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Abstract

A phylogeny is the evolutionary history for a set o f evolutionarily related species. The development 

of hereditary trees, or phylogenetic trees, is an important research subject in computational biology. 

One development approach, motivated by graph theory, constructs a relationship graph based on 

evolutionary proximity of pairs of species. Associated with this approach is the A;th phylogenetic 

root construction problem: given a relationship graph, construct a phylogenetic tree such that the 

leaves of the tree correspond to the species and are within distance k i f  adjacent in the relationship 

graph. In this thesis, we give a polynomial time algorithm to solve this problem for strictly chordal 

graphs, a particular subclass of chordal graphs. During the construction o f a solution, we examine 

the problem for tree chordal graphs, and establish new properties for strictly chordal graphs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Acknowledgements

First, I would like to thank Ryan Hayward for approaching me after his algorithms lecture to offer me 

a job as his research assistant; this event has had a great impact on the direction of my studies. His 

continuing support and guidance as my supervisor has been greatly appreciated. I would also like 

to thank Guohui Lin for introducing me to Computation Biology and for his guidance in developing 

the ideas of this thesis. I am grateful to B ill Rosgen and Jim Nastos for being sounding boards for 

my many ideas and for sharing their own algorithmic problems with me. I would like to thank my 

family for their continuing support in all that I pursue, academic and otherwise. Finally, I would like 

to thank Amy for her love and support.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table of Contents

1 Introduction 1
1.1 Historical Background.............................................................................................. 1

1.1.1 Phylogenetics...................................................................................................  1
1.1.2 Construction Techniques of Phylogenetic T rees............................................  2

1.2 Definitions.................................................................................   4
1.2.1 General Defin itions.......................................................................................... 4
1.2.2 C om plexity......................................................................................................  5
1.2.3 Chordal Graphs   . .    5
1.2.4 Graph Powers and Graph R o o ts .................................................    6

1.2.5 Leaf-Labeled Trees and Steiner Points   . 6
1.3 O ve rv ie w ...................................................................................................   8

2 Strictly Chordal Graphs 11
2.1 P re lim inaries............................................................    11

2.1.1 Critical Clique G ra p h s ..............................................   11
2.1.2 H ypertrees.............................................................................   12
2.1.3 M oplexes...................................................................................  14

2.2 Strictly Chordal Graphs........................................................................   14
2.2.1 Chararcterizations    . . . 14
2.2.2 Tree Chordal G raphs...................................................................................... 19
2.2.3 Recognition..........................................................   20

3 Root Construction Methods 21
3.1 S'-restricted A:th Steiner Root T rees.....................   21
3.2 Decomposition of Strictly Chordal Graphs  ........................  22
3.3 fcth Phylogenetic Root A lgorithm    . .    22

4 Root Construction for Tree Chordal Graphs 25
4.1 General Construction........................................................................   25

4.1.1 Structural Restriction 1 ......................................................................  25
4.1.2 Structural Restriction 2 .............................................................  27
4.1.3 fc-PRP Algorithm for Tree Chordal G ra p h s ........................................  33

4.2 Decomposition Construction..................................................................................... 36
4.2.1 Trivial Tree Chordal G raphs ........................................    37
4.2.2 Tree chordal graphs.........................................................................................  40

5 5-root Phylogeny Tree Construction for Strictly Chordal Graphs 43
5.1 P re lim inaries.............................................................................................................  43

5.1.1 Structure o f large maximal cliques.................................................................  43
5.2 5PRP on Strictly Chordal Graphs............................................................................... 44

5.2.1 Structural Restriction 1 ..................................................................................  45
5.2.2 Structural Restriction 2 ..................................................................................  46
5.2.3 No Restrictions...............................................................................................  4S

6 Conclusions and Future Research 53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Figures

1.1 The three possible unrooted trees using the maximum parsimony technique given 
four character sequences: (CTG, ATG, ACA, CCA}. Either tree (a) or (b) w ill be 
chosen as they both have the minimum number o f nucleotide replacements.............  3

1.2 Neighbours in an evolutionary tree. u>i is an evolutionary neighbour of {u>2 , W3 }. 
ui2 is an evolutionary neighbour of u>3. is an evolutionary neighbour of W5 . {w j,
u>2 W3 }  is an evolutionary neighbour of u>5} .......................................................  3

2.1 The maximal cliques in the above graph are {a,b,d,e}, {b,c,e,f}, and {c,g}. The crit­
ical cliques in the above graph are {a,d}, {b,e}, {c j,  { f } ,  and {g }. The cardinality 
of maximal clique {a,b,d,e} is 2. The critical clique {a,d} is external, whereas the 
critical clique {b,e} is internal.....................................................................................  11

2.2 The critical clique graph for the graph in Figure 2.1.................................................... 12
2.3 A labelled dart graph.....................................................................................................  15
2.4 A labelled gem graph....................................................................................................  15
2.5 A  labelled 4-wheel graph, W4 ......................................................................................  15

3.1 An example decomposition from a strictly chordal graph to a forest of tree chordal
graphs...........................................................................................................................  2 2

3.2 A flow chart o f our 5th phylogeny root tree construction algorithm. ALG(Ti) is our
algorithm for 5-restricted 3-SRP, as described in Section 4.2.2.................................  23

4.1 An example graph G shows the steps of operations for constructing a S-restricted
3rd Steiner root tree in the ideal case........................................................................... 27

4.2 An example graph G shows the steps of operations for constructing a 5-restricted
3rd Steiner root tree T  when leaf nodes of size 2 and 3 exist.....................................  32

4.3 A ll possible S'-restricted Steiner trees corresponding to the three types of trivial tree
chordal graphs..............................................................................................................  39

4.4 The seven possible cases for a leaf critical clique in a tree chordal graph as returned 
by algorithm ALG\ representatives are darkened. We denote these cases as c la , c l6 ,
c2a, etc. Notice only c2a and c2b are unconstrained..................................................  42

5.1 An example of Operation 2a for a strictly chordal graph G ........................................  50
5.2 An example o f Operation 2b for a strictly chordal graph G ........................................  51

6.1 A  summary of the best known results for various root construction problems. Prob­
lems marked by a **’ are considered in this thesis......................................................  53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Symbols

Let ,4 and B  be sets. Let G, G i and G 2 be graphs. Let T  be a tree. Let H  be a hypergraph. Let 
be a maximal clique and ci and C2 be two critical cliques. Let i  and k be integers.

\ A \

A C B
A c B
A n B
4 U B
A \ B
0
dT {a,b)
A x  B  
V(G )
E(G )
N g ( v )

degc(V)
Pn
Cn
K n
cccard(m)
G[1V]
G l '* G 2
Qk

V {H )
£ { H )
CC(G)
i(m o d j)
(G \,c i)  *  (G2 ,c2)

The number of elements in A.
A  is a subset of B.
A  is a proper subset o f B.
The intersection o f A  and B.
The union o f A  and B.
The set difference of B  from A.
The empty set.
The distance in T  from a to b.
The Cartesian product of A  and B.
The vertex set of G.
The edge set of G.
The neighbourhood of vertex win G.
The degree o f vertex v in G.
A  chordless path on n vertices.
A  chordless cycle on n vertices.
A  clique on n vertices.
The critical clique cardinality of m.
The subgraph o fG  induced by W  C V(G). 
G\ is isomorphic to G2- 
The k-th power of G.
The vertex set o f H.
The hyperedge set of H.
The critical clique graph of G. 
i  modulo j .
The clique jo in  of pairs (G i, c i) and (G2 ,c2).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 1

Introduction

1.1 Historical Background

1.1.1 Phylogenetics

The evolutionary history of a set of evolutionary units (for example, organisms) is its phytogeny', 

a hereditary tree which represents this history is its phylogenetic tree. Such a tree can be used to 

describe the pattern and timing o f branching events in the evolution of a group of units. Some 

important applications of phylogenetic trees are determining the closest evolutionary relatives of an 

organism and determining the function and origin of genes.

The study of evolutionary relationships belongs to the biological subject o f phylogenetics. Phy­

logenetic analysis, a method of deducing these evolutionary relationships, consists of four major 

steps |1]: alignment, determining the substitution model, tree building, and tree evaluation. Start­

ing with appropriate character sequences corresponding to each evolutionary unit, alignment is a 

means for describing how related these sequence are and produces the data set used in the model 

of evolution. The substitution model o f evolution describes the probability of a difference between 

characters, found in an alignment, occurring. Construction of phylogenetic trees use the substitution 

model of evolution and an alignment to deduce a hereditary tree. Finally, tree evaluation calculates 

the probability o f the tree being representative of the data. The books [33, 1, 16] discuss each of 

these four steps in detail. The problem considered in this thesis is inspired from the third of these 

four steps — phylogenetic tree construction.

By the Darwinian school of thought, a central idea to the development of a phylogenetic tree 

is that all life forms have descended from a common ancestor |26|. By this assumption it follows 

that there exists a historically accurate tree, or true tree, for the evolution of a set of evolutionary 

units. An inferred tree is a tree constructed based on the particular phylogenetic analysis method 

used. The inferred tree is an estimate of the genetic connection between evolutionary units and the 

chronological spacing of branching events in their evolution.

A tree is an acyclic connected graph. Roughly speaking, a phylogenetic tree is a tree whose nodes 

are either external leaf nodes representing the evolutionary units or internal nodes representing

1
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ancestors. A tree is bifurcating i f  all internal nodes have degree three.

A phylogenetic tree can be rooted or unrooted. A rooted tree represents the evolution of a 

group of evolutionary units where the root represents the common ancestor. An unrooted tree shows 

only evolutionary proximity of units. I f  an unrooted tree is considered as a rooted tree whose root 

is unknown then a root can be found using the outgroup method |30|, though this rooted tree is 

not always accurate (with respect to the true tree). Both types of phylogenetic trees are useful in 

understanding a phylogeny [ 1).

With respect to a unit set f i n =  {u>i, ui2, ...,w „} and an alignment, a dissimilarity matrix D  =  

d ij for f i n is a matrix whose entries d ij give the alignment score between units and Wj, where 

the closeness of units is indicated by the smallness of the score. With respect to a tree T  with leaves 

labelled by the set f i „ ,  7r(T) is the path length matrix where entries n (T ) ij give the distance in T  

between w, and Wj. In the construction of an evolutionary tree T  based on the dissimilarity matrix 

D , the goal is to find such a tree T  so that 7r(T) fits well with D. One measure of fitness is the 

goodness-of-fit [ 12] between D  and 7r(T ) as

Fa ( D M T ) ) =  £  | ^ - 7 T ( r ) y | “ .
l < i < j < n

An additive tree |26| is a tree with leaves labelled by the set f i n and with positive real edge weights 

such that the sum of edge weights between leaves labelled by Ui and ljj is dij.

F i t t i n g  A d d it iv e  T r e e s  112]
Instance: Set f i „ ,  n >  3; matrix D; positive integer k.
Query: Does an additive tree T  exist such that Fa (D , 7r(T )) <  k l

Day 112] showed that F it t in g  A d d it iv e  T rees  is NP-complete for a  £ {1 ,2 }. This is not 

surprising, as the number of additive trees grows exponentially in the number of units in f i „ .  For 

example, the number of unrooted bifurcating trees with n elements is (2n — 5)!/[(n  — 3)!2n—3] ]14].

1.1.2 Construction Techniques of Phylogenetic Trees

Two methods of phylogenetic root construction commonly used in practice are either to lim it the 

search using heuristics to find a probable tree, or to find the optimal tree by searching all possibilities, 

which is often computationally expensive. The goal of such construction is to take the information 

derived for a set of evolutionary units through alignment and the substitution model and produce an 

inferred tree that is closest to the true tree. Phylogenetic tree construction algorithms belong to two 

major categories: character-based methods and distance-based methods. Character-based methods 

search for the optimal tree based on character pattern differences between the species, whereas 

distance-based methods use calculated evolutionary distance to construct a tree.

The maximum parsimony |26] technique is a character-based method that finds the tree that min­

imizes the total evolutionary change that has occurred between elements of the group. As the word 

parsimony suggests, the basis of this method is the assumption that a simpler explanation is more

2
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desirable than a complicated one. As such algorithms must search through the exponentially many 

unrooted trees, this method becomes computationally infeasible for a large number of evolutionary 

units. See Figure 1.1 for an example.

(a) Plausible tree with 5 char- (b) Plausible tree with 5 char- (c) Plausible tree with 7 char­
acter replacements. acter replacements. acter replacements.

Figure 1.1: The three possible unrooted trees using the maximum parsimony technique given four 
character sequences: {CTG, ATG, ACA, CCA}. Either tree (a) or (b) w ill be chosen as they both 
have the minimum number of nucleotide replacements.

The maximum likelihood [26| method is a character-based method that finds the tree with the 

highest probability of occurrence from the given data. Based on a model of assumptions for the 

probability of an event occurring, such as genetic mutation, this method searches for the tree with the 

highest likelihood o f existence. Again, the main disadvantage of this method is that current methods 

search the exponentially many possible phylogenetic trees, making this technique computationally 

expensive and therefore infeasible for sets with a large number of evolutionary units.

The following two distance-based methods attempt to construct the tree by considering ‘neigh­

bours’ in an evolutionary tree, where units of a subtree are considered neighbours of units of another 

subtree i f  the roots o f the two subtrees are siblings in the evolutionary tree. See Figure 1.2.

O) I 0 )2  0 )3  0 )4  0 )5

Figure 1.2: Neighbours in an evolutionary tree, uji is an evolutionary neighbour of (u/2 , W3 }. 0J2 

is an evolutionary neighbour of W3 . u/4  is an evolutionary neighbour o f 0J5 . {o»i, W2 W3 } is an 
evolutionary neighbour of { 0J4 , w5).

The neighbour-relation |36| method uses the insight called the four-point condition (26], which 

states that for an additive tree T where a and b are neighbours and c and d arc neighbours, then

dr(a , b) -F dr(c , d) <  d r(a ,c ) +  dr(b ,d ).

The algorithm searches all sets of four elements and chooses the pair of neighbours that most fre-

3
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quently satisfy this condition with the other elements in the tree. This pair of elements becomes 

neighbours in the tree and is subsequently viewed as a single clement. The algorithm continues until 

all units have been processed.

The neighbour-joining [351 method is a greedy algorithm that iteratively minimizes total branch 

length. Starting with all elements adjacent to a central node, this method looks for the closest 

neighbours and creates a new branch with its distance equal to the mean of its two elements.

The focus of this thesis is an algorithm that is a graph theoretic variation of the distance method 

-  the kth phylogenetic root construction. Given a dissimilarity matrix for a set o f evolutionary 

units our algorithm creates an input graph G by making the units adjacent if  their dissimilarity 

distance is under a given threshold. It then creates a tree T  where the vertices of G correspond to 

the leaves of T  where two vertices o f G are adjacent i f  within a given path-length distance in T. 

Formally, given a dissimilarity matrix D  and a threshold t, construct a new matrix D ' such that:

£)'. =  / 1 ^  D ij ~  1 
13 (0  otherwise.

Using D ' as the input graph, our algorithm constructs a corresponding tree where leaves are labelled 

by the units, and, for a fixed positive integer k, units w,; and ljj are within distance k i f  and only if  

£>G =  1. Before we discuss our algorithm further, we first introduce graph terminology and some 

related notions.

1.2 Definitions

1.2.1 General Definitions

Given a set 5, a binary relation R on 5  is a subset of the Cartesian product 5 x 5 ;  in other words, it 

is a way o f indicating which pairs of elements of 5  are related. A  graph is a mathematical notation 

that is a useful representation of a binary relation.

Formally, a graph G =  (V, E) is a pair of sets: the vertex set V  and the edge set E, where E  

is a set of pairs of elements of V. A  graph is simple i f  vv $ E  for all v G V, and is undirected i f  

v\V2 € E  i f  and only i f  V2V\ e E  for all V\,V2 € V. For the remainder of this thesis, we assume 

that all graphs are undirected and simple.

Two vertices V\ and v2 are adjacent or neighbours i f  ViV2 6 E  and nonadjacent or non­

neighbours i f  v iv 2 £ E. The set of neighbours of a vertex v G V  in a graph G =  (V ,E ) is 

the neighbourhood o f v, denoted N q (v) or, where clear from the context, N (v). The degree o f a 

vertex v in G is the number of vertices in its neighbourhood, denoted degc{v). A leaf is a vertex in 

a graph with degree one.

A graph H  =  (V//, E1//)  is a subgraph of a graph G =  (Vq, Eg) i f  Vn C Vq and E h  Q Eg. 

H  =  (V}{, E h )  is an induced subgraph of G — (Vq, Eg) i f  Vh C Vg and V1V2 € E h  i f  and only 

if  V1V2 G Eg  for all v i,V 2 G V>/; we write H  =  G\Vu}.
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A path of a graph is an ordered sequence (vq,v\, o f pairwise distinct vertices, such that 

VjVj+ 1 e E , for 0 <  j  <  i; every other edge induced by the this vertex sequence is a chord of the 

path. A cycle of a graph is an ordered sequence (t’o, v \ , u7) of pairwise distinct vertices, such that 

VjVj+ 1 e E  and v0Vi 6 E, for 0 <  j  < i \  every other edge induced by the this vertex sequence is a 

chord of the cycle. We denote a chordless path Pn and a chordless cycle Cn, where n is the number 

o f vertices in the path or cycle, respectively. The length of Pn and Cn is the number vertices n. 

