1
u∗

∑u∗
u=1Eu

{cross-validation training}
9. t← 1, tmax ← twait
10. while t ≤ min{tmax, dnd/(d+4)e} do
11. for u = 1, . . . , u∗ do

12. (Mu, Pu, Eu)← update by Algorithm 6.5 using
{(X i,Yi) : i ∈ Fu}, Mu, Pu, Eu, s∗, β

13. Eu ← |Fu|−1
∑

i∈Fu
|fn(Mu;X i)− Yi|2

14. end for

15. E ← 1
u∗

∑u∗
u=1Eu

16. if E < E∗ then

17. M∗ ← {M1, . . . ,Mu∗}, E∗ ← E, tmax ← t+ twait
18. end if

19. t← t+ 1
20. end while

{choosing the final model}
21. M∗ ← argminM∈M∗

Rn

(
fn(M ; · )

)

22. output: model M∗

Algorithm 6.6: Cross-validated adaptive max-affine partitioning (AMAP).

a fast training for the linearized problems f lfq
∗ and f lhq

∗ . Furthermore, the

freedom of choosing larger models did not increase the variance of AMAP as

it did for CAP on the linearized problems, while the cross-validation scheme

significantly improved the excess risk for small sample sizes. On the “difficult”

problems, AMAP also provides the best excess risk, although both CAP and

LSPA are close.

Finally, notice that the post-trained version AMAP+ provides almost iden-

tical results to AMAP, only a slight improvement can be observed on Figure 6.8

for problems f fq
∗ and fhq

∗ . Based on the empirical results of LSPA+, CAP+, and

AMAP+, it seems that there are many local optima of (6.14) which are close

to an “LSPA equilibrium”. Clearly, this raises the question whether “good
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Figure 6.8: Comparison of AMAP, CAP (D∗ = 10), LSPA (R = 50), and
cvADMM (u∗ = 10) on discussion problems f fq

∗ , fhq
∗ , f lfq

∗ , f lhq
∗ . The dimension

is d = 8 and the sample sizes are n = 100, 250, 500, 750, 1000, 1250, 1500.
Averages of 100 experiments with standard deviation error bars are shown for
training times (in seconds), model size, and excess risk Lµ(fn) measured on
106 new samples for each experiment.

quality” solutions are of this type or using LSPA restricts the partition search

too much. We do not know the answer for sure, but some insight suggesting

the former is provided later in Section 8.3.
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Chapter 7

Evaluation of

max-affine estimators

So far we studied max-affine training algorithms on the discussion problems

f fq
∗ , fhq

∗ , f lfq
∗ , f lhq

∗ (6.1) for which we kept the dimension (d = 8) and the sample

sizes (100 ≤ n ≤ 1500) small enough allowing us to compute max-affine LSEs

(Section 6.1). In this chapter, we consider larger convex regression problems to

evaluate heuristic max-affine estimators (Section 6.2) on randomized synthetic,

real data sets, and stochastic programming problems.1

While the randomized synthetic problems (Section 7.1) aim to reveal the

strengths and weaknesses of max-affine estimators, the real world data (Sec-

tion 7.2) and the stochastic programming problems (Section 7.3) focus on the

applications presented in Chapter 2.

To relate max-affine estimators to other regression techniques, we provide

results for Multivariate Adaptive Regression Splines (MARS, Friedman, 1991)

with a piecewise cubic model as implemented by Jekabsons (2016),2 and Sup-

port Vector Regression (SVR, Vapnik, 1998, Chapter 11) with a radial basis

function (RBF) kernel as implemented by Chang and Lin (2011).3 For the

training of the max-affine estimators, we consider AMAP, CAP (D∗ = 3 or 5),

and LSPA (R = 50).

1To run the experiments, we used the same hardware and software tools as mentioned
at the beginning of Chapter 6.

2Default parameter values were used (ARESLab ver. 1.10.3).
3ε-SVR using RBF kernel were trained by 5-fold cross-validation using C ∈ {1, 5, 10} and

γ ∈ {1/(4d), 1/d, 4/d}. Defaults were used for the other parameters (LIBSVM ver. 3.21),
and the data was centered and scaled (using X i/maxi,j |Xij | and Yi/maxi |Yi|).
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7.1 Randomized synthetic problems

In this section we consider synthetic convex regression problems with randomly

generated regression functions. The goal of these tests is to reveal the strengths

and weaknesses of max-affine estimators providing a general convex regression

benchmark which is (likely) harder to overfit.

7.1.1 Quadratic and max-affine targets

First, we consider randomized versions of the discussion problems (6.1) on a

larger scale than in the previous sections by increasing the dimension d to 10

and 20, while increasing the sample size range to 103 ≤ n ≤ 104. The parame-

ters H∗,f∗, c∗ of f
fq
∗ and fhq

∗ and the discretization points {x∗
k : k = 1, . . . , L∗}

of f lfq
∗ and f lhq

∗ are generated randomly4 for each problem instance (while they

were kept fixed in the above sections). The number of discretization points is

always set as K∗
.
= 2d.

The results for d = 10 are presented on Figure 7.1, showing that max-affine

estimators perform worse than SVR on the quadratic problems f fq
∗ and fhq

∗ , and

better on the max-affine ones f lfq
∗ and f lhq

∗ , as expected. Comparing Figure 7.1

to Figure 6.8 notice that AMAP performs much better than CAP on problems

f fq
∗ and f lfq

∗ for the randomized setting than for the fixed configuration of (6.1)

used in Chapter 6.

Surprisingly, MARS worked so poorly5 that it appears only on the plot

of fhq
∗ with by far the worst result, which suggests that its default parameter

setting is not universal and in particular does not fit to these problems well. As

MARS was the slowest algorithm, we could not afford to use cross-validation

to tune even one of its many parameters.

The differences among max-affine estimators (AMAP, LSPA, CAP) grow

even further when the dimension is increased from d = 10 to d = 20 as

presented on Figure 7.2, but the overall picture remains similar.

4The value of c∗ is uniformly drawn from [−1, 1], H∗

.
= (1/d)Ĥ>

∗ Ĥ∗, and the coordinates
of Ĥ∗ and f∗ are drawn independently from the standard normal distribution.

5Although MARS was rarely comparable to the max-affine estimators and SVR, it was
always significantly better than ridge regression as expected.
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Figure 7.1: Performance of max-affine estimators (AMAP, LSPA, CAP), SVR
and MARS on randomized quadratic (f fq

∗ , fhq
∗ ) and max-affine (f lfq

∗ , f lhq
∗ )

problems. The dimension is d = 10 and the sample sizes are n = 103, 2500,
5000, 7500, 104. Averages of 100 experiments with standard deviation error
bars are shown for the training time (in minutes), and the excess risk Lµ(fn)
measured on 106 new samples for each experiment.
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Figure 7.2: Performance of max-affine estimators (AMAP, LSPA, CAP), SVR
and MARS on randomized quadratic (f fq

∗ , fhq
∗ ) and max-affine (f lfq

∗ , f lhq
∗ )

problems. The dimension is d = 20 and sample sizes are n = 103, 2500, 5000,
7500, 104. Averages of 100 experiments with standard deviation error bars are
shown for the training time (in minutes), and the excess risk Lµ(fn) measured
on 106 new samples for each experiment.
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7.1.2 Sum-max-affine and log-sum-exp targets

Based on the results of Section 7.1.1, one might think that max-affine esti-

mators work better for piecewise linear targets than for smooth ones. In this

section we show that it is not the case by testing the algorithms on sum-max-

affine (f sma
∗ , piecewise linear) and log-sum-exp (f lse

∗ , smooth) convex functions,

defined as

f sma
∗ (x)

.
=

S∗∑

s=1

max
k=1,...,K∗

a>
k x+ bk , f lse

∗ (x)
.
= ln

K∗∑

k=1

exp(a>
k x+ bk) ,

where the parameters ak, bk are generated randomly the same way as for the

linearized quadratic function f lfq
∗ in Section 7.1.1. Further, we set S∗

.
= 2d,

K∗
.
= d, sample covariates uniformly X ∼ U(X) over X

.
= [−2, 2]d, and use

the same standard Gaussian noise model as for (6.1).

The results are presented by Figure 7.3 showing that max-affine estimators
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Figure 7.3: Performance of max-affine estimators (AMAP, LSPA, CAP), SVR
and MARS on randomized sum-max-affine (f sma

∗ ) and log-sum-exp (f lse
∗ ) prob-

lems. The dimensions are d = 10, 20 and sample sizes are n = 103, 2500, 5000,
7500, 104. Averages of 100 experiments with standard deviation error bars are
shown for the training time (in minutes), and the excess risk Lµ(fn) measured
on 106 new samples for each experiment.

are weaker for sum-max-affine functions and better for log-sum-exp targets

compared to SVR and MARS, especially as the complexity of the regression
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functions grow. In fact, noting that sum-max-affine representations can ap-

proximate quadratic functions well (see Section 8.2) and log-sum-exp functions

are just the smoothened versions of max-affine ones, these results are not so

surprising (except for MARS which works much better for f sma
∗ than for f fq

∗ ),

but rather match the conclusions of Section 7.1.1.

