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ABSTRACT 

 

 

Lianas are woody thick-stemmed climbers that use host trees to reach the forest canopy. Studies 

have shown a remarkable increase in liana abundance in the last two decades, while others have 

shown that liana abundance is associated with detrimental effects on forest dynamics. Liana 

abundance presents peaks in highly seasonal forests such as the Tropical Dry Forest (TDF); regions 

that are under threat for frequent droughts, fires, and anthropogenic pressures. Despite their 

abundance and relevance in these fragile ecosystems, there are no clear research priorities that help 

to conduct an efficient detection and monitoring of lianas. This dissertation aims to integrate new 

remote sensing perspectives to detect and quantify lianas and trees at the TDF. This was addressed 

using passive (Chapters 2 ‒ 4) and active remote sensing (Chapter 5). 

Using thermography, Chapters 2 explored the temporal variability of leaf temperature of lianas 

and trees at the canopy. Temperature observations were conducted in different seasons and ENSO 

years on lianas and trees infested and non-infested by lianas. The findings revealed that the 

presence of lianas on trees does not affect the temperature of exposed tree leaves; however, liana 

leaves tended to be warmer than tree leaves at noon. The results emphasize that lianas are an 

important biotic factor that can influence canopy temperature, and perhaps, its productivity. 

Chapter 3 assessed the discrimination of liana and tree leaves using visible-near infrared (VIS-

NIR) and longwave infrared (LWIR) spectra. This chapter compared the former contrasting 

spectral regions, four representations of leaf spectra, twenty-one algorithms of classification, and 

two contrasting life forms in the context of machine learning to explore the question of whether it 

is possible to discriminate between liana and tree leaves. The results revealed that both life forms 
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are more accurately discriminated using LWIR spectra (accuracy between 66% and 96%) 

compared with VIS-NIR spectra (accuracy between 50% and 69%). However, such accuracies of 

discrimination were achieved depending on the kind of spectral pre-processing and machine 

learning algorithm. The chapter’s outcomes suggest the possibility to extend the discrimination 

between lianas and trees to airborne or satellite LWIR observations. 

The prediction of leaf traits of lianas and trees using Partial Least-Square Regression (PLSR) 

models based on leaf reflectance or wavelet spectra is addressed in Chapter 4. This chapter revealed 

that the model performance differs between life forms or between reflectance/wavelet spectra 

models. Differences in model performance between life forms seemed to be the product of the 

intraspecific variability of leaf traits within these life forms. Likewise, it was shown that PLSR 

models based on wavelet spectra help to overcome current limitations of PLSR models based on 

reflectance spectra. The results showed that the variability of leaf traits between life forms 

influences predictive models. Thus, the variability of traits between plant groups may have an 

essential role in estimated errors associated with the mapping of leaf traits. 

Using Terrestrial Laser Scanning, Chapter 5 evaluated the relationship between fractal geometry 

and tree-stands metrics on point clouds of trees. The chapter’s results suggested that the intercept 

extracted from fractal geometry is an accurate and fast parameter that helps predict plant volume, 

crown coverage, or plant basal area at the tree or stand level. The fractal geometry also revealed 

that the fractal dimension is strongly associated with the presence/absence of leaves in the point 

cloud or the number of trees in the stands. Since this method is not susceptible to irregular 

structures, this method may potentially contribute to quantifying the volume of lianas or buttress 

roots of trees. 

Chapter 6 provides future research directions that may help explain the drivers that lead the 

observed findings or the potential applicability of the results. Overall, this thesis highlighted the 
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need for new efficient and fast approaches that help assess the role and extent of lianas in the 

tropics. In the absence of a solid understanding of the presence and the effect of lianas in forest 

dynamics, future predictions of tropical forest productivity will remain speculative. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

1.1 Background 

Climbing plants are a particular functional group that uses trees to grow, develop, and reproduce 

at the forest canopy. Pioneer work by Alwyn H. Gentry classified climbing plants into four main 

groups based on their climbing strategies, ecology, and morphology (Gentry, 1895, 1991): i) 

herbaceous epiphytes-hemiepiphytes, ii) woody hemiepiphyte, iii) vines, and iv) lianas. Among 

these climbing plants, lianas are described as woody thick-stemmed climbers that begin life as 

terrestrial seedlings to find later in their development host trees to reach the forest canopy (Figure 

1‒1) (Gentry, 1991). The ecological role of the interaction between lianas and trees is not well 

understood in comparison with other climbers (Stewart and Schnitzer, 2017). Despite growing 

around and over host trees, it is not entirely clear if the presence of trees affects lianas (i.e., lianas 

are competitors) or if lianas can survive without the presence of trees (i.e., lianas are obligate 

parasites) (Stewart and Schnitzer, 2017). Thus, hereinafter, I will refer to lianas as structural 

parasites of trees. 

The presence of liana on trees can have a meaningful impact on forest dynamics and structure. 

During their growth and development, lianas tend to produce a higher proportion of their biomass 

in foliage while infesting their host (Putz, 1984; Wyka et al., 2013). The presence of liana on trees 

can influence their growth by the interception of light or influence tree mortality by increasing the 

mechanical strain on tree crowns (Rodríguez-Ronderos et al., 2016; Selaya and Anten, 2008; 

Visser et al., 2018). Moreover, liana-infested canopies tend to have a higher Woody Area Index, 

which in turn reduces canopy closure (Sánchez-Azofeifa et al., 2009b). 

Lianas have a pivotal role in the biodiversity and structure of tropical ecosystems. Together 

with vines, lianas contribute up to 24% of the species richness of many tropical forests (Gentry, 

1991). Lianas also comprise up to 24% of the woody stems in dry forests, while 18% in lowland 

and wet forests (Gentry, 1986, 1982). Likewise, it has been estimated that 5% of the above-ground 

total biomass of lowland rain forest are represented by this group of plants (DeWalt and Chave, 
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2004). The role of lianas in the ecosystems goes further than an element of biodiversity and 

structure; their abundance is strongly linked to the fauna presence and trophic chains’ prevalence 

(Kilgore et al., 2010; Ødegaard, 2000). For instance, a higher abundance of lianas has been 

associated with richer communities of birds and ants as a result of the sheltering and nesting-eating 

environment created around them (Adams et al., 2017; Hilje et al., 2017; Schnitzer et al., 2020). 

 

 

Figure 1‒1. Photograph of a liana growing around a tree to reach the forest canopy. Photo credit: 

Marisol Luna (2020). 

 

Despite being a group composed of several families, lianas are unevenly distributed worldwide; 

the majority of species are found to tropical environments (Gentry, 1991). Due to their distribution, 

lianas have been considered the key physiognomic feature that differentiates tropical from 

temperate forests (Croat, 1978). Overall, liana abundance and diversity vary with latitude and 

mean annual precipitation (MAP), showing a decline in woody vines at higher latitudes (Gallagher 
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and Leishman, 2012; Gentry, 1991) and high precipitation environments (Gentry, 1991; Parolari 

et al., 2020; Schnitzer and Bongers, 2011). According to Schnitzer (2005), the pantropical patterns 

of the liana abundance are related to their capacity to grow under water-stress conditions in 

comparison with trees; allowing them to present peaks of abundance in highly seasonal 

environments in contrast with trees. 

Liana traits such as leaf size, seed mass, and Specific Leaf Area (SLA) also vary with latitude 

and MAP (Mello et al., 2020). For instance, lianas and other climbing plants tend to present larger 

leaf size and seed mass and lower SLA in regions close to the equator (Gallagher and Leishman, 

2012). Likewise, liana traits also vary between environments with contrasting precipitation 

regimes. For example, lianas in wet environments tend to have higher leaf thickness and lower 

SLA compared to lianas in dry environments (Sánchez-Azofeifa et al., 2009a). Although liana 

traits seem to vary in latitudinal and precipitation gradients, the variation in lianas’ species-specific 

attributes (i.e., tendrils, nectarines, floral type, seed type) tends to be spatially constrained (Meyer 

et al., 2020). Spatial limitations associated with the distribution of species-specific attributes of 

lianas are the product of the high diversity of the ecological strategies and evolutionary paths of 

this group (Meyer et al., 2020). 

 

1.2 Lianas as a fingerprint of the global change 

Since 2002, different studies have reported a remarkable increase in liana abundance in many 

temperate and tropical ecosystems (DeWalt et al., 2010; Londré and Schnitzer, 2006; Phillips et 

al., 2002; Schnitzer, 2015, 2005). Moreover,  other studies have found that the presence of lianas 

is associated with detrimental effects related to a decrease in recruitment, growth, and survival of 

trees and forest biomass (Durán and Gianoli, 2013; Durán and Sánchez-Azofeifa, 2015; Estrada-

Villegas et al., 2020; Lai et al., 2017; Martínez-Izquierdo et al., 2016; Schnitzer et al., 2014; 

Schnitzer and Carson, 2010; van der Heijden et al., 2015). For example, it has been estimated that 

lianas are responsible for 76% of forest net above-ground biomass reductions at a liana removal 

experiment in Panama (van der Heijden et al., 2015). Furthermore, lianas’ detrimental effect on 

forest biomass seems to be higher in secondary forests (Lai et al., 2017), with this effect being 

more predominant as a function of the successional stage (Durán and Sánchez-Azofeifa, 2015; 

Estrada-Villegas et al., 2020). These increases in liana abundance and their detrimental effect 

suggest that lianas are an essential element of change in natural environments, impacting carbon 
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dynamics in tropical forests. As a result of this, researchers have cast doubts on the accuracy of 

models that do not include lianas to predict the current and future carbon cycle, highlighting the 

need to understand the liana’s footprint in ecosystem dynamics (di Porcia e Brugnera et al., 2019; 

Meunier et al., 2020; Verbeeck and Kearsley, 2016). 

Different hypotheses have emerged to explain the current increase in liana abundance 

(Schnitzer and Bongers 2011). For instance, studies suggest that increases in liana abundance 

might be associated with their response in leaf development and plant growth to high CO2 

concentrations in comparison with trees, which could be correlated with current increases of 

atmospheric CO2 (Granados and Körner, 2002; Oki et al., 2014; Zotz et al., 2006). Other studies 

suggest that the efficient water transportation, deep soil water acquisition, and efficient leaf 

stomatal behavior of lianas may explain their proliferation in seasonal environments and their 

advantages over trees (Andrade et al., 2005; Chen et al., 2017, 2015; Ichihashi et al., 2017; Zhu 

and Cao, 2009). This hypothesis may also provide a plausible explanation of the extended leaf 

phenology of lianas over trees in a seasonal environment (Kalácska et al., 2005). However, the 

low rooting depth of lianas compared to trees does not seem to support part of the previous 

hypothesis (Smith-Martin et al., 2020). Another hypothesis, and probably the most accepted, 

suggests that the current trends in forest fragmentation and disturbance could be associated with 

increases in liana abundance due to a large group of abiotic and biotic factors that can be affected 

and that could benefit lianas over trees (Londré and Schnitzer, 2006; Magnago et al., 2017; van 

Melis et al., 2020). This hypothesis supports the decrease in liana abundance observed at the Congo 

Basin; product of the decimated elephant population that leads to reductions in forest disturbance 

in the region (Bongers et al., 2020). Schnitzer and Bongers (2011) clustered these hypotheses into 

four theme groups associated with putative mechanisms that explain increases in liana abundance: 

i) evapotranspirative demand, ii) natural disturbance, iii) fragmentation, and iv) elevated 

atmospheric CO2. Regardless of the drivers that lead liana proliferation, these themes show 

common elements related to forest health and global change (i.e., atmospheric CO2, water 

availability-droughts, forest disturbance) (Trumbore et al., 2015). Hence, lianas have been 

considered as a fingerprint of the impacts of the global change on tropical environments (Lewis et 

al., 2004). 
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1.3 The Tropical Dry Forest and liana abundance 

As suggested before, liana abundance and diversity tend to increase toward seasonal 

environments with low MAP (Durán et al., 2015; Parolari et al., 2020; Schnitzer, 2005). A recent 

study conducted in Panama also suggests that liana proliferation and richness are favored by how 

rainfall is distributed throughout the year (Parolari et al., 2020), revealing that high dormancy 

environments ‒those with longer dry seasons– are prone to a high relative abundance and species 

richness of lianas. According to Parolari et al. (2020), the strong response of lianas to MAP and 

rainfall seasonality may suggest that future changes in rainfall regimes will determine the liana 

distribution and abundance in the tropics. 

Across the tropics, the Tropical Dry Forest (TDF) is among the ecoregions with high rainfall 

seasonality and low MAP. Overall, the TDF has been described by Sánchez-Azofeifa et al. (2005) 

as a deciduous forest that presents a mean annual temperature above 25 °C, total annual 

precipitation between 700 and 2000 mm, and three or more dry months per year. For several 

decades, the TDF has been considered one of the most threatened ecosystems (Janzen, 1988) due 

to its attractive features for human settlement and development, which have led to the loss of 

wildlife habitats by deforestation and fragmentation (Portillo-Quintero and Sánchez-Azofeifa, 

2010). The high liana abundance in these environments and the ongoing climatic changes 

associated with these (Stan et al., 2020) may imply that lianas are passive threats to the future 

structure and dynamics of these ecosystems. 

Different research priorities have been proposed for the TDF, specifically to the neotropical dry 

forest. These research priorities are associated with creating linkages between social sciences and 

ecological studies for better science-policy nexus (Sánchez-Azofeifa et al., 2005) or the need to 

use improved sensor capabilities to better characterize biophysical variables or to map tree species 

(Sánchez-Azofeifa et al., 2003). Despite this, there are no clear research priorities that aim to 

integrate the study of lianas and trees at the TDF. Recently, da Cunha Vargas et al. (2020) 

attempted to evaluate the current state-of-the-art of ecological research of lianas and trees. 

Although da Cunha Vargas et al. (2020) identified the current need to better detect and map lianas, 

future perspectives do not go further than the current body of literature, perhaps because the 

emphasis of authors is more ecological with little or no knowledge of advance remote sensing 

topics. As such, it could be considered that there is no clear roadmap for future studies that aim to 

detect and quantify the extent of lianas in the TDF. 
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1.4 Remote sensing technologies applied to lianas and trees. 

To better understand the implications of lianas and trees in a Tropical Dry Forest, new 

technologies need to be exploited that enhance the detection and monitoring of these life forms. In 

this regard, remote sensing technologies are revolutionizing the ways that studies of tropical forests 

are carried out (Sanchez-Azofeifa et al., 2017). It is likely, therefore, that new technologies and 

methods associated with this field provide feasible solutions to detect and quantify the extent and 

dynamics of lianas. Overall, the study of lianas and trees through passive or active remote sensing 

is not entirely new. Using passive sensors, for instance, several studies have addressed the optical 

properties of lianas from leaf, crown, and canopy observations (Asner and Martin, 2011; Avalos 

et al., 1999; Castro-Esau et al., 2004; Foster et al., 2008; Hesketh and Sánchez-Azofeifa, 2012; 

Kalacska et al., 2007; Li et al., 2018; Marvin et al., 2016; Oki et al., 2014; Sánchez-Azofeifa et al., 

2009a; Sánchez-Azofeifa and Castro-Esau, 2006). Most of these studies were conducted using 

reflectance spectra encompassing the visible, near, and short-wave infrared regions (0.38 – 2.5 

µm) where spectral signatures of lianas and trees are separable. Other studies based on passive 

sensors use RGB cameras or thermal infrared imagery to address the mapping of lianas and trees 

(Li et al., 2018; Waite et al., 2019; Yuan et al., 2019). Yuan et al. (2019) specifically, based part 

of their research on some of the main findings of Chapter 2 of this dissertation. On the other hand, 

using active sensors such as Terrestrial Laser Scanning (TLS), studies have addressed the potential 

impact of lianas on forest structure (Moorthy et al., 2018; Rodríguez-Ronderos et al., 2016; 

Sánchez-Azofeifa et al., 2017) or attempted to quantify the biomass of lianas and trees (Moorthy 

et al., 2020, 2019). 

 

1.5 Motivations and scope of this dissertation. 

In the face of a lacking roadmap for future studies, the unifying aim of this dissertation is to 

integrate new remote sensing perspectives for the detection and quantification of lianas and trees 

at the TDF. This aim is addressed by conducting multidisciplinary research that links fields such 

as remote sensing, modeling, and plant ecophysiology. This dissertation encompasses four 

research chapters that use passive (Chapter 2 – 4) and active (Chapter 5) remote sensing. Chapter 

6, summarizes the main findings of this dissertation and provides future perspectives. The 
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motivation behind each chapter as well as the specific objectives and hypotheses are presented 

below. 

Chapter 2 analyzes the temporal trends of intra- and inter-specific leaf temperature of full-sun 

exposed leaves of several liana species and four host trees. This is accomplished using 

thermography at the canopy of a seasonal forest in Panama. This chapter evaluates two hypotheses: 

i) the presence of lianas affects the leaf temperature of their host trees (intra-specific trends), and 

ii) leaves of lianas and their host trees exhibit differences in leaf temperature (inter-specific trends). 

These hypotheses are addressed by observing temporal variations of displayed leaf temperature 

(leaf temperature – ambient temperature) during the wet and dry seasons in contrasting El Niño 

(2015–2016) and La Niña years (2016–2017). To show the potential impact of the differences in 

leaf temperature between these life forms on carbon exchange, equations of respiration and 

photosynthesis response to temperature (Slot et al., 2013; Slot and Winter, 2017) are used to 

estimate rates of gas exchange. This chapter aims to highlight the fact that lianas are an important 

biotic factor at the canopy level, which may affect the forest temperature, and consequently, its 

productivity. 

Chapter 3 assesses and compares the use of visible-near infrared (VIS-NIR, 0.45 – 0.95 µm) 

and longwave infrared (LWIR, 8 – 11 µm) spectra to discriminate leaves of lianas and trees. As 

mentioned in section 1.3, several studies have addressed the discrimination of lianas and trees 

using leaf optical properties in the visible, near, and short-wave infrared regions (Avalos et al., 

1999; Castro-Esau et al., 2004; Hesketh and Sánchez-Azofeifa, 2012; Kalacska et al., 2007; 

Sánchez-Azofeifa et al., 2009a; Sánchez-Azofeifa and Castro-Esau, 2006). At these spectral 

regions, the signatures of lianas and trees are separable; however, its accuracy of discrimination 

depends on seasonal or phenological factors (Hesketh and Sánchez-Azofeifa, 2012). Since lianas 

and trees differ in the concentration of compounds such as lignin, cellulose, and hemicellulose 

(Asner and Martin, 2012, 2011) and these compounds can be detected at the LWIR region (Ribeiro 

da Luz and Crowley, 2007), this chapter hypothesizes that LWIR spectra provide better 

discrimination between these life forms than the VIS-NIR spectra. This chapter also addresses the 

effect of the spectral pre-processing associated with noise reduction and feature enhancement on 

the spectral discrimination of life forms. In combination with data-reduction techniques, twenty-

one machine learning algorithms are evaluated to classify liana and tree leaves. This chapter aims 
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to highlight the potential of the LWIR spectral region for the accurate detection of liana and trees 

in tropical environments. 

Chapter 4 evaluates the prediction of leaf traits of lianas and trees using leaf spectra. Most of 

the current studies attempt to predict a set of leaf traits from a broad group of plants without 

considering possible differences between groups. This lack of consideration of the group identity 

may introduce bias in the prediction of leaf traits, which may be large between groups of species 

that coexist in the same environment and present distinctive anatomical, physiological, 

biophysical, and biochemical features; as the case of lianas and trees (Asner and Martin, 2012; 

Sánchez-Azofeifa et al., 2009a; Slot and Winter, 2017). Although previous studies have already 

developed predictive models for some leaf traits using these life forms (Asner et al., 2011; Cheng 

et al., 2014, 2012), none of the current ones have addressed the potential impact of the life forms 

on leaf trait predictions. This chapter aims to analyze the effect of life forms on the prediction of 

leaf traits as well as to evaluate the integration of wavelet spectra with Partial Least Square 

Regression (PLSR) models to improve the prediction of leaf traits. Specifically, this chapter i) 

evaluates the ability of PLSR models based on reflectance and wavelet spectra to accurately predict 

leaf traits; ii) compares how these models identify spectral regions that could play an important 

role in predicting traits; and iii) compares how life forms may influence the prediction of traits and 

performance in these models. Three leaf traits are studied: Leaf Mass per Area (LMA), gravimetric 

Water Content (WC), and the Equivalent Water Thickness (EWT). Leaf spectra from the VIS-NIR 

(0.45 ‒ 1.0 µm) and mid- long- wave (MLWIR, 2.55 ‒ 11.0 µm) infrared spectral regions are used 

to predict leaf traits. The findings in this chapter aim to highlight the use of wavelet spectra to 

overcome limitations of PLSR models based on leaf reflectance for predicting traits. Likewise, this 

chapter attempt to highlight the need to explore the potential bias associated with plant groups to 

predict traits. 

Chapter 5 examines the relationship of fractal geometry with tree and stand metrics. Unlike 

previous research chapters, this chapter is focused on active remote sensing using tree point clouds 

derived from Terrestrial Laser Scanning (TLS). Overall, methods associated with fractals have 

been widely used to determine bifurcation patterns of trees or to evaluate stressors effects on plant 

development. In a few instances, fractals have been used to predict tree or stand metrics. This 

chapter explores the use of fractal geometry applied to point clouds derived from TLS to predict 

tree and strand metrics. This is addressed using seven open databases of point clouds with and 



 

9 

 

without leaves. Four tree metrics are estimated on each point cloud: i) tree height, ii) diameter at 

breast height, iii) crown area, and iv) tree volume. In addition, parameters of fractal geometry are 

estimated on each point cloud using the voxel-counting method (Bunde and Havlin, 1994). The 

relationship between fractal geometry parameters and tree metrics is then explored. This chapter 

also explores to up-scale the observations at the tree-level to plot-level through the creation of 

artificial stands. Findings associated with this chapter highlights fractal geometry equations as a 

fast and accurate approach for predicting the selected metrics on irregular structures. Likewise, the 

method presented here may help to understand how plants or stands occupy their 3D space 

(Sánchez-Azofeifa et al., 2017). Even though Chapter 5 does not include lianas as the central group 

of study, the principles drawn from this reveal its potential application on irregular woody plants 

such as lianas. This could be considered the first step on characterizing the effect of lianas on tree 

architecture and structure. Thus, herein the significance of this chapter in this dissertation. 

Finally, chapter 6 summarizes the main conclusions associated with the previous research-

chapters. While the main findings of this dissertation are presented within separate thematic 

chapters, the common theme that weaves them together is remote sensing technologies applied to 

life forms. Therefore, this chapter attempts to offer general insight into future research directions 

to better understand lianas’ role in the ecosystem using remote sensing technologies. 
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CHAPTER 2 

 

 

DIFFERENCES IN LEAF TEMPERATURE BETWEEN LIANAS AND TREES IN THE 

NEOTROPICAL CANOPY 

 

Abstract 

Leaf temperature (Tleaf) influences photosynthesis and respiration. Currently, there is a growing 

interest in including lianas in productivity models due to their increasing abundance and their 

detrimental effects in the carbon stock of tropical ecosystems. Therefore, understanding the 

differences of Tleaf between lianas and trees is important for future predictions of productivity. 

Here, we determined the displayed leaf temperature (Td = Tleaf − air temperature) of several species 

of lianas and their host trees during El Niño - Southern Oscillation (ENSO) and non-ENSO years 

to evaluate if the presence of lianas affects the Td of their host trees, and if leaves of lianas and 

their host trees exhibit differences in Td. Our results suggest that close to midday, the presence of 

lianas does not affect the Td of their host trees; however, lianas tend to have higher values of Td 

than their hosts across seasons, in both ENSO and non-ENSO years. Although lianas and trees 

tend to have similar physiological-temperature responses, differences in Td could lead to 

significant differences in rates of photosynthesis and respiration based on temperature response 

curves. Future models should thus consider differences in leaf temperature between these two life 

forms to achieve robust predictions of productivity. 

 

Keywords 

El Niño-Southern Oscillation; gas exchange; leaf canopy temperature; life forms; thermography; 

woody vines 

 

2.1 Introduction 

Variations in leaf temperature (Tleaf) have been considered a factor that can affect the net 

primary productivity of the biosphere. Most Terrestrial Biosphere Models (TBMs) use kinetic 

constants of Tleaf dependence to evaluate the response of photosynthesis and respiration in a given 



 

11 

 

ecosystem (Rogers et al., 2017). However, the increasing effects of global warming and the high 

diversity of species and ecological strategies pose a challenge to determining with accuracy the 

Tleaf of different individuals and plant communities. In tree communities of temperate regions, 

Leuzinger & Körner (Leuzinger and Körner, 2007) have found that the presence or absence of 

certain tree species in the canopy can play a significant role in the control of the forest surface 

temperature. This control depends in large part on the spatial arrangement and leaf functional traits 

of such species, such as the stomatal conductance and the capacity of leaf cooling associated with 

water transpiration (Dai et al., 2004; Jones, 1999; Meinzer et al., 1997). Currently, there is no 

concrete evidence of how the spatial arrangement of species can affect the forest surface 

temperature of a tropical forest; nevertheless, it could be expected that the high diversity of species, 

life forms, and functional traits produce a highly dynamic surface temperature that could reduce 

our ability to predict different ecological processes. 

Studies have shown several implications of the increasing temperature on ecological processes 

at different levels. For example, at the leaf level, increases in temperature above the photosynthesis 

optimum are associated with the decline of CO2 assimilation rates (Slot and Winter, 2017; Vargas 

and Cordero, 2013), stomatal conductance (Slot et al., 2016), and increases in respiration (Slot et 

al., 2013); trends that can vary widely among species and life forms (Slot et al., 2014b, 2013; Slot 

and Winter, 2017). Likewise, at the ecosystem level in tropical forests, climate warming is 

associated with long-term increases in biomass (Lin et al., 2010) and the dominance of plants such 

as lianas (Durán et al., 2015). 

Associated with this later life form, since 2002, studies have reported a notable increase in liana 

abundance in tropical and temperate environments (DeWalt and Chave, 2004; Londré and 

Schnitzer, 2006; Phillips et al., 2002; Schnitzer, 2015, 2005). Likewise, other studies have shown 

significant detrimental effects of lianas presence on the tree recruitment, growth, survival, and 

carbon stock (Durán and Gianoli, 2013; Martínez-Izquierdo et al., 2016; Schnitzer and Carson, 

2010). Together, these trends have cast doubt on the accuracy of some TBMs that predict the 

carbon cycle (Verbeeck and Kearsley, 2016) highlighting the need to incorporate lianas as a future 

factor in such models for a better understanding of the ecosystem dynamics. Currently, most of 

the temperature–response studies that have compared the physiological performance of lianas and 

trees at the leaf-level suggest that there is no need to make a distinction between the physiological 

behavior of these life forms in future models (Slot et al., 2014b, 2014a, 2013; Slot and Winter, 
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2017). However, the higher interception of light by lianas (Rodríguez-Ronderos et al., 2016) and 

the greater competitive advantage of lianas in water use (Chen et al., 2015) suggests that their Tleaf 

may differ from that of their host trees, and might also affect Tleaf of their hosts; such differences 

in Tleaf between these life forms could reduce our ability to predict carbon fluxes in tropical forest 

canopies accurately. 

In this study, we analyze the intra- and inter-specific trends in Tleaf for full-sun exposed leaves 

of several liana species and four host trees of a neotropical seasonal forest in Panama. We achieved 

this by using thermography and addressed two hypotheses at the canopy level: (i) the presence of 

lianas affects the leaf temperature of their host trees (intra-specific trends), and (ii) leaves of lianas 

and their host trees exhibit differences in leaf temperature (inter-specific trends). These hypotheses 

were addressed by observing temporal variations during the wet and dry seasons in contrasting El 

Niño (2015–2016) and La Niña years (2016–2017). Our hypotheses were tested using the 

displayed leaf temperature (Td) as the difference of Tleaf obtained from the thermal images minus 

the ambient air temperature (Ta). The Td was estimated as a proxy of Tleaf in order to reduce the 

effect of the variation of the surrounding Ta during each measurement and perform temporal 

comparisons. 

