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ABSTRACT

A space X 1s supercompact if X possesses an open subbase S
such that every open cover of X from S has a two subcover. This
concept was first introduced by the Dutch mathematician, .J. de Groot.

It had been conjectured that all compact Hausdorff spaces are super-

—

- compact. This problem has been the motivating force behind -this thesis.

We show that if X 1is non-pseudocompact, then BX - is non-supercompact.
Furthermore, we extend this result to encompass the case Vhere two 1s
replaced by a larger integer in the definition of supercompact. These
results rely heavily on combinatorial properties of subsets of w (the
first infinite ordinal). Consequently, considerable attention is
devoted to the existence of certain transversals of collections of
subsets of w.

Supercompact spacethave rigid cellular requirements. We investi-
gate them and sth that 1f vX 1is a super-compactifiﬁation of X ’tﬁen
the cellularity of YX - X cannot exceed the weight of the space X.

The idea of breadth in ;opological spaces is int;oduced.\ In
particular, a space X has breadth two if X possesses an open subbase
such'that the union of three members of S 1is actually thevuﬁion of two
of the fhree members. Hence, if a compact space has breadth two, then-.
every closed subspace 1s supercompact. In general, supercompactnesé'is
not a closed hereditary properﬁy.. Using a combinatorial proposiﬁion ih‘
lattice theory, which we develop, we show that every one-dimensional

separable metric space has breadth two.
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CHAPTER []

Introductio-

This thesis will be concerned with special kinds of subbases for
topologicai spéces. A collection S of open subsets of a topological
space X 1is called an open subbase 1f the open sets of Y are precisely
the arbitrary unions of finite intersectiéhs of S. Dually, a collection
S ?of closed subsets of a topological space X 1s called a closed sul!huse
if the closed sets of X are precisely the arbitrary intersecti ~s of
" finite unions of S. Throughout, we shift from one to the other, which-
‘ever is best sulted to the purpose at hand. -

x-Traditionally, subbases have played a small but key rdéle in
topology. Examples are the definition of the proddet topology and the
original proof of Tychonov's fheorem for compact spaces. With regard to
the latter, Alexander's subbase theorem was the crucial ingredient. It
reads as follows: A topological space .X is compact if and only if X
possesses an open subbase such that any covér of X by members ofjﬁﬂis
subbase has a finite subcover. The main topological concept motivating

this thesis was derived from this theorem and first introduced by the

Dutch mathematiéian J. de Groot [11].

Definition: - A space X 1is Supercompact i1f - X possesses an open subbase
such that any cover of X by members of this subbase has a subcover of

two members.

Observing the abundance of supercompact spaces, de Groot had

wondered whether all compact Hausdorff spaces were supercompact. .This



-

problem is solved in the negative. Part of thls research appears in

M. Bell [2] and [3].
Chapter I is concerned with finding certaln transversals on collec-

tions of submets, of the natural numbers. ﬂhia.finds application in the

subbase problems of Chapter III. Chappgr T1 is concerned with a Eqm—
binatorial result on the breadth of 'a 0-1 distributive lattice. " ihis

is dpplied in Chapter IV where a ndgw topologicaliconcept,\FhatVGF:Bfeadth,
is iétroduced. It.is shown that a o —dimqu%qnél sqgg{éﬁii;metric space
possesses a very special kind.of subbase. fhiéwéénégﬁgj?;;i offshoot of

v

st
P, Y

L RO

supercompactness. - RUNEI O NG

OQur set-theoretical notation is stéhggrd. F;¥¥§;§ét ‘X, |X| dé—
notes the cardinality of X and P(X) ‘1s éhe Setfof all subsets of X.
For a coilection. S of gets, -uS ='{x: x ¢ S. for some S ¢ S} and
nS = {x: = ¢S for every S ¢ S}. The first infinite ordinal is Q,
the first uncountable oréinal is wy and ¢ 1s the cardinality of ;he
real numbers. If N 1is a positive integer, then [X]N denotes the set
of all subsets of X of cardinality N and [x]< denofes the set of
all finite subsets of X.

The lattice theory used in Chaptef IT i{s elementary. All the
reader need know is the definition of a 0-1 distributive lattice. For

this, see "Lattice Theory" by G. Birkhoff [4].

+A Tychonov space 1s a completelf regular Hausdorff space. For S:EE/
spaces X; BX denotes the Sgone-Céch compactification ?f X. If f s
a éontinuous real-valued function on X, then {x € X: f£(x) = 0} is
called a zero-set of X and \{x € X: f(x) = 0} is-called a cozero-set
of X. Z(X) denotes the set ;f all zero-sets 02 X. BX 1is characterized

as being that compactification of X such that



(1) {CQ Z: 7 € Z(X)} is a base for the closed sets of BX.

BX

(2) LZI,ZZ} c Z(X) dimplies ;CEBX(lewzz) = CQBXZIrWCQBXZZ'

A spaée X 1s pseudocompact if there are no continuous unbounded real- .
' .-
valued functions on X. A space X 1is countably compact if every infinite -
subset has a cluster point. Countably compact spaces are pseudocompact.

Y 1iec a neighbourhood retract of X 1if there exists an open subspace U

of X containing/ Y and a continuous map r: U'> Y such that r(y) =y

X\
~—

for all y e Y. I, R, Q, N and 2 denote the closed unit intervél,
the reals, the rationals, the naturals and the two point discrete space
respectively. A good reference for this paragraph and the other standard
topological concepts used in this thesis is the excellent book of
S. Willard, "General Topology" [37]. |

" The cardinal functions used are as follows. The weight of a space,
-w(X), 1is the least cardinal of an open base fqr X. The cellularity of
a space, c(X), 1is the‘supremum of |G|, where G 1is é disjoint
collection of open sets of X. The density of a space, d(X), {is the
least cardinal of a dense subspace of X. The spread of a space, s(X),
is the supremum of IDI, where D is a discrete subépéce of X. The
reader 1s referred to I. Juhdsz's book, "Cardinal Functions in Topology"
[15].
14 » .

The dimension theory of Chapter IV takes place in the realm of
separable metric spaces. In this reglm; ali three of the standard
dimension functions ind, Tnd and dim are equal. This was proven by W.
Hurewicz and H. Wallz n [1 ]. We shall write dim X for the dimension

of such spabes X. For A < X, the boundary of A in X |is

ClXA n CEX(X—A). It is denoted by BdXA, or when there is no confusion,



by Bd A.

as follows:

(1)
+(2)

1

The "def inition of dimension that we use is g“ on inductively

dim @ = -1
dim X < n 1if for every closed subset C of X and for

every open subset O of X with C ¢ O, there exist: an

open subset V of X with CcVc O and dim(Bd V) < n-1.



CHAPTER T

Transversals

I.1. Introduction. Our motivation fer this study of transverasals origina‘ s

from questions on the space Bw of ultrafilters of w. We recall the per-—

tinent details. The underlying set for Bw 1is the collectien of all

ultrafilters on w. For A< w, let A = {p € Bw: A € p}. Then {K: A.E_w}
is taken as a base for the closqd sets of Bw. Since Bw - A=ow - AN,

‘ 3
this 1s also a base for the open sets of Bw. Bw hecomes a compact, j
Hausdorff, O-dimensional space. A collection S of closed sets of Bw
’ . ) . ' C.§\|

. o A
which is closed under finite intersections i{g a subbase ifffor each A c w,
there exists a finite subcollection {Sl,--;,sn}' of .S with
i l_i i< n}. This follows from compactness and O-dimensionality.
Consider the trace of S on w, f.e. G={snuw:sSe S}. Let A c w.

A= vufs

Then, A = U{Si: RICE 1 <14 f_n}. ,Thus G

"generates' P(w) under finite_unionsJ More formally, G E_P(m) is

1 <1 j_n} implies A= u{s

called a generating set for P(w) if each -subset of w 1is a finite
unioq;df members of G. The.richness of ?(m) forces any sqch.generating
set to contain certéin finite's;bsystems. If,"as!£? thé case.abOVe,ché;
generating set fcomés" from a closed subbase S, then these finite sub-
' gystems can be 1iftéd into S. For example, in Chaptgr I11 ;t will be:
. shown that 'S must contain three element: whose total intersecgion;is

empty but.each pair has nonempty intersection. This is reasohablé,‘but‘

not at all obvious.

The main tool employed in this project {g the idea of a transversal.



!

v

Several authors have given different definitions >f a tramsversal. " For
an excellent source on transversals of families of finite sets, the

-

reader is referred to L. Mirsky's book, "Transversal Theory" [24]. For
an example of work being done on transversals in inf;'iylnitary combinatorics,
s€e the paper of E. Miléer [23]. | '

By an N fold intersection is meant an intersection of N distinct

sets. It is helpful to make the following definition.

I1.2. Definition. Let N . be a positive integer. Let A = {AY: Y ¢ F}
and B = {BY: Y e~F} be two collections of sets such thatjfor each

Y eT, BY E.AY- Then T 4is called an N transversal on B/A if

T c uB, T intersects all N fold intersections from B. in a singleton
and T 1is disjoint from all N+1 fold intersections from A. If for
all vy e T, BY = AY, then we simply say that T 1is én N transversal

on A.

If A and B are as indicated in the following diagram and T
consists of the three points indicated, then T is a 2 transversal on

B/A.




Our interest lies in two directions. First, the existence of an
€
uncountable collection of subsets of w satisfying a prescribed
property and second, the existence of an N transversal, for some N,
on a countable subsystem. Note that one cannot have an N transversal

on an uncountable collection of subsets of w.

1.3. Proposition. Let N be a positive integer. There exists

{a :

A < wl} c P(w) with N fold intersections infinite and N+1 fold

intersections finite.

Proof: When N =1, this is a well-known result in W. Sierpinski (30},

page 81. In this case, such a collection is called "almost disjoint".

So assume N > 1. We shall construct the Aa;s inductively. Independ-

ently, we construct Ai for 1 < w. This is necessary because there

are finite collections which are maximal with resdect to the properties

stated in the proposition.

Enumerate [w]N as {Hi: 1 <w}. Let w= U{Si: 1 <w} bea
partition of w into infinitely many infinite subsets. For 1 < w,

}. If H € [w]N, theni n{A :
n

e Hn} =5

define A, = u{s .

i
and if F e {[w]

:1e¢eH
I
N+1

3
, then n{Ai: ieF} = 0.

Continuing on, assume that for a < B < Wy, and 8 > w, Aa has

been defined suthGEat a
(1) He [B]N implies in{Au: a ¢ H} 1is infinite.

+
() Fe (81" implies n{a : o ¢ F} is finice.

Since {Aa: a < 8} is countable, re-well-order this set as an w-sequence, ;-

N-1
i

choose ¢, € (Bm n n{Bjr je Di}) - (U{Bk: k <m, k¢ bi} u{c, : p<m}).

{Bi: i < w}. Enumerate [w] as {Di: i < w}.  For each m ¢D,,

im ip’
Let ‘Ci = {cim: m ¢ Di’ m > i}. Then Ci has the following pfopertieé

FN : PR &



(a) ¢y is an infinite subset of ﬂ{Bj: Jj o« Di}'

(b) For each H ¢ [m]N and for each 1, Ci n n{Bj: j e H} is

finite.

]h, there exists an 1_ such that 1 > 1

(¢) For each H ¢ [w H H

implies C, n n{B

1 3 e H} = . To see this, choose 1

s
such that {Bj: } e upc {Bi: i< iH}.