Two vertices are connected i f  there exists a path between them. A graph G =  (V, E) is connected i f  

every pair o f vertices in V  is connected. The distance between two connected vertices in G, denoted 

d.G(vi,v2), is the length of the shortest path between v\ and V2 in G or, where clear from the context 

d{v i , v 2).

Two graphs G'i =  ( V\, E \) and C 2 =  (V2, E 2) are isomorphic, written G\ =  G2, i f  there exists 

a bijection /  from Vi to V2 such that v iv 2 6 E i i f  and only if  f ( v \ ) f ( v 2) e E 2. For a fixed graph

H , a graph G is H-free i f  it does not contain any induced subgraph isomorphic to H.

A forest is an acyclic graph. A tree is a connected forest. For a discussion of the many useful 

properties of trees the reader is referred to |6 ,41,42).

Let A  and B  be two sets. The intersection of A  and B, denoted A  n  B, is the set o f elements 

contained in both A  and B. The union of A  and B, denoted A  U B, is the set of elements contained 

in either A  or B. The set difference o f A from B, denoted B \  A, is the set of elements contained in 

B  but not A.

I.2.2 Complexity

As the focus of this thesis is the development o f efficient algorithms to solve various problems from 

computational biology, some complexity theory w ill be needed. We assume the reader is familiar 

with the concepts of algorithms, time complexity analysis, and NP-completeness. The texts [11,18] 

both contain introductions to these concepts. A ll runtimes given in this thesis are with respect to the 

size of the input graph, namely the sum of the number vertices plus the number edges.

1.2.3 Chordal Graphs

A graph is chordal i f  every cycle of length four or more has a chord. Equivalently, a graph is chordal 

i f  it contains no induced cycle of length four or more.

Lemma 1.2.1. [13] There exists a linear time algorithm to decide i f  a graph is chordal.

One such algorithm based on lexicographical breadth first search (LexBFS)(37|, a variant of 

the well studied breadth first search (BFS)|11| , searches as in BFS, but uses a lexicographical 

ordering o f the vertices to choose the next vertex to search from. This algorithm exploits a structural 

property of chordal graphs called a simplicial vertex elimination ordering. A simplicial vertex is 

a vertex whose neighbourhood induces a clique. Dirac 113 J and independently Lekkerkerker and

5
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Boland |25| showed that all chordal graphs have a simplicial vertex. A simplicial vertex elimination 

ordering is a permutation of the vertices («s(o), ws(i), •••! «s(n-i)) such that vs^  is simplicial in the 

subgraph graph induced by {ws(0), 'Us(i), •••, r 's ( j- i) }  forO < i <  (n — 1). The algorithmic approach 

of simplicial vertex elimination ordering was introduced by Fulkerson and Gross who showed that a 

graph is chordal exactly when there exists a simplicial vertex elimination ordering [ 17|. The traversal 

order of the vertices by LexBFS is a simplicial ordering exactly when the graph is chordal |34],

For a graph G =  (V, E ), C  C V  is a cutset i f  the number of connected components of G\V \  C ] 

is greater than the number o f connected components of G. A cutset C  is minimal i f  no subset of C 

is a cutset. Dirac’s theorem [13J states that a graph is chordal i f  and only i f  every minimal cutset in 

every induced subgraph is a clique.

1.2.4 Graph Powers and Graph Roots

For a graph G — (V, E ), the kth power o f G is the graph Gk =  (V, E k) such that

E k =  {v xv2 | d{ vx,v2) <  k ,v  v2}.

A kth root o f a graph G is a graph H  such that G =  H k.

Computing the fcth power of a graph G =  (V, E ) can be done in 0 ( | V |3) time using the Floyd- 

Warshall all-pairs shortest path algorithm f 15, 40J. Conversely, finding the fcth root o f a graph 

has no known polynomial time algorithms; moreover, computing a square root of a graph is NP- 

complete [31). I f  extra conditions are required of a root, polynomial time algorithms are known. 

For example, recognizing i f  a graph is the square of a tree and constructing such a root, i f  it exists, 

can be done in 0(J V |3) time [291. Similarly, recognizing if  a graph is the /cth power o f a tree and 

constructing this tree can be done in 0 ( |V |3) time 122).

1.2.5 Leaf-Labeled Trees and Steiner Points

For a tree, a vertex is internal i f  it is not a leaf. For a set S, a leaf-labelled tree T corresponding 

to S is a tree with an injective mapping from the leaves in T  to the set S. Thus, a leaf-labelled tree 

T  has three kinds of vertices or points: leaves which (all corresponding to vertices of S), internal 

points corresponding to vertices of S, and internal points which do not corresponding to vertices of 

S, called Steiner points.

Definition 1.2.1. Given a graph G — (Vg, Eg), a leaf-labelled tree T  =  (V r, E t )  corresponding 

to set Vq, and a positive integer k, define the following conditions o fT :

1. the mapping from leaves in T  to Vg is surjective,

2 . every Steiner point in V f has degree at least three,

3. G equals the subgraph o fT k induced by Vg .
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The first condition implies that the leaves of T  are exactly the vertices of G, so all internal points

o f T  are Steiner points. The second condition is based on the idea o f an internal point representing

a genetic split from a common ancestor into two or more descendants. The final condition requires

that all adjacent units in G are within distance o f k in T. We now define three problems which

motivate our /cth phylogenetic root construction method.

/cth P h y l o g e n e t i c  R o o t  P r o b l e m  (/c- P R P )  |27)
Instance: A graph G =  (Vg, E g ) and a positive integer k.
Query: Does a /cth phylogenetic root tree T  exist such that T  is a leaf-labelled

tree corresponding to set Vg and T  satisfies conditions 1, 2 and 3 of 
Definition 1.2.1?

kTH L e a f  R o o t  P r o b l e m  ( /c-L R P ) [32]
Instance: A graph G =  (Vq ,E g ) and a positive integer k.
Query: Does a /cth phylogenetic root tree T  exist such that T  is a leaf-labelled

tree corresponding to set Vg and T  satisfies conditions 1 and 3 of 
Definition 1.2.1?

/cth  St e in e r  R o o t  P r o b l e m  (fc-SRP) [27)
Instance: A graph G =  (Vg , E g ) and a positive integer k.
Query: Does a /cth phylogenetic root tree T  exist such that T  is a leaf-labelled

tree corresponding to set Vg and T  satisfies condition 3 of 
Definition 1.2.1?

Lin et al. showed that /c-PRP has a linear time solution for k <  4 [27). Chen et al. [8] demon­

strated a linear time algorithm for A; >  2 i f  T  has bounded degree. Similarly, Nishimura et al. 

showed that /c-LRP has a polynomial time solution for k <  4 [32). In addition, Kennedy et al. 

showed that all strictly chordal graphs (defined in Chapter 2) have a /c-Ieaf root tree for k >  4 [24]. 

Lin et al. showed that fc-SRP is known to have a linear time solution for k <  2, [27]. Kennedy et 

al. showed that i f  the input graph is strictly chordal then 3-SRP has a linear time solution [24], I f  

k >  5, the complexity of both /c-PRP and fc-LRP, with respect to having a polynomial time algo­

rithm or being in the class of NP-compIete problems, is still an open question. Similarly, for fc-SRP 

the complexity is still unknown for k >  3.

Lemma 1.2.2. [27] A graph G has a kth phylogenetic root tree T, then G is chordal.

Proof. It is known that the /cth power o f a tree is chordal for all positive integers k [29], From 

the definition of chordal, every induced subgraph of a chordal graph is chordal. Therefore, the /cth 

power of T  is chordal and so the subgraph of T k induced by Vg is also chordal. □

Since a /cth root phylogenetic tree satisfies both Definitions 1.2.5 and 1.2.5, it follows that the 

preceding lemma holds for /cth Steiner root trees as well as /cth leaf root trees.

1.3 Overview

The following is a brief overview of the organization o f this thesis. We first note that proofs of 

cited lemmas or theorems are given i f  the original proof has been change or altered in some fashion.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Proofs included from references |24, 23, 28] are shown i f  their proof is integral to the development 

o f the final algorithm of this thesis. The majority of this thesis is original work.

Chapter 2: In Section 2.1, we introduce strictly chordal graphs, a subclass of chordal graphs for 

which structural properties allow efficient solutions to be developed for all three leaf-labeled root 

problems. We first develop the characterization that uses the notion of dual hypergraphs. Three other 

characterizations are presented which become the working definitions for the remainder of thesis. 

In Section 2.2.2 we introduce the class of tree chordal graphs and three equivalent characterizations. 

We show how to recognize both strictly chordal and tree chordal graphs in linear time.

Chapter 3: We describe the approach and method used for the construction of the 5th root 

phylogenetic tree along with some important preliminaries. In Section 3.1, we introduce a variation 

o f fc-SRP and show that it is equivalent the fc-PRP. In Section 3.2, the basis for the reduction used to 

solve fc-PRP for strictly chordal graph is presented -  decomposition o f a strictly chordal graph into 

a forest o f tree chordal graphs. In Section 3.3, we overview the algorithm design for &-PRP.

Chapter 4: We consider the 5-PRP on the restricted class of tree chordal graphs. In Sections

4.1.1 -4.1.3, we a solution for the 5-PRP where the input graph is tree chordal in three progressively 

less restrictive steps. In Section 4.2.2, we present a modification of the phylogenetic tree construc­

tion in Section 4.1.3 that w ill be used in the construction of fc-PRP algorithm for strictly chordal 

graphs.

Chapter 5: We here discuss the main result o f the thesis, the construction of 5-PRP for strictly 

chordal graphs, and the structural results that lead to its proof. In Section 5.1.1 we present several 

lemmas demonstrating the restrictive structure of maximal cliques containing three or more criti­

cal cliques. In Section 5.2, we progressively present the construction of the 5th phylogenetic root 

problem.

Chapter 6: We summarize the results presented in the previous chapters along with several open 

problems.
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Chapter 2

Strictly Chordal Graphs

2.1 Preliminaries

2.1.1 Critical Clique Graphs

Let G =  (V, E) be a graph. A clique is a set of pairwise adjacent vertices. Denote a clique 

on k vertices as K/; . A  clique is maximal i f  it is not properly contained in any other clique. A 

/iowiogeneoM5c%neisaclique5'suchthateither|5| =  1 or for all v i, v2 E S and w E V \S ,v iw  E 

E  i f  and only i f  w E E. A  critical clique is a homogeneous clique that is not a proper subset of 

any other homogeneous clique [27], The critical clique cardinality o f a maximal clique K ,  denoted 

cccard(K), is the number of critical cliques it contains. For convenience, we define a maximal 

clique to be large i f  it has critical clique cardinality three or more. The size of a critical clique C  in 

a graph G is the number of vertices it contains. A critical clique is internal i f  it is contained in at 

least two maximal cliques and external otherwise. Figure 2.1 illustrates these concepts.

Figure 2.1: The maximal cliques in the above graph are {a,b,d,e}, {b,c,e,f}, and {c,g}. The critical 
cliques in the above graph are {a,d}, {b,e}, {c}, { f} ,  and {g}. The cardinality of maximal clique 
{a,b,d,e} is 2. The critical clique {a,d} is external, whereas the critical clique {b,e} is internal.

Define a partition of a nonempty set S as a set of nonempty sets {£ ], S2 , -Sp} such that S,- n  

Sj =  0, for each i  ^  j ,  and S j U S2 U ... U Sp =  S. The set of maximal cliques of a graph does not 

form a vertex partition, as maximal cliques can overlap. On the other hand, the set of critical cliques 

of graph docs form a partition of the vertex set.

Lemma 2.1.1. [27] Let G — (V, E) be a graph and S = { S i , S2, ..., Sp} be the set of critical 

cliques in G. Then S forms a partition o fV .

9
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Two critical cliques are adjacent i f  they are part of a common maximal clique. Define the critical 

clique graph of a graph G, denoted CC(G), where the vertex set is the set of all critical cliques in G 

and two vertices are adjacent i f  and only if  the critical cliques they represent are adjacent in G |27|. 

By the definition of adjacency and Lemma 2.1.1, it follows that CC(G ) is well-defined for all G.

{b,e>

<0

Figure 2.2: The critical clique graph for the graph in Figure 2.1.

Lemma 2.1.2. [27] Let G be a graph. Then CC(G) =  C C {C C {G )).

Lemma 2.1.3. [27] Let G be a chordal graph. Then there exists an 0 (\V \ +  |£ j)  time algorithm to 

construct the critical clique graph CC(G).

2.1.2 Hypertrees

Hypergraphs, or set systems, are natural extensions of graphs where the edge set is generalized from 

a vertex pair to a vertex subset. Specifically, a hypergraph H  =  (V, £) consists of a vertex set V  and 

a hyperedge set £ =  {e i, eg,. . . ,  em}, where e* C V  for 1 <  i  <  m  [3]. A hypergraph is connected 

i f  for every pair o f vertices u and v there is a sequence of hyperedges (ea(i), eQ(2), . . . ,  ea(g)) such 

that u G eQ(1), v G ea^ ,  and ea(j) n eQ(j+i) £  0 for 1 < j  <  I.

Define the clique hypergraph of G =  (V, E ) as the hypergraph H (G ) =  (V ,£ ) where £  is the 

set of maximal cliques of G.

Let H  =  (V, £) be a hypergraph. Ti is a hypertree i f  there exists a tree T  with vertex set V  

such that every hyperedge in £  induces a subtree in T  [31. A graph G is dually chordal i f  its clique 

hypergraph is a hypertree |5],

H  is a dual hypertree i f  there exists a tree T  with vertex set £  such that, for each vertex of Ti the 

set of hyperedges containing that vertex form a subtree of T  16].

Let Ti(V, £) be a hypergraph. A hyperedge et G £  is a twig i f  for TZ =  Ueee-e, e either

et D TZ — 0,

or, for some ej, G £ — et

et n iz  =  et n Ch.

eb is a branch for the twig et |2 1  ].

A twig elimination ordering o f a hypergraph |21 ] is a total ordering of the hyperedges (e „( i) , e„(2), . . .  

such that for 1 <  i  <  m e, is a twig in the sub-hypergraph H i =  (Vi, £ i), where Vi =  eQ(]) UeQ(2) U 

. . .  U ea(i) and £,• —= i ) , ^a(2 ) > • • •, ^a(i) }•

1 0
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Theorem 2.1.4. [7, 19, 39] (See [20]) Let G =  (V, E) be a graph. Then the following are equiva­

lent:

•  G is chordal.

•  G is the intersection graph o f subtrees o f a tree.

•  Ti(G) is a dual hypertree.

Notice that Theorem 2.1.4 can be easily adapted to show the following lemma.

Lemma 2.1.5. A graph G is chordal i f  and only ifT i(G ) has a twig elimination ordering.

Proof. We w ill prove the forward direction by induction on the number o f vertices of G. A graph 

with a single vertex is chordal and has a clique hypergraph with a single twig. Assume that all 

chordal graphs with n vertices have a valid twig elimination ordering; let Gn+1 be a chordal graph 

on n + 1 vertices. As Gn+1 is chordal, let (w3 (i), vs(2) , ..., u3(7i + i ) )  be a simplicial vertex elimination 

ordering on the vertex set. Let G „ be the graph formed by removing vertex ws(n + i)  and all edges 

incident with it. Gn is chordal and has n vertices; thus by the inductive hypothesis, the clique 

hypergraph o f G has a twig elimination ordering K \, I<2, ..., I<p. Let S be the set o f maximal 

cliques such that N on+l ( ^ s ( n + i) )  is a subset of maximal cliques in S. If, for a maximal clique 

K  G S, N an+l {vs(n+i)) = K  'I1011 K  U  u s (n + i)  forms a new larger maximal clique and the same 

ordering of hyperedges is a twig elimination ordering. I f  A g „ +1 («s(n+ i)) is a proper subset of every 

maximal clique in S then let K t be the first maximal clique in the twig elimination ordering which 

is also in S. Place the new maximal clique, K '  =  v.,(n+i) U N g „+1 (v3(,l+ i)) immediately before 

K{ in the twig elimination ordering. It follows that K '  is a twig with Ki as its branch, as K '  n Ki 

intersection is the intersection of K '  with the graph. Therefore, G n + i  has twig elimination ordering. 

Thus, G chordal implies the clique hypergraph o f G has a twig elimination ordering.

We w ill show the contrapositive of the backwards direction. Assume G is not chordal. Therefore, 

G has a chordless cycle, Ci =  (v i,v 2, . . . , V i ) ,  where i >  4. Note that each pairwise adjacent 

set o f vertices in the cycle is contained in a maximal clique which is a hyperedge in the clique 

hypergraph. Assume that there exists a valid twig elimination ordering and let ej be the hyperedgc 

corresponding to a pair a vertices V j,v j+n moii f) such that ej is the first hyperedge in the ordering 

containing both Vj and Vj+1(mo,i j). Such a hyperedge must exist as all hyperedges will be eventually 

removed. Therefore, ej is the first hyperedge removed as a twig that w ill remove an edge in the cycle. 