7.2 Real problems

Here we evaluate the algorithms using 100-fold cross-validation on a few real

data sets coming from convex regression settings.

7.2.1 Convex estimation of average wages

We consider the estimation of wages (Yi) based on education and experience

(X i ∈ R
2) using two data sets. The first data set (BW, Verbeek, 2004, Sec-

tion 3.5) contains 1471 entries (after removing one outlier) of Belgian hourly

wages with education level and years of experience. The second data set (SL,

Ramsey and Schafer, 2002, Chapter 10, Exercise 29) contains 25601 entries

(after removing 31 outliers) of US weekly wages (Yi) with years of education

and experience (X i ∈ R
2). This was proposed as a convex regression bench-

mark by Hannah and Dunson (2013). The average output of this data is also

shown by Figure 2.1 and explained in Section 2.1.

The results for the BW and SL data sets are presented by Figure 7.4, where

the split plot on the left shows mean and standard deviation estimates at the

bottom (SL values were scaled by 0.01) measured by 100-fold cross-validation,

while the top part zooms (×15) the tip of the Rµ(fn) mean estimates and

provides them with standard errors (standard deviation divided by the root

number of experiments, which is 10). The bottom part shows that both prob-

lems BW and SL have a significant amount of measurement noise (Yi−f∗(X i)),

and all algorithms are as good as linear LSE (ridge) for prediction tasks using

the risk Rµ(fn).

However, comparing the algorithms for estimation tasks requires the excess

risk Lµ(fn, f∗), which cannot be measured because f∗ is unknown. Using the
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Figure 7.4: Comparison of max-affine estimators (AMAP, LSPA, and CAP),
MARS, and SVR on the average wage estimation problems (BW and SL) using
100-fold cross-validation.

constant shift Lµ(fn, f∗) = Rµ(fn) − Rµ(f∗) for the squared loss ` = `sq, we

can at least compare the algorithms by the mean estimates of Rµ(fn), which is

equivalent to ranking the algorithms by the (non-measurable) mean estimates

of Lµ(fn, f∗). Such ranking is provided by the left-top part of Figure 7.4 using

standard error “confidence” bars, showing that linear estimates are indeed

the best on the BW problem, but not on the SL one, where convex estimators

compete with state-of-the-art non-convex regression techniques such as MARS

and SVR. Of course, this picture is not quite complete without knowing the

standard deviation of these algorithms regarding the excess risk Lµ(fn, f∗),

which unfortunately cannot be measured without evaluating the regression

function f∗ at the data points X 1, . . . ,X n.

Finally, notice on Figure 7.4 that AMAP is faster than CAP and much

faster than LSPA (run for about 85 seconds) while its risk performance is

about the same, which is due to its improved efficiency for problems fitted with

small max-affine models (on the SL problem, the number of used hyperplanes

is about 7 to 9 for AMAP, LSPA and CAP as well, while it is even less for the

BW case).
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7.2.2 Convex fitting of aircraft profile drag data

Now consider the XFOIL aircraft design problem which requires the max-affine

approximation of a non-convex regression function (see Section 2.2 for more

details). The regression function can be measured without noise by the XFOIL

simulator and its shape is not far from being convex, hence using max-affine

estimators is reasonable. We also point out that the absence of measurement

noise (Yi = f∗(X i) a.s.) implies Rµ(fn) = Lµ(fn, f∗), so we can observe

the standard deviation of the estimates, not just their means as for the wage

estimation problem above. The XFOIL data set (Hoburg and Abbeel, 2014)

contains 3073 entries of profile drag coefficient data (Yi) with lift coefficient,

Reynolds number and wing thickness ratio (X i ∈ R
3).

The result is presented by Figure 7.5 showing that the problem is highly

nonlinear (Lµ(fn, f∗) ≈ 0.06± 0.015 for ridge regression) and using max-affine

0

0.01

0.02

0.03

0

5

10

15

20

L
µ
(f
n
,f

∗)

ridge
AMAP

MARS
SVR

se
co
n
d
s

LSPA(R = 50)
CAP(D∗ = 3)

zoom ×1000

Figure 7.5: Comparison of max-affine estimators (AMAP, LSPA, CAP),
MARS, and SVR on the XFOIL aircraft profile drag approximation problem
using 100-fold cross-validation.

estimators is not just a necessary compromise for the application, but also very

attractive as they significantly outperform the non-convex approaches (there

is almost a factor of 8 between the excess risk of AMAP and SVR).

Finally, the zoomed picture inside the left part of Figure 7.5 compares the

max-affine estimators by showing the tip of the excess risks for AMAP, LSPA,
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and CAP with their standard deviations. To improve performance, AMAP

uses about twice as many hyperplanes (28± 3) than LSPA (15± 3) and CAP

(16± 1), which explains its longer training time compared to CAP.

7.3 Stochastic programming problems

In this section we use max-affine estimators to approximate the cost-to-go

functions of convex stochastic programming (SP) problems. These SP prob-

lems were defined in Section 2.3 by (2.3), and they require the computation of

π1(x0, z0), where

πt(xt−1, zt−1)
.
= argmin

xt∈Xt(xt−1,zt−1)

Jt(xt) ,

Jt(xt) = E
[
ct(xt,Z t) + Jt+1(πt+1(xt,Z t))

]
,

(7.1)

for all t = 1, . . . , T , and πT+1(·, ·) .
= ⊥ with JT+1(⊥) = 0. The sequence

π
.
= (π1, . . . , πT ) represents an optimal policy.

We only consider SP problems with convex polyhedral decision constraints

written as Xt+1(xt,Z t) = {xt+1 : Qt+1xt+1 +Wt+1(Z t)xt ≤ ct+1(Z t)} which
are non-empty for all possible realizations of xt and Z t. As the coefficient Qt+1

of the decision variable xt+1 is independent of random disturbances Z t and

the constraint xt ∈ Xt(xt−1, zt−1) for policy πt is feasible for any xt−1 and

zt−1, these SP problems are said to have a fixed, relatively complete recourse

(Shapiro et al., 2009, Section 2.1.3). We will exploit the fixed recourse property

for sampling (7.2), while relatively complete recourse allows us not to deal with

infeasibility issues which could make these problems very difficult.6

In order to construct approximations Ĵt to the cost-to-go function Jt, we

need “realizable” decision samples xt,i at stage t. We generate these incre-

mentally during a forward pass for t = 1, 2, . . . , T , where given m disturbances

zt,1:m
.
= {zt,j : j = 1, . . . ,m} and n decisions xt,1:n

.
= {xt,i : i = 1, . . . , n} at

stage t, we uniformly sample new decisions for stage t+ 1 from the set

X̂t+1
.
=
{
xt+1 : Qt+1xt+1 ≤ max

i=1,...,n,
j=1,...,m

{
ct+1(zt,j)−Wt+1(zt,j)xt,i

}}
, (7.2)

6Infeasible constraints can be equivalently modeled by cost-to-go functions assigning
infinite value for points outside of the feasible region. Then notice that the estimation of
functions with infinite magnitude and slope can be arbitrarily hard.
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where the maximum is taken component-wise. To uniformly sample the convex

polytope X̂t+1, we use the Hit-and-run Markov-Chain Monte-Carlo algorithm

(Smith, 1984, or see Vempala, 2005) by generating 100 chains (to reduce sample

correlation) each started from the average of 10 randomly generated border

points, and discarding d2t+1 samples on each chain during the burn-in phase,7

where dt+1 is the dimension of xt+1.

Then, during a backward pass for t = T, T − 1, . . . , 1, we recursively use

the cost-to-go estimate of the previous stage Ĵt+1(·) to approximate the values

of the cost-to-go function Jt at the decision samples xt,i generated during the

forward pass, that is

Jt(xt,i) ≈ yt,i
.
=

1

m

m∑

j=1

ct(xt,i, zt,j) + min
xt+1∈Xt+1(xt,i,zt,j)

Ĵt+1(xt+1) (7.3)

for all t = 1, . . . , T , and ĴT+1(·) ≡ 0. This allows us to set up a regression

problem with data {(xt,i, yt,i) : i = 1, . . . , n} which is used to construct an

estimate Ĵt(·) of the cost-to-go function Jt(·).
We call the resulting method, shown as Algorithm 7.1, full approximate

dynamic programming (fADP) because global approximations to the cost-to-

go functions are constructed.

When the cost-to-go functions Jt are approximated by “reasonably sized”

convex piecewise linear representations Ĵt, the minimization problem in (7.3)

can be solved efficiently by linear programming (LP). In the following sections,

we exploit the speed of LP solvers for fADP using either AMAP or CAP as

the regression procedure. Then, the computational cost to run Algorithm 7.1

is mostly realized by solving Tnm LP tasks for (7.3) and training T esti-

mators using the regression algorithm REG. Although using max-affine LSEs

(Section 6.1) for REG is fast enough for sample sizes up to n ≤ 1500, the pro-

vided max-affine representations using Θ(n) number of hyperplanes turn the

LP tasks too costly to solve and preventing Algorithm 7.1 from terminating

within a reasonable time (at least using our hardware and implementation).