H

Hence, defining A = U{Ci:'i < m} completes the inductive step and

B
{Aa: a < wl} is as desired. (]

We now supply the coﬁpanion to Proposition I.3.

I.4. Proposition. Let N be a positive integer. Let A = {A“: a < wl}

and B = {Ba: a < wl} be two families of subsets of w such that

B <A .

(a) For all a < w5 o S A

(b) N fold intersections from B are infinite.
(¢) N+1 fold intersections from A are finite.
Then there exist '{ai: i< w} < uw and a TCw with T an N trans-

versal on {B : i < wh/{a : 1< wh.
%1 %1

Proof: For N =1, proceed as follows: Consider {AO n‘Aa: 0 <acx< wl},

There exists an uncountable subset Mo of wy - {0} such that for

every B=y in M, A nA =A 1A . Let a = 0.
o o B o Y o

For N >1, let a =0 and M =, - {a¢ }. Thus, assume that
o o 1 o . .

we have constructed {a s***ya} and (M ,«+-+ M } such that
o m o m

a € Mi—l - Mi M

(2) M_cuM e M M and |[M_| = w

m — m-1 o— -1 m 1

(1) 0<1<m implies

(3) For F ¢ [{ao,"-,am}]N .and B =y in Mm,

& i .
n{Aa: a € F} n AB = n{Aa: a € F} n AY.



Choose a1 © Mm. Let {Fi: 1 <1 < r} enumerate the N element sub-

sets of {ao,-°',am+1). There exists an uncountable subsﬁf Nl of
m+1

ﬂ{Aa: a € Fl} n AY. Now choose an uncountable subset N2 of »Nl such

Mm - {a__ .} such that for every "8 #* y in Nl’ n{Aa: a c Fl} n Ag =

that for every B =y in\ N n{Aa: a € FZ} nAg = n{Aa: a € Fz} n AY.

20
Proceed in this fashion to Nr' Let Mm = Nr. Tne inductive step is
.complete. ) .
The set u{n{Aa: a € F}: F e [{ai: i //R\\éc{f every N
fold intersection {rom {Aa : 1 <w}l in a ite set. So, for every
v oy

H € [{gd: i < m}]N choose Ty € n{Ba: a ¢ H} - u{n{Aa: a € ?]
F ¢ [{ai: i < w}]N+l}. Then T = {THZ H ¢ [{uit i< m}]N} is an N

-«

transversal on {B : i < w}l/{A : 1 <w}. [
%y &4

We present two examples related to the just proven proposition.

I.5. Example 1. It is necessary that A and B be uncountable

collections. Enumerate [w]N as {Hi: i< w}. Let {Si: i< w} be

a countable partition of w into infinite sets. Define An = “n =
N .
U{Si. n e Hi} u {l n}. If H € [w]”, then n{Bn. n e Hi} con-
‘ . N+1
tains Si’ hence‘is infinite. If F e [w] , then n{An: n € F} <
. o

{i: 1 < max F}, -hence is finite. However, every member of Yo is in
all but finitely many An's. Consequently, no transversal could possibly

exist on any infinite subsystem.

Example 2. There need not be an N+1 transversal on even an /

N+2 element subsystem. This construction is due to W. Sierpinski 030],\

page 81. Let S be a subset of the real numbers of cardinaliﬁy Wy -

Fof each x ¢ S define Ax = Bx = {Zn(Z[nx]-+1): n < w}, where .[nx]

]

denotes the greatest integer in nx. 1-fold intersections 6f the Ax s

[ FRER



are infinite and 2 fold intersections of the Ax's are finite.
Hence, by the proposition, we are guaranteed a 1 transversal on an

infinite subsystem. However, as the reader Ean re dily check, whenever
X, ¥, z are three distinct numbers in S, mod&lo a permutation,

lx-yl < lx'-zl must obtain, whencé AY n A: < Ay. Thus any set

whkich intersects Ax,n Az must intcersect Ax n Ay n Az’ therefore no

2 transversal can exist on any 3 element subsystem. Thus we see that
Sierpfnski's example of an uncountable almost disjoint cdllection of

subsets of w enjoys the added property that the intersection of three

of them is actually the intersection of two of the three (two times).

We say that a collection C of sets satisfies P 1if for all
finite F ¢ C and for all X e C - F, X - uF 1is infinite.

Let us prove the following variation of a result due to D.A. Martin

and R.M. Solovay [16]. It is a useful tool in what follows.

- I.6. Proposition. Let A and B be two families 6f subsets of .
Assume [AUB| = w and AUB satisfies P. Then there exists an
Infinite C S w such that for‘all AeA, Cnr A 1is Zinite and for

all B e B, CnB is infinite and A u B u {C} satisfies P.

3

Proof: Enumerate A u B gas {Dn: n < w}l.
Pick X m € Dn - (U{Dj: j < m, Dj z Dn} u {xnj: i< m}}:

Let C = {xﬁm:‘m >n, m even and D e B} u {xnn: n < w}: a

Two examples are now given to demonstrate the peculiar behaviour

that certain uncduﬁtable collections of subsets of w display. They
\ .

originally caused tﬁg author some concern in his investigations.

A

10



1.7. Example 1. There exists an

of subsets of w with pairwise in

of each C into two sets C =C
o o

{Cé o<W 1 ¢ {0,1}} have pa

1‘

uncountable collection {C“: a < wl}
tersections infinite and a decomposition

u C such that no three of
a0 al

irwise iptersections infinite.

The reader should observe that upon replacing pairwise and two by

finite and finitely many in the ab
" would yield an uncountable collect

sections infinite.

We first construct two almos

ove, an application of Zorn's Lemma

ion of Cai's having finite inter-

.

t disjoint collections {Aa: a < ml}

1 1 a B

and {Ba: a < wl} such that for all (a,B) in w, *w ., A nB, 1s

i{nfinite. Let us first construct
wxw disjoint infinite sets W
AL = u{snj
_assume that for w < B < Wy {AOl
consiructed such that
(1) y <o <8 implies AY
(2) '(Y,a) e BxpB implies

(3 {a;:a<8lu{srac

= U{S

them up to w. Partition w 1nto

ij: (i,3) e'uixuﬁ. Define

3 < m} and B = U{Sin:f}‘< m}. Proceeding inductively,
& ‘

:a < g} ‘and {Ba: a < B} have been

n A ig finite and B_n B is finite.
- Ta Y o
A nB is infinite.

Y o .

B} ‘satisfies P.

Now we construct 'AB and BB. One application of Proposition T.6

yields an AB which intersects all the Aa's in a finite set and

which intersécts all the Ba's in an infinite set and is such that

{Aa: a < 8} U {Ba:-a < 8} satisfies P. A second application of

Proposition I.6 yields the desired
{Ba: a < B} satisfying P. This
Define C_, = A N U{B ra <

a0 o Y

and C =C UuC .. Then C , C
a a’ o

a0 al
a < B, then Aa n BB E_CG n CB’

BB’ along with {Aa: a < B}}u
completes the inductive step.
Yy < ml}, Cal = Ba_n U{AY: Yy <ac< wl}
0 and Cal are as required. If

hence pairwise intersections of the

11



Cd's are infinite. However, for any three Cai's chosen, two come

from an almost disjoint collection.

A question, posed by the author, led to the following elegant
example constructed by George Tokarsky (personal communication).

\

: Example 2, Theredgxists an uncoﬁntable collection of infinite.

|
1y

- \
subsets of w which contains neither' an uncountable almost disjoint
. |

subcollection nor an uncountable subcollecﬁgon with palrwise inter-

sections infinite.

Let D denote the diagonal of w, Xw W. Sierﬁ{nski [31] has

1 1
shown that there exists an f: (ml Xml) ~-D +5{0,1} such that
(a) f(a,B) = £(B,a) ‘
and .
(b) for each uncogntable S E_wl, f|((S x8) - D) is onto
{0,1}. |

To see this, let {ra: a < wl} be a well-ordering of a subset of the

1 1if

‘reals of cardinality w, . Define f as follows: f(a,B)

(a < B and r, < rB) gr (B < a .and rB < ra). f(a¢,B) = 0 other-
wise. (»H) is satisfied since the reals do not contain an uncountable
well~ordered sequence under the usual ordering.

We shall construct {Ab: a < wl} such that Aa n AB is finite

17 (c¢,3) = 0. Clearly, this will then be rour required collection.

First, alter- {ra: a < wl} if need be, so that f(n,m) =0 for n = m,

n<w, m< . This can be accomplished by letting {rn: n <w}l be
a strictl: d~- "~ sequente of real numbers. Let {An: n < w} be
a partition » : - infinite sets. Assume Aa - have been constructed

for a < B < : . : > w such that
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(1) vy < a < B implies AY 0 Aa is finite iff f(y,a) = 0.

-y

(2) {Ad: a H} satisfies .P.

Let A = {Au: f(a,B) = O} and B = {Aa: f(a,B) = l}. Proposition 1.6

yields an AB which intersects members of A 1in a finite set and
members of B 1in an infinite set and is such that A u B u {AB} satis-—
fies P. This completes the inductive step. {Aa: a < ml} is as

desired.

Let us inﬁestigate a stronger property than ‘P. A collection of .
sets C 18 called an independent family if for each péir of disjoint
finite subsets of C, F and G, nF = uG is infinite. The existence
of aa independent family of cardinality c¢ of subsets of w was first
éroved by Fichtenholz and Kantorovitch [9]. F. Hausdorff [13j shortly
after came up with an easier'probf. The following simple topological
proof is implied in Engelking [8] (163-164). .

Consider ZC, the cartesian produck of ¢ coples of the two
point discrete space. Let" {dﬁ: n <‘w}. be a countable dense subset of-
2°. For O <a <c let P, be theqprojection map onto the a'th
coo?dinate space. Define Da ='{n: pa(dn) = l}. Then {Da: a < c}

is an independent family of subsets of w.

I.8. Definition. Let {AY: Y € F} and {BY: Y € T} be two collections
of sets such that for all‘ y € T, BY E_AY. Then {BY: Y € T} is

independent over {AY: Y € T} 1if for each pair of disjoirE finite sub-

sets F and G of T, n{BY: Y € F} - U{AY: Y é G} is infinite.

I.9. Lemma. Let {Aa: a < wl}‘ be an uncountable independent family of

subsets of w. Assume each A is a union of n sets A .,*"*,A .
. a ol an

Then there exists an uncountabte subset M of Wy and for each a ¢ M
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an . n with 1 < n_ < n such that {Aan T M} is independent over
A .
o

{A 1 a e M}.
a
Proof: A somewhat stronger statement will be proven. Given {Aa: a < ml}

: < u he
and {Ba a “l} such that

< n}

B
a
(2) {Ba: a < wl} is independent over {a o O < @l}

N

€A and B = U{Bai:

(1)

then there exists an uncountable subset M of ”wl and for each o ¢ M

an with 1 <n <n such that {Bun T e M} is independent over
a

we get the lemma.

{A t aeM. When B, =A and B . =A _,
o a o ai ai

Induction will be on n. The case n =1 1s obvious. So assume

the statement is true for n and let Ba = U{Bai: 1 <i f_n-%l}. The

BOm 's are now constructed inductively. Assume we have chosen Ma and
‘ /
a .
N for o < B < w, such that
a 1 o
(1) M uN cw , N is co-countable in w, and M n N = 8.
a a— 1 a 1 o a

(2) .Y < a implies MY ;_Ma and NOl E_NY.
(3) TFor all disjoint finite subsets F ana G of Ma "and all
disjoint finite subsets H and K of Na’ (O{By,n+l: Y € F} n

n{BY: Yy ¢ H}) - u{AY: Yy € G u K} is infinite.

