
Mixed Low-bit Quantization for Model Compression with Layer
Importance and Gradient Estimations

by

Hongyang Liu

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science
University of Alberta

© Hongyang Liu, 2021

Abstract

Deep neural networks (DNNs) have been widely used in the modern world in recent

years. However, due to the substantial memory consumption and high computational

power use of DNNs, deploying them on devices with limited resources is challeng-

ing. Model compression methods can provide us with a remedy here. Among those

techniques, neural network quantization has achieved a high compression rate using

low bit-width representation of weights and activations while maintaining the ac-

curacy of the high-precision original network. However, mixed precision (per-layer

bit-width precision) quantization requires careful tuning to maintain accuracy while

achieving further compression and higher granularity than fixed precision quantiza-

tion. In this thesis, We propose an accuracy-aware criterion to quantify the layer’s

importance rank. Our method applies imprinting per layer, which acts as a proxy

module for accuracy estimation in an efficient way. We rank the layers based on the

accuracy gain from previous modules and iteratively quantize those with less accuracy

gain. Previous mixed-precision methods either rely on expensive search techniques

such as reinforcement learning (RL) or end-to-end optimization with a lack of in-

terpretation to the quantization configuration scheme. Our method is a one-shot,

efficient, accuracy-aware information estimation and thus draws better interpretabil-

ity to the selected bit-width configuration. We have also pointed out the problem of

the Straight-Through Estimator (STE), which is commonly used for gradients esti-

mation in the quantization field. We’ve discussed some ways to address the problem

of using STE.

ii

Preface

This thesis is an original work by ’Hongyang Liu’. Parts of the thesis have been

published as Hongyang Liu, Sara Elkerdawy, Nilanjan Ray, Mostafa Elhoushi, ”Layer

Importance Estimation With Imprinting for Neural Network Quantization”, in Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR) Workshops, 2021, pp. 2408-2417. [1] All works are original.

iii

”Thus, when Heaven is about to confer a great office on any man, it first exercises

his mind with suffering, and his sinews and bones with toil.”

- Mencius

iv

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Nilanjan Ray for his

guidance. I very much appreciate the opportunity he gave me to explore the model

compression field. It would never be possible for me to take this work to complete

without his support and encouragement during my hardest time.

I’m also grateful to Dr. Mostafa Elhoushi from Huawei and Sara Elkerdawy from

our vision and robotics lab. Their vision and innovative thoughts gave me directions

and help me explore the quantization field for model compression. It would take me

much more time to find a clear direction without their help.

Finally, I would also like to thank all individuals who work in the Vision and

Robotics Research Lab for helping me finish my thesis.

v

Table of Contents

1 Introduction 1

1.1 Motivation and Background . 1

1.1.1 Compact Architecture Design 2

1.1.2 Knowledge Distillation . 3

1.1.3 Pruning . 5

1.1.4 Quantization . 8

1.2 Thesis Scope . 11

1.3 Thesis Contributions . 11

1.4 Thesis Outline . 12

2 Related Works and Mixed Precision Quantization 13

2.1 Preliminary . 13

2.2 Different Quantization Levels . 14

2.2.1 Uniform Quantization . 14

2.2.2 Non-uniform Quantization . 18

2.3 Imprinting . 21

2.4 Layer Importance Estimation For Mixed Precision Quantization . . . 23

2.4.1 Mixed precision with APoT 24

2.4.2 The Bit Selection Algorithm 24

3 Experiments for Mixed Precision Quantization 27

3.1 Why Mixed Precision? . 27

vi

3.2 Hyper-parameters in The Bit Selection Algorithm 28

3.3 Full-precision vs. Quantized weights 29

3.4 Other Importance Estimation Metrics 31

3.4.1 Min-variance vs. Max-variance 31

3.4.2 One-shot Selection Method with Imprinting 31

3.5 Generalization . 33

3.5.1 Different models . 35

3.5.2 Larger Dataset . 36

3.5.3 Different quantization method 36

4 Gradients Estimation for Quantization 39

4.1 Different Gradient Estimation Methods 39

4.1.1 Straight Through Estimator 39

4.1.2 Other Estimation methods . 40

4.2 Experiments for Gradients Estimations for Quantization 42

4.2.1 Using full-precision vs. quantized weights 42

5 Conclusions, Recommendations, & Future Work 45

5.1 Mixed Precision Quantization . 45

5.1.1 Conclusions . 45

5.1.2 Future Work . 45

5.2 Gradients Estimation Methods . 46

5.2.1 Conclusions . 46

5.2.2 Future Work . 46

References 48

Appendix A: More Detailed Results for Mixed Precision Quantization 53

vii

List of Tables

2.1 Comparison of top-1 accuracy between DoReFa and PACT. Weights

are quantized with DoReFa scheme, whereas activations are quantized

with PACT scheme . 16

2.2 Activation/weight bitlengths and achieved accuracy of aggressive quan-

tization and different strength reguralizers on CIFAR10 for non-integer

and integer bitlengths. 18

2.3 INQ[50] generates extremely low-precision (4-bit and 3-bit) models

with improved or very similar accuracy compared with the full-precision

ResNet-18 model on ImageNet. 20

2.4 Results of APoT compared to other methods with ResNet18 on Ima-

geNet. 22

3.1 Results for quantizing layers randomly. (a) was run with ResNet20 on

CIFAR-10 and (b) was run with ResNet56 on CIFAR-10. ”AVG Bits”

is the average bit-length of convlutional layers and ”Top-1” is the top-1

accuracy reached with that specific bit-length configuration. 28

3.2 Results for using average norm as the importance estimation for quan-

tization.The model used is ResNet20. ’Size (MB)’ here refers to the

model size. Table (a) is the baseline with APoT method. Table (b)

is the results using full-precision weights and (c) is the results using

quantized weights. 30

viii

3.3 Results for using the variance as the importance estimation for quan-

tization.The model used is ResNet20. ’Size (MB)’ here refers to the

model size. Table (a) is using min-variance to find the layer to be fur-

ther quantized. Table (b) is the results using the max-variance of the

weights as the importance of the layer. 32

3.4 Different bit selection criteria with ResNet-20 on CIFAR-10. The quan-

tization method used is APoT[51]. ”norm”, ”min variance” and ”max -

variance” are the average statistics of full precision weights, whereas

”qt norm” is the average norm of quantized weights.”Epochs” here

means number of epochs needed to find the target configuration and

fine-tune to the best accuracy. 34

3.5 Comparing reults by applying our method (imprinting) on different

models. Our method here refers to using imprinting as the metric for

measuring the layer importance. (a) is using CIFAR10 as the dataset

and (b) is using CIFAR100 as the dataset. 35

3.6 Results for ResNet18 on Imagenet. We compared our results with the

fixed-precision methods PACT[43] and APoT[51], as well as mixed-

precision method BitPruning[42]. 36

3.7 Comparing different quantization methods with ResNet20 on CIFAR-10 38

4.1 Top-1 accuracy on CIFAR-100. Comparison of QuantNet with the

existing methods on ResNet-56 and ResNet-110 41

4.2 Accuracy of different comparing methods on the ImageNet validation

set. 42

4.3 Results for using full-precision weights in backward pass. ′APoT (newgradients)′

means applying the method with APoT quantization. ′Uniform(newgradients)′

means applying the method with Uniform quantization 43

ix

List of Figures

1.1 An example of depthwise separable convolution 3

1.2 An example process of a typical knowledge distillation mentioned by

Hinton [10] . 6

2.1 Validation Error over Number of Epochs of Relu Activation Function

with and without clipping and quantization for ResNet20 on CIFAR10. 16

2.2 An illustration of sensitivity computation for ResNet18 on ImageNet.

Ω8(4) means the sensitivity (i.e. the KL divergence) of the 8-th layer

when quantized to 4-bit. 19

2.3 Density of weights in ResNet-18. 20

2.4 A example of quantization levels of unsigned data at 3 and 4 bit (α=1). 22

2.5 Layer-wise accuracy, rounded for better visualization, using imprinting

for VGG19 on CIFAR100. GT shows the actual accuracy of the full

model. 23

2.6 Pipeline illustrating accuracy approximation by imprinting. An em-

bedding Ei is sampled from input feature maps Fi. Imprinting is then

applied on the embedding to estimate the weight matrix W . Accuracy

per layer is then calculated by a simple dot product between embedding

and imprinted weights. 25

3.1 Accuracy vs. Average Bit Precision with different N. N = 1, 2 and 4

for series R1, R2 and R4 respectively. 29

x

3.2 Accuracy approximation using imprinting. The model used is ResNet20

on CIFAR-10 . 33

4.1 Pipeline of QuantNet [57] for binarizing neural networks. The solid

lines are the forward pass and the dashed blue lines are the backward

pass. The dashed red lines are the gradients flow from the meta regu-

larization. 40

4.2 A overview of the method proposed in [58] Blue color represents low-

precision operations and pink color represents full-precision operations. 41

4.3 Histogram of full-precision weights (left) and quantized weights(right)

for the 1st and 16th layer in ResNet20. (a) and (b) are when the bit

precision is 4. (c) and (d) are when the bit precision is 3. (e) and (f)

are when the bit precision is 2. 44

A.1 The final big-length configuration for our ResNet20 models trained on

CIFAR-10 . 54

A.2 Evolution of layer ranking in iterative imprinting. The model used is

ResNet20 on CIFAR-10 dataset. 54

A.3 Evolution of layer ranking in iterative imprinting. We added a fine-

tuning of 8 epochs between interations compared to Figure A.2. The

model used is ResNet20 on CIFAR-10 dataset. 55

xi

Chapter 1

Introduction

In this section, we introduce the background of the model compression field and

the need for quantization of neural networks as well as the problems existing in the

quantization field. Then, we outline the structure of this thesis.

1.1 Motivation and Background

Nowadays, with the fast developments of deep learning, artificial neural networks are

widely used to solve many complex problems and tasks, such as image classification,

image segmentation, speech recognition, machine translation, and so on. However,

these developments came at a cost. In order to boost the performance of neural

networks, researchers seek to develop deeper and more complex models. The train-

ing and deploying of such deeper models require significant amount of storage and

computation resources. On the other hand, as resource-constrained edge devices such

as mobile phones and tablets are widely used worldwide, the need to deploy highly

efficient artificial neural networks with a low resource consumption is increasing.

To reduce the storage and computation cost of neural networks, many works have

been proposed in the model compression and acceleration field. Some of them try

to design lightweight footprint architectures. Some find ways to modify the existing

successful architectures. In this thesis, we summarize most of these methods into

four categories: (i)Compact Architecture Design, (ii) Knowledge Distillation, (iii)

1

Pruning, and (iv) Quantization.

1.1.1 Compact Architecture Design

Compact Architecture Design refers to architectures that are designed specifically for

edge devices and the methods that create compact network architectures based on

certain constraints.

SqueezeNet [2] introduced by Iandola, MobileNetV1-V3 [3–5] introduced by Google

and ShuffleNetV1-V2 [6, 7] are some of the state of the art compact neural network

designs. The most common idea of these networks is to use a smaller convolution

filters (1x1, 3x3) instead of larger ones (5x5).

SqueezeNet consists of multiple Fire Modules, convectional layers, pooling layers,

and fully connected layers. The squeeze layers of the Fire Module use a 1x1 filter

instead of 3x3 and the expanded layers of the Fire Module also reduce the usage of

3x3 convolution filters. This model achieves a similar accuracy level as AlexNet [8],

while the model size is compressed to 50 times as small as the original one.

MobileNetV1 uses depthwise separable convolutions to replace the original convolu-

tion. The computation of such convolution is a combination of depth-wise convolution

and point-wise convolution. For depth-wise convolutions, the number of filters is the

same as that of the input channels and each filter only needs to take care of one chan-

nel. These filters are usually 3 x 3. Then, the resulting feature maps are combined

and passed into the point-wise convolution which is similar to the regular convolutions

but only uses 1x1 filters. The whole process of the depthwise separable convolution

is shown in Figure 1.1. MobileNetV2 introduced Inverted Residuals to extract more

features to reduce the inference time. MobileNetV3 makes use of hardware-aware

network architecture search to obtain smaller networks. SENet [9] was also added to

the blocks of MobileNetV3 in order to improve the accuracy.

ShuffleNetV1 makes use of group convolution to reduce model sizes and it uses

channel shuffle to increase connections among feature maps. ShuffleNetV2 mentioned

2

four practical guidelines for efficient network architecture design and they are: 1)

Equal channel width minimizes memory access cost. 2) Excessive group convolution

increases memory access cost. 3) Network fragmentation reduces the degree of par-

allelism, and 4) Element-wise operations are non-negligible. ShuffleNetV2 improved

ShffleNetV1 based on these 4 guidelines and achieved higher accuracy and shorter

run time.

