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Abstract

Shear-induced aggregation is an important process in the solid-liquid separation of col-

loidal particles, i.e., solid particles in the micron size range. In this process, the solid particles

are mixed with chemical destabilizers in shear flow to induce the formation of aggregates

or flocs, which are easier to separate than individual particles due to their larger size. De-

pending on the shear rate of the system, the hydrodynamic forces acting on flocs can break

them into smaller fragments or induce their restructuring, which leads to the formation of

small compact flocs. Aggregate breakage is an undesirable process because it decreases the

efficiency of industrial solid-liquid separation systems. In order to prevent floc breakage and

enhance the control of the final aggregate size and structure from shear-induced aggrega-

tion, it is crucial to quantitatively understand the restructuring and breakage mechanisms in

shear flows. Therefore, the objective of the present work is to investigate the breakage and

restructuring of populations of aggregates in laminar shear flow via a statistical approach.

A population balance model (PBM) was developed to predict the evolution of the average

aggregate size, the floc size distribution, and the morphology of populations of aggregates

from breakage experiments that were conducted in a previous study (Gustavo Cifuentes,

Aggregate Breakage in Laminar Couette Flow, 2022). These experiments were performed in

a Taylor-Couette cell at laminar flow conditions. The aggregates were composed of 2 µm

latex spheres, and they were formed in a neutrally buoyant fluid-particle system at a shear

rate of 17.6 s−1. Then, the breakage and restructuring of aggregates were facilitated by doing

a step increase in the shear rate to values ranging from 28.9 s−1 to 86.8 s−1.

The current work focused on modelling the behaviour of floc populations after the step

increase in the shear rate from Cifuentes’ breakage experiments. The results from this work
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proved that the breakage and restructuring of aggregates in laminar flow can be modelled

via PBM. It was observed that the shear-induced breakage mechanism of relatively com-

pact aggregates (Df ≥ 2.2) is non-uniform, i.e., fragments of different sizes have different

probabilities of occurring. Additionally, the scaling exponent from the aggregate strength

power-law relationship Rss
g ∝ γ̇−p was proved to be p = 0.5. The local shear rate (Gb,i) re-

quired to break an aggregate of size Rg,i was shown to scale with the floc population Reynolds

number at steady-state, i.e., Gb,i ∝ RessD32
. This relationship can be used to estimate the

fitting parameter B of the breakage kernel in PBM simulations. Regarding the modelling of

floc collisions, it was noticed that floc permeability must be considered in order to produce

accurate predictions of the floc size distribution. Lastly, the initial aggregate restructur-

ing after the step increase in shear rate from Cifuentes’ experiments can be assumed to be

instantaneous, i.e., it occurs much faster than the observed time scale and measurement

sampling time. This assumption allows the PBM to model the long-term floc restructuring

and to produce better predictions of the evolution of average floc size and size distribution

over time for different shear rates.
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Sanders and Dr. Jean-Sébastien Kroll-Rabotin. I had the great privilege to work under the

supervision of these two amazing professionals and human beings, who constantly encouraged

and trusted me with this research project. This thesis would not have been accomplished

without them.

To Prof. Sanders, thank you for giving me the opportunity to do an MSc at the renowned

University of Alberta, and for always keeping the safety and mental health of students the top

priority in your research group. Also, thank you for sharing your passion for teaching with me

and for giving me the opportunity to be your teacher assistant on multiple occasions. Thank

you for showing me the value of communicating research in an interesting and understandable

way. Lastly, thank you for your patience and guidance in my MSc project. I am eternally

grateful for this professional experience.

To Dr. Kroll-Rabotin, thank you for your immense technical support and input in the de-

velopment of the numerical methods and interpretation of the results of my research project.

Before I met you, Prof. Sanders said that it would be a miracle for me to work with you.

Now I understand why: you have a singular way of approaching physical problems from a

practical mathematical standpoint. Your technical brilliance has inspired me to pursue this

research project and to do my absolute best to extract meaningful results from it. I am

really proud of the results of this work and I owe most of that to you.

I would like to thank my colleagues from the Pipeline Transport Processes research

group, for making this journey exciting and enjoyable. To Dr. Akash Saxena, thank you for

introducing me to the topic of my research project and for your patience in explaining your

work to me. To Gustavo Cifuentes, thank you for teaching me in detail how your experiments

were conducted and for facilitating access to your experimental data: my work could not

have been done without it. I would like to thank my friend Sahil Sood for always being

v



there for me, and for the great conversations about work and life. I would like to show my

appreciation to Aref Kangarshahi and Dr. Marcio Machado, for always providing me with

great professional advice. I also would like to thank Terry Runyon for her administrative

support throughout these years.

I am grateful to my wife Fernanda, whose love motivates me to be the greatest version

of myself. Finally, I am thankful to my mother and grandmother for always putting my

education in first place.

vi



Contents

List of Tables ix

List of Figures xii

List of Symbols 1

1 Introduction 1
1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Oil sands tailings treatment . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Steel alloy purification . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Papermaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Significance of contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Author’s contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Literature Review 13
2.1 Aggregate characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 System forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.1 Cohesive forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Hydrodynamic forces . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Population balance modelling of shear-induced colloidal aggregation: a brief
introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.1 Method of classes (MOC) . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Quadrature method of moments (QMOM) . . . . . . . . . . . . . . . 27
2.3.3 Comparison between MOC and QMOM . . . . . . . . . . . . . . . . 29

2.4 Aggregate breakage and restructuring in shear flow . . . . . . . . . . . . . . 30
2.4.1 Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.2 Shear-induced breakage and restructuring at aggregate length-scale . 31

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.1 Identified Knowledge gaps . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5.2 Proposed scope of the current study . . . . . . . . . . . . . . . . . . . 34

3 Numerical methods 35
3.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Population Balance Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Aggregation kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.2 Breakage Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.3 Breakage distribution function . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Fractal dimension ODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

vii



3.4 Numerical method to solve the PBM . . . . . . . . . . . . . . . . . . . . . . 55
3.5 Summary of case studies and hypotheses . . . . . . . . . . . . . . . . . . . . 55

4 Results and Discussion 57
4.1 Aggregate Restructuring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Aggregate breakage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1 Modelling approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.2 Average aggregate size . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2.3 Floc size distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.4 Fitting parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 Conclusions and Recommendations 75
5.1 Major conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Novel contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3 Recommendations for future work . . . . . . . . . . . . . . . . . . . . . . . . 77

References 79

Appendix A Tagging of experiments 90

viii



List of Tables

3.1 Flow field parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Parameters of Equation (3.23) for the modelling two different types of collisions. 48
3.3 Summary of case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 Aggregate restructuring results for the two initial conditions (DA
f,o,D

B
f,o) con-

sidered in this work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Average absolute relative error of the surface-mean diameter, |Er|d32 , for the

four PBM case studies at different shear rates. . . . . . . . . . . . . . . . . . 69
4.3 Average absolute relative error (|Er|) of the percentiles d10, d50, and d90 for

the four PBM case studies at different shear rates. Results are in (%). . . . . 72
4.4 Average values of the fitting parameter s (from the breakage distribution

function) at different shear rates for Case Study 4, which used DB
f,o for initial

fractal dimension and αp for the collision efficiency. . . . . . . . . . . . . . . 73

A.1 Original and simplified tags of the experiments modelled in the present work. 91
A.2 Original and simplified tags of the experiments presented in Section 4.2 (Par-

ticle aggregation) of Cifuentes [17]. . . . . . . . . . . . . . . . . . . . . . . . 92
A.3 Original and simplified tags of the experiments presented in Section 4.3 (Ag-

gregate breakage) of Cifuentes [17]. . . . . . . . . . . . . . . . . . . . . . . . 93

ix



List of Figures

1.1 Effect of mixing in floc size and structure due to aggregation, restructuring
(Fh ≈ Fc), and breakage (Fh ≫ Fc) mechanisms (modified from Cifuentes [17]). 2

1.2 Effect of (a) average shear rate, G, and (b) flocculant dosage on the evolution
of mean MFT aggregate size over time. The continuous lines correspond to
population balance results and the symbols represent the experimental data
points (modified from Vajihinejad and Soares [11]). . . . . . . . . . . . . . . 4

1.3 Schematic of liquid steel flotation unit (modified from Kroll-Rabotin et al. [2]). 6
1.4 Illustration of PCC chemical additives filling the gaps between cellulosic fibres

(modified from Hubbe and Gill [35]) . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Evolution of median PCC aggregate size with time for different dosages of

(a) E1 and (b) E2 polymer flocculants. The lines correspond to population
balance results and the symbols are the experimental data points (modified
from Seghir et al. [22]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Floc breakage occurring in the weakest link within the aggregate (modified
from Cifuentes [17]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.7 Different fragment sizes being formed from the breakage of aggregates of sim-
ilar size and structure (modified from Saxena [40]) . . . . . . . . . . . . . . . 9

2.1 Illustration of different floc morphologies for (a) perikinetic aggregation and
(b) orthokinetic (shear-induced) aggregation (modified from Harshe et al. [9]). 15

2.2 Example of Dpf calculation based on the slope of the logarithmic plot of
Equation (2.3) (modified from Cifuentes [17]). . . . . . . . . . . . . . . . . . 16

2.3 Example of how percentiles can be used to characterize an aggregate size
distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Electric double layer (EDL) of a negatively charged spherical particle (Modi-
fied from [7]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Interparticle forces between two spherical colloidal particles (ro = 0.735 µm,
Ah = 1 · 10−20 J) in a 2M 1:1 electrolyte solution (Modified from [8]). . . . . 21

2.6 Effect of 1:1 electrolyte concentration on the net interaction potential between
two spherical particles of ro = 0.735 µm and Ah = 1 · 10−20 J (Modified from
[7, 8]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 Modelling of the aggregate floc size distribution (FSD) based on the method
of classes (MOC). The parameters N and Rg are the number density and the
radius of gyration, respectively (Modified from Yeoh et al. [74]). . . . . . . . 25

2.8 Population balance equation (PBE) from the MOC (Modified from Jeldres et
al. [20]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.9 Evolution of the floc morphology in shear-induced aggregation from Selomulya
et al. [18]. The symbols corresponds to experimental data points, and the
continuous and dashed lines are the results from Equation (2.17). . . . . . . 27

x



2.10 Illustration of the quadrature method of moments (QMOM), where N is the
number density, Li is floc length, and wi is the weight (Modified from Yeoh
et al. [74]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.11 Evolution of two similar aggregates at the same Reynolds number. The par-
ticles highlighted in blue correspond to the fragment formed after breakage
(modified from Saxena [40]). . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Summary of experimental procedure from Cifuentes [17] . . . . . . . . . . . 37
3.2 Illustration of floc trajectory in simple shear flow. The dashed arrow repre-

sents the rectilinear trajectory assumed in Smoluchowski’s collision kernel [71],
and the dashed-point arrow corresponds to the actual floc trajectory, which
is accounted for in shear-induced collisions by including αi,j in Equation (3.13). 40

3.3 Shell-core model collision efficiency, αp
i,j, as a function of dimensionless floc

size, ξi, for two size ratios, λi,j (modified from [60]). . . . . . . . . . . . . . . 43
3.4 Comparison among (a) Kusters et al. [60] original collision efficiency model

(A = 1.37 × 10−20 J, do = 2µm, Df = 2.5) and its empirical approximations
from (b) Selomulya et al. [18] (αmax = 0.5, x = 0.1, y = 0.1) and (c) Vlieghe
et al. [77] (αmax = 0.5, x = 0.0001, y = 0.03). . . . . . . . . . . . . . . . . . . 45

3.5 Comparison between the Kusters’ [60] original collision efficiency model and
the empirical approximation proposed during the current study. In figures (a)
and (b), Df = 2.4, whereas in figures (c) and (d), Df = 2.7. The paramters
Ah = 1.37 × 10−20 J and do = 2µm were used in to obtain αi,j values from
Kusters’ model [60], which are is presented in figures (a) and (c). The values
(αmax, x) = (0.5, 0.02) were used to obtain the αi,j values from the collision
efficiency model of the current work, which are presented in figures (b) and (d). 47

3.6 Breakage probabilities of class j = 4 aggregates (np,j = 8) for different values
of s parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.7 Breakage probabilities of class j = 4 aggregates (np,j = 8) for different values
of s parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.8 a) Example of mass fractal dimension kinetics of Cifuentes breakage stage
experiments [17] at different shear rates; b) Illustration of the short-term and
long-term restructuring kinetics, and the two different initial fractal dimen-
sions considered in this work. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Mass fractal dimension evolution at different shear rates and initial conditions
for all experiments modelled in this work. The continuous lines correspond
to the population balance predictions, and the symbols represent the experi-
mental data points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Effect of the fitting parameter B (from the breakage kernel) on the steady-
state average floc size. The circles denote the data points from Exp. 9 (G =
57.91 s−1), and the lines correspond to the PBM results for different values of
B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Effect of the fitting parameter s (from the breakage distribution function) on
the floc size distribution (FSD): (a) data points from Exp. 9 (G = 57.91 s−1);
(b) PBM results for symmetric breakage (s = 1.0 × 10−6); (c) PBM results
for uniform breakage (s = 0.999). Both PBM plots came from Case Study 1,
which uses DA

f,o and αi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

xi



4.4 Modelling approach of the FSD, where the PBM results retrieve the same
peak, i.e., y-axis value, of the experiment FSD at steady-state: (a) data points
from Exp. 9 (G = 57.91 s−1), where the steady-state FSD occurs at t =
72 min; (b) PBM results for Case Study 4 (DB

f,o,α
p), where s = 0.6 and

B = 5.0× 10−13 m4.s−2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.5 Mass fractal dimension evolution at different shear rates for the experiments

with the highest difference between DA
f,o and DB

f,o. The continuous lines cor-
respond to the population balance predictions and the symbols are the exper-
iment data points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6 Dimensionless surface-mean floc size evolution at different shear rates. The
symbols correspond to experimental data, whereas the dashed lines (−−) and
dash-dotted lines (−·) represent PB results for αi and αp collision models,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.7 Evolution of aggregate size distribution at different shear rates. The sym-
bols {◦,□, ⋄} represent the percentiles {d10, d50, d90}, whereas the dashed lines
(−−) and dash-dotted lines (−·) represent PB results for αi and αp collision
models, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.8 The fitting parameter B (from the breakage kernel) is a function of the

Reynolds number of the average floc size at steady-state, i.e., RessD32
= ν−1G

(︁
dss32

)︁2
. 74

xii



List of Symbols

Greek

αi,j Collision efficiency, [−]
αi Collision efficiency of impermeable flocs, , [−]
αp Collision efficiency of permeable flocs, , [−]
βi,j Orthokinetic rectilinear collision kernel, [m3 · s−1]
γ̇ Shear rate, [−]
Γi,j Breakage distribution function, [−]
ϵo Vacuum permittivity, [F ·m−1]
ϵr Relative permittivity of the carrier fluid, [−]
ιk,i percentage of a floc with k particles that is from i-th class size, [−]
κ−1
d Debye length, [m]
κi Permeability of i-th class size floc, m2

Λi,j aggregation kernel, [m3 · s−1]
λi,j Size ratio of flocs from classes i and j, [−]
µ Dynamic viscosity, [Pa · s]
ν Kinematic viscosity, [m2 · s−1]
ξi Dimensionless floc size based on permeability, [−]
ρf Fluid density, [kg ·m−3]
ρs Solid density, [kg ·m−3]
ϕi Dimensionless density of i-th class size floc, [−]
Ψo Surface potential, [V]

Roman

A Floc area, [m2]
AB Aggregation birth term, [m−3 · s−1]
AD Aggregation death term, [m−3 · s−1]
Ah Hamaker constant, [N ·m]
AN Avogadro number, [mole−1]
B Fitting parameter of the breakage kernel, [m4 · s−2]
BB Breakage birth term, [m−3 · s−1]
BB Breakage death term, [m−3 · s−1]

xiii



ci Molar concentration of i−type ion, mol ·m−3

Cv solids volume concentration, [−]
Cs Shielding coefficient, [−]
d10 Diameter of floc percentile 10%, [m]
d50 Diameter of floc percentile 50%, [m]
d90 Diameter of floc percentile 90%, [m]
dgap Gap distance between cylinders of Taylor-Couette cell, [m]
do Diameter of primary particle, [m]
Dpq Weighted average size, [m]
D32 Surface mean diameter, [m]
D43 Volume mean diameter, [m]
Df Mass fractal dimension, [−]
Df,ss Mass fractal dimension at steady-state, [−]
Dp,f Perimeter fractal dimension, [−]
ec Elementary charge of an electron, [C]
fk,j Fragments with k primary particles formed from the breakage of the j-th class floc, [−]
Fc Cohesive (particle-particle) force, N
FFF b External body force, [N]
FDLVO DLVO force, N
FEDL EDL force, N
FVDW VDW force, N
Fviscous Viscous force, N
Ff Hydrodynamic (fluid-particle) force, N
Flspi,j Flow number of solid particles, [−]
G Average shear rate, [s−1]
Gb,i Breakage shear rate of i-th class size floc, [s−1]
H Surface-to-surface distance between particles, [m]
kc Proportionality constant related to the packing density, [−]
kB Boltzmann constant, [J ·K]
L Floc length, [m]
M Floc mass, [kg]
mk Moment of order k of the floc size distribution, [mk]
n′ Continuous number density, [m−3]
nc Total number of class sizes tracked by the MOC PBE, [−]
Ni Number density from i-th class size, [m−3]
nb
j number of breakage scenarios for the j-th class floc, [−]
np Number of primary particles in a floc, [−]
np,i Number of primary particles from i-th class size floc, [−]
npixel Number of pixels within a floc 2D picture, [−]
P Floc perimeter, [m]
p Scaling exponent of floc strength, [−]
Pe Peclet number, [−]

xiv



r Common ratio of geometric progression, [−]
ro Primary particle radius, [m]
ri Distance between primary particle and floc center of mass, [m]
Reagg Aggregate Reynolds number, [−]
ReD32 Population Reynolds number, [−]
Rg Radius of gyration, [m]
R∗

g,i Dimensionless radius of gyration, [−]
Rss

g Radius of gyration at steady-state, [m]
Rin Inner radius of Taylor-Couette cell, [m]
Rout Outer radius of Taylor-Couette cell, [m]
s Fitting parameter of breakage dist. funciton, [−]
Si Breakage kernel, [s−1]
T Absolute temperature, [K]
Tacri Critical Taylor number, [−]
Ta Taylor number, [−]
t−1
r Aggregate rate of restructuring, [s−1]
uuu⃗ Fluid velocity, [m · s−1]
wi Weight of FSD of QMOM approach, [−]
wk,j Fragment size probability, [−]
win Angular velocity of inner cylinder of Taylor-Couette cell, [rad · s−1]
z Valency of the counter-ion

Acronyms

CCC Critical Coagulation Concentration
CFD Computational Fluid Dynamics
DLVO Derjaguin-Landau-Verwey-Overbeek
EDL Electric Double Layer
FSD Floc size distribution
MOC Method of Classes
ODE Ordinary differential Equation
PBE Population Balance Equation
PBM Population Balance Modelling
QMOM Quadrature Method of Moments
VDW Van Der Waals

xv



Chapter 1

Introduction

1.1 Background and motivation

The separation efficiency of industrial fluid-particle systems is a key economic and envi-

ronmental challenge because it is intrinsically related to water consumption, recovery and

recycle [1] and the final product quality [2–4] in many processes. The properties of the dis-

persed solids, such as size and density, directly influence their separation efficiency from the

fluid phase. For instance, solid-liquid separation processes, such as sedimentation, filtration,

and flotation, are more efficient when they operate with larger, denser solid particles. When

the solids are too small to guarantee an effective and timely separation, different chemicals

can be added to facilitate the formation of conglomerates of solid particles, also known as

aggregates or flocs [5], that are easier to separate from the liquid phase due to their larger

size when compared to individual particles [6].