Let i) be a the hyperedge containing Vj_ 1(mod,:) and v j and ej+Hmod f) be a hyperedge

containing Uj+ i(mo(z i) and Uj+2 (mo(t q- Both edges will still be in the graph as we assumed that ej 

was the first hyperedge corresponding to an edge in the cycle. Also, as j) and j)

are non-adjacent, Vj+ i(mo,n) $ e )• Similarly, v j and v j+ i ( m o f / i )  are non-adjacent so 

Vj eJ+i( „10(/ i). Therefore, ej can not be a twig as no other hyperedge contains both Vj and v j+ j, 

a contradiction to this being a valid twig elimination ordering. Therefore, as any twig elimination

11
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ordering w ill have such an edge, no valid ordering w ill exist. Thus, i f  G is chordal the clique 

hypergraph for G has a valid twig elimination ordering. □

Corollary 2.1.6. Let Ti be a hypergraph. Then Ti(G) is a dual hypertree i f  and only ifTC(G) has a 

twig elimination ordering.

2.1.3 Moplexes

As the twig elimination ordering suggests, chordal graphs can be viewed as a generalization of trees. 

A further generalization of this ordering leads to a moplex elimination ordering |4|.

Let G =  (V, E ) be a graph. A moplex is a critical clique whose neighbourhood is a minimal 

cutset of G. A moplex is simplicial i f  all vertices in the moplex are simplicial. A simplicial mo­

plex elimination ordering is a sequence M i, M 2 , ■■■, Me, such that M , is a simplicial moplex in the 

G (M i n M 2 n ... n M i), for 1 <  i  <  t

Lemma 2.1.7. Let G =  (V, E ) be a chordal graph. I f  M  is a simplicial moplex in G, then e =  

M  U N (M ) are the vertices o f a hyperedge in the clique hypergrapli 7i(G). Moreover, e is a twig 

in Ti{G).

Proof. Let G =  {V ,E ) be a chordal graph and M  be a simplicial moplex in G. By Dirac’s theo­

rem [13], every minimal cutset is a clique in a chordal graph. As N (M )  is a minimal cutset and as 

M  is a critical clique, it follows that e =  M  U N (M )  is a clique in G. As M  is made of simplicial 

vertices, all vertices in M  are adjacent only to other vertices in M  and vertices in N (M ).  As such, 

no other vertex exists that is adjacent to every vertex in N (M )  U M , therefore, it must correspond 

to a maximal clique, and thus, a hyperedge in Ti(G).

To see that e is a twig, we must find a branch. We claim that N (M )  must be contained in 

another maximal clique in G. Assume that this not the case, and there exists no vertex adjacent to all 

vertices in N (M ).  There must exist at least one vertex in v 6  (V  \  M ) that is adjacent to a vertex in 

N (M ),  as otherwise, it is not a minimal cutset. It follows that the vertices in the cutset adjacent to 

v form a smaller cutset, contradicting the minimality of N (M ).  Therefore, at least one vertex must 

be adjacent to all o f N (M ),  and therefore, the maximal clique containing this vertex and N (M )  

forms a branch for M  in Ti(G). It follows that a moplex in a chordal graph is a twig in the clique 

hypergraph of G. □

2.2 Strictly Chordal Graphs

2.2.1 Chararcterizations

Let Ti =  (V ,£ ) be a hypergraph. Let £ ' =  {e „( i) , eQ(2), • • • ,en(e)} with t  >  2, be a subset of £ 

with non-empty intersection, namely I { £ ')  =  ^  0 . £ ' is intersection maximal i f  every

hyperedge which intersects / ( £ ')  is contained in £'. / (£ ')  is a strict intersection i f  £ ' is intersection
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maximal, and if, for every pair of hyperedges e', e" € £ ', e! n e" =  I .  A hypcrgraph is strict i f  for 

every subset £ ' of £  such that £ ' is intersection maximal, I (£ ') is strict.

A dart graph is any graph isomorphic to the graph on vertices a, b, c, d, e with edges (a, b), 

(b,c), (b, d), (b,e), (c, e), and (d,e) (see Figure 2.2.1). Dart-free graphs have been studied in the 

context of perfect graphs; a graph is perfect i f  its chromatic number1 is equal to the size of a largest 

clique for all o f its induced subgraphs. Sun 138] showed that the Perfect Graph Theorem2 (then 

conjecture) holds for this class of graphs. Chvatal et al. 110] showed that perfect dart-free graphs 

can be recognized in polynomial time.

c
a b e

Figure 2.3; A  labelled dart graph.

A gem graph is any graph isomorphic to graph on vertices a, b, c, d, e with edges (a, b), (a, c), 

(b, c), (b,d), (b,e), (c, e), and (d,e) (see Figure 2.2.1). A wheel graph, denoted Wn, is any graph 

isomorphic to Cn with an additional vertex adjacent to each vertex in the cycle Cn (see Figure 2.2.1).

c

Figure 2.4; A labelled gem graph.

c e

Figure 2.5: A labelled 4-wheel graph, W4.

Lemma 2.2.1. Let G be a graph. H (G ) has a ll intersections strict i f  and only i f  G is dart-free, 

gem-free and W,\-free.

'The chromatic number x(G ) ° f  graph G  is the minimum number of labels needed to label the vertices of a graph such 
that adjacent vertices receive different labels.

2Thc Perfect Graph Theorem states that a graph is perfect if  and only if no induced subgraph contains an odd cycle of 
length 5 or more or the complement of an odd cycle of length 5 or more. It was conjectured in I960 by Claude Berge |2J and 
proven by Maria Chudnovsky, Paul Seymour, Neil Robertson and Robin Thomas in 2002 (9|.
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Proof. Given a graph G such that 77(G) all strict intersections, assume that the vertices a, b, c, d, e 

induce a dart in G. Let e„/, be the hyperedge containing vertices ah, let e/,ce be the hyperedge 

containing bee, and let be the hyperedge containing bde. But the maximal clique ab intersects 

only part of the intersection of maximal cliques bee and bde, so the intersection of eab, ebee^bde is 

not strict, a contradiction. Similarly, i f  a,b,c,d ,e  induce a gem, we have the same hypcredge set 

with, in addition, hypcredge eab now containing the vertex c, denote eabc■ The edge eabC intersects 

only part of the intersection of e;,ce and ebdo therefore, not a strict intersection. I f  a, b, c, d, e induce a 

W4, we the same hyperedge set with the addition of hyperedge eabd- The same non-strict intersection 

as for the gem graph w ill occur.

Conversely, assume that 77(G) contains a non-strict intersection I .  We will show that G contains 

either a dart, gem or W4 graph as an induced subgraph. Therefore, take a set of hyperedges {e j, e2, 

..., et) which are a part of the non-strict intersection such that \e\ n  e2| >  1 and e3 intersects only 

a proper subset of e\ n e2. A non-strict intersection must involve at least three hyperedges. Any 

intersection that involves exactly two hyperedges, the intersection is a clique in G, all vertices in the 

intersection share the same neighbourhood outside of the clique in G, and as they are an intersection 

no other vertex exists satisfying the first two properties, thus they form a critical clique in G. As an 

intersection which is a critical clique in G is a strict intersection, we have that £ > 3. Also, at least 

two hyperedges must intersect by two or more vertices, as i f  all intersect by a single vertex again it 

is a critical clique. And finally, at least one hyperedge must have an intersection which is a proper 

superset of I ,  as if  all pair-wise intersections are exactly I  then the intersection is a critical clique. 

Define the following vertices; a vertex a  from e3 \  (ej U e2), a vertex b from ei f l 7, a vertex e from 

I  \  e3, a vertex c from e\ \  I ,  a vertex d  from e2 \  I .  We show the vertices a, b, c, d, e either induce 

a dart, a gem, or a W,1 graph in G. I f  c is contained only in e\ and d is contained only in e2, then we 

have an induced dart. I f  exactly one of c and d, without loss of generality assume c, is contained in 

e3 and there exists a hyperedge containing the vertices a, b, d, then we have an induced W4. I f  no 

such hyperedge exists, we have an induced gem. □

Let G be a graph and 77(G) its clique hypergraph. 7i{G )  is a strict dual hypertree i f  H(G) is 

strict and a dual hypertree. G is strictly chordal i f  77(G) is a strict dual hypertree. By Lemma 2.1.5, 

it follows that strictly chordal graphs live up to their name and arc chordal. The following is another 

characterization of strictly chordal graphs which follows as a corollary of Lemmas 2.2.1 and 2.1.5.

Corollary 2.2.2. Let G be a graph. G is strictly chordal i f  and only i f  it is dart-free, gem-free and 

chordal.

Lemma 2.2.3. Let G be a graph. G is strictly chordal i f  and only i f  G is chordal and every set o f 

maximal cliques has intersection o f either exactly one critical clique or 0 .

Proof. A strictly chordal graph G is chordal and the clique hypcrgraph of G is a strict dual hypertree. 

Assume there exist two maximal cliques, K \  and 772, in GG(G) with two or more vertices in
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common. Each of these common vertices must have a different neighbourhood in both CC(G) and 

G as they represent different critical cliques. Therefore in G there must exist a third maximal clique 

which is adjacent to only part of the intersection of I<\ and I<2 ; this intersection is not strict. This 

contradicts the clique hypergraph of G being a strict dual hypertree.

Let G be a chordal graph such that for every subset of maximal cliques in CC(G), the inter­

section is either 0 or a single vertex in CC{G). As shown above, since G is chordal, the clique 

hypergraph H(G ) must be a dual hypertree. In H (G ), take any set of hyperedges {e \,e 2 , ..., e<} 

having a nonempty intersection, say vertex v. Notice in CG(G) the critical clique containing v is 

represented by a single vertex, therefore, no vertex not in this critical clique is contained in more than 

one of these hyperedges as two maximal cliques would share two vertices in common in CC(G). 

Therefore the hyperedges form a strict intersection. As this argument holds for all intersections, all 

intersections are strict in the clique hypergraph. Therefore, as G ’s clique hypergraph is a strict dual 

hypertree, so G is strictly chordal. □

Lemma 2.2.4. [24] For a chordal graph G, the clique hypergrapli Ti(G) is a strict dual hypertree 

i f  and only i f  fo r  every (not necessarily induced) cycle the vertices induce a clique in the critical 

clique graph CC(G).

Proof Given G with CC(G) satisfying that each cycle is a clique, it follows G is chordal as CC(G) 

largest induced cycle has three vertices and replacing vertices of CC(G) with their corresponding 

critical cliques will maintain this property. Therefore from Lemma 2.1.5 it follows that the clique 

hypergraph of G is a dual hypertree. CC(G) must be dart-free and gem-free as both darts and gems 

contain non-clique cycle. It follows that G must also be dart-free and gem-free as replacing vertices 

of CC(G) with their corresponding critical cliques again maintains this property. Therefore, G is 

strictly chordal.

Assume that H (G ) is a strict dual hypertree, as G is chordal, so must be CC(G), therefore 

all cycles o f length four or more will have a chord. For contradiction assume that there exists a 

simple cycle in CC(G) which has at least four nodes and does not form a clique. Pick the shortest 

of all these cycles, (G0 ,G i , . . .  ,C [- \ ) .  There must exist two nodes in CC(G ) such that and 

Ci+ 2 (,nod t) arc non-adjacent, as otherwise, if  £ =  4,5 then the cycle forms a clique and i f  t  >  6  the 

cycle is not minimal. Therefore, without loss o f generality, assume Go and C2 are not adjacent. Let 

K 0 be a maximal clique in G that includes Go and C\, and K \  be a maximal clique including C\ 

and G2 .

Let I  = K q D K \\  note by the definition of a strict dual hypertree I  =  C\ which implies 

Cj f l /  =  0 for i  7^ 1. Let G, be the last critical clique such that C *+ 1 ^  I<\. Let K 2 be a 

maximal clique including G, and Ci+l(mo,i ()■ The intersection K \  D K2 includes Ct and docs not 

intersect K q D K \. Wc continue to build this chain of maximal cliques until we find a Ke>~1 that 

intersects with K q, leaving a sequence of at least three maximal cliques K q, I< \ , . . . ,  Ke>-i such that
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K inK i+H m od (') arc the only non-empty pairwise intersections. Suppose without loss of generality 

that I< t'~ i is the first maximal clique that appears in a twig elimination ordering (K 0, K i , . .. ,K m). 

Then we w ill find no branch for K t> -\ since intersects at least two other maximal cliques in 

the sub-ordering (K 0, I< \ , . . . ,  I< t '- i) .  This contradicts the assumption that the clique hypergraph 

7i(G ) is a strict dual hypertree. □

We have previously presented a forbidden induced subgraph characterization o f strictly chordal 

graphs, namely that strictly chordal graphs do not contain any induced subgraph isomorphic to a 

dart, gem, or C j for i  >  4 . It is also interesting to give a generation construction, such a construction 

w ill show exactly how strictly chordal graphs can be generated from small graphs. Hence we define 

the following operation. Let G\ =  (V i,£ j)  and G2 =  (V2,E 2) be graphs and let c\ C V\ and 

c2 C V2, where c j, C2 are cliques. The clique jo in  of the pairs (G i,c j)  and (G 2 ,c2), denoted 

(G i.c i)  *  (G2 , C2 ), is the graph G =  (V (G ),E (G )), such that

V(G) =  V  U V2,

E(G ) =  E i U E 2 U (ci x c2).

Lemma 2.2.5. Let G  =  (V , E) be a graph.

1. lf \V \  =  1, then G is strictly chordal.

2. I f  G i =  (V i,S i)  and G2 =  (V2,E 2) are vertex disjoint and strictly chordal graphs, then 

G =  (Vi U V2, E i U E 2) is strictly chordal.

3. I f  G \ =  {V i,E \)  and G2 =  (V2, E2) are vertex disjoint and strictly chordal and there are 

subsets ci C V i and c2 C V2 such that each is either a critical clique or is a clique contained 

in exactly one maximal clique, then G =  (G 1 , c j ) *  (G2, c2) is strictly chordal.

4. A ll strictly chordal graphs can be generated using rules 1 — 3.

Proof. Trivially, a single vertex graph is a strictly chordal graph. In the second case, as no edges are 

added, the new graph is still strictly chordal.

For the third case, the new graph G will be chordal, as the clique join adds the complete set of 

edges between the vertices of ci and c2, thus no cycle of length four or more can be created. Notice 

in the clique hypergraph 7i(G ) that cj Uc2 forms a maximal clique and, thus, a hyperedge e in 7i(G). 

We show that this maximal clique cither contains exactly one critical clique ci U c2 or exactly two 

critical cliques ci and c2. I f  cj and c2 were both maximal cliques, then the clique jo in w ill be a

larger maximal clique. Otherwise, ci w ill be a critical cliques in G as its new neighbourhood w ill

be N g x (c i) U c2, similarly N g ( c 2 ) — N g x { c 2 ) U c \ .  Therefore, as the hyperedge e has only strict 

intersections with G (V j) and G(V2) and as all intersections in G\ and G2 are strict, it follows that 

G is strictly chordal.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



To see that there are no further strictly chordal graphs, we show that given any strictly chordal 

graph G, there exists a sequence o f the above steps to produce G. Without loss of generality assume 

G  is connected, as i f  we can produce a sequence for each connected component o f G then we can 

apply the second rule to produce the whole G.

Let (eQ(i), eQ(2). • • • > ea(m)) be a twig elimination ordering for H{G ). We proceed by adding 

hyperedges from ea(i) to ea(m) creating graph H (G i) -  where V{ =  (ea(1) n e a(2) D . . .  D

^a (i)) and £i ca(2)i ■ • • > ^a(i))> 1 ^  i  <  771.

For a eQ(i), let e' — eQ(i) n VJ and e" =  eQ(i) \  e'. Notice that both e' and e" induce critical 

cliques in H{G). Trivially, e ' can be constructed using single vertices and rule 3. Then G j+ i =  

(G i, e') *  (e", e"). Completing this for each twig in the twig elimination ordering w ill construct G.

□

2.2.2 Tree Chordal Graphs

We now consider a subclass of strictly chordal graphs that w ill be used in the solution of 5-PRP. A 

graph G is tree chordal i f  CC(G) is a tree (28J.

Lemma 2.2.6. A graph G is a tree chordal graph i f  and only i f  it is chordal and every maximal 

clique contains at most two critical cliques.

Proof. Let G be a graph such that CC{G ) is a tree; we will show that G is chordal and every 

maximal clique contains at most two critical cliques. As CC{G) collapses critical cliques in to 

single vertices, for any chordless path that exists in G a path of the same length can be found in 

CC(G) by replacing vertices in the path with the critical clique they are part of. Any chordless path 

w ill contain at most one vertex from a critical clique, as the path is chordless. Therefore, i f  G is not 

chordal then we can find a chordal cycle in both G and CC(G) a contradiction to CC(G) being a 

tree; therefore, G is chordal. As maximal cliques in CC(G ) correspond directly to maximal cliques 

in G, CC(G ) being a tree implies that the largest clique is size two, implying that each maximal 

clique in G contains at most two critical cliques.

Let G be a chordal graph such that every maximal clique contains at most two critical cliques; 

we will show that CC{G) is a tree. As every maximal clique contains at most two critical cliques, 

CC(G) contains no clique larger than two vertices. Therefore, to show CC(G) is a tree we need 

only show it does not contain any induced cycles of length four or more. For any induced cycle in 

CC(G) a corresponding cycle can be found in G, by replacing a node in the cycle corresponding to 

a critical clique with any of the vertices in the critical clique. Therefore, as G is chordal we can not 

find any cycle of length four or more, and we w ill, therefore, not be able to find any such cycle in 

CC(G). Therefore CC(G) is a tree. □

Lemma 2.2.7. A graph G is a tree chordal graph i f  and only i f  there exists a tree, T, such that 

G can be created by replacing each vertex, v, 6  V  (T ) by a clique K \ and replacing each edge

17
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( V i ,  V j )  G E (T ) by (K i x K j).