7The choice was inspired by the O(d2t+1) mixing result of the Hit-and-run algorithm
(Lovász, 1999).
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1. input: SP problem, number of trajectories n,
number of evaluations m, regression algorithm REG

2. x0,i ← x0 for all i = 1, . . . , n
3. z0,j ← z0 for all j = 1, . . . ,m
{forward pass}

4. for all t = 0, 1, . . . , T − 1 do

5. sample xt+1,1:n from X̂t+1 by (7.2) using xt,1:n, and zt,1:m
6. sample zt+1,1:m from the distribution of Z t+1

7. end for

{backward pass}
8. ĴT+1(·)← 0
9. for all t = T, T − 1, . . . , 1 do

10. compute yt,1, . . . , yt,n by (7.3) using Ĵt+1(·), xt,1:n, and zt,1:m

11. Ĵt(·)← REG({(xt,i, yt,i) : i = 1, . . . , n})
12. end for

13. output: cost-to-go functions Ĵt(·), t = 1, . . . , T

Algorithm 7.1: Full approximate dynamic programming (fADP) for construct-
ing global approximations to the cost-to-go functions of a stochastic program-
ming problem.

The situation is even worse for nonconvex estimators REG for which LP has

to be replaced for (7.3) by a much slower nonlinear constrained optimization

method using perhaps randomized restarts to minimize the chance of being

trapped in a local minima. Furthermore, the MARS and SVR implementa-

tions we have access to, do not provide gradient information, so minimization

over these representations require an even slower gradient-free nonlinear opti-

mization technique. With this, both MARS and SVR are impractical to use

in our test problems.

To evaluate the fADP algorithm on a SP problem for some regression

algorithm REG, we evaluate the greedy policy with respect to the learned cost-

to-go functions {Ĵt : t = 1, . . . , T}. More precisely, we run π̂
.
= (π̂1, . . . , π̂T )

with π̂t(xt−1, zt−1) ∈ argminxt∈Xt(xt−1,zt−1) Ĵt(xt) on 1000 episodes, and record

the average revenue (negative cost) as REV
.
= − 1

1000

∑1000
e=1

∑T
t=1 ct

(
x
(e)
t , z

(e)
t

)

over the episodes’ trajectories
{(

x
(e)
t , z

(e)
t

)
: t = 1, . . . , T

}
, e = 1, . . . , 1000.

We repeat this experiment 100 times for each regression algorithm REG,8 and

8The random seeds are kept synchronized, so every algorithm is evaluated on the same
set of trajectories. Furthermore, fADP algorithms with the same n and m parameters use
the same training data xt,1:n and zt,1:m for all t = 0, . . . , T .
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show the mean and standard deviation of the resulting sample.

7.3.1 Energy storage optimization

In this section we consider the energy storage optimization problem of Sec-

tion 2.3.1 using a solar energy source, a discounted nightly electricity pricing

model (Economy 7 tariff), and planning for a two days horizon on hourly basis

(T
.
= 48). Retail and wholesale price curves, along with the electricity demand

and energy production distributions of this model are shown on Figure 7.6 for

the two consecutive sunny days whose data is used in the experiments. The

0
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20
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1 12 24 36 48

hours

retail price (p)
wholesale price (w)

demand (D)
energy (E)

Figure 7.6: Parameters of the energy storage optimization problem. Retail (p)
and wholesale (w) price curves, energy demand (D) and production (E) distri-
butions with mean and standard deviation are shown for two-day long period.

distributions are truncated normal with support D ∈ [0, 15] and E ∈ [0, 12]

for demand and energy production, respectively and the storage has capacity

smax
.
= 20 with charge and discharge rates rc

.
= 4 and rd

.
= 10, respectively.

The model is initialized by s0
.
= 0, d1

.
= E[D1], and e1

.
= E[E1].

To evaluate fADP on this problem, we use the CAP and AMAP convex

regression techniques with multiple configurations determined by the number

of trajectories n generated for training (which is the sample size for the regres-

sion tasks as well), and the number of evaluations m used to approximate the

cost-to-go functions Jt at a single point (7.3). The result is presented on Fig-

ure 7.7, which also includes a “heuristic” algorithm to provide a baseline. The
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Figure 7.7: Energy storage optimization results for the fADP algorithm using
AMAP or CAP as the inner convex regression procedure. Results show the
total revenue (negative cost), and the training time in minutes for trajectories n
and cost-to-go evaluations m.

heuristic uses a fixed policy of immediately selling the solar energy preferrably

for demand (fed → max, feg ≥ 0, fes = 0), selling from the battery during

the day when demand still allows (fgs = 0, fsd ≥ 0), charging the battery

overnight (fgs → max, fsd = 0), and selling everything close to the last stage

(fgs = 0, fsd → max, fsg → max). This policy is much better than the optimal

policy without storage9 which scores 3227± 6.

The results of Figure 7.7 show that fADP using convex regression signif-

icantly outperforms the heuristic baseline algorithm when the sample size is

large enough. The regression algorithms prefer larger sample sizes n to better

sample quality m, although this significantly increases the computation time

for CAP to provide a small revenue increase comapred to AMAP.

7.3.2 Beer brewery optimization

Now consider operating a beer brewery as described in Section 2.3.2 by plan-

ning for a 48 weeks horizon on a fortnight basis (T
.
= 24). The demand

distributions for lager and ale beers are shown on Figure 7.8 with mean and

standard deviation. Both distributions are truncated normal with support

[0.1, 12]. The cost vectors are set to fixed values for all t = 1, . . . , T as

9Because p ≥ w, the optimal policy for smax = 0 minimizes the immediate cost by
fed

.
= min{E,D}, feg .

= max{0, E − fed}, and fes
.
= fsd

.
= fgs

.
= fsg

.
= 0.
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Figure 7.8: Lager and ale beer demand distributions for the beer brewery
optimization problem with mean and standard deviation are shown for a 48
weeks horizon.

ht
.
= [1 0.2 0.2 1 2 1 1 1 2]>, ct

.
= [20 10 5 1 1]>, and rt

.
= [90 50]>. Fur-

thermore, the ingredient requirement vectors for brewing are ba
.
= [1 1 1]>

and bl
.
= [0.5 0.9 0.8]> for ale and lager, respectively, and the capacity vec-

tor is k
.
= [10 10 10 10 ∞ 10 ∞ ∞ ∞]> to ensure the feasibility (relatively

complete recourse) requirements, as discussed at the beginning of Section 7.3.

Similar to the energy optimization case, we use the CAP and AMAP esti-

mators for fADP with various trajectory set sizes n and cost-to-go evaluation

numbers m. The results are presented on Figure 7.9. In this case, AMAP im-

proves the performance significantly by collecting revenue over 4100 compared

to CAP which stays around 3600.

However, the result also shows that the running time of AMAP also be-

come significantly larger than CAP. Based on the experience of Section 7.1,

the increased running time of AMAP indicates that large max-affine models

are needed to improve the accuracy of the cost-to-go approximations, which

increases the computational cost of the LP tasks of (7.3), and eventually slows

down the fADP algorithm significantly. Notice that using larger trajectory

sets n for AMAP provide better quality at the beginning, but the improved

sample quality with m = 100 eventually achieves the same using significantly

less computational resources.
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Figure 7.9: Beer brewery optimization results for fADP algorithm using
AMAP and CAP convex regression to approximate the convex cost-to-go func-
tions. Results show the revenue (negative cost), and the training time in
minutes for trajectories n and cost-to-go evaluations m.

Finally, we point out that scaling up the fADP algorithm for larger prob-

lems would require many improvements. One of these could be using more ex-

pressive convex piecewise-linear representations (see Section 8.2), which might

compress the LP tasks enough for the current solvers. Another important step

could be to use a LP algorithm which can more efficiently solve large num-

ber of similar LP problems with different right hand sides (see for example

Gassmann and Wallace, 1996). And eventually, it would become inevitable

to localize cost-to-go approximations to a fraction of the decision space, per-

haps by running fADP iteratively alternating between sampling and estimation

phases, and exploring at the boundary of the accurately approximated region

to find and avoid delayed rewards and costs. However, this goes far beyond

the scope of this thesis, and is thus left as future work.
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Chapter 8

Conclusions and future work

In this chapter we review the content of the previous chapters in the context

of a few selected future research directions in convex regression.

8.1 Beyond convexity

As our main regression result (Theorem 3.2) is general and valid beyond the

scope of convex regression, it is likely that the theoretical results of Chapter 5

can be generalized to the estimation of Lipschitz continuous functions. To

prove such result, one could consider using maxima of minima of affine (max-

min-affine) estimates (Bagirov et al., 2010, Section 2.2) which can represent

any continuous piecewise linear function (Gorokhovik et al., 1994).

As max-min-affine functions can be also rewritten as the difference of two

max-affine functions, these estimates are in the class of delta-convex map-

pings (difference of two convex maps), which can uniformly approximate any

continuous function (Bačák and Borwein, 2011, Proposition 2.2).