The aggregation process is often required in aqueous colloidal fluid-particle systems,

where the size range of solid particles is between 1 nm and 1 µm [6]. These systems usually

form stable dispersions, i.e., the solid particles tend to repel one another via electrostatic

forces and do not aggregate [7]. Hence, to induce the formation of aggregates, the colloidal

dispersion must first become unstable. This can be achieved by adding chemical destabilizers

into the system, such as inorganic salts and polymer flocculants. The former reduces the

repulsive forces that keep particles apart, allowing them to get sufficiently close to one

another and form aggregates via attractive van der Waals forces, also referred as cohesive

forces [8–10]. The latter adsorbs into the surface of the colloidal particles, acting as a bridge

between them which also enables the formation of aggregates via cohesive forces [11].

Colloidal dispersions and chemical destabilizers are often mixed together to accelerate
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the formation of aggregates, e.g., in stirred tanks [12] or pipelines [13]. The fluid motion in

these systems has a two-fold effect: it increases the frequency of particle-particle collisions,

accelerating aggregate formation [9]; and it changes the floc size and structure due to the

presence of external fluid forces acting on the aggregate [10]. If the hydrodynamic forces

acting on the floc (due to mixing) are significantly greater than the cohesive forces holding

two particles together, the aggregate breaks into smaller fragments [10, 14], and thus may

not longer have the desired size for efficient solid-liquid separation [15]. If the hydrodynamic

forces (Fh) and the cohesive forces (Fc) are of similar order of magnitude, the primary

particles, i.e., the solid particles that comprise the floc, can restructure to produce small

compact aggregates, which are more difficult to break [10, 16]. The aggregation, restructuring

and breakage mechanisms are illustrated in Figure 1.1.

Figure 1.1: Effect of mixing in floc size and structure due to aggregation, restructuring
(Fh ≈ Fc), and breakage (Fh ≫ Fc) mechanisms (modified from Cifuentes [17]).

In order to improve the design and control of aggregation systems, it is crucial to predict
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how the floc size and morphology evolve over time [18, 19]. This can be achieved with

population balance models (PBMs), which use mathematical equations to model the effect of

aggregation, breakage, and restructuring mechanisms on the size and structure of populations

of aggregates [20]. The PBM can provide crucial information, such as how the aggregate

average size varies during aggregation for different mixing conditions and types of chemical

destabilizers [11, 21, 22]. They can also be used to determine the optimal residence times of

different solid-liquid separation units, which is essential in the design of such equipment [2,

11].

Aggregation control is essential in many industries, e.g., water treatment [4], papermaking

[22], food processing [23], pharmaceutical manufacturing [24], metallurgy [2], and mining [11].

The following three subsections highlight how population balance models have been used to

enhance the control and understanding of aggregation in different industries:

• Section 1.1.1 describes the role of aggregation in oil sands tailings treatment and how

population balance can be used in a quantitative approach to monitor and control the

tailings treatment process.

• Section 1.1.2 outlines how steel alloys can be purified via aggregation and how popula-

tion balance models can be used to provide a deeper understanding of the aggregation

mechanism.

• Section 1.1.3 describes the importance of aggregation in the papermaking industry and

how the use of population balances can provide quantitative predictions describing the

effect of chemical (flocculant) type and concentration on aggregate size.

1.1.1 Oil sands tailings treatment

In the oil sands industry, the extraction of bitumen from surface-mineable oil sands

reserves requires large volumes of warm water, e.g., around 3 barrels of water are used to

produce 1 barrel of refined bitumen from surface mining [25]. The waste produced from

this extraction process is called tailings, which is composed of process water, coarse solids

(sand), and fine solids (particles smaller than 44 µm) [26, 27]. The tailings are stored in

ponds, where sand particles rapidly settle due to their relatively large size and density, and

the fine solids remain suspended in water, creating a mud-like slurry known as Mature Fine

Tailings (MFT). The MFT is a stable colloidal dispersion due to the repulsive forces that
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keep the small solid particles apart and prevent them from aggregating [28]. Due to the slow

settling velocity of the fine particles, the area occupied by the tailings ponds grows larger

every year, increasing the risks of tailings leakage, groundwater contamination, or tailings

ponds collapse [29, 30]. Therefore, tailings treatment is an important and challenging process

in the oil sands industry because it is directly related to the area occupied by the tailings

ponds and the volume of recycled water that can be recovered.

To accelerate the rate of water recycle/recovery and decrease the environmental risks

posed by the tailings ponds, polymers flocculants are often mixed with the tailings to induce

the formation of colloidal aggregates [1, 13, 31]. To quantitatively determine the best mixing

condition and flocculant dosage for MFT aggregation, a recent population balance study was

conducted by Vajihinejad and Soares [11]. Some of their results are displayed in Figure 1.2.

As can be seen, their population balance model can accurately predict the experimental

evolution of the average floc size for different flocculant dosages and average shear rates

(G). The shear rate is a parameter that scales with the (mechanical) mixing intensity of the

experiment equipment. These results reveal that larger aggregates are formed at lower shear

rates and higher flocculant concentrations, and that the optimal mixing time is around 200 s.

This is valuable information for controlling the final floc size and structure after aggregation.

Figure 1.2: Effect of (a) average shear rate, G, and (b) flocculant dosage on the evolution of
mean MFT aggregate size over time. The continuous lines correspond to population balance
results and the symbols represent the experimental data points (modified from Vajihinejad
and Soares [11]).

4



1.1.2 Steel alloy purification

Due to the increased range of steel applications, e.g., automotive industry, metal wires,

pipelines, and pressure vessels, there has been a continuous increase in the demand and value

for cleaner steel alloys over the last few decades [32]. One of the most significant challenges

in obtaining high purity alloy involves the removal of non-metallic inclusions (NMI) from the

liquid steel [2, 32]. The concentration, morphology, size distribution, and chemical nature

of NMI can cause several problems in the steel quality, e.g., sulfide and oxide inclusions

greatly affect the endurance and structural integrity of steel alloys. The size distribution

of inclusions is especially important because large inclusions are extremely harmful to the

mechanical properties of steel, e.g., major defects in the steel alloy can occur by the presence

of a single large inclusion in the system [32]. Therefore, the purification process of steel

alloys must minimize the NMI concentration and eliminate large inclusions from the metal.

The gas-stirred ladle treatment is a secondary metallurgy technique that is commonly

used in the steel industry during which removal of NMI is achieved by flotation [2, 33]. As

shown in Figure 1.3, the inert gas argon is injected through porous plugs at the bottom of

the steel ladle, which contains liquid steel. As the gas bubbles flow upwards, they induce

turbulence in the liquid, i.e., high shear rates, which increases the collision frequency between

NMI particles and promotes the formation of aggregates. Since NMI are hydrophobic, their

flocs easily attach to the gas bubbles that rise to the top of the ladle, where they can be

removed from the liquid steel. Recent studies on the flotation of NMI successfully modelled

this process by combining a population balance model with computation fluid dynamics

(CFD) models [2, 33]. It was observed that the frequency of collisions between two particles

dramatically decreases when there is a larger difference in the size of the colliding particles,

and that the overall aggregation time is dictated by the collisions between particles of the

same size. This type of study has the potential to predict the removal efficiency of NMI and

their size distribution over time, which is valuable information for optimizing this flotation

process.
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Figure 1.3: Schematic of liquid steel flotation unit (modified from Kroll-Rabotin et al. [2]).

1.1.3 Papermaking

In the papermaking industry, cellulosic fibre is mixed with water and chemical additives

to produce different types of papers, e.g., cardboard boxes and printable paper sheets [34].

Precipitated calcium carbonate (PCC) is a key chemical additive in papermaking industry

that significantly enhances the opacity and brightness of papers at relatively low cost [35].

As can be seen is Figure 1.4, the PCC particles fill the gaps between the fibres, changing

the paper properties. To ensure that the PCC particles remain attached to fibre and do not

disperse in water, they are aggregated with polymer flocculants. Due to their large size, the

PCC aggregates easily attach to the paper sheet [34].

Figure 1.4: Illustration of PCC chemical additives filling the gaps between cellulosic fibres
(modified from Hubbe and Gill [35])
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Given the importance of PCC aggregation in the papermaking industry, Seghir et al.

[22] successfully used population balance models to investigate the effect of different types

and dosages of polymer flocculants on the evolution of PCC aggregate size with time. Some

of their results are displayed in Figure 1.5. As can be seen, equal dosages of flocculants

E1 and E2 result in very different median floc sizes (d50). This information is critical for

determining the optimal aggregation time and the best flocculant type and concentration for

specific types of papers.

Figure 1.5: Evolution of median PCC aggregate size with time for different dosages of (a)
E1 and (b) E2 polymer flocculants. The lines correspond to population balance results and
the symbols are the experimental data points (modified from Seghir et al. [22])

1.2 Problem statement

As explained in Section 1.1, aggregation is a common step in solid-liquid separation pro-

cesses when the solid particles are in the colloidal size range [6]. Additionally, the population

balance model (PBM) is a valuable resource that can quantitatively predict the evolution of

aggregate properties over time, and thus is often used to optimize aggregation in different

industries [2, 11, 22]. Recent PBM studies have shown that shear-induced aggregation, i.e.,

the aggregation process where particles are mechanically mixed with chemical destabilizers,

can be modelled via PBM by considering the combined effect of aggregation, breakage, and

restructuring mechanisms [18, 36, 37]. It has been shown that the breakage frequency of ag-

gregates increases with the shear rate, resulting in smaller flocs at the end of the aggregation
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process. In industry, since most mixing processes (including pipeline transport) operate un-

der turbulent conditions, i.e., very high shear rates, aggregate breakage is often unavoidable

[38]. This size reduction often adversely impacts the separation efficiency of colloidal flocs

[14].

In order to prevent the detrimental effect of floc breakage in solid-liquid separation, it

is important to understand why and how breakage occurs at a fundamental level. Unfor-

tunately, this cannot be done through investigations in turbulent flows because the hydro-

dynamic (fluid-particle) forces acting on the aggregate are highly variable [38], making it

difficult to analyze their effect on floc size and structure. Hence, previous studies investi-

gated the breakage and restructuring of aggregates under laminar shear flow conditions, i.e.,

relatively low shear rates, in which the hydrodynamic forces acting on the aggregates can

be readily determined. For example, Blaser [39] investigated the evolution of single flocs via

experiments, observing that aggregates experience periodic fluid forces that compress and

stretch them, which leads to their restructuring and breakage. Later, Cifuentes [17] exper-

imentally studied the breakage and restructuring of populations of aggregates in laminar

flow, where aggregates were initially formed at low shear rates, after which a steep increase

in the shear rate was applied to the system, which facilitated the breakage and restructuring

of flocs. Among other findings, Cifuentes [17] observed that the fluid-particle force (Fh)

acting on the flocs after breakage had a similar magnitude to the cohesive force between two

primary particles (Fc). This suggests that large aggregates will break until the fluid-particle

and particle-particle forces are balanced, i.e., Fh ≈ Fc, and that the rupture of a single bond

between two primary particles can lead to aggregate breakage. Cifuentes [17] also noticed

via 2D image analysis that breakage occurs in the weakest link within the floc, as shown in

Figure 1.6, but due to limitations in the image resolution, he was not able to confirm that

this was the result of only a single bond failure between two primary particles.

Figure 1.6: Floc breakage occurring in the weakest link within the aggregate (modified from
Cifuentes [17])
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The research findings from Cifuentes [17] were confirmed by Saxena et al. [10, 40], who

investigated the breakage and restructuring of aggregates in laminar flow via computational

simulations that can track fluid-particle and particle-particle interactions over time. This

type of study can determine the exact moment that breakage occurs, as well as the size of

the fragments formed after breakage. The simulation results confirmed that floc breakage is

caused by the rupture of a single bond between primary particles. Saxena [40] also noticed

that similar aggregates could form fragments of varying sizes, and that there was no particular

preference for a certain fragment size. This is clearly illustrated in Figure 1.7, in which

aggregates with equivalent initial size and structure broke into very different fragment sizes.

This important finding goes against the simplifying assumption often made in PBMs that

aggregates can only break into two fragments of equal sizes [11, 18, 19, 22, 36, 37, 41, 42].

Figure 1.7: Different fragment sizes being formed from the breakage of aggregates of similar
size and structure (modified from Saxena [40])

Since the results from Saxena et al. [10, 40] regarding fragment size are based on simu-

lations that studied only 10 different aggregates, they cannot be extrapolated to an entire

population of aggregates, but they can be validated via population balance modelling. To

the author’s knowledge, there are no population balance models that accounted for the latest

findings in aggregate breakage. In fact, there are no population balance studies focused on

the modelling of breakage experiments. To fill this research gap, the major objective of this

research project is to investigate the breakage and restructuring of aggregates in laminar

flow via population balance modelling.
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1.3 Research objectives

The purpose of this research project is to study the breakage and restructuring mecha-

nisms of colloidal aggregates in laminar shear flow. The principal objectives of this study

are:

• To statistically investigate the effect of shear rate on the evolution of floc size and

morphology over time;

• To determine how different physical parameters, such as shear rate and initial floc size

and structure, influence the final size and morphology of aggregates after breakage.

To accomplish these objectives, the significant activities of this research project are the

following:

• Improve the current approach to implementing PBMs for colloidal aggregation by

developing new equations that incorporate the research findings from Saxena et al.

[10, 40] regarding fragment size after breakage.

• Use the improved PBM to analyze Cifuentes’ [17] breakage experiments in laminar

flow.

1.4 Thesis outline

Chapter 1 provides the background and motivation of studying colloidal aggregation

via population balance modelling. It also states the current research gaps concerning floc

breakage and how this research project plans to address some of them.

Chapter 2 lays out the relevant information about colloidal aggregates that is crucial

for understanding this work. This chapter also provides a critical evaluation of some of the

the previous research on colloidal aggregation and breakage, and details the research gaps

related to floc breakage.

Chapter 3 presents a summary of Cifuentes [17] breakage experiments and describes in

detail the PBM that was used to model them. It also presents the new equations developed

in this work based on Saxena et al. [10, 40] findings.

Chapter 4 compares the PBM results from this work and the experimental results from

Cifuentes [17], and explains the important conclusions that can be extracted from this com-

parison.
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Chapter 5 summarizes the significant findings from this research project and how future

studies can use them to improve the current PBM that are focused on monitoring colloidal

aggregation.

1.5 Significance of contributions

In the current work, the PBM from Selomulya et al. [18] was enhanced based on recent

research publications related to aggregation, breakage, and restructuring of flocs in simple

shear flow. New equations within the PBM were developed to improve the physical under-

standing of how floc breakage and aggregation occur in laminar shear flow. These equations

also improved the PBM predictions of breakage experiments. For instance, the experimen-

tal evolution of the average aggregate size and floc size distributions over time at different

shear rates were obtained via PBM with high accuracy. Additionally, the restructuring of

aggregates in breakage experiments was also predicted by the modified PBM, where it was

observed that the long-term restructuring of aggregates plays an important role in the PBM

predictions of floc size. This modified PBM can be used in future research to model both

aggregation and breakage experiments. This PBM can also be used in industry to improve

the control of aggregation systems.

1.6 Author’s contributions

In this research project, the author implemented and validated a population balance

model for colloidal aggregates in laminar shear flows, planned case studies, performed sim-

ulations, and analyzed data. The author validated the numerical model developed here by

comparing its results against experimental data from the literature. The author also devel-

oped a new breakage distribution function and collision efficiency equation with the help of

his co-supervisor Dr. Kroll-Rabotin. The supervisors Prof. Sanders and Dr. Kroll-Rabotin

provided invaluable support throughout the research project by giving constructive feedback

on the model implementation and helping interpret the simulation results. The following

list provides the detailed contribution of each author based the on the Elsevier Contributor

Roles Taxonomy (CRediT) author statement:

• PI. Prof. Sean Sanders (principal investigator): conceptualization, resources,
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data curation, writing (review & editing), supervision, project administration, funding

acquisition.

• Dr. Kroll-Rabotin (co-supervisor): conceptualization, methodology, data cura-

tion, writing (review & editing), supervision.