Compact architecture design makes use of smaller filters and specialized convolu-

tions to reduce the model parameter and size. However, it is challenging to be use

these designs together with other model compression methods.

Figure 1.1: An example of depthwise separable convolution

1.1.2 Knowledge Distillation

Knowledge distillation is the process of transferring the knowledge learned by a large

model to a smaller compact model. In knowledge distillation, the model obtained

from the training of a large deep neural network is usually called the Teacher Model.

The model obtained from the training of a light compact neural network is called

Student model, MobileNet for example. In 2015, Hinton [10] introduced the concept

of a knowledge distillation framework, which uses the output of a Teacher model as

3

the soft target to guide the training of a student network. The reason is that the soft

targets that have high entropy contain much more information than the hard targets

while it introduces less variance in the gradient. The process of knowledge distillation

is as shown in Figure 1.2. The soft target is calculated as in eq. (1.1):

qi =
exp(zi/T)∑︁
j exp(zj/T)

(1.1)

where i is the i-th target class, j ∈ {1, 2, ..., k}, k is the number of classes and T

is a temperature. When T is set to 1, qi is a regular softmax function. A higher

temperature T will produce a softer probability distribution over classes, which is

called “soft target”. For the same input x, both the teacher network and the student

network will produce a soft target. The student will then use the two soft targets

together with the hard target (T = 1) in the cross-entropy loss to learn the weights.

The goal of knowledge distillation is to transfer the representative knowledge that’s

contained in the original network into a smaller neural network. The teacher network

and the student network usually are created to minimize the KL divergence. Tian

[11] pointed out that KL divergence ignored some important structural knowledge in

the teacher network and introduced the concept of contrastive learning. The key idea

of contrastive learning is to learn a representation that is close to “positive pairs” and

push away the representation that is close to “negative” pairs. Experiments show that

this method outperforms traditional knowledge distillation on many transfer tasks.

Nowadays, researchers try to use knowledge distillation to design a better student

model. The student model can not only learn the behavior of the teacher model,

but it can also surpass the teacher model by learning knowledge from other sources.

Furlanello [12] introduced Born Again Neural Networks (BAN) that outperforms the

teacher network significantly. Differing from the original knowledge distillation, the

goal of BAN is no longer model compression. It tries to train the student model

parameterized identically to the teacher network. The main idea is to train the

4

student model with the goal of predicting the correct labels and matching the output

distribution of the teacher model after the teacher model converges. One example is

to have DenseNet as the teacher and ResNet as the student. The accuracy of ResNet

after being distilled by BAN is higher than DenseNet. Gao [13] brought out the

method called Residual Knowledge Distillation that incorporates the concept of an

Assistant. The assistant guides the student network by learning the residual error

between teacher and student.

Methods based on knowledge distillation can greatly compress the model and help

reduce the computation cost. Nevertheless, most of the knowledge distillation meth-

ods are used for the prediction tasks that have softmax as the loss function. Recently,

many researchers are exploring ways to use knowledge distillation on compressing

models of tasks like object detection and semantic segmentation. He [14] introduced

an efficient knowledge distillation method for semantic segmentation and immensely

improved and compressed the student model without introducing extra parameters

and computations. This method consists of two parts: one is to compress the knowl-

edge in the teacher model by using an autoencoder, and the other is to use an affin-

ity distillation module which handles the inconsistency between the feature maps of

the teacher and student model, to capture the long-dependent relationship from the

teacher network.

Knowledge distillation can be used in many fields including natural language pro-

cessing and semi-supervised learning. The soft output of the teacher model can guide

the student model to achieve better performance.

1.1.3 Pruning

Pruning usually tries to determine the importance of parameters by designing some

estimation metrics and standards then prune the redundant parameters based on these

metrics. Pruning can also reduce the complexity of neural networks and therefore,

mitigate the over-fitting problem.

5

Figure 1.2: An example process of a typical knowledge distillation mentioned by
Hinton [10]

Based on different granularities, pruning is usually categorized into four different

categories [15]. The first and coarsest granularity is layer-wise pruning. A whole layer

can be pruned if necessary at this level. The second granularity is removing the feature

maps/filters. Feature map is the output of the network and filters are the parameters.

Pruning a feature map is the same as pruning the filters of the previous layer to obtain

a thinner network. The next granularity is kernel-wise pruning, which is removing

channels of a filter. The finest granularity is to prune the weights of a kernel (intra-

kernel pruning), which results in a more sparse matrix. These four granularities can

be further categorized as structured pruning and unstructured pruning. Structured

pruning means pruning a larger part of the network [16]. Layer-wise pruning, feature

map pruning, and kernel pruning are structured pruning, whereas intra-kernel pruning

is unstructured.

Many pruning methods in the early ages are unstructured. LeCun [17] and Hassibi

[18] came up with Optimal Brain Damage (OBD) and Optimal Brain Surgeon (OBS)

methods in 1990 and 1993. The latter is an improvement based on the former one. The

basic idea is to use the loss function with respect to the Hessian matrix to measure the

importance of the weights in order to remove the redundant weights. Both methods

6

can improve the accuracy but it takes a long time to train. Therefore, they can not be

used on a larger network. Zhang [19] brought out a weight pruning system called the

alternating direction method of multipliers (ADMM). With the constraints specifying

the sparsity requirements, the weight pruning problem is converted as a nonconvex

optimization problem. ADMM, then, decomposes the nonconvex optimization into

two sub-problem that are solved iteratively. One of the problems is solved by using

stochastic gradient descent and the other is solved analytically. Such a system helps

compress the weight parameters of AlexNet and LeNet [20] on a large scale on Ima-

geNet and MNIST dataset. The above unstructured pruning methods only make the

weight matrix sparse. However, the computation needed is still the same. In addi-

tion, to speed up the computation with sparse matrices, special software and hardware

may be needed. To tackle such a problem, Ma [21] brought out the PCONV method

which introduced fine-grained pruning patterns inside the coarse-grained structures.

PCONV comprises two kinds of prunings: intra-convolution kernel pruning that gen-

erates filters with different sparsity and inter-convolution kernel pruning that further

prunes the filters to obtain connectivity sparsity. Ma also designed a special compiler

to achieve a high compression rate and inference speed on large-scale DNN.

Besides specialized pruning structure and compiler, structured pruning can also

avoid the disadvantages of unstructured pruning. The main idea of structured pruning

is to remove the unimportant channel or filters without hurting the accuracy. He

[22] firstly uses LASSO regression to choose channels for pruning, then reconstruct

the output using the least square operation. Chin [23] mentioned a way to learn

a global ranking of filters of different convolutional layers. Such ranking is used to

create a set of architectures that are ranked by their accuracy/latency trade-offs. The

architecture with the lowest rank can, therefore, be pruned. Molchanov [24] uses the

first and second order of Taylor expansion to estimate the contribution of filters and

pruning the low contribution filters layer by layer.

Structured pruning usually uses the norm as the measurement to estimate the

7

importance of a filter. There are two conditions when using norm as the estimation:

one is that the variance of the norm should be large and the other is that the minimum

norm should be close to 0. When using the norm that satisfies those two conditions as

the pruning standard, the reconstructed network will usually encounter less accuracy

drop. However, it is hard for the norms to satisfy both conditions in reality. One

way to overcome this problem is to use the similarity between the filters to determine

whether a filter is redundant. He [25] uses the Geometric Median to find the similarity

between filters and uses the filter that is further away from the median to replace the

ones that are close to the median. Lin [26] finds another workaround for the norm

problem. Lin mentioned that no matter the batch size of the input, the average rank

of the feature maps that are created by the same filter is always the same. Feature

maps with high rank usually contain more information, so filters that produce low-

rank feature maps can be pruned.

Pruning is basically removing unimportant weights from the network. The pruned

network can also be seen as a sub-network of the original network, from another point

of view. Pruning can shrink the search space of neural networks can it can usually

be combined with quantization for model compression purposes.

1.1.4 Quantization

Quantization is to use a fewer bits to represent real numbers used in parameters,

such as 8-bit, 4-bit, and 1-bit (binary). It usually requires the help of specialized

hardware chips to deploy in practice. After the weights and activations in the neural

network are quantized, the multiply-accumulate operations can be replaced by low-

bit operations which are cheaper and faster. Multiplication can even be avoided

under some extreme low bit situations such as binary networks [27–29] and ternary

networks [30, 31]. Therefore, the use of low-bit quantization can greatly reduce the

storage and computation cost. Meanwhile, low-bit quantization can also help advance

the development of hardware chips that are targeting neural networks.

8

Quantization usually means to find the best optimization that gives the smallest

error between the quantized values and full precision values, as shown in the eq. (1.2).

min J(qx(x)) ≡ ||x− qx(x)||22 (1.2)

where x is the full precision value, qx(x) is the quantized low-bit value and J(qx(x))

is the error between the full precision value and quantized value.

Methods in quantization typically can be summarized as weight sharing and low-

bit representations. Weight sharing is usually realized by clustering. Han [32] uses

K-Means clustering for the weight matrix of each layer, and uses the cluster centroid

as a value for the weights that are in the cluster. Since weights in the same cluster

share the same centroid, only the centroid needs to be stored as an index. Then, they

use a lookup table to find the corresponding value. Another way for weight sharing

is to use hash tables for quantization. HashedNets introduced by Chen [33] uses a

low-cost hash function to randomly group connection weights into hash buckets and

the connection weights within the same buckets share a single parameter value.

The above methods are traditional quantization methods. Stock [34] introduced a

vector quantization method that reduces the bit length based on Product Quantiza-

tion. Unlike the traditional vector quantization method [35], this method focus on the

importance of the activation rather than the weights. The key idea is to minimize the

reconstruction error for the in-domain inputs and use the full-precision network as the

teacher to guide the training of the quantized network. This method can efficiently

run the inference on the CPU.

Many low-bit quantizations are networks improved based on binary neural net-

works [27]. Binarization uses 1-bit values to greatly quantize the parameters into two

possible values 0(−1) and +1. After the BinaryConnect was brought out by Cour-

bariaux [36] in 2016, quantizing weights and activation into binary numbers has been

an efficient way to compress neural networks. With binarization, complex matrix

multiplication can be simplified as XOR and bit-shifting operations. However, due

9

to the discreteness and limited expressiveness of binary numbers, lots of information

is lost during the forward and backward passes. In the forward pass, the diversity

of the model will be greatly reduced when the weights and activation are limited to

2 numbers, which will result in the decrease of the model accuracy. To solve this,

Qin [37] introduced Information Retention Network (IR-Net) that retains the infor-

mation in the forward activations and backward gradients. IR-Nets consists of two

processes: first, balancing and standardizing weights in the forward propagation to

minimize the loss; second, minimizing the quantization error while maximizing the

parameter information entropy, which reduces the information loss of weights and

activation without adding additional operations. The most frequently used function

for binarization is the non-differentiable sign function. Therefore, gradient estimation

is needed during the backward propagation. IR-Net uses an error decay estimator

to gradually approximate the sign function in the backward propagation to minimize

the information loss of the gradients. Such a method is experimented with various

neural networks on CIFAR-10 and the ImageNet dataset. The results show that it

achieves better accuracy than vanilla binarization methods.

Except for binary network, ternary and int8 quantization is also frequently seen

in the low-bit quantization methods. Wang [38] introduced the Two-Step Quantiza-

tion framework that converts the neural network quantization into two steps. The

first step is to use the sparse quantization method to quantize the activations. Only

important positive values are quantized. The rest are set to zeros. The second step

is a non-linear least square regression problem with the constraint on the bit-length,

which can be iteratively solved. Mellempudi [39] mentioned the ternarization method

that minimizes the quantization error by exploiting the local correlations of the pa-

rameters in dynamic range. Zhu [40] shows us an INT8 quantization method that

uses Deviation Counteractive Learning Rate Scaling and Direction Sensitive Gradient

Clipping, which addressed the accuracy loss problem introduced by quantization.

When using a low-bit quantization, the accuracy of the quantized neural network

10

is usually significantly lower than the full-precision network, because the noise intro-

duced during the quantization process is unavoidable. When using extreme low-bit

values to quantize the weight and activation, such a problem is even more severe. On

the other hand, the limitation of the structured matrix may also lead to accuracy loss.

Therefore, quantization is mostly used together with other compression methods.

1.2 Thesis Scope

This thesis will focus on the quantization of neural networks. However, instead of ex-

ploring and experimenting with extreme low-bit quantization like binary and ternary

quantization, we focus on mixed low-bit quantization in particular, since different

layers in a neural network contain different levels of information and should not be

treated the same. Certain quantization methods are selected, analyzed, experimented

and compared in this thesis. We will talk more about why we chose mixed quantiza-

tion and the results we observed.