Then, the “only” work left is to prove an approximation rate for the class of

max-min-affine functions (or equivalently for the difference of two max-affine

maps) to Lipschitz continuous targets and replace Lemma 5.2 in the analysis

of Section 5.4. We believe this method is capable to deliver the minimax

convergence rate n−2/(2+d) (Györfi et al., 2002, Theorem 3.2 with p = 1) up

to logarithmic factors for max-min-affine estimators if their size parameter

(number of hyperplanes) are chosen appropriately, similarly as for the convex

case (Theorem 5.6).
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8.2 Sum-max-affine representations

For the estimation of convex functions, we focused on max-affine representa-

tions for which we have a theoretical analysis (Chapter 5), convex training al-

gorithms with a theoretical guarantee on their sample complexity (Section 6.1),

and scalable heuristic training methods (Section 6.2).

However, max-affine representations can be very inefficient for approxi-

mating “important” convex functions. For example, the Manhattan norm

x 7→ ‖Wx‖1 as a target (with some scaling matrix W ∈ R
d×d) can be repre-

sented exactly only by the maximum of 2d affine maps. Perhaps for a similar

reason, the empirical results of Section 7.1 showed that max-affine represen-

tations are not efficient for quadratic and sum-max-affine targets which are

important for many applications (Sections 7.2 and 7.3).

Now consider the sum of S max-affine functions with K1, . . . , KS hyper-

planes given as h(x)
.
=
∑S

s=1 maxk=1,...,Ks
a>
skx + bsk. Clearly, the class of

sum-max-affine functions includes the set of max-affine functions as a special

case by S = 1, hence ERM estimators (3.1) over sum-max-affine functions also

enjoy near-minimax rates (Theorem 5.6) as long as
∑S

s=1Ks = Θ(nd/(d+4)) and

S = 1 is allowed.

Further, observe that the Manhattan norm is a sum-max-affine function

using only 2d planes as ‖Wx‖1
.
=
∑d

s=1 |w>
s x| =

∑d
s=1 max{−w>

s x,w
>
s x},

where ws is the s-th row of W , that is W> .
= [w1 . . .wd]. This is a huge

improvement compared to the 2d hyperplanes used by max-affine maps.

More generally, the approximation result of max-affine maps (Lemma 5.2)

could be extended to convex targets having an additive structure written as

f(x)
.
=
∑S

s=1 fs(Ws x) with each fs : R
ds → R being convex and Ws ∈ R

ds×d,

providing an approximation bound O
(∑S

s=1K
−2/ds
s

)
. Then notice that by

rewriting a convex quadratic norm as ‖x‖2Q
.
= x>Qx =

∑d
s=1(q

>
s x)

2 for some

positive semi-definite matrix 0 � Q
.
=
∑d

s=1 qsq
>
s ∈ R

d×d, such approxima-

tion result provides an O(dK−2) bound, which is again a huge improvement

compared to the O(K−2/d) rate of max-affine maps.

103



However, we are not aware of any training algorithm for sum-max-affine

estimators which could adaptively set the S and the K1, . . . , KS parameters

based on the training data Dn. The only work we know in this direction is due

to Hannah and Dunson (2012) who studied various ensemble methods (bag-

ging, smearing, and random forests) to build sum-max-affine estimators com-

bining a fixed S number of max-affine maps trained by CAP (Section 6.2.2).

As these ensemble techniques require a relatively large S, they do not build

a compact representation, so they can be sensitive to overfitting and provide

computationally too expensive models for many applications including convex

stochastic programming (Section 7.3). Hence, we believe that adaptive train-

ing of compact sum-max-affine estimators are likely to significantly improve

the effectiveness and applicability of conex regression algorithms in the future.

8.3 Searching convex partitions

During the discussion of heuristic max-affine estimators (Section 6.2), the es-

timates of the considered training algorihms (LSPA, CAP and AMAP) could

not be substiantially improved by the partitioned LSE convex reformulation

(Section 6.1.1) over the induced partition. Hence, it seems that there exist par-

titions P = {Ck : k = 1, . . . , K} for which the cellwise least squares fit (that is

ridge regression on {(X i,Yi) : i ∈ Ck} with a small β for each k = 1, . . . , K)

is “nearly” a local optimum.

To investigate this issue, consider the following smooth approximation of

max-affine functions:

Lemma 8.1. Let h(z)
.
= maxk=1,...,K w>

k z and ĥt(z)
.
= t ln

∑K
k=1 exp(w

>
k z/t)

for some t > 0. Then 0 ≤ ĥt(z)− h(z) ≤ t ln(K) holds for all z.

Proof. Fix z arbitrarily and notice that h(z) ≤ ĥt(z) simply follows from

Jensen’s inequality. For the other side, let w∗ be such that w>
∗ z = h(z) and

observe that ĥt(z) = t ln
(
ew

>
∗ z/t

∑K
k=1 e

(wk−w∗)>z/t
)
≤ h(z) + t ln(K). �

Then, by replacing the max-affine functions f(x)
.
= maxk=1,...,K a>

k x+bk of

(6.14) with f̂t(x)
.
= t ln

∑K
k=1 e

w>
k
z/t using z> .

= [1 x>] and w>
k
.
= [bk a>

k ], we
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can compute the gradient of the modified objective L̂t
.
=
∑n

i=1(f̂t(X i) − Yi)2

with respect to the estimate parameters {wk : k = 1, . . . , K} as

∇wk
L̂t = 2

n∑

i=1

(
f̂t(X i)− Yi

) Z i e
w>

k
Zi/t

∑K
l=1 e

w>
l
Zi/t
→ 2

∑

i∈Ck

(
w>
k Z i − Yi

)
Wik(f)Z i

as t→ 0 ,

where Z
>
i

.
= [1 X

>
i ], Wik(f) = |{l = 1, . . . , K : w>

l Z i = f(X i)}|−1, and

P = {Ck : k = 1, . . . , K} is the induced partition of f . As breaking the ties

can be done by losing an arbitrarily small accuracy, we can assume without

loss of generality that Wik(f) = 1 for all i and k. Then setting the right side

to zero and solving it for wk (by adding a small regularizer βwk), we recover a

ridge regression estimate (Section 4.2.2) over the cell Ck, which is the cellwise

least squares fit over the induced partition, and also the “preferred” estimate

type of the training mehods in Section 6.2.

Although this limiting analysis is not precise (it does not imply that such

optimum exist), it still suggests that our empirical observations about “nearly

locally optimal” cellwise fitted max-affine estimators might admit a general

rule. Research in this direction could perhaps answer how much we might

lose by limiting the search of (6.14) for these cellwise fitted estimators and

provide further information on the “quality” of max-affine training algorithms

in Section 6.2.

In summary, while the thesis advanced our knowledge of nonparametric

shape constrained regression and sharpened the tools available for studying

these and related problems, much work remains to be done, especially in con-

nection to designing estimators which are efficient both in terms of their com-

putational cost and they way they use the samples. Such better techniques,

when used in multistage stochastic programming as outlined in this thesis per-

haps with clever sampling techniques, have the potential to give rise to exciting

novel, practical applications that may have major impact in several industries.

It shall be interesting to see whether these will indeed happen.
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Huang, R. and Szepesvári, C. (2014). A finite-sample generalization bound
for semiparametric regression: Partially linear models. In Kaski, S. and
Corander, J., editors, International Conference on Artificial Intelligence and
Statistics (AISTATS), volume 33 of JMLR W&CP.

Jekabsons, G. (2016). ARESLab: Adaptive regression splines toolbox for
Matlab/Octave (ver. 1.10.3). http://www.cs.rtu.lv/jekabsons/.

Jiang, D. R. and Powell, W. B. (2015). An approximate dynamic programming
algorithm for monotone value functions. CoRR. http://arxiv.org/abs/
1401.1590v6.
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Appendix A

Sub-Gaussian random vectors

and their Orlicz space

In this appendix we review a few important properties of sub-Gaussian random

vectors and their Orlicz space equipped with the norm ‖·‖Ψ2
.

Recall that a random variableW is called B-sub-Gaussian when it satisfies

sup
s∈R

E
[
es(W−EW)−s2B2/2

]
≤ 1 .

Examples of sub-Gaussian random variables include every Gaussian random

variable (see Buldygin and Kozachenko, 2000, Remark 1.3), and all bounded

random variables due to Hoeffding’s lemma (see Boucheron et al., 2012, Sec-

tion 2.6). The basic properties of sub-Gaussian random variables are summa-

rized by Lemma A.1.