If M and N can now be constructed such that (1), (2) and (3) hold,

B B
then {Ba3n+l: o € U{MB:,B < wl} will be independent over
{Aa: @ e U{MB: B <'w1}}. To this end, observe that n{Na: a < B} is
again co-countable. For 1y € n{Na: a < B} define CY = U{BYi: 1 <i j_n}

If there exists an uncountable subset P of n{Na: a < B} such
that {Cy: Y g P} is independent over {AY: Y € P} then by our inductive
hypothesis for n we shall obtain what we want inside of P. Therefore
assume that for each uncountable subset P of n{Na: a < 8} there exist

disjoint finite subsets FP and GP of P with n{CY: Y € FP} -
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U{AY: Y ¢ GP} finite.
Striving for a contradiction, assume that for each § € n{Na: a < B}
and each co-countable subset ‘P of n{N“: a < B}' there exist disjcint

finite subsets F, and G, of u{M @« < B} and disjoint finite sub-

a
sets H, ;and K, of P with (BG 41" ﬁ;;) By 1 " (/\\ BY) -

5 Yehg

U{AY: Y ¢ Ggu KG} finite. Choose an uncountable subset R of n{N“: a < B}

and for each § ¢ R a F,, G;, Hi and K, as above with {H6: § ¢ R} v

{KG:

U{KS:

assumption. Since there are only countably many pairs of disjoint finite

§ ¢ R} being a mutually disjoint collection and R n (U{HG: § e Rt v

S € R}) = p. R can be constructed inductively using the preceding

subsets of U{Ma: a < B} it follows that there must be two disjoint

finite subsets F and G of U{Ma: a < B} and an uncountable subset

;e T -
of such that for each 6 ¢ P, (Bdn+l n B i1 " By)
YEF Y Hﬁ
U{AY: Yy € GU Ké} is finite. Now, for this P, there exist
disjoint finite subsets F, and G, of P with n{C_: v e Fy} -
p and "Gp v Y€ Fp

U{AY: Y € GP} finite. Since n{BY: Y € Fp}.E n{CY: Y € FP} U

U{B6n+1: 8 € FP} it follows that
| -
( (ﬁ\ B nn{B :vyeFpu k\/) H.}) - u{A: vy e GuGyu k\,J K.}
YEF Y o+l Y P GeFP 8 Y P GEFP 8

is finite. This contradicts C3)"since F and G are disjoint finite

subsets of some M for a < 8 and Fj, u kv} H, and Gp U kvj K

_ a P 8 P oF 8
. ‘ 1% € P .
are disjoint finite subsets of n{Na: a < B} E-Na'

Consequently choose § ¢ n{Na: a <-B} and a co-countable subset

NB of n{Nu: a < B} such that for disjoint finite subsets F and G

of U{Ma: @ < B} and disjoint finite subsets H and K of N8 we

have that '(B6n+l n 9 R'n+l n [;;]BY) - U{AY: Y e Gu K} }s infinite.



Since 6 « ”{Nd; a < B} it is also true that
((hwlkrn+l n (f\]By) - (A6 U U{AY: Yy ¢ GU K}).

YeF yecH

is infinice. Hence defining MB = U{Ma: a < g}.u (8} we see that MB

and ‘NB satisfy (1) thru (3). This completes the proof. 0

_I.lO. Lemma. Let N be a positive Integer. Let {A :

a
{Ba:

a < wl} and
a < ml} be two families of subsets of w such that
(1) for each a < wi, Ba < A

(2) {Ba: a < ml} is independent over {Aa: a < wl}. Thén there

a

exist {ai:'i < w} cw, anda Tcw with T an N trans-
versal on {B : 1 < wl/{Aa : i < w}.
%y 4y

Proof: If N =1 proceed as follows: If for all y € BO,
Zroors o

{8 < Wity ¢ AB}I <w then |[{B < wyt B E_AB}[ < W Thus there exist

infinitely many 8 > 0 with BO E_AB. Coﬁtradiction. Choose Té € Bo

with M| =w, and t ¢ ufA :aeM}. Let a =0.
0 1 0 a 0

and M cuw
o — 0

1
If N>1 then let M =w, - {0} and o = O.
o 1 o

Assume we have chosen {a ,**°,a }, {M ,+-+,M 1} and
o’ . m o m

4

{TH: H e [{O;--',m}]N} such that

(1) 0= i jim implies a € Mi—l - M

i -1 1
L@ My e My e My itk ] =y
(3) 1ty € (ﬂ\ B, - (U{Aa_i 0<iz<m 1¢H}uv U{AB: B e Mmax H})'
ieH i 1

Upon completion of the inductive step T = {TH: H e [m]N} will be an N

transversal on {Ba i< w}/{Aa : 1< m}. This is true since for all
i , ‘

H € [m]N, T n n{Ba I H} = {TH},. hence T dintersects all N fold
i

intersections from {Ba': i< m} in a singleton. Also, each TH is in

i &‘

16
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exactly N A“ 's namely for those i's in H. Thus T is disjoint

i
from all N+1 fold intersections from {Aa t i< w}. Clearly,

i
TcufB i i<}
i

With this end in mind choose A py € Mm. Enumerate {H: H e [{0,+-",

N .
mt1}]" and m+1 € H} as {Hj: 1 <j<r}. For :ach j such that
1 < J < r choose an uncountable subset P, of M and a T en{B : 1eH.}-

- - . m - HJ Cli ]

(ufa : o0 <i<m, 1 ¢H}uula:BeP }) such that 1f 1 <j <k < r

%y LT 3 8 3 a3 - -
then P < P'. For if this could not be achieved then there would exist a,

k— ]
j with 1 < j <r and infinitely many B # {ai: ie Hj} such that

n{Ba :ieH}culA :Q<i<m 1c¢ Hj} U A, which would contradict inde-—

i J i a i B
pendence. Let Mm+1 = Pr' Then {ao,--~,am+1}. {Mo"..’Mm+l} and
{TH: H ¢ [{O,°-~,m+l}]N} satisfy (1) thru (3). O B
Employing the same artifice as in I.5 Example 1, it is readily

.seen that it is necessary in the above that the collections be uncountable.

Following P. Alexsandrov [1l], two collections {AYE Y € F} and
{BY: Y e.F} are said to be combinatoridlly equivalent if for each
finite subset F of T, n{AY: Y e T} =9 iff n{BY: Y ¢ T} =~¢. For
each N > 2 define DN = [{l,"',N}]N—l. DN  can»be described combina-
torially as a collection of N sets whose total intersection is empty
while all N-1 fold intersections of them afe nonempty.

The reader is now reminded of the following theorem of F.P. Ramsey
[28]. ”ﬂet n _be a positive intéger. If '[w]n =,U{Wj: 1<j j_r}
then thererexist'an infinite A cw and an s with 1 <s <r such

that [A]" cW_."

I.11. Theorem. Let N > 2. Assume G 1is a generating set of P(w)

and g is a particular description of G, i.e. g: P(w) -+ [G]<m such

B . ' NS
that for each A c w, A = ug(A). Then there exist H ¢ [P(w)] and
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for each H ¢ H a G(H) ¢ g(H) such that

(1) nH @

2 H' e MY implies n{GH): H € H') = g.
In particular, {G(H)f‘H e H} 1s a subcollection of G combinatorially

.equivalent to DN.'

Proof:  For N = 2 choose t;o disjoint nonempty subsets H and K of
w. Choose G(H) € g(H) - {#} and G(K) e g(K) - {f}. Let H = {H,K}.
So assume N > 2. Let {Aa: a < wl} be an uncountable independént
family of subsets of w. Pick an uncountable subset M of wy and an-*
1 <w such that for eachzia v |g(Aa)| =n. For a e M let

g(a) = {Aao,"',Aan}. Lemma I.9 fol;owed by Lemma I.10 yields

{ai: i <w}cM, for each i <w an n; with 1 <n, <n and a -
Tcw with T an N-2 transversal on {A | t 1l <wl/{A i< w}.
— - _ ay,n, oy .

. Moreover, {A : 1 < w} has finite intersections infinite.

a0y -

Let g(T) = {G),*+,G_) “and W= TF e [wlV2: T n n{aA

i eF}eo }.
‘ _ ai,ni . j
Thus [uw] = U{Wj: 1 <j <r}. Ramsey's theorem supplies an .infinite

N-2

A'E.w and an ,é with 1 <s j'r'ﬂsuch that [A] E_WS. Choose N-1

distinct elements from A w.l.0.g. let them be 1,*++,N-1. Define

H={T} v{A :1<1<N-1}. Let G(T) = G and G(A ) =aA .
; (y_i — — ) L] ai ai’ni
Since T 1is an N-2 transversal nH = f. Since n{G(Aa )1 < i <N-1} =9
. ] . i
and [{1,"',N-—1}]N 2 g_ws, 11 N-1 fold intersections of the G(H)'s

for H ¢ H are nonempty. [

This theorem will have topological implicatiqﬁs in Chapter III. Set
theoretically it says that for any N > 2 a generating set of P(w) con-
tains a subcoilection combinatorially equivalent to DN' To do this, only

the idea of a transversal on A was needed. It is when we want to‘realize

j
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these configurations in a closed subbase of Bw that the idc;.a 'of a
transversal on B/A  proves useful.  This .will also be extenclied- to BX
where X .vis a non-pseudocompact spac‘e. .

The following question is left open to the reader. Given a finiﬁe
collection of sets F and a generating set G of P(w) (a closed

subbase\S of Buw), does G (S) contain a subcollection combinatorially

equivalent to F?

QA



CHAPTER TI

Breadth in Lattices

II.1. Introduction. This chapter is devoted to a single proposition in
Lattice Theory. &t will be applied in Chapter IV but it was thought best
to isolate it and prove it in its proper setting.

The following concept is'the foundation upon which Chapter IV is

built.

II.2. Definition. (Garrett Birkhoff [4]). Le: 'L be a lattice. The
breadth of L, denoted by b(L), 1is the smallest positive integer (if.

one exists) such that a?y join Xy Viox, e v X 1 is always a join of
& ’

b of the xi.

°

It is convenient to extend this notion to an arbitrary subset A
of L. The breadth of A, b(A), 1is the smallest positive integer b

(if one existsg) such that any join a, Vv a, **tvoa (with a € 4)

1
is always a join of b of the a;- It is clear that a subset A has
breadth < b 1iff every subset of A with b+1 elements has breadth
~
< b.

o

IT1.3. Proposition. Let L be a 0-1 distfibutive lattice. Let

' {xl,"',xn} c L with b{x1,°-‘,xn}'i 2. Assume that for each pair j = k

23
there are given elements such that

5k’ k3
(1) ij f-fj’ xkj :_xk, xjk vx = xkj v xj = xj VX
(2) xjk A xkj =0

“(3) for distinct 1i,j,k xij_xjk v xkj v xij V X4

20



N : < ) ‘ \2
() a) 1 j k implies Xy < xij xjk

b)Y 1 < j <k < & implies x < x
. 2
Let F = {f: f 'is a mapping of [{1,--+,n}] into {xjk: 1 <j <n,

1 <k<n and j * k} and f({jk}) ¢ {xjk’xkj}}' For each f ¢ F, let

/\
A= V{f(F): F ¢ [{l."'.n}]z}. Let x ¢ L. Then X i1 = feF (xn+1 VAf)

f

and b({xi: 1 <1ic<n}u {xn+1 VA f e FI) < o

n+1l

Proof: For brevity we write j 1in place of xj and jk 1in place of x
We use the following frequently without mention throughout the proof.
- jk vVk=3jjVvk and jk < j

-  for distinct 1i,j,k, i

I A

jk v kj v 1j v 1k
- for feF, jk$ A, implies ki < A
The proof is divided into four parts of progressive complications.