We hypothesized that leaves of trees with lianas would experience higher values of Td than 

leaves of trees without lianas. This is based on the negative effects of lianas on trees associated 

with the ability of lianas to reduce the water availability around their host trees (Ichihashi et al., 

2017); a process that could affect the heat dissipation by transpiration of leaves of host trees (Lin 

et al., 2017). Likewise, we expect that leaves of lianas would show lower Td in comparison with 

host tree leaves; due to their ability to grow in drought environments (Schnitzer, 2005) and their 

greater competitive advantage on the acquisition, regulation, and efficient use of water in 

comparison with trees (Cai et al., 2009; Chen et al., 2015; De Guzman et al., 2016; Zhu and Cao, 

2009). In addition, we hypothesized that during years with little rainfall or few seasons with 

droughts (La Niña year or dry seasons), leaves of both life forms will show higher values of Td due 

to the high evaporative demand of the surrounding environment (Bretfeld et al., 2018). To address 

our hypotheses, we used unpublished values of leaf emissivity for each life form to calculate the 

Tleaf. To show the impact of the differences in Td, and consequently Tleaf, on carbon fluxes between 

these life forms, we calculated rates of respiration (R) and photosynthesis (P) using equations of 

temperature-response previously published by Slot et al. (2013) and Slot and Winter (2017), and 
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our estimations of Tleaf. Our results highlight the fact that lianas are an important biotic factor at 

the canopy level, that in turn can affect forest temperature. Therefore, their differential expression 

in Tleaf should be considered for future predictions of forest productivity; that could become a part 

of the challenge of including lianas in future global vegetation models (Schnitzer et al., 2016). 

 

2.2 Materials and Methods 

2.2.1 Study site 

This study was conducted in Parque Natural Metropolitano (PNM, 8°59′39.95″ N, 79°32′34.68″ 

W, 150 m a.s.l.) that is located west of Panama City on the Pacific coast of the Republic of Panama. 

This site presents a tropical dry forest with a mean annual temperature of 26.5 °C and annual 

rainfall average of 1740 mm. In general, the region is characterized by two contrasting seasons: a 

wet season between May and December when most of the rainfall occurs, and a dry season between 

January and March (Figure A1‒1). The PNM contains 265 ha of natural forest reserve with an old 

secondary forest of 80–150 years with tree heights of up to 40 m. This site has a 42 m standing 

crane with a 51 m long jib with a suspended cage that was used to access the top of the canopy. 

The crane covers approximately 8000 m2 of forest in which 65 and 20 species of trees and lianas 

can be found, respectively (Avalos and Mulkey, 1999). Using this crane, we conducted four data 

collection campaigns: November 2015, February 2016, October 2016, and February 2017 (two in 

wet and two in dry seasons). The first two campaigns were conducted during a strong El Niño 

year, while the last two campaigns occurred during a starting La Niña year. A mosaic of the canopy 

at PNM captured on December 2015 can be observed at 

http://www.gigapan.com/gigapans/196831. 

 

2.2.2 Species selection and field design 

At the top of the canopy, we selected four of the most abundant tree species that were fully 

exposed to the sun: Anacardium excelsum (Bertero & Balb. ex Kunth), a late-successional species; 

Annona spraguei (Saff.), a mid-successional species; Castilla elastica (Liebm.), a mid-

successional species; and Luehea seemannii (Triana & Planch), an early-successional species. We 

took between two and six fusion images (RGB and thermal) at the top of the crown for two or four 

individuals of each species with lianas and without lianas. The categorization of a tree with or 

without lianas was based on canopy observations without considering the possible presence of 

http://www.gigapan.com/gigapans/196831
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lianas on trees that do not reach the top-crown. The fusion images used in this study were collected 

with a FLIR T400 thermal infrared camera (FLIR Systems AB, Danderyd, Sweden). Samples from 

A. spraguei were only collected during an El Niño year due to fact that our sampling trees died 

after this period. The fusion images were collected with a thermal camera that has a wavelength 

range between 7.3 and 13 µm, a standard calibration range from −20 to 650 °C, an image of 320 

× 240 pixels, and a temperature error of 2% (e.g., 2% of 30 °C = ±0.6 °C). The thermal imagery 

was acquired between 10:00 a.m. and 12:00 p.m. (Figure A1‒2). The distance between the camera 

and the target surface in the tree was estimated to be 1.8 m, leading to a nominal spatial resolution 

of ~2.64 mm per pixel. 

 

2.2.3 Estimation of the leaf temperature 

From each thermal image acquired with the FLIR T410, we estimated the Tleaf for the upper-

middle region of the leaf blade from five leaves of trees and lianas (in trees with liana infestation). 

Selected leaves did not have apparent mechanical damage or evidence of herbivore attacks. The 

estimation of Tleaf from the thermal images was performed using the FLIR Tools 5.12 software 

(http://www.flir.com/instruments/display/?id=51975). To compute the Tleaf, we used the mean 

relative air humidity and air temperature (Ta) recorded every 15 min by a meteorological station 

located at the crane’s structure. These meteorological station data sets were provided by the 

Physical Monitoring Program of the Smithsonian Tropical Research Institute (STRI). Likewise, 

we used the same value of Ta as a reflected temperature (or commonly known as background 

radiance) to compute the Tleaf; due to the fact that high emissivity and closed objects allow accurate 

temperature measurements in almost any background radiance conditions (Usamentiaga et al., 

2014). In addition, to compute Tleaf, the emissivity of leaves for the four tree species and seven 

lianas species was estimated in February 2017 using the reference emissivity technique (López et 

al., 2012) (data unpublished). The calculation of the Tleaf for lianas was performed using the mean 

value of emissivity (0.983) estimated for this life form, while the calculation for leaves of trees 

was conducted using the mean value of emissivity determined for each species (A. excelsum = 

0.976; A. spraguei = 0.977; C. elastica = 0.976; L. seemannii = 0.980). Following the estimation 

of Tleaf, we computed the displayed leaf temperature (Td) for each leaf as the difference of Tleaf - 

Ta. For its nature, Td can show positive and negative values, where positive values describe the 

hottest leaves and negative values the cooler leaves, according to the surrounding environment. As 
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mentioned in the introduction, this calculation was conducted as a parameter that can allow us to 

reduce the temporal variation of the ambient temperature between seasons and years. These values 

of Td were used later to perform the statistical comparisons below. 

 

2.2.4 Estimations of photosynthesis and leaf respiration 

We calculated the leaf photosynthesis (P, μmol CO2 m
−2 s−1) and leaf dark respiration (R, μmol 

CO2 m
−2 s−1) to show that despite the similar physiological–temperature behavior of these life 

forms [7], differences in leaf temperature combined with the physiological performance can 

produce different estimations of productivity for these functional groups at the leaf level. These 

gas exchange traits were estimated using the equations and parameters published by Slot and 

Winter (2017) (See Equation (1)) and derived from Slot et al. (2013) (See Equation (2)) for the 

species of trees (excluding A. spraguei) and lianas of this study: 

 

𝑃 = 𝑃opt  ×  𝑒
−(

𝑇leaf− 𝑇opt

Ω
)

2

 (1) 

𝑅 =  𝑅25  ×  𝑄10

(𝑇𝑙𝑒𝑎𝑓−25)/10
 (2) 

 

where Popt is the maximum rate of photosynthesis at an optimum temperature (Topt), Ω represents 

the difference in temperature between Topt and the temperature in which P drops to 37% of its 

value at Topt, R25 is the leaf respiration at 25 °C, Q10 is the proportional increase in R with a 10 °C 

temperature rise, and Tleaf is our actual measurements of leaf temperature using thermography. A. 

spraguei was excluded in this analysis due to the lack of data during the La Niña year. Because 

we did not identify lianas species, we estimated the gas exchange traits using the mean values 

reported by (Slot et al., 2013; Slot and Winter, 2017) as a functional group. Likewise, for the case 

of A. excelsum, we estimated P by the published values for Parque Nacional San Lorenzo, Panama. 

Using the selected leaves for our second hypothesis, we solved these equations assuming that the 

kinetic leaf temperature is equal to our estimation of Tleaf. This aims to simulate the productivity 

at the leaf level based on the surface canopy temperature that it is commonly used by most of the 

TBMs. 

Although studies have reported a significant variation in photosynthesis and respiration 

performance of lianas and trees between seasons (Cai et al., 2009), we conducted these calculations 
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assuming a lack of seasonal variation in the physiological behavior. From the values of P and R 

extracted above, we calculated the normalized differences based on each species of host tree 

following: 

 

Normalized 𝑃 or 𝑅 =
𝑃 𝑜𝑟 𝑅 𝑣𝑎𝑙𝑢𝑒 − 𝑃 𝑜𝑟 𝑅 𝑚𝑒𝑎𝑛

𝑃 𝑜𝑟 𝑅 𝑠𝑡𝑎𝑛𝑑𝑎𝑟 𝑑𝑒𝑣𝑖𝑎𝑖𝑜𝑛
 (3) 

 

This latter calculation was implemented to reduce the temporal variation of leaf temperature which 

can produce erroneous interpretations from the comparisons of P and R across seasons and ENSO 

years. The resulting values from this normalization are unitless, and the magnitude of their 

variation can be compared between life forms, seasons, and ENSO years. 

 

2.2.5 Data analysis 

To address our hypotheses, we used linear mixed-effect models to compare the variability of 

the Td according to the season, ENSO year, and: i) the presence of lianas on the Td of trees, or ii) 

differences between leaf type (liana and tree) on the Td. To test for the differences of Td between 

leaf types, we only considered leaves of trees with lianas. On average, more than 240 estimations 

of Td were used in each analysis. A detailed description of the sample size (number of tree 

individuals, thermal images, and Td estimations) used in each analysis is shown in Tables A1‒1 

and A1‒2. Due to the hierarchical nature of our design, linear mixed-effect models that combine 

fixed and random components (Zuur et al., 2009) were used to reduce the “random” factors that 

we cannot control in the field such as micro-climatic variations on leaves or the health of the 

individuals. Specifically, our model can be described by the following equation: 

 

𝑇d =  𝛼 +  𝛽1𝑖𝑗 + 𝑆𝑒𝑎𝑠𝑜𝑛𝑖𝑗 + 𝐸𝑁𝑆𝑂𝑖𝑗 +  𝛽1𝑖𝑗 × 𝑆𝑒𝑎𝑠𝑜𝑛𝑖𝑗 + 𝛽1𝑖𝑗 × 𝐸𝑁𝑆𝑂𝑖𝑗

+ 𝑆𝑒𝑎𝑠𝑜𝑛𝑖𝑗 × 𝐸𝑁𝑆𝑂𝑖𝑗 + 𝛽1𝑖𝑗 × 𝑆𝑒𝑎𝑠𝑜𝑛𝑖𝑗 × 𝐸𝑁𝑆𝑂𝑖𝑗 + 𝑎𝑖|j + 𝑒𝑖𝑗  
(4) 

 

where α represents the intercept, β1 the presence of lianas for our first hypothesis and the leaf type 

for our second hypothesis, e the unexplained error, and a the random factor which is affected by 

each thermal image (i) nested within each individual (j). We considered each tree from each 

campaign of data collection as an independent sample. Likewise, we applied this same analysis to 
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compare the variations of the normalized differences of P and R using these parameters as response 

variables and β1 as leaf type. These analyses were performed using the nlme package [36] under 

the open-source statistical software R version 3.3.1 (R Core Team, 2020). Box-Cox 

transformations were performed when the normality of the data was not reached. In all cases, we 

used the standard error (SE) as a descriptor of the sampling distribution around the mean. 

 

2.3 Results 

2.3.1 Leaf temperature of trees with and without lianas 

The intra-specific comparison of Td in each of our four tree species between leaves of trees with 

and without lianas suggests that the presence of lianas does not affect the Td of host trees across 

seasons or ENSO years during our measurement times (Table 2‒1). In general, tree species with 

and without lianas showed values of Td in the range of −4.11 °C and 9.91 °C, with mean values 

close to 1.48 ± 0.09 °C (Figure 2‒1). Regardless of the tree species, season, or ENSO year, trees 

without lianas showed values of Td of 1.39 °C on average (±0.14), while trees with lianas showed 

values of Td of 1.57 °C (±0.13). As such, trees with lianas were 12.94% hotter than trees without 

lianas based on the average value, but this difference was not significant. At the species level, the 

lowest values of Td (−2.81 ± 0.10 °C) were observed for L. seemannii trees with lianas measured 

in the dry season of an El Niño year, while trees of C. elastica with lianas showed the highest 

values of Td (7.10 ± 0.26 °C) in the wet season of the La Niña year. Across seasons and ENSO 

years, A. excelsum trees without lianas tended to have slightly higher values of Td than trees of the 

same species with lianas. Conversely, during an El Niño year, trees without lianas of A. spraguei 

had marginally lower values of Td than trees with lianas; however, both trends are not significant. 

Trees of L. seemannii and A. excelsum with and without lianas showed the most contrasting—

albeit non-significant—trends between years, with leaves during the El Niño year showing lower 

values of Td than during the La Niña year. 
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Figure 2‒1. Displayed leaf temperature (Td) of tropical tree leaves with and without lianas during 

the wet and dry season in contrasting ENSO years at the canopy of Parque Natural Metropolitano, 

Panama. Each point represents the mean (±SE). Short dashed lines represent the mean of displayed 

leaf temperature per tree, while long dashed lines represent the mean of all samples. 

 

2.3.2 Leaf temperature of lianas and their host trees 

The inter-specific comparisons of Td suggest that liana leaves present higher values of Td than 

leaves of their host trees (Table 2‒2, Figure 2‒2). In general, liana leaves showed Td values in a 

range of −4.11 °C and 15.45 °C, with mean values close to 2.69 ± 0.17 °C; these values are 93.52% 

higher than those reported above for leaves of trees without lianas on mean values. This expression 

of the Td between life forms is significantly affected by the season, where lianas tend to have higher 

values of Td in the wet season in comparison with the dry season. The difference associated with 

each host tree suggests that for L. seemannii, leaves of lianas and their host have a significant 

interaction with ENSO, where leaves of both life forms during La Niña showed higher and 
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contrasting values of Td with respect to an El Niño year. The effect of season, ENSO, and leaf type 

(tree or liana) was also observed in the host tree of C. elastica (Table 2‒2). 

 

Table 2‒1. Effect of the liana presence, season, ENSO year, and their interaction on the displayed 

leaf temperature of tropical trees.  Values represent F-ratios and values in parentheses describe the 

degree of freedoms; no statistical significance was found. 

Factors 
Species 

A. excelsum A. spraguei C. elastica L. seemannii 

Presence 
0.90 2.27 0.01 1.88 

(1, 14) (1, 13) (1, 13) (1, 7) 

Season 
0.01 9.07 2.11 2.13 

(1, 14) (1, 13) (1, 13) (1, 7) 

ENSO 
1.56 

- 
4.47 5.37 

(1, 14) (1, 13) (1, 7) 

Presence*Season 
0.01 0.02 0.60 0.01 

(1, 14) (1, 13) (1, 13) (1, 7) 

Presence*ENSO 
0.02 

- 
0.09 0.01 

(1, 14) (1, 13) (1, 7) 

Season*ENSO 
0.02 

- 
1.14 2.45 

(1, 14) (1, 13) (1, 7) 

Presence*Season*ENSO 
0.25 

- 
3.55 0.12 

(1, 14) (1, 13) (1, 7) 
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Figure 2‒2. Displayed leaf temperature (Td) of lianas and their host tree in four tree species during 

the wet and dry season in contrasting ENSO years at the canopy of Parque Natural Metropolitano, 

Panama.  Each point represents the mean (±SE). Short dashed lines represent the mean of displayed 

leaf temperature per host tree, while long dashed lines represent the mean of all samples. 

 

2.3.3 Comparisons of photosynthesis and leaf respiration between life forms 

From the predictions of P and R using our estimations of Tleaf, we computed the normalized 

difference for each host tree in order to conduct a temporal comparison based on life forms, 

seasons, and ENSO years. Our results suggest that the differences in the expression of Tleaf in 

combination with the physiological performance of these life forms can produce different 

estimations of P and R between life forms in all host species, which can be affected (in some cases) 

by seasons and the ENSO (Table 2‒3, Figure 2‒3). These differences are more pronounced for P 

than R, for which leaves of lianas exhibit lower rates per unit leaf area than leaves of trees. 
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Table 2‒2. Effect of the leaf type (tree or liana leaf), season, ENSO, and their interaction on the 

displayed temperature of leaves of/on host tropical trees. Values represent F-ratios, values in 

parentheses describe the degree of freedoms, and the asterisks represent the significance: * p < 

0.05; ** p < 0.01, *** p < 0.001. 

Factors 
Species 

A. excelsum A. spraguei C. elastica L. seemannii 

Type 
22.22 *** 12.96 *** 10.04 ** 192.32 *** 

(1, 7) (1, 2) (1, 6) (1, 4) 

Season 
0.02 9.06 0.40 1.12 

(1, 7) (1, 2) (1, 6) (1, 4) 

ENSO 
0.15 

- 
2.46 1.87 

(1, 7) (1, 6) (1, 4) 

Type*Season 
13.60 *** 32.49 *** 5.92 * 16.22 *** 

(1, 7) (1, 2) (1, 6) (1, 4) 

Type*ENSO 
0.69 

- 
2.40 7.32 ** 

(1, 7) (1, 6) (1, 4) 

Season*ENSO 
0.01 

- 
2.46 2.40 

(1, 7) (1, 6) (1, 4) 

Type*Season*ENSO 
1.09 

- 
11.88 *** 0.44 

(1, 7) (1, 6) (1, 4) 
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Figure 2‒3. Normalized differences of predictions of photosynthesis (P) and leaf dark respiration 

(R) of leaves of trees and lianas on four host species during the wet and dry season in contrasting 

ENSO years. Each point represents the mean (±SE). Short dashed lines represent the mean for 

trees, while long dashed lines represent the mean for lianas. 
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Table 2‒3. Effect of the leaf type (tree or liana leaf), season, ENSO, and their interaction on the 

normalized difference of photosynthesis and leaf respiration of the values predicted. Values 

represent F-ratios, values in parentheses describe the degree of freedoms, and the asterisks 

represent the significance: * p < 0.05; ** p < 0.01, *** p < 0.001. 

Factors 

Species or host tree 

Photosynthesis Respiration 

A. excelsum C. elastica 
L. 

seemannii 

A. 

excelsum 

C. 

elastica 

L. 

seemannii 

Type 

1133.01 

*** 
11.42 *** 

3432.71 

*** 

18.45 

*** 

420.99 

*** 
4.56 * 

(1, 7) (1, 6) (1, 4) (1, 7) (1, 6) (1, 4) 

Season 
0.49 1.03 2.49 0.05 0.01 0.02 

(1, 7) (1, 6) (1, 4) (1, 7) (1, 6) (1, 4) 

ENSO 
0.97 0.37 3.39 0.09 1.51 0.19 

(1, 7) (1, 6) (1, 4) (1, 7) (1, 6) (1, 4) 

Type*Season 
12.33 *** 0.19 0.03 

13.85 

*** 
5.43 * 0.15 

(1, 7) (1, 6) (1, 4) (1, 7) (1, 6) (1, 4) 

Type*ENSO 
5.86 * 3.87 * 86.23 *** 0.57 0.99 39.76 *** 

(1, 7) (1, 6) (1, 4) (1, 7) (1, 6) (1, 4) 

Season*ENSO 
1.69 0.41 0.34 0.17 1.29 2.71 

(1, 7) (1, 6) (1, 4) (1, 7) (1, 6) (1, 4) 

Type*Season*ENSO 
4.97 * 0.01 10.61 ** 0.87 

20.99 

*** 
0.17 

(1, 7) (1, 6) (1, 4) (1, 7) (1, 6) (1, 4) 

 

2.4 Discussion 

2.4.1 Leaf temperature of trees with and without lianas 

We hypothesized that differences in Td between trees with and without lianas due to the lianas 

presence could impact the availability of water ‒and therefore the heat dissipation by 

transpiration—of leaves of host trees for water competition. However, we found that the presence 
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of lianas on trees does not seem to affect the temperature of tree leaves. This unexpected 

observation could either be due to: (i) the lack of direct competition for water that may not reduce 

the surrounding water availability for trees (De Deurwaerder et al., 2018), or (ii) the possible 

compensation of more assignation of water to fully exposed leaves than leaves covered by lianas 

for transpiration cooling. It is important to note here that this result is based on four tree species 

which may not cover the whole spectrum of the liana-trees relationship. For example, Visser et al. 

(2018) suggest that liana infestation can have negative effects on tree population growth rates; 

however, this effect is more harmful to fast-growing species than slow-growing species. Therefore, 

we cannot exclude the possibility that lianas could have an effect on leaf temperature on trees of 

other life history groups, or even other sites. Likewise, it is important to note that in our study, we 

use the presence and absence of lianas on trees; that is why we consider that the density and extent 

of lianas on tree crowns may influence that host tree performance and should be examined in the 

future. On the other hand, the lack of a seasonal or ENSO effect on Td could be related to the fact 

that trees from old secondary forests such as PNM tend to present similar sap flow during droughts 

and wet periods, as a result of favorable soil features and roots access to deeper soil water 

reservoirs (Bretfeld et al., 2018). These conditions may contribute to maintaining similar values of 

Td by transpirational cooling regardless of the season or ENSO year. 

 

2.4.2 Leaf temperature of trees and lianas 

We hypothesized that leaves of lianas might have lower temperatures in comparison with their 

host tree due to their greater competitive advance on the acquisition, regulation, and efficient use 

of water as compared with trees. By contrast, our results suggest that liana leaves have 

considerably higher values of Td than tree leaves. This result reinforces previous observations 

conducted on few leaves of three species of trees and two species of lianas using thermocouples 

(Sánchez-Azofeifa et al., 2011). Although the aim of this study was not to determine which biotic 

drivers can lead to differences in Td between life forms, it is clear that several factors can influence 

Tleaf, such as leaf size (Leigh et al., 2017), leaf inclination (Medina et al., 1978), anatomical traits 

(Pérez-Estrada et al., 2000), or the presence of photo-protection pigments. Although we do not 

have direct measurements of leaf inclination associated with our Td estimations, perhaps the leaf 

angle distribution of liana leaves on the canopy facing the sun more directly may contribute to the 

highest Td. As Rey-Sánchez et al. (2016) pointed out, leaves that are facing the sun more directly 
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have been shown to have higher solar irradiation that strongly affects the Tleaf. On the other hand, 

the higher values of Td of lianas could be related to the stomatal control. A recent study conducted 

in a botanical garden in China suggests that lianas tend to have earlier stomatal closure in 

comparison to trees to reduce the water transpiration close to noon (Chen et al., 2017). If this 

pattern occurs at the forest canopy of the PNM, it is expected that lianas would present higher 

values of temperature associated with the physiological regulation, which could be detected using 

thermography (Prytz et al., 2003). Moreover, the different Td between life forms could be 

associated with the higher concentration of photo-protection pigments in trees in comparison with 

lianas (Sánchez-Azofeifa et al., 2009a). Currently, there is strong evidence that the presence of 

photo-protection pigments is associated with the efficiency of thermal dissipation of the excess of 

energy from light stress environments such as the canopies (Demmig-Adams, 1998; Demmig-

Adams and Adams, 1992). Therefore, it could be expected that such differences in photo-

protection pigments between life forms influence the efficiency of thermal dissipation and the Td. 

 

2.4.3 Effect of the temperature on photosynthesis and respiration of lianas and trees 

Although lianas have a similar physiological–temperature response compared to trees (Slot et 

al., 2014a, 2013; Slot and Winter, 2017), higher displayed temperatures of lianas would have 

significant implications for future TBMs. Specifically, in a future scenario of modeling in which 

there is a lack of seasonal variation in the physiological behavior of leaves and the differences in 

leaf temperature between these life forms are not taken into consideration, predictions of 

productivity of lianas could be underestimated in comparison to trees, mainly regarding 

photosynthesis. Although our calculations of gas exchange are based on Tleaf at noon, differences 

in Tleaf through the day could have a major role in diurnal courses of productivity between life 

forms. A daily course of Tleaf of leaves of lianas and trees has been reported by Sánchez-Azofeifa 

et al. (2011), suggesting that liana leaves had higher overall temperatures than tree leaves. The 

Sánchez-Azofeifa et al. (2011) and our trends of Tleaf between life forms, together with their 

physiological sensitivity to the temperature, may lead to different expectations of productivity of 

lianas and trees. Therefore, future models should thus consider differences in leaf thermo-

regulation between these life forms in order to achieve robust predictions of productivity. 

 



 

26 

 

2.5 Conclusions 

Currently, there is a strong need to understand the variations of abiotic factors that can affect 

the forest productivity (Rogers et al., 2017). Like Slot and Winter (2017) pointed out, in the 

absence of a solid understanding of the abiotic controls such as temperature over physiological 

processes, future predictions of productivity will remain speculative. We have shown that the 

presence of lianas may not affect the leaf temperature of their host trees; however, lianas leaves 

tend to have higher values of temperature than their host trees. Our results highlight this difference 

in the expression of the temperature of lianas as an important biotic factor at the canopy level that 

can influence the forest temperature; therefore, their differential expression may have a significant 

weight in future predictions of forest productivity. We consider that future studies should explore 

the spatial variability of liana leaf temperature between forest strata such as in trees (Rey-Sánchez 

et al., 2016), and determine which drivers contribute to the differences in Td. Likewise, the 

differential expression of leaf temperature between life forms should be considered for future 

studies in order to predict the productivity of ecosystems. In addition, studies should explore this 

differential expression of leaf temperature in other regions such as wet forest, where species 

present lower thermal optima of photosynthesis (Slot and Winter, 2017), in order to know if the 

magnitude and direction of our findings vary among environments. 
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CHAPTER 3 

 

 

DISCRIMINATION OF LIANA AND TREE LEAVES FROM A NEOTROPICAL DRY 

FOREST USING VISIBLE-NEAR INFRARED AND LONGWAVE INFRARED 

REFLECTANCE SPECTRA 

 

Abstract 

Increases in liana abundance in tropical forests are pervasive threats to the current and future forest 

carbon stocks. Never before has the need been more evident for new approaches to detect the 

presence of liana in ecosystems, given their significance as fingerprints of global environmental 

change. In this study, we explore the use of longwave infrared reflectance (LWIR, 8-11m) as a 

wavelength region for the classification of liana and tree leaves and compare classification results 

with those obtained using visible-near infrared reflectance data (VIS-NIR, 0.45-0.95 m). Twenty 

sun leaves were collected from each of 14 liana species and 21 tree species located at the canopy 

or forest edge (n= 700) in Santa Rosa National Park, Costa Rica. LWIR and VIS-NIR reflectance 

measurements were performed on these leaves using a portable calibrated Fourier Transform 

Infrared Spectroscopy (FTIR) Agilent ExoScan 4100 and a UniSpec spectral analysis system, 

respectively. The VIS-NIR and LWIR data were first resampled. Then these two spectral libraries 

were pre-processed for noise reduction and spectral feature enhancement resulting in three datasets 

for each spectral region as follows: filtered only, filtered followed by  extraction of the first 

derivative, and continuous wavelet transformation (CWT). Data reduction was then applied to 

these data sets using principal components analysis (PCA). The outputs obtained from the PCA 

were used to conduct the supervised classification of liana and tree leaves. In total, 21 classifiers 

were applied to datasets of training and testing to extract the classification accuracy and agreement 

for liana and tree leaves. The results suggest that the classification of leaves based on LWIR data 

can reach accuracy values between 66 and 96% and agreement values between 32 and 92%, 

regardless of the type of classifier. In contrast, the classification based on VIS-NIR data shows 

accuracy values between 50 and 70% and agreement values between 0.01 and 40%. The highest 

classification rates of liana and tree leaves were obtained from datasets pre-processed using the 
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CWT or from the extraction of the first derivative and classified using either random forest, k-

nearest neighbor, or support vector machine with radial kernel. The results using the LWIR 

reflectance highlight the potential of this spectral region for the accurate detection of liana extent 

in tropical ecosystems. Future studies should consider this potential and test the regional 

monitoring of lianas. 

 

Keywords 

Life forms, leaf spectroscopy, spectral classification, longwave infrared, wavelet analysis. 