This thesis will also have some analysis of the gradient estimation methods that are

used for quantization. Since the process of quantization contains non-differentiable

operations, some estimation method has to be used to let the gradients successfully

back-propagate to update the parameters.

1.3 Thesis Contributions

In this thesis, we include the following contributions:

• We introduce the idea of accuracy estimation to bring any fixed-precision quanti-

zation to a compressed mixed-precision quantization so that further compression

can be reached with higher flexibility.

• We propose an accuracy-aware criterion to weigh the importance of each layer.

This will allow us to have a better interpretation of the final bit-length config-

uration compared to other search methods.

11

• We analyzed the reason to that quantized weights is better than full-precision

weights for estimating the gradients of quantization.

1.4 Thesis Outline

In the next chapter, we will see a detailed literature review on some related quanti-

zation papers and their limitations. We will also explain our algorithm and our layer

importance estimation methods for the mixed-precision quantization. In chapter 3,

we will present our experiments with our method and the results that we obtained

and compare our method with the existing method to discuss why and when to choose

our method. In chapter 4, we will review some papers that explored the options of

gradient estimation for the quantization process and our experiments and results will

be discussed in chapter 5. The last chapter will conclude this thesis and point out

some future work.

12

Chapter 2

Related Works and Mixed
Precision Quantization

In this chapter, we will first study some state-of-the-art quantization methods. Then

we will introduce our method [1] for mixed-precision quantization that can be applied

to most of the existing quantization methods.

2.1 Preliminary

The quantization process can be summarized as projecting real-valued numbers into

discrete quantum numbers. The set of these discrete quantum numbers are called

quantization levels. When applied to neural networks, those real-valued numbers

to quantize are weights and activations. Since the weights and activations are not

infinite, (i.e. they have upper and lower bonds), we need to project (i.e., round)

those real-valued numbers onto a discrete set of values. The activations are similarly

treated except that the minimum value for the activations is set as zero. We will

discuss mostly about weights in the following chapters but the activations can just be

treated in the same manner. Since the distribution of the weights is bell-shaped [41],

certain clipping methods can be applied before projection to increase the precision

for the majority values around the center of the distribution. Suppose we define the

weight of a convolutional layer as W , then the quantized weight will be defined as:

13

W̃ =
∏︂

Q(α,b)⌊W , α⌉ (2.1)

where ⌊W , α⌉ is the clipping function that clips W to the range [−α, α]. Q(α, b) is

a set of quantization levels whose maximum is α, and b is the bit-width.
∏︁

denotes

the projection function which will project the clipped weight onto the quantization

levels.

2.2 Different Quantization Levels

The quantization levels are the set of discrete numbers that the real-number values

need to be projected to. Usually, once the quantization level is set, the real numbers

are projected using a round function. We will discuss papers based on the quantization

level schema they used.

2.2.1 Uniform Quantization

Many existing quantization methods use uniform quantization [42–44], whose projec-

tion level can be defined as:

Quni(α, b) = α× {0, ±1

2b−1 − 1
,

±2

2b−1 − 1
,

±3

2b−1 − 1
, ...,±1} (2.2)

where α is the maximum quantization level and b is the bit-width.

Parameterized Clipping Activation (PACT) [43] introduced by Choi et al. uses

uniform quantization together with a new way to quantize the activations. PACT

uses a new trainable parameter α to represent the clipping range for the activations,

to make the quantized activations small enough to reduce the quantization error

but not too small to allow the gradients to flow effectively. ReLU function has been

commonly used as the activation function for most of the CNNs since it allows gradient

of activations to propagate through deep layers [45]. However, applying quantization

14

without clipping directly can hurt the model accuracy significantly as seen in Figure

2.1. It has been studied that putting an upper bound to the output of the activation

function during quantization can greatly reduce such quantization error [46, 47]. Since

it’s hard to determine a globally optimal activation clipping value, PACT is introduced

to dynamically determine the clipping value layer by layer during the training process.

The original ReLu function, which is shown in eq. (2.3), is converted as eq. (2.4)

y = Relu(x) = 0.5(x+ |x|) =

⎧⎨⎩0, x ∈ (−∞, 0)

x, x ∈ (0,+∞)
(2.3)

y = PACT (x) = 0.5(|x| − |x− α|+ α) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, x ∈ (−∞, 0)

x, x ∈ [0, α)

α, x ∈ [α,+∞)

(2.4)

where x is the input to the activation function, y is the output of the activation

function and α is the upper bound of the clipped activation function. After applying

the uniform quantization, the quantized activation can be then calculated as:

yq = round(y · 2
b − 1

α
) · α

2b − 1
(2.5)

Since the round(·) function in the quantization process is non-differentiable, to update

the α in the back-propagation, the gradient of ∂yq
∂y

needs to be estimated. Bengio et

al. [48] introduced the Straight-through estimator (STE) that calculates the gradient

of ∂yq
∂y

as 1. The gradient of the quantized activation after PACT is, therefore:

∂yq
∂α

=
∂yq
∂y

∂y

∂α
=

⎧⎨⎩0, (−∞, α)

1, [α,+∞)
(2.6)

The results of the PACT are shown in Table 2.1. It is shown that PACT can outper-

form other uniform quantization methods that do not handle the activation clipping

15

ranges. More results can be found in the original paper. Choi et al. in their paper

showed that this PACT method quantizes activations very effectively while simulta-

neously allowing weights to be heavily quantized.

Figure 2.1: Validation Error over Number of Epochs of Relu Activation Function
with and without clipping and quantization for ResNet20 on CIFAR10.

DoReFa PACT
Network FullPrec

2b 3b 4b 5b 2b 3b 4b 5b

CIFAR10 0.916 0.882 0.899 0.905 0.904 0.897 0.911 0.913 0.917

SVHN 0.978 0.976 0.976 0.975 0.975 0.977 0.978 0.978 0.979

AlexNet 0.551 0.536 0.550 0.549 0.549 0.550 0.556 0.557 0.557

ResNet18 0.702 0.626 0.675 0.681 0.684 0.644 0.681 0.692 0.698

ResNet50 0.769 0.671 0.699 0.714 0.714 0.722 0.753 0.765 0.767

Table 2.1: Comparison of top-1 accuracy between DoReFa and PACT. Weights are
quantized with DoReFa scheme, whereas activations are quantized with PACT scheme

However, quantizing all the layers in the same network to the same bit-length is

16

not necessarily the best option. Bitpruning [42] in 2020 offers a solution to squeeze

out every possible benefit from quantizing the neural network. It introduces a way

to learn the bit precision by using gradient descent. The first step of Bitpruning

is to convert the discrete quantization levels back into real numbered values so that

they can be learned for different layers. Bitpruning also uses uniform quantization but

instead of setting a clipping range, it makes use of the minimum and maximum values

of the weights. Unlike eq. (2.5), the converted discrete quantization is calculated as:

Qd(V, b) = Lmin + round(V · 2b − 1

Lmax − Lmin

) · Lmax − Lmin

2b − 1
(2.7)

where V ∈ [Lmin, Lmax] is the values by rounding it to the nearest greater integer.

Some of the results of Bitpruning is shown in table 2.2. The bitlength of the weights

and activations are average values of all the layers. The results in the paper show that

bitprunning can bring the average bit length to relative low settings without hurting

the accuracy too much.

L = Ll + γ
∑︂

(λi × bi) (2.8)

where Ll is the original loss function, γ is the regularization coefficient used for

selecting how aggressive the quantization should be, λi is the weight corresponding

to the importance of the i-th group of values, and bi is the bitlength of the activations

or weights in that group.

Another method that uses mixed-precision uniform quantization is ZeroQ [44] by

Cai et al. ZeroQ addresses the problem that the original training data set is not always

available for quantization of an existing model. It proposes a zero-shot quantization

framework for quantizing a pre-trained neural network model without accessing the

original data. There are 3 steps in total. The first step is to use the statistics obtained

from the batch normalization layers to generate distilled data. In order to successfully

generate the data without accessing the original data, it is required for all the layers

in the neural network to be followed by a batch normalization layer. Initially, the

17

Non-integer Bitlengths Rounded Integer Bitlengths

Network Regularizer Accuracy
Weights

of bits

Activations

of bits

Final

Accuracy

Weights

of bits

Activations

of bits

ResNet18

Baseline 94.9 32float 32float 94.9 32float 32float

γ=0.5 94.2 1.67 2.73 94.4 1.9 3.38

1 93.5 1.3 2.26 94.1 1.43 2.9

2.5 93.1 1.15 2.01 93.4 1.24 2.43

5 92.8 1.14 1.99 93.3 1.24 2.48

10 94.1 1.61 2.35 94.2 1.9 2.9

Table 2.2: Activation/weight bitlengths and achieved accuracy of aggressive quan-
tization and different strength reguralizers on CIFAR10 for non-integer and integer
bitlengths.

data is randomly sampled from a Gaussian distribution. It is then updated using

backpropagation by minimizing the following equation:

min
xr

L∑︂
i=0

||µ̃r
i − µi||22 + ||σ̃r

i − σ||22 (2.9)

where xr is the generated data, µi and σi are the mean and standard deviation of

the i-th layer, obtained from the batch normalization layers, µ̃r
i and σ̃r

i are the mean

and standard deviation computed using xr. Once we have the distilled data, the next

step is to determine the sensitivity of each layer with respect to quantization. The

sensitivity is measured using KL divergence of the output between the original model

and the quantized model. One example process is shown in fig. 2.2. The last step is

to find the final bit configuration of the whole network given a model size constraint.

ZeroQ uses Pareto frontier optimization to solve this constraint satisfaction problem.

The paper presented extensive experiments and results and it is shown that ZeroQ

could exceed the previous zero-shot quantization method.

2.2.2 Non-uniform Quantization

Uniformly quantize the weights and activations is convenient but not ideal. Weights

are more gathered around the center as shown in Figure 2.3. Non-uniform quantiza-

18

Figure 2.2: An illustration of sensitivity computation for ResNet18 on ImageNet.
Ω8(4) means the sensitivity (i.e. the KL divergence) of the 8-th layer when quantized
to 4-bit.

tion levels may be more suited.

One of the popular non-uniform quantization levels is to use power-of-two (PoT)

values [49, 50]. That is the quantization level is defined as:

Qpot = α× {0,±2−2b−1+1,±2−2b−1+2, ...,±2−2−1

,±1} (2.10)

Apparently, as a non-uniform quantization schema, PoT fits better for the weights

than the uniform quantization because it has a higher resolution around the distri-

bution center. Another huge advantage is that the multiplication of a power-of-two

value and any other number can be implemented using bit-shifting operations instead

of the digital multipliers. The Incremental Network Quantization (INQ) presented in

[50] shows that using power-of-two values can not only faster the training and infer-

ence time, it can also reach similar accuracy of full precision networks, as shown in

table 2.3.

However, Li et al [51] pointed out that one drawback of the PoT method is its rigid

resolution around the tail of the distribution. It means that PoT quantization does

not benefit from having more bits. When bit length is increased by 1, the quantization

level only increases around the tail of the distribution, which is shown in fig 2.4 (b).

19

Figure 2.3: Density of weights in ResNet-18.

Model Bit-width Top-1 accuracy Top-5 accuracy

ResNet-18 32 68.27% 88.69%

INQ 5 68.98% 89.10%

INQ 4 68.89% 89.01%

INQ 3 68.08% 88.36%

INQ 2 66.02% 87.13%

Table 2.3: INQ[50] generates extremely low-precision (4-bit and 3-bit) models with
improved or very similar accuracy compared with the full-precision ResNet-18 model
on ImageNet.

Additive Power-of-Two (APoT)[51] quantization is, therefore, introduced to solve the

problem. The quantization levels for APoT is as shown below:

QAPoT (α, kn) = γ × {
n−1∑︂
i=0

pi},

where pi ∈ {0, 1
2i
,

1

2i+n
, ...,

1

2i+(2k−2)n
}

(2.11)

where k is a hyper parameter that defines base bit-width, and n is the number of

additive terms. If the bit-width is b, n can be calculated as n = b
k
. Finally, γ is

a scaling coefficient to guarantee the maximum level equals α. These quantization

levels will project the values non-uniformly and enable more levels near 0 which is the

20

center of the weights after clipping. This paper also introduced a way to dynamically

clipping the weights just like how PACT clips the activations. With the help of STE

and eq. (2.1), the gradients to update the α is:

∂W̃

∂α
=

⎧⎨⎩
∂⌊W ,α⌉

∂α
= sign(W) if |W | > α

0 if |W | ≤ α
(2.12)

It is clear that the clipped weights are not contributing to the gradient. Thus, the

estimation is not accurate here. Therefore, APoT proposed the following clipping

function:

W̃ = α
∏︂

Q(1,b)⌊
W

α
, 1⌉, (2.13)

which scales the weights into range [−1, 1] first, then scales them back after projection.