\

That n+ 1 = /A\ ((n+l) v Af) follows from condition (2) and the dis-
feF
tributive law.

Part 1. If {a,b,c} c {1,---,n} then bf{a,b,c} < 2 by assumption.

Part 2. If {a,b} c {1,:-+,n} and C ¢ {Af: f ¢ F} then either

ab < C or ba < C, consequently either a <bvVvc_C or b f;a v C.

Hence bf{a,b,(n+l) v C} < 2.

' Part 3. let a e {1,-++,n} and EC,E}.E‘{Af: f ¢ F}. Striving for
1 contradiction, assume b{a,(n+1) VC,;(n+1) vE} = 3. Thus there must be
ed < C énd ef < E with cd § a Vv F, ef#aw a$C .. This
implies that dc < E and fe < C. Note that a,c,d,e,f may not all be.
distinct. Cértainly a & {c,e}. If ea <C then .a v_e>e. Ther “ore
ae < C. Similarly 'écrj_E. -

For the moment assume a = f. If c¢c =e then a Vv E >c. There-

fore ¢ #ze. If ce <E then a VvE>aVeayVvce?>c. Therefore

jk’

21
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ec - FE. If d=¢ then CVE >cd Vdec v ac Vv ad > a. Therefore
d ze. If e - - E then C V E > (cdvdey ec ved) v ae. > a. Therefore
de “E. If a=d then CVE > (acVcaVea Vec) V ae > a. Therefore

a=x*d. If da E then C VvV E > (aeveavdavde) vV ecd v ac 2 a. There-

A

Hence C V E > ¢d vV dc Vv ac V ad = a. We conclude that

|72
m

fore ad

a = f.
If af “ E then C Vv E > ef v fe v ae v af 2 a.. Therefore fa < E.

Now aVvE2avVvfavef>avVvfve. Taerefore c is distinct from

a,f,e and ec VvV fc < E. If d=f thea" ? VE2 (cd Vdc‘;éd Veé) vV ae 2 a.

Therefore d # f. If fd <E then CVE 2 (cdvdcVfcVvfd) v ef vV ae > a.

v

Therefore df < E. If d =e then CVE > c vdcvfcved) v df v ad > a.

IA
[\
[+

Therefore d = e. If de E then CVE 2 (efvfevdevdf) v ed v ac
Therefrre ed < E. Hence C VvV E 2 (cdVde VecVved) vV ae 2 a. We conclude

-/
b{a,Qp+l) v_C, (ntl) v E} <2.
\, .

&art 4. 'Let {A,C,E} E_{Af: f ¢ }. Striving for a contradiction,
o
assume - b{(n+l) v A, (n+l) v C, (n+l) v E} = 3. Thus there must be
ab A, cd < C and ef <E with ab$C v E, cdfAVE and ef { A v C.

This implies that ba < C A E, dc < AAE and fe < A A C.

Statement 1. {a,b}, {c,d} and {e,f} are disjoint doubletons.

5 : . .
Proof: By symmetry there are three cases to consider.

A

Case (ii‘— Assume a = c., b x*d since ad t+ A while ab < A; If
bd < C then‘AVCZ(adVdaVbaVbd)VabeVan. If db s then
A C > (abvbavdavdb) vad 2d Vv a v b. Consequently a,b,d,e are
distinct and ae Vbevde<AAC. If a=f then AV E2 (efvFfevbpe vbi) v

ab 2 a. Therefore a = f. If af < CV E then CVE2efvVv fevaev alf > a:

Therefore fa < CAE. If b=Ff then AV E > ef v fe v ae v af 2 a.



Theretore b = f. If fb v A v E then AVEz(abean_avfb)Vefvae>

a. Therefore bf < A A E. Hence AV E > (efvfevbevbf) v ab > a. We

conclude a = c.

Case (11) - Assume a =d. b # c since ab f E while ac < E. If
bc s C them AV C 2 (a\chaVbaVbc)‘V ab Z.b vave. If cb< C' then
AV C=2(abvbaVvecaveh) Vac 2 ¢ V a VvV b, Consequently a,b,c,e are dis-

tinct and ae Vv be Vce S AAC. If ¢ =f then CVEO2efvV feVaeyV

af > a. Therefore ¢ = f. If cf < C then CVEZ(erfchchf)V

A%

ac 2 a. Therefore fc < €. If a=f then C V E (aeveavcavce) Vv

v

then C V E (acvcavfavfce) v

1A
(@]

ac 2 a. Therefore a = f. If fa
ef V ae 2 a. Therefore af < C. Hencé C V E = ef vV fe v ae v af 2 a.

We conclude a = d.

tA

Case (111) - Assume b =d. a # ¢ since cb $# A while ab < A.

If ac < C them AV C =2 (bcvecbvabvac) vba2avbve. If cac<CcC
then AV C 2 (abvbavecaveceb) V be 2 ¢ V.b v .a. Consequeqtly a,b,c,.e
‘are distinct and‘ ée v be‘V ce SAAC. If a=f then AV E?®2(aeveavVv
bavbe) Vvab Vv ce 2 c:t Therefore a = f If af <E then C V E 2 ef v
fe VvV ae V af 2 a. Therefore fa < E. If b =f then A V E =2 (be Vv

eb vV ab v ae) vV ba Vv ce 2 ¢c. Therefore b = f. If fb < E then

AV E /2 (abe'ananb) v ef Vcez2c. Tt;erefore bf < E. Hence

AV E (ef vfevbevbf) vab v fa v ce 2 ¢c. We conclude b =d. [

v

Statement 2. x ¢ {a,b,c,d} implies x £ A Vv C.

Proof: Assume Statement 2 is false i.e. t:heré exists x ¢ {a,b,c,d} with
x < AvVvEZC. .
- PR €2

Case (1) - x ¢ {a,b}. Then AV C 2 ab Vv ba Vv x 2caVvb. Therefore

23



ae Vbe“AAC. If af <E then CV E 2 ef Vv fe vV aeV af > a.
Therefore fa < E. If fb < E then AV E 2 (abvbavfavfb) vef vVae 2
fveva. If bf<Evthen AVEZ(erfeV»bebe)Vabeazbvav
f Vv e. Consequently AV E 2aVv eV f. Therefore ac Vv ecV fc < A A E.
If ad s C then C Vv E>cdVdeVacVad2a. Therefore da < C.

Hence AV C2avVvdaVecdVec2e. Weconclude x £ AV C.

Case (i1) - x ¢ {c,d}. Then AV C 2cd Vdc VXx2cV d. There-
fore ca V cb < A A C. Otherwise the problem reduces to Case (i). It

follows that A vV E > ab v ba Vv caVch2c. We conclude x £ Av cCc.

Statement 1 tells us that we may use condition (3) of our hypotheses
on any 1,j,k since they are in fact distinct. Statement 2 tells us.
that once there exists an x ¢ {a,b,c,d} with x <AV C a contradiction

has been reached.

Assume db < A. If da <A Vv C then AV C >ab'vbavdayvdb=d.

IA

Therefore ad

IA

Therefore ca
o]

.

AAC. If bd <C then AV C2cdvVvdeVbecVhbdz2b.

IA

Therefore bc

A

Therefore db

e

C>2bc VcaVvadVabVbaVedV fe. Analagously, if bd < A then

C. Hence A 2bc VcavadVvdbvVvabvdeVv fe and

A

v

bd Vvda vac VebvabVvdeVvfe and C 2bd vdaVvac Vv cbVbav

cd vV fe. Note that up to now we have not used the o;der conditions (4)

"

A

of the hypotheses. This allows us the freedom to identify these two

L
- - abcdef6t - IACE
cases under the pgrmutatio s [c dabe f] and [C AE

we focus on the following ®ituation: A 2= be vV ca Vv ad v db vV ab v de v fe

). Consequently

\ C

v

bc VecaVvadvdbyvVvbayvecedyv fe.

i
| & o
It is at this point th%t we use the order conditioms (4).

AAC. If ac <AV C then AV C2cdVvdcVacVad2a.

AAC. If cb<AVC them AV C=2abyVvbavVvcaVvecehb 2 c.

24



(4) a)
(4) b)

Cage (1) -

Case (i1) -

Case (iii)

Case (1v) -

Case (v) -

Case (vi)

Having

b{(n+l) Vv A,

25

i < j <k implies 1 < ij Vv jk

i <j<k<g implies- k < ik v ki v kj v jt.

a<b <ec. Then A = ab VvV bc > a. Contradiction.
a<c<b. If d<a then AV C2dc VecdVca Y ab 2 c.
Contradiction.

If a<d <b them A 2ad Vv db 2 a. Contradiction. | If
b<d then AV C2abVvbaVbecVedz2b. Contradiction.
b<ac<ec. If df< b then A 2 db ; bc 2 d. Contradiction.
If b <d < a thén AV C=2baVabyV ad v de 2 a. Contra-

diction. If a <d then C >ba vV ad > b. Contradiction.

b < c < a. Then A = bc V Ca > b. Contradiction.

c <a<b. Then A =caV ab 2 c. .Contr;diction.

c <b<a. If d<b them C 2 dS vV ba 2 d. Contradiction.
If*‘b <d<a then AV C=2¢dVdcyV db.V ba 2 d.- Contra-

diction. If a <d then A 2ca V ad 2 c. Contradiction.

reached contradictions through all possibilities, we conclude

{n+l) v C, (nt+l) Vv E} < 2. This completes the prbof. 0
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CHAPTER III

Supercompactness and the cardinal function «o

¥

ITI.1. Introduction. A family of sets. is centered if every finite sub-

collection has non-empty intersection. A family of sets is linked 1if the
Intersection of every pair of its members is_non—emﬁty. Alexander's

lemma states that a space X 1s compact precisely when X possesses a
closed subbase such that every centered subcollection has non-empty inter-
section. Paralleling this lémma, J. de Groot introduced the following
definition in [11]. A space 13 is supercompact if X ‘possesses a

closed subbase such that every linked subcollection has non-empty inter-
seétion. Such a subbase is called a binary subbase. By Alexander's
le;ma, every supercompact space 1s compact.

Examples of supercompact spaces. are plentiful. For a good intro-
duction to supercompactness see A. Verbeek's book on superéxtensions [351.
It is shown there that any Tychonov epace can be naturally embedded in
many supercompact extensions. Every coﬁpact ordered space is supercompact
by its left and right rays. A space is treelike if it is connected and
every two points can be‘separated”by a third. Brouwer and Schrijver [5]
and J. van Mill (20] have shown that all coméact treelike spaces are
supercompact. De Groot proved that all compact polyhedfa are supércompact.
He conjectﬁred that ;11 compact metric spaces ére supercompact. Several
mathematicians - J. O'Connor [26],.Strok and Szyminski [33], J. Martin and

I. Rosenholtz [17] and E. van Douwen (in preparation) - have worked on

this conjecture.
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Products of sppercompact spaces are again supercompact. Thus all
Tychonov cubes 1° and all &antor cubes 2% are supercompact. Super-
compactnessvhas been instrumental in topologically characterizing Tychonov
cubes and products of spheres, products of compact orderec spaces and
products of compact treelike spaces. See Szyﬁénski and Tu-.anski [34],
de Groot a&d Schnare tlZ] and J. van Mill [20] respectively. In another
veln, J. van Mill [21] has shown that the superextension of I 1is the
Hilbert Cube, thus answering another conjecture of de Groot.