Proof. Let G be a tree chordal graph. Let T  — CC(G). The lemma describes the reverse process 

o f creating a CC(G) from a graph G. Both directions follow easily from this observation. □

2.2.3 Recognition

Theorem 2.2.8. [24] There exists a linear time algorithm fo r recognizing whether or not a graph is 

strictly chordal, and i f  so, returning its critical clique graph.

Proof. We can decide i f  a graph is chordal in linear time, by Lemma 1.2.1; moreover, we can build 

the critical clique graph in linear time as well, by Lemma 2.1.3. By Lemma 2.2.4, it suffices to 

check that every simple cycle in C C (G G ) is a clique. The breadth lirst search (BPS), representing 

the order of edges searched, is known to have two types of edges: tree edges and cross edges [ 11J. A 

tree edge corresponds to a new vertex encountered while traversing the graph, whereas a cross edge 

corresponds to already encountered vertex. Necessarily, the cross edge set and the tree edge set are 

disjoint and cover the whole edge set o f the graph. A cross edge represents two connected nodes 

which share a common ancestor that is not a parent; as such, i f  the nodes are not siblings in the tree, 

a cycle of length at least four exists in the graph which is clearly not a clique as they are not adjacent 

to both parents. To check for non-induced cycles, check the set of all child nodes of any fixed node 

in the BFS tree, the graph induced must be a collection o f disjoint cliques, otherwise there exists a 

non-induced cycle whose nodes do not form a clique. BFS runtime is linear time in the size CC(G) 

and it takes linear time to check the child node lists; as the number of edges and vertices of CC(G) 

is bounded above by the number of edges and vertices in G, it follows that BFS is linear with respect 

to the size o f G. □

Corollary 2.2.9. There exists a linear time algorithm fo r recognizing whether or not a graph is tree 

chordal, and i f  so, returnin its critical clique graph CC{G).

Proof. Build CC(G) using Lemma 2.1.3 in linear time. Using BFS to check i f  CC(G) is acyclic 

and return yes i f  so. □
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Chapter 3

Root Construction Methods

This chapter explains the approach we use in our algorithm for the construction o f a 5th phylogenetic 

root tree. We introduce a variation o f /c-SRP that we will show is equivalent to /c-PRP. We then 

present our algorithm design for the /c-PRP serving as a guideline for the chapters to follow.

3.1 ^-restricted &th Steiner Root Trees

An S-restricted kth Sterner wot tree T  for a set of critical cliques S o f a graph G is a /cth Steiner 

root tree T  such that T  has no degree 2 Steiner points and the representatives of critical cliques in 

S are internal in T. For each critical clique c, there exists a set of vertices { r \ , r 2 , . . . , r „ }  in an 

5-restricted /cth Steiner root tree that correspond to c; each 7\  represents a set o f vertices in c. We 

denote each element of such a vertex r* as a representative o f c. The size of r , as the number of 

vertices that map to it from c. No vertex in a critical clique has more than one representative, and 

every vertex in a critical clique corresponds to one of its representatives.

Lemma 3.1.1. [23] Let G be a graph and let S be the set o f a ll critical cliques o f size 1 in G. Then 

G has an S-restricted (k-2)th Steiner root tree T  i f  and only i f  G has a kth phylogenetic root tree.

Proof. Assume that G has an S-restricted (k — 2)th Steiner root tree T ; we construct a /cth phy­

logenetic root tree T'. Replace each representative of a critical clique with a Steiner point and set 

adjacent to this point each of the vertices represented. As T  was a valid (Zc -  2)th Steiner root tree T, 

it follows that adjacent representatives are at a distance of at most k — 2. The construction extends 

all paths between every vertex by exactly two, therefore, all adjacent vertices are at a distance of 

at most k in T '. Similarly, nonadjacent representatives are at a distance o f at least & — 1 in T1; it 

follows that they w ill be at distance at least fc +  1. Steiner points in T  maintain their degree in T ' 

and therefore still at least 3. Representatives that were leaves in T  had size at least 2 therefore, the 

created Steiner point has degree at least 3. Representatives that were internal had degree at least 2 

w ill now have degree at least 3 as a Steiner point as they represent at least one vertex. Therefore, 

Steiner points all have degree at least 3. Thus, as all vertices are represented by leaves it follows that 

T ' is a valid 5th phylogeny root tree.
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Assume that G has a A:th phylogenetic tree T; we construct an S-restricted (k — 2)th Steiner 

root tree T '. To construct such a tree, for each Steiner point in T\ve record the number of leaves it 

is adjacent to and then remove all leaves in the T  to produce T '. Steiner points in T  that were not 

adjacent to any leaves w ill remain as Steiner points in T '\ notice that they will still have degree of 

three or more. The remaining Steiner points now correspond to vertices in the input graph; let the 

set S be the internal representatives in the graph of size 1. V  is a valid S-restricted fcth Steiner root 

tree with S corresponding to all size 1 vertices; these vertices were are internal as T  was a valid 5th 

phylogenetic root tree. □

Using the preceding lemma, our algorithm for 5-PRP searches for an S-restricted 3rd Steiner 

root tree.

3.2 Decomposition of Strictly Chordal Graphs

Our algorithm for 5-PRP for strictly chordal graphs uses the algorithm for 5-PRP for tree chordal 

graphs and the following observation. Observe that we can produce a set of tree chordal graphs T  

from a strictly chordal graph in the following way. Using the critical clique graph CC{G), remove 

the edges from large maximal cliques to produce C C (T ), which is a set of trees. To create T , 

re-substitute each critical clique in for the node that it represents in C C {T ). Figure 3.1 gives an 

example.

(a) G.

O

O

O O

(b) Forest T .

Figure 3.1: An example decomposition from a strictly chordal graph to a forest of tree chordal 
graphs.

It follows from the input graph being strictly chordal that each node is part of exactly one tree 

chordal graph.

3.3 kth Phylogenetic Root Algorithm

The following is a brief overview of the strategy we employ to produce a 5th phylogeny root tree 

from a graph G. Starting with G, check if  G is strictly chordal, and if  yes, build the critical clique 

graph CC(G).

Using CG(G), we produce the set of tree chordal graphs T  by the decomposition of Section 

3.2. For each tree chordal graph £ 7", we modify the critical cliques contained in large maximal 

cliques in G to produce T-. We justify this modification in Section 4.2.2.
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Let S be the size 1 nodes in T-. We search for an S-restricted 3rd Steiner root tree T(. I f  no 

S-restricted 3rd Steiner root tree exists, then no phylogeny tree exists by Lemma 4.2.1. I f  for all 

T{ € T , there exists a Steiner tree S* we then continue to consider the edges removed from the large 

maximal cliques.

We combine each 3rd Steiner root tree Si until either we come to a contradiction, or we have 

a valid S-restricted 3rd Steiner root tree where S is the set of critical cliques of size 1 in G. I f we 

find such a Steiner tree, then by Lemma 3.1.1 we are always able to produce a corresponding 5th 

phylogeny root tree. Figure 3.2 shows a simplified flow chart o f the steps of our algorithm.

No

NoReturn
no

Yes.

Yes Combine 
.  S,\>

''S tr lc t ly X Y e s
Chordal?/

Construct
CC(G)

Return 5-root 
Phylogeny Tree

S-Restricted 3- 
root Steiner Tree

Compute 
Tree Chordal 

Forest

Figure 3.2: A  flow chart o f our 5th phylogeny root tree construction algorithm. A LG (T i) is our 
algorithm for S-restricted 3-SRP, as described in Section 4.2.2.
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Chapter 4

Root Construction for Tree Chordal 
Graphs

We now consider the 5-PRP construction for tree chordal graphs in general and then we consider 

the construction as an intermediate step in the algorithm to solve 5-PRP for strictly chordal graphs. 

For this chapter1, we primarily consider the .S-restricted 3rd Steiner root tree construction prob­

lem. We remind the reader that by Lemma 3.1.1, when the set S contains exactly all size 1 critical 

cliques in the input graph G, the problem of constructing an S-rcstricted 3-SRP tree is equivalent to 

constructing a 5-PRP tree.

Note that every maximal clique in a tree chordal graph G contains exactly two critical cliques. 

We assume for this chapter that the given graph G is tree chordal and its critical clique graph CC(G) 

has been constructed.

4.1 General Construction

We assume, for this section, that every graph contains at least three critical cliques, as such, CC(G) 

w ill have at least three nodes. We also assume, for this section, that S corresponds to the size 1 

critical cliques in G.

4.1.1 Structural Restriction 1

Lemma 4.1.1. Let G be a tree chordal graph with an S-restricted 3rd Steiner root T. Let u denote 

a leaf node in CC(G). Then removing the representatives fo r  u does not disconnect T.

Proof. Let v denote the internal node adjacent to u in CC(G). Note that all representatives for v

must be within distance 3 to r(u ) but no representative for a critical clique other than u and v can

be within distance 3 to r(u ). Assume, for contradiction that removing the representatives for u from

Steiner root T  disconnects T. It follows that there must be some representative r(u )  for u that lies

on the path P  connecting representatives of two other critical cliques. It follows that one of these

1A version of this chapter has been submitted for publication. Lin, Kennedy, Kong and Yan 2005. Discrete Applied 
Mathematics |28|
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critical cliques is not wand its representatives must be at a distance of at least 4 from r(u ), otherwise, 

they are representatives for v. Therefore, this critical clique is nonadjacent, a contradiction to the 

existence o f such a path. □

Corollary 4.1.2. Let G be a tree chordal graph with an S-restricted 3rd Steiner root T. Then there 

exist no size I  leaf nodes in CC(G).

Proof. Let u be a size 1 leaf node in CC(G). u w ill have exactly one representative in any 3rd 

Steiner root tree T. By Lemma 4.1.1, i f  u was internal removing it would disconnect T, implying 

that u, has two neighbours in CC(G), a contradiction. Thus, u is a leaf in any 3rd Steiner root tree 

T, specifically in any S'-restricted 3rd Steiner root T. A contradiction follows as an S-restricted 

Steiner tree has no size 1 leaf representatives by definition. □

Therefore, from now on, we assume that every leaf node in CC(G) has size at least 2.

Lemma 4.1.3. Let G be a tree chordal graph with an S-restricted 3rd Steiner root T  and u be an 

internal node in CC(G). Suppose r i(u )  and r 2 (u) are two distinct representatives fo r  u. Then

dT ( r i ( u ) , r 2(u)) < 2.

Proof Clearly, d7’ ( r i ( t i ) , r 2 (w)) <  3. Therefore assume that dT {r\{u ), r 2(u)) =  3 and denote 

the path connecting 7-] and r 2 as r \-x -y - r2. Let v\ and v2 denote two nonadjacent nodes that are 

adjacent to u in CC(G). For a representative r ( v i)  to be adjacent to both r \(u )  and r 2(u) it must 

be adjacent to x  or y, as i f  it is adjacent to any other point it w ill be at a distance of at least 4. The 

same argument follows, by symmetry, for a representative r (v 2). Therefore, r (v i )  and r (v 2) must 

be adjacent, a contradiction. □

Corollary 4.1.4. Let G be a tree chordal graph with an S-restricted 3rd Steiner root T  and let u be 

an internal node in CC(G). Then, every vertex o f the set o f representatives fo r  u is adjacent to a 

common point p in T.

Lemma 4.1.5. Let G be a tree chordal graph with an S-restricted 3rd Steiner root T  and u be 

an internal node in CC(G). Suppose r i  (u) and r 2(u) are two distinct representatives fo r u. I f  

d T ( r i(u ) , r2(u)) — 2 and p is the node on the path between i'i(u )  and r 2(u) in T, then only 

representatives o f u are adjacent to p.

Proof. It follows that any representative r '  adjacent to p w ill be adjacent to everything both ?’i(u ) 

and r 2(u) are adjacent to. Therefore, no other representative r*  can exist that is adjacent to r i(u ) ,  

r 2(u) and not r ' , implying that u is not internal, a contradiction. Therefore, only representatives of 

u or Steiner points are adjacent to p. □

Theorem 4.1.6. Let G be a tree chordal graph such that every internal node in CC(G) has size at 

least 2 and every leaf node has size at least 4. Then G has an S-restricted 3rd Steiner root tree.
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Proof. Starting with CC(G ), replace each node, representing a critical clique cit by a Steiner point

I f  Ci is internal in CC(G), create a single representative r(c i)  and set it adjacent to s*. I f  c, is 

external in CC(G), create two representatives ri(c<) and 7-i(c;), where n (c j)  represents [\c i\/2 \ 

vertices and 7,2 (c1) represents |jc j|/2 ] vertices. Denote this new tree T.

As CC(G) is a tree T  is also a tree. We claim T  is an S'-restrictcd 3rd Steiner root tree. Every 

Steiner node has degree 3 and all representatives in T  have size at least 2 by construction. The set 

S is empty, so the property holds vacuously. As adjacent nodes were at a distance of 1 in CC(G), 

it follows that all representatives o f adjacent critical cliques will be at distance of exactly 3 in T. 

Analogously, as nonadjacent nodes were at a distance o f at least 2, nonadjacent nodes w ill be at a 

distance of at least 4 in T. Therefore T  is an S-restricted 3rd Steiner root tree. □

An illustration of the construction process is in Figure 4.1, where Figure 4.1(a) shows G, Figure 

4.1(b) shows CC(G), Figure 4.1(c) shows an S-restricted 3rd Steiner root tree T  for G.

(bede)

(vwxy)

(a) Graph G. (b) C C {G ): labeled by the (c) A  3rd Steiner root for
critical cliques. CC(G): representatives la­

beled by vertices they repre­
sent.

Figure 4.1: An example graph G shows the steps of operations for constructing a S-restricted 3rd 
Steiner root tree in the ideal case.

4.1.2 Structural Restriction 2

Theorem 4.1.6 deals with an ideal case where critical cliques must have sufficient size, namely 

internal critical cliques have size at least 2 and external critical cliques have size at least 4. The 

following several lemmas discuss the construction when there exist leaf nodes in CC(G) o f size 

less than 4.

Lemma 4.1.7. Let G be a tree chordal graph with an S-restricted 3rd Steiner root T. Let r(u) 

and r(u ) be representatives in T  o f two critical cliques in CC(G). I f  r(v ) and r(u ) are adjacent a 

common Steiner point p then only representatives o f u or v are adjacent to p.
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Proof. Assume, for contradiction, that a representative for another critical clique w is adjacent to x. 

Then u, v, and w form a C3 in CC(G ), a contradiction to the assumption that CC{G) is a tree. If 

adjacent to x  is a Steiner point y which is adjacent to a representative for w, then again we have a 

C3, a contradiction. Any representative that is further out w ill disconnect the graph. Therefore, no 

Steiner points or representatives are adjacent to x. □

Lemma 4.1.8. Let G be a tree chordal graph with an S-restricted 3rd Steiner root T  and let u be 

an internal node in CC(G ) with exactly two representatives r \(u )  and r 2(u). l f r \ ( u )  and r 2(u) 

are adjacent then every internal neighbour v o fu  in CC(G) has at most two representatives in any 

Steiner root T  o f G. Moreover,

•  i f v  has exactly two representatives, then these two representatives must be adjacent in T, with 

one o f them adjacent to either i 'i(u )  or r 2 (u), and,

•  i f v  has exactly one representative, then this representative must be adjacent to either r \{u )  

o r r 2(u).

Proof Suppose v has more than two representatives in T. By Lemma 4.1.4, all the representatives 

are adjacent to a common center point p. For both r \(u )  and r 2(u) to be adjacent to all representa­

tives of v, one of them is adjacent to p, but this is a contradiction to v being internal, as nothing else 

can be adjacent to v and not u. Therefore, v has at most two representatives.

Assume v has exactly two representatives 7’i(u ), r 2(v) in T. r i( v )  and r 2(v) must be adjacent 

as otherwise, as above, r \{u )  or r 2(u) is adjacent to a common center point p o f r i(u )  and r 2(v). It 

follows that since r \(u )  is adjacent to r 2(u) and r \(v )  is adjacent to r 2(v), they must form a path 

P4 , for all four to be within a distance o f 3.

Assume v has exactly one representative r(v )  in T. I f  r(v )  is nonadjacent in T  to rx(u) or 

r 2(u), then as it must be within a distance of 3 from both we know that we have again a P4 . Assume 

without loss of generality, we have the path r(v ) —x —r \ ( u ) —r 2(u). Clearly, something must attach 

to x, otherwise x  w ill be a degree 2 Steiner point. By Lemma 4.1.7, nothing but representatives of u 

or v can be adjacent to x. Therefore, r ( v ) must be adjacent to either 7-1 (u ) or r 2{u). □

Lemma 4.1.9. Let G be a tree chordal graph with an S-restricted 3rd Steiner root T  and let u be an 

internal node in CC(G ) with exactly two representatives r \(u )  and r 2(u), such that d r ( t ' i , t 2) =  1. 

Then, u has at most one internal neighbor in CC(G).