 

3.1 Introduction 

Lianas −woody vines− are a diverse and abundant group of plants with a pivotal role in the 

structure and dynamics of tropical forest (Rodríguez-Ronderos et al., 2016; Sánchez-Azofeifa et 

al., 2017; Schnitzer and Bongers, 2011). In general, more than ~24% of plant species richness in 

many tropical forests is represented by lianas (Gentry, 1991). This group of plants is considered a 

non-self-supporting structural parasite (See Stewart & Schnitzer 2017 discussion of their 

categorization) that uses host trees to reach the forest canopy (See Figure A2-1 for a graphic 

representation). Compared to trees, lianas tend to have a higher proportion of photosynthetic 

biomass per whole-plant biomass which contributes significantly to the interception of light and 

consequently to carbon storage (Durán et al., 2015; Rodríguez-Ronderos et al., 2016; van der 

Heijden et al., 2015; Wyka et al., 2013). Several studies have reported a notable increase in liana 

abundance in tropical and temperate environments (DeWalt et al., 2010; Londré and Schnitzer, 

2006; Phillips et al., 2002; Schnitzer, 2015, 2005). Likewise, other studies have shown significant 

detrimental effects by lianas on tree recruitment, growth, survival, and carbon stock (Durán and 

Gianoli, 2013; Martínez-Izquierdo et al., 2016; Schnitzer and Carson, 2010). These trends bring 

into question the accuracy of productivity models and highlight the need to document the footprint 

of lianas and understand their role in the dynamics of ecosystems (Verbeeck and Kearsley, 2016). 

To better understand the implications of lianas on ecosystems, new technologies need to be 

exploited that enhance the detection of this life form in the landscape. In this regard, unmanned 

aerial vehicles, airborne, and satellite technologies that remotely sense canopy reflectance 

properties may provide feasible solutions to monitor liana cover on trees over large scales. 

Currently, several studies have addressed the differences in optical properties of lianas and trees 
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from leaf and canopy observations (Asner and Martin, 2011; Avalos et al., 1999; Castro-Esau et 

al., 2004; Foster et al., 2008; Hesketh and Sánchez-Azofeifa, 2012; Kalacska et al., 2007; Marvin 

et al., 2016; Sánchez-Azofeifa et al., 2009a; Sánchez-Azofeifa and Castro-Esau, 2006). Most of 

these studies were conducted using reflectance spectra encompassing the visible, near, and short-

wave infrared regions (VIS-NIR-SWIR, 380-2500 nm) where spectral signatures of lianas and 

trees are separable. In these regions, liana and tree leaves tend to differ in their reflectance near 

535, 688, 985, and 2252 nm due to the lower concentration of carotenoids and chlorophyll, the 

lower leaf thickness, and the higher leaf water content of liana leaves (Kalacska et al., 2007; 

Sánchez-Azofeifa et al., 2009a). However as pointed out by Hesketh and Sánchez-Azofeifa (2012), 

seasonal or phenological effects on the reflectance of  leaves for both life forms can have important 

implications for their automated classification across seasons. These effects can be associated with 

environmental drivers that may affect the allocation and removal of mobile compounds (i.e., 

pigments) and the water content of leaves. 

The longwave infrared spectrum (LWIR, 8-14 µm) has not been explored for the separation of 

liana and tree leaves. LWIR investigations of trees and their leaves have shown that the spectra of 

leaves are controlled primarily by structural compounds at the leaf surface (Harrison et al., 2018; 

Ribeiro da Luz and Crowley, 2007). These compounds include cellulose, hemicellulose, cutin, 

silica, and terpenes imparting reflectance features that enhance the separability of species 

(Buitrago et al., 2018b; Harrison et al., 2018; Meerdink et al., 2016; Ribeiro da Luz, 2006; Ribeiro 

da Luz and Crowley, 2010, 2007; Ullah et al., 2012a). This spectral region may be characterized 

by lower temporal variability of leaf spectral signatures as suggested from limited data by the 

seminal work of Salisbury (1986) comparing LWIR signatures of green leaves from late autumn 

and senescent leaves. This body of work suggests that LWIR signatures may not be significantly 

affected by seasonal or phenological effects. If these results apply to a wide range of biomes, 

detection in the LWIR would present a unique remote sensing advantage. An additional advantage 

of working in this region for the discrimination of lianas and trees rests on the observation that 

these life forms present contrasting leaf concentrations of lignin, cellulose, and hemicellulose 

(Asner and Martin, 2012, 2011) that may be detected  in LWIR spectra of plants. 

This study assesses the use of the VIS-NIR and LWIR spectral region for the discrimination of 

liana and tree leaves. We hypothesize that LWIR reflectance spectra of leaves may provide better 

discrimination of the two life forms. Because the pre-processing of spectral data may affect the 
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spectral classification and its role in enhancing spectral features has been shown to improve 

spectral separability (Harrison et al., 2018; Rivard et al., 2008), this study also evaluates the impact 

of three common pre-processing methods in improving the classification of the two life forms. In 

addition, we evaluate 21 supervised-classifiers for the discrimination of liana and tree leaves. We 

do so to explore the quality of discrimination of some classifiers or “classifier families” in a field 

increasingly driven by data classification (Fernández-Delgado et al., 2014). We do not aim to 

identify the “best” classifier; our goal is to provide a broad perspective of considerations for future 

studies involving the classification of spectral libraries. This study highlights the LWIR region for 

future detection of these life forms in forests with the future aim to further understand the current 

role of lianas in ecosystem functioning. 

 

3.2 Materials and Methods 

3.2.1 Study site and sample collection 

This study was conducted in the Santa Rosa National Park (SRNP, 10º48” N, 85º36” W) located 

on the Pacific coast of northwestern Costa Rica. The SRNP is in a tropical dry forest (Sánchez-

Azofeifa et al., 2005). This site presents a wet-season extending from the middle of May to late 

November while a dry-season, during which most of the trees lose their leaves, encompasses the 

remaining months (Kalacska et al., 2004). This site has an air temperature that varies from 26 °C 

in the wet-season to 29 °C in the dry season, and has a mean annual precipitation of 1720 mm 

(Kalacska et al., 2004). The SRNP is composed of a mosaic of forest patches in different 

successional stages of natural regeneration and with different land-use histories associated with 

anthropogenic fires, deforestation, and land clearing for pasture and agriculture (Arroyo-Mora et 

al., 2005; Calvo-Alvarado et al., 2009; Sánchez-Azofeifa et al., 2017). The SRNP has 96 species 

of trees of different life history (Hilje et al., 2015) and approximately ~18 species of lianas that 

can reach the forest canopy. The abundance and height of trees in the canopy depends on the 

successional stage of the forest patches (Hilje et al., 2015; Li et al., 2017).  

Fully exposed sun leaves of 14 species of lianas and 21 species of trees (Table 3‒1) were 

collected during the wet-season of 2017 between the months of May and July.  Leaves were 

sampled in the forest canopy or at the forest edge using an extension pruner. For each species, five 

healthy and mature leaves were collected from each of four individuals for a total of 700 leaves. 

The number of individuals and leaves selected were based on the variability of the LWIR 
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reflectance of tree leaves in prior research at our study area (Harrison et al., 2018) and the spatial 

distribution of individuals with low abundance. Leaves were then placed in moist paper and 

immediately stored in sealed plastic bags that were placed in a cooler and taken to the laboratory 

for collection of VIS-NIR and LWIR reflectance spectra within two hours. Despite the importance 

of the shortwave infrared region (SWIR, 1.1–2.6 μm) for the discrimination of liana and tree leaves 

(Kalacska et al., 2007), we do not conduct measurements in the SWIR region because we did not 

have a spectrometer with that spectral range at the time we were in the field. 

 

3.2.2 Measurements of VIS-NIR reflectance spectra 

The collection of leaf spectral reflectance measurements in the VIS-NIR followed previously 

defined protocols of data collection described by Castro-Esau et al. (2004) and Kalacska et al. 

(2007). Measurements were conducted using a UniSpec Spectral Analysis System (PP Systems, 

Amesbury, MA, USA). A leaf clip that holds a foreoptic provides illumination (7.0 W halogen 

bulb) to a leaf area of 4.15 mm2. For each leaf, three measurements were taken at the middle leaf 

lamina avoiding the midrib and these were later averaged. Each measurement was the average of 

~ 40-60 scans for the purpose of noise reduction. This data collected consists of reflectance for 

256 bands spanning a spectral range of 306-1138 nm, each with a bandwidth of 3.3 nm. 

 

3.2.3 Measurements of LWIR spectral reflectance 

The collection of leaf spectral reflectance measurements in the LWIR was conducted using a 

portable Agilent 4100 ExoScan Fourier Transform Infra-Red (FTIR) spectrometer following a 

protocol previously described by Harrison et al. (2018). This spectrometer is equipped with an 

internal IR illumination source and we made use of a diffuse reflectance probe to which a diffuse 

infra-gold reference cap can be attached for background collection. The illuminated area for this 

probe has a diameter of 1.5 cm and a maximum depth of light penetration of 20-50 μm, depending 

on the medium. The FTIR probe was brought into contact with the leaf for the same leaf region as 

measured for collection of VIS-NIR spectra. Each reflectance measurement was the average of 

150 scans for the purpose of noise reduction and was obtained following a measurement of the 

infra-gold background. The data collected consists of reflectance for 1799 bands spanning a 

spectral range from 2.5 to 15.4 μm (4000-650 cm-1) with a resolution of 4 cm-1. 
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Table 3‒1. Liana and tree species sampled at the Santa Rosa National Park, Costa Rica. 

Trees Lianas 

Family Species Family Species 

Apocynaceae Stemmadenia obovata Apocynaceae Forsteronia sp. 

Bignoniaceae Crescentia alata  Forsteronia spicata 

Burseraceae Bursera simarouba Bignoniaceae Arrabidaea chica 

Dilleniaceae Curatella americana  
Cydista 

aequinoctialis 

Euphorbiaceae Jatropha curcas  Cydista diversifolia 

 Sapium glandulosum  Paulinia sp. 

Fabaceae/Caes Bauhinia ungulata Cucurbitaceae 
Cayaponia 

racemosa 

 Hymenaea courbaril Dilleniaceae Tetracera volubilis 

Fabaceae/Pap Gliricidia sepium Malpighiaceae 
Heteropterys 

panamensis 

Fagaceae Quercus oleoides  Heteropterys sp. 

Hippocrateaceae Semialarium mexicanum  Hiraea reclinata 

Lauraceae Ocotea veraguensis Rhamnaceae Gouania polygama 

Malpighiaceae Byrsonima crassifolia Sapindaceae Serjania atrolineata 

Malvaceae Guazuma ulmifolia  Serjania schiedeana 

Meliaceae Cedrela odorata   

 Trichilia americana   

Nyctaginaceae Pisonia aculeata   

Sapindaceae Cochlospermum vitifolium   

Simaroubaceae Simarouba glauca   

Tiliaceae Luehea speciosa   

Verbenaceae Rehdera trinervis   
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3.2.4 Spectral analysis 

The VIS-IR and LWIR reflectance measurements were treated as independent datasets and 

processed in the following five steps: i) data resampling, ii) pre-processing, iii) data reduction, iv) 

training of classifiers, and v) testing of classifiers. 

 

3.2.4.1 Resampling and pre-processing 

The VIS-NIR and LWIR data were resampled to a bandwidth of 1 nm and 10 nm, respectively 

using the simple linear interpolation function ‘resample’ in the prospectr package (Stevens and 

Ramirez-Lopez, 2013; version 0.1.3) of the R software version 3.4.1 (R Core Team, 2020). Each 

of the two datasets was then pre-processed for noise reduction and spectral feature enhancement 

resulting in three datasets for each spectral region as follows: filtered only, filtered followed by  

extraction of the first derivative, and continuous wavelet transformation (CWT). For filtering, a 

Savitzky-Golay smoothing filter was applied using a polynomial quadratic order and a 25-point 

window. The Savitzky-Golay filter was selected as it tends to preserve features of the initial 

spectrum such as maxima, minima that can be modified with other averaging filters (Ruffin et al., 

2008). The first derivative was computed as a descriptor of spectral shifts. Filtering and derivatives 

were computed using the ‘sgolayfilt’ function in the signal package of R (Ligges et al., 2014). A 

CWT was used as a multi-scale analysis for the extraction of absorption features (Rivard et al., 

2008). In CWT each reflectance spectrum is represented as a sum of wavelets, each capturing 

spectral features of different scales. The CWT was computed based on a second-order derivative 

of Gaussian with a variance of 1 and a range of scales between 1 and 9. After the extraction of 

wavelets at these scales, wavelet spectra are summed between scales of 2 and 5. The features 

captured in wavelet spectra at these scales provide the most visible discrimination  between life 

forms (Figure A2‒2 and Figure A2‒3). The CWT transformation was conducted using the 

‘wavCWT’ function in the wmtsa package of R (Constantine and Percival, 2017). 

Ensuing analysis examining the effect of resampling on classification was conducted on the 

initial two datasets that were pre-processed and the three respective outputs for each spectral region 

for a total of 8 datasets. The spectral range for analysis was 450 - 950 nm (700 bands) for the VIS-

NIR datasets and 8 - 11 µm (301 bands) for the LWIR datasets. 
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3.2.4.2 Data reduction and training datasets for classification 

For each of the eight datasets a principal component analysis (PCA) was used as a data 

reduction technique to reduce the redundancy of some spectral bands, and at the same time 

highlight those uncorrelated bands that describe the maximum variability in reflectance signatures. 

The PCA applied was based on a covariance matrix. The number of components retained explained 

95% of the total variance and these were later used as an input for the classification. Likewise, the 

eigenvectors of each band were used as descriptors of the loadings of bands. The PCA was 

computed using the ‘pricomp’ function of R. 

The scores resulting from the principal components analysis were randomly split in two for 

training and testing the classifiers. The data split was conducted based on species and not life 

forms. This procedure allows each species to have a similar representation of samples in both the 

training and testing datasets, which would not necessarily occur if the data were split based on life 

forms. This method of splitting was conducted using the ‘createDataPartition’ function of the 

caret package in R (Kuhn, 2008). At the end of this procedure, datasets encompassed 140 samples 

of lianas and 210 samples of trees. This unbalanced distribution of the categorical predictors is 

statistically detrimental for the training classification process (Kuhn and Johnson, 2013). 

Therefore, the training datasets were then balanced using the Synthetic Minority Over-Sampling 

Technique (SMOTE) (Chawla et al., 2002). This technique over-samples the minor class (in our 

case lianas) and adds synthetic samples linking any/all of the k minority class nearest neighbors 

using a distance measure (Chawla et al., 2002). To apply this technique, five nearest neighbors and 

200% of over- and under-samples were used. This procedure was conducted using the ‘SMOTE’ 

function of the DMwR package of R (Torgo, 2010). 

 

3.2.4.3 Lianas and trees classification 

Different algorithms were evaluated for the classification of life forms and to assess if LWIR data 

would provide better results than VIS-NIR data. Twenty-one classifiers were used (Table 2) and 

these were grouped according to their similarities (Figure A2‒4). In general, these algorithms were 

selected because they require little or no tuning parameters for their computation; and because 

some have been widely used in studies that address the classification of lianas and trees. The 

classifiers were implemented using the caret package in R (Kuhn, 2008); a single computing 

environment that allows the training of each classifier, the tuning of parameters, and the testing of 
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predictions. During the training of each classifier, a 0.632 bootstrap technique based on 100 

iterations was used to create and optimize the algorithm. This technique consists of producing a 

random sample of data taken with replacement, where the final bootstrap sample size is the same 

as the original dataset. As Kuhn and Johnson (2013) pointed out, during this process some of the 

original samples can be selected several times in the bootstrap, while others are not selected; 

commonly known as ‘out-of-bag’ samples. Therefore, for a given iteration the model will be 

optimized based on the prediction of out-of-bag samples. With this technique, it is expected that 

the probability of any given sample not being chosen after n samples is 0.368 and the number of 

chosen samples from the original samples is 0.632n. Therefore, the model is optimized based on 

the remaining 0.368n. Likewise, in certain classifiers there is a need to use tuning parameters that 

help to reduce its complexity and reinforce its repeatability (Ghosh et al., 2014); the tuning 

parameters used for those classifiers are described in Table 3‒2. 

 

Table 3‒2. List of classifiers and corresponding tuning parameters used in this study. 

Classifier Abbreviation Function Library 
Tuning 

parameters 

Linear Discriminant 

Analysis 
LDA lda MASS1 --- 

Quadratic Discriminant 

Analysis 
QDA qda MASS1 --- 

Maximum Uncertainty 

Linear Discriminant 

Analysis 

MULDA Mlda HiDimDA2 --- 

Stabilized Linear 

Discriminant Analysis 
SLDA slda ipred3 --- 

Robust Linear Discriminant 

Analysis 
RLDA Linda rrcov4 --- 

Robust Quadratic 

Discriminant Analysis 
RQDA QdaCov rrcov4 --- 

Regularized Discriminant 

Analysis 
RDA rlda klaR5 

gamma = 0, 

lambda= 0 
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Robust Mixture 

Discriminant Analysis 
RMDA rmda robustDA6 

k = 2, model= 

VEV 

Shrinkage Discriminant 

Analysis 
SDA sda sda7 

diagonal= F, 

lambda= 0 

Generalized Linear Model GLM glm --- --- 

Bayesian Generalized 

Linear Model 
BGLM bayesglm arm8 --- 

Neural Network NN nnet nnet1 
size= 5, decay= 

1x10-4 

Bagged CART BC treebag e10719 --- 

CART CART rpart1SE rpart10 --- 

Random Forest RF rf randomForest11 mtry=2 

Single C5.0 Tree ST C5.0Tree C5012 --- 

Single C5.0 Ruleset SR C5.0Rules C5012 --- 

Support Vector Machines 

with Linear Kernel 
SVMLK svmLinear kernlab13 Cost = 1 

Support Vector Machines 

with Polynomial Kernel 
SVMPK svmPoly kernlab13 

Degree = 3, scale 

= 0.1, Cost = 1 

Support Vector Machines 

with Radial Basis Function 

Kernel 

SVMRK svmRadial kernlab13 
Sigma= 0.045, 

Cost = 1 

k-Nearest Neighbors KNN knn --- k = 5 

1Venables and Ripley (2002), 2Duarte (2015), 3Peters and Torsten (2017), 4Todorov and Filzmoser 

(2009), 5Weihs et al. (2005), 6Bouveyron and Girard (2015), 7Ahdesmaki et al. (2015), 8Gelman 

and Su (2016), 9Meyer et al. (2017), 10Therneau et al. (2017), 11Liaw and Wiener (2002), 12Kuhn 

et al. (2015), 13Karatzoglou et al. (2004). 

 

The classifiers computed during the training were validated using the testing datasets. The 

validation process includes the computation of confusion matrixes to extract four descriptors: i) 

the accuracy describing the agreement between the observed and predicted classes; ii) the cohen’s 

kappa coefficient representing the agreement between the accuracy observed and expected; iii) the 
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sensitivity that describes the true positive since it measures the probability in which a class (i.e., 

lianas or trees) of interest is predicted correctly for all samples of that class; and iv) the specificity 

that represents the 1- false-positive since it measures the probability in which non-event classes 

are predicted as non-event classes. These parameters were calculated using the ‘confusionMatrix’ 

function of the caret package in R (Kuhn, 2008). 

 

3. Results 

3.1 Dataset evaluation 

The eight datasets of average spectra per species are shown in Figure 3‒1. Liana and tree leaf 

spectra are similar for all datasets of the VIS-NIR region but are less so for the datasets of the 

LWIR region. In the LWIR region, the degree of overlap of leaf and liana spectral signatures 

depends on the pre-processing method. From this perspective, the first derivative and CWT 

datasets provide a better discrimination of features (e.g., reflectance peaks and troughs) that 

distinguish leaves and lianas as can be seen between 8.5 and 8.9 µm in the CWT dataset. 
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Figure 3‒1. Visible-near infrared (VIS-NIR) and long wave infrared (LWIR) reflectance spectra 

of liana and tree leaves and their pre-processed equivalents. Unmodified raw spectra are shown in 

(a, b). Pre-processed spectra include filtered (c, d), first derivative (e, f), and continuous wavelet 

transformation (CWT) (g, h). Each spectrum represents the average for each species. 

 

3.2 Principal component analysis 

The number of components extracted from the PCA analysis that explains 95% of the total 

variance tends to differ according to the spectral region and the associated datasets (Table 3‒3). 

Two components are required for the raw and filtered datasets in the VIS-NIR. That number 

increases to three for the first derivative and CWT datasets in the VIS-NIR and the raw and filtered 

datasets in the LWIR. In contrast, 8 and 17 components are required for the first derivative and 
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CWT datasets in the LWIR region. As expected, the percentage of the variance explained by the 

first component is higher than other components. However, the percentage of the variance 

explained by the first component as compared to that of the remaining components, is higher for 

the VIS-NIR datasets than the LWIR datasets. The scatterplot of the scores of the first two principal 

components for the lianas and the trees shows that scores for the VIS-NIR datasets tend to have 

greater overlap than the scores for the LWIR datasets (Figure 3‒2). Likewise, the degree of overlap 

of the scores for these two classes in these scatterplots is impacted by the pre-processing, where 

scores for the CWT and first derivative datasets show less overlap than scores for the raw and 

filtered datasets. 

The eigenvector loadings for the VIS-NIR datasets reveal that regions close to 0.55, 0.68, and 

0.71 µm present an important contribution to the variance explained by the PCAs (Figure 3–3). 

This contribution is particularly apparent for the first derivative and CWT datasets (Figure 3–3e, 

g). On the other hand, the loadings of the eigenvectors of the LWIR datasets reveal several spectral 

regions that particularly contribute to the data variance. In general, the loadings of the first 

component for the raw and filtered LWIR datasets (Figure 3–3b, d) were of uniform and low value 

throughout the LWIR spectrum, but loadings extracted from the second and third component show 

a predominant contribution to the variance explained in regions close to 9.50 and 10.15 µm, 

respectively. In contrast, loadings extracted from the first derivative and CWT LWIR datasets 

(Figure 3–3f, h) shows numerous regions with a large contribution to the variance explained 

throughout the LWIR spectral region and throughout eigenvectors. 

 

3.3 Classifiers 

The classification of spectra of liana and tree leaves shows that the values of accuracy, kappa, 

sensitivity, and specificity are higher in classifications based on LWIR datasets than on VIS-NIR 

datasets (Figure 3‒4). In general, the accuracy values based on LWIR datasets range from 0.66 to 

0.96 (0.77 ± 0.08), while the accuracy values based on VIS-NIR datasets range from 0.50 to 0.69 

(0.61 ± 0.04). The kappa values range from 0.33 to 0.92 (0.52 ± 0.16) for LWIR datasets, and from 

0.01 to 0.37 (0.17 ± 0.08) for VIS-NIR datasets. In terms of sensitivity and specificity, values 

range from 0.70 ± 0.13 and 0.81 ± 0.09, respectively for LWIR datasets, and from 0.44 ± 0.12 and 

0.73 ± 0.11 respectively for VIS-NIR datasets (Figure 3‒4). 
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Table 3‒3. Variation explained by components of the principal component analysis applied to the 

raw and pre-processed spectral libraries of the visible-near infrared (VIS-NIR) and longwave 

infrared (LWIR) leaf spectra. 

Principal 

component 

VIS-NIR LWIR 

Raw SG D CWT Raw SG D CWT 

PC1 0.79 0.80 0.71 0.80 0.70 0.71 0.40 0.401 

PC2 0.19 0.18 0.23 0.13 0.17 0.17 0.29 0.222 

PC3   0.03 0.04 0.09 0.08 0.11 0.098 

PC4       0.06 0.055 

PC5       0.04 0.048 

PC6       0.03 0.035 

PC7       0.02 0.022 

PC8       0.01 0.015 

PC9        0.011 

PC10        0.009 

PC11        0.008 

PC12        0.007 

PC13        0.006 

PC14        0.005 

PC15        0.004 

PC16        0.003 

PC17        0.003 

Total 

variance 

explained 

0.98 

 

0.98 0.97 0.97 0.96 0.96 0.96 0.952 
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Figure 3‒2. Scatterplots of the first two principal components scores obtained from the analysis 

of the spectral signatures of lianas and trees in the visible-near infrared (VIS-NIR) and longwave 

infrared (LWIR). Raw data (a, b), and pre-processed data filtered (c, d), first derivative (e, f), and 

continuous wavelet transformation (CWT) (g, h). Each point represents data from a single leaf 

spectrum. 
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Figure 3‒3. Eigenvectors loadings capturing 95% of the total variance explained by the principal 

components analysis conducted on the visible-near infrared (VIS-NIR) and longwave infrared 

(LWIR) region. Raw data (a and b), and pre-processed filtered (c and d), first derivative (e and f), 

and continuous wavelet transformation (g and h). 

 

The classification results reveal that the first derivative and CWT datasets generally have higher 

values of accuracy and kappa than raw and filtered datasets (Figure 3‒4). These findings are 

consistent for the VIS-NIR and LWIR for any given classifier and for the best performing 

classifiers.  

In terms of the classifiers used, the results show that the selection of classifiers or families or 

classifiers can affect the overall classification of lianas and tree leaves using VIS-NIR or LWIR 

datasets. Classifiers associated with discriminant analysis or generalized linear models tend to have 
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lower values of discrimination than classifiers related to non-parametric models, decision trees or 

non-linear models. From this perspective, the results show that the three classifiers with highest 

accuracy and kappa values are RR, SVMRK, and KNN, while classifiers with lowest accuracy and 

kappa values are RMDA, QDA, and SLDA. 

 

 

Figure 3‒4. Descriptors of the classification of liana and tree leaf spectra based on the scores 

extracted from the principal component analysis of the visible-near infrared (VIS-NIR, brown 

symbols) and long wave infrared (LWIR, blue symbols) spectra. Descriptors of classification 

include accuracy, Kappa coefficient, sensitivity, and specificity. Raw data (circles), filtered 

(inverted triangles), first derivative (squares), and continuous wavelet transformation (CWT, 

lozenges). Vertical dotted and dashed lines for VIS-NIR (brown) and LWIR (blue) represent the 

average classification value across all methods. Refer to Table 2 for abbreviations for classifiers. 

 

3.4 Discussion 

The results of this study reveal the potential for improved discrimination of leaves of lianas and 

trees using spectral observations in the LWIR as compared to that collected in the VIS-NIR. This 
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potential can be described by the overall values of classifications using a wide range of classifiers 

computed on raw and pre-processed datasets and principal components analysis. For the two life 

forms of this study, the pre-processing method plays an essential role in the discrimination of 

leaves. Likewise, the choice of classifiers or families of classifiers affects the discrimination. 

 

3.4.1 Influence of pre-processing on data reduction and classification 

In general, the first derivative and CWT pre-processing methods are more effective for the 

classification of liana and tree leaves than the raw or filter spectral pre-processing methods. 

Previous studies have described the use of transformations, such as the first derivative and CWT 

methods, to highlight spectral features in the comparison of spectral libraries, to predict leaf 

functional traits, to detect vegetation damage, or to classify species (Cheng et al., 2012, 2010; 

Harrison et al., 2018; Rivard et al., 2008; Ullah et al., 2012b). This study compared these four pre-

processing methods for the classification of leaves and revealed that they seem to be particularly 

crucial for classification due to the similarity of the reflectance spectra of these life forms. This 

similarity hinders the classification of liana and tree leaves in raw and filtered datasets because the 

classification of these data puts an emphasis on differences in the amplitude of reflectance rather 

than differences in spectral shape between these life forms. For classification purposes, the use of 

raw or filtered datasets could be promising for the discrimination of spectral libraries 

encompassing species with contrasting spectral characteristics. For example, in a similar study on 

nineteen species of herbaceous and woody plants, Buitrago et al. (2018) showed that it is possible 

to discriminate these species using few components extracted from a PCA applied to a raw spectra 

library (1.4 – 16.6 µm). However, for species with similar spectral characteristics, here that 

coexists together and share similar phylogenies, such as lianas and trees the latter approaches may 

not be suitable for classification. As shown in PCA applied on the first derivative or CWT LWIR 

datasets of this study, several subsets of the LWIR regions are highlighted that contribute to the 

discrimination of these life forms. The higher number of components needed to explain the data 

variance may be of concern for future classifications in regard to processing time, but should 

ultimately provide less redundant information that enhances the discrimination of these life forms. 