Lemma A.1. Let the random variables W ,W1, . . . ,Wn be centered and sub-

Gaussian with B,B1, . . . , Bn, respectively. Then the following statements hold:

(a) max
{
P{W ≥ γ},P{W ≤ −γ}

}
≤ e−γ

2/(2B2), γ ≥ 0,

(b) P{|W| ≥ γ} ≤ 2e−γ
2/(2B2), γ ≥ 0,

(c) E
[
|W|s

]
≤ 2(s/e)s/2Bs, s > 0, and E

[
W2k

]
≤ (2k+1/e)k!B2k, k ∈ N,

(d) E
[
esW

2/(2B2)
]
≤ 1/

√
1− s, s ∈ [0, 1),

(e) cW is (|c|B)-sub-Gaussian, c ∈ R, and
∑n

i=1Wi is
(∑n

i=1Bi

)
-sub-Gaussian,

(f) ifW1, . . . ,Wn are independent,
∑n

i=1Wi is sub-Gaussian with
√∑n

i=1B
2
i .
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Proof. See Section 1.1 of Buldygin and Kozachenko (2000): Lemma 1.3 for (a)

and (b), Lemma 1.4 for (c) with s = 2k and e(k/e)k ≤ k!, Lemma 1.6 for (d),

Theorem 1.2 for (e), and Lemma 1.7 for (f). �

The sub-Gaussian property can be also characterized by the Ψ2 Orlicz

norm, which we extend to random vectors W ∈ R
d as

‖W‖Ψ2

.
= inf

{
B > 0 : E[Ψ2(W/B)] ≤ 1

}

with Ψ2(x)
.
= e‖x‖

2 − 1 and inf ∅ .=∞. Notice that Lemma A.1d with s = 1/2

implies that every B-sub-Gaussian random variable W satisfies ‖W‖Ψ2
≤ 2B.

Then, Lemma A.2 provides the opposite direction and the basic properties of

‖·‖Ψ2
extended to random vectors.

Lemma A.2. Let W ∈ R
d be a random vector with ‖W‖Ψ2

≤ B. Then the

following statements hold:

(a) P{‖W‖ ≥ γ} ≤ 2e−γ
2/B2

, γ ≥ 0,

(b) E
[
‖W‖2s

]
≤ 2(s/e)sB2s, s > 0, and E

[
‖W‖2k

]
≤ (2/e)k!B2k, k ∈ N,

(c) sups∈Rd E
[
es

>(W−EW)−‖s‖2(2B2)/2
]
≤ 1,

(d) ‖cW‖Ψ2
≤ |c|B, c ∈ R, and ‖∑n

i=1 W i‖Ψ2
≤∑n

i=1Bi.

Proof. For (a), simply use the Chernoff bound as

P{‖W‖ ≥ γ} = P
{
e‖W‖2/B2 ≥ eγ

2/B2} ≤ E
[
e‖W‖2/B2]

e−γ
2/B2 ≤ 2e−γ

2/B2

.

For (b), use xs ≤ (s/e)s ex for x ≥ 0, s > 0 with x = ‖W‖2 /B2, and take

the expectation of both sides to get

E
[
‖W‖2s

]
≤ (s/e)s E

[
e‖W‖2/B2]

B2s ≤ 2(s/e)sB2s .

For the second part, simply use s = k and e(k/e)k ≤ k!.

For (c), fix s ∈ R
d arbitrarily, and take an independent copy W , denoted

by Ŵ (so W ,Ŵ are i.i.d.). Notice that s>(W − Ŵ) is a symmetric ran-

dom variable, so its odd moments are zero, that is E[s>(W − Ŵ)2k−1] = 0
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for all k ∈ N. Then, using Jensen’s inequality, the exponential series ex-

pansion, the monotone convergence theorem, the Cauchy-Schwartz inequality,

(a+ b)k ≤ 2k−1(ak + bk), (2k)! ≥ 2kk!2, and (b), we get

E
[
es

>(W−EW)
]
≤ E

[
es

>(W−Ŵ)
]
=

∞∑

k=0

‖s‖2k E
[
‖W − Ŵ‖2k

]

(2k)!

≤
∞∑

k=0

‖s‖2k 2k E[‖W‖2k]
k!2

≤
∞∑

k=0

(2 ‖s‖2B2)k

k!
= e‖s‖

2(2B)2/2 .

For (d), simply observe the first claim by the definition of ‖·‖Ψ2
. For the

second part, notice that x 7→ e‖x‖
2

is a convex function, so using weights

λi = B2
i /
∑n

j=1B
2
j for Jensen’s inequality, we get

E

[
e(

∑n
i=1 Wi)

2/(
∑n

j=1B
2
j )
]
≤

n∑

i=1

λi E
[
eW

2
i /(λi

∑n
j=1B

2
j )
]
=

n∑

i=1

λi E
[
eW

2
i /B

2
i

]
≤ 2 .

�

Finally, Lemma A.3 proves a large deviation bound for the average of

independent, centered sub-Gaussian random vectors.

Lemma A.3. Let W1, . . . ,Wn ∈ R
d be random vectors with E[W i] = 0 and

‖W i‖Ψ2
≤ Bi for all i = 1, . . . , n. Then

∥∥ 1
n

∑n
i=1 W i

∥∥
Ψ2
≤
√

8d
n

(
1
n

∑n
i=1B

2
i

)
.

Proof. First, write W i = [Wi1 . . .Wid]
> ∈ R

d for all i = 1, . . . , n, and set

C
.
= 8

(
1
n

∑n
i=1B

2
i

)
/n. Then (c) implies that each random variable Wij is

(
√
2Bi)-sub-Gaussian. Hence, for every j = 1, . . . , d, Lemma A.1f used for

the centered and independent random variables W1j, . . . ,Wnj provides that

1
n

∑n
i=1Wij is sub-Gaussian with C. Finally using Hölder’s inequality, we get

the claim by

E

[
e‖ 1

n

∑n
i=1 Wi‖2/(dC)

]
= E

[
e
∑d

j=1 | 1n
∑n

i=1 Wij |2/(dC)
]

≤
d∏

j=1

E

[
e|

1
n

∑n
i=1 Wij |2/C

] 1
d ≤ 2 .

�
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WhenW ,Z ∈ R are sub-Gaussian, their productWZ is a so-called “subex-

ponential” random variable. To derive upper bounds for ERM estimators

in Chapter 3, we apply Bernstein’s inequality (Lemma A.4) for such ran-

dom variables WZ, which requires an “appropriate” bound on the higher

moments as provided by Lemma A.5. Here, “appropriate” means that the

bound has to scale with the second moment of one multiplier, say W , replac-

ing ‖W‖2Ψ2
by E[W2]. The price we pay for this is only logarithmic in the

kurtosis K0[W ]
.
= E[W4]/E[W2]2, which is crucial to our analysis deriving

near-minimax upper bounds for arbitrary sub-Gaussian regression problems.

Lemma A.4 (Bernstein’s lemma). Let W be a real valued random variable

such that E
[
|W|k

]
≤ (k!/2)v2ck−2 for all 2 ≤ k ∈ N. Then, for all |s| < 1/c,

lnE
[
es(E[W]−W)

]
≤ s2 v2

2(1− |s|c) .

Proof. See, for example Boucheron et al. (2012, Theorem 2.10) with n = 1,

and use X1 = −W , λ = −s when s < 0. �

Lemma A.5. Let W, Z be two random variables such that E[W2] > 0, and

‖W‖Ψ2
≤ B, ‖Z‖Ψ2

≤ R with some B,R > 0. Then for all 2 ≤ k ∈ N,

E
[
|WZ|k

]
≤ 3 ln

(
4
√

K0[W ]
)
E[W2]R2 k!

(
4 ln
(
4
√

K0[W ]
)
BR
)k−2

.

Proof. Let c > 0 to be chosen later. Then by the Cauchy-Schwartz inequality,

we have

E
[
|WZ|k

]
= E

[
|WZ|k I{|W| ≤ cB} I{|Z| ≤ cR}

]

+ E
[
|WZ|k I{|W| ≤ cB} I{|Z| > cR}

]

+ E
[
|WZ|k I{|W| > cB}

]

≤ E[W2](cR)2(c2BR)k−2

+ E[W4]
1
2 (cB)k−2

E
[
Z2k

I{|Z| > cR}
] 1

2

+ E[W4]
1
2 E
[
W4(k−2)Z4k

] 1
4 P{|W| > cB} 1

4

≤ E[W2]
(
(cR)2(c2BR)k−2

+K0[W ]
1
2 (cB)k−2

E
[
Z4k

] 1
4 P{|Z| > cR} 1

4

+K0[W ]
1
2 E
[
W8(k−2)

] 1
8 E
[
Z8k

] 1
8 P{|W| > cB} 1

4

)
.
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Further, if c ≥ 2
√

ln(4), using Lemma A.2(b) gives us

E
[
|WZ|2

]
≤ E[W2]R2

(
c2 +K0[W ]

1
2 2e−c

2/4
(
(2(4

e
)4)

1
4 + (2(8

e
)8)

1
8

))

≤ E[W2](cR)2
(
1 + 2!K0[W ]

1
2 e−c

2/4
)
,

and for k ≥ 3, with also using e(k/e)k ≤ k!,
√
k! ≤ k!/2, we get

E
[
|WZ|k

]
≤ E[W2](cR)2(c2BR)k−2 ·(

1 +K0[W ]
1
2 e−c

2/4 · 25/4
((

2k
ec2

) k
2 +

(4(k−2)
ec2

) k−2
2
(

4k
ec2

) k
2

))

≤ E[W2](cR)2(c2BR)k−2
(
1 + k!K0[W ]

1
2 e−c

2/4
)
.