• Ricardo Andrade Rossi (MSc student): Conceptualization, methodology, soft-

ware, validation, formal analysis, investigation, writing (original draft), visualization.
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Chapter 2

Literature Review

As explained in Chapter 1, floc breakage is an undesirable phenomenon in shear-induced

systems because it decreases the solid-liquid separation efficiency of different industrial pro-

cesses [6]. To avoid aggregate breakage, or to be able to produce more robust aggregates, it is

vital to quantitatively understand how aggregates break [10]. Therefore, the major objective

of this current work is to investigate the breakage and restructuring of colloidal aggregates

via a population balance model (PBM).

This chapter lays out the essential information that is required to understand the theory

behind the application of PBMs in colloidal science and provides a critical evaluation of the

current research on floc breakage and restructuring in sheared systems. The literature review

is divided into five sections:

• Section 2.1 describes how the size and morphology of aggregates can be characterized

in experiments and computational studies.

• Section 2.2 explains the inter-particle and fluid-particle forces that are present in col-

loidal systems and highlights their importance to developing PBM equations.

• Section 2.3 introduces how PBM works and describes the most common PBMs for

shear-induced aggregation.

• Section 2.4 presents the latest research findings on floc breakup and restructuring in

shear flow, and how they can be used to enhance the current PBMs.

• Section 2.5 summarizes the critical information provided in this chapter and the current

knowledge gaps on floc breakage and restructuring. Then, the research scope of the

present work is provided.
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2.1 Aggregate characterization

To investigate how colloidal aggregates break and restructure in shear flow, it is necessary

to measure their physical properties over time [10, 17]. Hence, this section describes how the

floc morphology (Section 2.1.1) and size (Section 2.1.2) can be characterized in experiments,

PBMs, and CFD simulations with single aggregates.

2.1.1 Morphology

When aggregates are composed of particles with identical size and chemical nature, they

form fractals, i.e., self-similar structures that preserve their geometrical shape at different

length scales [8, 18, 43]. Fractal aggregates can be described by the power-law relationship

[44]

M ∝ LDf (2.1)

where M and L are the floc mass and size, respectively, and Df ∈ [1 3] is the mass frac-

tal dimension, which is a dimensionless parameter that can retrieve information about the

density and shape of aggregates. When Df = 1, it represents the morphology of a straight

rod of particles, and when Df = 3, it denotes the structure of a highly compact sphere

of particles [5, 45]. In shear-induced or orthokinetic aggregation, where the colloidal par-

ticles and chemical destabilizers are mechanically mixed, small compact flocs are formed,

i.e., 2.2 ≤ Df ≤ 2.7 [9, 17, 46, 47]. In perikinetic aggregation, where particles collide via

Brownian motion and there is no mechanical mixing, large porous aggregates are formed,

i.e., 1.6 ≤ Df ≤ 1.8 [9, 43]. Figures 2.1 (a) and (b) illustrate the morphology difference of

flocs produced via perikinetic aggregation and orthokinetic aggregation, respectively.
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Figure 2.1: Illustration of different floc morphologies for (a) perikinetic aggregation and (b)
orthokinetic (shear-induced) aggregation (modified from Harshe et al. [9]).

To investigate the evolution of floc morphology in aggregation and breakage experiments,

Df must be measured in situ, i.e., during the experiment [5, 17, 43, 46, 48, 49]. The most

commonly used in situ technique is static light scattering, which determines Df from a

correlation with the intensity of the light that is scattered by a sample of aggregates [50].

Unfortunately, this method requires the pumping of aggregates from a controlled shear device

to the light scattering equipment, which can affect the morphology of aggregates during

measurements [5, 47]. To overcome this issue, a new image analysis technique that is both in

situ and non-intrusive has been developed over the last couple of decades [17, 48, 51], which

prevents any flow disturbance by directly monitoring the aggregates inside the controlled

mixing device via 2D pictures. This experimental method was recently used in Cifuentes

[17], whose results will be modelled via PBM in the current work. In 2D image analysis, Df

can be determined from the following correlation [52]:

Df = −1.5×Dpf + 4.4 (2.2)

whereDpf ∈ [1 2] is the perimeter fractal dimension. This morphological parameter is similar

to the mass fractal dimension, but it describes 2D objects, where Dpf = 2 denotes a straight

rod of particles and Dpf = 1 represents a perfect disc of primary particles [53]. Equation

(2.2) can be used for Df ∈ [1.7 2.9], and therefore it is generally taken to be suitable for

shear-induced aggregation and breakage experiments, where 2.2 ≤ Df ≤ 2.8 [17]. In image

analysis, Dpf is directly obtained via [51, 54]

A ∝ P 2/Dpf (2.3)
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where A and P are the area and perimeter of the floc, respectively. As shown in Figure 2.2,

Dpf is estimated from the slope of the log plot of A vs. P . Since each blue circle represents

one floc, this technique can retrieve only the global morphology of a sample of aggregates,

i.e., it cannot determine the Df of each observed floc.

Figure 2.2: Example of Dpf calculation based on the slope of the logarithmic plot of Equation
(2.3) (modified from Cifuentes [17]).

In the present work, the mass fractal dimension from Cifuentes’ [17] breakage experiments

is obtained via Equation 2.2, and the impact of using the global Df to approximate the

morphology of populations of aggregates is discussed in Chapter 4.

2.1.2 Size

The floc size is often characterized by the radius of gyration (Rg) [9, 10, 18, 43, 48, 55,

56], which is mathematically defined as [40]

Rg =

√︄
1

M

∫︂
r2dM (2.4)

where M is the floc mass and
∫︁
r2dM is the second mass moment around the floc center of

mass. Given an aggregate with a total number of np identical primary particles of radii ro,
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if Rg ≫ ro, Equation (2.4) can be discretized as

Rg =

√︄∑︁np

i=1 r
2
i

np

(2.5)

where ri is the distance between the primary particle i and the floc center of mass. Equation

(2.5) is used in CFD simulations where the exact primary particle position is tracked over

time, e.g., in Saxena et al. [10, 40], whose results will be used in the present work to improve

current PBM equations.

In 2D image analysis, the specific primary particle location cannot be obtained due to

limitations in the image resolution [17, 48, 51]. Hence, Rg is defined in terms of pixels [48],

Rg =

⌜⃓⃓⃓
⎷∑︁npixel

i=1

[︃
(xi − xc)2 + (yi − yc)2

]︃
npixel

(2.6)

where npixel is the total number of pixels within the floc perimeter in a 2D image, (xi, yi)

are the i-th pixel coordinates, and (xc, yc) are the floc centroid coordinates. Since Rg can

be experimentally measured for each observed aggregate, it is considered a local property

as opposed to the experimentaly determined value of Df , where a single value is used to

represent the morphology of a population of aggregates at a given time. The radius of

gyration can also be written in terms of mass fractal dimension [57],

Rg = ro

(︃
np

kc

)︃1/Df

(2.7)

where kc is a proportionality constant related to the packing density of the floc and is often

assumed to be unity [18, 19, 36, 42]. Equation (2.7) is used in PBMs to account for the fractal

nature of aggregates in the aggregation and breakage mechanisms [18, 20]. This equation is

also used in CFD simulations of single aggregates to calculate their fractal dimension.

Aggregates usually present a broad distribution of sizes that can be characterized via

percentiles or weighted average sizes [17, 18, 46]. The percentile is a statistical measure

that indicates the value below which a certain percentage of the distribution is observed

[58], e.g., the percentile d50 corresponds to the aggregate diameter below which 50% of the

observations are found. Figure 2.3 demonstrates the use of percentiles d10, d50, and d90 to

characterize an aggregate size distribution. As can be seen, these three values provide a

essential information about the range of floc sizes within the distribution.
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Figure 2.3: Example of how percentiles can be used to characterize an aggregate size distri-
bution.

The floc size distribution can also be characterized by weighted average sizes, which use

a single value to represent the entire size distribution. A generic expression for calculating

different weighted average diameters is given by [59]

Dpq =

(︃∑︁nclass

i=1 Ni · dpi∑︁nclass

i=1 Ni · dqi

)︃ 1
p−q

(2.8)

where p and q are indices of the weighted average size, nclass is the total number of class sizes

in the distribution, and Ni and di = 2Rg,i are the number of aggregates and the aggregate

diameter from the i-th class size, respectively. In colloidal aggregation and breakage research,

the most commonly used average sizes are the surface mean diameter (D32) and the volume

mean diameter (D43) [17, 18, 36, 41]. The former provides the average diameter based on the

volume-to-surface area ratio, whereas the latter corresponds to the volume weighted mean

diameter, which is sensitive to large aggregates in the system [59].

In the current work, the surface mean diameter is used to characterize the average floc size

aggregate populations from Cifuentes’ [17] breakage experiments, and the percentiles d10, d50

and d90 are used to quantitatively describe the size range in the floc size distribution. Lastly,

Equations 2.6 and 2.7 are used to obtain the aggregate radius of gyration from Cifuentes’

experiments [17] and the population balance model, respectively.
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2.2 System forces

When aggregates experience shear flows, their fate depends on the balance between hy-

drodynamic and cohesive forces [10]. Depending on the magnitude of these forces, the flocs

can aggregate, break, or restructure [18]. In PBMs, it is necessary to know how to calculate

the system forces to predict the aggregation frequency, i.e., the rate of floc collisions that

leads to aggregation [60]. Therefore, this section explains how to characterize the cohesive

(Section 2.2.1) and hydrodynamic forces (Section 2.2.2) in colloidal fluid-particle systems.

2.2.1 Cohesive forces

The interactions between colloidal particles can be most simply modelled by the Derjaguin-

Landau-Verwey-Overbeek (DLVO) theory [8–10], where the net force between two primary

particles is equal to the sum of the van der Waals (VDW) and electric double layer (EDL)

forces [7]

FDLVO = FVDW + FEDL (2.9)

Both FVDW and FEDL are normal forces, i.e., they are perpendicular to the particle surface

[7]. The VDW force between two identical spherical colloidal particles is always attractive

and arises from electrostatic interactions modelled by [61]

FVDW = − Ah ro
12H2

(2.10)

where ro is the particle radius, H is the surface-to-surface distance between particles, and

Ah is the Hamaker constant, which depends on the chemical composition of the particles

and the continuous phase where they are immersed [7].

When colloidal particles are dispersed in a fluid medium, their surfaces are electrically

charged due to different mechanisms, e.g., ionization of surface groups and adsorption of

charged species from the fluid solution to a neutrally charged solid surface [28]. To elec-

trically neutralize the fluid-particle system, the charged surfaces attract oppositely charged

ions (counter-ions) and repel equally charged ions (co-ions). This phenomenon forms a dis-

tribution of ions as shown in Figure 2.4, where the Stern layer has counter-ions bound to

the charged solid surface, and the diffuse layer has co-ions and counter-ions, which are con-

stantly moving due to the Brownian motion of the continuous phase. This system of charges

is known as the electric double-layer (EDL), and it works similarly to a capacitor, where an
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electric potential is created by the accumulation of charges surrounding the particle [7, 28,

62].

Figure 2.4: Electric double layer (EDL) of a negatively charged spherical particle (Modified
from [7]).

If the EDLs of two spherical colloidal particles overlap, the repulsive force will be[7]

FEDL =
64π Rp ϵr ϵo

2
·
(︃
kB T

ec

)︃2

· tanh2

(︃
z ec ψo

4k T

)︃
·
(︁
κd e

−κd H
)︁

(2.11)

where ϵr is the relative permittivity of the carrier fluid, ϵo is the vacuum permittivity, kB is

the Boltzmann constant, T is the absolute temperature, ec is the elementary charge of an

electron, z is the valency of the counter-ion, Ψo is the surface potential, and κ
−1
d is the Debye

length, which is written as [28]

κ−1
d =

[︄
e2c

ϵrϵokT
·
∑︂
i

z2i ciAN

]︄−1/2

(2.12)

where zi and ci are the valency and molar concentration of i−type ion, respectively, and AN

is the Avogadro number. The Debye length, also known as the double-layer thickness, is

an important parameter because it gives the approximate distance between two interacting

charged surfaces and therefore their EDL force range [7]. It is important to mention that

Equation 2.11 is valid for symmetrical 1:1 electrolyte solutions, e.g., NaCl [7].

Figure 2.5 shows the effect of the separation distance between two spherical particles on

their DLVO interaction forces in a 1:1 electrolyte solution with a molar concentration of

2M. As can be seen, both FVDW and FEDL increase in magnitude with decreasing separation
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distance, resulting in a net energy barrier that must be overcome in order to induce aggre-

gation. When this “activation energy” is surpassed, relatively strong aggregates are formed

in the primary minimum, where H ≤ 0.1 nm. If the magnitude of the energy barrier is too

high, the colloidal particles will either form weak aggregates in the secondary minimum or

remain as a stable dispersion in the system [7].

Figure 2.5: Interparticle forces between two spherical colloidal particles (ro = 0.735 µm,
Ah = 1 · 10−20 J) in a 2M 1:1 electrolyte solution (Modified from [8]).

In order to induce the formation of aggregates via VDW forces, one possible approach is

to reduce the EDL forces of the system [17, 38]. The EDL forces can be reduced by changing

the solution pH, which directly affects the magnitude of the surface potential [7, 62]. Another

way to minimize the EDL forces is by reducing the Debye length, which can be achieved by

increasing the ionic strength of the system, i.e., the electrolyte concentration [43]. There is a

specific electrolyte dosage, known as the critical coagulation concentration (CCC), in which

the EDL forces are reduced to a point where the activation energy to form aggregates at

the primary minimum is zero [7]. This is illustrated in Figure 2.6, which shows the effect

of different 1:1 electrolyte concentrations on the net interaction potential of two spherical

colloidal particles. The net potential energy shown in the y-axis was obtained from the

relationship F = −dV/dH [7]. In this example, CCC = 6.7 M, where V max
DLVO = 0 eV. The

21



CCC can be used in aggregation and breakage experiments where the chemical destabilizers

are inorganic salts [9, 38], e.g., in Cifuentes’ [17] experiments, which are modelled in the

present work via PBM.

Figure 2.6: Effect of 1:1 electrolyte concentration on the net interaction potential between
two spherical particles of ro = 0.735 µm and Ah = 1 · 10−20 J (Modified from [7, 8]).

In PBMs, the DLVO forces are essential for the development of aggregation kernels, i.e.,

equations that predict the rate collisions between flocs that leads to aggregation [60]. Most

aggregation kernels are based on an ideal system where only VDW and fluid-particle forces

are present [63, 64], which is the case when the CCC is reached [7]. A detailed description

of aggregation kernels is given in Section 3.2.1 of Chapter 3.

Besides the normal DLVO forces, colloidal particles can also interact via tangential forces

[65], which can affect the aggregate ability to restructure and are important in the modelling

of breakage and restructuring of single aggregates in shear flow [8–10]. Since tangential forces

were recently discovered [65], they are still not regularly considered in PBMs [20, 22, 55].
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2.2.2 Hydrodynamic forces

The fluid motion is characterized by the continuity and momentum conservation equa-

tions [66]
∂ρf
∂t

+∇ · (ρf uuu⃗) = 0 (2.13)

∂(ρf uuu⃗)

∂t
+ uuu⃗

[︁
∇ · (ρf uuu⃗)

]︁⏞ ⏟⏟ ⏞
Convection

= µ∇2uuu⃗⏞ ⏟⏟ ⏞
Diffusion

−∇P +FFF b
⃗ (2.14)

where ρf is the fluid density, uuu⃗ is the fluid velocity, µ is the dynamic viscosity of the fluid,

∇P is the pressure gradient, and FFF b represents the external body forces. The flow diffusion

and convection are created from from viscous and inertial forces, respectively [66]. The

former originates from the friction between moving fluid layers, and its magnitude increases

with the fluid viscosity [67]. The latter is created by the bulk movement of the fluid flow.

In colloidal fluid-particle systems, the fluid momentum can be transferred to aggregates via

both viscous and inertial forces [40]. The Reynolds number at the aggregate length-scale

(Reagg) can be used to compare the magnitude of the hydrodynamic forces experienced by

aggregates in different sheared systems [9],

Reagg =
γ̇
(︁
2Rg

)︁2
ν

(2.15)

where γ̇ is the shear rate and ν = µ/ρf is the kinematic viscosity of the fluid. The higher the

Reynolds number, the larger will be the hydrodynamic forces in the system [10]. In many

CFD studies of single aggregates in shear flows, it is assumed that the inertial forces are

negligible at low Reynolds numbers, i.e., Reagg ≪ 1 [8, 9, 56, 68, 69]. However, recent CFD

investigations that modelled both convection and diffusion showed that inertial forces affect

the colloidal aggregation mechanism even at Reagg = 0.03 [2]. This indicates that, to model

the real behaviour of aggregates, inertial forces should not be neglected.

Since the shear rate scales with the Reynolds number, this parameter is often used in

experiments as a proxy for the magnitude of the hydrodynamic forces [9, 17, 43]. Addition-

ally, the average shear rate of the system is used in PBMs to predict the rate of aggregation

and breakage [18, 20, 41]. The mathematical expressions of these two mechanisms and their

relationship with the average shear rate are detailed in Chapter 3.
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2.3 Population balance modelling of shear-induced col-

loidal aggregation: a brief introduction

As explained in Chapter 1, the shear-induced aggregation of colloidal particles is a crucial

step in many solid-liquid separation processes [6], and the population balance model (PBM)

can be used to control the final floc size and structure in aggregating systems [20]. The PBM

approach is a statistical method that can predict how the properties of a certain population

evolve over time [70], e.g., the size and morphology of flocs during aggregation [18]. The first

PBM of colloidal aggregation was proposed by von Smoluchoski [71] in 1917. He modelled

the aggregation of colloidal particles as an irreversible mechanism, i.e., the flocs could only

change their physical properties by aggregating with other flocs. As experimental research on

colloidal aggregates advanced, it was discovered that flocs could also break and restructure in

parallel to aggregation depending on the magnitude of the fluid-particle forces in the system

[5, 43, 46, 72]. To incorporate these two new mechanisms in the PBM, modifications to

the original model from Smoluchoski [71] were proposed over the last decades [18, 20, 36,

73]. Recent PBM investigations have confirmed that the shear-induced aggregation can be

modelled by accounting for the aggregation, breakage, and restructuring mechanisms [18,

21, 22, 36, 37].