In [11] de Groot raises the question "Are all compact Hausdorff
spaces supercompaq;?" At the time, A. Verbeek had an example of a

compact T non-supercompact space. We answer this question in the_

1
negative. Not only are counterexamples produced but positive implications
are proven. Let BX denote the - Stone-Céch compactification of -X. The
following is shown: B8X ;upercompact implies X is pseudocompact.

Hence, neither BN BQ nor BR are supércompact. This theorem is a
partig%%ar consequence of a more general result which encompasses the

case when two is replaced by any larger integer. Later in this chapter
we investigate the céellular progerties of ; supercompact Hausdorff space
and 5upply'éxamples of first countable compact non-supercompact spaées.
For supercompact spaces, the cellulaf results-are much stronger than the

previously mentioned theorem, however they do not generalize beyond two. -

Finally, a brief look at the Vietorils topology ends the chapter.
It is convenient to introduce the following cardinal function.

IITI.1.1. Definition. Let X be a topological space. a(X) 1is the least

<]

cardinal « for which there exists an open subbase S of X with every

cover of X from S having a subcover of size < k. Equivalently,
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a(X) 1s the least cardinal « for which there exists a closed subbase
S of X such that each subcollection S' of S with nS' =@ has a
subcollection S" with nS" =@ and [S"|] < k. In either case we say

that S realizes oa(X) = «.

Clearly a(X) < 3 4iff X 1s supercompact and a(X) <w 1ff X 1is

compact. It is tempting at this point to relate the Lindel5f property
q .
to a(X). The author thanks John Ginsburg for his comments on this matter.

III.1.2. Proposition. Let «k > 1. If for each k ¢ K, a(Xk) < K,

then a[ I xk] < K.

keK

Proof: The proof is given for X X Y. The general case is.identical
only messier. Suppose X has a subbase S and, Y has a sul T
such that covers by members of S or T have subcovers of si:

Let U={sxY:5e¢S}ulxxT:Te T}. Then U 1is a sﬁbbase ior
X x Y. -We claim covers by U have < k subcovers. For, let

{Sl x¥: 1€ I} u {x x Tj: h e_J} cover X X Y. Then either

X c U{Si: 1e€lI} or Yc U{Tj: j € J}. For if not, there exist

x € X~ U{Sié ie 1} and. yo'e Y - ofT,: § € J}. But then (xo,yo)

[o]

3

is not included in any of the sets- 8, x Y or X x Tj' Suppose w.l.0.g.

i

thgsc Xcufsg:ier}. Find I, ¢TI such that |L | <« with

X E_U{Si: ie Il}. Then {Si x Y: 1€ Il} is a subcover of size < k

asg desired. [

Now, one sees that [a(X) <y iff X is Lindel8f] 1is false. Let
Y be the Sorgenfrey line [32] and X =Y x Y. Y 1is Lindel8f, hence

'a(Y) < w,; and thus a(x) < w; by the proposition. However as is well-

1
known, X dis not Lindeldf.

1
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It will follow from Theorem III.2.2 that a 1is not monotqne even
for a élosed subspace of a coapact Hausdorff space. More explicitly,
a(IC) = 3, BN 1is a closed subspace of 1¢ but’ a(BN) = w.

It is particularly interesting and in the spirit of de Groot to

look at spaces X for which a(X) 1is finite.

i

"1I1I.1.3. Example. For each 3 <n < w, we construct a compact Tl
space X(n) with a[X(n)) = n. X(4) was originéily constructed by
A. Verbeek [35] as an examp'e.of a compact T1 space which was not super-
compact. The construction is an obvious extension of his idea.
Let py>Pys " "5P 4 be n-1 distinct points. Let P, = w‘x {pi}.

n-1
Our underlying set is X(n) = L_J P, u {p.,p,>"""»P }. For our topology,
=1 i 1’72 n-1

n-1 : .
points of L_J Pi are isolated and U 1is a neighbourhood of Py iff
i=1

L_J (P -U) is finite. Thus, as a seaduence, Pi converges to each p_, .
j*i J
where j 1is different than 1.

1 2 n-1
* . - . . °
.. U .
tee =o', . 0
Py P Ph-1

A) a[X(n)) < n.

-

First we note that X(n), being the union of finitely many convergent
sequences, is campact. We define open sets as follows:- For 1 < i < n-1
and k >0, let S, = {pi} u {(2,pj): 2 >k, j =i} and
T, = (o) v UJ Py {(p): S kh Tet S = {S,Tyr 1<t <ncl,

j=i ,
k > 0}. Then S 1is our required subbase. That S 1s a subbase follows



from

1. {Sik: k > 0} is a local base at {pi}

2. For 1 <1< n-l1l, k >0, {(k,p )} = [”] S n [-] T,..
- B j*i g 3K

From an arbitrary cover of X(n) by members of S, we first extract a
finite subcover and from this an irreducible subcover. If the reader

makes the following observations

1. For each 1< i < n-1, {Sik: k > 0} and {Tik: k > 0} are

both chains under inclusion.

a

2. For each 1 <4 <n-1 and for all k and k', Sik < Tik"

¢S . uT

3. 1f 1 *j, then Py ik k'

She or he will conclude that our irreducible subcover has the form

X(n) = kyj ik L~} where A UB = {1,2,**,n-1} and A n B = §.

ileA j€B

"Hence, the size of this subcover is n-1. What we have shown is that

every irreducible cover of X from S has exactly n-1 -elements.

B) Q(X(n)) = n.
It suffices to show that for an arbitrary subbase S of X(n),
there 1s an irreducible cover of X(n) from S of size > n-1. For

each 1 < i':_n—l and x ¢ Pi u {p,: § =-1}, there exists finitely many

%
members of S, each containing x, whose intersection misses
Pi U {pj: j = i}. Hence, one of these, S(Pi,x) has the property that

it misses infinitely many members of Pi; i.e. {pj: j =4} n S(Pi,x) =@,

while x ¢ S(Pi,x). Consider S(Pi’pi)' Since Pi € S(Pi’pi)’ there are
only finitely many points in -k~/}Pj that are not in S(P ,pi); Denote
=i

them by xl,eee,xt . Then \_J P e 5(®,p) v SR xb) v s v sl ).
ny 371 3 ny

‘ _ 1 . A .
Thus X(n) = t b S(Pi’pi) v C;/} k\/)S(Pi,xi)). Since p; can only be
' =1 =1 451 ] |
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in a S(Pi,—), n-1 are needed to cover X(n). ]

The question of et .er there exists a compact Hausdorff space. X

with a(X) = n' for o n < w 1is postponed till later in the chaﬁter.

III.2. Stone-Céch Compactifications. Let X be a Tychonov ‘space, BX

the Stone-Céch compactification af X and Z(X) the collection of
zero-sets of X. Two subsets of X said to be completely separated if

they are contained in disjoint zero-sets.

Remérk. At this point, let us note that if § is a closed subbaﬁe for
- X realiziné a(X) = ¢ then w.l.o.g. we may assume that S 1s closed
undef finite intersections. Also, a collection S; closed under finité
intersections, of closed subsets of a compact space is a closed subbase
1ff for each closed set C contained in an open éet U there exists a

finite subcollection F of S such that C c uF ¢ u.

I11.2.1. Lemma. Let S be a closed subbase for" BX which is closed
under finite intersectioﬁsk\ Let U and V be completely separated
subsets of X. Then there exist a finite S' c S and a Z ¢ I(X) = with

UcuS'c CLyZ and Zav=9

l,__»V <z, and Z1 n 22 = 0.

Let {zZ,2'} < Z(X) such that Zn2Zz, =9, Z'nZ =9 and Z u'z' = X.

Proof: Let {Z;,2,} £ Z2(X) such that U c 2z

,Q: ' = L - . .
Hence C'BXZ n CR,BXZ1 ® and CRBXZ U ClBXZ BX Get\g\finite

8' < S such that C%,.Z. < uS' c BX - CL,  Z' c CL

BX 1

8X z. § a;da Z are

BX

as required. [J
-

S

I11.2.2. Theorem. If a(BX) 1is finite, then X 1is pseudocompact. 1In

particular, for X non-pseudocompact BX 1is non-supercompact.
I
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Proof: Assume a(BX) = N with N > 2. %%t S be a closed subbase for

BX, closed under finite intersections, realizing o(BX) =,N. Striving

L]

for a contradiction, assume X is not pseudocompact. Let C —‘{cn: n < w}
' ,
be a subset of X such that there exists a continuous map f from X
. 1 1
to R swith f(cn) = n. Define Cn = {x:,n - E-< f(x) <n + 5}' Then
C = {Cn: n < w}l- is a disjoint collection of cozero-sets of X with

c € Cn and such that for each A < w, {cn: ne Al and X - U{Cn: n € Al

are completely separated.
Tor each A c w apply Lemma III.2.1 with U = {cn: n € A} and

V=2X- U{Cn: n € A} to yield a finite SA c 8 and a ZA e Z(X) with

{c :ne A} c uS, c € 2 and Z.c u{C : n € A}. Define
n - A — A A — n

G = {f(Sf1C): S ¢ SA and A < w} and g: P(w) [G]<w by g(A) =
{f(Sf\C): S ¢ SA}. Then A = ug(A). Theorem I.11 implies there exist
H € [P(m)]N and for each H e H a G(H) € g(d) such that

(1) nH=2¢9

N-1

(2) H' e [H] implies n{G(H); H ¢ H'} z 0.

For each H € H choose SH € SH such that G(H) ='f(SHr1C).

The Contradiction. {SH: H ¢ H} contradicts S re%liéing a(BX) = N.

(a) n{SH: H e H} E_n{CE Zyi Hoe H}

cen{zy: H e HY)

| n

|n

Cl(n{U{Ch: n € H}: H e H})

\
AN

= @.

) Let H' ¢ [M™ 1 and n e n{G(H): H e H'} = n{f(synC): H e H'}.
‘ l .
Then ¢ e n{S_: H e H'}.
- n . H

—

Arriving at this contradiction we conclude that X 1is pseudocompact. []



If X d1s the Tychonov Plank, i.e. X = ([O,ml]‘x {O,Qi) —-f(wl,é)}
then B8X = [O,ml] x [0,w] which is supercompact, while X 1is pseudo~
compact but not countably compact. Hence pseudocompact cannot be
strengthened to countably compact.

The theorem determines the exact value éf oo for the following
spaces: a(BN) = a(BQ) = a(BR) = w..

BN 1s a non-supercompact subspace of 1€ which is supefcompact. .
Hence supercompactness is not a closed hereditary property and “a is

U

not monotone.

An extremally disconnected (E.D.) space has the property that dis-
Joint open sets. have disjoint closures. These arise quite naturally since
in the category of compacf spaces and continuous maps these are precisely
the projective elements. A compact Hausdorff E.D; space 1s the Stone-Céch
com?actification of each of its dense sabspaces. For a proof of this, the
'reader is re%erred to Gillman and Jerison [10] pg. 96. Since no infinite
Hausdorff space can have all of its dense subspaces pseudocompact it
follows that an infinite cgmpact Hausdorff E.D. space X satisfies a(X) = w.