Proof. From Lemma 4.1.8 , i f  there are two internal neighbors vi and v2, then one representative for 

v\ must be adjacent to either r \  or 7-2 and one representative for v2 must be adjacent to either ?-i or 

r 2. It follows that these two involved representatives for v\ and v2 are at distance either 2 or 3 in T, 

which contradicts the fact that vi and v2 are not adjacent in CC(G). □
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Lemma 4.1.10. Let G be a tree chordal graph with an S-restricted 3rd Steiner root T  and let u 

and v denote two adjacent nodes in CC(G) .  I f  u and v each have exactly one representative in T, 

sayr(u) and r(v ) respectively, then either d r(r(u ) , r(v ))  =  1 or d T (r(u ),r(v )) =  3. Moreover, i f  

d r{r (u ) , r(v ))  =  1 then one o f {u, v } has degree at least 3 in CC(G) ,  and i f  d r{r(u ), r(v )) =  3, 

then both u and v are internal nodes in CC{G) .

Proof. I f  d r( r (u ) , r(v ))  =  2 and x  is the node adjacent to both o f them, by Lemma 4.1.7 we have a 

contradiction. As C C (G )  contains at least 3 nodes, one o f u or v  must be internal, assume with out 

loss of generality u  is internal. Let w  be another node adjacent to u in CC(G) .

I f  dT(r (u ) , r (v )) =  1 then the representatives for w  are at distance exactly 3 from r(u)  in T,  

since they have to be at least 4 from r(v).  Let r (w)  be a representative for w,  and the path connecting 

r (u ) and r (w)  be r(u)-x-y-r(w).  By the degree requirement, we need degr(x)  >  3; therefore 

u  must be adjacent to another critical clique that uses x  as the path between its representatives. 

Therefore, node u  has degree at least 3 in CC(G) .

I f  dT ( r (u ) , r ( v ) )  =  3 and the path connecting r (u )  and r {v )  is r (u) -x -y- r (v) .  As we require 

both degr (x )  >  3 and deg r ( y ) >  3, it follows that x  and y  must be attached to another point in 

T.  As all leaves of T  are representatives and as T  is connected, it follows that r (u )  is within 3 from 

another representative; similarly for r (v) .  Therefore, u  and v  are both internal. □

Lemma 4.1.11. Let G be a tree chordal graph with an S-restricted 3rd Steiner root T  and let u and 

v denote two adjacent nodes in CC(G) .  I f u  has exactly one representative r {u )  in T  and v has 

exactly two representatives 7'i (v ) and r ^ v )  in T  such that r \ (v ) and r^ l v )  are adjacent, then r (u )  

is adjacent to either r  i(u ) or r  2 (77). Moreover, i f  v is a leaf node in CC{G) , then u has degree at 

least 3 in CC(G) .

Proof Note when both u  and v are internal nodes in C C (G )  the result follows from Lemma 

4.1.8. Assume with out loss of generality that r (u )  is closer to r2(v)  than it is to r i ( v ) .  I f  

dT( r (u ) , r2 (v ) )  =  2, let r (u )-x- r2(v)  be the path connecting r (u )  andr2 (u). From Lemma 4.1.7, 

it follows that this is a contraction. Therefore, r ( u ) is adjacent to r2(v).

I f  v  is a leaf node in CC(G) ,  then u  is internal in CC{G) .  Let r (w )  be a representative for 

w,  and the path connecting r(tt)  and r (w )  be r (u ) -x -y - r (w) .  By the degree requirement, we need 

degr(x )  >  3; therefore u  be adjacent to another critical clique that uses x  as the path between its 

representatives. Therefore, node u has degree at least 3 in CC(G) .  □

Lemma 4.1.12. Let G be a tree chordal graph with an S-restricted 3rd Steiner root T. Then, there 

is an S-restricted 3rd Steiner root fo r C C (G )  in which every leaf node in CC(G )  of size less than 

four has exactly one representative adjacent to one o f the representatives fo r the neighboring node.

Proof. Let u be a leaf node in CC(G )  of size less than 4. By Corollary 4.1.2, 2 < |u| <  3. If 

|w| =  2, then u  has exactly one representative, as it is a leaf in any 3rd Steiner root for CC(G) ,  by
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Lemma 4.1.1. I f  |u| =  3, then at least one of the representatives ?’i(u ) for u must appear as a leaf 

andr(u) >  1 in any 3rd Steiner root for CC{G), by Lemma 4.1.1. I f  u has multiple representatives, 

the other representative r’2 (u) must have size 1. It follows as u is a critical clique and that r j  (u ) is a 

leaf in T, that we can delete r i  (u ) and increase the size of 7-2 (11) to size 3.

Let r(u )  denote the unique representative for u and r (v )  be a representative for the neighbouring 

node v. As u is a leaf in CC(G), v is the only adjacent representative. As by Lemma 4.1.7, we can 

not have a Steiner point between r (u ) and r(v ), it follows they are either adjacent or have two 

Steiner points on the path between them. In the latter case, it follows that as v is the only neighbour 

of u, the Steiner point adjacent to u w ill have degree 2. Therefore, they must be adjacent. □

Corollary 4.1.13. Let G be a tree chordal graph with an S-restricted 3rd Steiner root T. Then there 

exist no degree 2 size 1 internal node u in CC(G) such that u is adjacent to a leaf node v o f size 2 

or 3.

Proof By Lemma 4.1.12, it follows that there exists a Steiner root with a single representative r (v ) 

for v such that r(v )  is adjacent to the representative r(u )  for u. A  contradiction follows as by Lemma 

4.1.10, as the degree of u is 2. □

Lemma 4.1.14. Let G bea tree chordal graph with an S-restricted 3rd Steiner root T. Then, there is 

an S-restricted 3rd Steiner root fo r CC(G) in which every leaf node in CC(G) o f size at least four 

has exactly two representatives that are leaves in T  which are separated by a non-representative 

Steiner node.

Proof Let u be such a critical clique. We can place the representatives of u, denote n (u ) ,  r 2(u), ...,re(u), 

in one o f three structural configurations:

1. e = i;

2. I  >  1 and all representatives adjacent to a common point p  where p  is either a Steiner point 

or representative of u\ or,

3. I  >  1 and all representatives adjacent to a common edge induced by points p i and p2 where 

Pi (P2) is either a Steiner point or a representative of u.

I f as in Case 1, we know by assumption that |rj(i/.)| >  4 and, by Lemma 4.1.12, u must be 

adjacent to the representative r(u ) of another critical clique v. As u is a leaf v is its only neighbour.

I f  r(v )  is the only representative for v, then replace r \(u )  by two representatives r \(u )  of size 

[|m|/2J and r" {u )  of size [jw |/2]. Create Steiner point p, and set it adjacent to r [(u ) , r['(u )  and 

r(v )  adjacent to it. It trivially follows that this construction satisfies the lemma. I f  v has multiple 

representatives then replace r(v )  by a Steiner point p and append its vertices to another representative 

of v. Again, replace r \(u )  with r \(u )  and r " (u )  and set them adjacent to p. Again, this is the 

postcondition from the lemma.
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I f  as in Case 2, we are done if  the common point is a Steiner point, else replace this common 

point p  with a Steiner point and let the vertices p represents be represented by another representative 

of v. This satisfies the lemma.

If  as in Case 3, either p\ or p2 is adjacent to a representative of u's only neighbour. Assume, 

without loss of generality that it is p\. Then remove p2 and the representatives adjacent to it other 

than p\. Represent these representatives by p\. We now continue as in Case 2. Thus, the lemma 

follows. □

Lemma 4.1.15. Let G be a tree chordal graph with an S-restricted 3rd Steiner root T. I f  u is an 

internal node in CC{G) adjacent to k >  2 leaf nodes o f size 2 or 3, then |u| >  k and there is a 

3rd Steiner root T  fo r CC(G) such that there are at least k representatives fo r  u that are adjacent 

to a common point. Moreover, the representative fo r  each neighbouring leaf node o f size 2 or 3 is 

adjacent to a distinct one o f the representatives fo r  u.

Proof From Lemma 4.1.12, we conclude that there is a 3rd Steiner root for CC(G) in which there 

is exactly one representative for a leaf node of size 2 or 3 in CC(G), and it is adjacent to a repre­

sentative for the neighboring node, which is u in our case. It follows that there are at least k distinct 

representatives for u. Also, there are k representative that are adjacent to representatives of size-2 

and 3 leaf nodes, and these k representatives are at distance exactly 2 to each other, that is, they are 

all adjacent to a common (Steiner or non-Steiner) point. □

Corollary 4.1.16. Let G be a tree chordal graph with an S-restricted 3rd Steiner root T. Then fo r  

every internal node u in CC(G) the number o f adjacent leaf nodes o f size 2 or 3 is at most |u|.

Corollary 4.1.17. Let G be a tree chordal graph with an S-restricted 3rd Steiner root T. Then is 

no degree-2 size-2 internal node u in CC(G), such that u is adjacent to a leaf node o f size 2 or 3.

Proof By Corollary 4.1.13, such a u can not have a single representative. Therefore, as it is size 

two, it must have two representatives n (u ) ,  7-2 (11) of size 1 that, therefore, must be internal in T. If 

follows from Lemma 4.1.7 that the leaf node representative is adjacent to 7-i( t i)  or r 2(u) and they 

form an induced P3. A  contradiction follows from Lemma 4.1.10, which implies that u has degree 

at least 3. □

Theorem 4.1.18. Let G be a tree chordal graph such that in CC(G) every internal node in CC(G) 

has size at least 2 and every leaf node has size at least 2. Then i f  no degree 2 size 1 internal node 

is adjacent to a leaf node o f size 2 or 3, every internal node u in CC(G) has at most |u| adjacent 

leaf nodes o f size 2 or 3, and no degree-2 size-2 internal node in CC(G) is adjacent to a leaf node 

o f size 2 or 3 then G has an S-restricted 3rd Steiner root tree.

Proof. From CC(G), replace each node n* in CC(G) corresponding to critical clique Ci in G with a 

Steiner point pi. For every internal node m  adjacent to leaf node n j such that 2 <  \ i i j l  <  3, place a
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representative r(?ij) for a single vertex for rii adjacent to and p j removing the existing edge. After 

considering all leaf representatives o f n it represent all remaining vertices by a single representative 

adjacent to pi. For all remaining internal nodes, represent all vertices by a single representative 

adjacent to pi. For every leaf node n, in CC(G) of size at least 4, create two representatives of 

sizes L|?ii|/2J and [j? ti|/2 ], respectively, and attach them top*. Finally, for every leaf node i i i  in 

CC(G) o f size 2 or 3, replace its the Steiner point pt with a single representative. This constructs 

an S-restricted 3rd Steiner root T  for CC{G)

In T, every leaf node of size 2 or 3 has exactly one representative adjacent to a representative of 

its only neighbour, satisfying Lemma 4.1.12. Leaf nodes of size four or more have two representa­

tives adjacent to a Steiner point of degree at least 3. Internal nodes which are not adjacent to any 

leaf nodes of size 2 or 3, are represented by a single vertex adjacent to a Steiner point of degree at 

least 3. Internal nodes, adjacent to a leaf node of size 2 or 3, have all representatives adjacent to a 

common Steiner point. As G satisfies Corollaries 4.1.2, 4.1.13 and 4.1.16 it follows that the degree 

of this Steiner point is at least 3. As nodes in CC(G) were adjacent if  and only i f  at distance of 1, 

it follows that adjacent nodes are either at distance of at most 3 in T  and nonadjacent node are at 

distance of at least 4. □

An illustration of the construction process is in Figure 4.2, where Figure 4.2(a) shows G, Figure 

4.2(b) shows CC(G), and Figure 4.2(c) shows an .S-restricted 3rd Steiner root for CC(G).

(a) Graph G. (b) CC(G): labeled by critical (c) An S-restricted 3rd Steiner
cliques. root for CC(G): representa­

tives labeled by vertices they 
represent.

Figure 4.2: An example graph G shows the steps of operations for constructing a 5-restricted 3rd 
Steiner root tree T  when leaf nodes of size 2 and 3 exist.

Theorem 4.1.19. Let G be a tree chordal graph such that every internal node in CC(G ) has size at 

least 2 and every leaf node has size at least 2. I f  G satisfies Corollaries 4,1.13, 4.1.16, and 4.1.17, 

then an S-restricted 3rd Steiner root tree can he constructed in linear time.
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Proof. Using Theorem 4.1.18, checking i f  G is tree chordal and, i f  so, building the critical clique 

graph CC{G ) takes linear time by Corollary 2.2.9. Corollaries 4.1.13, 4.1.16, and 4.1.17 can be 

checked in linear time by examining each node and checking that it satisfies each of the conditions. 

The replacement of the nodes in CC(G ) with Steiner points and setting the vertices adjacent to these 

Steiner points we show is also linear. As the number of nodes in CC(G) is bounded above by the 

number of vertices in G this replacement takes at most 0 ( |V |)  time. For each critical clique we 

then, using the corresponding lemma, place its vertices adjacent to the corresponding Steiner point; 

as we are constructing a tree this is an addition of |Vj edges and |Vj vertices. Therefore, we do a 

constant amount o f work to each of the 0 ( |K |)  vertices, implying an overall linear runtime. □

4.1.3 /c-PRP Algorithm for Tree Chordal Graphs

We now present the remaining details o f the algorithm, namely we deal with the existence of size 1 

internal nodes in CC(G). Clearly, there is a unique representative for each such internal node u  and 

the representative r(u )  must be internal in any 3rd Steiner root for CC(G).

Lemma 4.1.20. Let G be a tree chordal graph with an S-restricted 3rd Steiner root T  and let u 

denote a size- 1 internal node in CC(G). Then either CC(G) has exactly 3 nodes or u has degree at 

least 3 in CC(G). Moreover, i f  u has degree exactly 3, then one o f its neighboring nodes must have 

size greater than the number o f adjacent leaf nodes o f size 2 oor 3 in CC(G).

Proof By Lemma 4.1.10, we note that u is adjacent to at most one leaf of size 2 or 3, and i f  it 

is, then u must necessarily have degree 3 in CC{G). Therefore, assume u has degree 2 and is not 

adjacent to any leaf node o f size 2 or 3. Let r(u )  denote the unique representative for node u. Let 

v and w be the two adjacent nodes of it. The representatives of v and w must be at a distance o f at 

least 4 from each other, therefore, at most one has a representative adjacent to r(u). Without loss 

o f generality assume r(v )  is adjacent to r(u ), then all the representatives of w are at a distance of 

three from r(u ). Let r(u )-x -y -r(w ) denote one of these such paths. We note, by Lemma 4.1.7, only 

Steiner points of u and w can be adjacent to x  and y. But the degree of x  must be at least 2, and 

as u has only a single representative, it must be a representative of w, thus, a contradiction to the 

distance being exactly 3.

Therefore, the representatives of v and w must be at a distance of exactly 2 from r(u ). Denote 

one such path r(v )-x -r(u )-y -r(w ). By Lemma 4.1.7 and as u has only single representative, only 

representatives of r(v )  (respectively r(w ))  can be adjacent to x  (respectively y). Therefore, both v 

and w must have at least two representatives attached to x  and y, respectively. Therefore G must 

consist of exactly three nodes, as nothing can be adjacent to w and v without being adjacent to u , 

contradicting u having degree 2. Therefore, u  must have degree at least 3 in CC(G).

When u has degree exactly 3 in CC(G), CC(G) could have 4 nodes where all nodes other then 

u have size at least 4, as the above case with 3 nodes. I f  all nodes are at distance three than as u 

must be internal we w ill have the situation of a path r(u )-x -y -r(w ), implying that r(u )  has degree at
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least 4. Therefore, there must be a representative r(v )  adjacent to r(u )  in the root. It follows that no 

representative for other nodes than u and v could be adjacent to r(v). For each leaf node adjacent to 

v o f size 2 or 3, by Lemma 4.1.12, we must have a representative o f v adjacent to the representative 

o f the leaf. Therefore, as one representative is adjacent to r(u ), it follows that |u| is strictly greater 

than the number o f adjacent nodes of size 2 or 3 is CC(G). □

Lemma 4.1.21. Let G be a tree chordal graph and let u be a size 1 internal node in CC(G) with 

exactly one leaf node v o f size 2 or 3 adjacent to u in CC(G). Let G ' be the graph created by 

removing v and increasing the size o fu  to 2. Then G ' has an S-restricted 3rd Steiner root tree T ' i f  

and only ifG  has an S-restricted 3rd Steiner root tree T.

Proof Let G have an S-restricted 3rd Steiner root tree T. Then there is a unique representative 

r(u )  for u and a unique representative r(v )  for v. Moreover, r(v )  is a leaf in the associated 3rd 

Steiner root tree for CC(G) and no representatives for nodes other than u  can be within distance 3 

to r(v ). Therefore, i f  we remove r(v )  and increase the size of r(u )  to two, the new tree T ' is a valid 

S-rcstricted 3rd Steiner root tree corresponding to the graph G' as modified in the lemma.

Let G' have an S-restricted 3rd Steiner root tree T '. By the construction of Theorem 4.1.18, 

Represent u by a single vertex adjacent to a Steiner point p. As no leaf node of size 2 or 3 is 

adjacent to u, it also follows that only Steiner points are adjacent top. Therefore, all neighbouring 

representatives are at distance of exactly 3. Therefore, let r(u )  only represent a single vertex and 

place a representative, corresponding to v, or size 2 or 3 adjacent to r{u ). It follows that this new 

tree T  is a valid S-rcstricted 3rd Steiner root tree corresponding to the graph G as in the lemma. □

Lemma 4.1.22. Let G be a tree chordal graph and let u be a size 1 internal node in CC(G) with 

exactly one leaf node v adjacent to u in CC(G) and |w| >  4. Let G ' be the graph created by 

removing v and increasing the size o fu  to 2. Then G ' has an S-restricted 3rd Steiner root tree T ' i f  

and only ifG  has an S-restricted 3rd Steiner root tree T.