The estimated gradient is, therefore, changed to

∂W̃

∂α
=

⎧⎨⎩ sign(W) if |W | > α∏︁
Q(1,b)

W
α
− W

α
if |W | ≤ α

(2.14)

which can be easily calculated. Some results of APoT are included in table 2.4. We

can see that APoT can reach relatively high compression ratio while having the best

accuracy.

2.3 Imprinting

Imprinting [52] is a method used in the few-shot learning to approximate a classifier’s

weights when only a few training samples are available. Qi et al. [52] are inspired

by the effectiveness of embeddings in retrieving and recognizing objects from unseen

classes in metric learning and they estimate the weights of the final layer by using

embeddings. Then, Elkerdawy et al. [53] use imprinted weights to help the layer

pruning. The imprinting process is as follows: Firstly, they use eq. (2.15) to calculate

the weight from the embeddings obtained from feature maps.

Wi[:, c] =
1

Nc

N∑︂
j=1

I[cj==c]Ej (2.15)

21

Method
Precision

(W/A)

Top-1

Accuracy

Model

Size (MB)

Precision

(W/A)

Top-1

Accuracy

Model

Size (MB)

Baseline 32/32 70.2 46.8

DoReFa-Net [47] 5/5 68.4 8.72 3/3 67.5 6.06

PACT 5/5 68.9 8.72 3/3 68.1 6.06

PoT 5/5 70.3 7.22

APoT 5/5 70.9 7.22 3/3 69.9 4.56

DoReFa-Net [47] 4/4 68.1 7.39 2/2 62.6 4.73

PACT 4/4 69.2 7.39 2/2 64.4 4.73

APoT 4/4 70.7 5.89 2/2 67.3 3.23

Table 2.4: Results of APoT compared to other methods with ResNet18 on ImageNet.

Figure 2.4: A example of quantization levels of unsigned data at 3 and 4 bit (α=1).

where Wi is the weight matrix for layer i, c is the class id, Nc is the number of

samples in class c, N is number of samples, and Ej is the embedding for layer i.

Then, the prediction of each class is obtained by finding the nearest class from the

imprinted weights (see eq. (2.16)). The accuracy can be, therefore, calculated for

each layer. One example result for using this imprinting for accuracy estimation is

22

shown in Figure 2.5. This method can obtain the accuracy for each layer with only

one epoch. It is adopted in our bit selection algorithm. We’ll see how to use it in the

next chapter.

ŷj == argmax
c∈{1,...,C}

Wi[:, c]
TEj (2.16)

where i is the layer index, j is the sample index and Ej is the embedding.

Figure 2.5: Layer-wise accuracy, rounded for better visualization, using imprinting
for VGG19 on CIFAR100. GT shows the actual accuracy of the full model.

2.4 Layer Importance Estimation For Mixed Pre-

cision Quantization

In this section, we will present our layer importance estimation method for mixed-

precision quantization.

23

2.4.1 Mixed precision with APoT

The additive power of two quantization (APoT) achieves high accuracy while decreas-

ing the number of bits used by the convolutional layers in neural network architec-

ture, as we discussed in section 2.2.2. The method sets the bit precision to be a fixed

number for all layers, and the quantization range is set to be power-of-two values.

However, convolutional layers in a neural network do not contain the same level of

information. Layers with less information may, therefore, be further quantized to a

lower precision. Hence, we will base on the APoT quantization schema to start our

mixed-precision quantization. We will also continue to use the quantization formulas

to update the clipping range α. However, our method can be applied to any fixed bit

length quantization schema. We will show that in the next chapter.

2.4.2 The Bit Selection Algorithm

In order to better quantize the model, we can first measure the importance of each

layer and then quantize the layers based on the importance. The general process is

shown in Algorithm 1.

There are many choices for the importance measurement. We’ve tested different

choices in the next chapter. The one that we are most satisfied with is to make use of

the imprinting method, which can quickly give us the estimated accuracy at each layer.

The detailed pipeline for using imprinting with the bit selection method is shown in

2. The process for using imprinting to estimate the layer accuracy in one epoch is as

shown in Figure 2.6. The method is adopted from the method mentioned in Section

3.4.2. For each convolutional layer, we sample an embedding from the input feature

maps using eq. (2.17). Then the imprinted weights are obtained by using eq. (2.15).

The accuracy is finally calculated by using a dot product between the embedding and

imprinted weights. With this bit selection algorithm, we are able to bring any fixed-

precision quantization to a compressed mixed-precision quantization so that further

compression can be reached with higher flexibility. The accuracy-aware criterion to

24

Algorithm 1 Bit Selection Algorithm: use importance measure to achieve mixed-
precision quantization

Input: a pre-trained fixed-precision Neural Network with precision Bi, a target av-
erage precision interval (Bl, Bh)
Hyper-parameter: a small fine-tune number N

1: while current average precision B > Bl do
2: small fine-tune the network for N epochs
3: choose the model with the best performance
4: find a layer in the model that is the least important
5: if the layer’s precision b > Bl then
6: reduce the layer’s precision by 1 and save the model
7: else
8: ignore this layer and find another least important layer
9: repeat step 5
10: end if
11: fine-tune the model to recover the accuracy
12: save the accuracy and bit-precision configuration
13: end while
14: Find the configuration that has the highest accuracy within the average precision

range (Bl, Bh).

Figure 2.6: Pipeline illustrating accuracy approximation by imprinting. An embed-
ding Ei is sampled from input feature maps Fi. Imprinting is then applied on the
embedding to estimate the weight matrix W . Accuracy per layer is then calculated
by a simple dot product between embedding and imprinted weights.

weigh the importance of each layer allows us to have a better interpretation of the

final bit-length configuration compared to other search methods. Meanwhile, the

25

imprinting method we use is a one-shot step, which enables us to quickly identify

rank the layers resulting in a shorter training time.

d = round(

√︄
N

fi
)

Ei = AdaptiveAvgPool(Fi, d),

(2.17)

where N is the length of embedding and fi is the number of filters in the i-th layer.

Fi is the i-th layer’s feature map and Ei is our re-shaped embedding which is also the

input of imprinting.

Algorithm 2 Pipeline for bit-selection with imprinting

Input: initial bit length configuration of all convolutional layers Bstart, minimum bit
length configuration of all convolutional layers Bend , number of convolutional layers
K Output: bit configuration for all convolutional layers B

1: Calculate maximum total bit-length B̂max =
∑︁K

i=0 bi , bi ∈ Bstart

2: Calculate minimum total bit-length B̂min =
∑︁K

i=0 bi , bi ∈ Bend

3: Calculate maximum of iterations needed Nmax = B̂max − B̂min + 1
4: Initialize the configuration to use Bcurrent = Bstart

5: for iteration N = 1, 2, . . . , Nmax do
6: With Bcurrent, use imprinting with quantization to get the estimated accuracy

of each convolutional layer, Acc = {acc1, acc2, . . . , accK}
7: Find the difference between each layer and its previous layer, diff =

{∥acci − acci−1∥ |∀i ∈ [2, K − 1], acci ∈ Acc}
8: Find the index of the minimum difference, idx = argmin(diff))
9: Record the configuration as BN

10: Record the accuracy of the last layer as AccN
11: Update the configuration Bcurrent by setting bidx = bidx − 1
12: end for
13: Choose the best configuration B = BN where AccN = max({Acci|∀i ∈ [1, Nmax]})

26

Chapter 3

Experiments for Mixed Precision
Quantization

In this chapter, we demonstrate our experiments around mixed-precision quantiza-

tion. These experiments were run on P100 GPU with Pytorch. We will show why to

choose mixed precision. We will also show the effect of different importance estimation

metrics used in Algorithm 1.

3.1 Why Mixed Precision?

To study the impact of mixed quantization, we first start our experiment using APoT

with all layers quantized to 4-bit. Then, in each step, we will randomly choose

one layer to be further quantized to 3-bit and repeat until all layers are 3-bit. The

same procedure is then repeated starting with all layers to be 3-bit. We run these

experiments multiple times and for each run, we record the best accuracy reached as

the best result for that run. The final results are shown in Table 3.1a and Table 3.1b.

From the tables, we can see that sometimes mixed-precision configuration outperforms

the original APoT settings with an even lower average bit length, so it is possible to

further quantize the fixed bit-length model without hurting the accuracy. However,

comparing within the same bit-length group (e.g. bit-length between 3 and 4), the

random results vary a lot. It gives us the hint that different layers may have different

importance levels during quantization and the order in which layers are chosen for

27

quantization may have a significant impact on the final accuracy of that model.

ResNet20 AVG bits Top-1

APoT 4 92.45

Ours(random) 3.75 92.48

Ours(random) 3.75 92.34

Ours(random) 3.7 92

Ours(random) 3.25 91.61

APoT 3 92.49

Ours(random) 2.75 91.83

Ours(random) 2.8 91.75

APoT 2 90.96

(a) Results for randomly quantizing lay-
ers with ResNet20 on CIFAR-10.

ResNet56 AVG Bits Top-1

APoT 4 93.93

Ours(random) 3.5 93.76

Ours(random) 3.5 94.1

APoT 3 93.77

Ours(random) 2.78 93.54

Ours(random) 2.73 93.61

APoT 2 93.05

(b) Results for randomly quantizing lay-
ers with ResNet56 on CIFAR-10.

Table 3.1: Results for quantizing layers randomly. (a) was run with ResNet20 on
CIFAR-10 and (b) was run with ResNet56 on CIFAR-10. ”AVG Bits” is the average
bit-length of convlutional layers and ”Top-1” is the top-1 accuracy reached with that
specific bit-length configuration.

3.2 Hyper-parameters in The Bit Selection Algo-

rithm

There’s a “small fine-tune number” hyper-parameter in Algorithm 1. It represents

how many times we want to fine-tune the model to recover the accuracy before finding

the actual accuracy level that can accurately represent the relative performance of the

current bit-precision configuration. This number can be as small as 1 and it can go

up to as many as we like. However, the higher the number is, the longer would be the

training. Therefore, we conduct some experiments with different N . The results are

shown in Figure 3.1. We notice that for N=1, the accuracy fluctuates a lot. However,

with N=2 and N=4, the relative highest accuracies for each precision ranges are

similar. To be safe, we use N=4 for our experiments unless specified otherwise.

28

Figure 3.1: Accuracy vs. Average Bit Precision with different N. N = 1, 2 and 4 for
series R1, R2 and R4 respectively.

3.3 Full-precision vs. Quantized weights

There are lots of ways to represent a layer’s importance, we first tried using the norm

of the weights. The intuition here is that a lower norm implies less importance for

a layer. Thus, during step 4 in Algorithm 1, the layer with the lowest average norm

is chosen. However, during the quantization process, we have two kinds of weights

that we can use: full-precision weights and quantization weights. The results in table

3.2 show the effect of using quantized vs. full-precision weights. From the results,

we can see that using full-precision weights either has a higher accuracy with similar

model sizes or has a significantly smaller model size and a similar accuracy. We can

conclude that using the metric of full-precision weights to measure the importance

level is better than using that of the quantized weights. Therefore, for the rest of the

experiments, we use full-precision weights most of the time unless specified otherwise.

29

Dataset AVG Bits Accuracy Size (MB)

CIFAR10

4 92.45 0.14

3 92.49 0.10

2 90.96 0.07

CIFAR100

4 66.95 0.16

3 66.98 0.13

2 66.42 0.09

(a) Baseline results for APoT method with ResNet20.

Dataset Bit Range AVG Bits Accuracy Size (MB)

CIFAR10

3-4 3.90 92.66 0.14

2-3 2.95 92.16 0.09

1-2 1.95 91.09 0.06

CIFAR100

3-4 3.85 67.58 0.16

2-3 2.95 67.32 0.12

1-2 1.95 66.53 0.08

(b) Results for quantizing layers based on the average norm of full-precision wieghts with
ResNet20.

Dataset Bit Range AVG Bits Accuracy Size (MB)

CIFAR10

3-4 3.80 92.56 0.14

2-3 2.85 92.25 0.13

1-2 1.85 90.82 0.08

CIFAR100

3-4 3.80 68.81 0.16

2-3 2.88 66.75 0.15

1-2 1.88 64.13 0.10

(c) Results for quantizing layers based on the average norm of quantized wieghts with
ResNet20.

Table 3.2: Results for using average norm as the importance estimation for quanti-
zation.The model used is ResNet20. ’Size (MB)’ here refers to the model size. Table
(a) is the baseline with APoT method. Table (b) is the results using full-precision
weights and (c) is the results using quantized weights.