There are two major PBMs that are currently used to model shear-induced aggregation

[20, 74]: the method of classes (MOC) and the quadrature method of moments (QMOM).

The advantages and downsides of the MOC and QMOM are presented in the Sections 2.3.1

and 2.3.2, respectively. Then, a direct comparison between these two methods is provided

in the Section 2.3.3.

2.3.1 Method of classes (MOC)

The PBM based on the MOC tracks the number density or the average number of flocs

per unit volume (Ni) of different floc class sizes (i) over time [74]. As presented in Figure

2.7, the MOC can directly retrieve the aggregate floc size distribution (FSD), where each

rectangle represent a floc class size [74].
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Figure 2.7: Modelling of the aggregate floc size distribution (FSD) based on the method of
classes (MOC). The parameters N and Rg are the number density and the radius of gyration,
respectively (Modified from Yeoh et al. [74]).

In a closed system, the population balance equation (PBE) from the MOC is given by

[20]
dNi

dt
= AB

i − AD
i +BB

i − BD
i (2.16)

where AB
i and AD

i are the birth and death terms of the aggregation mechanism, respectively,

and BB
i and BD

i are the birth and death terms of the breakage mechanism, in that order. The

birth and death terms denote the formation and disappearance of the i-th floc class size [20],

and are illustrated in Figure 2.8. As can be seen, the aggregation and breakage mechanisms

can both increase and reduce the number density. In shear-induced aggregation, the fluid

momentum contributes to both the aggregation and breakage of flocs [18]. This effect can

be accounted for in Equation 2.16 by writing the birth and death terms as a function of the

average shear rate experienced by the flocs [20].
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Figure 2.8: Population balance equation (PBE) from the MOC (Modified from Jeldres et al.
[20]).

In the MOC, there is one population balance equation (2.16) for each class size. Since

populations of aggregates often present a broad range of sizes [17, 48], it would be com-

putationally demanding and therefore impractical to model most aggregation processes via

MOC [75]. To overcome this issue, Hounslow et al. [75] and Spicer and Pratsinis [73] de-

veloped a lumped form of the MOC for the modelling of colloidal aggregation and breakage

mechanisms. In their approach, the number of primary particles of a floc from the i-th class

size follows the geometric progression np,i = 2i−1, i.e., the aggregate size is doubled with the

linear increase in the class size. As a result, a large range of floc sizes can be covered with a

small number of population balance equations, e.g., a MOC with 25 class sizes that models

flocs with primary particle size ro = 1.0 µm and morphology Df = 2.4 covers a size range

from Rg,1 = 1.0 µm (singlets) to Rg,25 = 1024 µm.

In a subsequent study, Selomulya et al. [18] enhanced the PBM previously described [73,

75] by including a restructuring mechanism in the model. They achieved that by adding the

differential equation
dDf

dt
= t−1

r

(︁
Df,ss −Df

)︁
(2.17)

where t−1
r is the aggregate rate of restructuring, and Df,ss is the mass fractal dimension

at steady-state, i.e., the fractal dimension that is reached at the end of the shear-induced

aggregation experiment. To validate the effectiveness of this new approach, Selomulya et al.
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[18] compared their predictions using a PBM with Equation (2.17) with their data obtained

from aggregation experiments in turbulent flows. Both are presented in Figure 2.9. As can

be seen, Equation (2.17) accurately predicts the structural variation of flocs and their steady

state fractal dimension at different shear rates.

The PBM from Selomulya et al. [18] also provided satisfactory predictions of the volume-

mean floc size evolution with time (D43). These results confirmed that the evolution of floc

size and morphology in shear-induced experiments can be accurately predicted via PBM by

accounting for the combined effects of aggregation, breakage, and restructuring mechanisms.

Due to the successful predictions of Selomulya et al. [18], their PBM continues to be used

in the modelling of shear-induced aggregation experiments [21, 22, 36, 37].

Figure 2.9: Evolution of the floc morphology in shear-induced aggregation from Selomulya
et al. [18]. The symbols corresponds to experimental data points, and the continuous and
dashed lines are the results from Equation (2.17).

2.3.2 Quadrature method of moments (QMOM)

In colloidal aggregation, the quadrature method of moments (QMOM) tracks the rate of

change of the moments of the FSD with time [76]

dmk

dt
= AB

k − AD
k +BB

k − BD
k (2.18)

where mk is the k-th moment of the distribution, AB
k and AD

k are the aggregation birth

and death terms, respectively, and BB
k and BD

k are the breakage birth and death terms,
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in that order. Even though the terms on the right-hand-side of Equation (2.18) have the

same physical meaning of the terms from the MOC PBE, Equation (2.16), they expand into

different mathematical expressions [18, 76]. To solve Equation 2.18 with high accuracy and

time efficiency, the QMOM uses the quadrature approximation [76]

mk =

∫︂ +∞

0

n′ Lk dL ≈
nnodes∑︂
i=1

wi L
k
i (2.19)

where n′ is the continuous number density, Li and wi are the floc length and weight of

node i, and nnode is the total number of nodes. Figure 2.10 illustrates how the quadrature

approximation works, where four nodes are used to determine the moment of the distribution.

As can be seen, with only four data points, the QMOM can retrieve different moments at

a given time. The moments can be used to obtain the weighted average size of FSD, i.e.,

Dpq = mp/mq [77]. Hence, the QMOM is significantly faster than the MOC to retrieve

the average floc size. For instance, only two QMOM PBEs must be solved to determine the

evolution of D32 = m3/m2 with time, whereas the MOC uses twenty-five PBEs to first obtain

the floc size distribution and then calculates D32 via Equation 2.8. It is important to mention

that the the FSD can also be retrieved from moments, but this approach is computationally

expensive and often not recommended [20]. Additionally, there are no QMOM investigations

in which the floc morphology is tracked over time, and most studies assume a fixed value of

Df to characterize the aggregate throughout the entire simulation [19, 41, 77, 78].
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Figure 2.10: Illustration of the quadrature method of moments (QMOM), where N is the
number density, Li is floc length, and wi is the weight (Modified from Yeoh et al. [74]).

Due to the high computational efficiency of the QMOM, this approach can be coupled

with large-scale CFD simulations of shear-induced aggregation, where the weighted average

floc size is the physical parameter of interest from the population of aggregates [19, 41]. For

example, Wang et al. [41] used QMOM-CFD to model shear-induced aggregation in laminar

vortex flows. This type of flow induces periodic oscillations in the shear rate, and Wang et

al. [41] used it to test the effectiveness of using the average shear rate (G) to characterize the

rate of aggregation and breakage in the system. They compared QMOM results using the G

and the local shear rate (γ̇). They observed that the both G and γ̇ produced approximately

the same PBM results. Similar observations were also found for aggregation in turbulent

flows by Marchisio et al. [19]. They concluded that the average shear rate can be used in

PBMs instead of the local shear rate as long as the aggregation and breakage timescales are

shorter than the macromixing timescale, i.e., at the mixing vessel length-scale.

2.3.3 Comparison between MOC and QMOM

In summary, the MOC and QMOM are the most commonly used methods to track the

physical properties of colloidal aggregates in shear-induced aggregation [20, 74]. The QMOM

is computationally faster than the MOC to retrieve the moments and weighted average sizes

of populations of aggregates, and is often preferentially coupled with CFD [79]. However,
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the MOC can directly calculate the FSD and it can also track the change in aggregate

morphology with time [18]. Since the MOC provides a more detailed description of the

physical properties of aggregates in sheared systems, this method will be used in the current

study to investigate the floc breakage and restructuring mechanisms.

2.4 Aggregate breakage and restructuring in shear flow

Due to the detrimental effect of floc breakup on the efficiency of solid-liquid separation

systems, there has been an increased interest in measuring the aggregate strength, i.e.,

its resistance to breakage [14, 53], and in more fully understanding the floc breakage and

restructuring mechanisms at the aggregate length-scale [9, 10]. This section summarizes the

relevant studies in this research area and their potential for improving PBMs. Section 2.4.1

describes how the floc strength can be indirectly measured and used in PBMs to describe

the breakage mechanism. Section 2.4.2 explains how the breakage and restructuring occurs

at the aggregate length-scale in simple shear flows, and how the latest findings in this area

can be used to improve current PBMs.

2.4.1 Strength

As explained in Chapter 1 and Section 2.2, the restructuring and breakage of flocs depend

on the balance between the cohesive and hydrodynamic forces acting on the aggregate [10].

When the hydrodynamic forces (Fh) are orders of magnitude greater than the cohesive

forces (Fc), the breakage mechanism is favoured, which increases the floc breakage frequency.

When the system forces have the same order of magnitude, i.e., Fh ≈ Fc, the restructuring

mechanism is favoured, where flocs can form compact structures that are less prone to break

[10]. The hydrodynamic force experienced by an aggregate can be approximated by the

viscous force acting on a sphere with a radius equivalent to the floc radius of gyration [80]

Fviscous =
5

2
πµR2

gγ̇ (2.20)

As can be seen, Fviscous scales with the shear rate. Thus, the shear rate can be used as a

proxy for the hydrodynamic forces. The steady-state floc size, Rss
g , is typically assumed to

scale with the shear rate via the power-law relationship [14, 53]

Rss
g ∝ γ̇−p (2.21)
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where p is a scaling exponent that provides an indirect measurement of the aggregate

strength. Experiments [9, 38, 43, 81–85] and CFD investigations of single aggregates in

shear flow [9, 40, 86–88] showed that p = [0.35 0.60]. Smaller values of p represent strong

aggregates because of their greater resistance to breakage, i.e., they have a smaller decrease

in size with the increase in shear rate. The parameter p also depends on the chemical na-

ture and dosage of chemical destabilizers [43, 84] and on the initial floc morphology [9, 88],

but it is independent of the primary particle size [9]. Equation (2.21) is used in PBMs to

develop breakage kernels, which predict the breakup frequency of flocs with different sizes

and morphologies [18]. The breakage kernel is crucial for the development of the breakage

birth and death terms of PBEs [18], and is explained in detail in Section 3.2.2 of Chapter 3.

2.4.2 Shear-induced breakage and restructuring at aggregate length-
scale

Simple shear flows are a combination of pure rotational and straining flows, which results

in the rotation of immersed solid bodies [40]. During rotation, the solid object experiences

periodic viscous stresses that consist of compression and elongation cycles. In the case of

a perfect sphere, the maximum values of compression and elongation occur at -45o and 45o

from the x-axis. The axes of maximum hydrodynamic stresses are also known as principal

axes.

Blaser [39] developed an experimental approach to observe the effect of simple shear

flows on the breakage and restructuring mechanisms at aggregate scale. He tracked the

evolution of single aggregates in shear flow via image analysis in a controlled shear device.

He observed that the aggregate rotated similarly to a solid sphere in simple shear flow, but the

maximum compression and elongation stresses occurred along the flow streamlines (θ = 0o)

instead of the principal axes of stress. Blaser [39] hypothesized that this discrepancy was

due to aggregate rotation, which caused a retardation effect of the hydrodynamic stresses

experienced by it. The experimental observations from Blaser [39] were later confirmed via

numerical simulations by Horii et al. [16], who studied the evolution of non-fractal aggregates

in simple shear flows. They specifically investigated flocs with a cohesive strength of similar

magnitude to the hydrodynamic stresses at aggregate scale, thereby allowing the aggregates

to endure several rotation cycles before breakage. They observed that the retardation effect

in compression and elongation cycles facilitated the restructuring of flocs.
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Although the work of Blaser [39] and Horii et al. [16] is crucial for understanding the

breakage and restructuring mechanisms at aggregate scale, almost no information regarding

the types of fragments formed from floc breakage could be obtained from these studies. To fill

this research gap, Vanni and Gastaldi [69] developed a CFD method to monitor the evolution

of internal stresses across the primary particles of aggregates. They performed simulations

with low-density flocs (Df = {1.7, 2.3}) in simple shear flows at low Reynolds number, i.e.,

Reagg ≈ 0. From the simulation results, they observed that the maximum hydrodynamic

stresses are experienced by the particles on the periphery of the floc. These stresses then

distribute along primary particle filaments and concentrate close to the aggregate center of

mass. This was the region where the floc breakup occurred, which was caused by the failure of

a single inter-particle bond. Consequently, fragments of similar sizes were obtained from the

breakage of low-density flocs. In a subsequent study, Vanni [68] investigated the propagation

of stresses in high-density fractal aggregates at low Reynolds numbers. He discovered that

the hydrodynamic stresses applied to dense flocs redistribute locally, keeping the majority of

the stressed bonds at the aggregate periphery. This behaviour induced the breakage of flocs

via erosion, where two fragments of dissimilar sizes are created: one with a small number

of primary particles and the other with practically the same size of the parent floc. Vanni

[68] also observed that the redistribution of stresses in high-density aggregates can cause a

series of bond failures from the floc periphery towards its center of mass. This phenomenon

behaves like a crack propagation mechanism, leading to the formation of fragments with

similar sizes.

The work from Vanni [68, 69] provided a detailed analysis of the effect of aggregate

morphology on the different floc breakage mechanisms in simple shear flow. However, in

these studies, flow inertia was assumed to be negligible. Recent CFD simulations revealed

that flow inertia has an important effect on the aggregation mechanism for Reynolds numbers

as low as 0.03 [2]. Additionally, Saxena [40] investigated the breakage and restructuring of

aggregates in simple shear flow while considering both viscous and inertial forces in the

system. They used a CFD method to track the evolution of ten different aggregates with

the same initial size (Rg/ro ≈ 5.3) and morphology (Df ≈ 2.3). His results indicated that

the floc breakage always leads to the formation of two fragments, and that the fragment size

is not affected by the Reynolds number. This means that similar aggregates can break into

fragments of varying sizes at the same flow conditions, as illustrated in Figure 2.11. This
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important finding goes against the simplifying assumption from most PBM studies, i.e., that

floc breakage is always symmetric, and can only form fragments of equal sizes [18, 20, 36,

41]. Hence, there is a potential to improve current PBMs by developing new functions to

determine the fragment size after floc breakage.

Figure 2.11: Evolution of two similar aggregates at the same Reynolds number. The particles
highlighted in blue correspond to the fragment formed after breakage (modified from Saxena
[40]).

2.5 Summary

The following points summarize the key information provided in this chapter:

• The evolution of colloidal aggregates in shear flows is controlled by the interplay be-

tween cohesive and hydrodynamic forces [10];

• Since aggregates have complex and fragile structures, they must be studied via in situ,

non-intrusive techniques [17, 48];

• Shear-induced aggregation is dictated by the kinetic competition between aggregation,

breakage, and restructuring mechanisms, which can be accurately modelled via PBM

[18];

• When the aggregation and breakage time-scales are longer than the mixing time-scale,

the average shear rate can correctly characterize the rate of aggregation and breakage

in PBMs [19, 41];
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• The floc breakage can occur via erosion and symmetric fragmentation mechanisms [68].

At finite Reynolds numbers, Saxena [40] observed that there is no strong prevalence of

one type of breakage mechanism over another as both of them had similar occurrence

frequencies. This indicates that fragments with varying sizes can be formed from floc

breakage and they seem to have similar probabilities of occurring.

2.5.1 Identified Knowledge gaps

From this literature review, the following knowledge gaps can be identified:

• To the author’s knowledge, the current PBM investigations in colloidal science are

primarily focused on describing shear-induced aggregation [20]. Therefore, there is

a need for population balance studies focused on modelling shear-induced breakage

experiments;

• Most population balance studies assume that aggregate breakage is always symmetric,

i.e., it can only form two fragments with equal sizes [18, 20, 36, 41]. However, recent

CFD investigations conducted at finite Reynolds numbers showed that both symmet-

ric and erosion breakage mechanisms have a similar chance of occurring [40]. Since

these observations were made for only a small sample of aggregates, it is necessary to

investigate the breakage mechanism that can best model the behaviour of populations

of aggregates in aggregation and breakage experiments.

2.5.2 Proposed scope of the current study

Based on the information provided above, the major aim of this research project is to

investigate the breakage and the restructuring of colloidal aggregates in simple shear flows.

To achieve this goal, the following objectives were pursued:

• To model the breakage experiments of Cifuentes [17] via the MOC PBM;

• To investigate which type of breakage mechanism can best predict the evolution of the

size and morphology of populations of aggregates in breakage experiments.

34



Chapter 3

Numerical methods

As explained in Section 2.5, the major objective of the current project is to investigate

the restructuring and breakage of colloidal aggregates in laminar shear flow. To achieve this

goal, a population balance model (PBM) is used to predict the evolution of the average floc

size, the floc size distribution (FSD), and the global morphology of populations of aggregates

from Cifuentes’ [17] breakage experiments. A summary of the materials and experimental

method from Cifuentes [17] is provided in Section 3.1. A detailed description of the equations

that constitute the PBM is then provided: Section 3.2 delineates the population balance

equation (PBE) and its the crucial parameters for the modelling of aggregation and breakage

mechanisms; Section 3.3 describes the mass fractal dimension (Df ) ordinary differential

equation (ODE), which can be used to model the restructuring of populations of aggregates;

and Section 3.4 explains how the PBE and the Df ODE can be numerically solved together

to account for the aggregation, breakage, and restructuring mechanisms in laminar shear

flow. Lastly, Section 3.5 provides a summary of the hypotheses and case studies that are

investigated by in this work.