Proof Let G have an S-restricted 3rd Steiner root tree T ; it follows from Lemma 4.1.14 and its 

proof that there is a phylogenetic root for G such that there are exactly two representatives for node 

v that are separated by a Steiner point p  and p is adjacent to the unique representative r(u )  for node

u. Consequently, we can remove the two representatives for v , p, and increase the size o f r(u ). It 

follows that this new tree T ' is a valid S-restricted 3rd Steiner root tree corresponding to the graph 

G as in the lemma.

Let G' have an S-restricted 3rd Steiner root tree T '. By the construction of Theorem 4 .1.18, rep­

resent u  by a single vertex adjacent to a Steiner point p; therefore, all neighbouring representatives 

arc at distance of at least 2. Therefore, let r(u ) only represent a single vertex and place a Steiner 

point p adjacent to r(u ). Create two representatives for v o f suitable size and set them adjacent to p.

It follows that this new tree T  is a valid S-restricted 3rd Steiner root tree corresponding to the graph 

G as in the lemma. □
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Lemma 4.1.23. Let G be a tree cliordal graph and let u be a size 1 internal node in CC(G) with 

exactly no leaf nodes adjacent to u in CC(G). Let G ' be the graph created by increasing the size 

o f u to 2. Then the graph G ' has an S-restricted 3rd Steiner root tree T ' i f  and only i f  G has an 

S-restricted 3rd Steiner root tree T.

Proof Let G have an S-restricted 3rd Steiner root tree T. Trivially, T ' — T  is a valid S-restricted 

3rd Steiner root tree for G'.

Let G' have an S-restricted 3rd Steiner root tree T '. From Lemma 4.1.20, u has at least three 

neighbors in CC(G). By the construction of Theorem 4.1.18, u has exactly one representative r{u ) 

that appears as a leaf in the associated 3rd Steiner root for CC(G '). Moreover, r(u ) is at distance 

exactly 3 to any other representatives for the neighboring nodes to u. I f  u has all non-neighbours at 

distance o f 5 or more in T, then replace the Steiner point p adjacent to r (u ) with r(u )  and reduce its 

size to 1. Assume then, that there exists a non-neighbour at distance 4 from r(u). By the construction 

of the theorem, it follows that adjacent top is the Steiner points adjacent to the representatives o f all 

of the neighbours of u. Therefore, i f  u has 4 or more neighbours then by splitting p into two Steiner 

nodes p\ and P2 such that each of them inherits at least two edges, and removing one vertex from u, 

we obtain a .S-restricted 3rd Steiner root tree T  for G. I f  u has degree of 3 in CC(G), from Lemma 

4.1.20 we have at least one neighbouring node v to u  such that its size is larger than the number 

of adjacent leaf nodes o f size 2 and 3 in CC(G). Consequently, either we have one representative 

for v that is a leaf in the Steiner root, or we can create a new representative r(v )  for v and make it 

adjacent to the Steiner point, p(v) of v. The obtained tree is no longer an 5-restricted 3rd Steiner 

root tree T, but by removing edge between p(u) and p(v) and adding edge between r(u ) and r(v )  

it becomes a valid .S-rcstricted 3rd Steiner root tree T. Furthermore, we may reduce the size of u 

from 2 to 1 and the resultant tree is a S-rcstricted 3rd Steiner root tree T. □

Theorem 4.1.24. Let G be a tree chordal graph G. Then there exists a linear time algorithm to 

decide whether G has an S-restricted 3rd Steiner root tree T, and i f  so, return such a T.

Proof. First of all, i f  the critical clique graph CC(G) contains only one or three nodes, then one can 

determine G has an S-restricted 3rd Steiner root tree T  is trivial. Assume CC{G) contains more 

than three nodes. Determining i f  G does not have an S-rcstricted 3rd Steiner root tree T  can be done 

by check the following conditions:

1. CC(G) contains no size 1 leaf nodes (Corollary 4.1.2);

2. Every size-1  internal node in CC(G) has degree at least 3; and i f  it has degree exactly 3 then 

one of its neighboring node must have size greater than the number of its adjacent leaf nodes 

of size 2 and 3 in CC(G ) (Corollary 4.1.13 and Lemma 4.1.20).

3. Every internal node in CC(G) has size at least as large as the number of adjacent leaf nodes 

of size 2 and 3 (Corollary 4.1.16);
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4. There is no degree 2 , size 2 , internal node c in G C(G ) that is adjacent to a leaf node o f size 2  

or 3 (Corollary 4.1.17);

Create the modified graph G' by following Lemmas 4.1.21, 4.1.22 and 4.1.23, this increases every 

size-1 internal node to have size 2. We then can apply Theorem 4.1.18 to construct an S-restricted 

3rd Steiner root tree T ' for the modified graph G \  and finally according to Lemmas 4.1.21, 4.1.22 

and 4.1.23 to construct an S-restricted 3rd Steiner root tree T  for the given graph G. Note that 

conditions 2-4 guarantee graph G to have an S-restricted 3rd Steiner root tree T  i f  and only i f  the 

modified graph G' has an S-restricted 3rd Steiner root tree T '.

Checking i f  G is tree chordal and, i f  so, building the critical clique graph CC(G) takes linear 

time by Corollary 2.2.9. The four conditions above can be checked in linear lime by examining 

each node and checking that they satisfy each of the conditions. Producing the modified graph G' 

requires finding all size 1 nodes in CC(G), possibly delete a neighbour, and increasing the size to 2 ; 

each of these check is constant time, therefore, creation of G' takes linear time. By Theorem 4.1.19, 

we can produce a S-restricted 3-root Steiner tree T ' for the graph G' in linear time. Finally, we find 

the tree T  by modifying T '. As we add a constant bounded amount to each size 1 node in G, this 

again is linear. The overall construction is linear as V (T ) <  2V(G) and E (T )  <  2E(G). This 

proves the theorem. □

By Theorem 4.1.24 and Lemma 3.1.1 we have the following corollary.

Corollary 4.1.25. Let G be a tree chordal graph G. Then there exists a linear time algorithm to 

decide whether G has a 5th phylogenetic root tree T, and i f  so, return such a T.

4.2 Decomposition Construction

Let G be a strictly chordal graph with an S-restricted 3rd Steiner root tree T, where S is the set of 

all size 1 critical cliques in G. Let T  be a forest of tree chordal graphs decomposed from G. Let c 

be a critical clique contained in a large maximal clique in G and contained in a tree chordal graph 

Ti, decomposed in to at least two nodes in GG(T,).

We now consider the construction o f an S-rcstricted 3rd Steiner root tree T- for a Tt in T  as an 

intermediary step in the process of the 5-PRP algorithm for strictly chordal graphs, therefore, we 

w ill allow a critical clique such as c to be adjacent to a degree 2 Steiner point or c to have a single 

size 1 leaf representative. These inconsistencies are allowable as long as they do not exist in the final 

S-restricted 3rd Steiner root tree T  for G.

We first observe that i f  c has a single size 1 leaf representative r c in T( then r c must be internal 

in T, by Corollary 4.1.2. As we will see in Chapter 5, this is always able to be done.

For the degree 2 Steiner point, we note that c must have a single representative r c as it is adjacent 

to another critical clique in 71,. r c w ill need to be adjacent to an additional Steiner point in T, as the
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degree must be at least 3 in T  and i f  another representative is adjacent to this Steiner point then it 

w ill be indistinguishable from r c.

Therefore, for the follow 5-restricted 3rd Steiner root tree constructions we allow critical cliques 

such as c to be adjacent to a degree 2 Steiner point or to have a single size 1 leaf representative. As 

such we define the set C to be the critical cliques that are contained in large maximal cliques of G. 

Let 5  be the set of critical cliques o f size 1 in G. For a T, e T , we define the sets

Wi =  { a \  c, G 5  \  C &  c, € V (T i)},

X i =  {ci \ c i e C k c i € V(Ti)}.

We will now show constructions to produce an 5-restricted 3rd Steiner root tree T  for a tree T) 6  T , 

such that S =  Wi and a Steiner point adjacent to critical clique c e X i can have degree 2.

4.2.1 Trivial Tree Chordal Graphs

We first deal with when CC(G) contains less than 3 nodes - trivial tree chordal graphs. A tree

chordal graph T  is trivial when CC(T) is a single node. No connected graph w ill have a CC(G)

with two nodes; as the two adjacent critical cliques would be one large critical clique.

Trivial tree chordal graphs T  can arise in two ways, when decomposed from a strictly chordal 

graph: T  was part of only large maximal cliques in G, or T  was part of a large maximal clique 

and decomposed into a tree chordal graph of exactly two critical cliques. In the second case, we 

distinguish the two critical cliques as they have a different neighbourhood in G. Therefore, we 

describe an algorithm to handle trivial tree chordal graphs.

Corollary 4.1.2 can easily be adapted to show that no size 1 leaf exists in trivial tree chordal 

graphs. Lemma 4.1.3 shows that a critical clique has diameter at most 2 in the Steiner tree. Finally, 

Lemma 4.1.12 shows that leaf nodes o f size 2 or 3 are are represented by a single vertex adjacent 

to a neighbours representative and Lemma 4.1.14 shows that leaf nodes of size at least 4 can all be 

represented by two representatives adjacent to a common Steiner point. Using these results, Figure 

4.3 shows all possible 5-restricted 3rd Steiner root trees for three three types of trivial chordal 

graphs.

A critical clique c is constrained in K  i f  c has two or more representatives in the Steiner tree 

T, c has a single representative adjacent to a Steiner point with Steiner degree 1, or c has a single 

representative adjacent to the representative o f another critical clique. As shown in Section 5.1.1, at 

most one critical clique can be constrained in a large maximal clique of a strictly chordal graph with 

an 5-restricted 3rd Steiner root tree. Therefore, the algorithm aims to produce constrained critical 

cliques only when necessary.

If a tree chordal graph was part o f only large maximal cliques in G, the corresponding 5- 

rcstricted 3rd Steiner root tree to the T» w ill be a single representative. See Figure 4.3(a) for an
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enumeration of all possible trees; notice that the single vertex is common in all possibilities and is 

unconstrained for each o f these. Note that 5  =  0, as does not contain this critical clique.

For the second case, we present the following algorithm T rivA lg (T i).

1. i f  both ci and C2 arc internal critical cliques in G then represent ci and C2 by two single 

representatives connected by a path of two Steiner points; or,

2 . i f  only one is an internal critical clique, assume c i, then:

a. i f  |ci | — 1 and 1 <  \c^\ <  4 then represent ci and C2 by two single adjacent representa­

tives;

b. i f  |ci | >  1 and 1 <  |c2 1 <  4 then represent ci by r ' ,  and r "  , c2 by r C2, and create path
n+l _______ ^  rrt •
1 C l 1 C I  '  C2 »

c. i f  |C2 1 >  3 then represent c i by a single representative, represent C2 by two representa­

tives of sizes rN /2 1  and Llc2 1/2J, and make all adjacent to a common Steiner point; 

or,

d. otherwise (jc2 1 =  1) no 5-restricted 3rd Steiner root tree exists.

The trees produces by T riv A lg (T i)  satisfy the condition of being an 5-restricted 3rd Steiner 

root tree for T, with respect to Wi and X t . Figure 4.3(b) corresponds to the possible choice for 

Case 1. Notice that all configurations for this critical clique are constrained. The choice for critical 

cliques represented by a path o f representatives are not chosen in this case as all adjacent critical 

cliques w ill need to have single representatives and, as we will show, one possibility w ill force one 

maximal cliques contained critical cliques to have single representatives. Therefore, we choose the 

less restrictive case. This leaves two options for the 5-restricted 3rd Steiner root tree: (1) the option 

presented in the algorithm and (2) letting ci and oz be adjacent, with no Steiner points. For 1) c\ 

and C2 must be contained in two additional maximal cliques each in G, one adjacent to c\ or c i ( if 

|ci| =  1 or |c2 | =  l)and the other adjacent to the Steiner points adjacent to c\ andc2 . For (2) that c\ 

and C2 must also be contained in two additional maximal cliques each. The difference is all maximal 

cliques adjacent to c\ and C2 w ill have to all adjacent critical cliques in CC{G) as unconstrained for 

(2 ), whereas only one maximal clique needs all contained critical cliques as unconstrained for ( 1) 

(Sec Lemma 5.2.1).

For similar reasons, the optimal cases are chosen from the cases of Figure 4.3(b). Cases 2a and 

2b satisfy Lemma 4.1.12, where case 2a must be contained in at least two additional maximal cliques 

in G and case 2b is only contained in at least one. Case 2c is ideal with no restriction place on the 

maximal cliques adjacent to c\. For Case 2d no 5-restricted 3rd Steiner root tree exist for G, as C2 ’s 

representative will always be external and have size 1.
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(c) Critical clique graph has exactly two nodes. c\ is internal in and 
C2  is external in CC (G ).

Figure 4.3: A ll possible S-rcstricted Steiner trees corresponding to the three types of trivial tree 
chordal graphs.
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4.2.2 Tree chordal graphs

We now describe and justify a modification of the tree chordal algorithm of Section 4.1.3 to minimize 

constrained critical cliques.

Given a tree chordal graph T, 6  T  decomposed from a graph G, set S corresponding to nodes in 

Ti of size 1 in CC{G),  and a set R corresponding to nodes o f CC(Tj ) contained in maximal cliques 

of size three or more in CC(G)  produce an S-restricted 3rd Steiner root tree as follows. Denote this 

modified algorithm ALG(G),  where G  is a tree chordal graph.

•  I f  Ti was part of only large maximal cliques in G, return a single representative.

•  I f  Ti was part of a large maximal clique and decomposed into a tree chordal graph of exactly 

two critical cliques, return tree as in T rivA lg (T i).

•  Produce tree chordal graph T* as follows:

-  size two and three external nodes contained in R, change size to four;

-  size one external nodes contained in R  adjacent to degree- 2  size- 2  node in CC(Ti), 

change size to four;

-  remaining size one external nodes contained in R, change size to two; and,

-  size one internal nodes contained in R which are not adjacent to an external node not 

contained in R, change size to two.

•  Call the tree chordal algorithm with the modified tree T*.

•  return no i f  the tree chordal algorithm fails, or return the S-restricted 3rd Steiner root tree.

Lemma 4.2.1. Given a strictly chordal graph G decomposed into a forest o f tree chordal graphs T  

and set S corresponding to nodes in G o f size 1, i f  A LG  (T ) fa ils  to produce a valid S-restricted 3rd 

Steiner root tree fo r any Ti E T  then no S-restricted 3rd Steiner root tree exists fo r G.

Proof T r ivA lg (T )  only rejects when |c2 1 =  1, as c2 € S and w ill never be internal.

To show the correctness of the modified tree chordal algorithm we prove the contrapositive; 

assume G has an S-restricted 3rd Steiner root tree T',  we w ill show for any tree chordal graph 

Ti £ T  produced in the decomposition, the modified algorithm w ill produce an S'-rcstricted 3rd 

Steiner root tree. Take any T  & T  in such a graph G. Denote T- as the subtree induced on the tree 

T'  with the representatives of the critical cliques of T,- and the Steiner points on paths between these 

representatives. We show from T/ a valid S-restricted 3rd Steiner root tree for the T  that ALG(Ti)  

produces.

First, as T ' satisfies all distance requirements, it follows that so w ill T-. A ll representatives that 

are not part of large maximal cliques in G will satisfy the size requirements; all Steiner points not 

adjacent to a representative of a critical clique in large maximal clique w ill satisfy the minimum
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degree requirement. Therefore, assume that c is a critical clique in T[ that fails; it follows either a 

representative of c is external in T[ and has size one or a Steiner point adjacent to c has degree two.

We first deal with the case when an external representative is size one. The modifications to 

ALG (G ) set external representatives o f size one to size two. Therefore, c must have two representa­

tives. But, the other representative was a leaf in T ' implying its size is greater than one. This implies 

the total size of this critical clique was at least three, but external critical cliques of size three were 

modified to have size four. Therefore, we can represent these nodes with two representatives of size 

two each in T ’.

I f  the Steiner point adjacent to c has degree two, it must o f been adjacent to a Steiner point o f the 

maximal clique. The representative o f the critical clique c must also have size one, as size greater 

than two were modified to have size four or more and could have two representatives. This could be 

the case when the critical clique c is internal as well. By as in the previous case, this implies another 

representative must exist and we modified critical cliques of size 2 or 3 to size four and, therefore, 

this critical clique can have two representatives.

□

By Lemmas 3.1.1 and 4.2.1, i f  A LG (T ) fails for any tree chordal graph, we can return no, as no 

.S-restricted 3rd Steiner root tree exits and therefore no 5th phylogeny root tree w ill exist. We now 

enumerate the possibilities of a critical clique returned by A LG (T).