Future studies should consider how the spectral pre-processing methods could contribute to the 

prediction of leaf functional traits using leaf spectroscopy. 
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3.4.2 Effect of the classifier on life forms discrimination 

To date the literature offers little insight on the impact of the selection of the classifier on the 

spectral discrimination of species, group of plants, or life forms. An exception is the study of 

Castro-Esau et al. (2004) that compared the effect of parametric and non-parametric classifiers on 

the discrimination of VIS-NIR leaf spectral libraries for lianas and trees. Our trends and their 

results suggest that non-parametric or non-linear classifiers perform better (i.e., higher accuracy 

and kappa) than parametric algorithms. In general, differences in the performance of classifiers for 

discrimination can be attributed to several reasons such as the assumptions of each algorithm, the 

selection of tuning parameters, data dimensionality, and the sample size (Belgiu and Drăguţ, 2016; 

James et al., 2013; Kuhn and Johnson, 2013; Shao and Lunetta, 2012). For example, in this study 

the family of discriminant analysis showed lower values of discrimination than other classifiers. 

Methods of discriminant analysis often assume that the observations have a Gaussian distribution 

(James et al., 2013), which may not be the case for our spectral data. In addition, these classifiers 

are associated with techniques of data reduction that maximize the differences between classes 

(Kuhn and Johnson, 2013), differences that could be diminished after the application of the PCA. 

Our results also suggest that classification tree algorithms are part of the most promising 

classifiers to discriminate leaves of both life forms. Specifically, the high performance of the RF 

algorithm is also observed by Fernández-Delgado et al. (2014) in their comparison of classifiers 

applied to a diverse group datasets, suggesting that the RF classifier is part of the “best” family of 

algorithms for classification. However, it is important to highlight that this classifier could be 

susceptible to the selection of tuning parameters depending on the sample size and to the spectral 

variability of the samples (temporal and spatial). For example, in a comparative study of classifiers 

applied to the diagnosis of cancer, Statnikov et al. (2008) found that large RF datasets tend to be 

more sensitive to the selection of the tuning parameters than other classifiers such as SVMs. 

Though RF or  classification tree algorithms are less computationally intensive than SVMs (Belgiu 

and Drăguţ, 2016; Cutler et al., 2007), their possible bias using large data sets should be considered 

in future studies of classification of spectral libraries or imaging spectroscopy data. 

Our results reveal that NN and SVMs algorithms tend to present high values of discrimination 

of lianas and tree leaves. An advantage of using these classifiers is usually associated with limited 

requirements on training size benefiting the application to spectral libraries with a low number of 

spectral samples. However, their application tends to be computationally intensive and the 
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selection of tuning parameters is usually determined empirically that could be a concern for the 

reproducibility of studies. This last observation would also apply to other classifiers such as KNN, 

RF, SDA, RMDA, and RDA to name a few. 

As the “No Free Lunch” theorem suggest (Wolpert, 1996; Wolpert and Macready, 1997), in the 

absence of clearly established knowledge, there is no classification algorithm that will always 

provide a better discrimination for a specific problem. Considering this, there is a need to report 

other parameters of classification to conduct an informative representation of the errors and cost 

associated with the discrimination of spectral data. This is mainly because studies traditionally 

report the accuracy and kappa values, but the first do not differentiate between the type of errors 

that have been created (Provost et al., 1998) and the second provide redundant or misleading 

information for decision making (Pontius and Millones, 2011). The use of parameters such as the 

sensitivity, specificity, indexes (i.e., Younden’s Index) or Receiver Operating Characteristic 

curves (ROC) could be useful for the classification of spectral libraries as they can provide an 

overall view of the bias of discrimination that cannot be captured by only using accuracy or kappa 

values (Kuhn and Johnson, 2013). For example, our accuracy and kappa results for the VIS-NIR 

classification using SVMLK or NN may suggest that the pre-processing does not benefit the 

discrimination of leaves of life forms. However, using the values of sensitivity or specificity our 

results reveal that the pre-processing may benefit the classification of liana and tree leaves. 

Because of this, we recomment that future studies of classification of spectral libraries provide a 

multidimensional overview of their findings to support future strategies. 

 

3.4.3 Future perspectives for the remotely sensed detection of life forms 

The possibility to discriminate life forms based on leaf reflectance measurements in the VIS-

NIR or LWIR region is an important step for future air- or space-borne mapping. Here, we show 

encouraging leaf-based results that could inspire future studies for the detection of life forms at 

large-scales. Currently, the detection of species and life forms using high spatial resolution 

hyperspectral airborne imagery has been applied with success (Marvin et al., 2016; Ribeiro da Luz 

and Crowley, 2010; Zhang et al., 2006). However, as pointed out in prior papers particularly in 

regards to the LWIR (Ribeiro da Luz and Crowley 2010, Harrison et al. 2018), the detection of 

species or life forms at large-scales requires considerations associated with spectral contrast, 

spatial resolution, image calibration, and improvements in atmospheric corrections. Preservation 
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of spectral contrast will be favoured by finer spatial resolution that will also minimize spectral 

mixing. In this regard surveys with pixels <5m and preferably closer to 1m will facilitate the 

spectral analysis with several pixels encompassing mature crowns though this level of detail will 

be at the expense of costs for regional coverage. In their 2010 study, Ribeiro da Luz and Crowley 

successfully used LWIR imagery at this scale of resolution to discriminate tree species in an 

arboretum in Virginia. As seen in their study we would expect that the detection of life forms in 

our investigation could be attempted in the future first on the basis of match filtering using spectral 

libraries of lianas and trees. Such libraries could also be used to label image based endmembers 

automatically or manually collected to identify the signature of the life forms. Regardless of the 

method used, future surveys should consider the synchronicity of the phenology between lianas 

(Kalácska et al., 2005) to insure maximum top of canopy detectability. Future or current airborne 

capabilities such as the Hyperspectral Thermal Emission Spectrometer (HyTES) that operates in 

the LWIR would be ideal tools to initiate this research and explore the detection of life forms in 

tropical ecosystems. 

 

3.5 Conclusion 

This study reveals the potential of the LWIR over the VIS-NIR reflectance to discriminate liana 

and tree leaves. This work expands previous LWIR studies by Ribeiro da Luz and Crowley 

(2010b), Ullah et al. (2012a), and Harrison et al. (2018) by using comprehensive methods of 

spectral pre-processing and techniques of classification applied to the discrimination of tree and 

liana leaves that can coexist in the same ecosystems. The overall performance of classification of 

liana and tree leaves is considerably improved using LWIR rather than VIS-NIR reflectance. 

However, the pre-processing method can affect this performance. Pre-processing methods such as 

CWT or the extraction of the first derivative tend to better highlight spectral features, and therefore, 

differentiate samples. Likewise, our results suggest that the most promising classification 

algorithms are the non-parametric or non-linear classifiers such as random forest, k-nearest 

neighbor, and support vector machine with radial kernel. The outcomes of our study highlight the 

potential of extending this kind of classification to the airborne or satellite level to further our 

understanding of the current dynamic of lianas in the ecosystem. 
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CHAPTER 4 

 

 

PREDICTION OF LEAF TRAITS OF LIANAS AND TREES VIA THE INTEGRATION OF 

WAVELET SPECTRA IN THE VISIBLE-NEAR INFRARED AND THERMAL INFRARED 

DOMAINS 

 

Abstract 

Predicting leaf traits using models based on spectroscopic data can provide essential information 

to advance ecological research and future Earth system models. Most current models are based on 

Partial Least Squares Regression (PLSR) algorithms that attempt to predict a set of leaf traits of 

several plant groups using leaf spectra. However, PLSR models tend to be inconsistent in 

describing the importance of absorption features when used to predict leaf traits. Likewise, the 

effect of contrasting absorption features of different plant groups on the prediction and evaluation 

of PLSR models it is not well understood. Hence, this study focuses on using wavelet spectra to 

overcome current limitations of PLSR models and improve leaf traits predictions. Specifically, we 

explored the use of visible–near-infrared (0.45 – 1.0 μm) and mid- long-wave infrared spectra 

(2.55 – 11 μm) to predict three leaf traits of lianas and trees: Leaf Mass Area (LMA), Water 

Content (WC), and Equivalent Water Thickness (EWT). We also compare the effect of life forms 

on the prediction of traits by using sun leaves collected from 14 liana species and 21 tree species 

(n= 700) from a Neotropical Dry Forest. On each leaf, reflectance measurements were performed 

for both selected spectral regions; then, leaf traits were estimated from a leaf segment. Leaf 

reflectance was first resampled and then processed using continuous wavelet transformation 

(CWT) to derive the wavelet spectra. PLSR models linking the leaf traits and the reflectance or 

wavelet spectra were compared. Our results reveal that PLSR models based on wavelet spectra 

require fewer components to predict traits (13 – 16) than those based on reflectance (25 – 29). In 

addition, PLSR models’ performance (e.g., R2) of testing datasets tend to be higher for models 

based on wavelet spectra (LMA = 0.83; WC = 0.77; EWT = 0.68) than reflectance (LMA = 0.78; 

WC = 0.76; EWT = 0.49). Wavelet spectra models also seem to better characterize absorption 

features that drive the variability of leaf traits than models based on reflectance. However, life 
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forms play an essential role in model performance, where the prediction of lianas' traits presenting 

lower R2 (R2 = 0.61 ± 0.25) than trees' traits (R2 = 0.69 ± 0.15) regardless of the type of spectra or 

leaf trait. Our findings highlight the use of wavelet spectra to overcome limitations of the PLSR 

models for predicting leaf traits and the need to explore potential bias associated with plant groups 

on the model evaluations. 

 

Keywords 

Leaf spectroscopy, leaf mass area, life forms, partial least-squares regression, thermal infrared, 

wavelet analysis. 

 

4.1 Introduction 

In the last few decades, there has been an increase in the number of studies that use 

spectroscopy techniques to predict leaf traits. Overall, these techniques are based on optical the 

interaction of light with a leaf that drives unique spectral signatures associated with its chemical 

and structural components (Curran, 1989). The close association between optical and 

biochemical/biophysical properties of leaves allows for quick and non-invasive characterization 

of a broad set of traits at different spatial scales. As a result, spectroscopy techniques are currently 

used to study the variation in leaf traits of leaves (Asner et al., 2011; Serbin et al., 2014), canopies 

(Asner and Martin, 2008; Wu et al., 2019), and biomes (Aguirre-Gutiérrez et al., 2021; Butler et 

al., 2017; Serbin et al., 2019; Wang et al., 2020). 

Among leaf traits, Leaf Mass per Area (LMA, as the ratio of leaf dry mass to its leaf area), 

gravimetric Water Content (WC, as the percentage of the difference between leaf wet mass and 

dry mass divided by the wet mass), and the Equivalent Water Thickness (EWT, as the difference 

of leaf wet mass and dry mass divided by its area) are commonly quantified using leaf 

spectroscopy (Asner et al., 2011; Buitrago et al., 2018a; Cheng et al., 2014, 2012, 2011; Meerdink 

et al., 2016; Serbin et al., 2019, 2014; Streher et al., 2020; Ullah et al., 2012b; Wang et al., 2020). 

These traits tend to be considered functional due to their role on the growth, survival, and 

reproduction of species, which leads to a variety of plant strategies (Violle et al., 2007). The 

variation of leaf traits in ecosystems has been explored at the global and local scale, with findings 

indicating that at the global scale leaf traits variations tend to be modulated by climate through 

adjustments of leaf structure (Kuppler et al., 2020; Osnas et al., 2018; Wright et al., 2004); while 
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variations at the local scale tend to be modulated by the diversity and composition of communities 

(Messier et al., 2017; Swenson et al., 2020). The local variability of leaf traits could be an 

important element for the mapping of traits in tropical communities. Such ecosystems are home 

to a high diversity of species and life forms that coexist and present contrasting leaf traits and 

spectral features, such as the case of lianas and trees. 

Lianas or woody vines are considered non-self-supporting structural parasites that use host 

trees to reach the forest canopy (see Stewart and Schnitzer, 2017 discussion of their 

categorization). At the canopy level, lianas develop a high proportion of leaf biomass per whole-

plant biomass while infesting host trees (Rodríguez-Ronderos et al., 2016; Visser et al., 2018). In 

comparison with trees, liana leaves present lower LMA and higher WC (Asner and Martin, 2012; 

Ball et al., 2015; Cai et al., 2009; Mello et al., 2020; Sánchez-Azofeifa et al., 2009a; Slot et al., 

2013). In addition, liana leaves present distinctive optical features in comparison with those of 

trees (Avalos et al., 1999; Castro-Esau et al., 2004; Guzmán et al., 2018; Hesketh and Sánchez-

Azofeifa, 2012; Kalacska et al., 2007; Sánchez-Azofeifa et al., 2009a). Most of the previous 

studies that encompass the visible, near, and short-wave infrared regions (VIS-NIR-SWIR, 0.38 

– 2.5 µm) suggest that liana leaves present higher reflectance close to 0.55 and 2.25 µm and lower 

reflectance in the near-infrared region (0.8 – 1.2 µm) compared with tree leaves. These differences 

in leaf reflectance appear due to the lower concentration of leaf pigments (e.g., carotenoids and 

chlorophyll), the higher water content, and the lower leaf thickness of liana leaves (Kalacska et 

al., 2007; Sánchez-Azofeifa et al., 2009a). Likewise, in the longwave infrared region (8 – 11 µm), 

liana and tree leaves present distinguish optical features close to 8.5, 8.9, and 9.2 µm (Guzmán et 

al., 2018). For mapping purposes, it has been documented that the presence of liana on tree crowns 

complicates the detection of tree species (Kalacska et al., 2007; Marvin et al., 2016; Sánchez‐

Azofeifa and Castro‐Esau, 2006). Therefore, it is likely that the presence of lianas on trees hinders 

the mapping of traits at the canopy level due to its distinctive biophysical features, especially if 

models predicting leaf traits do not consider lianas as part of the canopy. 

Understanding the spectroscopic mechanisms that drive the prediction of leaf traits and their 

potential errors associated with different plant groups (e.g., lianas vs. trees) is crucial for mapping 

traits and their future integration in Earth system models. As of today, only Asner et al. (2011) 

have explored the potential effect of life forms on leaf trait spectroscopy. Findings by Asner et al. 

(2011) for humid tropical forests suggest that different growth habits do not affect the 
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spectroscopy of LMA. However, lianas’ spectral features in these ecosystems tend to resemble 

those of trees (Hesketh and Sánchez-Azofeifa, 2012; Sánchez-Azofeifa et al., 2009a). In tropical 

dry environments, in contrast, lianas present a higher relative abundance of individuals (Schnitzer 

and Bongers, 2011) and more contrasting optical features (Sánchez-Azofeifa et al., 2009a). 

Therefore, it is not well understood if the different growth habits with contrasting optical features 

in these dry environments influence leaf trait spectroscopy. Cheng et al. (2014, 2012, 2011) have 

investigated the use of spectroscopy to predict leaf traits of lianas and trees in dry environments, 

but the effect of growth habits on their predictive models were not explored. Sánchez-Azofeifa et 

al. (2009) and Ball et al. (2015) have investigated the association of spectral bands and the 

variability of leaf traits of lianas and trees in dry environments, but it was not investigated with 

the aim of creating predictive models. 

In general, models to predict leaf traits tend to be classified as physically-based and data-driven 

methods (Féret et al., 2019). Physically-based methods, based on radiative transfer models such 

as PROSPECT (Jacquemoud and Baret, 1990), are consistent and well established. However, 

application to complex leaf morphologies and the search for the origin of potential errors 

associated with these methods tends to be challenging (Féret et al., 2019; Serbin et al., 2019). On 

the other hand, data-driven methods are based on the calibration of algorithms to estimate leaf 

traits. Among these, Partial Least Square Regressions (PLSR) introduced by Wold (1966) stands 

as a comprehensive multivariate algorithm since it reduces a large group of predictor variables 

(i.e., spectral information) to a few non-correlated components (Grossman et al., 1996). Despite 

its ability to handle the high collinearity of spectral data, PLSR models tend to be inconsistent in 

selecting spectral bands associated with absorption features that drive trait's prediction (Cheng et 

al., 2014; Streher et al., 2020). For this purpose, other algorithms that enhance the absorption 

features, such as continuous wavelet transformation (CWT), can accurately determine the 

association between leaf trait and spectral features (Cheng et al., 2014, 2012, 2011; Ullah et al., 

2012b). However, the prediction of traits by CWT algorithms traditionally depends on a series of 

univariate methods applied to the wavelets (i.e., correlation scalogram) highly susceptible to 

multicollinearity when using hyperspectral data (Ullah et al., 2012b). 

Hence, in this study, we integrate the ability of CWT to enhance absorption features and the 

competence of PLSR to handle high data collinearity as a data-driven method to predict leaf traits. 
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This study also assesses the use of the visible-near infrared (VIS-NIR, 0.45 ‒ 1.0 µm) and mid- 

long-wave infrared spectral region (MLWIR, 2.55 ‒ 11.0 µm) to predict leaf traits of lianas and 

trees from a Neotropical Dry Forest. The MLWIR region is used given its importance for 

predicting water-related leaf traits (Ullah et al., 2012) (i.e., WC and EWT), while the VIS and 

NIR region for their importance to describe leaf pigments and the leaf internal structure, 

respectively (Curran, 1989). Specifically, we (i) evaluate the ability of PLSR models based on 

reflectance and wavelet spectra to accurately predict leaf traits (i.e., LMA, WC, EWT); (ii) 

compare how these models identify spectral regions that could play an important role in predicting 

traits; and (iii) compare how life forms may influence the prediction of traits and performance in 

these models. Furthermore, this study highlights the integration of wavelet spectra with PLSR 

models as a method to improve the prediction of leaf traits, as well as the potential effect of life 

forms on the future mapping of leaf traits. 

 

4.2 Materials and Methods 

4.2.1 Study site and leaf spectra 

This research used leaf spectra collected by Guzmán et al. (2018) and unpublished data of leaf 

traits measured from field samples collected at the same time. These samples were collected at the 

Santa Rosa National Park ‒ Environmental Monitoring Super Site (SRNP‒EMSS, 10º48" N, 

85º36" W) located on the Pacific coast of northwestern Costa Rica. This site is a tropical dry forest 

that presents a wet-season during the middle of May to late November, and a dry-season 

encompassing the remaining months in which most of the trees lose their leaves (Kalacska et al., 

2004; Sánchez-Azofeifa et al., 2005). The SRNP‒EMSS has a mean annual precipitation of 1720 

mm and an air temperature that varies from 26 °C in the wet-season to 29 °C in the dry season 

(Kalacska et al., 2004). The SRNP‒EMSS is a mosaic of forest patches of with different ages, 

successional stages and land-use histories (Cao et al., 2015; Sánchez-Azofeifa et al., 2017). This 

site presents 96 species of trees with different life histories (Hilje et al., 2015), and approximately 

18 species of lianas that reach the forest canopy (Adrian Guadamuz personal communication). 
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Leaf samples were collected during the 2017 wet-season. Samples consisted of sun leaves 

from four individuals of 14 species of lianas and 21 species of trees (Table S1). Five mature and 

healthy leaves were collected from each of four individuals, giving a total of 700 leaves. The 

number of individuals and leaf samples collected were determined based on the variability of the 

leaf spectra reported in previous studies in the region (Harrison et al., 2018), and the spatial 

distribution of plants with low abundance.  

Spectral measurements were performed on each leaf using a UniSpec Spectral Analysis System 

(PP Systems, Amesbury, MA, USA) for the VIS-NIR region, and a portable Agilent 4100 ExoScan 

Fourier Transform Infra-Red (FTIR) spectrometer for the MLWIR region. Overall, the UniSpec 

Spectral Analysis System integrates a leaf clip that holds a foreoptic which provides illumination 

(7.0 W halogen bulb) to a leaf area of 4.15 mm2. Three measurements were taken with the previous 

spectrometer at the middle leaf lamina of each leaf avoiding the midrib and these were later 

averaged. Each spectrum was the average of ~ 40-60 scans for the purpose of noise reduction. The 

data from VIS-NIR spectrometer consists of reflectance for 256 bands spanning a spectral range 

from 0.306 to 1.138 µm, each with a bandwidth of 3.3 nm. On the other hand, Agilent 4100 

ExoScan Fourier Transform Infra-Red (FTIR) spectrometer is equipped with an internal IR 

illumination source and a diffuse reflectance probe. The illuminated area for this spectrometer has 

a diameter of 1.5 cm and a maximum depth of light penetration of 20-50 μm, depending on the 

medium. The reflectance probe was brought into contact with the leaf for the same leaf region as 

measured for collection of VIS-NIR spectra. Each reflectance measurement was the average of 

150 scans for the purpose of noise reduction and was obtained following a measurement of the 

infra-gold background. The data collected consists of reflectance for 1799 bands spanning a 

spectral range from 2.5 to 15.4 μm (4000-650 cm-1) with a resolution of 4 cm-1. For more details 

on the instrument features, protocols of sample collection, and spectral measurements see 

(Harrison et al., 2018), Guzmán et al. (2018) and Foley et al. (2006). 

 

4.2.2 Measurements of leaf traits 

After the leaf spectral measurements, a leaf segment with known area (8.725 or 2.12 cm2) was 

extracted per leaf using a leaf punch. Each segment was weighed, dried at ~55 °C for >72 h, and 

then weighed again to estimate three-leaf traits: i) Leaf Mass Area (LMA, g m-2), Water Content 

(WC, %), and Equivalent Water Thickness (EWT, g m2). The LMA was estimated as the ratio of 
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leaf dry mass and its area, WC as the percentage of the difference between wet mass and dry mass 

divided by the wet mass, and EWT as the difference between wet mass and dry mass divided by 

its area. The wet and dry mass estimations were conducted using a portable three-digit scale (0.001 

g resolution) calibrated every 20 measurements. Leaf trait values per species are also described in 

Table A3‒1. 

 

4.2.3 Spectral processing 

The MLWIR spectra were resampled to a bandwidth of 3.3 nm to match the spectral resolution 

of the VIS-NIR spectra and to ensure a uniform distribution of bands for further analysis. This was 

performed using a Gaussian function defined by the Full Width Half Maximum (FWHM) values 

to resample the high-resolution data to lower resolution bellow 4.2 µm and lower-resolution data 

to high-resolution above 4.2 µm. The FWHM is assumed to be equal to 3.3 nm over the spectral 

range. The spectral resampling was performed using the 'resample2' function in the prospectr 

package (Stevens and Ramirez-Lopez, 2020) of the R software version 4.0.4 (R Core Team, 2020). 

The VIS-NIR spectra and the resampled MLWIR spectra were then transformed using a 

continuous wavelet transformation (CWT) (Grossmann and Morlet, 1984). Specifically, CWT was 

used as a method to isolate scales capturing features that may improve the prediction of leaf traits. 

The premise of this analysis is that a reflectance spectrum can be represented as a sum of wave-

like functions (wavelets) of different scales (i.e., widths) (Torrence and Compo, 1998), each scale 

capturing different features (Rivard et al., 2008). For instance, lower scales (i.e., 21 or  22) can 

capture the small structure of the spectrum (e.g., random noise or small absorption features), while 

higher scales (i.e., 28 or 29) can capture large-scale structure (e.g., spectral continuum or broad 

absorption features) (Feng et al., 2018). For this transformation, the leaf reflectance from each 

spectrometer was decomposed in nine wavelets. The CWT was performed using a second-order 

Gaussian function derivative and applying a variance of 1 on each spectral region separately. 

Wavelets that best describe the spectral features were then summed, and these summed spectra, 

called wavelet from herein, were used in the ensuing models. Overall, different wavelet scales are 

sensitive to specific spectral features that drive the prediction of leaf traits (Cheng et al., 2011, 

2014; Ullah et al., 2012); therefore, the selection of scales to be summed may have an influence 

on the predictive ability of PLSR models. Based on an exploratory analysis (Appendix A1), scales 

21, 22, 23, 28, and 29 were summed to form the wavelet spectra form both spectral regions since 
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these scales tend to have a high performance for predicting the studied traits (Fig S1). The CWT 

was applied using the 'wavCWT' function in the wmtsa package of R (Constantine and Percival, 

2017). The scales 28 and 29 also seems to be comparable with the scales selected by Ullah et al. 

(2012) for predicting water-related leaf traits. 

Datasets of reflectance (i.e., VIS-NIR and resampled MLWIR spectra) and wavelet spectra 

from both spectral regions were then visually compared and used to build the Partial Least‐Squares 

Regression (PLSR) models to predict leaf traits. Bands at the edges of the spectrometer ranges 

associated to low signal-to-noise ratios were deleted. The resulting spectral ranges used in the 

subsequent analysis were 0.45–1.0 μm (184 bands) for the VIS-NIR spectral region and 2.55–

11 μm (2817 bands) for the MLWIR spectral region. 

 

4.2.4 Prediction of traits using partial least‐squares regression 

We used Partial Least‐Squares Regression (PLSR) to predict leaf traits using the pls package 

(Mevik and Wehrens, 2007) in R. In general, PLSR is used to predict chemometrics or leaf traits 

using spectra due to its ability to handle high collinearity of data in comparison with other 

statistical analysis tools such as standard stepwise linear regression (Grossman et al., 1996). For 

this analysis, we considered and compared the processed reflectance and wavelet spectra as 

predictor variables, and each of the log-transformed leaf traits as response variables. The PLSR 

analysis was performed following a similar approach as presented in Serbin et al. (2014) and 

Streher et al. (2020). For this study, our workflow is based on three main aspects: i) estimation of 

the optimal number of components, ii) evaluation of the variability of the predictor variables, and 

iii) evaluation of the model performance and prediction of traits. Initially, leaf samples (n = 700) 

were randomly split 60:40 ratio of samples for training and testing purposes. However, unlike 

Serbin et al. (2014) and Streher et al. (2020), the data were hierarchically split based on life forms 

and species samples, allowing each life form and species to have equal or similar representation 

in training models, respectively. Here our premise is that studies that want to evaluate and compare 

the prediction of leaf traits using PLSR between environments, life forms, or species need to 

integrate the potential intraspecific variability of each group (Osnas et al., 2018). Thus, PLSR 

models created under an unbalanced basis may be prone to more bias in those groups with less 

representation and higher intraspecific variability. In order to create training and testing datasets 

with a 60:40 ratio, trees samples were split using a 50:50 ratio (210 samples for training and 
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testing), while lianas samples using a 75:25 ratio (210 samples for training and 70 for testing). The 

ratios used to randomly split the samples represent the variability of leaf traits within life forms 

and between datasets (Figure A3‒2). The data split for lianas and trees was conducted using the 

'createDataPartition' function of the caret package of R (Kuhn, 2008). 

 

4.2.4.1 Estimation of the optimal number of components  

Selecting the optimal number of components by PLSR is an important step for predicting leaf 

traits; selecting less than the optimal number may lead to loss of information, while selecting more 

than the optimal number could lead to poor transferable models (Wiklund et al., 2007). Because 

of this, training datasets for each trait were initially used to estimate the optimal number of 

components that must be retained. The optimal number of components was estimated using the 

one-sigma method on 100 iterations of PLSR models created using 10-fold cross-validation and 

50 components. In general, the one-sigma method returns the optimal number of components 

where the Root Mean Squared Error of Prediction (RMSRP) are within one standard error of the 

absolute minimum (Hastie et al., 2013). On each iteration, the same list of samples for cross-

validation were applied to build both PLSR models based on reflectance or wavelet spectra. The 

mode of the optimal number of components for 100 iterations was then used for further analysis. 

The optimal number of components was selected using the function 'selectNcomp' of the pls 

package (Mevik and Wehrens, 2007). 