All compact non-supercompact spaces derived from the above theorem '
have cardinality.at least 2°. They all contain a copy of BN. The next

section produces smaller examples.

b

III.3. A Cellular Constraint in Supercompact Spaces. Further work on

supercompact spaces X' (a(X) < 3) has since been done by Eric van Douwen
and Jan van Mill [6]. fhe author expresses thanks to these two gentlemen
: sen&ing copies of their work. They have proven the following two K
iZ:Zrems: |

P | . . - -

- [A] (3. van Mil;). Let X be a supercompact Hausdorff space. If

Y is a continuous image of a closed neighbourhood retract of



X ;Een for all countably infinite subsets K of Y \all but
countably many cluster points of K are tue limit of some non-
trivial seauence in Y (not necessarily in K).

[B] (E. van Douwen). Let X be a supercompact Hausdorff space.
Then no closed neighbourhood:retract of X 1is homeomorphic to
any compactificai -on of a x-Cantor tree (cf. M.E. Rudiﬁ [29])

where w < x < c.

We remark that J. van Mill used [A] to give a different proof that
- BX supercémpact implies X pseudocompact, furthermore he showed that no
infinite compact F-space (disjoint cozéro—sets are completely separated)
is superéompact. E. van Douwen used [B] to construct a compa?& Hausdorff
non-supercompact space of cardinality wy and a compact Hausdorff non-
supercompact fir;t countable space of cardinality c. However, there are
., compact Héusdorff non-éuperéompact spaces which are not covere’ by thése

results and it is to this end that this section is devoted.

II1.3.1. Lemma. Let X be a subspace of weight «x of a space Y. Let

+ .
{Va: a < xt} and {Ua: a < '} be open sets of Y such that

+
<
(1) For a < B <k , C!.YVCl n CILYVB is a compact set of X.
.+
(2) For a <k, CLV < Ua'

ot R -

#. Then there exists {Un: n > 0} E-{Ua: a < K+} (felabelled for conveniente)

such that sup{m:'Uo contains all 2 fold intersections of m C!.YVn s,

n 3Ji} = W,

.

Proof: Let B be an open base for X, closed under finite unions, of

B

o) < +
CoyV, 0 CRyVy € Bg € Uy 0 U, For 2 <m <w define D = {a <x.: U

contains all 2 fold intersections of m other CzYVB's}. It suffices

‘ + .
cardinality x. For a < B < k  choose Ba e B such that

a

34
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to show that “or each m > 2, [{a < i a ¢ Dm}l < x. For then, just
choose 0 ¢ n{Dm: m > 2} and the corresponding finite col.actions to
make up the Un's for n > 1. To this end the proof for D3 is given,
the general case is identical only longer.

: +
Assume F <x'ia ¢ D3] has cardinality «x . Choose a ¢ F

\ o

. +
and consider {B .: B¢ F - {a}}. There exists .F, c F '- {a}, |F. | =",
. af o 1—-"0 1
such that for distinct B and y in F , B =L . Choose B ¢ F
. 1 aB ay 1

and consider {BBY: Y € Fl - {B}}. There exists F2 E(Fl - {B}, IFZI =x ,
such that for distinct y and 6 in FZ’ BBY =~BBG' Choose distinct

' w

. L £
Y and 6§ from F2 Then (CQYVarWCZYVs) U (CQYVGIWC YVY) U (CKYVBIWC YVY) <
BaB n Bay n BBY E-UG‘ .Hence ¢ ¢ D3, a contradiction. Consequently
[F | <x. O

ol =

II1.3.2. Theorem. Let X be a supercompact Hausdorff space. If K is

a closed neighbourhood retract of X, then for all den§e D in K,

c(K-D) < w(D).

Proof: Let S be a binary closed subbase for X that is closed under
finite intersections. Let r be a retraction of an open set U onto K.
Assume w(D) = x and choose a dense subset E of D with IEI < K.
Striving for a contradiction, assume c(K~D) > k. Let {Ca; a < K+}' be
an open cellular family in 'K-D. Pick pa‘e C(1 and since K ié regular
choose an open set W of K such that P €W and C2&.W n (K-D) c C .
a a a Ka . - a

Using the normality of K, find Ea < E and open sets Vu and Ua of K
such that p e CLE <V cCLV cJ cCLU cW. Notice that CL E

P a Ka—= "a— ""Ka — a— Ka-— '« K a
is a closed set of X contained in the open set r_l(Va) of X. Using

the fact that' S 1is a subbase, get Sa € S such that Sa E.r—l(Va) and

P €¢CL(E NS). Let F =E nS . Since IEI < x and there are k'
a K" a a a a a - ‘
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. \ +
u's w.l.o.g. assume there exists f « n{Fu: a < k },

+ .
For a < B8 < x| CEKVOl n CQKVB is a compact subset of D, for if

not, then i1t would meet K-D which is impossible since C n CB = @.

a
: +
It follows from Lemma I11.3.1 that there exists {Un: n > .0} c {Ua: a <« }

such that sup{m: Uo contains all 2 fold intersections of m ClKVn's;

n z_l} = w. Because CEKWO n U{CRKUn n (K-D): n 3_1} = @, there exists
U open in K such that Un CZKWO =@ and U{CQKUn n (K-D): n > 1} ¢ U.
For n > 1, pick fn € (UfWFn) - UO. This is possible since U 1is an
open neighbourhood of P> P, € CEKFn and U n Fn n Uo is contained in

the compact set C% Un n C!LKUo of D. Notice that

K
&
Colf :n>1)c CLU € CR(R-CLW) <K -W cK- CILKUO‘.-

Thus, ‘CRK{fn: n > 1} is a closed set of X contained in the open set

r—l(K—ClKUo) of X. Hence, there exists {S ,: 1 <1 <k} c S with

i
. . -1 ) '

CQK{fn. n>1}c U{Si' } <1i<k}lecr (K €U ). Choose k+1 CLv 's

such that Uo containg all 2 fold irrersections of the CQKVn's. By

. o

the pigeon hole prineiple, there exist n # m and an 1 <1 <k such

that {f ,f } c S
n’ m —

e 2 .
1 and F‘Kvn nC KVm E_UO .

I \

..The Contradiction. {Sn,Sm,Si} is linked yet has empty intersection.

feF NnF S nsSs
n m — m

n
cS n3S
— n- i

<SS ns

fn € Fn n Si
fm.e Fm n Si

However, S nS n S r—l(V ) n r_l(V ) n r-l(K—Cl
n m n m

In

i KUo)

crt (v_n vm' n (K-CL.U )

=9.0

Notice that [B] is a consequence of Theorem III.3.2 since any
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compactification X of a k-Cantor tree (w < K < ¢) 1s a compactifica-
"tion of N with c(X-N) > v while w(N) = w. Both [A] and this theorem
show that for X non-pseudocompact, neither BX nor BX - X (when X
is locally compact) ame supercompact since in this case both B8X and
BX - X contain a neighbourhood retract homeomorphic to BN. To see
this, let {Zé: n < wl, {Cn:-n-< w} and {Zn: n < w} be three collections
of non-compact zero-sets of X, cozero-sets of X and zero—sefs,of X
Fespectively, such that

(1). for each n < m,i Z' cC c1Z

(2) for n#zm, Z nZ =29

n m
(3) for each A c u, k\/}ZA is a zero-=set, kv/’cn is a cozero-

ne€A neA
set and kv) Z ‘1is a zero-set.
n ‘
neA .
Then X = k~/JZ. 0] (X - k\/) C ); Choose c € C_ and p e CL_Z2' -2,
p3 n n n n - n BX n n
n<w n<w o

*
{cn: n < w} ({pn: n < w}) 1is C —-embedded in X (BX), hence

:n < w}) 1is homeomorphic to BN. The map

ce {cn: n < w} (CQBX{pn.

BX

r: BX - CQBX(X - (\/) Cn) - CZBX{cn: n < w} defined by r(p) =

n<w

ﬂ{Cl {c_ : n e Al}: k,} Z € p} is a retraction of an open set of BX
BX n nea D

onto a copy of BN. The map r': (BX-X) - ClBX(X - k,) Cn) -+
' . n<w

. ' = . .
Clsx{pn. n < w} defined by r'(p) n{Clsx{pn. n e A}: &EJ Zn € p} ig

a retraction of an open set of BX - X onto'a copy of B8N.

III.3.3. Example. 1In the .theorem, celluiarity cannot be replaced by
spread. J. Gén Mi1l [22] has shown (in particular) that there exists a

supercompactification YN of N such that YN - N = 2. Since 2% con-



tains a copy of

AN,

s(2%) =

c. . Hence,

s(YN=-N) 1 wiN).

III.3.4. :Example. In the theorem, weight cannot be replaced by density.
Let BN fe a copy”of AN in 2¢ Let D =NwuU (2C-BN). Then D 1is

o, nin 2 and therefore separable i.e. d(D) = w. However, c(ZC-D) =
c(BN-N) = c. Hence, c(2c~—D) + d(D).

-

Our concern now is to give examples of compact Hausdorff non-

supercompact spaces not covered by [A] or [B]. They will all be first

countable compactifications YN of N such that YN - N 1is connected

and locally connected. We use the following result of E. van Douwen and

T.C. Przymusinski‘

[c]

Let

18] < ¢,

[71.

Ye¢B and @ ¢ B.

h: B + P(N) such that

(0)

| (1

. (2)
(3)

h(Y) = N

h(B) is infinite for B €

if A,B € B are disjoint,

B

then h(A) n h(B)

B be an open base for a compact Hausdorff space Y with

Assume there 1s a function

is finite

if Ae¢ B and if F < B is finite, and 1f A c UF,

then h(A) - u{h(B): B ¢ F}

is finite.

Then there is a Hausdorff compactification YN of N such

that YN - N and Y are homeomorphic. Furthermore YN h&)

first countable if Y 4is first countable.

!

u D

N

Indeed, as the authors show, the family {B u (h(B) - F): BeB,F <N

finite} u {{n}: n € N} is an open base for the required topology on

YN =NwY.

We introduce the following construction which generalizes the



Ale#éndrov duplicate of a space. Let f: X + Y whére X and Y are

Tl spaces. Define XfY to be the space with underlying set X x Y

and topology as follows: Basic opern neighbourhoods of (x,y) .where.

y * £(x) are of the form ({x} x [Uy - {£(x)}) where Uy is an open
neighﬁbﬁrhood of ; in Y. Basic open neighbourhoods of (x, f(x))

are of the form [(Ux-{x}) x Y] v [{x} X.Uf(#)] where Ux (Uf(x))“

is an open neighbourhood of x[f(x)) in X(¥). XfY 1is a Tl space.-
Properties that XfY inherits from both X and Y include compactness,

Hausdorffness, connectedness, local connectedness and first countability.

Furthermore, the following cardinal inequalities hold if IYI > 13

cc(Y) and w(XfY) = |X| +w(X) « w(Y).

c(XEfY) = |X
Recall that a space X 1is sequentially separable if it has a
countable dense subset D such that' every point of X 1is the limit of

some convergent sequence of paints from D.

III.3;5. Proposition. Let X be an infinite sequentially separab}e
compact Hausdorff space with no iéolated points and Y be a separable
compact Hausdorff space with no isolated points. Then there exists a
Hausdorff compagﬁificatiou YN of N such that yN - N. and XfY are

homeomorphic (for any“ ).