30

3.4 Other Importance Estimation Metrics

3.4.1 Min-variance vs. Max-variance

Considering that the process of quantization can be summarised as rounding real

numbers to discrete values, the variance of the weights can also be a good metric for

measuring the importance of layers. However, it is not clear whether higher variance

or lower variance makes a layer less important during the quantization process. In

order to figure out which one is a better metric, we conducted experiments with the

results shown in Table 3.3. We refer to the metric that shows a layer is less important

as the method name. For example, for the “Max-variance” method, the layer with the

highest variance is chosen in step 4 of Algorithm 1 to be quantized further. From the

results, we can see that min-variance performs better than the max-variance method

most of the time, which makes it a better metric. One possible explanation is that

when the variance is small, the layer’s weights are more closely gathered around the

center and when we try to quantize that layer, we can ignore more outliers and give

the center more “quantization levels”. Quantizing this layer will therefore contribute

less error to the final accuracy. Comparing the results in Table 3.3 with the results

in Table 3.2b, we can see that using full-precision norm is a better metric than using

variance as the importance estimation of convolutional layers.

3.4.2 One-shot Selection Method with Imprinting

Inspired by the work done by Elkerdawy et al. [53], we find that we could make use of

the imprinting method during the layer selection process. Imprinting is a method that

can quickly predict the final model accuracy given a model’s weights. If we attach

an imprinting block after each convolutional layer, we could get an estimation of how

well the current model performs up to each convolutional layer. An example results

for imprinting is shown in Figure 3.2. The x-axis is different layers in ResNet20 and

the y-axis is the estimated accuracy if exiting the model using up to the corresponding

31

Dataset Bit Range AVG Bits Accuracy Size (MB)

CIFAR10

3-4 3.80 92.68 0.13

2-3 2.90 91.99 0.07

1-2 1.90 90.73 0.06

CIFAR100

3-4 3.98 67.69 0.16

2-3 2.90 66.59 0.09

1-2 1.90 64.49 0.08

(a) Results for quantizing layers based on the average norm of full-precision wieghts with
ResNet20.

Dataset Bit Range AVG Bits Accuracy Size (MB)

CIFAR10

3-4 3.90 92.78 0.14

2-3 2.90 91.77 0.13

1-2 1.95 90.69 0.07

CIFAR100

3-4 3.95 67.99 0.16

2-3 2.7 66.05 0.15

1-2 1.95 64.55 0.09

(b) Results for quantizing layers based on the average norm of quantized wieghts with
ResNet20.

Table 3.3: Results for using the variance as the importance estimation for quantiza-
tion.The model used is ResNet20. ’Size (MB)’ here refers to the model size. Table
(a) is using min-variance to find the layer to be further quantized. Table (b) is the
results using the max-variance of the weights as the importance of the layer.

layer. Using the results of this imprinting method as the importance measure will

allow us to have a better interpretation of the final bit-length configuration compared

to other search methods. The modified algorithm is as shown in Algorithm 2. We

use the difference of the accuracy between two layers as the importance measure

of the later layer. If the difference is small, that means the later layer contains

less new information and therefore is less important and can be further quantized.

We compared this method with the methods that use statistical criterion as the

importance measure that we mentioned before and the results are shown in Table

32

3.4. The model used is ResNet-20 on CIFAR-10. From the results, we can see that

the effect of the two criteria is quite similar. However, as the imprinting method is

one-shot and the statistical criteria require fine-tuning for a couple of epochs each

selection, the imprinting method is more efficient in terms of the overall time and

training epochs.

co
nv

1.
1

co
nv

1.
2

co
nv

2.
1

co
nv

2.
2

co
nv

3.
1

co
nv

3.
2

do
wn

sa
m

pl
e1

co
nv

4.
1

co
nv

4.
2

co
nv

5.
1

co
nv

5.
2

co
nv

6.
1

co
nv

6.
2

do
wn

sa
m

pl
e2

co
nv

7.
1

co
nv

7.
2

co
nv

8.
1

co
nv

8.
2

co
nv

9.
1

co
nv

9.
2 GT

0

20

40

60

80

100

Ac
cu

ra
cy

32 31

39

24

36

47 46
50

39

52

36

53 52
57

65

52

69 69

83

91 92

Figure 3.2: Accuracy approximation using imprinting. The model used is ResNet20
on CIFAR-10

3.5 Generalization

All the experiments above are using APoT as the base quantization method and the

model and dataset are mostly ResNet20 and CIFAR. In order to see how well our

method can be generalized, we also conducted experiments with (i) different models,

33

Criterion Weights Activations Accuracy Size (MB) Epochs

max variance 3.9 3.9 92.78 0.14 460

norm 3.9 3.9 92.66 0.14 460

qt norm 3.8 3.8 92.58 0.14 460

Imprinting 3.85 3.85 92.82 0.13 300

min variance 3.8 3.8 92.68 0.13 460

qt norm 2.85 2.85 92.25 0.13 620

max variance 2.9 2.9 91.77 0.13 620

Imprinting 2.3 2.7 91.65 0.1 300

norm 2.95 2.95 92.16 0.09 620

min variance 2.9 2.35 91.99 0.07 620

qt norm 1.85 2.8 90.82 0.09 780

max variance 1.95 2.6 90.69 0.07 780

Imprinting 1.65 2.4 90.64 0.07 300

norm 1.95 2.2 91.09 0.06 780

min variance 1.9 2.35 90.73 0.06 780

Table 3.4: Different bit selection criteria with ResNet-20 on CIFAR-10. The quan-
tization method used is APoT[51]. ”norm”, ”min variance” and ”max variance” are
the average statistics of full precision weights, whereas ”qt norm” is the average norm
of quantized weights.”Epochs” here means number of epochs needed to find the target
configuration and fine-tune to the best accuracy.

(ii)a larger dataset, and (iii) different quantization base methods. Since the imprinting

method takes less training time while giving similar or better performance and model

compression levels, we will use imprinting other than the statistical criterion as the

importance estimation. We compare our method with some other state-of-the-art

quantization methods.

34

3.5.1 Different models

We applied our method in Section 3.4.2 and compared it with the original APoT

method. The dataset used are CIFAR-10 and CIFAR-100 and the results are shown

in Table 3.5. From the table, we can see that we can achieve results similar to APoT

on most of the ResNet models, but with less average bit length and model size. We

have a larger accuracy drop for MobileNet-V2 compared to APoT. However, we are

still able to produce some mixed-precision configurations with less model size but

higher accuracy than APoT. We also have a shorter training time than the APoT

method when targeting at low bit precision.

Model Method Weights Activations Accuracy Size (MB) Epoch

ResNet18

Baseline 32 32 94.97 44.61 300

APoT 4 4 94.57 5.62 300

Ours 3.07 4.35 94.11 4.87 300

Ours 2.7 3.11 94.02 4.79 300

APoT 3 3 94.13 4.23 600

Ours 1.96 2.55 93.42 2.95 300

APoT 2 2 93.22 2.84 900

ResNet20

Baseline 32 32 92.96 1.04 300

APoT 4 4 92.45 0.14 300

Ours 3.85 3.85 92.82 0.13 300

APoT 3 3 92.49 0.1 600

Ours 2.3 2.7 91.65 0.1 300

APoT 2 2 90.96 0.07 900

Ours 1.65 2.4 90.64 0.07 300

ResNet56

Baseline 32 32 94.46 3.31 300

APoT 4 4 93.93 0.42 300

Ours 3.37 3.42 93.74 0.32 300

APoT 3 3 93.77 0.32 600

APoT 2 2 93.05 0.21 900

Ours 2.37 2.75 92.89 0.2 300

Ours 1.82 2.42 92.22 0.16 300

MobileNetV2

Baseline 32 32 94.24 8.7 300

APoT 4 4 89.99 1.19 300

APoT 3 3 83.85 0.92 600

Ours 3.32 3.39 84.82 0.87 300

APoT 2 2 69.79 0.66 900

Ours 2.48 2.83 74.42 0.63 300

Ours 1.32 2.14 63.92 0.55 300

(a) Comparing different Models (CIFAR-10)

Model Method Weights Activations Accuracy Size (MB) Epoch

ResNet18

Baseline 32 32 78.07 44.79 300

APoT 4 4 77.75 5.8 300

Ours 3.03 3.22 77.42 4.72 300

APoT 3 3 76.11 4.41 600

Ours 2.67 3.04 76.01 4.38 300

APoT 2 2 71.7 3.01 900

Ours 1.29 2.18 73.34 1.8 300

ResNet20

Baseline 32 32 66.93 1.09 300

APoT 4 4 66.95 0.16 300

Ours 3.8 3.8 67.9 0.15 300

APoT 3 3 66.98 0.13 600

Ours 2.3 2.75 66.42 0.12 300

APoT 2 2 66.42 0.09 900

Ours 1.8 2.45 64.25 0.09 300

ResNet56

Baseline 32 32 94.46 3.27 300

APoT 4 4 93.93 0.42 300

Ours 3.37 3.42 93.74 0.32 300

APoT 3 3 93.77 0.32 600

APoT 2 2 93.05 0.21 900

Ours 2.37 2.75 92.89 0.2 300

Ours 1.82 2.42 92.22 0.16 300

MobileNetV2

Baseline 32 32 75.58 9.13 300

APoT 4 4 75.2 1.63 300

Ours 3.94 3.94 75.21 1.62 300

APoT 3 3 74.14 1.36 600

APoT 2 2 67.4 1.09 900

Ours 2.19 2.69 71.24 1.01 300

Ours 1.71 2.37 62.9 1 300

(b) Comparing different Models (CIFAR-
100)

Table 3.5: Comparing reults by applying our method (imprinting) on different models.
Our method here refers to using imprinting as the metric for measuring the layer
importance. (a) is using CIFAR10 as the dataset and (b) is using CIFAR100 as the
dataset.

35

3.5.2 Larger Dataset

In order to test if our method works on a larger dataset. We applied the imprint-

ing method in Section 3.4.2 with ResNet18 on the Imagenet dataset. The results

are shown in Table 3.6. Our method outperforms the mixed quantization method

BitPruning and the fixed quantization method PACT on a similar configuration.

Although we achieve comparable accuracy to APoT, we perform quantization in con-

stant time regardless of the budget constrain. Unlike APoT, which applies an iterative

process where each fine-tuned model is used as a starting point for the next bit-width

configuration. This means training time grows linearly as a lower budget is targeted.

Method Weights Activations Accuracy

PACT [43] 5 5 69.8

APoT 5 5 70.75

Ours(APoT) 4.38 4.38 70.59

PACT [43] 4 4 69.2

APoT 4 4 70.74

Ours(APoT) 3.55 3.55 70.12

BitPruning [42] 3.38 4.14 69.19

PACT [43] 3 3 68.1

APoT 3 3 69.79

Ours(APoT) 2.72 2.72 69.84

APoT 2 2 66.46

Table 3.6: Results for ResNet18 on Imagenet. We compared our results with the
fixed-precision methods PACT[43] and APoT[51], as well as mixed-precision method
BitPruning[42].

3.5.3 Different quantization method

One advantage of our method is that it does not rely on a specific quantization

method. APoT method uses non-uniform quantization which produces non-uniform

36

quantization ranges. To test how well our method works with other types of quan-

tization methods, we applied it with Uniform and PoT quantizations as well and

compared it with other state-of-the-art quantization methods, such as Differential

Quantization (DQ) and Trained Quantization Threshold(TQT) methods. The re-

sults are shown in Table 3.7. PACT uses uniform quantization. Compared to our

method with uniform quantization, PACT is outperformed. ZeroQ achieves better

accuracy than our method on a similar model size but the average bit length for

the activation is also higher than ours. Compared to DQ and TQT, we are able to

maintain a comparable level of accuracy with a similar weight size with ResNet-20 on

CIFAR-10. We can also see that as the average bit length gets smaller, the accuracy

is not hurt significantly. One huge advantage of our method compared to APoT, is

that, instead of using the fine-tuned pre-trained higher precision model as a starting

point to train a lower bit configuration, our approach does not require such a high

amount of fine-tuning epochs to reach a low bit configuration and smaller model size.

It is worth mentioning that in some cases the model size can be larger even if the bit

length for weights and activations are smaller. The reason is that these bit lengths are

average values of all convolutional layers and some layers are much more compressed

than in our mixed-precision quantized model than their counterpart fixed-precision

quantized models.