Finally, set c
.
= 2
√

ln(4K0[W ]1/2) ≥ 2
√

ln(4) by K0[W ] ≥ 1 (due to Jensen’s

inequality). Then we get the claim for all k ≥ 2 by using K0[W ]1/2 e−c
2/4 = 1/4

and 1 ≤ k!/2. �
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Appendix B

The scaled cumulant-generating

function

The results of this appendix review a few important properties of the scaled

cumulant-generating function.

Lemma B.1. Let W ,Z be arbitrary random variables and t > 0. Then the

following statements hold:

(a) E[W ] ≤ Ct′ [W ] ≤ Ct[W ] for any t ≥ t′ > 0,

(b) limt↓0 Ct[W ] = E[W ],

(c) Ct[λW + (1− λ)Z] ≤ λCt[W ] + (1− λ)Ct[Z] for all λ ∈ (0, 1),

(d) Ct[W + Z] ≤ C2t[W ] + C2t[Z].

Proof. For (a), let s
.
= t/t′ ≥ 1 so that t′s = t. Then by Jensen’s inequality,

E[W ] =
1

t′
E[t′W ] ≤ Ct′ [W ] ≤ 1

t′
lnE

[
exp(t′W)s

]1/s
= Ct′s[W ] = Ct[W ] .

For (b), use L’Hôpital’s rule and the dominated convergence theorem to

obtain

lim
t↓0

Ct[W ] = lim
t↓0

(1/t) lnE
[
etW
]
= lim

t↓0
E
[(
etW/E[etW ]

)
W
]
= E[W ] .

For (c), pick any λ ∈ (0, 1), and use Hölder’s inequality to get

Ct

[
λW + (1− λ)Z

]
≤ 1

t
ln
(
E
[(
etλW

)1/λ]λ
E
[(
et(1−λ)Z

)1/(1−λ)]1−λ)

= λCt[W ] + (1− λ)Ct[Z] .
For (d), use the convexity property (c) with λ = 1/2 to get Ct[W + Z] =

Ct[(2W + 2Z)/2] ≤ (Ct[2W ] + Ct[2Z])/2 = C2t[W ] + C2t[Z]. �
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Lemma B.2. If W ,W1, . . . ,Wn are i.i.d. random variables and t > 0, then

Ct

[
(1/n)

∑n
i=1Wi

]
= Ct/n[W ].

Proof. By independence, we have

Ct

[
1

n

n∑

i=1

Wi

]
=

1

t
lnE

[
exp

(
t

n

n∑

i=1

Wi

)]

=
1

t
ln

n∏

i=1

E
[
exp

(
(t/n)Wi

)]
= Ct/n[W ] .

�

Lemma B.3. For any random variables W1, . . . ,Wn and t > 0,

Ct

[
max
i=1,...,n

Wi

]
≤ inf

s≥t

{ ln(n)
s

+ max
i=1,...,n

Cs[Wi]
}
.

Proof. Using Lemma B.1a for an arbitrary s ≥ t, we get

Ct

[
max
i=1,...,n

Wi

]
≤ Cs

[
max
i=1,...,n

Wi

]
=

1

s
lnE

[
max
i=1,...,n

esWi

]

≤ 1

s
ln

n∑

i=1

E
[
esWi

]
=

ln(n)

s
+ max

i=1,...,n
Cs[Wi] .

Taking infimum over s ≥ t, we get the first claim. �

Lemma B.4. If W is a σ-sub-Gaussian random variable and t > 0, then

Ct[W ] ≤ E[W ] + tσ2/2 and Ct[|W|] ≤ |EW| + max
{
σ
√
2 ln 2, tσ2

}
. Further-

more, if Z is a random variable with E
[
e|Z|/R] ≤ 2, then for all t ≤ 1/R,

Ct[|Z|] ≤ R ln 2.

Proof. For the first claim, simply use the σ-sub-Gaussian property,

Ct[W ] = (1/t) lnE
[
etW
]
≤ (1/t)

(
tE[W ] + t2σ2/2

)
= E[W ] + tσ2/2 .

For the second claim, use the monotonicity of s 7→ Cs[W ] with any s ≥ t,

and e|x| ≤ ex + e−x, to get

Ct[|W|] ≤ (1/s) ln
(
E
[
esW
]
+ E

[
e−sW

])

≤ (1/s) ln
(
2 es|EW|+s2σ2/2

)
= |EW|+ sσ2/2 + ln(2)/s .

If tσ2/2 ≤ ln(2)/t, then we can choose t ≤ s =
√
2 ln 2/σ and get a σ

√
2 ln 2

term on the right hand side. Otherwise, use s = t and tσ2/2 + ln(2)/t ≤ tσ2.

For the last claim, use the monotonicity of s 7→ Cs[Z] with t ≤ 1/R to get

Ct[|Z|] ≤ R lnE
[
e|Z|/R] ≤ R ln 2. �
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Appendix C

Auxiliary results

on covering numbers

In this section we review a few useful results on the covering numbers of finite

dimensional bounded spaces.

For the derivations here, we need packing numbers. Let (P , ψ) be a metric

space and ε > 0. Then the set {p1, . . . , pk} ∈ P is an ε-packing of P under ψ

if any two distinct elements in {p1, . . . , pk} are farther away from each other

than ε: for any i, j = 1, . . . , k, i 6= j, ψ(pi, pj) > ε. The ε-packing number of

P under ψ,Mψ(ε,P), is the cardinality of the largest ε-packing:

Mψ(ε,P) .= sup
{
k ∈ N

∣∣∣ ∃p1, . . . , pk ∈ P : min
i,j=1,...,k

i 6=j

ψ(pi, pj) > ε
}
. (C.1)

The relation between covering and packing numbers are given for all ε > 0 by

(for example, Dudley, 1999, Theorem 1.2.1)

Nψ(ε,P) ≤Mψ(ε,P) ≤ Nψ(ε/2,P) . (C.2)

Next, we review a useful tool for bounding the entropy of finite dimensional

vector spaces. Its proof is based on the volume argument (for example, Pollard,

1990, Lemma 4.1), which we provide here for completeness.

Lemma C.1. Let t ∈ N ∪ {∞} and P ⊂ R
v with a finite radius under ‖·‖t,

that is suppose there exists q∗ ∈ R
v such that P ⊆ Bt(q∗, R) for some R > 0.

Then H‖·‖t(ε,P) ≤ v ln(3R/ε) for all ε ∈ (0, 3R]. Furthermore, if P contains

a ball with radius r > 0, that is Bt(p∗, r) ⊆ P holds for some p∗ ∈ P, then
H‖·‖t(ε,P) ≥ v ln(r/ε) for all ε > 0.
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Proof. Let {q1, . . . , qM} be an ε-packing of P under ‖·‖t with maximum car-

dinality. Consider the balls around the packing elements qi of radius ε/2, and

notice that by the packing property (‖qi − qj‖t > ε for all i 6= j), these balls

are disjunct, that is Bt(qi, ε/2)∩Bt(qj, ε/2) = ∅ if i 6= j. Also notice that each

ball Bt(qi, ε/2) lies within Bt(q∗, R + ε/2). Putting these together, we get

M(ε/2)v vol(B0) = vol
(
∪Mi=1Bt(qi, ε/2)

)

≤ vol
(
Bt(q∗, R + ε/2)

)
= (R + ε/2)v vol(B0) ,

where B0 is the unit ball in R
v under ‖·‖t, vol(B) is the (v-dimensional) volume

of set B, and we used that vol(Bt(q, z)) = zv vol(B0) for all q ∈ R
d. Dividing

both sides by (ε/2)v, we get M ≤ (1 + 2R/ε)v ≤ (3R/ε)v for all ε ∈ (0, R]. As

H‖·‖t(ε,P) = 0 for ε > R, the claimed upper bound follows from (C.2).

Now let {p1, . . . ,pN} be an ε-cover of P with minimum cardinality. Then

by using B(p∗, r) ⊆ P ⊆ ∪Ni=1B(pi, ε), we get

rv vol(B0) = vol
(
B(p∗, r)

)
≤ vol

(
∪Ni=1B(pi, ε)

)
≤ Nεv vol(B0) .

Dividing both sides by εv, we get the claimed lower bound. �
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Appendix D

Density estimation and

minimax lower bounds

In this section, we prove our lower bound on the minimax risk, Theorem 3.1,

and provide the necessary background for this on information theory and den-

sity estimation.

For the derivations here, we need packing numbers (C.1) and a few infor-

mation theoretic developments. We denote (σ-finite) reference measures for

probability densities by ν, which can change its meaning based on the context.

We use PX , PY , PX ,Y , PX|Y to denote the densities of the random variables X ,
Y , (X ,Y) and X|Y , appropriately.

The entropy of a random variable X is H(X ) .= −
∫
ln(PX (x))PX (x) ν(dx).