"Proof: Let U be a base for X with U| <e, P& U and V be a

| A

base for Y with 'IV]_i c, P ¢ V. Since X is sequentially separable,

note that |X| < c. Define Bl = {{x} x (V’ {f(x)}): x € X, Ve V} and
: \
) . AN
BZ = {[(U-{x}) xY] u [{x}xV]: x e Ue U and f(x) € V ¢ V}. Let
B = B1 U 82 u {XfY}. B 1is a base for the open sets of XfY with

IBI <'c. Let D be a countable dense subset of X rendering X

sequentially separable and’ E be a countable dense subset of Y. Let

A}

39



40

"g: N+ D be a bijection. For each x € X choose a non-trivial sequence

X
{dk'

N = {n: g(n) « {dt: k < wl}. {Nx: x ¢ X} is an almost disjoint family.

k < w} €D such that (di) converges tp x. Consider

For each x € X, let 8, ° Nx + E be a bijection. .

For x € X ;hd V e V define
h({x] X(V-—{f(x)})) = {n: ne Nx and gx(n) €e En V}.

For x € Ue U and f(x) ¢ V € V define

h([(U-{x}) xY] v [{x} xV]]‘= {n: n ¢ Nx ~and g(n) €.D n U} U

{n: n e Nx and gx(n) e En V}..

o

Define h(XfY) = N. It is now a straightforward exercise that h: B -+ P(N)
satisfies all the hypotheges of [C] and thus there exists a compactifica-

tion YN of N such that YN - N and XfY are homeomorphic. 0

Hence if X and Y are infinite Peano spaces (compact, connected, )
locally connected metrizable spaces) and f: X + Y is an arbitrary
correspondence, then‘ YN where yN - N ;\X.EY is an example of»a com-
pact Hausdorff first countable non-supercompact (since c(XfY) = ¢) sp;ce.

We remark that two further examples can be found in thé’Fﬁeory of
lexicographic order. Consider the long line and the lexicographic ordered
sqﬁare (cf. S. Willard [37]). Both héve cellularityN > w a;d both are -
remainderé of N in some compactification. These compactifications aren't

supercompact.

‘

III1.3.6. Example.. A compact Hausdorff space X with a(X) = 4.
This example 18 the complete c~Cantor tree compactified by adding one

point. Let “2 = {f: f: w » 2} and %2 = {f: there exists n < w and

f:n+2}. T="20% is called the Cantor tree. For each f ¢ “2,

‘
<



let I(f) = {f‘n: n < w}. The topology on T is as follows: Points of
L2 are isolated and neighbourhoods of f ¢ 2 contain f and all but

'finitely many members of I(f). T 1is first countable and locally com-

pacf. Let X be the one point~coﬁbactification of T. Since W(QZ) = W

cand c(X - ©2) = ¢ it follows that X 1is not supercompact, i.e. ofX) > 3.

For f € W9 ‘and n < w, let S(f,n) = {f} v {f|k: n < k < w}. For

Wy, let S(H) = X - u{S(f,0): f ¢ H}. Let

a finite subset H of
S = {S(f,n): f e m2 and n < w} U {S(H): H 1is a finite subset of wZ} U
{{g}: g 6‘32}. S 1is a closed subbase for X realizing a(X) = 4. That
S 1s a closed subbase ig true because X 1is compact and O-dimensional
and each clopen set is a finite union of members of S. Let S' c S
with nS' = @. By compactness, there exists a finite S" ¢ §' with

nS" = p. If S" contains a singleton, then there will be two members of

S" which are disjoint. So, zssume S" does not contain a singleton.'

" The following facts are easily verified:

Fact 1. {S(f,n): fe%¥ and n < w} has the property that the . inter-

section of three is actually the intersection of two of them.

n .
Fact 2. ?(fl,nl) n.S(fz,nZ)'g_E:g S(gia%? implies there exis;s
1 <4 <n such that S(fl,nl) n S(fz,nz) E_S(gi,O).

) n
Fact 3. S(f,n) E_k\/) S(g;,O) ~wimplies there exists 1 <1 <n such
Ti=1 '

that S(f,n) E_S(gi,O). Actually, :f will equal a By-
Facts 1 thru 3 lead to, an at most, three element subset of S" whose
total dintersection is empty. This shows a(X) < 4. Combining the two
inequalities, we conclude that a(X) = 4.
This example also shows that a(X) < 3° in Theorem III.3.2 cannot

be strengthened to a(X) < w: The author has not been able to generalize

this example beyond 4.

41
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4

IIT.4. Supercompactness in the Vietoris Topology. Our attention is now

diverted to the exponential or finite topology of Vietoris [36]. The
authdr would like to thank A. Arhangel'skii for his motivation in this
directiqn. An exceilent background on the Vietoris topology can be found
in E. Michael's paper [19]. For a space X, let Exp (X) deno;e the
i coilection of all non-empty closed subsetslof X. Let <Ul,-":Un> =
{F ¢ Exp(X): F S_U{Ui: 1 <1i<n} and for each 1 < i <n, Fnu, = o}.
Then {<U1,'°°,Un?: er 1 <1i<n, Ui is open in X} serves as a
base for the open sets of Exp(X). For Ac X, let Exp(A) = {F(:Exp(X):
F E.A}' Then Exp(A) is‘open (closed) in Exp(X). if A 1is open
(closed) in X. 1In [19], E. Michael has shown that Exp(X) 1s compact
Hausdorff iff X 1is compact Hausdorff. |

Let X be compact Hausdorffi If Y dis a closed neighbourhood
retract of X, then Exp(Y) 1is a closed neighbourhood retract of Exp(X).
To see thié, let r: U~>Y be a retraction of some open set U of X
onto-Y. Then the map r': Exp(U) - Exp(Y) defined by r'(F) = {r(x): x ¢ F}

is a retraction. Note that F 1s a compact subset of X contair °~ 'n U,

hence r'(F) 1is closed in X.

The following gives a necessary condition that Exp(X) be super-
compact.
CIIT.4.1. Proposition. Let Exp(X) be a supercompact Hausdorff space{

1
Then for all D dense in a éiosed neighbourhood retract Y of X,

c(Y-D) j_w(D).v

Proof: Let V be an open set in X' which retracts onto Y. Let
C(D) = {all compact subsets of D}. Then C(D) is dense in the closed

retract Exp(Y) of AExp(V) (actually the finitegsubsets of D are
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L

dense in Exp(Y), however this subspace is too small fbg our purposes).
Hence, by Theorem II1I.3.2, c[Exp(Y) - C(D)) :_w(C(D)). But c(Y-b) <
c(Exp(Y) - C(D)). To"see this, note that if U {s a collection of open
sets of Y such that {U n (Y—D)? U € U} 1is cellular in Y-D, _then
{Exp(U): U € U} 1s a collection of open sets of Exp(Y) such that
{Exp(U) n (Exp(Y) - C(D)]: u € U} is ‘cellular in Exp(Y) - C(D). Also,
if B is an open base for D, closed under finite unions, of cardinality

w(D), then

4{<IncY(czYBl),---,IntY(czYBn)> n C(D): {By,*++,B } ¢ B}

_ S
is an open base for C(D) of cardinality w(D). Hence w(C(D)) = w(D).

Consequently, c(Y-D) < w(D). [

It now follows thét spaces like Exp(BN), Exp(8N-N) and Exp(yN)

(where YN-~N 1is the long line) are non-supercompact.

I1T1.4.2. Outstanding problems in Supercompactness. Considering

-(a) The spaces 2" are the simplest supercompact spaces,

(b) All the T, continuous images of 2% are supercompact (i.e.

2
all coﬁpact metric spaces),
(c) For X non-pseudocompact,  BX 1s neither dyadic (a continuous
inage of some ZK) nor ;ﬁpercompact,
the conjecture that all dyadic compacta are supercompact is reasonable.
Note that [O,wl] i; supercompact but not dyadic, so these two ;oncepts
(both relating to the ;umber 2) are distinct. The question whether
supercompactness ié transfé;red to contilnuous T2 images is unsolved.
Indeed, it is not even known if X x X supercompact implies X is

supercompact. Also it is unknown whether supercompactness is passed

from a space to a closed GG subspace or to a neighbourhood retract.
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CHAPTER IV

Breadth in Topological Spaces

-

IV.1. Introduction. While the cardinai function a(X) defined in
Chapter III is productive, 1i.e. a[ i 'Xi] f_sup{a(xi): 1e I}, it is
not monotone, i.e. A ¢ X does notiiiply a(A) < a(X) necessarily. ﬁIn
this chapter we look at a related property which is monotone but not
productive in the above sense.

Consider the usual oren subbase for Fhe closed unit square Iz,
S = {[0,a) xI: 0<a'<1}u{(a,1] xI: 0<a<1l}u{Ix[0,a): '0‘<E'£lku
{1x(a,1]: 05}1<1}. S renders I2 supercombact, i.e. every openh
cover of 12 from S has a two sﬁbcover. Looking again at S, we see
that it enjoys further properties. In particular, S, being the unionﬂ
of four chains, satisfies the following:~'Every union of five members of
S 1is actually a union of four of tb-—. Can we do beéﬁer for Iz? Sure
we can. 12 is homeomorphic to the two-simplex. Take the subbasé con-

sisting of the three different types of open subsets as suggested in the

following diagram.

Thus we see that 12 has a subbase S such that every union of four
members of S 1is actually a union of three of them. It 1is an open

question at the time of writing whether this is bestxﬁossible.
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Open Question. Does there exist an open subbase for I such that the

union of three is actually fhe union of two of them?

In general, the n-cube 1" has a subbase such that the union of
n+2 of them is é unién of n+1 of them. ﬁith this in mind, we make
the following definition. Consider (P(X), u, n, ', @, X) as a boolea;
lattice. Recall from Chapter II that if S E_P(X) theﬁ:the breadth of.
S, b(S), 1is the smallest positive integer b (if ome exists) such
that any union S, U S, U *** US (with Si e S) is always a union

1 2. > b+l

of b of the Si'

IV.2. Definition. Let X be a topological space. The breadth of X,
b(X), 1s the smallest positiﬁe integer b (if one exists) such that X
has an open subbase S with b(8) = b. If no such b exists, we say

"X has infinite breadth or b(X) = .

As wyith the cardinal function a(X), we are particularly interested
in spaces wifh breadth two. But first of all, let us establish several

immediate consequences of the definitiom.

IV.3. Proposition. (a) A c X implies b(A) < b(X) (b is monotone)

(b) bBXXY) < b(X) + b(Y).

'

Proof: (a) T° b(X) 1is =, then we are finished. So assume b(X) = n.
Let S be a suobase for X with b(8) =n. Then {A n S: S e S} is
a subbase for A of breadth < n.

(b) 1If either b(X) or b(Y) 1is =, then we are finished. So

agssume b(X) =n, S 1is a subbaseﬂgor X with b(S) ='n, b(Y) =m and-

T is a subbase for Y ‘with b(T) = m. Define R = {Sx¥: S ¢ S} u

{XxT: T e T}. Then R is a subbase for XxY and b(R) = n+m. Hence

-

»
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H(X*Y) < n-m.

: R
Iv.4. Examples.

(1) Identifying the n-cube with the n-simplex, we have b(In) <+l
(11) All totally ;rdeged spac~s have breadth two. | -
(1id) - Since all n-dimensional sepé;abla metric spaces can'bé imbedded”
din a 2n;+1—simplex (see Hurewicz and Wallman 1), for-such
spaces X, b(X) < 2n+2.

(iv) The compact T1 spaces, X(n), of III.1.3 have breadth n-1.