 

4.2.4.2 Evaluation of the variability of the predictor variables 

Once the optimal number of components per dataset and traits was estimated, we evaluated the 

variability of the predictor variables of the PLSR models. This was conducted by running 1000 

iterative PLSR models. These iterative models use 70% of the training samples (n = 294) randomly 

selected as calibration each time. The data split for calibration during each iteration was also based 

on life forms allowing each life form to have a similar representation of samples for calibration 

purposes. Like the previous section, on each iteration the same list of samples selected for 

calibration was used to build both PLSR models based on reflectance or wavelet spectra. This 

procedure allows a paired comparison of the potential effect of the type of spectra on the model 

performance (Section 4.2.4.3). From each iteration, PLSR coefficients of the training models and 

the Variable Importance of Projection (VIP) were extracted using the optimal number of 
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components. The PLSR coefficients and the VIP describe regions of the spectrum that have an 

important role in predicting leaf traits (Mehmood et al., 2012). The PLSR coefficients were directly 

extracted from the 'plsr' function, while the VIP was estimated using the 'VIP' function of the 

plsVarSel package of R (Mehmood et al., 2012). The PLSR coefficients and the VIP from models 

based on reflectance and wavelet spectra were compared qualitatively. Likewise, peak detection 

analyses based on the local maxima were performed using the VIP average from the multiple 

iterations. The previous analyses were performed to show the potential of wavelet over reflectance 

spectra to describe spectral bands that might drive the prediction of leaf traits. For these analyses, 

the local threshold for peak detection was set as the half of the 95th percentile value of VIP per leaf 

trait and type of spectra. 

 

4.2.4.3 Evaluation of the model performance and prediction of traits 

Using the iterative models from the previous section and the optimal number of components, 

we evaluated the performance and variability of the PLSR models during the training and testing 

processes. The performance was evaluated during each iteration on the training and testing 

samples. Likewise, the model performance was evaluated during each iteration on samples from 

lianas and trees separately to evaluate the potential intraspecific bias of life form groups on the 

resulting models. From each iteration, observed-predicted relationships were performed using de-

transformed values, then descriptors of the model performance such as the coefficient of 

determination (R2), the Root Mean Square Error (RMSE), and the mean model bias were 

estimated. Likewise, we also estimated the RMSE value for each trait and dataset spectra as a 

percentage of the sample data range (%RMSE) following Feilhauer et al. (2010). 

 

4.2.5 Data analysis 

Initially, the life form effect on each leaf trait was compared using linear mixed models. For 

this, the life forms were considered as a fixed effect, and the species as a random factor to 

contemplate the potential effects of the species on the leaf trait variability. Then, the effect of the 

type of spectra (i.e., reflectance or wavelet) and the life form on the PLSR models were statistically 

compared. Specifically, Analyses of Covariance (ANCOVA) were performed to compare the 

effect of the type of spectra and the life form on the observed-predicted relationships per leaf trait 

on training and testing datasets. Here our premise is that if the observed-predicted relationships of 
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traits do not differ between life forms, a general model for lianas and trees could be used to study 

their traits. For these analyses, the iteration average of the predicted values was used as an 

independent continuous variable, while the observed values as response variable. In these analyses, 

we counted for the within-subjects error of the type of spectra since the samples remain unvaried 

during each iteration. In addition, paired t-tests were applied to compare the effect of the type of 

spectra on the performance parameters during the training and testing process. These comparisons 

were performed assuming that the estimated parameters are independent of the iterative procedure, 

similar to t-test bootstrapping procedures. Finally, paired t-tests were also used to compare the 

model performance between life form for each type of spectra during the training and testing 

process. 

 

4.3 Results 

4.3.1 Datasets evaluation 

The comparisons using linear-mixed models reveal that liana and tree leaves tend to differ in 

their LMA and WC, but not in EWT (Table A3‒2). Specifically, lianas leave presented lower 

LMA and higher WC than trees (Figure 4‒1). Tree leaves showed higher coefficient of variation 

of leaf traits (LMA = 0.51; WC = 0.14; EWT = 0.35) than liana leaves (LMA = 0.40; WC = 0.11; 

EWT = 0.20). The linear-mixed models also reveal that leaf traits of tree species seem to be more 

variable than liana species when these are compared using the conditional variance-covariance 

matrixes (Figure A3‒3). Despite this, species as a random effect presented a low contribution to 

the variance of the leaf traits between life forms (LMA = 0.04; WC = 0.002, EWT = 0.02) (Table 

A3‒2). 

Regarding leaf spectra, liana and tree leaves present characteristic leaf spectrum shape 

(reflectance or wavelet), which tend to be more contrasting between them in the MLWIR than the 

VIS-NIR region (Figure 4‒2). In the VIS-NIR region, liana leaves tend to reflect more light than 

trees close to 0.55 μm (as described earlier by Sanchez-Azofeifa et al. 2009 in Panama), but tree 

leaves seem to reflect more light than lianas between 0.8 and 1.0 μm (Figure 4‒2a). On the other 

hand, in the MLWIR region, liana leaves tend to present distinctive features (e.g., peaks and 

troughs) compared to tree leaves (Figure 4‒2b, d). These distinctive features seem to be better 

differentiated using wavelet spectra in regions close to 2.70, 3.00, and 8.6 μm (Figure 4‒2d). 
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Figure 4‒1. Violin plots comparing three functional leaf traits between lianas and trees at the Santa 

Rosa National Park ‒ Environmental Monitoring Super Site, Costa Rica. a: Leaf Mass Area 

(LMA); b: Water Content (WC); c: Equivalent Water Thinness (EWT). Each point represents a 

sample, while the boxes the first, median, and third quartiles. The irregular polygons describe the 

kernel density distributions for each life form and the whole dataset outside of the plots. 
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Figure 4‒2. Visible-near infrared (VIS-NIR) and mid-long wave infrared (MLWIR) reflectance 

spectra (a, b) of liana and tree leaves and their wavelet using continuous wavelet transformation 

(c, d). Each line represents the average for life form, while the shade around each line the minimum 

and maximum value. 

 

4.3.2 Prediction of traits using partial least‐squares regression 

4.3.2.1 Comparison of the optimal number of components 

The extraction of the optimal number of components from the PLSR models tend to be affected 

by the type of spectra (Figure 4‒3). Regardless of the leaf trait, the estimation of the optimal 

number of components using the wavelet spectra is considerably lower (between 13 and 16) than 

using the reflectance spectra (between 25 and 29) (Figure 4‒3a, b, and c). Likewise, the estimation 

of the optimal number of components for WC and EWT in wavelet spectra models is less variable 

than reflectance models (Figure 4‒3b and c). The RMSEP trends over the number of components 

for the studied leaf traits reveal that at the first components (< 20) the wavelet spectra tend to 

present lower RMSEP than reflectance spectra (Figure 4‒3d, e, f); however, at a higher number of 

components (> 20) the reverse occurs. 
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Figure 4‒3. Comparison of the frequency of optimal number of components (a, b, c) and the Root 

Mean Squared Error of Prediction (RMSEP) (d, f, g) from PLSR models based on reflectance and 

wavelet spectra to predict leaf functional traits. Leaf Mass Area (LMA, log(g m-2)), Water Content 

(WC, log(%)), and Equivalent Water Thinness (EWT, log(g m-2)). For the RMSEP panels, each 

solid line represents the average of the 100 iterations, while the shade around each line its standard 

deviation. Vertical dotted lines represent the mode of the optimal number of components, while 

the vertical shade around these represents the minimum and maximum of all iterations. 

 

4.3.2.2 Evaluation of the variability of the predictor variables 

The extraction of the PLSR coefficients using the optimal number of components reveals to be 

more variable in models based on reflectance than wavelet spectra (Figure A3‒4). Likewise, the 

VIP extracted from PLSR models suggests that the use of wavelet spectra enhances and reduces 

the predictor role of some spectral regions compared with reflectance spectra (Figure 4‒4). For 

example, spectral regions close to 0.55, 0.71, 0.76, 3.43, and 3.5 µm tend to have an important role 

in predicting leaf traits for both types of spectra, but this importance is considerably higher for 

wavelet than reflectance spectra (Figure 4‒4; Table 4‒1). Moreover, regions close to 3.8, and 9.2 

µm seems to have some degree of importance for predicting leaf traits using reflectance based on 

the VIP values, but not for wavelet spectra. The peak detection analyses applied to VIP from 

wavelet spectra models also identified regions associated with water absorption features (2.56, 

2.70, and 6.20 µm) and lignin/cellulose (5.76, 6.58, and 7.60 µm) (Figure 4‒4, Table 4‒1); regions 
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which were not identified by models based on reflectance (expect for 2.60 µm on EWT-reflectance 

models). 

 

 

Figure 4‒4. Variable importance of prediction (VIP) of PLSR models based on reflectance and 

wavelet spectra (CWT) to predict three-leaf functional traits: Leaf Mass Area (LMA) (a and b), 

Water Content (WC) (c and d), and Equivalent Water Thinness (EWT) (e and f). Each line 

represents the average of 1000 iterations, while the shade around each line represents its standard 

deviation. Vertical dashed lines represent the peaks of local maxima from the peak detection 

analyses, which are detailed in Table 1. 

 

4.3.2.3 Evaluation of the model performance and prediction of traits 

Overall, the PLSR model's iterations reveal the large variability of their performance during the 

testing and, to a lesser extent, during the training (Table 4‒2). At the training level, the reflectance 

spectra perform slightly better to predict LMA and WC than the wavelet spectra based on: i) higher 

R2, ii) lower RMSE, and iii) lower %RMSE (Table 4‒2). However, at the testing level, wavelet 

PLSR models' performance is higher than those based on reflectance spectra for the three-leaf 

traits. The bias of the predicted values tends to be close to zero for models based on reflectance 

and wavelet spectra during the training and testing process. The ANCOVA comparisons reveal 

that the spectral processing seems to affect observed-predicted relationships of LMA and WC 

during training and EWT during testing processes (Figure A3‒5a, e, and f; Table A3‒3); however, 
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this effect is not visually clear for LMA and WC (Figure A3‒5a, and e). Using testing datasets, 

LMA and EWT of trees from models based on reflectance tend to present lower slopes (Figure 4‒

5a and e) in comparison with models based on wavelet spectra (Figure 4‒5b and f). This change 

in the slopes of the observed-predicted relationships between life forms and types of spectra does 

not appear in training datasets (Figure A3‒6). Overall, the ANCOVA comparisons suggest that 

the life forms do not influence the observed-predicted relationships of leaf trait on training or 

testing datasets (Table A3‒3).  

In terms of the model performance between life forms, except for models based on LMA, liana 

samples tend to present lower R2 than tree samples regardless of the type of spectra and dataset 

process (Figure 4‒6a, b, and c; Figure A3‒7a, b, and c). Surprisingly, the RMSE of observed-

predicted relationships on liana samples is also lower than tree samples for the three-leaf traits 

(Figure 4‒6g, h, i, and Figure A3‒7g, h, and i). The bias of these iterative models for both life 

forms tends to be close to zero (Figure 4‒6d, e, f, and Figure A3‒7d, e, and f); however, the model's 

residuals reveal that higher values of leaf traits may be prone to more bias in comparison with 

lower values (Figure A3‒8 and A3‒9). This effect of the model residuals together with the 

intraspecific variability of leaf traits within life forms seems to drive the differences in the %RMSE 

(Figure 6j, k, l, and Figure S7j, k, and l). Overall, life forms with higher and less variable values 

of leaf traits tend to present higher %RMSE (i.e., WC in lianas, and LMA in trees). Likewise, 

lianas with low coefficient of variation of leaf traits tend to present low RMSE. Regardless the 

model performance, the spread of the performance parameters from multiple iterations is 

consistently higher in models based on reflectance than wavelet models (Figure 4‒6 and Figure 

A3‒7). This spread, which describe the precision of the models, can also be observed in Table 4‒

2; the standard deviations of performance parameters from wavelet models are lower than 

parameters from reflectance models in most cases (Table 4‒2). 
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Table 4–1. Description of peaks of local maxima from the variable importance of prediction, their spectral location, leaf trait and PLSR 

model where were detected, and the potential features related to based on the existing literature. 

Symbology 
Location 

(µm) 
Detected in Features related to Reference 

I 
0.55 

All leaf traits and 

types of spectra 

Photochemical pigments / Electron 

transition 
Curran (1989) 

II 
0.71 

All leaf traits and 

types of spectra 

Inflection point between chlorophyll 

absorption features and volume scattering  
Curran (1989) 

III 0.76 WC-wavelet Mesophyll structure / volume scattering Curran (1989) 

IV 

2.56 

EWT-reflectance 

LMA-wavelet 

WC-wavelet 

EWT-wavelet 

Water (2.51 µm) / O‒H stretching 
Arshad et al. (2018) and Ullah et 

al. (2012)  

V 
2.68 

All leaf traits using 

wavelet spectra 
Water (2.91 µm) / O‒H stretching 

Arshad et al. (2018), Elvidge 

(1988), and Ullah et al. (2012) 

VI 
3.44 

All leaf traits and 

types of spectra 
Cellulose / CH2 asymmetric stretching Elvidge (1988) 

VII 
3.51 

All leaf traits and 

types of spectra 
Cellulose / CH2 asymmetric stretching Elvidge (1988) 

VIII 
5.76 

All leaf traits using 

wavelet spectra 

Cellulose or lignin (5.76 μm) / C=O 

stretching 

Elvidge (1988) and Stewart et al.  

(1997)  

IX 
6.20 

WC and EWT using 

wavelet spectra 
Water / O‒H stretching 

Elvidge (1988) and Fabre et al. 

(2011) 

X 
6.58 

All leaf traits using 

wavelet spectra 
Lignin / Aromatic skeletal vibrations Boeriu et al. (2004) 

XI 
7.60 

EWT using wavelet 

spectra 

Cellulose (7.60 μm) or lignin (7.54 μm) / 

CH2 wagging 

Boeriu et al. (2004) and Elvidge 

(1988) 
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Table 4–2. Comparison of the partial least-squares regression (PLSR) performance during the training and testing of models based on 

reflectance or wavelet spectra to predict three functional traits: leaf mass area (LMA), water content (WC), equivalent water thinness 

(EWT). Values represent the mean and standard deviation of 1000 iterative models. Paired t-test results and their significance are 

described below of each comparison. 

Spectra 

Parameter 

R2 (10-2) Bias (10-2) RMSE %RMSE 

Training Testing Training Testing Training Testing Training Testing 

LMA (g m-2) 

Reflectance 94.12 ± 1.08 77.67 ± 4.88 -0.68 ± 0.56 -1.16 ± 0.82 8.80 ± 0.74 17.87 ± 1.71 4.87 ± 0.41 8.96 ± 0.86 

Wavelet 93.55 ± 0.70 83.35 ± 1.89 -0.91 ± 0.58 0.62 ± 0.74 9.23 ± 0.48 15.47 ± 0.87 5.11 ± 0.27 7.76 ± 0.44 

 15.74*** -37.11*** 18.47*** -76.01*** -17.64*** 44.17*** -17.64*** 44.17*** 

WC (%) 

Reflectance 89.84 ± 1.07 76.24 ± 1.89 -0.11 ± 0.20 0.51 ± 0.29 2.98 ± 0.15 4.35 ± 0.17 6.11 ± 0.32 9.17 ± 0.36 

Wavelet 86.16 ± 0.61 76.77 ± 1.29 -0.13 ± 0.20 0.52 ± 0.25 3.48 ± 0.07 4.31 ± 0.12 7.14 ± 0.16 9.07 ± 0.78 

 105.61*** -8.08*** 3.72*** -0.47 -102.54*** 7.96*** -102.54*** 7.97*** 

EWT (g m-2) 

Reflectance 80.93 ± 2.73 48.69 ± 21.92 -1.07 ± 0.66 0.60 ± 0.98 18.43 ± 1.09 32.93 ± 4.68 7.44 ± 0.44 14.19 ± 2.02 

Wavelet 82.26 ± 1.92 67.70 ± 2.56 -1.09 ± 0.61 2.08 ± 0.79 17.79 ± 0.89 26.37 ± 1.05 7.18 ± 0.36 11.37 ± 0.45 

 -14.67*** -27.58*** 1.58** -57.76*** 17.86*** 45.22*** 17.86*** 45.22*** 

  p-value: * <0.05; ** <0.01, *** <0.001 
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Figure 4‒5. Observed and predicted leaf traits of lianas and trees from partial least-squares 

regression (PLSR) models using reflectance (a, c, e) and wavelet spectra (b, d, f). Points correspond 

to the testing dataset. Each point represents the average of 1000 iterations, while the error bars 

around each point their standard deviation. The solid grey lines indicate the 1:1 relationship. The 

solid lines represent the fitted regression while the dashed lines the 95% prediction intervals. 

Kernel density distributions are plotted next to each scatter plot. Statistics about their comparisons 

can be found in Table A3‒3. 
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Figure 4‒6. Raincloud plots comparing the performance between life forms of testing models of 

partial least-squares regression (PLSR) based on reflectance and continuous wavelet 

transformation (CWT) spectra to predict three functional traits: Leaf Mass Area (LMA, g m-2), 

Water Content (WC, %), Equivalent Water Thinness (EWT, g m-2). RMSE is the root mean square 

error, and %RMSE is the RMSE represented by its percentage. Each point represents a model 

iteration, the boxes the first, median, and third quartiles, and the irregular polygons describe the 

kernel density distributions. Dashed lines represent the mean regardless of the life form by type of 

spectra, while the dotted lines the mean trend of change within life forms between the type of 

spectra. Statistics of their comparison can be found in Table A4‒4. 
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4.4 Discussion 

Our results reveal the potential of wavelet spectra to overcome some limitations of PLSR models 

based on reflectance and to improve the prediction of leaf traits using spectroscopy. Despite this, 

our results also reveal the potential bias associated with the prediction of leaf traits when 

considering life forms, which has not been done until today. The following discussion highlights 

both previous aspects and provides insights into the future application of wavelet spectra in PLSR 

models. 

 

4.4.1 Influence of the spectra processing on the PLSR models 

Overall, our results reveal three main advantages regarding using wavelet vs. reflectance spectra 

in PLSR models to predict leaf traits: i) wavelet-based models requires fewer components to predict 

leaf traits, ii) wavelet-based models enhance the importance of spectral bands that drive the 

prediction of traits, and iii) wavelet-based models in training datasets improve the performance of 

predicting traits in accuracy and precision. Specifically, reductions in the optimal number of 

components in wavelet-based models are associated with increases in the variability of the spectral 

features highlighted by the CWT (Guzmán et al., 2018); leading to more parsimonious PLSR 

models that require fewer components to predict the same variability of a leaf trait. These 

reductions in the optimal number of components are directly translated into shorter processing time 

during the model's training and testing. Likewise, the low variability of the selected optimal number 

of components of wavelet-based models is translated into more robust and consistent models. 

Despite the broad spectral range and the higher number of spectral bands used in this study, the 

optimal number of components estimated for LMA and EWT from models based on wavelet 

spectra tend to be close (± 5) to those reported by other studies (Meerdink et al., 2016; Serbin et 

al., 2014; Streher et al., 2020; Wang et al., 2020). 

In terms of the spectral band's importance (i.e., VIP), models based on wavelet spectra tend to 

better define the spectral bands that drive the association between spectral features and leaf traits. 

This is done by enhancing bands with a strong relationship between the absorption features 

variability and the leaf trait variability and diminish bands without any apparent contribution. Other 

studies have shown that PLSR models based on reflectance spectra are able to characterize the 

simultaneous contribution of absorption features of leaves to predict traits (Serbin et al., 2019, 
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2014; Streher et al., 2020); however, the role of spectral bands with importance without any 

apparent association between leaf optics and traits is considerable. In our study, for instance, 

reflectance-base models showed spectral bands close to 9.2 µm tend to have a similar importance 

for the prediction of the studied leaf traits than bands close to the red-edge region (0.71 and 0.76 

µm). This occurs even though the former is a region with features that could be associated with the 

leaf surface constituents and not with the internal leaf structure or water content (Ribeiro da Luz, 

2006; Ribeiro da Luz and Crowley, 2010, 2007). Although the red-edge regions does not present 

water absorption features either beneficial for predicting WC and EWT, their reflectance is 

controlled by the inflection point between chlorophyll absorption features (~ 0.68 µm) and volume 

scattering (> 0.71 µm) product of the leaf thickness and air spaces (Curran, 1989). It is well known 

that the leaf investment in the mesophyll strongly modulates the LMA, WC, and EWT through the 

mass and water storage (Niinemets, 1999; Poorter et al., 2009; Shipley et al., 2006). Therefore, 

based on the leaf economic spectrum (Osnas et al., 2018, 2013; Wright et al., 2004), it is expected 

that this region will present a meaningful association with the studied leaf traits. Likewise, it is 

likely that the contrasting spectral shapes in the VIS-NIR in conjunction with the differences 

observed in water content between life forms may contribute to an indirect association of the 

importance of this region to predict WC and EWT; a factor that was not expected. In terms of 

LMA, the volume scattering between 0.71 and 1.2 µm has been recognize as a region of importance 

for predicting LMA (Asner et al., 2011; Serbin et al., 2019; Streher et al., 2020). In our LMA 

wavelet-base model this importance is only observed in regions close to 0.75 µm due to the lacking 

of absorption features in the near-infrared region. 

Water absorption features in the MLWIR also tend to be captured by PLSR models that use 

wavelet spectra. The VIP of models based on wavelet spectra presented regions close to 2.56, 2.70 

and 6.20 µm that appear to exemplify the water absorption features of plant materials (Elvidge, 

1988; Fabre et al., 2011; Ullah et al., 2012). These water absorption regions do not seem to be 

detected in reflectance-based PLSR models, highlighting its limitation in the description of spectral 

bands associated with leaf traits (Cheng et al., 2014). Other absorption features associated with 

lignin and cellulose tend to be highlighted by the peak detection algorithm in wavelet-based 

models. These features could be indirectly associated with the studied leaf traits given the 

contrasting concentration of lignin and cellulose documented for these life forms (Asner and 

Martin, 2012). 
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Regarding model performance, the spectral processing using CWT tend to improve the 

prediction of leaf traits in testing datasets. These improvements are observed at the accuracy of the 

models developed (high R2 and low RMSE) and at the precision of the multiple iterations (low 

standard deviation). Despite this, the improvements in performance seem to be more subdued for 

WC, than LMA or EWT. This could be due to the nature of the WC values (i.e., values between 0 

and 100) that may homogenize the predictive ability of PLSR models based on reflectance or 

wavelet spectra. The role of the distribution of values on PLSR models should be explored using 

other leaf traits based on percentage. In terms of R2 and RMSE, the observed performances of LMA 

testing datasets are similar or higher to those reported by studies that use PLSR models and a 

spectral range close to 0.45 and 2.4 µm (Asner et al., 2011; Li et al., 2007; Serbin et al., 2019; 

Streher et al., 2020; Yang et al., 2016). Likewise, our models that use LMA testing datasets also 

seems to outperform those that integrate the thermal infrared domain (> 2.4 µm) in temperate tree 

species (Meerdink et al., 2016). In comparison with studies that use wavelet spectra and correlation 

scalograms on a variety of tree species (Cheng et al., 2014, 2011), the PLSR models also seem to 

outperform the prediction of LMA and WC. Despite this, other studies that integrate wavelet 

spectra or PLSR models to predict WC and include the shortwave infrared domains (1.2 – 2.4 µm) 

seems to outperform our predictions (Li et al., 2007; Meerdink et al., 2016; Ullah et al., 2012b). 

Overall, performance differences between studies need to be addressed with caution since there is 

an important variation in how the models were developed, and most of them tend to span different 

wavelength ranges, sensors, and plant groups. 

 

4.4.2 Effects of the life forms on PLSR models 

Our results reveal that the observed-predicted relationships of leaf traits appear to be unaffected 

by life forms on training and testing datasets. This seems to be in concordance with Asner et al. 

(2011), who suggest that the prediction of LMA using spectroscopy techniques is unaffected by 

growth habits. Despite this, our results suggest that life forms tend to affect the PLSR model 

performance. Except for LMA, liana EWT, and to a lesser extent liana WC, are poorly predicted 

in comparison with trees. Differences in performance occur even though the models were created 

under a balanced approach; a procedure that does not tend to be considered by studies which 

compare groups of plants (Asner et al., 2011; Serbin et al., 2019, 2014; Streher et al., 2020). These 

differences may suggest that the potential errors of predicting traits are susceptible to the plant 
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groups' identity that integrate the models rather than the overall model performance. Differences 

in performance between growth forms (i.e., graminoids, forbs, woody species) have also been 

observed by Streher et al. (2020), who developed models for each plant group. Overall, the life 

forms effect on the model performance appears to be the product of the intraspecific variability of 

traits within plant groups and the predictive ability of the model developed. Thus, life forms with 

higher values (i.e., LMA in trees and WC in lianas) seem to drive low-performance models in 

terms of R2. On the other hand, life forms with low variability of leaf traits (i.e., lianas) seems to 

drive high-performance in terms of RMSE. 

The effect of plant groups on the potential errors of predicting traits may play an essential role 

in the mapping of traits in tropical environments, where there is a high diversity of species with 

different growing habits coexisting together. Based on our results, for instance, biases at the local 

scale may differ spatially during the up-scaling of information when the forest canopy is infested 

or not by lianas. Ecosystems such as tropical dry forests could be more prone to this example due 

to the higher relative abundance of lianas in comparison with other tropical forests (Schnitzer and 

Bongers, 2011). 

 

4.4.3 Future insights on the integration of wavelet spectra in PLSR models to predict traits. 

In contrast to the traditional methods (e.g., Asner et al., 2011; Serbin et al., 2019, 2014; Streher 

et al., 2020), the integration of wavelet spectra with PLSR consistently improves model 

development. The potential of wavelet spectra to predict leaf traits has also been demonstrated by 

studies focused on band selection though correlation scalograms (Cheng et al., 2014, 2011; Ullah 

et al., 2012b). Based on the method presented, questions might remain regarding the selection and 

sum of the optimal number of scales to create the transformed spectra and predict different leaf 

traits. For instance, there is consistent evidence that suggests that specific wavelet scales are 

sensitive to specific spectral features (Cheng et al., 2014, 2011; Ullah et al., 2012b). Therefore, 

future studies should explore the potential effect of the selection and combination of wavelet scales 

with its integration with PLSR models to predict different leaf traits. This could be addressed 

qualitatively in other databases by looking at the variability of absorption features at different 

scales (e.g., using correlation scalograms) or quantitatively by creating and comparing models 

with different combinations of scales (e.g., such as Appendix A3‒1). 
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Towards the upscaling of information, imagery in a given spectral-domain will need to be also 

processed using CWT. This step may require a higher computational demand in comparison with 

traditional methods based on reflectance spectra, but it could be tackled using parallel processing 

on each pixel. Future initiatives should be focused on benchmarks using different databases and 

spectral domains to address which method could be the most favorable to predict leaf traits. This 

previous aspect is crucial for the aim of mapping traits using current and future hyperspectral 

imagery from missions such as PRecursore IperSpettrale della Missione Applicativa (PRISMA), 

Hyperspectral Imager Suite (HISUI), and Environmental Mapping and Analysis Program 

(EnMAP). A suitable mapping of traits will benefit their integration in Earth system models (van 

Bodegom et al., 2014; Y. Yang et al., 2015). 

 

4.5 Conclusions 

Our study reveals the potential of wavelet spectra to overcome limitations and improve the 

prediction of LMA, WC, and EWT using PLSR models. This study also expands previous studies 

that enhance absorption features through the CWT (Cheng et al., 2014, 2011) and integrates the 

thermal infrared domain in PLSR models to predict leaf traits (Buitrago et al., 2018a; Meerdink et 

al., 2016). In comparison with reflectance spectra, the integration of wavelet spectra in PLSR leads 

to: i) more parsimonious and consistent models that require fewer components to predict the same 

variability of leaf traits, ii) models that tend to highlight better the spectral bands that drive the 

prediction of traits, and iii) increases in model performance based on accuracy (i.e., high R2 and 

low RMSE) and precision (low standard deviation). Our study also reveals that the differences 

between life forms do not seem to affect the observed and predicted relationships derived from 

PLSR models. However, we observed that the model performance is affected by the intraspecific 

variability of the life forms, suggesting that the potential bias of prediction of leaf traits is 

susceptible to the identity of the plant groups (lianas vs. trees). Overall, the application and 

evaluation of methods such as the presented here may help advance the future mapping of leaf 

traits locally or globally as well as ecological studies based on leaf spectroscopy. 
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CHAPTER 5 

 

 

ON THE RELATIONSHIP OF FRACTAL GEOMETRY AND TREE-STAND METRICS ON 

POINT CLOUDS DERIVED FROM TERRESTRIAL LASER SCANNING 

 

Abstract 

Fractals have been widely used to determine bifurcation patterns in trees or to analyze the 

homeostasis of the development of plants to different environments. In a few instances, fractals 

have been used to predict tree or stand metrics. Here we explore the use of fractal geometry based 

on the voxel-counting method (VC) to predict tree and stands metrics on point clouds derived from 

Terrestrial Laser Scanning. This was explored using 189 leaf-on and leaf-off point clouds from 

seven databases around the world. Four metrics were estimated at the tree level: height, diameter 

at breast height, crown area, and tree volume. At the stand level, artificial stands were created by 

adding trees to a given plot, and then the basal area, stand volume, and area coverage by crowns 

were estimated. The VC was applied to trees or stands creating voxels of different volumes (S) 

while counting the number of voxels (N) required to fill it. Log-log relationships between N and 

1/S were used to estimate the fractal dimension (dMB) and the interceptMB. At the tree level, the 

interceptMB shows a stronger relationship with metrics for leaf-on (r2 = 0.26 ‒ 0.90) and leaf-off 

point clouds (r2 = 0.18 ‒ 0.87) than dMB (r2 < 0.34); however, dMB seems to describe better the 

complexity embedded within leaf-on/leaf-off point clouds. The predictions by the interceptMB are 

affected by the presence/absence of leaves, but less affected by the random effects of the databases. 