3.1 Experiments

Recently, Cifuentes [17] investigated the aggregation, breakage and restructuring of col-

loidal aggregates in laminar flow in a Taylor-Couette cell consisting of a rotating inner

cylinder and a stationary outer cylinder. This experimental apparatus was chosen because

the spatial average shear rate is approximately constant for laminar flow and can be easily

determined by [89]

G =
2 · ωin ·Rin ·Rout

R2
out −R2

in

(3.1)
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where win and Rin = 35.75 mm are the angular velocity and radius of the inner cylinder,

respectively, and Rout = 38.25 mm is the outer cylinder radius. Hence, the gap distance

between the two concentric cylinders is dgap = 1.5 mm, resulting in a critical Taylor number

of Tacri = 42.07 based on [90]

Tacri =

π4

(︃
1 + dgap

2Rin

)︃
5.71 · 10−2

[︃
1− 0.652

(︃
dgap
Rin

)︃]︃
+ 5.6 · 10−4

[︃
1− 0.652

(︃
dgap
Rin

)︃]︃−1 (3.2)

To ensure laminar flow in this apparatus, Ta < Tacri, which requires G ≤ 89.48 s−1 according

to [89]

Ta =
ωin

ν

√︃
Rin

(︂
Rout −Rin

)︂3

(3.3)

where ν is the kinematic viscosity. The aggregate size and structure were monitored via

2D image analysis (AOS PROMON 501 CMOS high-speed camera) by measuring the pixel

Rg (see Equation (2.6)) and the global Df (see Equation (2.2)), respectively. As discussed

in Section 2.1.1, this is an in situ and non-intrusive measuring technique, and is therefore

suitable for studying colloidal aggregates.

As can be seen in Figure 3.1, each experiment consisted of two major stages, 1) aggre-

gation and 2) breakage. In the aggregation stage, a colloidal dispersion of latex particles

(do = 2 µm, ρs = 1, 055 kg/m3) was initially destabilized by adding it to a sodium chloride

solution of 1.4 M (pH = 7.0), which was made with de-ionized water. The Hamaker con-

stant for latex particles in water has a representative value of Ah = 1.37 · 10−20J, which was

acquired from Prieve and Russell [91]. This electrolyte concentration was carefully chosen

to prevent particle settling by matching the fluid solution and solid density, and to screen

the electric double-layer forces from the system by staying above the critical coagulation

concentration. To isolate the effect of shear on aggregation and breakage, the solids volume

concentration was Cv = 1 ·10−4 for all experiments, which also minimized the overlapping of

particles during image acquisition. Additionally, since the experiments were carried out at

20o C and in very dilute conditions, the dynamic viscosity of the NaCl solution was assumed

to be the same as water viscosity at this temperature, i.e., µ = 1 · 10−3 Pa · s.

After destabilizing the colloidal dispersion, the inner cylinder was set to rotate at its max-

imum speed of 442.5 RPM for 5 min to break any aggregate that was previously formed from

pouring the colloidal particle suspension into the device. Then, the shear rate was reduced
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Figure 3.1: Summary of experimental procedure from Cifuentes [17]

to 17.6 s−1 (30 RPM) to initiate shear-induced aggregation. The end of the aggregation

stage was assumed to occur when the flocs reached a steady-state size distribution. This

was determined by comparing the size distributions after 2.5 hrs and 3 hrs of shearing. To

guarantee that the suspension of aggregates were correctly characterized in the experiments,

samples of around 3000 to 18000 flocs were analyzed at each time measurement.

Once the aggregation stage was completed, a step increase in the shear rate was made.

The values of G ranged from 28.95 s−1 to 86.86 s−1. This resulted in the restructuring

and breakage of aggregates, and smaller steady-state size distributions were produced. As

the time required to reach steady-state after the breakage stage depended on the shear rate

magnitude, several measurements at regular intervals were done throughout the breakage

experiment.

Since this project aims to investigate the breakage and restructuring of aggregates under

laminar shear flow conditions, only the breakage stage of each experiment is modelled via

PBM. Hence, the steady-state floc size distribution and morphology from the aggregation

stage was considered to be the initial condition of the system for the PBM, i.e., at t = 0 min.

A total of 15 experiments were modelled in the present work, three for each shear rate.

The hydrodynamic forces acting on the population of aggregates for each experiment can be

characterized by the Reynolds number based on the surface mean floc size, i.e.,

ReD32 =
G
(︁
D32

)︁2
ν

(3.4)

Table 3.1 summarizes the different flow conditions of the experiments modelled in the

present work, where ReoD32
is the floc population Reynolds number at t = 0 min. The initial

average surface mean diameter (Do
32) was used to calculate ReoD32

, where

Do
32 =

∑︁15
k=1D32

15
= 204 µm (3.5)
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Since ReoD32
> 1 for all experiments, both flow inertia and viscous forces influence the

breakage and restructuring phenomena, as explained by Saxena [40]. It is important to

mention that this work used a simplified version of Cifuentes’ experiment IDs, and Appendix

A has a detailed description of his original tagging system. For more details on the imaging

analysis technique and experimental protocols, please refer to Cifuentes [17].

Table 3.1: Flow field parameters

win (rpm) G (s−1) ReoD32
Exp. ID

50 28.95 1.27 1, 2, 3

60 34.75 1.53 4, 5, 6

100 57.91 2.54 7, 8, 9

130 7528 3.31 10, 11, 12

150 86.86 3.81 13, 14, 15

3.2 Population Balance Equation

In colloidal systems, the population balance equation (PBE) tracks the kinetic evolution

of the aggregate physical properties over time. In this current work, the lumped discrete

population balance from Spicer and Pratsinis [73] and Hounslow et al. [75] is used due to its

low computational cost, ease of comparision with experimental data, and ability to retrieve

the floc size distribution at each time step [18, 36]. For closed systems [73, 75],

dNi

dt
= AB

i − AD
i +BB

i − BD
i (3.6)

where Ni is the number density or the average number of flocs per unit volume containing

np,i = 2i−1 primary particles. Thus, N1 corresponds to the number density of primary

particles or singlets in the system. Since this PBE follows a geometric progression of powers

of two, the total number of primary particles within an aggregate is always doubled with

the linear increase in the class size, i.e., np,i+1 = 2np,i. This allows this PBE to track a wide

range of aggregate sizes with a relatively small number of class sizes. Accordingly, in the
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present work, 25 class sizes were tracked over time. Equation (3.6) corresponds to the net

rate of change in the number density with time, accounting for the birth and death of flocs

due to aggregation (AB
i , A

D
i ) and breakage (BB

i , B
D
i ). The equations for these four terms

as well as their meaning are listed below:

• AB
i : birth (or formation) of i-th class flocs due to the aggregation of flocs from smaller

class sizes, i.e.

AB
i =

i−2∑︂
j=1

2j−i+1Λi−1,jNi−1Nj +
1

2
Λi−1,i−1N

2
i−1 (3.7)

where Λi,j is the aggregation kernel.

• AD
i : death (or disappearance) of i-th class flocs due to their aggregation with other

flocs to form aggregates of larger size, where

AD
i = −Ni

i−1∑︂
j=1

2j−iΛi,jNj −Ni

nc∑︂
j=i

Λi,jNj (3.8)

where nc is the total number of class sizes that are tracked by the PBE.

• BB
i : birth of i-th class flocs due to the breakage of larger aggregates, i.e.,

BB
i =

nc∑︂
j=i

Γi,jSjNj (3.9)

where Γi,j is the breakage distribution function and Si is the breakage kernel.

• BD
i : death of i-th class aggregates due their breakage to form smaller flocs, i.e.,

BD
i = −SiNi (3.10)

There are three critical parameters within Equations (3.7) to (3.10) that ultimately de-

termine the aggregation and breakage kinetics, which are essential for the correct modelling

of sheared colloidal systems. They are the aggregation kernel (Λi,j), the breakage kernel (Si),

and the the breakage distribution function (Γi,j) [20]. The meaning and expressions for each

of these parameters are provided in the following subsections.

3.2.1 Aggregation kernel

The aggregation kernel, Λi,j, corresponds to the volumetric flowrate of i-th and j-th class

flocs through the collision cross-section Rg,i +Rg,j [71]. When multiplied by Ni ·Nj, it gives

the aggregation frequency, i.e., the rate of collisions that results in aggregation [74]. This
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parameter is determined by the sum of the perikinetic (P), orthokinetic (O), and differential

settling (DS) collision mechanisms [20],

Λi,j = ΛP
i,j + ΛO

i,j + ΛDS
i,j (3.11)

In Cifuentes’ experiments [17], there is no differential settling because particles were

neutrally buoyant in the sodium chloride solution. To determine the relative influence of

the orthokinetic and perikinetic collision mechanisms, the Péclet number is used, which

corresponds to the dimensionless ratio between the viscous and the Brownian forces of the

system [92]:

Pe =
6πµGr3o
kbT

(3.12)

where ro is the primary particle radius, kB is the Boltzmann constant, and T is the absolute

temperature. In Cifuentes’ experiments [17], the Péclet number at the lowest shear rate

(G = 17.6s−1) is Pe ≈ 1 × 105, which indicates that the perikinetic collision mechanism

is also negligible. Hence, the collision frequency is driven only by the orthokinetic (shear-

induced) mechanism, i.e.,

Λi,j = ΛO
i,j = βi,j · αi,j (3.13)

where βi,j corresponds to the rectilinear collision kernel from Smoluchowski [71], and αi,j is

the collision efficiency, which accounts for the effect of hydrodynamic and cohesive interac-

tions on floc trajectories. [60], as shown in Figure 3.2.

Figure 3.2: Illustration of floc trajectory in simple shear flow. The dashed arrow represents
the rectilinear trajectory assumed in Smoluchowski’s collision kernel [71], and the dashed-
point arrow corresponds to the actual floc trajectory, which is accounted for in shear-induced
collisions by including αi,j in Equation (3.13).
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The rectilinear collision kernel is given by the well-established, analytical expression [71]

βij =
4

3
G
(︁
Rg,i +Rg,j

)︁3
(3.14)

where Rg,i = ro
(︁
np,i

)︁1/Df is the radius of gyration of the i-th aggregate class size [18]. Since

the total number of primary particles of class i flocs is np,i = 2i−1, the radius of gyration

simplifies to

Rg,i = ro2
(i−1)/Df (3.15)

By substituting Equation (3.15) into Equation (3.14), the influence of the aggregate fractal

nature is accounted for in the collision frequency, in which porous flocs (Df ≈ 1.8) have

a higher chance of colliding when compared to compact flocs (Df ≈ 2.4). Concerning the

collision efficiency equation, since different models have been proposed over the last decades,

a critical review of the literature on this topic is provided below.

Collision efficiency

In unstable colloidal dispersions, as flocs approach one another, they deviate from recti-

linear trajectories due to short-range hydrodynamic and colloidal interactions [60]. At the

particle scale, lubrication and Van der Waals forces occur. The former tends to decrease the

collision frequency between aggregates, whereas the latter enhances it [93]. At the aggregate

scale, the flow disturbance caused by the presence of flocs in the fluid also decreases the

frequency of floc collisions [2, 55]. To include these effects in the shear-induced collision ker-

nel (3.13), the collision efficiency is used, which is defined as the ratio between the effective

aggregation frequency and the rectilinear collision frequency [60].

Collision efficiency models are often obtained by investigating the relative trajectories of

solid spheres [63, 64, 94] and permeable spheres in simple shear flow [60, 95]. In the doublet

formation stage, homocoagulation [94] and heterocoagulation [63, 64] studies showed that

the collision efficiency is a function of the dimensionless ratio between hydrodynamic and

cohesive forces, also known as the flow number (Flspi,j) [94]:

αsp
i,j ≈

(︁
Flspi,j

)︁−0.18
; Flspi,j =

6πµR3
g,i

(︁
1 + λi,j

)︁
8A

(3.16)

where λi,j = Rg,j/Rg,i is the size ratio for j < i. Equation (3.16) reveals that the collision

efficiency of equally sized flocs is higher than that for flocs with different sizes. Kusters et al.
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[60] extended this model to determine the collision efficiency of impermeable porous flocs,

αi
i,j, by modifying Flspi,j,

Flii,j = Flspi,j ·
[︃

2λi,jRg,i

ro
(︁
1 + λi,j

)︁]︃ (3.17)

The term in the square brackets of Equation (3.17) is the ratio between the attractive

forces of solid particles and porous flocs, respectively, which accounts for the fractal nature

of aggregates in the collision efficiency. Kusters et al. [60] also proposed a new collision

efficiency, αp
i,j, that considers the influence of flow penetration on aggregate trajectories

by modelling flocs as spheres containing a permeable shell and an impermeable core. It

assumes that floc trajectories follow the streamlines inside and around a uniformly porous

sphere, which was previously studied by Adler [95]. This shell-core model defines the collision

efficiency as a function of only two parameters: the size ratio, λi,j, and the dimensionless

size of the largest colliding floc:

ξi =
Rg,i√
κi

(3.18)

where Rg,i is the shell radius, and κi is the floc permeability. This dimensionless floc size is

also referred to as Debye’s shielding ratio. As can be seen in Figure 3.3, the collision efficiency

of permeable flocs tends to exponentially decrease with ξi, and this decay is more pronounced

for collisions between flocs of different size, i.e., lower values of λi,j. According to Kusters

et al. [60], floc collisions for λi,j ≥ 0.2 are approximately the same as λi,j = 1. Additionally,

when λi,j ∈ ]0.1 0.2[, the collision efficiency can be obtained via linear interpolation between

the two curves from Figure 3.3.

To calculate ξi, it is first necessary to determine the floc permeability, which is a function

of the floc density (ϕi), a shielding coefficient that accounts for aggregate morphology (Cs),

and the primary particle radius (ro),

κi =
3− 4.5 · ϕ1/3

i + 4.5 · ϕ5/3
i − 3 · ϕ2

i

9ϕi

(︁
3 + 2ϕ

5/3
i

)︁
Cs

· (2r2o) (3.19)

The shielding coefficient is 0.724 for doublet collisions [96] and is approximately 0.50 for

collisions between larger aggregates [60]. The floc density is defined as

ϕi = ϕo

(︃
Rg,i

ro

)︃Df−3

(3.20)

where ϕo = 1 is the packing density (1−minimum porosity). Since the shell-core model does

not consider the effect of Van der Waals forces, Kusters et al. [60] suggests that the final
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Figure 3.3: Shell-core model collision efficiency, αp
i,j, as a function of dimensionless floc size,

ξi, for two size ratios, λi,j (modified from [60]).

collision efficiency should be the largest value between the collision efficiency for impermeable

(αi
i,j) and permeable flocs (αp

i,j), i.e.,

αi,j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

αsp
i,j ≈

(︁
Flsp

)︁−0.18
; if (i and j) = 1

αi
i,j ≈

(︁
Flsp

)︁−0.18
; if

(︁
i or j

)︁
> 1, and αif

i,j > αpf
i,j

αp
i,j = f(λ, ξi) ; if

(︁
i or j

)︁
> 1, and αf

i,j ≤ αpf
i,j

(3.21)

Although Kusters et al. [60] developed one of the most comprehensive collision efficiency

approaches from a physical perspective, its implementation is complex and computationally

demanding because it requires several equations and conditional operations. Selomulya et al.

[18] simplified the Kusters et al. [60] model by developing an analogous empirical equation,

αi,j = αmax ·
exp

[︃
− x

(︂
1− max(i,j)

min(i,j)

)︂2
]︃

(︁
i× j

)︁y (3.22)

where αmax ∈ [0 1] is the maximum collision efficiency, and {x, y} are other fitting parame-

ters. The numerator of Equation (3.22) models the influence of size ratio in floc collisions,

whereas the denominator includes the effect of hydrodynamic forces acting on the aggregate,

which scale with the floc size. Selomulya et al. [18] used
(︁
αmax, x, y

)︁
=

(︁
1.0, 0.1, 0.1

)︁
to model
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the colloidal aggregation in turbulent flows, and the PBM predictions closely matched their

experimental observations. Several subsequent studies in this area implemented Equation

(3.22) in their population balance models [21, 22, 36, 37, 42], also using
(︁
x, y

)︁
=

(︁
0.1, 0.1

)︁
,

but varying αmax with different simulation set ups [42] or the type and dosage of flocculants

[21, 22, 36].

Despite the fact that good population balance predictions for shear-induced aggregation

have been obtained by using Selomulya’s [18] collision efficiency correlation, there are essen-

tial differences between this empirical approximation and Kusters et al. [60] original model.

This can be clearly observed by comparing Figures 3.4 (a) and 3.4 (b), which show how

the collision efficiency varies with different combinations of class sizes (i, j). The values of

{αmax, x, y} in Figure 3.4 (b) were carefully chosen to attempt to match the predictions of

Kusters’ original model using Equation (3.22). When i = 1, as j increases, the collision

efficiency from Selomulya et al. [18] underestimates αi,j when compared to Kusters et al.

[60]. When i = [15 25] and j ≥ 15, Equation (3.22) predicts an almost asymptotic behaviour

for αi,j, which actually does not occur in the Kusters’ [60] model. Furthermore, the initial

growth in αi,j for j ≥ 15 occurs at very small values of i when Equation (3.22) is used,

but this increase takes place at much greater values of i based on the original model [60].

For instance, αSelomulya
6,20 ≈ αKusters

15,20 . The difference between the predictions can be minimized

by substituting the class indices (i, j) in Equation (3.22) by the total number of primary

particles forming the aggregates, i.e., (ni, nj). This modification was initially proposed by

Vlieghe et al. [77], and the collision efficiency values for this approach are displayed in Figure

3.4 (c). Even though this modification produces values of αi,j that are much closer to the

original model [60], the Vlieghe et al. [77] collision efficiency model is not written in terms of

the mass fractal dimension, and thus predicts the same collision efficiency for different Df .
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Figure 3.4: Comparison among (a) Kusters et al. [60] original collision efficiency model
(A = 1.37 × 10−20 J, do = 2µm, Df = 2.5) and its empirical approximations from (b)
Selomulya et al. [18] (αmax = 0.5, x = 0.1, y = 0.1) and (c) Vlieghe et al. [77] (αmax = 0.5,
x = 0.0001, y = 0.03).