Similarly, let H(X ,Y) .
= −

∫
ln(PX ,Y(x, y)PX ,Y(x, y) ν(dx, dy) be the joint

entropy of X and Y , and denote the conditional entropy of X given Y by

H(X|Y) .= −
∫
ln(PX|Y(x, y)PX|Y(x, y) ν(dx, dy). Furthermore, the mutual in-

formation of X and Y is defined as I(X ;Y) .
= DKL(PX ,Y‖PX · PY), where

DKL(P‖Q) .
=
∫
ln(P (z)/Q(z))P (z) ν(dz) is the Kullback-Leibler (KL) diver-

gence between two densities P and Q. Then, consider the following result:

Lemma D.1 (Fano’s inequality). Let X be a discrete random variable on the

finite set X and Y be an arbitrary random variable. Furthermore, let X̂ be a

discrete random variable such that X̂ |Y is independent of X . Then

P
{
X 6= X̂

}
≥ H(X|Y)− ln 2

ln |X| .

Proof. See Theorem 2.10.1 of Cover and Thomas (2006) for discrete Y , and ex-
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tend it to the continuous setting by noting that the data processing inequality

(Cover and Thomas, 2006, Theorem 2.8.1) carries through to the continuous

case along with the properties of the mutual information (Cover and Thomas,

2006, Section 8.5). �

When X is uniformly distributed on X , that is PX (x) = 1/|X| for all x ∈ X,

we have H(X ) = ln |X|, and so we can rewrite the result of Lemma D.1 as

P
{
X 6= X̂

}
≥ 1− I(X ;Y) + ln 2

ln |X| , (D.1)

where we used that I(X ;Y) = H(X ) − H(X|Y) as explained by Cover and

Thomas (2006, Section 2.4). Now let X̄ be a uniform random variable on

an arbitrary finite set X̄(x), which might depend on some x ∈ X, and define

PY|X=x(y)
.
= PY|X (x, y). Then, we can upper bound I(X ;Y) as

I(X ;Y) = DKL(PX ,Y‖PX · PY)

=
∑

x∈X
PX (x)

∫
PY|X (x, y) ln

(
PY|X (x, y)

PY(y)

)
ν(dy)

≤ max
x∈X

DKL(PY|X=x‖PY)

= max
x∈X

∫
PY|X=x(y) ln

(
PY|X=x(y)

(1/|X̄(x)|)∑x′∈X̄(x) PY|X̄ (x′, y)

)
ν(dy)

≤ max
x∈X

min
x̄∈X̄(x)

∫
PY|X=x(y) ln

(
PY|X=x(y)

(1/|X̄(x)|)PY|X̄ (x̄, y)

)
ν(dy)

= max
x∈X

{
ln |X̄(x)|+ min

x̄∈X̄(x)
DKL(PY|X=x‖PY|X̄=x̄)

}
.

(D.2)

Now let dKL
.
=
√
DKL be the square root KL divergence and consider the

next result (Lemma D.2), which is a modified version of Theorem 1 in Yang and

Barron (1999), using local entropies in a slightly different way than presented

in Yang and Barron (1999, Section 7). This result (Lemma D.2) extends the

previous ideas to a probabilistic lower bound on the minimax rate of density

estimators.
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Lemma D.2. Let M be a class of probability densities on some set W and

Dn = (W1, . . . ,Wn) ∼ P n be an i.i.d. sample of size n ∈ N from P ∈ M.

Suppose there exist ε, ε∗ > 0, and two functions h, h∗ : N → R>0 such that

HdKL
(ε∗,M) ≥ h∗(n) and H∗

dKL
(ε, ε∗,M) ≤ h(n). Furthermore, if we also have

4h(n) + ln 4 ≤ h∗(n) and nε
2 ≤ h(n), then

inf
Qn

sup
P∈M

P
{
DKL

(
P‖Qn(Dn)

)
≥ ε2∗

}
≥ 1/2 ,

where the probability is taken with respect to the random sample Dn ∼ P n, and

the infimum over Qn scans through all estimators mapping to any probability

density on W.

Proof. Let Mε∗ be an ε∗-packing of M under dKL with maximum cardinality,

and for any density Q on W, define Q∗ ∈ argminP ′∈Mε∗
DKL(P

′‖Q) with an

arbitrary tie-breaking. Then notice that the definition of an ε∗-packing implies

for any Q,Q∗ ∈ Mε∗ that DKL(Q‖Q∗) ≥ ε2∗ if and only if Q 6= Q∗. Hence, by

using the Pn
.
= Qn(Dn) shorthand notation, we have

inf
Qn

sup
P∈M

P
{
DKL

(
P‖Pn

)
≥ ε2∗

}
≥ inf

Qn

max
P∈Mε∗

P
{
DKL

(
P‖Pn

)
≥ ε2∗

}

≥ inf
Qn

max
P∈Mε∗

P
{
DKL

(
P‖P ∗

n

)
≥ ε2∗

}

= inf
Qn

max
P∈Mε∗

P
{
P 6= P ∗

n

}

≥ inf
Qn

1

|Mε∗ |
∑

P∈Mε∗

P
{
P 6= P ∗

n

}

= inf
Qn

P
{
P∗ 6= P ∗

n

}
,

(D.3)

where in the last line P∗ is a uniform random variable on Mε∗ and the proba-

bility is taken with respect to P ∼ P∗ and Dn ∼ P n.

Then notice that P∗ and P ∗
n |Dn are independent, so the requirements of

Fano’s inequality (Lemma D.1) hold (with X ← P∗, X̂ ← P ∗
n , Y ← Dn,

X←Mε∗). Hence, using that P∗ is uniform, we get by (D.1) that

P
{
P∗ 6= P ∗

n

}
≥ 1− I(P∗;Dn) + ln 2

ln |Mε∗ |
≥ 1− I(P∗;Dn) + ln 2

h∗(n)
, (D.4)

where we used ln |Mε∗ | = lnMdKL
(ε∗,M) ≥ HdKL

(ε∗,M) ≥ h∗(n) by (C.2).
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Now, let M∗
ε,P be an ε-cover of {Q ∈ M : dKL(P‖Q) ≤ ε∗} under dKL with

minimum cardinality, so ln |M∗
ε,P | = H∗

dKL
(ε, ε∗,M). Then, applying (D.2)

(with X̄←M
∗
ε,P ) to (D.4), we obtain

P
{
P∗ 6= P ∗

n

}
≥ 1−

maxP∈Mε∗
ln |M∗

ε,P |+minP̂∈M∗
ε,P
DKL(PDn|P‖PDn|P̂ ) + ln 2

h∗(n)

≥ 1− h(n) + nε2 + ln 2

h∗(n)
≥ 1/2 , (D.5)

where minP̂∈M∗
ε,P
DKL(PDn|P‖PDn|P̂ ) = nminP̂∈M∗

ε,P
DKL(PW1|P‖PW1|P̂ ) ≤ nε2

followed from the i.i.d. property of the sample Dn and the definition of an

ε-cover with P ∈M
∗
ε,P for all P ∈M.

Finally, combining (D.3) with (D.5), we get the claim. �

The following result (Lemma D.3) relates the conditions of the previous

density estimation lower bound (Lemma D.2) to the usual linear (a) and non-

linear settings (b).

Lemma D.3. Let M be a set of probability densities, v > 0 and c2 ≥ c1 > 0.

Then consider the following cases:

(a) If for some c0 > 0, v ln(c1/z) ≤ HdKL
(z,M), H∗

dKL
(z, s,M) ≤ v ln(c2 s/z)

for all s ∈ (0, c0] and z ∈ (0, c2 s], then the conditions of Lemma D.2

are satisfied with ε = (13/20)
√
v/n and ε∗ = (1/c2)

√
v/n for every

n ≥ (v/c22)max
{
32 · 24/v/c21, 1/c20

}
.

(b) If c1z
−v ≤ HdKL

(z,M) ≤ c2z
−v is satisfied for all z ∈ (0, ε0], then the

conditions of Lemma D.2 hold for all n ∈ N with ε = ε0 n
−1/(v+2) and

ε∗ =
(
6max{1, c2 ε−v0 , ε20}/c1

)−1/v
n−1/(v+2).

Proof. To prove (a), notice that ε = (13/20)
√
v/n < c2 ε∗ and ε∗ ≤ c0 is

satisfied if n ≥ v/(c0 c2)
2. Now choose

h∗(n)
.
= v ln

(
c1c2

√
n/v

)
= v ln

(
c1/ε∗) ≤ HdKL

(ε∗,M) ,

h(n)
.
= v ln

(
20/13

)
= v ln

(
c2 ε∗/ε

)
≥ H∗

dKL
(ε, ε∗,M) .

Then, nε2 = v(13/20)2 < h(n) and 4h(n) + ln 4 = v ln
(
41/v(20/13)4

)
≤ h∗(n)

if n ≥ 42/v(20/13)8 v/(c1c2)
2.
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To show (b), set ε
.
= ε0 n

−1/(v+2) ≤ ε0 The conditions for h(n) hold if

h(n) ≥ c2 ε
−v
0 nv/(v+2) = c2 ε

−v ≥ HdKL
(ε,M) ,

h(n) ≥ ε20 n
v/(v+2) = nε2 .