At the stand level, both fractal geometry parameters (interceptMB and dMB) tend to predict the 

variability of stand metrics (r2 = 0.61 ‒ 0.98). The estimation of tree and stand metrics based on 

fractal geometry equations can be considered a fast approach for predicting irregular structures. 

Using fractals on point clouds also allows us to understand the structural complexity of how trees 

or stands occupy their 3D-space. This complexity can be further used as a structural trait of trees 

or forest ecosystems. Fractal geometry equations can also help towards the development of large-

scale biomass maps at different ecosystems. 
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5.1 Introduction 

Since its definition by Mandelbrot (1983), fractals have been considered as certain geometrical 

structures whose shape tend to be similar in their overall patterns when they are observed at 

different scales. Fractals applicability to the study of spatial and temporal patterns are so vast that, 

according to Halley et al. (2004), it has been implemented in every field of science. On plants 

specifically, the estimation of the fractal dimension is commonly used since it offers a relatively 

inexpensive tool to assess biological processes. For example, the fractal dimension has been 

applied to evaluate the bifurcation patterns of roots and branches (Fitter and Stickland, 1992), the 

homeostasis of development of plants during growth (Escós et al., 2003), as well as to estimate 

above-ground biomass (AGB) (van Noordwijk and Mulia, 2002; West et al., 1999). A reason for 

the popularity of applying fractals to plants is their strong relationship with the power-law (Halley 

et al., 2004), which is an accurate descriptor of the allometric scaling of plants (Niklas, 1994). 

Despite their use, fractals have been rarely applied to large plants such as trees since it is difficult 

to quantify the geometrical structure of trees at large scales. However, the rapid development of 

new technologies such as Terrestrial Laser Scanners (TLS), also known as Terrestrial-Light 

Detection and Ranging (T-LiDAR) instruments, may help to overcome this limitation and help to 

study the fractal properties of trees and stands from different perspectives. Specifically, by 

employing point clouds derived from TLS it is possible to apply fractal geometry to determine how 

trees and other growth forms occupy their three-dimensional space. Currently, the fractal geometry 

has been applied to airborne LiDAR data as a method for the extraction of vegetation points (H. 

Yang et al., 2015), and it has been applied as a method to characterize the tree and stand structural 

complexity using TLS (Seidel, 2018; Seidel et al., 2019b; Suzuki, 2007). In only a few cases, 

however, has fractal geometry been used to characterize tree metrics (e.g., tree height, trunk 

diameter, etc.) (Seidel et al., 2019a), and never before has it been used to predict the volume of 

trees or stands using TLS derived point clouds. 

The estimation of tree volume, and consequently the AGB, at tree or stand level is critical for 

the understanding of carbon dynamics in ecosystems (Houghton et al., 2009). Currently, there are 

three main methods based on TLS to retrieve tree volume and its AGB: allometric-based methods, 



 

78 

 

voxelization, and Quantitative Structure Models (QSM). Advantages and disadvantages of these 

methods have been discussed through their development and application (Calders et al., 2015; 

Drake et al., 2003; Greaves et al., 2015; Momo et al., 2017a). However, none of the current methods 

can describe how tree architecture is distributed in their space or how this architecture is related to 

their size. 

Since the distribution of points in the space of a given scanned tree or forest stand is determined 

by its architecture, structure, and size, it is possible to use fractal geometry to evaluate how trees 

occupy their space, and therefore, predict their metrics (i.e., volume, crown area, diameter at breast 

height (DBH), and tree height). Here we explore the above idea and provide insights into the 

application of fractal geometry on tree point cloud as well as how it can be scaled to forest stands. 

Hence, we computed the fractal geometry on 189 point clouds of trees with and without leaves 

from seven databases distributed around the world. In addition, we also explore the effect that the 

presence/absence of leaves has on the parameters and relationships derived from fractal geometry. 

Point clouds per se are not an ideal fractal, but their properties associated with the distribution, 

aggregation, and resolution tend to be similar across different sets of scales, where methods of 

fractal geometry can be applied. 

 

5.2. Materials and Methods 

5.2.2 Databases of tree point clouds 

This study was conducted using seven databases of point clouds collected using TLS at different 

locations: i) Central Guyana (GUY), ii) South Western Amazon, Peru (PER), iii) Mentaya River, 

Indonesia (IND), iv) Eastern Cameroon (CAM), v) Victoria, Australia (AUS), vi) Santa Rosa 

National Park ‒ Environmental Monitoring Supersite, Costa Rica (CR), and vii) University of 

Alberta North Campus, Canada (CAN). The GUY, PER, and IND databases consist of 29 point 

clouds of leaf-on trees collected by Gonzalez de Tanago et al. (2017) and are available at 

http://lucid.wur.nl. These point clouds were created by establishing plots around each target tree 

for scanning (See Gonzalez de Tanago et al., 2017). The CAM database consists of 61 scanned 

trees collected by Momo et al. (2017b) and are available at Momo et al. (2017a). These point clouds 

were manually segmented to create leaf-off point clouds (See Momo et al. (2017b)). The AUS 

database consists of 65 leaf-on point clouds of trees from a native Eucalypt Open Forest collected 

by Calders et al. (2015) and are available at the TERN AusCover data archive 

http://lucid.wur.nl/
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(http://dx.doi.org/10.4227/05/542B766D5D00D). These point clouds were collected using a semi-

automated extraction of trees on scanned plots (See in Calders et al. (2015)). The CR and CAN 

database consists of 19 leaf-on and 15 leaf-off point clouds collected and processed by the authors 

of this manuscript. The CR database was generated by conducting 5 to 7 scans around each tree of 

interest, while the CAN database was performed using a manual extraction of trees on two scanning 

plots with more than 12 scans each. For more details on the description of data collection and 

processing of the CR and CAN databases see Appendix A4‒1. The points clouds of the CR and 

CAN database are available at the Tropi-Dry dataverse repository 

(https://doi.org/10.7910/DVN/DYNAWT). In general, a description of the location, elevation, and 

average annual precipitation of these databases can be found in Table 5‒1. In total, point clouds 

from 189 individual trees (76 leaf-off and 113 leaf-on) were used in this research. The overall 

database has 50 species, 46 genus, and 23 families (Table A4‒1). Using these point clouds tree 

metrics were compared with their fractal geometry. 

 

5.2.2 Tree metrics 

Four tree metrics were computed directly from each point cloud. These metrics consist of 

descriptors of the three dimensions that are usually estimated in the field by direct measurements 

or harvest. Specifically, metrics associated with tree height (H, m), crown area (CA, m2), Diameter 

at Breast Height (DBH, cm), and tree volume (V, m3) were estimated. H was calculated as the 

difference between the maximum and minimum value of the z coordinate of the tree point cloud, 

while DBH was estimated as the diameter of an area of a circle (basal area, BA) from a convex hull 

object drawn using the x and y plane between a height (z) of 1.25 and 1.35 m. The CA was also 

calculated with a convex hull using the x and y plane of the point cloud and estimating their area. 

The above metrics were estimated using the ‘tree_metrics’ function from the rTLS package 

(Guzmán et al., 2020) for R (R Core Team, 2020) available at https://antguz.github.io/rTLS. The 

V was estimated using Quantitative Structural Models (QSM) following Raumonen et al. (2013). 

This method consists of segmenting tree point clouds into sections of stems and branches, then 

fitting cylinders to the perimeter of each segmented section to give shape and volume to the point 

cloud, therefore resulting in the construction of a QSM for the tree. The sum of the volume of the 

fitted cylinders was used as the V. The published databases of GUY, CAM, IND, PER, and AUS 

already have the QSMs fitted on their point clouds; these were used in this study. 

http://dx.doi.org/10.4227/05/542B766D5D00D
https://doi.org/10.7910/DVN/DYNAWT
https://antguz.github.io/rTLS
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Table 5‒1. General descriptors of the databases used. 

Site of the database Acronym 
Approximate 

location 

Average annual 

precipitation (mm) 

Elevation 

(m a.s.l.) 

TLS 

scanner 

used 

Leaves n 

Edmonton, Canada1 CAN 
53° 31' 42.4" N 

113° 31' 26.5" W 
459 683 

RIEGL 

VZ‐400i 
Off 15 

Santa Rosa National Park ‒ 

Environmental Monitoring 

Supersite, Costa Rica1 

CR 
10° 50' 16.84" N 

85° 37' 6.62" W 
1720 200-300 

RIEGL 

VZ‐400i 
On 19 

Central Guyana2 GUY 
6° 2' 2.4" N 

58° 41' 47.4" W 
2195 117 

RIEGL 

VZ‐400 
On 10 

Eastern of Cameroon3 CAM 
4° 02' 20.77'' N 

14° 55' 49.15'' E 
1500 ─ 2000 

600 ─ 

700 
Leica C10 Off 61 

Indonesia2 IND 
2° 24' 36" S 

113° 7' 48" E 
2616 22 

RIEGL 

VZ‐400 
On 10 

Peru2 PER 
12° 16' 12" S 

69° 6' 0" W 
2074 312 

RIEGL 

VZ‐400 
On 9 

Victoria, Australia4 AUS 
37° 45' 32' S 

145° 0' 57.6'' E 
500 ─ 800 

150 ─ 

600 

RIEGL 

VZ‐400 
On 65 

1Database by the authors; 2Gonzalez de Tanago, Lau, Bartholomeus, Herold, Avitabile, Raumonen, Martius, Goodman, Manuri, et al. 

2017; 3Momo et al., 2017a; 4Calders et al., 2015 
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5.2.3 Fractal geometry and voxel counting 

The fractal geometry was evaluated for each tree point cloud to determine how the Euclidean 

distances between points, which represent the architectural pattern of the trees, changes with the 

scale at which it is measured. This was evaluated using the Minkowski–Bouligand method (MB) 

or commonly known as the box-counting method. In general, the box-counting method is a way of 

sampling complex patterns in a given object (usually an image or a 2D object) by breaking the 

object into smaller and smaller boxes while extracting the rate of change in the number of boxes 

needed to fill it (Bunde and Havlin, 1994). In our study, because point clouds are represented in 

three dimensions, voxels of a given volume were used instead of boxes. These voxels were created 

using a fixed grid cube to find the optimal coverage for the trees. In practice, a given point cloud 

can be covered using a single large voxel (N1 = 1) of size S1 (m
3), but as S is reduced in volume (S1 

> S2 … > Sn), the number of voxels required (N > 1) to cover it will increase (Figure 5‒1a). Since 

N increases as a power function (Figure 5‒1b), a positive dMB and their intercept can be estimated 

using a linear model following: 

 

log  𝑁 = 𝑑𝑀𝐵  log
1

𝑆
 + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑀𝐵 (1) 

 

where dMB is the slope and the interceptMB is the intercept with the y-axis. This linear relationship 

was solved using standardize major axis (SMA) regressions applying the ‘sma’ function of the 

“smart” package in R (Warton et al., 2012). From this model, the coefficient of determination (r2) 

was also estimated. The r2 could be considered as a measurement of self-similarity as it describe 

how voxels show similar statistical properties at different scales (Mandelbrot, 1967). Since the tree 

dimension varies between individuals, the number of voxels required to cover a given tree also 

varies. Therefore, a large voxel (N1, S1) was created for each point cloud following: 

 

𝐸1  =  arg 𝑚𝑎𝑥 {∆𝑥, ∆𝑦, ∆𝑧 } + 0.001 𝑚 (2) 

 

where E1 is the size of a voxel edge (m), and Δx, Δy, and Δz are the difference between the 

maximum and minimum coordinates of points in the point cloud. Using E1, another eight different 

Es were defined between E1 and the minimum distance (Emin, or commonly known as lower cut-

off) of 0.01 m using a logarithmic sequence. In practice, when E tends to be equal or lower than 
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the minimum Euclidean distance between points, N is equal to the number of points in the cloud. 

Therefore, Emin needs to be specified to avoid a quantization error. S was calculated following E3, 

and so, Eq. (2) was applied. Regardless of the tree dimension, the point cloud resolution, or the 

number of points in the cloud, the voxelization was performed adding voxels from the lower to the 

higher value of x, y, and z. Following these procedures, the resulting dMB may have values between 

0 and 1, where values close to 1 represents a tree that uniformly occupies their 3D space (such as 

a Menger sponge with the greatest surface‐to‐volume ratio), while values close to 0 represents a 

cylindrical tree (such as a pole‐like object) or a point cloud with two points. On the other hand, the 

interceptMB may have positive and negative values, where high values tend to be associated with 

large objects that require several voxels to fill at different scales. In general, dMB could potentially 

be affected by subsampling methods that impact the point density, but the interceptMB remains 

almost invariant despite these (Appendix S2, Figure S1). Voxels were created using the 

‘voxel_counting’ function from the rTLS package (Guzmán et al., 2020). 

 

 

Figure 5‒1. Schematic representation of the voxel counting method to calculate the fractal 

dimension (dMB) and the interceptMB. (a) A given point cloud can be covered by a large voxel (N = 

1) of size S1. However, a greater number of voxels (N > 1) will be required if S < S1. (b) As N 

increases as a power function, the scaling factor dMB can be solved using a log-log linear regression. 

S is estimated using the length of a voxel edge (E) as E3. 
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5.2.4 Artificial forest stands 

To prove that fractal geometry parameters can be used to predict the stand metrics, a series of 

artificial forest stands were created. These artificial stands were constructed using leaf-on point 

clouds described in Section 6.2.1. In general, the artificial stand’s construction consists of randomly 

adding a given number of trees (point clouds) to a given plot area. Specifically, a randomly chosen 

tree is positioned in the plot and added to the empty stand based on a random set of x y coordinates 

given to the basal trunk. Subsequently, a second and successive number of randomly chosen trees 

are also positioned in the plot using random x y coordinates to their basal trunk, while ensuring that 

the crown area of these trees does not overlap by more than 5% with already existing crowns 

(Figure 5‒2). In total, 1300 artificial forest stands were created using a plot area of a hectare, while 

the number of trees found in the plot ranged from 2 to 62.  

 

 

Figure 5‒2. Schematic representation of artificial forest stands using the leaf-on point clouds from 

different databases. The plot area is one hectare. 
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5.2.5 Data analysis 

Initially, the effect of the presence-absence of leaves on the fractal geometry parameters were 

addressed by comparing the dMB, the interceptMB, and r2 between leaf-off and leaf-on point clouds 

using linear mixed models. For this, we considered presence-absence of leaves as a fixed effect, 

and the point cloud origin as a random factor in order to contemplate the potential effects of the 

different pre-processing and data acquisition methods for each database. Likewise, the 

relationships between the log-transformed tree metrics (H, DBH, CA, and V) with the fractal 

geometry parameters (dMB and interceptMB) and their interaction with the presence-absence of 

leaves were also examined using linear mixed models. For these models the fractal geometry 

parameters, the presence-absence of leaves, and their interaction were considered as fixed effects, 

while the database of each point cloud as a random effect. The premise around these analyses is 

that if the presence-absence of leaves do not interact with the fractal geometry parameters to predict 

tree metrics, a general equation can be used to predict each metric. However, the interaction of the 

presence-absence of leaves and the fractal parameters tend to affect the prediction of tree metrics 

as shown in Section 6.3.2. Therefore, linear mixed models were separately applied on leaf-on and 

leaf-off point clouds to test whether the fractal metrics can predict tree metrics. The fitting 

regressions were then evaluated using the marginal coefficient of determination (r2) extracted 

directly from the model, the mean bias, and the residual standard error (RSE). In this specific case, 

the bias and RSE were estimated as: 

 

𝐵𝑖𝑎𝑠 (𝑃, 𝑗) =  
𝑃𝑒𝑠𝑡(𝑗) −  𝑃𝑜𝑏𝑠(𝑗)

𝑃𝑜𝑏𝑠 (𝑗)
 (3) 

𝑅𝑆𝐸 (𝑃, 𝑗) = √
1

𝑁𝑗 − 1
 ∑(𝑃𝑒𝑠𝑡 (𝑖, 𝑗) − 𝑃𝑜𝑏𝑠 (𝑖, 𝑗))2

𝑖 ∊𝑗

 (4) 

 

where P is each estimated (est) and observed (obs) tree metric, and N is the number of point clouds 

(j) per leaf-on or leaf-off dataset (i). Linear mixed models were applied using the ‘lmer’ function 

from the lme4 package (Bates et al., 2015). 

Similar as above, the relationship between log-transformed stand metrics (i.e., VS, BAS, and 

CAS) and the fractal geometry parameters were examined using simple linear regressions. The fitted 

model of these relationships was also evaluated using the r2, mean bias, and RSE. These regressions 
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were fitted using the ‘lm’ function of R. Finally, observed and predicted values of tree and stand 

metrics based on interceptMB equations were compared using analyses of covariance. These 

comparisons were performed in order to know if a general equation can be applied regardless of 

the level of observations (tree or stands). These analyses were performed using the ‘aov’ function 

of R and the unbalance of samples were addressed using type III error of the ‘Anova’ function of 

the car package (Fox and Weisberg, 2019). 

 

5.3 Results 

5.3.1 Tree metrics 

The scanned trees showed considerable variation in their metrics between and within databases 

(Table 5‒2). Regardless of the presence or absence of leaves, trees presented a range in DBH 

between 0.10 and 2.17 m with mean values close to 0.53 ± 0.34 m. Likewise, the range variation 

of H was between 5.55 and 53.62 m with mean values of 24.67 ± 12.14 m. Trees with the highest 

DBH values do not necessarily tend to be the tallest. For example, the highest DBH from the CR 

database was found in Ficus sp. (2.17 m) which is associated with an H close to 10.50 m, while the 

tallest tree Cylicodiscus gabunensis (H = 53.62 m) from the CAM database is associated with a 

DBH of 1.61 m. Moreover, the CA varies in a range between 1.12 and 739.72 m2 with a mean value 

of 131.82 ± 142.05 m2. The highest CA is associated with the tree with the highest DBH (Ficus 

sp.). In the same way, trees presented a higher variation in the estimations of QSM volume with a 

range between 0.07 and 98.01 m3 and mean values of 8.10 ± 14.99 m3. 

 

5.3.2 Fractal geometry and its relationship with tree metrics. 

Among all the SMA regressions between N and S the results show r2 values higher than 0.95. 

Leaf-off point clouds seem to present higher and less variable values of r2 in comparison with leaf-

on (Figure 5‒3c). However, the linear mixed model reveals that the r2 values are not affected by 

the presence-absence of leaves in the point clouds (Table A4‒2). The databases considered as 

random factors in this model explain more than 80% of the r2 variance. On the other hand, the 

interceptMB presented a range between 1.27 and 3.39 with a mean of 2.50 ± 0.42, while dMB showed 

values between 0.45 and 0.73 with a mean of 0.59 ± 0.06. Leaf-on point clouds tend to have higher 

values of dMB and interceptMB than leaf-off (Figure 5‒3a, b); however, these differences are not 

significant based on the comparisons of the mixed models (Table A4‒2). Likewise, the databases 
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considered as random factors explain more than 84 and 24% of the variance of dMB and the 

interceptMB in these models (Table A4‒2, Figure A4‒2). Values per database of the fractal 

geometry parameters can be found in Table A4‒3. 

 

Table 5‒2. Mean and standard deviation of the tree metrics per database and presence or absence 

of leaves. The acronyms of the databases are described in Table 1. 

Database Tree height (m) DBH (cm) Crown area (m2) QSM volume (m3) 

CAN 11.50 ± 4.04 44.05 ± 31.26 142.59 ± 85.37 3.20 ± 3.30 

CR 12.20 ± 4.51 62.80 ± 48.26 155.47 ± 169.85 11.69 ± 21.64 

GUY 33.07 ± 2.10 73.66 ± 12.65 238.24 ± 78.31 12.90 ± 4.35 

CAM 33.73 ± 12.42 58.17 ± 40.75 142.96 ± 177.47 12.35 ± 20.56 

IND 29.09 ± 5.61 58.39 ± 19.16 108.23 ± 70.27 7.46 ± 6.66 

PER 40.46 ± 6.95 90.00 ± 23.53 364.12 ± 139.82 21.19 ± 13.62 

AUS 18.66 ± 4.19 37.39 ± 15.14 67.03 ± 45.44 1.73 ± 12.29 

Leaf-on 21.53 ± 9.21 50.91 ± 29.82 124.41 ± 126.29 6.45 ± 11.55 

Leaf-off 29.34 ± 14.34 55.38 ± 39.28 142.88 ± 162.96 10.54 ± 18.80 

All databases 24.67 ± 12.14 52.71 ± 33.92 131.84 ± 142.05 8.10 ± 14.99 

 

Results also showed that the parameters extracted from the fractal geometry can predict tree 

metrics to some extent (Table A4‒4); however, it seems that the interaction of the presence-absence 

of leaves with the fractal geometry parameters tends to affect the prediction of all tree metrics 

according to the mixed model (Table A4‒4). Overall, the variance explained by the random effect 

of the mixed models is higher in the prediction of metrics by dMB (82 ± 5%) than interceptMB (51 

± 33%) (Table A4‒4, Figure A4‒3). Due to the above interaction, linear mixed models were 

performed separately on leaf-off and leaf-on point clouds. These models also revealed that the 

fractal geometry parameters are reliable predictors of tree metrics (Figure 5‒4, Table 5‒3). 

However, the ability to predict tree metrics is more evident when using the interceptMB (Figure 5‒

4b, d, f, h) rather than dMB (Figure 5‒4a, c, e, g). The former is based on the high values of r2, and 

lower values of mean bias and RME observed in the relationships with interceptMB rather than dMB 

(Table 5‒3). Likewise, the variance explained by the databases in these mixed models are lower in 

relationships based on the interceptMB (56 ± 31%) (Table A4‒6) than the dMB (86 ± 9%) (Table 
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A4‒5). In addition, the conditional variance-covariance matrixes of the databases seem to be less 

variable in models based on the interceptMB than the dMB (Figure A4‒4). Regardless of the fractal 

geometry parameter employed, it seems that the prediction of tree metrics tends to be stronger on 

relationships using leaf-on point clouds than leaf-off point clouds. This is based on the high values 

of r2, and the lower values of mean bias and RME observed in the relationships with leaf-on than 

leaf-off (Table 5‒3). 

 

  

Figure 5‒3. Violin plot comparing parameters extracted from fractal geometry using the voxel-

counting method on tree point clouds with and without leaves. dMB represents the fractal dimension 

and r2 the coefficient of determination. 
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Figure 5‒4. Relationship of tree metrics and the fractal geometry parameters (dMB: fractal 

dimension and interceptMB) extracted from the voxel-counting method applied on tree point clouds 

with and without leaves. Density plots were plotted next to each scatterplot to describe the 

distribution values. Gray line ranges next to each point represent the upper and lower error. 

Regressions statistics can be found in Table 5‒3. 
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Table 5‒3. Relationship between tree metrics and fractal geometry parameters (fractal dimension (dMB) and interceptMB) using linear 

mixed model. The r2 represent the marginal coefficient of determination and the asterisks next to each value the significance of the linear 

parameters. Tree metrics were first log-transformed before fitting. More details of the model statistics can be found in Table A4‒5 and 

A4‒6. 

Fractal 

geometry 

Tree 

metrics 

Leaf-on Leaf-off 

Intercept Slope r2 Bias RME Intercept Slope r2 Bias RME 

dMB 

H 1.26*** 0.19 0.00 0.01 0.11 -0.99 3.81*** 0.09 0.02 0.16 

DBH -0.25 3.31*** 0.17 0.02 0.19 -2.60** 7.09*** 0.21 0.03 0.26 

CA -2.03* 6.81*** 0.18 0.05 0.32 -7.90** 16.60*** 0.32 0.42 0.43 

V -4.73*** 8.96*** 0.16 0.15 0.47 -10.75** 18.75*** 0.21 -0.67 0.64 

InterceptMB 

H 0.57*** 0.30*** 0.26 0.00 0.06 0.33 0.39*** 0.18 0.00 0.08 

DBH 0.10 0.60*** 0.89 0.00 0.07 -0.05 0.68*** 0.70 0.01 0.12 

CA -1.00*** 1.13*** 0.83 0.01 0.09 -1.27*** 1.32*** 0.87 0.18 0.21 

V -3.67*** 1.59*** 0.90 -0.50 0.12 -3.92** 1.77*** 0.74 -0.03 0.24 

p-value: * <0.05; ** <0.01, *** <0.001 
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5.3.3 Fractal geometry and its relationship with stand metrics. 

Linear regressions between fractal geometry parameters and stand metrics reveal strong 

relationships (r2 > 0.61), which are more evident using the interceptMB (r2 > 0.95) than dMB (r2 

between 0.61 and 0.67) (Table 5‒4). In both cases, dMB and the interceptMB seem to increase with 

increases in the number of trees that compose a given stand (Figure 5‒5). The comparisons of the 

observed and predicted metrics between trees and stands reveal that the slopes of these levels of 

evaluations tend to be different between them (p < 0.001) (Table A4‒7), where tree relationships 

present higher slopes than stand relationships (Figure 5‒6). 

 

 

Figure 5‒5. Relationship between stand metrics and parameters extracted from the fractal 

geometry using the voxel counting method. dMB represents the fractal dimension. The color 

gradient represents the number of trees that compose each artificial stand. Gray line ranges next to 

each point represent the upper and lower error. 
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Table 5‒4. Results from the relationship of the stand metrics and parameters derived from fractal 

geometry (fractal dimension (dMB) and interceptMB). Stand metrics were first log-transformed 

before fitting. All the regression parameters were significant at a p-value <0.001. 

Fractal 

geometry 
Stand metrics Intercept Slope r2 Bias RSE 

dMB 

Total basal area -7.33 ± 0.15 12.75 ± 0.25 0.67 -0.67 0.27 

Total covered area -4.18 ± 0.15 11.93 ± 0.25 0.65 0.01 0.27 

Stand volume -6.56 ± 0.19 13.66 ± 0.30 0.61 0.04 0.33 

InterceptMB 

Total basal area -4.05 ± 0.02 1.18 ± 0.01 0.98 0.12 0.07 

Total covered area -1.20 ± 0.02 1.12 ± 0.01 0.98 0.01 0.07 

Stand volume -3.20 ± 0.03 1.29 ± 0.01 0.95 0.01 0.12 

 

5.4 Discussion 

We propose here a novel method to estimate tree-stand metrics from point clouds based on 

equations derived from fractal geometry. Overall, our results reveal that fractal geometry 

parameters (dHB and intercept) tend to be, to some extent, reliable predictors of metrics as well as 

the complexity of point clouds. Since the significance and performance of dMB and the interceptMB 

differ, the below discussion is focused on highlighting each of these in a forestry and ecological 

context, as well as on providing future directions in the application of fractal geometry to forest 

communities. 

 

5.4.1 Relationship of the fractal dimension (dMB) and tree-stand metrics. 

Despite the results suggesting that the dMB tends to present a weak relationship with tree or stand 

metrics, at the tree level it may differentiate the presence of leaves in point clouds, while at the 

stand level it tends to be associated with the number of trees in a given stand. In general, dMB has 

been recognized as a descriptor of the structural complexity of point clouds at the tree or stand 

level (Seidel, 2018; Seidel et al., 2019a, 2019b). Since dense forest stands and leaf-on point clouds 

tend to present high dMB, these could be considered as objects with high structural complexity. 