To address the shortcomings of the collision efficiency approaches of Selomulya et al. [18]

and Vlieghe et al. [77], we re-wrote Equation (3.4) in terms of the dimensionless aggregate
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size R∗
g,i = Rg,i/ro instead of class index i, and varied y with the mass fractal dimension:

αi,j = αmax·
exp

[︃
x

(︃
1− max(R∗

g,i,R
∗
g,j)

min(R∗
g,i,R

∗
g,j)

)︃2]︃
(R∗

g,i ·R∗
g,j)

y
; y = 0.3315·Df−0.717 , Df ∈ [2.3 2.8] (3.23)

The y = f(Df ) was obtained by varying Df from 2.3 to 2.8 and choosing the best value of y

that could match the maximum collision efficiency for j = 20 from Kusters et al. [60] model.

Then, y = f(Df ) was obtained from the linear regression of y and Df values. The curve of

j = 20 was used as a reference because it guaranteed that the other peaks for j < 20 were

not too low and for j > 20 were not too high when compared to the original model [60].

Figure 3.5 shows Kusters et al. [60] and Equation (3.23) for Df = {2.4, 2.7}. Comparing

Figures 3.5 {(a),(b)} and {(c),(d)}, it is clear that our empirical model can qualitatively

capture the intricate details of Kusters et al. [60] collision efficiency. Interestingly, when

{αmax, x, y} = {0.35,−0.25, 0}, Equation (3.23) retrieves the same collision efficiency values

from Kroll-Rabotin et al. [2], who simulated finite Re collisions between solid spheres with

different size ratios.
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Figure 3.5: Comparison between the Kusters’ [60] original collision efficiency model and the
empirical approximation proposed during the current study. In figures (a) and (b), Df = 2.4,
whereas in figures (c) and (d), Df = 2.7. The paramters Ah = 1.37× 10−20 J and do = 2µm
were used in to obtain αi,j values from Kusters’ model [60], which are is presented in figures
(a) and (c). The values (αmax, x) = (0.5, 0.02) were used to obtain the αi,j values from the
collision efficiency model of the current work, which are presented in figures (b) and (d).

In Cifuentes’ [17] breakage experiments, the observed flocs were quite compact (Df ≥ 2.2)

and, according to Saxena et al. [10], the flow disturbance caused by dense aggregates is

similar to that of solid rigid spheres. Therefore, the collision efficiency of compact flocs might

be approximated by the one for solid spheres. To validate this hypothesis and investigate

the role of permeability in floc collisions, two different sets of {αmax, x, y} values were chosen

for Equation (3.23), which are summarized in Table 3.2.
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Table 3.2: Parameters of Equation (3.23) for the modelling two different types of collisions.

Collision type Symbol αmax x y

Permeable flocs αp 0.50 0.02 0.3315 ·Df − 0.717

Impermeable flocs αi 0.35 0.25 0.00

In summary, the collision efficiency is often included in the orthokinetic collision mecha-

nism to account for the hydrodynamic and cohesive interactions between flocs, which affect

the aggregation trajectories is shear flow [93]. Kusters et al. [60] proposed one of the most

comprehensive collision efficiency models, which includes the effect of system forces and floc

permeability in collisions. Due to the inherent complexity of Kusters’ [60] model, Selomulya

et al. [18] and Vlieghe et al. [77] developed empirical approximations that were thought to

obtain similar values to Kusters’ collision efficiency model. In the current work, we showed

that there are clear differences between the collision efficiency models from Selomulya et

al. [18], Vlieghe et al. [77], and Kusters et al. [60]. To overcome these differences, we

proposed a modified version of Selomulyas’ collision efficiency, i.e., Equation (3.23), which

is qualitatively equivalent to Kusters’ original model (see Figure 3.5). Equation (3.23) can

also determine the collision efficiency of impermeable solid rigid spheres at finite Reynolds

numbers, which were investigate via CFD by Kroll-Rabotin et al. [2]. To investigate the role

of floc permeability in the modelling of breakage experiments, two different collision types

are investigated in this work using Equation (3.23), which are summarized in Table 3.2.

3.2.2 Breakage Kernel

The breakage kernel, Si, determines the fragmentation rate of class i aggregates due to

the effect of shear. When aggregates are formed only from the destabilization of primary

particles, i.e., without the addition of polymer flocculants, two different models can be used

to calculate the breakage kernel [20]. The first one is an empirical power-law relationship

[77, 97],

Si = c1 ·Gc2 ·
(︃
Rg,i

Rp

)︃c3

(3.24)

where c1, c2, and c3 are fitting parameters. The second approach consists of a semi-

empirical model that was initially proposed by Delichatsios and Probstein [98] to describe
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the breakage frequency of droplets in turbulent flows, and then it was modified by Kusters

[99] to predict the fragmentation rate of colloidal flocs. It assumes that the local shear rate

experienced by a class i aggregate varies in magnitude according to a normal distribution

and that there is a critical shear rate, Gb,i, that causes the breakage of this aggregate. In

laminar flow, Kusters [99] proposer the following breakage kernel equation:

Si =

(︃
2

π

)︃1/2

G exp

[︃
−

(︃
Gb,i

G

)︃2]︃
(3.25)

According to Wang et al. [41], the critical breakage shear rate in laminar flow is related to

aggregate size:

Gb,i =

√︄
B(︁

Rg,i

)︁2/p (3.26)

where B is a fitting parameter and p the scaling exponent obtained from the aggregate

strength relationship between floc steady-state size and shear rate
[︁
see Equation (2.21)

]︁
.

According to Selomulya et al. [18], who initially proposed Equation (3.26), p = 2.0. However,

based on recent experiments [9, 17, 82, 85, 88] and simulations [9, 40, 87], p ≈ 0.5. This

indicates that Gb,i scales with the aggregate area, which makes more sense from a physical

standpoint. Equation (3.26) also reveals that Gb,i is a local property of the aggregate because

it depends on the floc size and strength.

Since the exponential breakage kernel, Equation (3.25), comes from a phenomenological

understanding of aggregate breakage, this model is not limited to experimental conditions,

unlike the empirical power-law breakage kernel. Accordingly, only the exponential breakage

kernel was considered in the current work, with p ≈ 0.5.

3.2.3 Breakage distribution function

The breakage distribution function, Γi,j, describes the formation of flocs from the i-th

class size due to the breakage of aggregates from the j-th class. In other words, it determines

the size of fragments that are formed after each breakage event. Most population balance

studies on colloidal aggregation and breakage assume symmetric binary breakage [11, 18, 19,

22, 36, 37, 41, 42], in which any breakage event results in two identical fragments with half

the size of the original floc. Hence, in the lumped discrete PBE from [73, 75], a floc from

the j = i+ 1 class can only break into two fragments from the i-th class size.
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Although the symmetric binary breakage is relatively easy to implement and produced

good predictions of aggregate average size in previous population balance studies [11, 18,

19, 22, 36, 37, 41, 42], recent CFD simulations at low Reynolds numbers, i.e., negligible flow

inertia, showed that the breakage of compact flocs is not always symmetric, as they can also

break via an erosion mechanism [68]. This behaviour was also observed by Saxena [40] at

finite Reynolds number, where both convection and diffusion are accounted for in the fluid-

particle interactions. In this work, the breakage and restructuring of ten different aggregates

with the same initial Df and Rg was investigated via CFD simulations. It was observed that

colloidal aggregates do not follow any particular breakage mechanism in simple shear flow,

i.e., fragments of varying sizes occur regardless of the system shear rate.

Despite the fact that Saxena’s [40] findings cannot be extrapolated to a population of

aggregates due to the small number of simulated aggregates in this study, it is worthwhile

to investigate via population balance modelling the fragmentation mechanism can better

predict the breakage and restructuring kinetics of aggregates. To perform this analysis, we

propose a new breakage distribution function, where the probability of forming a fragment

of k primary particles from the breakage of a j-th class floc follows a geometric progression,

i.e.,

wk,j =
rk−1 (1− r)

1− rn
b
j

(3.27)

where r is the common ratio, i.e., the ratio between two consecutive numbers of the geometric

sequence, and nb
j = np,j/2 is the number of breakage scenarios for the j-th class floc. To

vary the value of r for different breakage scenarios, we define a new fitting parameter, s =

r−np,j/4 ∈ ]0 1[, which corresponds to the chance of producing a fragment with a quarter

of the size of the parent floc compared to the chance of creating aggregates half the size of

their parent aggregate. The effect of s on the fragment size probability (wk,j) is illustrated in

Figure 3.6 for the case of an aggregate from class size j = 4, where np,4 = 8 and nb
4 = 4. As

can be seen, when s→ 0, the probability of creating any aggregate smaller that np,j/2 drops

to 0, i.e., only binary breakage occurs. Conversely, if s → 1, the chance of producing an

aggregate of nj/2 particles is the same as nj/4, so the geometric progression is actually flat,

in which uniform binary breakage takes place. If s has intermediate values between 0 and 1,

the breakage mechanism is non-uniform, that is, the fragment size probabilities are neither

symmetric nor uniform, transitioning between these two breakage mechanisms according to
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Equation (3.27).

Figure 3.6: Breakage probabilities of class j = 4 aggregates (np,j = 8) for different values of
s parameter.

Since all breakage scenarios must be accounted for in our model, the breakage distribution

function (Γi,j) is therefore written as

Γi,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

np,i+1−1∑︂
k=np,i

wk,j · fk,j · ιk,i; i = 1

np,i+1−1∑︂
k=np,i

wk,j · fk,j · ιk,i +
np,i−1∑︂

k=np,i−1

wkj · fk,j ·
(︁
1− ιk,i

)︁
; i ∈ [2 (j − 1)]

np,i−1∑︂
k=np,i−1

wk,j · fk,j ·
(︁
1− ιk,i

)︁
; i = j

(3.28)

where fk,j is the total number of fragments with k primary particles that can be produced

from the breakage of the j-th class parent floc, i.e.,

fk,j =

{︄
1; k = np,j−1 ̸= 2j−2

2; k = np,j−1 = 2j−2
(3.29)
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and ιk,i is the percentage of a fragment with k primary particles that belongs to a i-th class

size floc, given by

ιk,i =
np,i+1 − k

np,i+1 − np,i

; np,i ≤ k < np,i+1 (3.30)

Figure 3.7 illustrates the four different breakage scenarios of class j = 4 aggregates (nj =

8) for different values of s. When s = 1·10−8, symmetric binary breakage takes place, creating

flocs with only four primary particles because the other types of fragments have zero chance of

happening; that is, (wk,j = 0.25). When s = 0.9999, uniform binary breakage occurs, where

all fragments have the same birth probability, i.e., wk,j = 0.25. Finally, when s = 0.5, the

breakage is non-uniform and wk,j follows the geometric progression from Equation (3.27).

It is important to mention that only binary fragmentation was considered regardless of

the breakage mechanism; that is, each breakage event produces only two fragments, i.e.,∑︁j
i=1 Γi,j = 2 for any value of s.

Figure 3.7: Breakage probabilities of class j = 4 aggregates (np,j = 8) for different values of
s parameter.

In summary, the binary symmetric breakage is often assumed to be the only breakage

mechanism in PBMs for shear-induced aggregation [11, 18, 19, 22, 36, 37, 41, 42]. Recent

CFD studies from Saxena [40] showed that different breakage mechanisms can take place

at the same flow conditions, and there is no strong prevalence of one type of breakage

mechanism over another as both of them had similar occurrence frequencies. Since Saxena’s

[40] CFD simulations were limited to only a small number of aggregates, the current study

developed a new breakage distribution function to investigate the breakage mechanism that

can best predict the behaviour of populations of aggregates from Cifuentes’ [17] breakage
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experiments.

3.3 Fractal dimension ODE

The fractal dimension ordinary differential equation (ODE) describes the rate of change

in the mass fractal dimension with time [18, 37],

dDf

dt
= t−1

r

(︁
Df,ss −Df

)︁
(3.31)

where t−1
r is the rate of aggregate restructuring and Df,ss is the steady-state fractal di-

mension. This equation was initially proposed by Selomulya et al. [18], who successfully

predicted the evolution of the mass fractal dimension in shear-induced aggregation exper-

iments. This approach assumes that fractal dimension does not vary with aggregate size,

where the morphology of all class sizes at a given time is represented by a single value of Df .

Hence, Equation 3.31 can only obtain the global morphology of populations of aggregates.

In order to determine t−1
r , Selomulya et al. [18] proposed the following equation:

t−1
r = c1

(︃
D32

do

)︃c2

+ c3AB (3.32)

where {c1, c2, c3} are fitting parameters and AB = f(AB
i , A

D
i , B

B
i , B

D
i ) is a coefficient that

compounds the effect of aggregation and breakage kinetics based on the birth and death

terms of the PBE Equation (3.6). Later, Bonanomi et al. [37] criticized Equation (3.32),

showing that c3AB ≪ c1
(︁
D32

do

)︁c2 and that the validation of {c1, c2} values was not provided

by Selomulya et al. [18]. To overcome these issues, Bonanomi et al. [37] used t−1
r as a

fitting parameter, which varied with the system shear rate. More recent population balance

studies on shear-induced aggregation, which also considered t−1
r a fitting parameter, obtained

reasonably good predictions when compared to experimental data [22, 36, 42]. Therefore,

the current work also uses t−1
r as a fitting parameter.

Since many population balance studies investigated shear-induced colloidal aggregation,

the steady-state fractal dimension was always considered equal to the maximum fractal

dimension, i.e., Df,ss = Df,max [18, 22, 36, 37, 42]. However, as can be seen in Figure 3.8

(a), this assumption cannot be made for Cifuentes’ experiments [17], where Df,max mostly

occurred at the second data point of the breakage stage. Moreover, the experiments at lower

shear rates produced oscillations in Df values, and therefore Df,ss could not be obtained
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based on the average of the last experiment data points. Thus, to obtain a good overall

prediction of Df with time, we considered Df,ss to be a fitting parameter.

Figure 3.8: a) Example of mass fractal dimension kinetics of Cifuentes breakage stage exper-
iments [17] at different shear rates; b) Illustration of the short-term and long-term restruc-
turing kinetics, and the two different initial fractal dimensions considered in this work.

In order to solve Equation (3.31), the initial fractal dimension at 0 min (Df,o) must

be provided as an input parameter. As presented in Figure 3.8 (b), two different values

of Df,o are considered in this work, one obtained from the last data point of Cifuentes’

aggregation stage (DA
f,o), and the other one inferred from the kinetic trend of the breakage

stage (DB
f,o). The reason for considering these two different initial values comes from the

fact that the measurements in Cifuentes’ experiments were periodic, i.e., not continuous,

and that the first data point in the breakage stage always occurred 3 min after the step

increase in the shear rate. As a consequence, the sharp increase in the fractal dimension

between 0 min and 3 min might have occurred in the first few seconds after the shear

rate increase, which justifies inferring Df,o from the breakage stage data. Additionally,

two different restructuring mechanisms were observed in at least one experiment for each

shear rate: rapid densification followed by a slow elongation. Since these two restructuring

mechanisms cannot be modelled at the same time by Equation (3.31), the two different Df,o

values were considered in this study. Therefore, when Df,o = DA
f,o, Equation (3.31) can

only model the short-term densification, and when Df,o = DB
f,o, Equation (3.31) models the

long-term densification.
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3.4 Numerical method to solve the PBM

Based on the information presented in the Sections 3.2 and 3.3, a total of 26 ordinary

differential equations must be solved numerically at each time step, of which one equation

tracks the global mass fractal dimension (3.31), and 25 PBEs (3.6) determine the aggregate

size distribution. Hence, the initial condition of this ODE system is yoyoyo = [Df,o NoNoNo]. The

ode45 built-in function from MATLAB R2021a was used in this work, which solves the ODE

system via the 4th and 5th order Runge-Kutta explicit method. The code developed in this

work was built upon a template code available in the Appendix A of Selomyla PhD thesis

[72]. This template code was also used by Selomulya et al. [18] to model shear-induced

aggregation in turbulent flows via PBM.

To guarantee that the solids mass is conserved in this PBM model, the absolute rela-

tive error (|Er,m|) between the initial solids volume (V s
o ) and time m solids volume (V s

m) is

monitored at each time step. When |Er,m| > 1 · 10−4, the simulation stops and the model

parameters are readjusted.

3.5 Summary of case studies and hypotheses

Table 3.3 summarizes the four different case studies investigated in this work, which

allows us to investigate the effect of modelling short-term (DA
f,o) and long-term restructuring

(DB
f,o), and to determine whether aggregates collide similarly to either solid rigid spheres

(αi) or permeable flocs (αp).

Table 3.3: Summary of case studies

Case study ID Collision efficiency model Initial fractal dimension

1 αi DA
f,o

2 αp DB
f,o

3 αi DA
f,o

4 αp DB
f,o

Based on the discussion from Section 3.2, three hypotheses will be investigated in this

work:
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• Since dense flocs (Df ≥ 2.3) disturb the flow similarly to solid rigid spheres [10], floc

permeability does not play a major role in the collision efficiency, i.e., αp and αi models

should retrieve similar population balance resulSts.

• Since the breakage of compact flocs (Df ≥ 2.3) can form aggregates of different sizes

[40, 68] and there is no strongly favoured breakage mechanism [40], the assumption

made by most population balance studies that floc breakage always generates fragments

of equal sizes [18, 19, 22, 36, 37, 41, 42] is not correct. This hypothesis will be confirmed

if s≫ 0 (fitting parameter from the breakage distribution function, see Section 3.2.3).

• In Cifuentes’ [17] breakage stage, the initial short-term densification of aggregates is

instantaneous, i.e., it occurs much faster than the observed time scale and measurement

sampling time. This hypothesis will be correct if the population balance predictions

using DB
f,o are more accurate than those obtained using DA

f,o.
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Chapter 4

Results and Discussion

This chapter presents and discusses the PBM results of the four case studies that were

summarized in Section 3.5. First, the restructuring of aggregates is analyzed in Section 4.1 for

the two initial fractal dimensions considered in this work: one focused on capturing the short-

term densification (DA
f,o); and the other focused on modelling the long-term restructuring

(DB
f,o). Then, the effect of these two initial conditions is discussed with regard to the average

floc size and floc size distribution (FSD) in Section 4.2. The influence of the floc permeability

in shear-induced collisions is also investigated in this section by comparing the average floc

size and FSD results of the four PBM case studies to the experimental data from Cifuentes

[17]. In this analysis, the case study that best models the experiments is selected. The

physical meaning of the fitting parameters from the breakage kernel and breakage distribution

function is then extracted from the PBM results involving the best case study.