37

Method Weight Activation Size (MB) Accuracy Epoch

PACT [43] 4 4 - 91.3 -

APoT [51] 4 4 0.14 92.45 300

PoT 4 4 0.14 91.85 300

Uniform 4 4 0.14 92.86 300

ZeroQ [44] learned 8 0.13 93.16 -

Ours(APoT) 3.85 3.85 0.13 92.82 300

Ours(Uniform) 3.1 3.3 0.12 92.04 300

Ours(PoT) 3.3 3.4 0.11 91.37 300

PACT [43] 3 3 - 91.1 -

Ours(Uniform) 2.8 3.15 0.11 91.87 300

APoT [51] 3 3 0.1 92.49 600

PoT 3 3 0.1 91.78 600

Uniform 3 3 0.1 92.36 600

Ours(PoT) 2.8 3 0.1 91.29 300

Ours(APoT) 2.3 2.7 0.1 91.65 300

PACT [43] 2 2 - 89.7 -

DQ(Uniform) [54] learned 4 0.07 91.42 160

DQ(POT) [54] learned 4 0.07 88.77 160

APoT[51] 2 2 0.07 90.96 900

PoT 2 2 0.07 91.14 900

Uniform 2 2 0.07 91.06 900

Ours(PoT) 1.7 2.4 0.07 90.28 300

TQT (Uniform) [55] 2.3 4 0.065 90.83 160

TQT (POT) [55] 2.3 4 0.065 88.71 160

Ours(APoT) 1.6 2.4 0.06 90.64 300

Ours(Uniform) 1.5 2.3 0.06 90.04 300

Table 3.7: Comparing different quantization methods with ResNet20 on CIFAR-10

38

Chapter 4

Gradients Estimation for
Quantization

4.1 Different Gradient Estimation Methods

In this section, we will see different existing methods that try to solve the non-

differential problem of quantization.

4.1.1 Straight Through Estimator

As we already know, the quantization process is a non-differential process as it con-

tains rounding a real number to a discrete value. In order to overcome this non-

differential property during the back-propagation, most of the current quantization

work uses the Straight Through Estimator (STE) [48] to estimate the gradients of

the quantization. The idea of STE is fairly simple. It just copies the gradient with

respect to the stochastic output directly as an estimator of the gradient with respect

to the sigmoid argument. In other words, it means backpropagate through the hard

threshold function as if it had been the identity function. In the case of quantization,

it’s the projection function. That is to say that STE assumes that:

∂ΠQ(α,b) ⌊W,α⌉
∂ ⌊W,α⌉

= 1 (4.1)

where Π is the projection function. It means the variable before and after projection

are treated the same in back propagation.

39

Yin et al. [56] justified that STE is properly chosen for estimating the gradients of

the quantized neural networks and searching in the negative direction of the gradients

that uses STE minimizes the training loss, even though the gradients that use STE is

not the gradients of any function. However, since this STE is still just an estimation

of the actual gradients, it contributes errors into the network and will affect the final

accuracy.

4.1.2 Other Estimation methods

STE is a quick and easy way to estimate the gradients of the projection function,

but researchers are still trying to find ways to decrease the error introduced by this

gradient estimation.

Figure 4.1: Pipeline of QuantNet [57] for binarizing neural networks. The solid lines
are the forward pass and the dashed blue lines are the backward pass. The dashed
red lines are the gradients flow from the meta regularization.

Liu et al. [57] introduced QuantNet that binarizes a full precision network without

using STE or any estimator. The idea is to directly binarize the weights with the help

of another neural network called a meta-based quantizer. The binarized network and

the quantizer are trained and optimized jointly. The whole architecture presented

by Liu et al. is shown in Figure 4.1. A meta quantizer, QuantNet, is attached

to each layer of the network and is used to generate the binarized weights. The

quantizer consists of three steps: encoding, compressing, and decoding. The sign of

the quantized weights will be used as the weights for the binarized network. Some

results of the QuantNet are shown in Table 4.1. More results are included in the

original paper. From their results, we can see that their method can achieve higher

40

accuracy than the methods that use STE, which is commonly used in the quantization

of neural networks. However, attaching a new network to each layer will add lots of

overheads during the training process, especially when the network is deep. According

to [57], it takes 1.7x the training time of the full precision training for ResNet34.

Method
Bit-width

W/A
ResNet56 ResNet110

FP 32/32 71.22 72.54

DoReFa-Net [47] 1/2 66.42 66.83

QuantNet 1/2 69.38 70.17

Table 4.1: Top-1 accuracy on CIFAR-100. Comparison of QuantNet with the existing
methods on ResNet-56 and ResNet-110

Zhuang et al. [58] propose to add a full-precision auxiliary module to guide the

training of the low-precision network. During the training process, they connect the

full precision module to the quantized network and train this newly formed mixed-

precision network jointly with the quantized network through weight sharing. The

process is shown in Figure 4.2. The training loss is the combined loss of the quantized

network and the mixed-precision network (i.e. L+ Laux). During the inference time,

Figure 4.2: A overview of the method proposed in [58] Blue color represents low-
precision operations and pink color represents full-precision operations.

only the quantized network is used. This auxiliary module can be added to many

different existing quantization methods. The results in Table 4.2 show that the use

of the full precision weights can help avoid using STE and increase the performance

41

of the quantized model.

Model Method Top-1 Accuracy

ResNet101
DoReFa-Net (2-bit) 70.8

DoReFa-Net + Auxi 74.6

ResNet50
LQ-Net (3-bit) 74.2

LQ-Net + Auxi 75.4

ResNet18
BiReal-Net 56.4

BiReal-Net + Auxi 64.8

Table 4.2: Accuracy of different comparing methods on the ImageNet validation set.

4.2 Experiments for Gradients Estimations for Quan-

tization

In this section, we will talk about our experiments for gradient estimation quantiza-

tion and discuss the results.

4.2.1 Using full-precision vs. quantized weights

For most of the quantization methods, during the forward pass, the quantized input

and weights are used. During the backward pass, the gradients for the quantized

weights are estimated using STE, which will accumulate errors that will affect the

model performance. To make up for the error accumulated by estimating the gradients

of quantization, we try to make use of the full-precision weights that we have access

to, during the training time. That is, using full-precision weights and inputs whenever

quantized weights and inputs are needed originally during the backward pass.

We applied this“new gradients” method on APoT and vanilla uniform quantization.

The results are shown in Table 4.3. We can see that this method works fine with high

bit precision, but the accuracy drops a lot after further quantization.

In order to find out the reason for the accuracy drop, we plot the histogram of

42

Method Weight Bits Activation Bits Accuracy

FP 32 32 92.96

APoT 4 4 92.45

APoT (new gradients) 4 4 92.69

Uniform (new gradients) 4 4 91.23

APoT 3 3 92.49

APoT (new gradients) 3 3 90.62

Uniform (new gradients) 3 3 83.29

APoT 2 2 90.96

APoT (new gradients) 2 2 70.31

(a) Accuracy of training ResNet-20 on CIFAR10

Weight Bits Activation Bits Accuracy

FP 32 32 94..46

APoT 4 4 93.93

APoT (new gradients) 4 4 94.13

Uniform (new gradients 4 4 91.73

APoT 3 3 93.77

APoT (new gradients) 3 3 92.61

Uniform (new gradients 3 3 84.21

APOT 2 2 93.05

APoT (new gradients) 2 2 81.56

(b) Accuracy of training ResNet-56 on CIFAR10

Table 4.3: Results for using full-precision weights in backward pass.
′APoT (newgradients)′ means applying the method with APoT quantization.
′Uniform(newgradients)′ means applying the method with Uniform quantization

the weights of some layers on ResNet20, as shown in Figure 4.3. From Figure A.2a

and A.2b, we can see that the full-precision weights and the quantized weights have

a similar histogram. However, as the precision goes lower, the histogram starts to

show a noticeable difference between full-precision weights and the quantized weights,

43

(a) Histogram of full-precision wieghts (left)
vs. quantized weights (right) of the 1st layer
of ResNet20 when bit precision is 4.

(b) Histogram of full-precision wieghts (left)
vs. quantized weights (right) of the 16th layer
of ResNet20 when bit precision is 4.

(c) Histogram of full-precision wieghts (left)
vs. quantized weights (right) of the 1st layer
of ResNet20 when bit precision is 3.

(d) Histogram of full-precision wieghts (left)
vs. quantized weights (right) of the 16th layer
of ResNet20 when bit precision is 3.

(e) Histogram of full-precision wieghts (left)
vs. quantized weights (right) of the 1st layer
of ResNet20 when bit precision is 2.

(f) Histogram of full-precision wieghts (left)
vs. quantized weights (right) of the 16th layer
of ResNet20 when bit precision is 2.

Figure 4.3: Histogram of full-precision weights (left) and quantized weights(right) for
the 1st and 16th layer in ResNet20. (a) and (b) are when the bit precision is 4. (c)
and (d) are when the bit precision is 3. (e) and (f) are when the bit precision is 2.

as shown in Figure A.2c to 4.3e. Thus, using full-precision weights to calculate the

gradients during the back-propagation will introduce more errors as the bit precision

goes lower, which could cause the accuracy to drop significantly.

44

Chapter 5

Conclusions, Recommendations, &
Future Work

5.1 Mixed Precision Quantization

5.1.1 Conclusions

In this thesis, we conclude that it is recommended to have a mixed-precision quan-

tization scheme to compress neural networks. We have also introduced a bit-length

selection method to identify and rank the importance of each convolutional layer

by using one-shot imprinting and other estimation metrics. This method gives us

the ability to convert any fixed-precision quantization method into mixed-precision,

which usually produces neural network models with smaller model sizes. The use of

imprinting also reduces the training epochs required to reach a relatively low average

bit length. We have acquired comparable results on CIFAR-10, CIFAR-100, and Im-

ageNet, compared to APoT and other state-of-the-art mixed-precision quantization

methods.

5.1.2 Future Work

Our current approach to search for a suitable bit configuration is almost a greedy

solution. In the future, we can explore more options on the search method. For ex-

ample, using a reinforcement learning agent to automatically search the configuration

space may help reduce the use of labor. We could also add an assisting network to

45

predict the compress ratio of the bit configurations and use that instead of greedy

searching.

Another direction for future work could be combining the quantization with other

methods to achieve more compression ratio or faster inference time. As mentioned

in Chapter 2, many other model compression techniques can be combined together.

Recently, Kim et al. [59] introduced their PQK model compression method that

consists of pruning, quantization, and knowledge distillation. We could try pruning

combined with our quantization using imprinting.

5.2 Gradients Estimation Methods

5.2.1 Conclusions

In this thesis, we have seen different estimation methods that allow the gradients to

propagate smoothly in the backward propagation. We have also learned from the

experiments that directly using full precision weights instead of quantized ones won’t

make up with the error introduced by using STE and it will even contribute more

error due to the different distribution between the weights before quantization and

after.

5.2.2 Future Work

Even though directly using full precision weights to replace the quantized weights will

not give us any performance improvement. We can still make use of full precision

weights. Our potential future work is to use both full precision weights and quantized

weights together to avoid dealing with the non-differential function. For example,

we can use the full precision weights to guide the quantized weights to flow in the

backward propagation. Another idea is to train a neural network that represents the

process of non-differential projection function because of the universal approximation

property of neural networks. Then we can use the gradients of such network in the

backpropagation of the original quantized neural network. It is an idea similar to the

46

QuantNet [57] we have discussed in Section 4.1.2, but instead of especially targeting

Binary Networks, we can focus on working with any kind of quantized networks.

47

References

[1] H. Liu, S. Elkerdawy, N. Ray, and M. Elhoushi, “Layer importance estimation
with imprinting for neural network quantization,” in 2021 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition Workshops (CVPRW), 2021,
pp. 2408–2417. doi: 10.1109/CVPRW53098.2021.00273.

[2] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, and K.
Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer parameters and
<1mb model size,” CoRR, vol. abs/1602.07360, 2016. arXiv: 1602.07360. [On-
line]. Available: http://arxiv.org/abs/1602.07360.

[3] A. G. Howard et al., “Mobilenets: Efficient convolutional neural networks for
mobile vision applications,” CoRR, vol. abs/1704.04861, 2017. arXiv: 1704 .
04861. [Online]. Available: http://arxiv.org/abs/1704.04861.

[4] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2:
Inverted residuals and linear bottlenecks,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2018.

[5] A. Howard et al., “Searching for mobilenetv3,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), 2019.

[6] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely efficient
convolutional neural network for mobile devices,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[7] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical guidelines
for efficient cnn architecture design,” in Proceedings of the European Conference
on Computer Vision (ECCV), 2018.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in Neural Information Pro-
cessing Systems, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Wein-
berger, Eds., vol. 25, Curran Associates, Inc., 2012. [Online]. Available: https://
proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-
Paper.pdf.

[9] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2018.

[10] G. Hinton, O. Vinyals, and J. Dean,Distilling the knowledge in a neural network,
2015. arXiv: 1503.02531 [stat.ML].