Here, we did not find evidence that the structural complexity described by dMB is affected by tree 

size or the vertical and horizontal extent of trees as suggested by Seidel, Ehbrecht, Dorji, et al. 

(2019). Herein, we consider that dMB is mainly affected by how trees occupy their 3D space. For 
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example, the presence of leaves in trees produces more scattered point clouds than leaf-off trees; 

increasing the point dispersion in their 3D space and, therefore, their complexity. More scattered 

point clouds, such as leaf-on, may also reduce the self-similarity between voxels at different scales 

explaining the lower values of r2. At the artificial stand level, the random addition of trees to a plot 

increases the point dispersion; therefore its complexity. In natural stands, Seidel, Ehbrecht, et al. 

(2019) described that increases in the complexity related to the number of trees tend to be 

associated with the most complex-structured tree in a given stand. However, other stand features 

not discussed by these authors could also drive the variability of dMB such as the distance between 

trees, canopy closure, or the vertical distribution of vegetation. 

 

 

Figure 5‒6. Relationship between the observed and predicted metrics from equations based on the 

interceptMB at two levels of observation (trees and artificial stands). All the predicted values were 

affected by the level of observation (Table A4‒7). 
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5.4.2 Relationship of the interceptMB derived from fractal geometry and tree-stand metrics. 

The interceptMB derived from fractal geometry is the stronger predictor of tree and stand metrics. 

Although its use is not common in the literature in comparison with dMB, the interceptMB seems to 

vary concomitantly with the size of trees and stands. Likewise, its relationship with tree metrics 

tends to be less affected by the random effect of the databases, suggesting that it is a reliable and 

unbiased parameter that can be used on point clouds processed by different methods. Despite this, 

the presence or absence of leaves may affect the prediction by the interceptMB, and surprisingly, 

our results suggest that predictions of metrics using leaf-on point clouds are stronger than using 

leaf-off point clouds. However, it is expected that less scattered point clouds such as leaf-off will 

lead to better estimations of tree metrics. The latter could be the result of different pre-processing 

methods and the nature of the leaf-off databases leading to weaker estimations (e.g., scanning trees, 

and then manual leaf segmentation on point clouds in CAM databases vs. stand scanning of trees 

without leaves to segment in CAN databases). These potential differences between databases are 

partially observed in the random effect of the models, which tend to be higher on leaf-off point 

clouds than leaf-on. 

On the other hand, based on the high r2 and lower RME, it seems that the interceptMB tends to 

predict stand metrics better when compared with tree metrics. However, the comparison of 

observed and expected metrics seems to differ between these two levels of evaluation. It is expected 

that a high number of iterations of artificial stands may lead to confident estimation of the 

regression parameters, an element that is not present in relationships based on samples trees. 

Despite this, it is important to highlight that the use of artificial stands may lead to a cumulative 

sum of errors in the estimation of metrics when adding trees to a given plot due to the un-natural 

overlap of tree crowns. Therefore, future validation of these method is required using point clouds 

of natural stands. 

 

5.4.3 Future directions of the application of fractal geometry to point clouds. 

The estimation of tree and stand metrics based on fractal geometry equations reveals to be an 

accurate approach able to predict the variability of structures at different scales. This method can 

be applied to predict metrics of irregular surfaces since it does not use geometrical structures to fit 

tree or stand elements (e.g., fitting cylinders on branches). At the tree level, this method could be 

beneficial to predict metrics on trees with buttress or lianas where branches, stems, and buttress 
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roots do not tend to be perfectly cylindrical. At the stand level, on the other hand, this method does 

not require a priori tree segmentation; therefore, it avoids errors and the processing time associated 

with the separation of trees for post-processing. 

Using fractals on point clouds also allows us to understand the structural complexity of how 

trees or stands occupy their 3D-space. This complexity can be further used as an architectural trait 

towards the plant structural economic spectrum (Verbeeck et al., 2019) or as a possible descriptor 

of forest ecosystems. At the ecosystem level, for example, the dMB could be used to characterize 

the level of liana infestation in plots since these tend to reduce the degree of organization of natural 

spaces, which are typically utilized by trees (Sánchez-Azofeifa et al., 2017). Since the accuracy of 

prediction of metrics from fractal geometry equations depends on the number of point clouds 

available, this method will benefit from an increase on the number of tree-stands point clouds 

repositories around the world. Likewise, the accuracy and validation of fractal geometry equations 

could be enhanced using field data (e.g., harvest volume or biomass). With the generation of more 

databases, this method may support processes of calibration and validation of volume and AGB of 

stands, and therefore, help to develop large‐scale biomass maps. 
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CHAPTER 6 

 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

6.1 Summary of key findings 

This dissertation explored new perspectives on the integration of remote technologies that helps 

to detect and quantify differences between lianas and trees at two Tropical Dry Forests. This was 

achieved by using passive (Chapters 2 ‒ 4), and active remote sensing (Chapter 5). The following 

paragraphs present the main results of my chapters as well as their implications. 

The temporal variability of leaf temperature (Tleaf) of lianas and trees using thermography was 

addressed in Chapter 2. This chapter expands previous observations using thermocouples for both 

life forms in a seminal work by Sánchez-Azofeifa et al. (2011) by integrating leaf and ambient 

temperature from different seasons and ENSO years. A key finding of this chapter reveals that 

lianas’ presence on trees did not affect the temperature of exposed tree leaves; however, liana 

leaves tended to be warmer than tree leaves at noon. The findings emphasize that lianas are an 

important biotic factor that can influence canopy temperature, concluding that lianas’ presence or 

absence on trees may have a significant weight on the canopy energy balance, and perhaps, its 

productivity. 

The discrimination of liana and tree leaves using visible-near infrared (VIS-NIR) and longwave 

infrared (LWIR) spectra were assessed and compared in Chapter 3. In this chapter, both spectral 

regions (VIS-NIR and LWIR), four representations of leaf spectra, twenty-one algorithms of 

classification, and two contrasting life forms were compared in the context of machine learning to 

explore the proper practices to discriminate liana and tree leaves. The main finding of this chapter 

suggested that both life forms are more accurately discriminated using LWIR spectra (accuracy 

between 66% and 96%) compared with VIS-NIR spectra (accuracy between 50% and 69%). 

However, such accuracies of discrimination depended on the kind of spectral representation and 

machine learning algorithm. The chapter’s outcomes suggest the possibility to extend the 

discrimination between lianas and trees to the airborne or satellite level that uses LWIR sensors. 
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Chapter 4 addressed the prediction of leaf traits of lianas and trees using Partial Least-Square 

Regression (PLSR) models based on leaf reflectance or wavelet spectra. Findings from this chapter 

indicate that observed/predicted relationships between life forms; however the model performance 

did, mainly in testing datasets. Differences in model performance between life forms seemed to be 

the product of the intraspecific variability of leaf traits within these life forms. The model 

comparisons also demonstrated that wavelet spectra help to overcome current limitations of PLSR 

models based on reflectance spectra, expanding previous observations on the application of wavelet 

spectra to predict traits by Cheng et al. (2014 and 2011) and Ullah et al. (2012). Compared with 

models based on reflectance, the integration of wavelet spectra with PLSR models helped to i) 

reduce the variability and number of optimal components, ii) enhance the spectral bands that drive 

the prediction of leaf traits, and iii) improve the model performance in terms of accuracy (high R2 

and low RMSE) and precision (low standard deviation). This chapter highlights that the variability 

of leaf traits between life forms played an important role in evaluating models of leaf traits. 

Therefore, the intraspecific variability of traits within plant groups, such as these life forms, needs 

to be considered for the mapping of leaf traits. 

The relationship between fractal geometry and tree-stands metrics on point clouds of trees 

derived from Terrestrial Laser Scanning (TLS) was evaluated in Chapter 5. The findings showed 

that the intercept extracted from the voxel-counting method (Bunde and Havlin, 1994) (i.e., the 

relationship between the number of voxels and the inverse of voxel size) is an accurate parameter 

for predicting metrics at the tree or stand level. Likewise, results revealed that the fractal dimension 

is strongly associated with the presence/absence of leaves in the point cloud and the number of 

trees in the stands. Since this method did not depend on predefined cylinder geometries that 

resemble homogeneous trunks or branches, it may contribute to quantifying the volume of lianas 

or buttress roots of trees. 

 

6.2 Future directions for the study of life forms using remote sensing 

As any doctoral dissertation, several questions may result from previous research chapters. This 

section aims to provide future directions for some of these emerging inquiries in the context of the 

dissertation goals. Some of these future directions presented in this section may or may not be 

detailed previously within each research chapter. Likewise, some of these future directions are 

associated with the mechanisms that may help to explain or expand some of the observed findings. 
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6.2.1 Chapter 2: thermography for the study of leaf temperature between life forms 

Based on my findings and the current body of literature, it seems clear that lianas and trees 

present contrasting Tleaf at the canopy. In this regard, future studies should address potential drivers 

that lead to the observed variations as well as their potential impacts on the energy balance at the 

canopy level as well as forest productivity. As mentioned in section 2.4.2, factors such as leaf 

inclination, leaf size, and water evapotranspiration may influence Tleaf. These factors need to be 

measured directly on the leaves; therefore, crane facilities like the one described in this chapter 

could facilitate exploring the variables mentioned above.  

Future studies should also expand Tleaf measurements to diurnal observations and encompass 

other forest types in order to know the potential variability of Tleaf throughout the day-night and 

between environments. For instance, lianas present higher evapotranspiration rates and efficiency 

of water use in comparison with trees (Cai et al., 2009; Chen et al., 2015; De Guzman et al., 2016; 

Zhu and Cao, 2009). Contrary to the observed results, it could be expected that lianas with higher 

evapotranspiration rates, and therefore higher transpiration cooling, present lower temperatures 

compared with trees. As mentioned above, several factors may contribute to the contrasting 

findings in Tleaf. However, based on the chapter observations and the documented strong stomatal 

closure of lianas close to noon (Chen et al., 2017), I consider that these life forms may present 

changes in the Tleaf behavior within a diurnal cycle. In this sense, it is likely that lianas present 

coolest leaves in early morning due to their higher evapotranspiration rates and become warmer at 

noon due to their strong stomatal closure compared with trees. These fluctuations of diurnal Tleaf 

cycles between life forms seem to appear in Sánchez-Azofeifa et al. (2011); however, the authors 

did not discuss these since their focus was to assess the use of wireless sensing networks for 

environmental monitoring. 

 

6.2.3 Chapter 3: LWIR spectra for the study of life forms. 

The comparisons between spectral regions demonstrate the ability of LWIR spectra over VIS-

NIR to accurately classify leaves of lianas and trees in a Tropical Dry Forest. As mentioned in 

section 3.4.3, these results could inspire future studies to detect these life forms using air- or space-

borne technologies. Although the mapping of lianas and trees requires LWIR imagery with high 

spectral contrast and spatial resolution, current sensor capabilities such as the Hyperspectral 
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Thermal Emission Spectrometer (HyTES) may help to explore this. For instance, LWIR spectral 

libraries of lianas and trees, such as those presented in Chapter 2, could be used as a base for 

endmember extraction when the aim is to identify life forms using HyTES. 

Other questions and perspectives not explored in this chapter may arise from the current findings 

and the literature. For instance, Hesketh and Sánchez-Azofeifa (2012) suggest that the accuracy of 

lianas and trees discrimination at shorter wavelengths depends on phenological events. In this 

context, it is not entirely clear how these phenological events influence life forms’ discrimination 

using LWIR spectra. Although Salisbury (1986) suggests that the LWIR leaf spectra of temperate 

species are characterized by lower temporal variability, a recent study reveals that the earlier stages 

of leaf development highly influence the LWIR spectra (Richardson et al., 2020). Findings by 

Richardson et al. (2020) also reveal that slight variations at early stages of leaf development can 

impact how much longwave energy is emitted by leaves at a given temperature (i.e.,leaf emissivity 

(𝜀)); thus, impacting the radiometric Tleaf measurements. Richardson’s findings together with the 

results of this chapter may also imply that lianas and trees differ in their ability to emit longwave 

energy. As such, future studies should explore how phenological events impact the discrimination 

of life forms using LWIR spectra and how differences in longwave reflectance (1 - 𝜀) impact the 

expresion of Tleaf in these life forms. The latter could also be a complement for future directions 

associated with Chapter 2. 

 

6.2.4 Chapter 4: Prediction of leaf traits of plant groups. 

The intraspecific variability of leaf traits of lianas and trees seems to play an important role in 

evaluating models that predict leaf traits. In a broad context, the chapter findings may imply the 

need to consider the differences among plant groups to evaluate leaf spectra’s ability to predict leaf 

traits; especially in studies that deal with contrasting plant groups (e.g., trees vs. grasses). For 

instance, this approach could be considered necessary by initiatives that attempt to create 

multibiome models aimed to predict a set of leaf traits (e.g., Serbin et al. (2019) and Wang et al. 

(2020)). Future studies should also explore whether models based on different leaf traits (e.g., 

chlorophyll, nitrogen, phosphorus, non-structural carbohydrates, etc.) are also susceptible to the 

observed variability of model performance between life forms or plant groups. To scale up the 

observations for the mapping of traits, future studies should explore how the presence of lianas on 
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trees impacts the prediction of canopy traits. For instance, which are potential biases for predicting 

canopy traits in forests infested or not by lianas. 

The integration of summed-wavelet spectra with PLSR models leads to improved prediction of 

leaf traits compared with PLSR models based on reflectance spectra. As mentioned in section 4.4.3, 

questions may remain regarding the number and selection of scales used in the Continuous Wavelet 

Transformation (CWT) in order to create the summed-wavelet spectra (i.e., the spectral input for 

PLSR) to predict other leaf traits. For example, Cheng et al. (2014) and Cheng et al. (2011) suggest 

that different wavelet scales are sensitive to specific spectral features that drive the prediction of 

leaf traits. As mentioned in Appendix A3‒3, this implies that the predictive ability of PLSR models 

to predict a given leaf trait could be impacted by the selection of scales. Therefore, future studies 

should explore the potential effect of the selection and combination of wavelet scales with its 

integration with PLSR models on the prediction of leaf traits. This could be addressed qualitatively 

in other databases by looking to the variability of absorption features at different scales (e.g., using 

correlation scalograms) or quantitative by creating and comparing models with different 

combinations of scales (e.g., such as Appendix A3‒3). In a changing world interested in predicting 

leaf traits for future Earth System models, methods such as presented in Chapter 4 that compare 

different approaches to predict leaf traits may help guide proper routes for mapping leaf traits. 

Therefore, future initiatives should develop benchmarks using different databases, spectral 

domains, and plant groups to address which predictive model could be the most favorable to predict 

leaf traits. 

 

6.2.5 Chapter 5: fractal geometry to quantify life forms and their complexity. 

The ability of fractal geometry equations to accurately predict tree and stand metrics was 

demonstrated in Chapter 5. The method presented here, associated with the intercept of fractal 

geometry, may inspire future studies to quantify metrics on irregular structures such as lianas or 

trees with buttress roots. In the context of liana research, this could be used as the first step in 

characterizing the effect of lianas on metrics designed to quantify tree architecture. For instance, 

on segmented point clouds of lianas and trees, it could be possible to apply the presented fractal 

geometry equations to quickly quantify the volume for both life forms. Likewise, using segmented 

point clouds of tree species infested and non-infested by lianas, it could be possible to estimate the 

fractal dimension (dMB) in order to compare how tree species modify the arrangement of their 
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crowns in the face of mechanical constraints by lianas. On the other hand, the dMB as a descriptor 

of the structural complexity could advance our understanding of how trees or lianas occupy their 

3D space at the individual or plot level. For example, since lianas tend to reduce the degree of 

organization of natural spaces (Sánchez-Azofeifa et al., 2017), the dMB could be used to describe 

the presence or degree of liana infestation in a plot. This may have the potential to be applied not 

just to point clouds derived from TLS, but also to detailed point clouds derived from unmanned 

aerial vehicles or airborne sensors. Furthermore, the structural complexity inferred by the dMB 

could be used as a descriptor of forest ecosystems (e.g., phenology ‒presence/absence of leaves‒) 

or as a plant trait towards the plant structural economic spectrum (Shenkin et al., 2020; Verbeeck 

et al., 2019). 

As mentioned in section 5.4.3, the presented equations rely on the accuracy of estimation of tree 

metrics on point clouds. Therefore, these results could benefit or be improved with field data (e.g., 

harvest volume or biomass). In the near future, this method may support processes of calibration 

and validation of volume and above-ground biomass of trees and stands, especially in this evolving 

field with an increasing number of point clouds available to the public and the development of new 

LiDAR sensors every year. In the absence of a full understanding of the presence and the effect of 

lianas in forest dynamics, future predictions of tropical forest productivity will remain speculative. 
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APPENDICES 

 

Appendix 1. Supporting information for Chapter 2. 

 

Table A1‒1. Number of trees (NT), thermal infrared images collected (TIR), and leaves selected 

(LS) to address the first hypothesis during the wet and dry season in contrasting ENSO years at the 

canopy of Parque Natural Metropolitano, Panama. NL: host trees without lianas; L: host trees with 

lianas. 

ENSO Season Condition 

Species 

A. excelsum A. spraguei C. elastica L. seemannii 

NT TIR LS NT TIR LS NT TIR LS NT TIR LS 

El Niño Wet NL 4 14 64 2 3 15 4 10 54 2 6 30 

El Niño Wet L 4 17 58 2 8 39 4 16 74 2 4 10 

El Niño Dry NL 2 8 40 2 4 20 2 5 25 2 6 30 

El Niño Dry L 2 6 30 2 7 34 2 6 30 2 7 34 

La Niña Wet NL 2 5 25 --- --- --- 2 5 25 2 3 19 

La Niña Wet L 2 6 25 --- --- --- 2 7 35 2 5 16 

La Niña Dry NL 3 9 45 --- --- --- 3 11 54 3 8 45 

La Niña Dry L 3 6 30 --- --- --- 2 7 34 2 5 25 
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Table A1‒2. Number of host trees (HT), thermal infrared images collected (TIR), and leaves 

selected (LS) to address the second hypothesis during the wet and dry season in contrasting ENSO 

years at the canopy of Parque Natural Metropolitano, Panama. 

ENSO Season Leaf type 

Species 

A. excelsum A. spraguei C. elastica L. seemannii 

HT TIR LS NT TIR LS NT TIR LS NT TIR LS 

El Niño Wet Tree 
4 

17 58 
2 

8 39 
4 

16 74 
2 

4 10 

El Niño Wet Liana 25 119 9 45 14 69 5 25 

El Niño Dry Tree 
2 

6 30 
2 

7 34 
2 

6 30 
2 

7 34 

El Niño Dry Liana 7 35 6 29 6 30 7 35 

La Niña Wet Tree 
2 

6 25 --- --- --- 
2 

7 35 
2 

5 19 

La Niña Wet Liana 6 30 --- --- --- 7 35 5 26 

La Niña Dry Tree 
3 

6 30 --- --- --- 
2 

7 34 
2 

5 25 

La Niña Dry Liana 5 25 --- --- --- 7 33 5 25 
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Figure A1‒1. Monthly total precipitation and average monthly air temperature during wet and dry 

seasons in contrasting ENSO years at Parque Natural Metropolitano, Panama. Vertical red lines 

represent the campaigns of data collection. 
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Figure A1‒2. Mean values of temperature (red lines) and relative humidity (blue lines) during the 

days of data collection according to the meteorological station on the crane at Parque Natural 

Metropolitano, Panama. Vertical red bars represent the time of data collection. 
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Appendix 2. Supporting information for Chapter 3. 

 

 

Figure A2‒1. Picture of a liana growing around a tree at the Santa Rosa National Park, Costa Rica. 

 

Tree 

Liana 
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Figure A2‒2. Wavelet spectra at scales 1 to 9 extracted from the continuous wavelet 

transformation applied to the VIS-NIR spectral libraries. Each line represents the wavelet 

transformed averaged of each species. For reference the upper left frame shows the reflectance 

spectra from which the wavelets were derived.  
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Figure A2‒3. Wavelet spectra at scales 1 to 9 extracted from the continuous wavelet 

transformation applied to the LWIR spectral libraries. Each line represents the wavelet transformed 

averaged for each species. For reference the upper left frame shows the reflectance spectra from 

which the wavelets were derived.  
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Figure A2‒4. Cluster of Jacquard similarity of the classifiers used to discriminate liana and tree 

leaves based on the reflectance in the visible-near infrared or longwave infrared reflectance region. 

Data source: http://topepo.github.io/caret/models-clustered-by-tag-similarity.html 

  

http://topepo.github.io/caret/models-clustered-by-tag-similarity.html
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Appendix 3. Supporting information for Chapter 4. 

 

Appendix A3‒1. Optimal combination of summed wavelets for predicting leaf traits. 

 

From the application of the continuous wavelet transformation to reflectance spectra, it is 

possible to isolate scales capturing different spectral features (Rivard et al., 2008). Wavelet scales 

that best describe the spectral features can be summed, and these summed spectra could be used in 

the ensuing models. However, different wavelet scales are sensitive to specific spectral features 

that drive the prediction of leaf traits (Cheng et al., 2014, 2011; Ullah et al., 2012b); therefore, the 

selection of scales to be summed may have an influence on the predictive ability of PLSR models. 

This appendix explores 372 potential combinations of summed wavelets to predict leaf traits. The 

extraction of wavelets was performed following Section 4.2.3. The resulting spectra include the 

potential combination of wavelets using a total of 2, 3, 4, and 5 scales. Using summed wavelet 

spectra of the samples selected for training purposes (Section 4.2.4), PLSR models were built for 

each leaf trait (i.e., LMA, WC, and EWT). The wavelet spectra used in the PLSR encompass the 

spectral range described at the end of Section 4.2.3. Overall, for a given summed wavelet spectra 

and leaf trait, a PLSR model was created to first estimate the optimal number of components 

following Section 4.2.4.1. Once the optimal number of components was estimated, descriptors of 

model performance (R2 and RMSE; Section 4.2.4.3) were computed from the same PLSR model. 

The selection of the optinam summed wavelet combination that best predict the leaf traits was 

based on the model's performance (low RMSE and high R2). Thus, this exploratory analysis reveals 

that the sum of scales 1, 2, 3, 8, and 9 consistently leads to high-performance models for predicting 

the three-leaf traits (Figure A3‒1). This sum of scales was selected as the optimum wavelet spectra 

for the study. 
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Table A3‒1. Liana and tree species, and their measured leaf traits collected at the Santa Rosa 

National Park ‒ Environmental Monitoring Super Site, Costa Rica. Leaf Mass Area (LMA), Water 

Content (WC), and Equivalent Water Thickness (EWT). The values represent the mean and 

standard deviation of 20 leaves. 

Family Species 
Leaf traits 

LMA (g m-2) WC (%) EWT (g m-2) 

Trees 

Apocynaceae Stemmadenia obovate 33.24 ± 3.7 77.99 ± 2.73 119.54 ± 20.51 

Bignoniaceae Crescentia alata 95.03 ± 10.56 68.92 ± 1.44 211.04 ± 24.83 

Burseraceae Bursera simarouba 66.65 ± 6.52 68.79 ± 1.65 146.93 ± 12.8 

Dilleniaceae Curatella Americana 145.73 ± 15.42 55.82 ± 1.92 184.7 ± 24.43 

Euphorbiaceae Jatropha curcas 56.91 ± 13.01 69.03 ± 4.51 125.1 ± 5.95 

Euphorbiaceae Sapium glandulosum 103.27 ± 35.4 57.49 ± 4.45 142.81 ± 53.74 

Fabaceae/Caesalpinoideae Bauhinia ungulate 54.33 ± 7.53 60.53 ± 3.76 84.41 ± 16.24 

Fabaceae/Caesalpinoideae Hymenaea courbaril 56.08 ± 14.32 50.76 ± 3.1 57.49 ± 13.73 

Fabaceae/Papilionoideae Gliricidia sepium 55.29 ± 7.23 74.98 ± 1.76 165.82 ± 19.35 

Fagaceae Quercus oleoides 173.19 ± 24.42 46.71 ± 6.03 152.68 ± 28.48 

Hippocrateaceae Semialarium mexicanum 76.3 ± 19.01 69.23 ± 4.44 168.54 ± 17.42 

Lauraceae Ocotea veraguensis 100.57 ± 7.93 52.44 ± 2.01 110.77 ± 6.64 

Malpighiaceae Byrsonima crassifolia 120.97 ± 18.7 65.49 ± 3.24 228.42 ± 20.59 

Malvaceae Guazuma ulmifolia 72.49 ± 11.71 67.6 ± 5.28 154.78 ± 37.94 

Meliaceae Cedrela odorata 49.39 ± 7.95 72.88 ± 4.13 132.97 ± 13.37 

Meliaceae Trichilia americana 51.12 ± 5.48 78.14 ± 2.36 183.21 ± 14.58 

Nyctaginaceae Pisonia aculeata 37.4 ± 3.7 72.72 ± 1.28 99.67 ± 9.17 

Sapindaceae Cochlospermum vitifolium 73.75 ± 6.73 64.81 ± 2.58 136.56 ± 17.69 

Simaroubaceae Simarouba glauca 147.39 ± 15.41 57.42 ± 3.25 199.76 ± 27.28 

Tiliaceae Luehea speciose 31.92 ± 3.51 68.83 ± 1.87 70.72 ± 9.1 

Verbenaceae Rehdera trinervis 96.5 ± 12.69 69.06 ± 2.59 215.36 ± 21.21 

Lianas 

Apocynaceae Forsteronia sp. 58.85 ± 6.89 67.02 ± 3.22 119.54 ± 9.19 

Apocynaceae Forsteronia spicata 31.86 ± 6.34 73.4 ± 3.99 87.28 ± 4.56 

Bignoniaceae Arrabidaea chica 31.9 ± 4.76 77.14 ± 2.23 107.23 ± 7.44 

Bignoniaceae Cydista aequinoctialis 30.03 ± 4.42 79 ± 3.14 113.52 ± 12.93 

Bignoniaceae Cydista diversifolia 34.67 ± 4.64 69.31 ± 2.19 78.22 ± 8.59 
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Bignoniaceae Paulinia sp. 55.87 ± 6.4 65.55 ± 3.18 106.13 ± 6.59 

Cucurbitaceae Cayaponia racemose 22.58 ± 4.69 86.4 ± 1.61 143.32 ± 26.28 

Dilleniaceae Tetracera volubilis 31.29 ± 8.11 81.26 ± 2.67 135.7 ± 31.59 

Malpighiaceae Heteropterys panamensis 67.91 ± 7.93 63.75 ± 1.81 118.97 ± 7.36 

Malpighiaceae Heteropterys sp. 47.32 ± 7.39 69.16 ± 3.09 105.94 ± 12.8 

Malpighiaceae Hiraea reclinate 74.56 ± 11.61 62.53 ± 2.18 124.07 ± 15.85 

Rhamnaceae Gouania polygama 38.91 ± 9.96 71.14 ± 4.41 94.04 ± 12.01 

Sapindaceae Serjania atrolineata 75.99 ± 10.28 64.32 ± 3.13 136.56 ± 10.81 

Sapindaceae Serjania schiedeana 42.69 ± 7.2 75.31 ± 3.82 130.14 ± 10.39 
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Table A3‒2. Results from the linear mixed models comparing the leaf traits between lianas and 

trees. Leaf Mass area (LMA), Water Content (WC), Equivalent Water Thinness (EWT). Values 

between parentheses represent confidence intervals, and the asterisks next to each value the 

significance of the linear parameters. σ2 describes the variance of the model, τ00 the variance of the 

databases as a random effect, and ICC the interclass correlation coefficients. The conditional 

variance-covariance matrixes of the random effects can be found in Figure A3‒2. 