4.1 Aggregate Restructuring

As explained in Section 3.3, the restructuring of populations of aggregates was modelled

by the mass fractal dimension ODE Equation (3.31). To solve this equation, the initial

fractal dimension was provided to the model. It should be recalled that the parameter DA
f,o

was directly extracted from the last data point of the aggregation stage of Cifuentes’ [17]

experiments, whereas DB
f,o was inferred from the breakage stage, as illustrated in Figure 3.8

(b). Additionally, the aggregate rate of restructuring (t−1
r ) was manually changed until the

Df ODE matched the mass fractal dimension history of each experiment.

Figure 4.1 summarizes the evolution of the mass fractal dimension over time for the dif-

ferent initial conditions considered in this work, i.e., DA
f,o and DB

f,o. The symbols represent
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the data points and the continuous lines correspond to the PBM predictions. When DA
f,o

is used, the fractal dimension ODE Equation (3.31) correctly models the initial short-term

aggregate densification and the steady-state fractal dimension for all shear rates. However,

when the maximum fractal dimension occurs at t = 3 min and DA
f,o is used, Equation (3.31)

does not model the long-term floc elongation, and thus misses an important part of aggregate

restructuring history. This can be observed for several experiments at different shear rates,

e.g., Experiments 6 (Figure 4.1 (b)), 7 to 9 (Figure 4.1 (c)), 10 and 11 (Figure 4.1 (d)),

and 13 (Figure 4.1 (e)). This modelling issue is solved by employing DB
f,o as the initial frac-

tal dimension, where the long-term restructuring is clearly observed in the aforementioned

experiments. Additionally, when Df,max ≈ Df,ss, the fractal dimension remains practically

constant throughout the entire duration of an experiment for simulations using DB
f,o.
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Figure 4.1: Mass fractal dimension evolution at different shear rates and initial conditions
for all experiments modelled in this work. The continuous lines correspond to the population
balance predictions, and the symbols represent the experimental data points.
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Comparing the experimental data of Figures 4.1 (a) to (e), it seems that the fractal

dimension at G = 28.95 s−1 has greater oscillations when compared to the experiments at

higher shear rates. This visual observation is confirmed by calculating the average absolute

relative error between the Df data points of the experiment and the corresponding PBM,

as shown in Table 4.1. These oscillations can be explained by the fact that, at lower shear

rates, aggregates tend to experience more compression and elongation cycles during rotation

because of the lower hydrodynamic stresses acting on them [10, 16]. Regarding DA
f,o, which

was obtained from the last data point of the aggregation stage, it was expected that it would

be approximately the same for the 15 experiments modelled in this work. However, it ranged

from 2.22 to 2.60, indicating that there was a noticeable difference in the initial aggregate

morphology among experiments. Concerning DB
f,o and Df,ss, which were both inferred from

the breakage stage experimental data, both parameters should vary with the shear rate

because the increase in hydrodynamic forces tends to create smaller and more compact

flocs [9, 40, 43]. However, they both presented weak correlations with G, with R2 ≈ 0.11 for

linear, exponential, and power-law fits. We believe that the differences between the expected

and actual behaviour of parameters
(︁
DA

f,o, D
B
f,o, Df,ss

)︁
is related to the methodology used to

calculate the perimeter fractal dimension, which provides a single value to represent the

morphology of samples containing thousands of aggregates, i.e., it can only retrieve the

global morphology of floc populations. Additionally, colloidal aggregates are very fragile and

sensitive to small variations in experimental conditions, making it very difficult to reproduce

the initial and steady-state fractal dimensions.

Table 4.1 displays the average rate of restructuring (t−1
r ) for the different shear rates

and initial conditions modelled in this work. As can be seen, at any shear rate, the rate of

restructuring is greater for DA
f,o when compared to the values for DB

f,o. This difference is even

more pronounced when G ≥ 57.91 s−1, where
(︁
t−1
r

)︁
A
is one order of magnitude higher than(︁

t−1
r

)︁
B
. These results were expected because, when DA

f,o is used, there is a steeper change in

floc morphology over time. It is important to mention that the rate of restructuring for DA
f,o

varied with the shear rate following the linear relationship t−1
r = m ·G, where m = 2.0 · 10−4

(R2 = 1.0). Bonanomi et al. [37], who modelled turbulent aggregation, also obtained a

linear correlation between these two parameters, with m = 2.375 · 10−5. Even though this

simple function can produce good predictions of the evolution of Df with shear rate, the

small values of m indicate that t−1
r does not scale with the G.
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Table 4.1: Aggregate restructuring results for the two initial conditions (DA
f,o,D

B
f,o) considered

in this work.

Shear rate G s−1

28.95 34.75 57.91 75.38 86.86

|Er|Df
(%) 1.67 0.52 0.32 0.11 0.09

DA
f,o t−1

r (103 · s−1) 5.79 6.95 11.6 15.1 17.4

|Er|Df
(%) 1.38 0.23 0.19 0.03 0.06

DB
f,o t−1

r (103 · s−1) 4.00 1.50 2.50 2.33 1.33

4.2 Aggregate breakage

4.2.1 Modelling approach

As explained in Chapter 3, the birth and death terms from the breakage mechanism

of the PBE are written in terms of the breakage kernel (Si) and the breakage distribution

function (Γi,j). The former determines the floc breakage frequency, and the latter establishes

the type of fragments that are formed after breakage. Each of these terms has one fitting

parameter, which can be adjusted to match the experimental evolution of the average floc

size and the floc size distribution (FSD) with time. The fitting parameter B (from the

breakage kernel) has a direct influence on the average floc size. Since Si ∝ e−B the breakage

kernel decreases with the increase in B. Therefore, for a given experiment, larger values of

B result in less aggregate breakup and therefore in a larger steady-state floc size. This is

illustrated in Figure 4.2, which shows the PBM results for different values of B. In the first

set of PBM simulations, the initial guess B = 1.0× 10−13 m4.s−2 was used. This value was

obtained by varying the order of magnitude of B until the absolute relative error of the total

solids volume was |Er| ≤ 3%.
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Figure 4.2: Effect of the fitting parameter B (from the breakage kernel) on the steady-state
average floc size. The circles denote the data points from Exp. 9 (G = 57.91 s−1), and the
lines correspond to the PBM results for different values of B.

The fitting parameter s (from the breakage distribution function) controls how narrow

the FSD can be by determining the breakage mechanism. If s ≈ 0, the floc breakup is

symmetric, producing two fragments of equal sizes. If s ≈ 1, the breakage is uniform, where

fragments of different sizes have the same probability of occurring. The effect of these two

different breakage mechanisms on the FSD is demonstrated in Figure 4.3. As can be seen,

symmetric fragmentation results in a narrow floc size distribution, whereas uniform breakage

yields a broader FSD. Comparing the FSD from the experiment and the two PBM breakage

scenarios of Figure 4.3, it seems that the actual breakage mechanism is non-uniform, i.e., the

value of s that best model the experiment distribution is between 0 and 1. Thus, in the first

run of simulations, the value s = 0.5 was considered as an initial guess for all experiments.
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Figure 4.3: Effect of the fitting parameter s (from the breakage distribution function) on the
floc size distribution (FSD): (a) data points from Exp. 9 (G = 57.91 s−1); (b) PBM results
for symmetric breakage (s = 1.0× 10−6); (c) PBM results for uniform breakage (s = 0.999).
Both PBM plots came from Case Study 1, which uses DA

f,o and αi.

To model the average floc size and FSD, the following procedure was implemented: i)

the fitting parameter B was adjusted while keeping s = 0.5 until the PBM predicted the

steady-state surface mean diameter for each experiment; ii) the parameter s was modified

while keeping B fixed until the experimental peak of the FSD at steady-state was retrieved
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in the PBM results, as demonstrated in Figure 4.4; and iii) since the shape of the FSD can

(slightly) affect the surface mean diameter evolution over time, the fitting parameter B was

readjusted after finding the best value of s to model the experimental FSD.

Figure 4.4: Modelling approach of the FSD, where the PBM results retrieve the same peak,
i.e., y-axis value, of the experiment FSD at steady-state: (a) data points from Exp. 9
(G = 57.91 s−1), where the steady-state FSD occurs at t = 72 min; (b) PBM results for
Case Study 4 (DB

f,o,α
p), where s = 0.6 and B = 5.0× 10−13 m4.s−2.

In the following sections, the PBM predictions of the four case studies that were conducted

in the present work are compared to Cifuentes’ [17] breakage experiments. In Section 4.2.2,
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the evolution of the dimensionless surface-mean aggregate diameter (D32/do) is analyzed for

different average shear rates. Similarly, the evolution of the FSD with time at different shear

rates is discussed in Section 4.2.3, and the case study that best matches the experiment

results is chosen. Then, Section 4.2.4 presents the values of the fitting parameters B and s

for the best case study, and their physical meaning is discussed. To facilitate the comparison

between the four case studies, the plots presented in the next two sections only show the

results for one experiment per shear rate, and the average results from the fifteen experiments

are summarized in Tables 4.2 and 4.3 . The experiments 01, 05, 09, 10, and 13 were chosen

to represent the overall results at each shear rate because they have the greatest difference

between DA
f,o and D

B
f,o values, as shown in Figure 4.5. Hence, the impact of the initial fractal

dimension on the modelling of the average floc size and FSD will be clearly seen in the plots

presented in the next sections.
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Figure 4.5: Mass fractal dimension evolution at different shear rates for the experiments
with the highest difference between DA

f,o and DB
f,o. The continuous lines correspond to the

population balance predictions and the symbols are the experiment data points.
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4.2.2 Average aggregate size

Figure 4.6 shows the evolution of the dimensionless average aggregate size over time at

different shear rates for the four case studies investigated in this work. From the experimental

data points, it is clear that the steady-state mean floc size decreases as the shear rate

increases. This was expected because the hydrodynamic forces scale with shear rate, which

results in smaller floc sizes for higher values of G. In all case studies, the PBM is able

to predict the steady-state floc size for each experiment. However, the initial aggregate

breakage at t ≤ 25 min for the two lowest shear rates was over-predicted when the initial

fractal dimension DA
f,o was considered. Interestingly, this over-prediction does not occur

for the case studies using DB
f,o. This confirms our hypothesis that the initial short-term

aggregation occurs at the very first few seconds of the breakage stage and not at t = 3 min.

For the higher shear rates, i.e., G ≥ 57.91 s−1, the PBM results are approximately the same

for both DA
f,o and DB

f,o case studies. This can be explained by the fact that |DA
f,o − DB

f,o|

is lower at higher shear rates, which yields similar results for these two different initial

fractal dimensions. This can be clearly seen in Figure 4.5, where |DA
f,o − DB

f,o| ≥ 0.30 for

G < 57.91 s−1, and |DA
f,o −DB

f,o| ≤ 0.19 for G ≥ 57.91 s−1.
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Figure 4.6: Dimensionless surface-mean floc size evolution at different shear rates. The
symbols correspond to experimental data, whereas the dashed lines (−−) and dash-dotted
lines (−·) represent PB results for αi and αp collision models, respectively.
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Concerning the effect of floc permeability on the average aggregate size, simulations with

both αi and αp resulted in similar PBM fits for all shear rates. This visual observation was

quantitatively confirmed by comparing the average absolute relative error of the surface-

mean floc size (|Er|d32) between case studies involving αi and αp for each initial fractal

dimension, DA
f,o and DB

f,o. The values of |Er|d32 are displayed in Table 4.2. These results

indicate that the overall collisions between compact flocs (Df ≥ 2.2) are similar to collisions

between solid rigid spheres. Moreover, it appears that the permeability can be neglected in

collision efficiency models if the parameter of interest is the average floc size.

Table 4.2: Average absolute relative error of the surface-mean diameter, |Er|d32 , for the four
PBM case studies at different shear rates.

Shear rate G (s−1)
28.95 34.75 57.91 75.38 86.86

αi 3.19 1.31 1.60 0.34 0.53
DA

f,o αp 3.38 1.60 1.21 0.35 0.54
αi 2.67 0.94 0.97 0.37 0.63

|Er|d32 (%)
DB

f,o αp 2.82 0.92 1.01 0.30 50.59

4.2.3 Floc size distribution

Figure 4.7 displays the evolution of the aggregate size distribution based on the percentiles

(d10, d50, d90) for the different case studies investigated in this work. These percentiles were

chosen because they can characterize the range of floc sizes in the distribution. Also, it

is easier to compare the different case studies by using percentiles than by using a more

conventional FSD plot. Comparing the experimental results at steady-state, smaller values

of percentiles are obtained with the increase in the shear rate, which is a consequence of

higher breakage rates. For the experiments conducted at the two lowest shear rates, when

DA
f,o is considered, an over-prediction of floc breakage occurs for the percentiles d50 and d90.

Similarly to what was observed for the dimensionless floc size, this over-prediction does not

occur when DB
f,o is used. However, for both initial fractal dimensions, the PBM predicts

smaller d10 values throughout the entire simulation when compared to the experimental

data. This error tends to decrease at higher shear rates, e.g., when G ≥ 75.28 s−1, the PBM

predictions for d10 are very close to the experiment results. Comparing the overall PBM fits

for the different collision scenarios, the simulations with both permeable and impermeable

floc models yielded very similar results for the percentiles d50 and d90. Nevertheless, the case
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studies based on the permeable collision efficiency, αp, obtained a better fit for d10. This

refutes our hypothesis that permeability does not play a major role in the collision efficiency

of dense flocs.
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Figure 4.7: Evolution of aggregate size distribution at different shear rates. The symbols
{◦,□, ⋄} represent the percentiles {d10, d50, d90}, whereas the dashed lines (−−) and dash-
dotted lines (−·) represent PB results for αi and αp collision models, respectively.
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Visual observations of the FSD evolution with time were quantitatively verified by calcu-

lating the absolute relative error (|Er|) of the percentiles d10, d50, and d90 for each case study,

which is displayed in Table 4.3. From these results, we conclude that Case Study 4 is the

one that best models the evolution of aggregate size and morphology over time. This case

study uses DB
f,o is initial fractal dimension and that accounts for the effect of permeability

in floc collision, using αp.

Table 4.3: Average absolute relative error (|Er|) of the percentiles d10, d50, and d90 for the
four PBM case studies at different shear rates. Results are in (%).

Shear rate G (s−1)
28.95 34.75 57.91 75.38 86.86

|Er|d10 47.14 13.74 15.10 9.38 5.81

|Er|d50 3.99 1.85 4.78 0.79 1.56αi

|Er|d90 5.82 1.62 1.54 0.38 0.63

|Er|d10 28.42 10.07 7.96 5.53 2.69

|Er|d50 4.14 1.86 1.92 1.22 1.61

DA
f,o

αp

|Er|d90 5.59 1.89 1.38 0.38 0.87

|Er|d10 50.49 15.58 13.52 9.33 6.31

|Er|d50 3.95 1.92 1.78 1.14 1.77αi

|Er|d90 5.64 0.98 0.93 0.27 0.65

|Er|d10 26.18 7.89 7.68 5.46 3.22

|Er|d50 2.79 2.26 1.88 1.21 1.69

DB
f,o

αp

|Er|d90 4.98 1.15 1.02 0.25 0.72

4.2.4 Fitting parameters

Table 4.4 presents the average values and standard deviation of the fitting parameter s

(from the breakage distribution function) for the PBM Case Study 4, which best modelled

Cifuentes’ [17] breakage experiments. Since s is considerably larger than zero for all shear

rates, i.e., s ≫ 0, this confirms our hypothesis that the breakage of flocs with Df ≥ 2.2 is

not symmetric. Also, since the value of s is not close to 1, the driving breakage mechanism is

non-uniform. This finding is particularly important because it refutes the assumption that

the floc breakage is always symmetric in shear-induced aggregation [11, 18, 19, 22, 36, 37,

41, 42].
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Table 4.4: Average values of the fitting parameter s (from the breakage distribution function)
at different shear rates for Case Study 4, which used DB

f,o for initial fractal dimension and
αp for the collision efficiency.

G (s−1) s

28.95 0.45 ± 0.17

24.75 0.51 ± 0.08

57.91 0.59 ± 0.16

75.38 0.80 ± 0.10

86.86 0.54 ± 0.12

To investigate the physical meaning of B, the values of this fitting parameter from Case

Study 4 are plotted against the Reynolds number of the average floc size at steady-state.

This Reynolds number is defined as RessD32
= ν−1G

(︁
Dss

32

)︁2
, which accounts for the fluid flow

properties (viscosity and shear rate), as well as the average floc size. As shown in Figure 4.8,

the parameter B increases with the floc population Reynolds number, and this behaviour

can be modelled by the power-law relationship

B = 1 · 10−12
(︁
RessD32

)︁1.95
; R2 = 0.951 (4.1)

These results suggest that the critical shear rate that causes floc breakage (3.26) is pro-

portional to the Reynolds number, i.e., Gb,i ∝ RessD32
. Equation 4.1 also indicates that the

scaling exponent from the floc strength power-law correlation, i.e., Rss
g ∝ G−p, is p ≈ 0.5 for

the aggregates of Cifuentes’ [17] experiments. Since the proportionality constant of Equation

4.1 is 1 ·10−12 m4 s−2, the fitting parameter B does not scale with RessD32
. This indicates that

there might exist other physical parameters that affect B, and thus further investigations

are required fully to understand the physical meaning of B. Nevertheless, Equation 4.1 can

be used in future PBM studies on colloidal aggregation and breakage to provide the initial

guess of B for the modelling of experiments.
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Figure 4.8: The fitting parameter B (from the breakage kernel) is a function of the Reynolds

number of the average floc size at steady-state, i.e., RessD32
= ν−1G

(︁
dss32

)︁2
.
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Chapter 5

Conclusions and Recommendations

This chapter provides a summary of the major conclusions and novel contributions from

this research project, and it lays out the recommendations for future studies.