48

https://doi.org/10.1109/CVPRW53098.2021.00273
https://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1602.07360
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://arxiv.org/abs/1503.02531

[11] Y. Tian, D. Krishnan, and P. Isola, “Contrastive representation distillation,”
CoRR, vol. abs/1910.10699, 2019. arXiv: 1910.10699. [Online]. Available: http:
//arxiv.org/abs/1910.10699.

[12] T. Furlanello, Z. C. Lipton, M. Tschannen, L. Itti, and A. Anandkumar, Born
again neural networks, 2018. arXiv: 1805.04770 [stat.ML].

[13] M. Gao, Y. Shen, Q. Li, and C. C. Loy, “Residual knowledge distillation,”
CoRR, vol. abs/2002.09168, 2020. arXiv: 2002.09168. [Online]. Available: https:
//arxiv.org/abs/2002.09168.

[14] T. He, C. Shen, Z. Tian, D. Gong, C. Sun, and Y. Yan, “Knowledge adaptation
for efficient semantic segmentation,” CoRR, vol. abs/1903.04688, 2019. arXiv:
1903.04688. [Online]. Available: http://arxiv.org/abs/1903.04688.

[15] S. Anwar and W. Sung, “Coarse pruning of convolutional neural networks with
random masks,” 2017.

[16] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the value
of network pruning,” CoRR, vol. abs/1810.05270, 2018. arXiv: 1810 . 05270.
[Online]. Available: http://arxiv.org/abs/1810.05270.

[17] Y. LeCun, J. Denker, and S. Solla, “Optimal brain damage,” in Advances in
Neural Information Processing Systems, D. Touretzky, Ed., vol. 2, Morgan-
Kaufmann, 1990. [Online]. Available: https://proceedings.neurips.cc/paper/
1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf.

[18] B. Hassibi and D. Stork, “Second order derivatives for network pruning: Opti-
mal brain surgeon,” in Advances in Neural Information Processing Systems, S.
Hanson, J. Cowan, and C. Giles, Eds., vol. 5, Morgan-Kaufmann, 1993. [Online].
Available: https://proceedings.neurips.cc/paper/1992/file/303ed4c69846ab36c2904d3ba8573050-
Paper.pdf.

[19] T. Zhang et al., “A systematic DNN weight pruning framework using alternating
direction method of multipliers,” CoRR, vol. abs/1804.03294, 2018. arXiv: 1804.
03294. [Online]. Available: http://arxiv.org/abs/1804.03294.

[20] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998. doi: 10.1109/5.726791.

[21] X. Ma et al., “PCONV: the missing but desirable sparsity in DNN weight
pruning for real-time execution on mobile devices,” CoRR, vol. abs/1909.05073,
2019. arXiv: 1909.05073. [Online]. Available: http://arxiv.org/abs/1909.05073.

[22] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very deep neu-
ral networks,” CoRR, vol. abs/1707.06168, 2017. arXiv: 1707.06168. [Online].
Available: http://arxiv.org/abs/1707.06168.

[23] T.-W. Chin, R. Ding, C. Zhang, and D. Marculescu, “Towards efficient model
compression via learned global ranking,” in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2020.

49

https://arxiv.org/abs/1910.10699
http://arxiv.org/abs/1910.10699
http://arxiv.org/abs/1910.10699
https://arxiv.org/abs/1805.04770
https://arxiv.org/abs/2002.09168
https://arxiv.org/abs/2002.09168
https://arxiv.org/abs/2002.09168
https://arxiv.org/abs/1903.04688
http://arxiv.org/abs/1903.04688
https://arxiv.org/abs/1810.05270
http://arxiv.org/abs/1810.05270
https://proceedings.neurips.cc/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper/1992/file/303ed4c69846ab36c2904d3ba8573050-Paper.pdf
https://proceedings.neurips.cc/paper/1992/file/303ed4c69846ab36c2904d3ba8573050-Paper.pdf
https://arxiv.org/abs/1804.03294
https://arxiv.org/abs/1804.03294
http://arxiv.org/abs/1804.03294
https://doi.org/10.1109/5.726791
https://arxiv.org/abs/1909.05073
http://arxiv.org/abs/1909.05073
https://arxiv.org/abs/1707.06168
http://arxiv.org/abs/1707.06168

[24] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. Kautz, “Importance estima-
tion for neural network pruning,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2019.

[25] Y. He, P. Liu, Z. Wang, and Y. Yang, “Pruning filter via geometric median for
deep convolutional neural networks acceleration,” CoRR, vol. abs/1811.00250,
2018. arXiv: 1811.00250. [Online]. Available: http://arxiv.org/abs/1811.00250.

[26] M. Lin et al., “Hrank: Filter pruning using high-rank feature map,” CoRR,
vol. abs/2002.10179, 2020. arXiv: 2002 . 10179. [Online]. Available: https : / /
arxiv.org/abs/2002.10179.

[27] X. Lin, C. Zhao, and W. Pan, “Towards accurate binary convolutional neu-
ral network,” CoRR, vol. abs/1711.11294, 2017. arXiv: 1711.11294. [Online].
Available: http://arxiv.org/abs/1711.11294.

[28] Z. Liu, B. Wu, W. Luo, X. Yang, W. Liu, and K. Cheng, “Bi-real net: Enhancing
the performance of 1-bit cnns with improved representational capability and
advanced training algorithm,” CoRR, vol. abs/1808.00278, 2018. arXiv: 1808.
00278. [Online]. Available: http://arxiv.org/abs/1808.00278.

[29] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized
neural networks,” in Advances in Neural Information Processing Systems, D.
Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, Eds., vol. 29, Curran
Associates, Inc., 2016. [Online]. Available: https : //proceedings .neurips . cc/
paper/2016/file/d8330f857a17c53d217014ee776bfd50-Paper.pdf.

[30] F. Li and B. Liu, “Ternary weight networks,” CoRR, vol. abs/1605.04711, 2016.
arXiv: 1605.04711. [Online]. Available: http://arxiv.org/abs/1605.04711.

[31] P. Wang and J. Cheng, “Fixed-point factorized networks,” CoRR, vol. abs/1611.01972,
2016. arXiv: 1611.01972. [Online]. Available: http://arxiv.org/abs/1611.01972.

[32] S. Han, H. Mao, and W. J. Dally, Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding, 2016. arXiv:
1510.00149 [cs.CV].

[33] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and Y. Chen, “Compress-
ing neural networks with the hashing trick,” CoRR, vol. abs/1504.04788, 2015.
arXiv: 1504.04788. [Online]. Available: http://arxiv.org/abs/1504.04788.

[34] P. Stock, A. Joulin, R. Gribonval, B. Graham, and H. Jégou, “And the bit goes
down: Revisiting the quantization of neural networks,” CoRR, vol. abs/1907.05686,
2019. arXiv: 1907.05686. [Online]. Available: http://arxiv.org/abs/1907.05686.

[35] M. Á. Carreira-Perpiñán, “Model compression as constrained optimization, with
application to neural nets. part I: general framework,” CoRR, vol. abs/1707.01209,
2017. arXiv: 1707.01209. [Online]. Available: http://arxiv.org/abs/1707.01209.

[36] M. Courbariaux, Y. Bengio, and J. David, “Binaryconnect: Training deep neural
networks with binary weights during propagations,” CoRR, vol. abs/1511.00363,
2015. arXiv: 1511.00363. [Online]. Available: http://arxiv.org/abs/1511.00363.

50

https://arxiv.org/abs/1811.00250
http://arxiv.org/abs/1811.00250
https://arxiv.org/abs/2002.10179
https://arxiv.org/abs/2002.10179
https://arxiv.org/abs/2002.10179
https://arxiv.org/abs/1711.11294
http://arxiv.org/abs/1711.11294
https://arxiv.org/abs/1808.00278
https://arxiv.org/abs/1808.00278
http://arxiv.org/abs/1808.00278
https://proceedings.neurips.cc/paper/2016/file/d8330f857a17c53d217014ee776bfd50-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/d8330f857a17c53d217014ee776bfd50-Paper.pdf
https://arxiv.org/abs/1605.04711
http://arxiv.org/abs/1605.04711
https://arxiv.org/abs/1611.01972
http://arxiv.org/abs/1611.01972
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1504.04788
http://arxiv.org/abs/1504.04788
https://arxiv.org/abs/1907.05686
http://arxiv.org/abs/1907.05686
https://arxiv.org/abs/1707.01209
http://arxiv.org/abs/1707.01209
https://arxiv.org/abs/1511.00363
http://arxiv.org/abs/1511.00363

[37] H. Qin et al., “Ir-net: Forward and backward information retention for highly ac-
curate binary neural networks,” CoRR, vol. abs/1909.10788, 2019, Withdrawn.
arXiv: 1909.10788. [Online]. Available: http://arxiv.org/abs/1909.10788.

[38] P. Wang, Q. Hu, Y. Zhang, C. Zhang, Y. Liu, and J. Cheng, “Two-step quantiza-
tion for low-bit neural networks,” in 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2018, pp. 4376–4384. doi: 10.1109/CVPR.
2018.00460.

[39] N. Mellempudi, A. Kundu, D. Mudigere, D. Das, B. Kaul, and P. Dubey,
“Ternary neural networks with fine-grained quantization,” CoRR, vol. abs/1705.01462,
2017. arXiv: 1705.01462. [Online]. Available: http://arxiv.org/abs/1705.01462.

[40] F. Zhu et al., “Towards unified INT8 training for convolutional neural network,”
CoRR, vol. abs/1912.12607, 2019. arXiv: 1912.12607. [Online]. Available: http:
//arxiv.org/abs/1912.12607.

[41] S. Han, H. Mao, and W. J. Dally, Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding, 2016. arXiv:
1510.00149 [cs.CV].

[42] M. Nikolic et al., “Bitpruning: Learning bitlengths for aggressive and accurate
quantization,” CoRR, vol. abs/2002.03090, 2020. arXiv: 2002.03090. [Online].
Available: https://arxiv.org/abs/2002.03090.

[43] J. Choi, Z. Wang, S. Venkataramani, P. I. Chuang, V. Srinivasan, and K.
Gopalakrishnan, “PACT: parameterized clipping activation for quantized neu-
ral networks,” CoRR, vol. abs/1805.06085, 2018. arXiv: 1805.06085. [Online].
Available: http://arxiv.org/abs/1805.06085.

[44] Y. Cai, Z. Yao, Z. Dong, A. Gholami, M. W. Mahoney, and K. Keutzer, “Zeroq:
A novel zero shot quantization framework,” CoRR, vol. abs/2001.00281, 2020.
arXiv: 2001.00281. [Online]. Available: http://arxiv.org/abs/2001.00281.

[45] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann
machines,” in ICML, 2010, pp. 807–814. [Online]. Available: https://icml.cc/
Conferences/2010/papers/432.pdf.

[46] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Quan-
tized neural networks: Training neural networks with low precision weights and
activations,” CoRR, vol. abs/1609.07061, 2016. arXiv: 1609 . 07061. [Online].
Available: http://arxiv.org/abs/1609.07061.

[47] S. Zhou, Z. Ni, X. Zhou, H. Wen, Y. Wu, and Y. Zou, “Dorefa-net: Training low
bitwidth convolutional neural networks with low bitwidth gradients,” CoRR,
vol. abs/1606.06160, 2016. arXiv: 1606.06160. [Online]. Available: http://arxiv.
org/abs/1606.06160.

[48] Y. Bengio, N. Léonard, and A. C. Courville, “Estimating or propagating gradi-
ents through stochastic neurons for conditional computation,” CoRR, vol. abs/1308.3432,
2013. arXiv: 1308.3432. [Online]. Available: http://arxiv.org/abs/1308.3432.

51

https://arxiv.org/abs/1909.10788
http://arxiv.org/abs/1909.10788
https://doi.org/10.1109/CVPR.2018.00460
https://doi.org/10.1109/CVPR.2018.00460
https://arxiv.org/abs/1705.01462
http://arxiv.org/abs/1705.01462
https://arxiv.org/abs/1912.12607
http://arxiv.org/abs/1912.12607
http://arxiv.org/abs/1912.12607
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/2002.03090
https://arxiv.org/abs/2002.03090
https://arxiv.org/abs/1805.06085
http://arxiv.org/abs/1805.06085
https://arxiv.org/abs/2001.00281
http://arxiv.org/abs/2001.00281
https://icml.cc/Conferences/2010/papers/432.pdf
https://icml.cc/Conferences/2010/papers/432.pdf
https://arxiv.org/abs/1609.07061
http://arxiv.org/abs/1609.07061
https://arxiv.org/abs/1606.06160
http://arxiv.org/abs/1606.06160
http://arxiv.org/abs/1606.06160
https://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432

[49] D. Miyashita, E. H. Lee, and B. Murmann, “Convolutional neural networks us-
ing logarithmic data representation,” CoRR, vol. abs/1603.01025, 2016. arXiv:
1603.01025. [Online]. Available: http://arxiv.org/abs/1603.01025.