 Leaf trait (dependent variable) 

 LMA WC EWT 

Intercept 1.63*** 

(1.52 ‒ 1.73) 

1.85*** 

(1.82 ‒ 1.88) 

2.05 ** 

(1.98 – 2.12) 

Life form 0.23** 

(0.09 ‒ 0.36) 

-0.04* 

(-0.08 ‒ 0.01) 

0.09 

(-0.01 – 0.18) 

Random effects 

σ2 0.01 0.00 0.00 

τ00 database 0.04 0.00 0.02 

ICC 0.87 0.86 0.81 

N species 35 35 35 

Observations 700 700 700 

Marginal R2 0.22 0.12 0.08 

Conditional R2 0.90 0.88 0.82 

p-value: * <0.05; ** <0.01, *** <0.001 
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Table A3‒3. Results of the analysis of covariance comparing the effect of the predicted leaf traits 

(log scale), life forms, spectra processing, and their interaction on the observed traits (log scale). 

Leaf Mass area (LMA), Water Content (WC), Equivalent Water Thinness (EWT). The models 

consider the random effect of the samples on the spectral processing. 

Process Factor 
 Leaf trait  

LMA WC EWT 

Training 

Predicted traits (df = 1/414) 10847.80*** 5721.90*** 2430.31*** 

Life form (df = 1/414) 1.48 1.12 0.47 

Predicted * Life form (df = 1/414) 0.37 0.61 2.85 

Predicted * Spectra (df = 1/414) 21.34*** 69.82*** 1.62 

Predicted * Life form * Spectra (df = 1/414) 0.50 0.26 0.12 

Testing 

Predicted traits (df = 1/274) 2427.45*** 1216.27*** 757.219 

Life form (df = 1/274) 3.68 0.17 1.10 

Predicted * Life form (df = 1/274) 0.07 0.04 0.36 

Predicted * Spectra (df = 1/274) 0.20 0.03 5.33* 

Predicted * Life form * Spectra (df = 1/274) 1.57 0.24 1.30 

p-value: *** <0.001 
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Table A3‒4. Statistical comparisons of the parameters from partial least-squares regression 

(PLSR) between lianas and trees from models based on reflectance and wavelet spectra to predict 

three functional traits: Leaf Mass area (LMA), Water Content (WC), Equivalent Water Thinness 

(EWT). Values represent the paired t-test, all of them with 999 of the degree of freedom. 

Process Parameter Spectra 
Trait 

LMA WC EWT 

Training 

R2 
Reflectance 18.35*** -40.76*** -114.73*** 

CWT -2.63** -46.19*** -130.00*** 

Bias 
Reflectance 5.90*** 12.17*** 8.24*** 

CWT 34.36*** -20.08*** 44.43*** 

RMSE 
Reflectance -180.47*** -34.84*** -130.29*** 

CWT -248.46*** -98.38*** -137.6*** 

%RMSE 
Reflectance -55.38*** 39.13*** 75.56*** 

CWT -49.12*** 41.95*** 79.07*** 

Testing 

R2 
Reflectance 58.83*** -3.67*** -22.48*** 

CWT 47.42*** -17.20*** -172.71*** 

Bias 
Reflectance -31.77*** -8.86*** 2.76** 

CWT -14.58*** -62.31*** -34.56*** 

RMSE 
Reflectance -208.53*** -42.15*** -68.92*** 

CWT -315.28*** -43.72*** -108.89*** 

%RMSE 
Reflectance -14.94*** 105.25*** 4.85*** 

CWT 52.89*** 149.36*** 124.12*** 

** p-value < 0.01; *** p-value < 0.001 
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Figure A3‒1. Summed wavelet combinations and their performance to predict three-leaf traits: 

Leaf Mass area (LMA), Water Content (WC), Equivalent Water Thinness (EWT). The panel of 

scales represents the potential wavelet combination in a horizontal plane. The performance of a 

given combination of scales is described by the optimal number of components, the coefficient of 

determination (R2), and the root mean square error (RMSE). The red dashed line represents the 

combination of wavelets used for the main manuscript (scales 1, 2, 3, 8, and 9).  
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Figure A3‒2. Comparison of the leaf traits of lianas and trees used for training and testing 

purposes. Leaf Mass area (LMA), Water Content (WC), Equivalent Water Thinness (EWT).  



 

140 

 

 

Figure A3‒3. Conditional variance-covariance matrixes of the random effect of the species on 

models comparing the leaf traits between lianas and trees. Leaf Mass area (LMA), Water Content 

(WC), Equivalent Water Thinness (EWT). More statistics of the models can be found in Table A3‒

2.  
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Figure A3‒4. PLSR coefficients of the models performed on processed reflectance and continuous 

wavelet transformation (CWT) spectra for the three functional traits: Leaf Mass area (LMA), Water 

Content (WC), Equivalent Water Thinness (EWT). Each line represents the average of 1000 

iterations, while the shade around each line represents the standard deviation.  
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Figure A3‒5. Observed and predicted leaf traits of lianas and trees from partial least-squares 

regression (PLSR) models based on reflectance (a, c, e) and wavelet spectra (b, d, f). Points 

correspond to the training dataset. Leaf Mass area (LMA), Water Content (WC), Equivalent Water 

Thinness (EWT). Each point represents the average of 1000 iterations, while the error bars around 

each point represent the standard deviation. The solid grey lines indicate the 1:1 relationship. The 

solid lines represent the fitted regression, while the dashed lines the 95% prediction intervals. More 

statistics their comparisons can be found in Table A3‒3, respectively.  
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Figure A3‒6. Observed and predicted leaf traits of lianas and trees from partial least-squares 

regression (PLSR) models based on reflectance (a, c, e) and wavelet spectra (b, d, f). Points 

correspond to the training dataset. Leaf Mass area (LMA), Water Content (WC), Equivalent Water 

Thinness (EWT). Each point represents the mean of 1000 iterations, while the error bars around 

each point represent the standard deviation. The solid grey lines indicate the 1:1 relationship. The 

solid lines represent the fitted regression, while the dashed lines the 95% prediction intervals. 

Kernel density distributions are plotted next to each scatter plot. More statistics about their 

comparisons can be found in Table A3‒3.  
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Figure A3‒7. Raincloud plots comparing the performance between life forms of training models 

of partial least-squares regression (PLSR) based on reflectance and continuous wavelet 

transformation (CWT) spectra to predict three functional traits: Leaf Mass area (LMA), Water 

Content (WC), Equivalent Water Thinness (EWT). RMSE is the root mean square error, and 

%RMSE is the RMSE represented by its percentage. Each point represents a model iteration, the 

boxes the first, median, and third quartiles, and the irregular polygons describe the kernel density 

distributions. Dashed lines represent the mean regardless of the life form, while the dotted lines the 

mean trend of change within life forms between the type of spectra. Statistics of their comparison 

can be found in Table A3‒4.  
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Figure A3‒8. Residuals of the predicted leaf traits of lianas and trees from partial least-squares 

regression (PLSR) models based on reflectance (a, b, c) and wavelet spectra (d, e, f). Leaf Mass 

area (LMA), Water Content (WC), Equivalent Water Thinness (EWT). Points correspond to the 

training dataset. Each point represents the mean of 1000 iterations, while the error bars around each 

point represent the standard deviation.   
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Figure A3‒9. Residuals of the predicted leaf traits of lianas and trees from partial least-squares 

regression (PLSR) models based on reflectance (a, b, c) and wavelet spectra (d, e, f). Leaf Mass 

area (LMA), Water Content (WC), Equivalent Water Thinness (EWT). Points correspond to the 

testing dataset. Each point represents the mean of 1000 iterations, while the error bars around each 

point represent the standard deviation.  
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Appendix 4. Supporting information for Chapter 5. 

 

Appendix A4‒1 Data collection and pre-processing for Santa Rosa National Park ‒ Environmental 

Monitoring Supersite and University of Alberta North Campus databases. 

 

A4‒1.1 Sites description 

A4‒1.1.2 Santa Rosa National Park ‒ Environmental Monitoring Supersite database 

This database was collected at the Santa Rosa National Park ‒ Environmental Monitoring 

Supersite, Costa Rica (10°48″ N, 85°36″ W) (CR), where trees were scanned during the wet-season 

of 2017 between May and July. This site is located northwest of Costa Rica and presents one of the 

last remnants of Tropical Dry Forest in the country (Sánchez-Azofeifa et al., 2005). The wet season 

extends from May to late November while a dry-season, during which most of the trees lose their 

leaves, encompasses the remaining months (Kalacska et al., 2004). The air temperature of the site 

varies from 26 °C in the wet-season to 29 °C in the dry season, and the region presents a mean 

annual precipitation of 1720 mm (Kalacska et al., 2004). In general, SRNP is composed of a mosaic 

of forest patches in different successional stages of natural regeneration and with different land-

use histories associated with anthropogenic fires, deforestation, and land clearing for pasture and 

agriculture (Arroyo-Mora et al., 2005a; Calvo-Alvarado et al., 2009; Sánchez-Azofeifa et al., 

2017). In this park, it is possible to find 96 species of trees of different life history (Hilje et al., 

2015) where the abundance and the height canopy species depends on the successional stage of the 

forest patches (Hilje et al., 2015; Li et al., 2017). 

Nineteen trees of 13 species in 9 families were scanned (Table A4‒1). The selection of trees 

was based on the degree of isolation for a subsequent quick segmentation and their full-sun 

exposure. Some of the species selected present a high cultural (i.e., E. cyclocarpum, Q. oleoides), 

agronomic (i.e., P. guajava), and forestry (e.g., C. odorata, S. macrophylla) importance. 

 

A4‒1.1.3 University of Alberta North Campus databases 

This database was collected at the University of Alberta North Campus (53°31″ N, 113°31″ W) 

located in the city of Edmonton, Canada (CAN); the most northerly city in North America. This 

site presents a continental climate with a relatively low annual precipitation of 480 mm. The 

average minimum temperature during winter is close to -14.8 °C, while during summer to 23.1 °C. 
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On-campus, 18 trees of Ulmus americana located in two lots of 9 trees were scanned in October of 

2017. The selection of U. americana trees was based on the degree of isolation for a subsequent 

quick segmentation and the absence of previous pruning. 

 

A4‒1.2 Tree scanning and processing 

The 3D scanning for these databases was performed using a Riegl VZ-400i (RIEGL, Horn, 

Austria), which is a time-of-flight LiDAR sensor with multiple returns. This sensor has a beam 

divergence of 0.35 mrad or (5 mm accuracy at 100 m range) with a scanning frequency of 1200 

kHz, allowing to reach 500,000 measurements s-1. The Riegl VZ-400i was mounted to a lightweight 

carbon fiber tripod, which hosted an external Silver-Nikel 15V battery allowing for scanning 

multiple trees in a single day.  

The CR scanning of trees was performed following Wilkes et al., (2017) recommendations. 

Specifically, the trees were scanned in a radial pattern at cardinal coordinates approximately 5 – 

15m away from the target tree, depending on its height. This scanning design minimizes the tree 

occlusion, creates overlapping fields of view between scan positions, and allows the full 3D 

rendering of trees. Around each target tree, six cylinder targets were placed on 2 m poles outside 

the bounds of the scan positions to act as retro-reflective targets for future scan co-registration. 

Likewise, an additional 5 cm circular targets were placed within the bounds of the scan position to 

achieve a fine-registration of scan positions. On the other hand, the CAN scanning was set up 

following a 30 x 50 m plot pattern in the two lots of trees. Six cylinder targets were placed on 2 m 

poles outside the bounds of the plot as retro-reflective targets for future scan co-registration. On 

each lot, 9 to 12 scan positions were used to cover the distribution of the trees. The scan was 

performed using the scanner in a horizontal and vertical position to get a full hemispherical view 

of the tree canopy. 

For each scan project (i.e., tree or plot), a coarse co-registration, fine registration, and filtering 

were performed using RIEGL’s RiSCAN PRO® software. Specifically, the coarse co-registration 

was conducted using the retro-reflective targets distributed throughout the plot, where scan 

positions would coordinate and orient to one another using these common tie points. Afterward, a 

fine registration was performed using a multi-station adjustment approach. This approach was 

conducted to correct errors in translation and rotation of scan positions modifying the orientation 

and position of each scan relative to a locked or anchored scan. Using this adjustment, the accuracy 
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of registration between scans was lower than ~ 0.005 m. Finally, creating a common coordinate 

system for all the scan positions, a transformation matrix was applied to each scan to create point 

clouds. On the resulting point clouds, a filter was applied to remove the backscattered pulses. In 

general, backscattered pulses can be considered “noisy” due to these points tend to have a different 

pulse shape than that of the outgoing pulse (Pfennigbauer and Ullrich, 2010). A change in the pulse 

shape typically occurs when the outgoing pulse hits the edge of an object, such as a leaf or a piece 

of bark, and only a portion of the outgoing pulse reflected (Vaccari, et al., 2013). The filter was 

applied to that reflected pulse that tends to be different in ±2 standard deviation of the outgoing 

pulse. Then, the resulting point clouds were manually segmented, removing all the points that do 

not belong to the target trees. On the remaining points, a statistical outlier removal (SOR) filter 

was applied using a k-nearest neighbor of 10 and a standard deviation of 2. After the application of 

the filter, point clouds were subsample using a resolution of 0.01 m. The manual segmentation, the 

application of the SOR, and the resampling were performed on CloudCompare (2017). 
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Appendix A4‒2. The impact of the point cloud resolution on the estimations of fractal geometry. 

 

We evaluate the effect of the point cloud resolution on the estimations of fractal geometry using 

the point clouds of the CAN database. For this goal, after the application of the SOR filter described 

in Appendix A4‒1 we subsample the point clouds using two methods: spatial grid and random 

point removal. For the first methods, three distances of the spatial grid were used: i) 0.001 m, ii) 

0.005 m, and iii) 0.01 m (current resolution used in the manuscript). For the second method, 50 and 

15% of the points were removed based on the total number of points (100%). Between both 

methods, points clouds using 0.001 m of resolution are equivalent to point clouds with 100% of 

points. Using these subsampling methods, the resulting point density of the clouds is reduced each 

step (Figure A4‒1a, b). On these point clouds, we then apply the voxel-counting method described 

in section 2.3 to derive the potential effect of the point density on dMB, the interceptMB, and r2. 

Our methods reveal that dMB and r2 are partially affected by the point density, where a high 

reduction in the point density leads to reductions in dMB and r2 (Figure A4‒1). Despite this, in both 

subsampling methods the interceptMB tends to remain almost invariant to the changes in point 

density. Therefore, reductions in the point density seem to affect the way of how points are 

distributed in the space, but not how these could coverage or describe a given surface. 
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Table A4‒1. The number of samples (n) and tree species of the point clouds used grouped by 

database and family. The acronyms of the databases are described in Table 6‒1. 

Database Family Species n 

CAN Ulmaceae Ulmus Americana 15 

CR 

Bignoniaceae Crescentia alata 2 

Dilleniaceae Curatella americana 1 

Fabaceae Ateleia herbert-smithii 2 

 Enterolobium cyclocarpum 1 

 Gliricidia sepium 1 

 Quercus oleoides 1 

Meliaceae Cedrela odorata 2 

 Swietenia macrophylla 2 

 Trichilia Americana 1 

Moraceae Ficus sp. 1 

Myrtaceae Psidium guajava 2 

Simaroubaceae Simarouba  glauca 1 

Sterculiaceae Guazuma ulmifolia 2 

GUY 

Fabaceae Eperua falcata 1 

 Eperua grandiflora 7 

 Ormosia coutinhoi 1 

 Pithecellobium jupunba 1 

CAM 

Annonaceae Annickia chlorantha 3 

Combretaceae Terminalia superba 9 

Euphorbiaceae Macaranga barteri 2 

Fabaceae Baphia leptobotrys 3 

 Cylicodiscus gabunensis 5 

 Erythrophleum suaveolens 5 

 Pentaclethra macrophylla 1 

 Pterocarpus soyauxii 6 

Lecythidaceae Petersianthus macrocarpus 6 

Malvaceae Duboscia macrocarpa 2 

 Eribroma oblongum 4 

 Mansonia altissima 3 

 Triplochiton scleroxylon 6 

Meliaceae Entandrophragma cylindricum 2 

Myristicaceae Pycnanthus angolensis 4 

IND 

Chrysobalanaceae Parastemon urophyllus 1 

Dipterocarpaceae Shorea sp. 2 

 Shorea teysmanniana 1 

Ebenaceae Diospyros evena 1 

Hypericaceae Cratoxylum glaucum 1 

Meliaceae Aglaia rubiginosa 1 
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Tetrameristaceae Tetramerista glabra 3 

PER 

Burseraceae Dacryodes peruviana 1 

Combretaceae Buchenavia macrophylla 1 

Elaeocarpaceae Sloanea eichleri 1 

Fabaceae Pseudopiptadenia suaveolens 1 

Lauraceae Nectandra longifolia 1 

Lecythidaceae Couratari macrocarpa 2 

Malvaceae Pterygota amazonica 2 

AUS 

Myrtaceae Eucalyptus leucoxylon 

65 Eucalyptus microcarpa 

Eucalyptus tricarpa 
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Table A4‒2. Results from the linear mixed models comparing the effect of the presence-absence 

of leaves on the estimations of fractal geometry parameters. Values between parentheses represent 

confidence intervals, and the asterisks next to each value the significance of the linear parameters. 

σ2 describes the variance of the model, τ00 the variance of the databases as a random effect, and 

ICC the interclass correlation coefficients. The conditional variance-covariance matrixes of the 

random effects can be found in Figure A4‒2. 

 Fractal geometry parameter (dependent variable) 

 dMB InterceptMB r2
MB 

Constant -0.56*** 

(-0.72 ‒ -0.40) 

2.26*** 

(1.59 ‒ 2.93) 

-0.01 

(-0.02 – 0.00) 

Leaf on/off 0.03 

(-0.16 ‒ 0.22) 

0.70 

(-0.11 ‒ 1.50) 

-0.01 

(-0.02 – 0.00) 

Random effects 

σ2 0.00 0.62 0.00 

τ00 database 0.01 0.21 0.00 

ICC 0.85 0.25 0.80 

N databases 7 7 7 

Observations 189 189 189 

Marginal R2 0.014 0.12 0.289 

Conditional R2 0.85 0.35 0.85 

     p-value: * <0.05; ** <0.01, *** <0.001 
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Table A4‒3. Mean and standard deviation of the parameters extracted from the fractal geometry 

using the voxel counting method. Acronyms of the databases are described in Table 6‒1. dMB 

represents the fractal dimension, and r2 the coefficient of determination. 

Database dMB InterceptMB r2 (x10-2) 

CAN 0.65 ± 0.01 2.47 ± 0.41 98.55 ± 0.17 

CR 0.70 ± 0.02 2.65 ± 0.48 99.08 ± 0.30 

GUY 0.60 ± 0.02 2.99 ± 0.09 97.36 ± 0.24 

CAM 0.53 ± 0.03 2.34 ± 0.44 99.65 ± 0.35 

IND 0.58 ± 0.02  2.64 ± 0.24 98.35 ± 0.55 

PER 0.55 ± 0.01 2.99 ± 0.17 96.41 ± 1.01 

AUS 0.60 ± 0.02 2.44 ± 0.32 97.63 ± 0.58 

Leaf-on 0.61 ± 0.05 2.58 ± 0.38  97.82 ± 0.89 

Leaf-off 0.55 ± 0.06 2.37 ± 0.44 99.43 ± 0.55 

All databases 0.59 ± 0.06 2.50 ± 0.42 98.47 ± 1.11 
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Table A4‒4. Linear mixed model statistics of the relationship between tree metrics with fractal geometry parameters, the presence-

absence of leaves, and their interaction. Values between parentheses represent confidence intervals, and the asterisks next to each value 

the significance of the linear parameters. σ2 describes the variance of the model, τ00 the variance of the databases as a random effect, and 

ICC the interclass correlation coefficients. The conditional variance-covariance matrixes of the random effects can be found in Figure 

A4‒3. 

 dMB InterceptMB 

Predictors H DBH Crown area QSM volume H DBH Crown area QSM volume 

Intercept -0.93* 

(-1.80 ‒ -0.06) 

-2.47*** 

(-3.79 ‒ -1.16) 

-7.74*** 

(-10.03 ‒ -5.45) 

-10.51*** 

(-13.84 ‒ -7.18) 

0.33 

(0.00 ‒ 0.66) 

-0.04 

(-0.21 ‒ 0.12) 

-1.26*** 

(-1.47 ‒ -1.04) 

-3.92*** 

(-4.31 ‒ -3.53) 

dMB or 

InterceptMB 

3.71*** 

(2.50 ‒ 4.93) 

6.89*** 

(4.89 ‒ 8.88) 

16.34*** 

(12.94 ‒ 19.73) 

18.35*** 

(13.39 ‒ 23.30) 

0.39*** 

(0.35 ‒ 0.43) 

0.68*** 

(0.63 ‒ 0.73) 

1.31*** 

(1.23 ‒ 1.39) 

1.77*** 

(1.67 ‒ 1.86) 

Leaf on/off 2.14*** 

(1.00 ‒ 3.28) 

2.15* 

(0.41 ‒ 3.89) 

5.63*** 

(2.61 ‒ 8.65) 

5.66* 

(1.27 ‒ 10.06) 

0.24 

(-0.16 ‒ 0.64) 

0.15 

(-0.09 ‒ 0.38) 

0.21 

(-0.12 ‒ 0.54) 

0.25 

(-0.27 ‒ 0.77) 

Interaction -3.44*** 

(-5.06 ‒ -1.81) 

-3.46* 

(-6.14 ‒ -0.78) 

-9.39*** 

(-13.95 ‒ -4.83) 

-9.19** 

(-15.85 ‒ -2.54) 

-0.09*** 

(-0.15 ‒ -0.04) 

-0.08* 

(-0.15 ‒ -0.01) 

-0.17** 

(-0.29 ‒ -0.05) 

-0.17* 

(-0.32 ‒ -0.03) 

Random effects      

σ2 0.02 0.05 0.15 0.31 0.01 0.01 0.02 0.03 

τ00 database 0.13 0.17 0.63 1.31 0.05 0.01 0.00 0.05 

ICC 0.88 0.77 0.81 0.81 0.91 0.39 0.14 0.60 

N database 7 7 7 7 7 7 7 7 

Observations 189 189 189 189 189 189 189 189 

Marginal R2 0.18 0.36 0.43 0.34 0.27 0.82 0.90 0.85 

Conditional R2 0.90 0.85 0.89 0.87 0.93 0.89 0.91 0.84 

   p-value: * <0.05; ** <0.01, *** <0.001 
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Table A4‒5. Linear mixed model statistics of the relationship between tree metrics with the fractal dimension (dMB), the presence-

absence of leaves, and their interaction. Values between parentheses represent confidence intervals, and the asterisks next to each value 

the significance of the linear parameters. σ2 describes the variance of the model, τ00 the variance of the databases as a random effect, and 

ICC the interclass correlation coefficients. The conditional variance-covariance matrixes of the databases can be found in Figure A4‒4. 

 Leaf-off Leaf-on 

Predictors H DBH Crown area QSM volume H DBH Crown area QSM volume 

Intercept -0.99 

(-2.25 ‒ 0.27) 

-2.60** 

(-4.36 ‒ -0.83) 

-7.90** 

(-10.89 ‒ -4.91) 

-10.75** 

(-15.16 ‒ -6.34) 

1.26*** 

(0.66 ‒ 1.86) 

-0.25 

(-1.21 ‒ 0.71) 

-2.03* 

(-3.74 ‒ -0.31) 

-4.73*** 

(-7.19 ‒ -2.27) 

dMB 3.81*** 

(2.36 ‒ 5.26) 

7.09*** 

(4.64 ‒ 9.54) 

16.60*** 

(12.57 ‒ 20.64) 

18.75*** 

(12.77 ‒ 24.72) 

0.19 

(-0.74 ‒ 1.13) 

3.31*** 

(1.78 ‒ 4.84) 

6.81*** 

(4.11 ‒ 9.50) 

8.96*** 

(5.09 ‒ 12.81) 

Random effects      

σ2 0.03 0.07 0.19 0.42 0.01 0.04 0.11 0.23 

τ00 database 0.44 0.53 1.70 3.64 0.05 0.08 0.36 0.74 

ICC 0.94 0.88 0.90 0.90 0.80 0.69 0.76 0.76 

N database 2 2 2 2 5 5 5 5 

Observations 76 76 76 76 113 113 113 113 

Marginal R2 0.09 0.21 0.32 0.21 0.01 0.17 0.18 0.16 

Conditional R2 0.95 0.91 0.93 0.92 0.80 0.74 0.81 0.80 

             p-value: * <0.05; ** <0.01, *** <0.001
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Table A4‒6. Linear mixed model statistics of the relationship between tree metrics with the intercept of fractal geometry (interceptMB), 

the presence-absence of leaves, and their interaction. Values between parentheses represent confidence intervals, and the asterisks next 

to each value the significance of the linear parameters. σ2 describes the variance of the models, τ00 the variance of the databases as a 

random effect, and ICC the interclass correlation coefficients. The conditional variance-covariance matrixes of the databases can be 

found in Figure A4‒4. 

 Leaf-off Leaf-on 

Predictors H DBH Crown area QSM volume H DBH Crown area QSM volume 

Intercept 
0.33 

(-0.18 ‒ 0.83) 

-0.05 

(-0.31 ‒ 0.21) 

-1.27*** 

(-1.57 ‒ -0.98) 

-3.92** 

(-4.54 ‒ -3.31) 

0.57*** 

(0.38 ‒ 0.76) 

0.10 

(-0.02 ‒ -0.22) 

-1.00*** 

(-1.16 ‒ -0.84) 

-3.67*** 

(-3.91 ‒ -3.43) 

InterceptMB 
0.39*** 

(0.35 ‒ 0.43) 

0.68*** 

(0.62 ‒ 0.75) 

1.32*** 

(1.20 ‒ 1.43) 

1.77*** 

(1.64 ‒ 1.89) 

0.30 *** 

(0.26 ‒ 0.33) 

0.60*** 

(0.56 ‒ 0.65) 

1.13*** 

(1.08 ‒ 1.18) 

1.59*** 

(1.52 ‒ 1.66) 

Random effects      

σ2 0.01 0.01 0.05 0.06 0.00 0.01 0.01 0.02 

τ00 database 0.13 0.02 0.00 0.15 0.03 0.00 0.01 0.03 

ICC 0.95 0.61 0.04 0.71 0.88 0.20 0.46 0.62 

N database 2 2 2 2 5 5 5 5 

Observations 76 76 76 76 113 113 113 113 

Marginal R2 0.18 0.70 0.87 0.74 0.26 0.89 0.83 0.90 

Conditional R2 0.96 0.88 0.88 0.93 0.91 0.91 0.96 0.96 

                    p-value: * <0.05; ** <0.01, *** <0.001 
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Table A4‒7. Results of the analysis of covariance comparing the effect of the predicted tree 

metrics, the data type (tree or stand), and their interaction of the observed tree metrics. 

Factors 
Observed values 

Basal area Covered area Volume 

 F-ratio p-value F-ratio p-value F-ratio p-value 

Predicted value 41617.77 <0.001 54263.13 <0.001 21605.44 <0.001 

Tree / Stand 0.17 0.68 15.16 <0.001 39.20 <0.001 

Interaction 4.40 0.04 10.41 0.002 13.08 <0.001 

 

  



 

160 

 

 

Figure A4‒1. Effect of the subsampling methods (spatial grid and random point removal) on the 

point density of point clouds and their estimation of fractal geometry parameters. The procedure to 

create this figure is described in Appendix A4‒2. 
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Figure A4‒2. Conditional variance-covariance matrixes of the random effect of the databases on 

models comparing the effect of the presence/absence of leaves on fractal geometry parameters. The 

error bars represent confidence intervals. More statistics of the models can be found in Table A4‒

3. 
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Figure A4‒3. Conditional variance-covariance matrixes of the random effect of the databases on 

models that predict tree metrics using fractal geometry parameters (dMB and InterceptMB). The error 

bars represent confidence intervals. Tree height (H), diameter at the breast height (DBH), crown 

area (CA), and QSM volume (V). Statistics of the models can be found in Table A4‒4. 
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Figure A4‒4. Conditional variance-covariance matrixes of the random effect (databases) of linear 

mixed models that predict tree metrics using fractal geometry parameters (dMB and InterceptMB) on 

tree point clouds with and without leaves. Colors denote different models. The error bars represent 

confidence intervals. Tree height (H), diameter at the breast height (DBH), crown area (CA), and 

QSM volume (V). More statistics of the models can be found in Table A4‒5 and A4‒6. 

 