5.1 Major conclusions

In the present work, the breakage and restructuring of colloidal aggregates in laminar

shear flow were investigated through a population balance model (PBM) approach. The

time evolution of the average size (D32/do), the floc size distribution (d10, d50, d90), and the

morphology (Df ) of populations of aggregates from Cifuentes’ [17] breakage experiments

were modelled. The following conclusions were obtained from the PBM analysis:

• In Cifuentes’ [17] breakage experiments, where there was a step increase in the shear

rate, the colloidal aggregates experienced rapid densification followed by a long-term

elongation. From PBM results, it was observed that the initial densification can be

assumed instantaneous, i.e., it occurs as soon as the shear rate is increased. This

assumption allows the PBM to model the long-term elongation of flocs, which produces

more accurate predictions of the evolution of the floc average diameter and floc size

distribution (FSD) over time.

• The influence of floc permeability on the collision efficiency of flocs was investigated

by comparing the PBM results for two different collision scenarios, one that modelled

permeable floc collisions and the other that modelled impermeable floc collisions. The

PBM predictions of average floc size and percentiles d50 and d90 were approximately

the same for the two collision models, but d10 was considerably underestimated in the

case of impermeable floc collisions. These results reveal that floc permeability plays an
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important role in the prediction of collisions between small aggregates and it should

be accounted for when the parameter of interest is the FSD.

• The effect of different breakage mechanisms on the FSD was investigated in this work

by developing a new breakage distribution function. From the PBM results, it was

observed that floc collisions are not symmetric or uniform. Instead, they are non-

uniform, where fragments of different sizes have different chances of occurring. This

important finding refutes the simplifying assumption made by most PBMs in colloidal

aggregation that flocs can only break symmetrically; that is, into two fragments of

equal sizes [11, 18, 19, 22, 36, 37, 41, 42].

• The physical meaning of the fitting parameter B from the breakage kernel was in-

vestigated in this work. The PBM results revealed that B is a function of the floc

population Reynolds number at steady-state, i.e., B = f(RessD32
). This important rela-

tionship confirms our assumption that the scaling exponent of the aggregate strength

correlation, Rg ∝ G−p, is p = 0.5 for the aggregates from Cifuentes’ [17] experiments.

Additionally, the function B = f(RessD32
) can be used to obtain the initial guess of B

in PBM simulations.

5.2 Novel contributions

As explained in Chapters 1 and 2, there is a large body of scientific literature on shear-

induced aggregation due to its importance to the separation of colloidal particles from solid-

liquid systems. However, only a few studies have focused on understanding the breakage

and restructuring mechanisms, which can also occur during aggregation. To the author’s

knowledge, there are no PBM investigations of floc breakage and restructuring. Therefore,

the major goal of this work was to fill this research gap by modelling these two mechanisms

via PBM. To achieve this goal, several modifications were proposed to the aggregation and

breakage kernels of existing PBMs to model Cifuentes’ [17] breakage experiments. These

modifications can be summarized as follows:

• A new breakage distribution function was developed to investigate the effect of different

breakage mechanisms on the FSD. This function allows the PBM to predict the FSD

of colloidal aggregates at different shear rates. This was confirmed by comparing the

PBM and experimental results for the percentiles d10, d50, and d90, and the mode of
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the FSD at steady-state. The new breakage distribution function can now be used in

future PBMs to model the FSD of colloidal aggregates in shear-induced aggregation.

• A new collision efficiency equation was proposed in this work, which can model two

different floc collisions mechanisms: one that considers the permeability of flocs based

on the shell-core model from Kusters et al. [60], and the other that models flocs as

solid rigid spheres, which is based on the CFD simulations at finite Reynolds numbers

from Kroll-Rabotin [2]. Concerning the collisions between permeable flocs, our colli-

sion efficiency model accounts for the effect of floc restructuring, where the collision

efficiency varies with the fractal dimension. This behaviour was neglected in previous

approximations of Kusters’ [60] original model that were proposed by Selomulya et al.

[18] and Vlieghe et al. [77].

5.3 Recommendations for future work

The current work increased the fundamental understanding of how the breakage and

restructuring mechanisms occur at a statistical level, i.e., for populations of colloidal ag-

gregates. Since this was the first time that a PBM was used to predict the behaviour of

aggregates from breakage experiments, the experiments modelled in this work were per-

formed at ideal conditions, e.g., they were carried out under laminar shear flow and at very

dilute solid concentrations. The goal of this experimental setup was to study the isolated

effect of shear on the breakage and restructuring mechanisms and to be able to characterize

the hydrodynamic and cohesive forces with accuracy. However, these experimental condi-

tions are seldom used in industry. In fact, most shear-induced aggregation systems operate

at turbulent flow conditions with high solid concentrations, and they often use polymer floc-

culants as chemical destabilizers because they can form stronger aggregates; that is, flocs

that are less prone to break [11, 22]. Hence, future studies could investigate the aggregation,

breakage, and restructuring mechanisms via PBM for more realistic experimental conditions.

The following list provides some ideas for future PBM investigations in this research area:

• Investigate the effect of solids concentration and fluid rheology on the breakage and

restructuring of aggregates in laminar shear flows.

• Study the dominant breakage mechanism of populations of aggregates in turbulent

flows at dilute solid volume concentrations.
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• Investigate the effect of different polymer flocculants on the modelling of floc collisions

and the breakage kernel.

• Model the FSD of experiments where the shear-induced aggregation is favoured over

breakage.

The size and structure of the populations of aggregates studied in this work were char-

acterized by the radius of gyration (Rg) and the mass fractal dimension (Df ), respectively.

While Rg is a local property, i.e., it can be measured for each observed aggregate, Df is

a global parameter: that is, the morphology of the floc populations is represented using a

single value of Df over time. From our PBM results, it was observed that the initial fractal

dimension was not reproducible among experiments at the same shear rate, and we believe

that this is related to the inaccuracy of approximating the morphology of floc populations by

a single value. Hence, there is a need for new experimental techniques to determine the local

Df . Liang et al. [53] provided a great summary of different parameters that can be used to

track the local morphology of flocs based on other physical parameters, e.g., the convexity

and circularity. These morphological parameters have been recently used to investigate the

distribution of floc morphology in sequenced flocculation [49] and turbulent aggregation [48].

Therefore, there is the potential in future works to establish accurate correlations between

the local Df and the circularity and convexity of flocs, which can increase the accuracy of

PBMs.
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[40] Akash Saxena, Jean-Sébastien Kroll-Rabotin, and R. Sean Sanders. “Numerical in-
vestigation of the respective roles of cohesive and hydrodynamic forces in aggregate
restructuring under shear flow.” PhD thesis. 2022.

[41] L. Wang et al. “CFD simulation of aggregation and breakage processes in laminar
Taylor–Couette flow.” In: Journal of Colloid and Interface Science 282.2 (Feb. 2005),
pp. 380–396. issn: 00219797. doi: 10.1016/j.jcis.2004.08.127. url: https://
linkinghub.elsevier.com/retrieve/pii/S0021979704008409 (visited on 10/22/2021).

[42] Miroslav Soos, Jan Sefcik, and Massimo Morbidelli. “Investigation of aggregation,
breakage and restructuring kinetics of colloidal dispersions in turbulent flows by popu-
lation balance modeling and static light scattering.” In: Chemical Engineering Science
61.8 (Apr. 2006), pp. 2349–2363. issn: 00092509. doi: 10.1016/j.ces.2005.11.001.
url: https://linkinghub.elsevier.com/retrieve/pii/S000925090500833X (vis-
ited on 10/22/2021).

[43] R. C. Sonntag and W. B. Russel. “Structure and Breakup of Flocs Subjected to Fluid
Stresses: I. Shear Experiments.” In: 113.2 (1986), pp. 399–413. doi: https://doi.
org/10.1016/0021-9797(86)90175-X.

[44] John Gregory. “The density of particle aggregates.” In: (1997), p. 13.

[45] S. Lazzari et al. “Fractal-like structures in colloid science.” In: Advances in Colloid
and Interface Science 235 (Sept. 2016), pp. 1–13. issn: 00018686. doi: 10.1016/j.
cis.2016.05.002. url: https://linkinghub.elsevier.com/retrieve/pii/
S0001868615300567 (visited on 05/17/2022).

[46] Teresa Serra and Xavier Casamitjana. “Structure of the Aggregates During the Pro-
cess of Aggregation and Breakup Under a Shear Flow.” In: Journal of Colloid and
Interface Science 206.2 (Oct. 1998), pp. 505–511. issn: 00219797. doi: 10 . 1006 /
jcis . 1998 . 5714. url: https : / / linkinghub . elsevier . com / retrieve / pii /

S0021979798957149 (visited on 07/25/2022).

83

https://doi.org/10.1021/ie034236y
https://pubs.acs.org/doi/10.1021/ie034236y
https://pubs.acs.org/doi/10.1021/ie034236y
https://doi.org/10.1021/acs.langmuir.5b03804
https://doi.org/10.1021/acs.langmuir.5b03804
https://pubs.acs.org/doi/10.1021/acs.langmuir.5b03804
https://pubs.acs.org/doi/10.1021/acs.langmuir.5b03804
https://doi.org/10.1006/jcis.1999.6671
https://doi.org/10.1006/jcis.1999.6671
https://linkinghub.elsevier.com/retrieve/pii/S0021979799966717
https://doi.org/10.1016/j.jcis.2004.08.127
https://linkinghub.elsevier.com/retrieve/pii/S0021979704008409
https://linkinghub.elsevier.com/retrieve/pii/S0021979704008409
https://doi.org/10.1016/j.ces.2005.11.001
https://linkinghub.elsevier.com/retrieve/pii/S000925090500833X
https://doi.org/https://doi.org/10.1016/0021-9797(86)90175-X
https://doi.org/https://doi.org/10.1016/0021-9797(86)90175-X
https://doi.org/10.1016/j.cis.2016.05.002
https://doi.org/10.1016/j.cis.2016.05.002
https://linkinghub.elsevier.com/retrieve/pii/S0001868615300567
https://linkinghub.elsevier.com/retrieve/pii/S0001868615300567
https://doi.org/10.1006/jcis.1998.5714
https://doi.org/10.1006/jcis.1998.5714
https://linkinghub.elsevier.com/retrieve/pii/S0021979798957149
https://linkinghub.elsevier.com/retrieve/pii/S0021979798957149


[47] Amgad S. Moussa et al. “Effect of Solid Volume Fraction on Aggregation and Breakage
in Colloidal Suspensions in Batch and Continuous Stirred Tanks.” In: Langmuir 23.4
(Feb. 1, 2007), pp. 1664–1673. issn: 0743-7463, 1520-5827. doi: 10.1021/la062138m.
url: https://pubs.acs.org/doi/10.1021/la062138m (visited on 07/26/2022).

[48] Mélody Vlieghe et al. “In situ characterization of floc morphology by image analysis in
a turbulent Taylor-Couette reactor.” In: AIChE Journal 60.7 (July 2014), pp. 2389–
2403. issn: 00011541. doi: 10.1002/aic.14431. url: https://onlinelibrary.
wiley.com/doi/10.1002/aic.14431 (visited on 10/22/2021).
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2019. 177 pp.

[94] T. G. M. van de Ven and S. G. Mason. “The microrheology of colloidal dispersions VII.
Orthokinetic doublet formation of spheres.” In: Colloid and Polymer Science 255.5
(May 1977), pp. 468–479. issn: 0303-402X, 1435-1536. doi: 10.1007/BF01536463.
url: http://link.springer.com/10.1007/BF01536463 (visited on 11/04/2022).

[95] P.M Adler. “Streamlines in and around porous particles.” In: (1981).

[96] R. C. Sonntag and W. B. Russel. “Structure and Breakup of Flocs Subjected to Fluid
Stresses: II. Theory.” In: 115.2 (1987), pp. 378–389.

[97] M. Soos et al. “Population balance modeling of aggregation and breakage in turbu-
lent Taylor–Couette flow.” In: Journal of Colloid and Interface Science 307.2 (Mar.
2007), pp. 433–446. issn: 00219797. doi: 10.1016/j .jcis.2006.12.016. url:
https://linkinghub.elsevier.com/retrieve/pii/S0021979706011234 (visited
on 10/22/2021).

88

https://doi.org/10.1021/acs.langmuir.5b01046
https://pubs.acs.org/doi/10.1021/acs.langmuir.5b01046
https://doi.org/10.1103/PhysRevE.79.061401
https://link.aps.org/doi/10.1103/PhysRevE.79.061401
https://link.aps.org/doi/10.1103/PhysRevE.79.061401
https://doi.org/10.1098/rsta.1923.0008
https://doi.org/10.1098/rsta.1923.0008
https://doi.org/10.1016/0021-9797(88)90048-3
https://linkinghub.elsevier.com/retrieve/pii/0021979788900483
https://doi.org/10.1007/BF01536463
http://link.springer.com/10.1007/BF01536463
https://doi.org/10.1016/j.jcis.2006.12.016
https://linkinghub.elsevier.com/retrieve/pii/S0021979706011234


[98] Michael A. Delichatsios and Ronald F. Probstein. “The Effect of Coalescence on the
Average Drop Size in Liquid-Liquid Dispersions.” In: Industrial & Engineering Chem-
istry Fundamentals 15.2 (May 1976), pp. 134–138. issn: 0196-4313, 1541-4833. doi: 10.
1021/i160058a010. url: https://pubs.acs.org/doi/abs/10.1021/i160058a010
(visited on 11/10/2021).

[99] KA Karl Kusters. “The influence of turbulence on aggregation of small particles in
agitated vessels.” Publisher: Technische Universiteit Eindhoven. PhD thesis. 1991. url:
https://research.tue.nl/en/publications/the-influence-of-turbulence-

on-aggregation-of-small-particles-in-agitated-vessels(0e9672f3-d8cb-

43ed-9b32-92ddbe7ade38).html (visited on 08/14/2021).

89

https://doi.org/10.1021/i160058a010
https://doi.org/10.1021/i160058a010
https://pubs.acs.org/doi/abs/10.1021/i160058a010
https://research.tue.nl/en/publications/the-influence-of-turbulence-on-aggregation-of-small-particles-in-agitated-vessels(0e9672f3-d8cb-43ed-9b32-92ddbe7ade38).html
https://research.tue.nl/en/publications/the-influence-of-turbulence-on-aggregation-of-small-particles-in-agitated-vessels(0e9672f3-d8cb-43ed-9b32-92ddbe7ade38).html
https://research.tue.nl/en/publications/the-influence-of-turbulence-on-aggregation-of-small-particles-in-agitated-vessels(0e9672f3-d8cb-43ed-9b32-92ddbe7ade38).html


Appendix A

Tagging of experiments

This appendix presents the original tagging system that was used in Cifuentes [17] to

label experiments, and it explains how the experiment tags were simplified in his thesis and

in the current work. The main objective of this appendix is to clarify this information for

future students who will carry on the research on the breakage and restructuring of colloidal

aggregates in the Pipeline Transport Processes research group.

Cifuentes [17] completed a total of 30 shear-induced aggregation and breakage experi-

ments, of which 19 were presented in his thesis. The original tagging system of experiments

uses the date that they were performed and the run number of that day, e.g., the tags 0416

and 0416 02 corresponds to the first and second experiments conducted in April 16th of 2021.

To facilitate the visualization of results in the present work and in Cifuentes [17], the original

tags were simplified to Arabic numerals, e.g., the tag 0416 was reduced to Exp. 04 in the

current work. The Table A.1 presents a list with the original and simplified tags of the

experiments that were modelled in the current work, as well as their average shear rates.
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Table A.1: Original and simplified tags of the experiments modelled in the present work.

Original tag Simplified tag Average shear rate, G (s−1)

0420 Exp 1 28.95

0422 Exp 2 28.95

0423 Exp 3 28.95

0416 Exp 4 34.75

0414 Exp 5 34.75

0416 02 Exp 6 34.75

0323 01 Exp 7 57.91

0315 Exp 8 57.91

0429 Exp 9 57.91

0331 02 Exp 10 75.28

0406 02 Exp 11 75.28

0407 Exp 12 75.28

0318 Exp 13 86.86

0318 02 Exp 14 86.86

0319 Exp 15 86.86

The results from Cifuentes [17] were divided in two major sections: the Particle Aggre-

gation (Section 4.2); and the Aggregate Breakage (Section 4.3). A total of 15 experiments

were presented in each section and their original and simplified tags can be found in Tables

A.2 and A.3.
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Table A.2: Original and simplified tags of the experiments presented in Section 4.2 (Particle
aggregation) of Cifuentes [17].

Original tag Simplified tag Average shear rate, G (s−1)

0318 Exp 1 28.95

0319 Exp 2 28.95

0331 Exp 3 28.95

0331 02 Exp 4 34.75

0408 Exp 5 34.75

0407 Exp 6 34.75

0409 Exp 7 57.91

0414 Exp 8 57.91

0420 Exp 9 57.91

0421 Exp 10 75.28

0422 Exp 11 75.28

0423 Exp 12 75.28

0430 Exp 13 86.86

0406 02 Exp 14 86.86

0416 02 Exp 15 86.86
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Table A.3: Original and simplified tags of the experiments presented in Section 4.3 (Aggre-
gate breakage) of Cifuentes [17].

Original tag Simplified tag Average shear rate, G (s−1)

0420 Test 1 28.95

0421 Test 2 28.95

0423 Test 3 28.95

0412 Test 1 34.75

0414 Test 2 34.75

0416 02 Test 3 34.75

0312 Test 1 57.91

0315 Test 2 57.91

0429 Test 3 57.91

0407 Test 1 75.28

0331 02 Test 2 75.28

0406 02 Test 3 75.28

0318 Test 1 86.86

0319 Test 2 86.86

0422 Test 3 86.86
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