Lemma 4.2.2. Given a tree chordal graph G with at least two critical cliques, ALG (G ) leaves 

the representatives o f any critical cliques in the 3rd Steiner root tree T  in exactly one o f the follow  

states:

c l:  Representatives adjacent to a Steiner point o f Steiner degree one; nearest representative o f 

another critical clique is at distance o f three with:

a: a single representative, or 

b: two representatives,

c2: One representative adjacent to a degree two Steiner point, with:

a: nearest representative o f another critical clique is at distance o f three, or 

b: nearest representative o f another critical clique is at distance o f two,

c3: One representative at distance o f one to another leaf critical clique and a Steiner point, other 

critical cliques are at a distance o f three,

c4: One representative adjacent to one a representative o f another critical clique.

c5: Two adjacent representatives; one adjacent to another leaf's representative.
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Figure 4.4: The seven possible cases for a leaf critical clique in a tree chordal graph as returned by 
algorithm ALG; representatives are darkened. We denote these cases as c la , clb, c2a, etc. Notice 
only c2 a and c2b are unconstrained.

Proof. The following correspondences are for the trivial tree chordal graphs in T riv A lg (T ):  both 

critical cliques in case 1 w ill correspond to c l, case 2a will correspond to c4, case 2b w ill correspond 

to c5, and the case 2c w ill correspond to c2b.

As the ALG (G ) modifies all size one internal nodes to size two, Theorem 4.1.18 gives internal 

nodes of size at least two a single representative (c2a), external nodes of size 1, 2 or 3 that were 

modified to have four representatives (cla) and external nodes of size at least four by two repre­

sentatives adjacent to a single Steiner point (clb) in a 3-root Steiner tree. Increase the size o f all 

size one external nodes to size two; Lemma 4.1.12 leaves a size two external node as a single rep­

resentative adjacent to a representative of an internal critical clique (c4). The algorithm modifies all 

size two or more external critical cliques to size at least four; in Theorem 4.1.18 these w ill have two 

representatives adjacent to a Steiner point as in c2a. □

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5

5-root Phylogeny Tree Construction 
for Strictly Chordal Graphs

As shown in the previous chapter, we have 7 possibilities for critical cliques returned by the tree 

chordal algorithm. This chapter1 shows how to deal with the possible configurations that could be 

in any large maximal clique.

5.1 Preliminaries

Before we present the algorithms, we first discuss structure of large maximal cliques (Section 5.1.1). 

We w ill present the algorithm in three progressively less restrictive parts. Section 5.2.1, w ill assume 

G contains no small leaves and at most one critical cliques is constrained. Section 5.2.2 w ill restrict 

G to not contain small leaves. Section 5.2.3 will show the entire construction for strictly chordal 

graphs.

5.1.1 Structure of large maximal cliques

The following lemma, Lemma 5.1.1, is an example of structure that is a potential problem for con­

struction o f an S'-rcstricted 3rd Steiner root tree; the following section shows why this poses a 

problem and how it becomes unnecessary in the construction of an S-restricted 3rd Steiner root tree.

Leinma 5.1.1. [24] Let G be a graph with a 3rd Steiner root T. Assume there exist in G three 

maximal cliques AT, AT, AT such that AT f l AT =  I \  0, AT f l AT =  I 3 ^  0, and AT f l AT =  0. 

Let I 2 =  AT -  h  ~  h -  I f  h  =  {'«i, « i ) .  I 3 — {m3, w3}. and | /2| >  0 , then u i-u \-u '3-u3 is a path 

in T  and every representative fo r  a critical clique in 12 is adjacent to either u[ or u3.

The above lemma has all critical cliques as constrained as all the critical cliques contained in 

I 2 are as c4 and the critical cliques I \  and I 3 arc as in c5. As we w ill show in Lemma 5.1.3, we 

can maintain all adjacencies while changing this maximal clique AT to have all critical cliques as 

unconstrained.

'A  version of this chapter has been submitted for publication. Kennedy and Lin 2005. ISAAC |23|
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Lemma 5.1.2. [24] Let Gbea graph with a 3rd Steiner root T, then each maximal cliques with crit­

ical clique cardinality o f 3 or more either has exactly two critical cliques each with two representa­

tives as in Lemma 5.1.1, or has at most one internal critical clique with two are more representatives 

in T.

Proof. Let G be a graph and let T  be its 3rd Steiner root tree. A ll representatives of critical cliques 

contained in a maximal clique of G are either adjacent to a single point in T  or are adjacent to one 

of two adjacent points v i , u2 in T.

In the first case, an external critical clique can be adjacent to at most two representatives in T, 

where i f  exactly two, one must be the single central point. Therefore, all critical cliques except at 

most one have a single representative.

In the latter case, i f  v i, u2 are part o f the maximal clique then it is exactly the situation in lemma

5.1.1. I f  exactly one of v i , v2 is a Steiner point then we would have a path u i-s-u3-u3 where other 

critical cliques are adjacent to either s or u'3. A ll except at most one critical clique is a leaf critical 

clique and a critical clique adjacent to s or u3 can never be adjacent to a single critical clique. 

Therefore in order for a critical clique to be adjacent to a single critical clique it follows that all 

critical cliques are represented by a single representative other than u3 and u3. I f  both v i , v2 are 

Steiner points, since there are more than three critical cliques, at most one side can have multiple 

representatives for the same critical clique. □

Lemma 5.1.3. Let K  be a maximal clique represented by the situation o f Lemma 5.1.1 in a 3rd 

Steiner root T, then there exists an equivalent representation with a central Steiner point adjacent 

to the representatives o f its critical cliques in K .

Proof. Given the structure as in Lemma 5.1.1 identify u\ and u[ into one representative, u \, analo­

gously with u3 and u3, produce u3. Create a new Steiner point s and make u \, u£ and all represen­

tatives for I 2 adjacent to s. Notice that since all critical cliques that are adjacent to exactly I \  are at a 

distance of 3 from are now that distance from s. The same follows for all critical cliques adjacent 

to i 3 and critical cliques in / 2. Therefore, the new structure is equivalent to the old tree. □

The following corollary follows easily from Lemmas 5.1.2 and 5.1.3.

Corollary 5.1.4. Let G be a graph with a 3rd Steiner root T. Then there exists a representation 

in which all maximal cliques with critical clique cardinality o f 3 or more have at most one internal 

critical clique with two or more representatives.

5.2 5PRP on Strictly Chordal Graphs

This section deals with the combination of the Steiner trees returned by ALG (G ) and progresses 

from the most trivial case to the complete case: the solution o f the 5-root phylogeny problem on 

strictly chordal graphs.
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5.2.1 Structural Restriction 1

A small leaf is an external critical clique of size 1 in a maximal clique of critical clique cardinality 

at least three. We remind the reader that a constrained critical clique in a maximal clique I< is a 

critical clique such that either it has two or more representatives in the Steiner tree T, it has a single 

representative adjacent to a Steiner point with Steiner degree 1 in T, or it has a single representative 

adjacent to the representative of another critical clique in T. In the following section we w ill assume 

that the input graph G contains no small leaves and large maximal cliques K  contain at most one 

critical clique which constrained. Therefore, at most one critical clique in a large maximal clique 

w ill be as cla, clb, c3, c4, or c5. c4 is a very restrictive case as the following lemma shows.

Lemma 5.2.1. Let G be a graph with an S-restricted 3rd Steiner root tree T  and a maximal clique 

K . I f  K  has an internal critical clique as in c4 then the critical clique must be part o f at least 

two maximal cliques with critical clique cardinality three or more with other critical cliques uncon­

strained.

Proof. The unique representative r  of the critical clique in c4 is adjacent to another critical clique’s 

representative. Therefore, any large maximal clique K  that contains the critical clique has the repre­

sentatives of all critical cliques contained in I<  other than r  at distance 3 from r  in T. This implies, 

that each of these critical cliques is unconstrained and a path of two Steiner points must be between 

r  and these critical cliques. The size o f r  must be 1, as i f  had size 2 or more it would have been as 

in c la  by ALG(G), thus r  necessarily has a single representative. Therefore, there exists a repre­

sentation where all paths between r  and the adjacent critical cliques share the Steiner point directly 

adjacent to r  as their path to r, as otherwise, the Steiner point adjacent to r  w ill have degree 2. □

The structure of a critical clique in case cla , is a single representative adjacent to a Steiner point 

with Steiner degree one; as such, i f  the corresponding critical clique c has size 1 then we must 

increase the degree o f both this representative and the Steiner point. It follows that c must be part of 

at least three maximal cliques; the following operation shows how to increase the degree of both the 

Steiner point and the representative of c.

Definition 5.2.1 (Operation 1). Let c be a critical clique part o f at least three maximal cliques 

K i, K 2, /T „. I f  K i is in c la  or c2b and K 2 has a ll critical cliques unconstrained then assign c

a single representative and let the Steiner point adjacent to c in K \ be adjacent to the Steiner point 

from I ('2  such that a ll its critical cliques are at distance exactly three from c. For K 3 , ..., K n, c now 

corresponds to c2 a and is unconstrained.

If a critical clique needs to have Operation 1 performed, check that there exists a maximal clique 

containing it that has all critical cliques unconstrained. I f  no maximal clique exists, we check if  

an adjacent critical clique is as c la  or clb, and apply Operation 1. In a similar fashion continue 

searching for a resolvable path through maximal cliques. Note that such a search is a depth first
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search through the tree, and in the worst case, and has a linear runtime. Notice that the choice made 

to change a path by Operation 1 w ill never affect another path as the search will assign a single 

representative for a critical clique, and this critical clique w ill be now unconstrained. Therefore, we 

pick the first resolvable path.

Theorem 5.2.2. Let G be a connected strictly chordal graph G such that G contains no small leaves 

and large maximal cliques contain at most one constrained critical clique, there exists a 0 ( |K |3) 

time algorithm to recognize whether G has 5th phylogeny root tree T, and i f  so, return such a T.

Proof. Given G, find CC(G) and create the forest of tree chordal graphs T  by decomposing G. 

Let set S correspond to critical cliques in G o f size 1. For each Ti e T  find the corresponding 3rd 

Steiner root tree Sf, i f  one docs not exists, by Lemma 3.1.1, return no. For each maximal clique 

create a Steiner point s,;. For each unconstrained critical clique c e K it attach its representative to 

Si. By Lemma 5.2.1, each critical clique as c4 is contained in at least two large maximal cliques, if  

not, return no; it follows by the precondition, that each o f these maximal cliques will have all other 

critical cliques each with a single representative. By Lemma 5.2.1, create a Steiner point, s for a 

critical clique as in c4, place s adjacent to the critical clique’s representative and to all s* for each 

K i. s w ill have degree at least three as there is at least two maximal cliques /T,-. For a critical clique 

c in I<i as in cla, where |c| =  1, check i f  c is part of at least two other maximal cliques. For a critical 

clique c in I<i as in c la  with |c| >  1, clb, or c3, let s* be adjacent to the Steiner point adjacent to c’s 

representative. For critical clique in I<i as in c5, let s, be adjacent to the degree one representative.

Our built 3rd Steiner root tree T ' is now connected as G was connected and we have connected 

all the tree chordal graphs by their maximal cliques. As each critical clique had at most one con­

strained critical clique, each maximal clique will have diameter at most 3 in T '\ this satisfies Lemma

4.2.1. As the minimum diameter of a maximal clique in T ' is 2 and as c4 is the only case where 

a representative is adjacent to another representative, it follows that all nonadjacent critical clique’s 

representatives are at distance at least 4. A ll size one representatives in every Tt w ill all be internal 

now as we assumed no small leaves exist. Therefore the algorithm, produces an .S-restricted 3rd 

Steiner root tree T '. To produce the 5th phylogeny root tree T, we replace each representative with a 

Steiner point and place the representatives adjacent to this Steiner point. By Ixmma 3.1.1, we have 

a valid 5th phylogeny root tree T. This construction is 0 (\V \ ■ (|V | -f |i5|)) S 0 ( |K |3), as it calls 

ALG(G) at most once for each critical clique and performs a linear amount of work for each of these 

cliques. □

5.2.2 Structural Restriction 2

In following section, we assume that the input graph G contains no small leaves. A strictly chordal 

graph may have a large maximal clique having more than one constrained critical clique; i f  all except 

one cannot be modified to be unconstrained, then the algorithm returns no, by Corollary 5.1.4. If
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a critical clique in a 3-root Steiner tree is as c4, Lemma 5.2.1 forces the structure for all maximal 

cliques it is contained in; c3 and c5 are similarly restrictive.

Lemma 5.2.3. Let G be a graph with an S-restricted 3rd Steiner root tree T  with 5  =  0 and 

a maximal clique K . I f  K  has a critical clique c as in c3 or c5 o f Lemma 4.2.2 then any other 

maximal cliques with critical clique cardinality three or more containing C w ill have a ll critical 

cliques as unconstrained.

Proof. As a representative of the critical clique c is adjacent to a critical clique not in K \  any other 

critical clique that is adjacent to c must be at distance of exactly three from this representative. 

Therefore, similar to Lemma 5.2.1 assign these critical cliques a single representative. □

Thus, given a representative as in cases c3, c4, or c5, we can immediately decide i f  the maximal 

clique can be recombined. As c2a and c2b both have a single representative adjacent to a Steiner 

point o f degree at least three, we now deal with the cases c la  and clb.

Lemma 5.2.4. Let G be a graph with an S-restricted 3rd Steiner root tree T  and c be a critical 

clique, where c is part o f maximal cliques K \ , K - i , K n and K \ is as in c la  or clb, then at least 

one maximal clique must have all critical cliques other than c unconstrained.

Proof I f  all maximal cliques have two constrained critical clique, then at least one maximal clique 

will have diameter of four. □

Theorem 5.2.5. Let G be a connected strictly chordal graph, G contains no small leaves, there 

exists a 0 ( | V j3) time algorithm to recognize whether G has a 5th phylogeny root tree T, and i f  so, 

return such a T.

Proof. We proceed as Theorem 5.2.2 until we recombine large maximal cliques. For a maximal 

clique that contains a critical clique as in c3, c4 or c5, by Lemmas 5.2.1 and 5.2.3 we know that 

all other critical cliques must have a single representative; i f  not, no 5th phylogeny root w ill exit. 

For a critical clique c in K i as in cla, where |c| =  1, apply Operation 1 by searching, i f  necessary. 

For each critical clique c as in case c la  with |c| >  1 or clb, i f  it is part o f exactly two maximal 

cliques, then the large maximal cliques containing c must have all its critical cliques unconstrained, 

by Lemma 5.2.4; i f  yes, create a Steiner point and set the Steiner point of the clb  critical clique and 

each of the representatives for each critical clique adjacent to it.

Let set M  consist o f all maximal cliques containing at least two critical cliques as in case clb  or 

c la  with |c| >  1. Let set N  consist of all maximal cliques containing a critical clique as in clb  or c la  

with |c| > 1 and has all other critical cliques unconstrained. By Lemma 5.2.4, find a critical clique 

c which is contained in both N  and M ; perform Operation 1 with searching on this maximal clique 

and, i f  possible, remove c from M . Continue until either M  is empty, the algorithm has resolved all 

maximal cliques in M , or N  n  M  contains no such c, and therefore, no phylogeny tree w ill exist.
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The algorithm removes one c from the list each time, and we will have at most 0 ( |^ | )  searches of 

the maximal cliques, therefore, this w ill runtime is bounded by 0 ( | V j • (|V j +  |£ j) )  6  0 ( |V j3).

When M  — 0, every maximal clique will only contain critical cliques that arc unconstrained. 

Therefore create a Steiner point for each maximal clique and set each representative adjacent to 

it. We w ill now have an S-restricted 3rd Steiner root tree and, thus, the a 5th phylogeny root tree. 

The construction is 0 ( |V |3) as we use the polynomial construction from Theorem 5.2.2 and the 

searching of M  takes polynomial time. □

5.2.3 No Restrictions

In any maximal clique there exists at most one leaf critical clique; otherwise, these multiple critical 

clique would have the same set of neighbors, and therefore, would be a larger critical clique. Similar 

to Corollary 4.1.2 the following lemma shows a size one leaf critical clique could never exist in a 

maximal clique o f critical clique cardinality two.

Lemma 5.2.6. Let G be a connected graph with an S-restricted 3rd Steiner root T. I f  G contains 

at least three critical cliques then there exist no size 1 leaf nodes in CC(G).

Proof. Let u be a size 1 leaf node in CC(G). As G is connected, u has exactly one neighbour v in 

CC(G), and as G contains at least three critical cliques v has at least one neighbours in CC(G). I f  

v and w are not part o f a large maximal clique in G, then by the decomposition of a strictly chordal 

graph in to tree chordal graphs, it follows that result from Corollary 4.1.2 holds. I f  v and w are 

part of a large maximal clique it similarly follows that i f  u ’s representative r(u ) is internal, then 

r(u )  must be on a path between at least two representatives of v. Thus, the representatives o f w  are 

adjacent to r(u ). □

As the construction for graph with less than three critical cliques is trivial, for the remainder of 

the paper let S contain all size one critical cliques in G.