Hence, we can set h(n)
.
= b nv/(v+2) with b

.
= max{1, c2 ε−v0 , ε20} and also get

h(n) ≥ 1. Then, 4h(n) + ln 4 < 6h(n)
.
= h∗(n) = c1 ε

−v
∗ ≤ HdKL

(ε∗,M) holds

too with ε∗ = (c1/(6b))
1/v n−1/(v+2) ≤ ε0 as (c1/(6b))

1/v ≤ ε0(c1/(6c2)) < ε0.

�

Then, we simply reduce the derivation of Theorem 3.1 to the previously

discussed results.

Proof of Theorem 3.1. First observe that the regression function is always in

F∗, hence fµ,F = fµ,F∗ implying Rn(M
σ
gs, `sq,F) = Rn(M

σ
gs, `sq,F∗).

Now let Pf , Pg ∈ M
σ
gs(F∗, PX) be two densities corresponding to f, g ∈ F∗,

respectively. Then notice that the KL divergence between Pf and Pg, due to

the gaussian noise, satisfies

DKL(Pf‖Pg) = E
[
DKL(Pf |X‖Pg|X )

]
=

1

2σ2
E
[
|f(X )− g(X )|2

]
=
‖f − g‖2PX

2σ2
,

where Pf |X , Pg|X are the conditional distributions givenX , respectively. Hence,

we have HPX
(
√
2σε,F∗) = HdKL

(ε,M) for all ε > 0.

Then we use Lemma D.2 with Lemma D.3, substituting c0 ← c0/(
√
2σ),

c1 ← c1/(
√
2σ), c2 ← c2/(

√
2σ) for Lemma D.3 (a) to obtain Theorem 3.1 (a),

and use ε0 ← ε0/(
√
2σ), c1 ← c1(

√
2σ)−v, c2 ← c2(

√
2σ)−v for Lemma D.3 (b)

to get Theorem 3.1 (b). �
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Appendix E

Optimization tools

In this appendix we shortly review a few optimization results.

Let X,Y be two vector spaces over R, and the graph of a set–valued function

C : X→ 2Y be defined as graph(C)
.
=
{
(x,y) ∈ X×Y : y ∈ C(x)

}
. The next

lemma summarizes a few properties of graph(C).

Lemma E.1. Let X,Y be two convex sets and C : X→ 2Y be some set–valued

function. If graph(C) is convex, then C(x) is convex for all x ∈ X, but the

converse is not true in general.

Furthermore, if C(x) = {y ∈ Y : gj(x,y) ≤ 0, j = 1, . . . ,m} for all x ∈ X

with some gj : X × Y → R jointly–convex functions in their arguments, then

graph(C) is convex.

Proof. Let x ∈ X, y1,y2 ∈ Y and λ ∈ (0, 1). Then by the convexity of

graph(C), we have λ(x,y1)+(1−λ)(x,y2) = (x, λy1+(1−λ)y2) ∈ graph(C),

implying that λy1 + (1− λ)y2 ∈ C(x), so proving the first claim.

To show that the converse is not true, consider X = Y = [0, 1] and C(x) =

I{x = 1} with (x1, y1) = (0, 0) and (x2, y2) = (1, 1). Then C(x) is convex

for all x ∈ [0, 1], but λ(x1, y1) + (1 − λ)(x2, y2) = (1 − λ, 1 − λ) 6∈ graph(C),

because 1− λ 6∈ C(1− λ) = {0}.
To prove the last claim, let x1,x2 ∈ X, y1 ∈ C(x1), y2 ∈ C(x2). Then by

the joint–convexity of the gj functions, gj(λx1+(1−λ)x2, λy1+(1−λ)y2) ≤
λgj(x1,y1) + (1 − λ)gj(x2,y2) ≤ 0, which implies that λy1 + (1 − λ)y2 ∈
C(λx1 + (1− λ)x2), and so proves the claim. �
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Next, consider the following result, which is a slight generalization of The-

orem 5.3 in Rockafellar (1972).

Lemma E.2. Let X,Y be two convex sets and f : X × Y be a jointly–convex

function in its arguments. Additionally, let C : X → 2Y be a set–valued

function for which graph(C) is convex. Then g(x)
.
= infy∈C(x) f(x,y) is a

convex function.

Proof. Let x1,x2 ∈ X, y1,y2 ∈ Y and λ ∈ (0, 1). As graph(C) is convex,

y1 ∈ C(x1),y2 ∈ C(x2) ⇒ λy1 + (1− λ)y2 ∈ C
(
λx1 + (1− λ)x2

)
.

Using this with the fact that the infimum on a subset becomes larger, and the

joint–convexity of f , we get

g
(
λx1 + (1− λ)x2

)
= inf

z∈C(λx1+(1−λ)x2)
f
(
λx1 + (1− λ)x2, z

)

≤ inf
y1∈C(x1)

inf
y2∈C(x2)

f
(
λx1 + (1− λ)x2, λy1 + (1− λ)y2

)

≤ inf
y1∈C(x1)

inf
y2∈C(x2)

λf(x1,y1) + (1− λ)f(x2,y2)

= λg(x1) + (1− λ)g(x2) ,

which proves the convexity of g. �
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Appendix F

Miscellaneous

This appendix is a collection of a few technical results which did not fit into

any other context.

Lemma F.1. For all n ∈ N and c ≥ 1, c−1
c n
≤ 1− c−1/n ≤ ln(c)

n
.

Proof. We prove the lower bound by induction on n. Notice that the claim

holds for n = 1. Then let n > 1 and suppose that the claim holds for n − 1.

Observe that (xq − qx)′ = q(xq−1 − 1) ≥ 0 for x ∈ (0, 1], q ∈ [0, 1], hence by

the monotonicity of x 7→ xq − qx, we have for any 0 < b ≤ a ≤ 1 and q ∈ [0, 1]

that aq − bq ≥ q(a − b). Using this with c ≥ 1 and the induction hypothesis,

we obtain

1− c−1/n = 1−
(
c−1/(n−1)

)(n−1)/n ≥
(
1− c−1/(n−1)

)n− 1

n
≥ c− 1

c n
,

which proves the induction step and so the lower bound.

For the upper bound, by ex ≥ 1 + x for all x ∈ R, we get

1− c−1/n = 1− e− ln(c)/n ≤ ln(c)

n
.

�

Lemma F.2. For A ∈ R
n×d, b ∈ R

n and r > 0,
∥∥(rId + A>A)−1A>b

∥∥ ≤ ‖b‖
2
√
r
.

Proof. Consider a thin singular value decomposition of A given as A = USV >,

where U ∈ R
n×d is semi-orthogonal (U>U = Id), S ∈ R

d×d is diagonal with

nonegative elements, and V ∈ R
d×d is orthogonal (V >V = V V > = Id). Then

∥∥(rId + A>A)−1A>b
∥∥ =

∥∥V (rId + S2)−1SU>b
∥∥ ≤

∥∥(rId + S2)−1S
∥∥ ‖b‖ ,
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where we used ‖U‖ = ‖V ‖ = 1 (as U>U = Id implies ‖Ux‖2 = ‖x‖2). Finally
notice that

∥∥(rId + S2)−1S
∥∥ ≤ max

s≥0

s

r + s2
=

1

2
√
r
,

which proves the claim. �

Lemma F.3. Consider a regression problem (as in Section 3.1) with some

distribution µ and the squared loss (` = `sq) such that f∗ is a regression

function and E
[
e|Y−f∗(X )|2/σ2

∣∣X
]
≤ 2 holds for some σ > 0. Take a class

F̂n ⊆ {X→ R} which is independent of Y1, . . . ,Yn, and a random variable Z
such that E[eZ/R] ≤ c for some c > 0, and inff∈F̂n

2
n

∑n
i=1W2

f,i + T ≤ Z a.s.

holds with Wf,i
.
= f(X i) − f∗(X i) and some random variable T . Then for

B∗
.
= max{R, 2σ2/n} ln(4c/γ), we have

P

{
inf
f∈F̂n

Ln(f, f∗) + T > B∗

}
≤ γ

4
.

Proof. Let Rn
.
= max{R, 2σ2/n} and write B∗ = Rn ln(4c/γ). Then, by using

`sq
(
Yi, f(X i)

)
− `sq

(
Yi, f∗(X i)

)
=
(
Wf,i − 2(Yi − f∗(X i)

)
Wf,i with Markov’s

inequality, the tower rule with the independece of Y1, . . . ,Yn, and the bound

2σ2/(nRn) ≤ 1, we obtain

P

{
inf
f∈F̂n

Ln(f, f∗) + T > B∗

}

≤ γ

4c
E

[
inf
f∈F̂n

e

(
1
n

∑n
i=1 W2

f,i
+2Wf,i(f∗(X i)−Yi)+T

)
/Rn

]

≤ γ

4c
E

[
inf
f∈F̂n

e

(
1
n

∑n
i=1 W2

f,i
+T
)
/Rn

n∏

i=1

E
[
e

2
nRn

Wf,i(f∗(X i)−Yi)
∣∣X 1, . . . ,X n

]]

≤ γ

4c
E

[
inf
f∈F̂n

e

(
T+(1+ 2σ2

nRn
) 1
n

∑n
i=1 W2

f,i

)
/Rn

]
≤ γ

4c
E

[
eZ/R

]
≤ γ

4
.

�
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