[50] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental network quantiza-
tion: Towards lossless cnns with low-precision weights,” CoRR, vol. abs/1702.03044,
2017. arXiv: 1702.03044. [Online]. Available: http://arxiv.org/abs/1702.03044.

[51] Y. Li, X. Dong, and W. Wang, “Additive powers-of-two quantization: A non-
uniform discretization for neural networks,” CoRR, vol. abs/1909.13144, 2019.
arXiv: 1909.13144. [Online]. Available: http://arxiv.org/abs/1909.13144.

[52] H. Qi, M. Brown, and D. G. Lowe, “Learning with imprinted weights,” CoRR,
vol. abs/1712.07136, 2017. arXiv: 1712.07136. [Online]. Available: http://arxiv.
org/abs/1712.07136.

[53] S. Elkerdawy, M. Elhoushi, A. Singh, H. Zhang, and N. Ray, “One-shot layer-
wise accuracy approximation for layer pruning,” in 2020 IEEE International
Conference on Image Processing (ICIP), 2020, pp. 2940–2944. doi: 10.1109/
ICIP40778.2020.9191238.

[54] S. Uhlich et al., “Differentiable quantization of deep neural networks,” CoRR,
vol. abs/1905.11452, 2019. arXiv: 1905.11452. [Online]. Available: http://arxiv.
org/abs/1905.11452.

[55] S. R. Jain, A. Gural, M. Wu, and C. Dick, “Trained uniform quantization
for accurate and efficient neural network inference on fixed-point hardware,”
CoRR, vol. abs/1903.08066, 2019. arXiv: 1903.08066. [Online]. Available: http:
//arxiv.org/abs/1903.08066.

[56] P. Yin, J. Lyu, S. Zhang, S. J. Osher, Y. Qi, and J. Xin, “Understanding
straight-through estimator in training activation quantized neural nets,” CoRR,
vol. abs/1903.05662, 2019. arXiv: 1903.05662. [Online]. Available: http://arxiv.
org/abs/1903.05662.

[57] J. Liu et al., “Quantnet: Learning to quantize by learning within fully differen-
tiable framework,” in Computer Vision – ECCV 2020 Workshops, A. Bartoli
and A. Fusiello, Eds., Cham: Springer International Publishing, 2020, pp. 38–
53, isbn: 978-3-030-68238-5.

[58] B. Zhuang, L. Liu, M. Tan, C. Shen, and I. Reid, “Training quantized neural net-
works with a full-precision auxiliary module,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

[59] J. Kim, S. Chang, and N. Kwak, “PQK: model compression via pruning, quan-
tization, and knowledge distillation,” CoRR, vol. abs/2106.14681, 2021. arXiv:
2106.14681. [Online]. Available: https://arxiv.org/abs/2106.14681.

52

https://arxiv.org/abs/1603.01025
http://arxiv.org/abs/1603.01025
https://arxiv.org/abs/1702.03044
http://arxiv.org/abs/1702.03044
https://arxiv.org/abs/1909.13144
http://arxiv.org/abs/1909.13144
https://arxiv.org/abs/1712.07136
http://arxiv.org/abs/1712.07136
http://arxiv.org/abs/1712.07136
https://doi.org/10.1109/ICIP40778.2020.9191238
https://doi.org/10.1109/ICIP40778.2020.9191238
https://arxiv.org/abs/1905.11452
http://arxiv.org/abs/1905.11452
http://arxiv.org/abs/1905.11452
https://arxiv.org/abs/1903.08066
http://arxiv.org/abs/1903.08066
http://arxiv.org/abs/1903.08066
https://arxiv.org/abs/1903.05662
http://arxiv.org/abs/1903.05662
http://arxiv.org/abs/1903.05662
https://arxiv.org/abs/2106.14681
https://arxiv.org/abs/2106.14681

Appendix A: More Detailed
Results for Mixed Precision
Quantization

Here we provide more result details of the mixed precision quantization method that

we introduced in Section ??. In Figure A.1, we show our final bit-length configura-

tion that’s selected by the algorithm 2 with ResNet20 as the model and CIFAR10 as

the dataset. Figure A.2 and Figure A.3 shows the intermediate accuracy estimation

results with and without a small fine-tuning step before imprinting. The small im-

printing will help to keep the accuracy of the last layer close to the ground truth, but

it won’t affect how the layers are selected. For reducing training time purpose, we do

not include it in algorithm 2.

53

co
nv

1.
1

co
nv

1.
2

co
nv

2.
1

co
nv

2.
2

co
nv

3.
1

co
nv

3.
2

do
wn

sa
m

pl
e1

co
nv

4.
1

co
nv

4.
2

co
nv

5.
1

co
nv

5.
2

co
nv

6.
1

co
nv

6.
2

do
wn

sa
m

pl
e2

co
nv

7.
1

co
nv

7.
2

co
nv

8.
1

co
nv

8.
2

co
nv

9.
1

co
nv

9.
2

Bit Length

1.0

1.5

2.0

2.5

3.0

3.5

4.0

La
ye

rs

('APOT', 3.85)
('POT', 3.3)
('Uniform', 3.1)

(a) The final bit-length config-
uration for models with aver-
age bit length ∈ [3, 4]

co
nv

1.
1

co
nv

1.
2

co
nv

2.
1

co
nv

2.
2

co
nv

3.
1

co
nv

3.
2

do
wn

sa
m

pl
e1

co
nv

4.
1

co
nv

4.
2

co
nv

5.
1

co
nv

5.
2

co
nv

6.
1

co
nv

6.
2

do
wn

sa
m

pl
e2

co
nv

7.
1

co
nv

7.
2

co
nv

8.
1

co
nv

8.
2

co
nv

9.
1

co
nv

9.
2

Bit Length

1.0

1.5

2.0

2.5

3.0

3.5

4.0

La
ye

rs

('APOT', 2.3)
('POT', 2.8)
('Uniform', 2.8)

(b) The final bit-length config-
uration for models with aver-
age bit length ∈ [2, 3]

co
nv

1.
1

co
nv

1.
2

co
nv

2.
1

co
nv

2.
2

co
nv

3.
1

co
nv

3.
2

do
wn

sa
m

pl
e1

co
nv

4.
1

co
nv

4.
2

co
nv

5.
1

co
nv

5.
2

co
nv

6.
1

co
nv

6.
2

do
wn

sa
m

pl
e2

co
nv

7.
1

co
nv

7.
2

co
nv

8.
1

co
nv

8.
2

co
nv

9.
1

co
nv

9.
2

Bit Length

1.0

1.5

2.0

2.5

3.0

3.5

4.0

La
ye

rs

('APOT', 1.65)
('POT', 1.7)
('Uniform', 1.5)

(c) The final bit-length config-
uration for models with aver-
age bit length ∈ [1, 2]

Figure A.1: The final big-length configuration for our ResNet20 models trained on
CIFAR-10

co
nv

1.
1

co
nv

1.
2

co
nv

2.
1

co
nv

2.
2

co
nv

3.
1

co
nv

3.
2

do
wn

sa
m

pl
e1

co
nv

4.
1

co
nv

4.
2

co
nv

5.
1

co
nv

5.
2

co
nv

6.
1

co
nv

6.
2

do
wn

sa
m

pl
e2

co
nv

7.
1

co
nv

7.
2

co
nv

8.
1

co
nv

8.
2

co
nv

9.
1

co
nv

9.
2 GT

0

20

40

60

80

100

Ac
cu

ra
cy

32 31

39

24

36

47 46
50

39

52

36

53 52
57

65

52

69 69

83

91 92

(a) An iteration from early
stage. The second convolu-
tional layer in the 8th block
for ResNet20 will reduce its
bitwidth by 1

co
nv

1.
1

co
nv

1.
2

co
nv

2.
1

co
nv

2.
2

co
nv

3.
1

co
nv

3.
2

do
wn

sa
m

pl
e1

co
nv

4.
1

co
nv

4.
2

co
nv

5.
1

co
nv

5.
2

co
nv

6.
1

co
nv

6.
2

do
wn

sa
m

pl
e2

co
nv

7.
1

co
nv

7.
2

co
nv

8.
1

co
nv

8.
2

co
nv

9.
1

co
nv

9.
2 GT

0

20

40

60

80

100

Ac
cu

ra
cy

32 34
39

25

36

46 45 47

40

51

38

52
49

54

62

51

65 65

72

78

47

(b) An iteration from middle
stage. The second convolu-
tional layer in the 8th block
for ResNet20 will reduce its
bitwidth by 1

co
nv

1.
1

co
nv

1.
2

co
nv

2.
1

co
nv

2.
2

co
nv

3.
1

co
nv

3.
2

do
wn

sa
m

pl
e1

co
nv

4.
1

co
nv

4.
2

co
nv

5.
1

co
nv

5.
2

co
nv

6.
1

co
nv

6.
2

do
wn

sa
m

pl
e2

co
nv

7.
1

co
nv

7.
2

co
nv

8.
1

co
nv

8.
2

co
nv

9.
1

co
nv

9.
2 GT

0

20

40

60

80

100

Ac
cu

ra
cy

32 34
39

28

36

46 44 42 40 41 40
43

31

41 42
39 41 39 38

34

13

(c) An iteration from late
stage. The first convolu-
tional layer in the 5th block
for ResNet20 will reduce its
bitwidth by 1

Figure A.2: Evolution of layer ranking in iterative imprinting. The model used is
ResNet20 on CIFAR-10 dataset.

54

co
nv

01

co
nv

02

co
nv

03

co
nv

04

co
nv

05

co
nv

06

co
nv

07

co
nv

08

co
nv

09

co
nv

10

co
nv

11

co
nv

12

co
nv

13

co
nv

14

co
nv

15

co
nv

16

co
nv

17

co
nv

18

co
nv

19

co
nv

20 GT

0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

31 30

39

23

38

48
46

50

42

52

43

52 51

56

64

52

67
65

81

89 89

(a) An iteration from early
stage. The second convolu-
tional layer in the 1st block
for ResNet20 will reduce its
bitwidth by 1

co
nv

01

co
nv

02

co
nv

03

co
nv

04

co
nv

05

co
nv

06

co
nv

07

co
nv

08

co
nv

09

co
nv

10

co
nv

11

co
nv

12

co
nv

13

co
nv

14

co
nv

15

co
nv

16

co
nv

17

co
nv

18

co
nv

19

co
nv

20 GT

0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

30
27

37

32

37

45 46
49

42

50

38

52 51
55

63

51

66 65

79

89 89

(b) An iteration from middle
stage. The first downsam-
ple layer (conv7 in the figure)
for ResNet20 will reduce its
bitwidth by 1

co
nv

01

co
nv

02

co
nv

03

co
nv

04

co
nv

05

co
nv

06

co
nv

07

co
nv

08

co
nv

09

co
nv

10

co
nv

11

co
nv

12

co
nv

13

co
nv

14

co
nv

15

co
nv

16

co
nv

17

co
nv

18

co
nv

19

co
nv

20 GT

0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

31 30

38 37 36

42 43
47

42

51

40

51 51
55

62

49

64 64

77

87 88

(c) An iteration from late
stage. The second convolu-
tional layer in the 6th block
for ResNet20 will reduce its
bitwidth by 1

Figure A.3: Evolution of layer ranking in iterative imprinting. We added a fine-tuning
of 8 epochs between interations compared to Figure A.2. The model used is ResNet20
on CIFAR-10 dataset.

55

	Introduction
	Motivation and Background
	Compact Architecture Design
	Knowledge Distillation
	Pruning
	Quantization

	Thesis Scope
	Thesis Contributions
	Thesis Outline

	Related Works and Mixed Precision Quantization
	Preliminary
	Different Quantization Levels
	Uniform Quantization
	Non-uniform Quantization

	Imprinting
	Layer Importance Estimation For Mixed Precision Quantization
	Mixed precision with APoT
	The Bit Selection Algorithm

	Experiments for Mixed Precision Quantization
	Why Mixed Precision?
	Hyper-parameters in The Bit Selection Algorithm
	Full-precision vs. Quantized weights
	Other Importance Estimation Metrics
	Min-variance vs. Max-variance
	One-shot Selection Method with Imprinting

	Generalization
	Different models
	Larger Dataset
	Different quantization method

	Gradients Estimation for Quantization
	Different Gradient Estimation Methods
	Straight Through Estimator
	Other Estimation methods

	Experiments for Gradients Estimations for Quantization
	Using full-precision vs. quantized weights

	Conclusions, Recommendations, & Future Work
	Mixed Precision Quantization
	Conclusions
	Future Work

	Gradients Estimation Methods
	Conclusions
	Future Work

	References
	Appendix A: More Detailed Results for Mixed Precision Quantization