Lemma 5.2.7. Given a strictly chordal graph G and a corresponding S-restricted 3rd Steiner root

tree T, i f  there exists a small leaf I in a maximal clique K , then:

1. I is internal in T,

2. each critical clique e g  K  \  I has a ll adjacent critical cliques not in K  at a distance o f at

least 2 in T,

3. at least one critical clique c € K \ l  has all adjacent critical cliques not in K  at a distance o f 

3 in T, and

4. every critical clique in K  has a single or 2 adjacent representatives.
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Proof. Assume G has such a maximal clique Z, by definition of S-restricted 3rd Steiner root tree, it 

must be internal. As the maximum diameter o f a maximal clique is 4 and I is internal, any critical 

clique not in K  adjacent to a critical clique K  would be adjacent to Z, thus claim two holds. The 

third claim follows as I is internal and therefore is adjacent to at least one other critical clique c; 

critical cliques adjacent to c must be at distance of three from c in T , otherwise, adjacent to Z. I f  K  

has an internal critical clique, c, with at least two nonadjacent representatives in T, Z w ill be adjacent 

to the same center Steiner point or representative of the critical clique and will be adjacent to all c’s 

neighbors. A critical clique not in I< can be adjacent to a critical clique with a single representatives 

or two adjacent representative and not to Z, thus, the fourth claim holds. □

By this lemma, a critical clique c in a maximal clique containing a small leaf can be as in cla, 

clb, c2a or c2b. c4 is impossible as the critical clique is adjacent to another critical clique failing to 

satisfy condition 2. c3 is impossible as the small leaf would have to be at a distance of exactly three 

from single representative, but then it would be a leaf in T, failing to satisfy condition 1. Similarly, 

c5 a small leaf would be distance three from the degree two representative but then a leaf in T.

We now introduce two operations to change a critical clique to satisfy condition 3. The algorithm 

applies these operations i f  no suitable critical clique exists to satisfy condition 3 of Lemma 5.2.7. 

Notice that only one of these operations can apply to a set of maximal cliques. In addition, the 

search as done for Operation 1 can be applied to these operations.

Definition 5.2.2 (Operation 2a). Given a critical clique, c, which is part o f at least three maximal 

cliques, K  \ , K 2 , •••, K n- V at most one o f K 2 , •••, K n was part o f a decomposed tree chordal graph 

with c as in cla, c2b c2a, or c2b and a ll critical cliques in the remainder are unconstrained. Then 

give a ll critical cliques c a single representative and let the Steiner point adjacent to c be adjacent 

to the Steiner points from K 2 , ..., K n such that each remaining critical clique is at distance exactly 

three from c.

Definition 5.2.3 (Operation 2b). Given a critical clique, |c| > 2, which is part o f exactly two large 

maximal cliques K \ and K 2 - I f  o il critical cliques in K \ and K 2 other than c are unconstrained 

then create two Steiner points, p\ and P2 : let a ll critical cliques in K \ other than c be adjacent to 

p 1, a ll critical cliques in K 2 other than c be adjacent to P2 , and give c two adjacent representatives 

where one is adjacent to p\ and the other to P2 -

Lemma 5.2.8. Given a graph with an S-restricted 3rd Steiner root tree and a large maximal clique 

K  containing a small leaf I, then one critical clique C  £ K  \  l can have Operation 2a applied, 

Operation 2b applied, or is as c2a.

Proof. Lemma 5.2.7 case 3 shows that at least one critical clique c must have all critical cliques 

adjacent to c not in I< at distance exactly 3, the above enumerates the possibilities. To see that there
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(a) CC(G) with crit­
ical cliques labelled 
by size.

(b) Forest of 
tree chordal
graphs from
decomposition of 
C C (G ).

O

(c) S-restricted 3rd Steiner 
root trees for tree chordal 
graphs in (b).

(d) S-rcstricted 3rd Steiner 
root tree for G  after Operation 
2a.

Figure 5.1: An example o f Operation 2a for a strictly chordal graph G.

exists no other situations to consider, we note that cases cla, clb, c2 a, c2b are the only cases for 

a maximal clique with a small leaf. Operations 2a and 2b show how to construct such a distance 

3 situation. For a critical clique c as in c2b, representing the critical clique by two adjacent repre­

sentatives w ill force all critical cliques in K  to have all representatives in their maximal cliques at 

distance 3 from c’s representative; thus, at least one can have Operation 2a applied, Operation 2b 

applied, or is as c2a. □

Lemma 5.2,9. Given a strictly chordal graph G and a corresponding S-restricted 3rd Steiner root 

tree T, i f  there exists a small leaf I in a maximal clique K , then:

J. i f  cccard(A') =  3 and there exists exactly one critical clique c 6  K  \ l  with two adjacent 

representative, then a ll other critical cliques have a ll adjacent critical cliques not in K  at a 

distance o f exactly 3 in T,

2. i f  cccard(A') =  3 and no critical clique c £ K \ l  has two adjacent representative, then all 

critical cliques having a ll adjacent critical cliques not in K  at a distance o f exactly 3 in T,

and
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□

(a) CC(G) with crit­
ical cliques labelled 
by size.

(b) Forest of 
tree chordal
graphs from
decomposition of 
CC(G).

° - ° £

o

(c) S-restricted 3rd Steiner 
root trees for tree chordal 
graphs in (b).

(d) S-restricted 3rd Steiner 
root tree for G  after Operation 
2b.

Figure 5.2: An example o f Operation 2b for a strictly chordal graph G.

3. i f  cccard(A') >  4 then there exists a critical clique c G K  \  l with Operation 2a applicable 

or c is as c2a.

Proof. When cccard(K) =  3 and I is internal, at least one of the critical cliques must be adjacent to 

I , as it is internal. I f  the other critical clique is not adjacent and does not have two adjacent represen­

tatives then the Steiner point adjacent to I w ill have degree two, a contradiction. Thus, the first claim 

holds. In case 2, as every critical clique has two adjacent representative or a single representative, 

the two non-leaf critical cliques have single representatives that are adjacent to the small leaf, oth­

erwise, the maximal clique has width four. It follows from Lemma 4.2.2, that Operation 2a and c2a 

represent the only cases for the critical clique c in its other maximal cliques. When cccard(K) >  4, 

at least one critical clique representative r  w ill have a single representative adjacent to /, otherwise, 

not internal. A ll critical cliques adjacent to r  that arc not in not in K  must be at distance of three, 

otherwise, adjacent to r. Therefore, the third case holds.

□
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Theorem 5.2.10. Let G be a strictly chordal graph. Then there exists a 0 ( \V \3) time algorithm to 

recognize whether G has a 5th phylogeny root tree T, and i f  so, return such a T.

Proof. Proceed as in Theorem 5.2.2 until the recombination of large maximal cliques. Lemmas 

5.2.1 and 5.2.3 handle tree chordal graphs returned as in c3, c4, and c5. Define set L  as all maximal 

cliques I< which contain a small leaf I. A ll critical cliques as in c la  and clb  which are in a maximal 

clique in L  w ill need to be changed using either Operation 1 or 2a with searching. For each K  G L  

such that cccard(K) =  3 i f  one critical clique c in K  is as c2b and in no other maximal clique, 

then i f  |c| >  1 then given c two adjacent representatives such that one is adjacent to I. A ll other 

critical cliques must be one of the choices in Lemma 5.2.8, otherwise return no. I f  |c| =  1 then no 

S-restricted 3-root Steiner tree will exist by Lemma 5.2.9. Otherwise by Lemma 5.2.9 both critical 

cliques must be one of the choices in Lemma 5.2.8, otherwise return no. Perform operations if  

needed and set representatives adjacent to I.

A ll maximal cliques in L  now have critical clique cardinality at least 4. I f  any critical clique 

is as in c2 a and contained in exactly two maximal cliques, then set the leaf adjacent to it and all 

remaining critical cliques single representative adjacent to a Steiner point adjacent to the leaf. For 

a maximal clique containing multiple critical cliques as in c la  or clb, first apply Operation 2a, if  

possible, and then, apply Operation 1 i f  possible. I f  neither operation is applicable, then no tree 

exists by Lemma 5.2.7. Every maximal clique in L  must have a critical clique changed by Operation 

2a, otherwise by Lemma 5.2.9 no S-restricted 3-root Steiner tree exists; combine these maximal 

cliques by setting I adjacent to this critical clique. Set the other critical cliques, which are now all 

necessarily unconstrained, adjacent to a Steiner point adjacent to I. A ll maximal cliques in L  w ill 

now be recombined, by Lemma 5.2.9.

Finally continue as in Theorem 5.2.5 by combining large maximal cliques with more than one 

constrained critical clique. We produce a 5th phylogeny root tree as in Theorem 5.2.2. This con­

struction adds a linear amount of work for each maximal clique containing a small leaf. Therefore, 

the algorithms overall runtime, as in Theorem 5.2.5, is still 0 ( \V \3).

□
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Chapter 6

Conclusions and Future Research

In this section we summarize our major results and give some open problems.

For Chapter 1 the result by [24] that all strictly chordal graphs have a fcth leaf root tree i f  fc >  4 

leads naturally to the following question.

Problem 6.0.1. Characterize those graphs which are kth leaf powers, fo r  k >  3.

For strictly chordal graphs, there exists a linear time algorithm to compute a leaf root and a linear 

time algorithm to construct a 3rd Steiner root tree. The following problem is open.

Problem 6.0.2. Let G be a chordal graph and let k be an integer such that k >  3. Either give a 

polynomial (preferably linear) time algorithm to decide i f  a kth root Steiner tree T  exists fo r  G, and 

i f  so construct T, or show k-SRP € NP-complete.

In Chapter 2 we introduce strictly chordal graphs, a subclass of chordal graphs, for which struc­

ture properties allow efficient solutions to be developed for all three leaf-labeled root problems. We 

introduce and characterize this class of graphs.

In Chapter 3 we describe the S-restricted fcth Steiner root problem and show its equivalence to 

the (k +  2 )th phylogenetic root problem.

Problem Known Results Open Problems
k-PRP fc < 4, 0 (\V \ +  \E\) solution |27| 

fc =  5, tree chordal graphs, 0 (\V \ +  |i?|) solution* 
fc =  5, strictly chordal graphs, 0 (\V \ +  |.E|) solution* 
fc >  5, bounded degree in tree, 0 (\V \ +  |£ j)  solution [8 ]

fc >  5, unknown

fc-SRP fc < 2, 0 (\V \ +  |£ j)  solution [27]
fc =  3, strictly chordal graphs, 0 ( |V| +  |£ |) solution [24]

fc >  3, unknown

fc-LRP fc <  4, 0 ( |V j +  \E\) solution [32]
fc >  4, strictly chordal graphs, 0( \ V\  +  |£ j)  solution*

fc >  5, unknown

fcth tree root fc>  1, GOVT1) solution [29, 22]
fcth root k — 2, NP-complcte |3 11 fc >  3, unknown

Figure 6.1: A summary of the best known results for various root construction problems. Problems 
marked by a ** ’ are considered in this thesis.
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In Chapter 4, we derive an algorithm to decide i f  a tree chordal graph has a 5th phylogenetic root 

tree, and i f  so, construct such a root. We present the class of tree chordal graphs as an intermediate 

step for the final construction in Chapter 5.

Problem 6.0.3. Let G be a tree chordal graph and let k be an integer such that k >  6. Give a 

polynomial (preferably linear) time algorithm to decide i f  a kth root phylogenetic tree T  exists fo r  

G, and i f  so construct T.

In Chapter 5, we present a polynomial time algorithm to construct a 5th phylogenetic root tree 

for a strictly chordal graph i f  one exists. This is the largest class of graphs for which a polynomial 

time algorithm for fc-PRP such that k >  5 is known.

Problem 6.0.4. Let G be a chordal graph and let k be an integer such that k >  5. Either give a 

polynomial (preferably linear) time algorithm to decide i f  a kth root phylogenetic tree T  exists fo r  

G, and i f  so construct T, or show k-PRP € NP-complete.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bibliography

11J A. D. Baxevanis and B. F. F. Ouellette. Bioinformatics: A Practical Guide to the Analysis o f 

Genes and Proteins. John Wiley and Sons, Inc., second edition, 2001.

|2J C. Berge. Some classes of perfect graphs. In Six Papers on Graph Theory, pages 1-21. Indian 

Statistical Institute, Calcutta, 1963.

|3] C. Berge. Graphs and Hypergraphs. North-Holland Publishing Company, 1973.

[4] A. Berry and J. P. Bordat. Moplex elimination orderings. Preprint submitted to Elsevier 

Science, 2001.

[5] A. Brandstadt, F. Dragan, C. Chepoi, and V. Voloshin. Dually chordal graphs. SIAM Journal 

on Discrete Mathematics, 11 (3):437—455, 1998.

|6 | A. Brandstadt, V. B. Le, and J. P. Spinrad. Graph Classes: A Survey. SIAM, Monographs on 

Discrete Mathematics and Applications, SIAM, Philadelphia, 1999.

[71 P. Buneman. A characterization o f rigid circuit graphs. Discrete Mathematics, 9:205-212, 

1974.

[8 J Z. Chen, T. Jiang, and D. G. Corneil. Computing phylogenetic roots with bounded degrees and 

errors. SIAM Journal o f Computing, 32(4):864 -  879, 2003.

|9| M. Chudnovsky, P. Seymour, N. Robertson, and R. Thomas. The strong perfect graph theorem. 

Annals o f Mathematics to appear, 2002.

110] V. Chvatal, J. Fonlupt, L. Sun, and A. Zcmirline. Recognizing dart-free perfect graphs. SIAM 

Journal o f Computing, 31 (5): 1315-1338, 2002.

|11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The 

MIT Press, Cambridge, Cambridge, Massachusetts, second edition, 2001.

112] W. H. E. Day. Computational complexity of inferring phytogenies from dissimilarity matrices. 

Bulletin o f Mathematical Biology, 49:461-467, 1987.

113] G. Dirac. On rigid circuit graphs. Abhandlungen aus dem Mathemalischen Seminar der Uni- 

versitdt Hamburg, 25:71-76, 1961.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



114J A. W. F. Edwards and L. L. Cavalli-Sforza. Reconstruction of evoultionary trees. In V. H. 

Heywood and J. McNeill, editors, Phenetic and phylogenetic classification. Systematics Asso­

ciation, pages 67-76, London, 1964.

115] R. W. Floyd. Algorithm 97: Shortest path. Communications o f the Association fo r  Computing 

Machinery, 5(6):345, 1962.

116] S. Freeman and J. C. Herron. Evolutionary Analysis. Prentice-Hall, Inc., 1998.

117] D. R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs. Pacific Journal o f 

Mathematics, 15:835-855, 1965.

[18] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory o f 

NP-completeness. W. H. Freeman and Company, 1991.

[19] F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs. Journal 

o f Combinatorial Theory, Series B, 16:47-56, 1974.

]20] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, Inc., 1980.

[21 ] R. Haenni and N. Lehmann. Efficient hypertree construction. Technical Report 99-3, Institute 

o f Informatics, University of Fribourg, 1999.

|22] P. E. Kearney and D. G. Corneil. Tree powers. Journal o f Algorithms, 29(1 ):111-131, 1998.

]23] W. Kennedy and G. Lin. 5th phylogenetic root construction for strictly chordal graphs, sub­

mitted to ISAAC, 2005.

]24| W. Kennedy, G. Lin, and G. Yan. Strictly chordal graphs are leaf powers. Journal o f Discrete 

Algorithms, 2005.

125 ] C. Lekkerkerker and D. Boland. Representation of finite graphs by a set of intervals on the real 

line. Fundamenta Mathematicae, 5 1:45-64, 1962.

[26] W. Li. Molecular Evolution. Sinauer Associates, Inc., 1997.

[27] G. Lin, T. Jiang, and P. E. Kearney. Phylogenetic fc-root and steiner k-root. In The 11th Annual 

International Symposium on Algorithms and Computation (ISAAC 2000), volume 1969, pages 

539-551,2000.

(281 G. Lin, W. Kennedy, H. Kong, and G. Yan. The 5-root phylogeny construction for tree chordal 

graphs, submitted to Journal of Discrete Applied Mathematics, 2005.

|29| Y. L. Lin and S. S. Skicna. Algorithms for square roots of graphs. SIAM Journal on Discrete 

Mathematics, 8:99 -  118, 1995.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



130] W. P. Maddison, M. J. Donoghue, and D. R. Maddison. Outgroup analysis and parsimony. 

Systematic Zoology, 33:83- 103, 1984.

(311 R. Motwani and M. Sudan. Computing roots of graphs is hard. Discrete Applied Mathematics, 

54:81-88, 1994.

J32] N. Nishimura, P. Ragde, and D. M. Thilikos. On graph powers for leaf-labeled trees. In 

Proceedings o f the 7th Scandinavian Workshop on Algorithm Theory (SWAT 2000), volume 

LNCS 1851, pages 125-138, 2000.

[33] Pavel A. Pevzner. Computational Molecular Biology: An Algorithmic Approach. Mas­

sachusetts Institute of Technology, 2000.

[34] D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic aspects of vertex elimination of graph. 

SIAM Journal o f Computing, 5:266-283, 1976.

[35] N. Saitou and M. Nei. The neighbor-joining method: A new method for reconstructing phylo­

genetic trees. Molecular Biology and Evolution, 4:406-425, 1987.

[36] S. Sattath and A. Tversky. Additive similarity trees. Psychometrika, 42:319-345, 1977.

[37J J. P. Spinrad. Efficient Graph Representations. AMS, 2003.

[38] L. Sun. Two classes of perfect graphs. Journal o f Combinatorial Theory, Series B, 53:273-291, 

1991.

[39] J. R. Walter. Representations o f rigid cycle graphs. PhD thesis, Wayne State Univ, 1972.

[40] S. Warshall. A theorem on boolean matrices. Jounal o f the Association fo r  Computing Ma­

chinery, 9(1): 11-12, 1962.

[41J D. B. West. Introduction to Graph Theory. Prentice Hall, second edition, 2001.

[42] R. Wilson. Introduction to Graph Theory. Pearson Education Limited, fourth edition, 1996.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