IV.5. -RelationsHip of b(X) and a(X). If. a(X) < w, then a(X) < b(X) +1.

Certainly, if b(X) 1s <«, this is trua. Otherwise, let bSX) = n and
S be an dpen subbase for ‘X with b(S) = n. Thénuany cover of } from
S has.a fiq}te subcover and since a cdver‘is a union, this can be reduced
to at most n members, whence o(X) £ n+1. An exam%le where strict
inequality holds is X = 2% By Theorem III.2.2, o(8N) = w. So By‘

the above inequality b(BN) = =, therefore by monotonicity of. b,

b(2c) = o (BN dis a subspace of ‘ZG). But 2% is supercompact hénce

a(ZC)‘='3. Consequently a(2%) < b(2c)i+ 1. An example where equality

obtains in X = I. . L

v

We now proceed towards our mainvobjective‘which'is to pfove that
all one—dimensionai sepafable metric spaces have breadth ﬁwo (we e#clude
the one point spAc; which:has breadth one). Clearly, ail zeto—dimensional
separable metric sp;;és,ibeing subggaces of.the totally ordered Cantor
discoﬁtinuum, have breadth two. This result will be a strengthening of

the gross inequality of IV.4(iii) for n = 1.

Hencgforth we make the blanket assumption:

X DENOTES A ONE-DIMENSIONAL SEPARABLE METRIC SPACE.



If B < P(X) then by [B] we nean the ring generated by B i.e.
‘we close B under finite uni;ns a;d finite intersections. As uéual,
Bd,B = C2.B n C2 (X-B) (t.he bounéary of B). The subscript X will be
suppressed. when the meaning is clear. ,We mention two facts.

(a) B open in X implies BdE = C2B - B - .

(b) F a finite subcollection of .B implies Bd(n{B: BeF}) «c

u{BdB: B ¢ F} and Bd(u{B: B € F}} c u{BdB: B ¢ F}.

IV.6% Definition. A collection B of open sets of X 1s said to be
boundary nice if (a) for all U and V in B, BdU n BdV n (Bd(U-V) u

Bd(V-U)) = ¢ and (b) for all U 1in B, dim(BdU) < 0.

IV.7. Proposition. Aiet B be é boundary nice collection of'openyéets
of X. Then

(1) for all U and Q iﬁ B, BdU n V 1is closed

(2) for all U and -V in B, C&(U-V) n CL(V-U) = 9

,(3) [B] 1is boundary nice.

Proof: e cz(Bciu nV) <V cBAU nBAV n B;l(V-U). = #. Hence
CL(BdU n V) = BdU n V. ‘

(2) ca(u-v) n‘Cl{éV-—U) _igBdU n BAV n BA(U-V) = 9.

(3)- Let F and..G beipgp fiﬁite subcollections of a boundary
nice collectibn‘o% open sets. it suffices to show that Bd(nF) n Bd(nG) n
Bd(nF - nG) = § and Bd(UF) q/éd(uG) n Bd(uF —IUG) = @. Let us ;acile

_ N , _ :
the former equation.‘ ; v -

-Bd(nF) n Bd(nG) n Bd(nF-nG) = Bd(nF) n Bd(nG) n CL(nF-nG)

SUﬁdF nﬂczc nuqcz(ﬂ (F-G)) .

FeF GeG GeG FeF

Thus 1f p e L.H.S. then there exist Fe¢ F and G ¢ G sﬁbhAthat

i,
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peBAF n CLG n CL(F-G) € BAF ™ BdG 1 Bd(F-G) = @. For the latter

equation we have

Bd(uF) n Bd(uG) n CL(UF-uG)

(X-uF) n UBdG n U (Cl(m(F-—G))).

GeG FeF GeG

Bd(uF) n Bd(uG) n Bd(uF-uG)

In

Thus if p_¢ L.H.S. then there exist F ¢ F and G ¢ G such that

pe (X-F) n BdG n C2(F-G) S BdF n BdG n BA(F-G) = .

Furthermore, from the equations Bd(U uV)v_C_ BAU' u BdV and

Bd(UnV) <« BAU u BdV we conclude that for all W ¢ [B], dim(Bd W)y<o.0

We quote the following theorem established by K. Morjita [25]. A -
proof can also be found in A.R. Pears [27].
Let Y be a regular space. The following are equivalent:

1. Y is a metric space with dim Y < n.

2. There exists a o-locally finite baée U such that
n+1

a) for any n+1 elements U ,**+,U of U, m(BdU)= )
a 1 n i=1 i N

b) for any U € U, dim(Bd U) < n-1.

A base ring B for a space is a base for the open sets such that

B = [B].

IV.8. Lemma. X has a countable i)ase ring B which is boimdary nice.

Proof: Applied to our situation, the aforementioned theorem  “orita's
supplies a countable base B' such that for distinct U anc in B',

47T nBAdV =P and for all UeB', dim(BdU) < 0. Such a B' 1is

- .::irly bour”~ry nice. Let B = [B']. By Proposition IV.7(3), B 1is
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our required base. []

Thé property of having disjoint boundaries does not carry over to
the ring generated; 1t was partly for this reason that we introduced the
idea of boundary nice.

The following proof 1is similar with thag in Hurewicz and Wallman‘[lé]
(pg. 177). However, to produce an open set in the given base ring B,
the extra hypotheses of compactness and A being closed are needed.

For this reason we include the proof.

Iv.9. Lemma. Let X be a compact.metric space with dim X < 1.
Let B be a countable base ring for X such that for all U ¢ B,
dim(Bd U)i 0. Let Cl and Clz be disjoint closed sets of X. Let A
be a closed set in X with dim(A) < 0. Then there exists B ¢ B with

I
S

CIEB, CLB nC2=¢ and BdB n A

Proof: Since B 1is a base ring and X 1is compact there exist U and

'V in ‘B with C, cUcCtU cVc(CLV cX-C Since C2(U) n A is

1 2’

closed in A, V n A is open im A and CRU 'n A ¢ V'n A there exists
A' open in A with C2U nA cA' cVnA and BdAA' =f di.e. A' is
also closed in A hence closed in X. Cl U A' and CL(A-A') are dis-
joint closed sets. For, A-A' 1is closed in A, therefore C2(A-A') n

A=A-A", 'thus CL(A-A") n A' = @. Since A-A' < A;-U, cL(A-A") < A-T.
A
Hence Cf(A-A') n Cl = @. Thus (Cl UA'") n CL(A-A") = f. Let* We B

such that C, UA' < W and CLW n (A-A") = @. Let B =V nW. Then

B ¢ B, C,cB and CLB nC, = #. Since B < W it follows that

CLB n (A-A") = § so that C2B n A cA'. But A' ¢ B so that

CLB nA=A"'. Hence BdB n A=CLB n (A-B) =A'-B=0. [

-

R 2
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Here is the main result of this chapter.

1V.10. Theorem.' A compact metric space X of dimension one has breadth

two.

Proof: Let B be a countable base ring for X which is boundary nice.
Without loss of generality assume .{@,X} < B. B dis then a 0-1 dis-
tributive lattice under union and intersection. We shall show that there

exists S ¢ B with b(S) = 2 and B = {nF: F 1s a finite subcollection

of S}. This S will be our required subbase.

Let B = {Bi: i < w}. Assume open sets 01,02,---,0n have been

constructed such that

1. for all 1 <4i<n, O, eB

i
2. b{Ol,pz,'°',On} =2
3. {Bj,B,;°",B Y ¢ [nF: F < {01,02,-.--,%}}.
Now consider BT+1.V Finitgly many sets in B will be found which inter-

sect in BT+ and which together with {01,02,'-°,0n} have breadth two.

1
To do this, Proposition II1.3 is employed. That is, for each pair 0, = Oj’

we find open sets O and. O that are elements of B and satisfy the

ij ji
hypotheses of the proposition. The resulting sets that the proposition

supplies will be members of B, will intersect in BT+1 and will,

" together with {01,02,J--,On} have breadth two. Thus ending the proof.

Consider {(j,k): 1 < j < k < n}. Endow this set with .the lexico-

graphic ordering.

|

Part A. Construction of ’ij where 1 < j <k =~ -

Assume we have constructed ij for (j,k) < (r,s) ~such that

Al. ij € B
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A2. “a,b) < (r,s) and (a,b) = (j,k) dimplies Ed ij n C!le anOba= ]

|
=

) ) B
1 <2 <n ~implies Id ij n C!LOj n dOQ

A3, O)UU(BdO nCcLo,n0 ) co ,cO
2 i K J— —_
<2<l b k kj k

<

A4, CLO,, n [CR(O,-0.)u(BdO,. nBdO )u U (BdO,,n CLO, nCLO))
kj j k i - k §<j<e<k 2; i j

U (CeO,nCLO,nCRO, )]= 0.
1< 1 j ji

2

Now to define Osr' First we show that C CSL(O -0 ) u U (BdO
r<f<s

-Cl(O —O)u(BdO anOS)u U (BdO nCR,Oin

cL0 nClO) and C
r
i<r<<s

2

C!LO ) U (ce Oi n CH.O n CR.O ) are disjoint closed sets.  This
i<r
follows from the following observations.

oo o

(a) CP.(OS—Or) n Cz(Or—OS) = @ (boundary nice)
(b) €2(0_~0) n BdO_ nBAdO_ cBd(,-0) nBAO_ n BdO_ = p

(¢) 1 <r <% <s implies CiL(Os-Or.) nBdOo,, nCRO, n CLO E_Bdolin

ClOin Bd0r= g (A2)

(d) 1 < r implies CR,(OS-OI_) nCfO nCZIOr r1C!LOI_i < Bd Or n. Bd Oin CR.Ori

i ;
= ¢ (A4) .
. . S |
. 4
(e) r© < 2 < ,S implies Bd er n CL Or nCcL Os n Cg(Or-—OS) < Bd P Cce Or n
BdO_ = 9. (A2) ) ' \
' \
(f) r < & <sg dimplies BdO, n-CLO n CRO n BAdO_nBAdO < BdO, n ‘
Lr T s - T s — . 2{ _

BAdO_ n BdO, = § (a4) : ' i

(g8) r<f2<s and 1 <r <m< s implies

BdO, nC20_ nC20 nBAdO ,nCLO,nCLO_ < BdO, nC20_n BdO
Lr b s mi i r — ir r mi

=0 (A2)



\

(h) 1 <r <2 <s implies BdO, n C2O n CLO n CLO,Nn CLO_n CLO_ =9
Lr r s . i T ;ori
)
(A4, since (r,&) < (r,s) and therefore C& 0,0 c2 Oi r)/CSLOrn

csLori = @).

. /,/
Let A = Bd Oba U U Bd 09. . Then A /s a closed
(a,b) <(r,s) 1<f<n

subset of X with dim A < 0. Invoking Lemma IV.9, there exists

i

V €B with ¢, cv , cCav nNC,=® and BdV . n A =0. Let
sT 1l — sr sTr 2 ST

o _ =V n Os. Then Osr satisfies Al, A3 and A4. To establish A2 we’

ST sT
/

prove the following: Bd4dO nCcLO <B4V _ .
sT r — sT

/

Bd O nNCcLO_ = Bd(V._nO) nCLO nCRVZ
sr r ST S r r

c (BAV._uBdO) n CLO_ /n CLV
— ST s r ST

In

B4V u (BdO nczo/’ ncLv )
ST S r ST

Bd vsr U (Bd Os n Bd 6!‘ n CL vsr) I(Cl_vsr n (Or—OS) =@)

BdV__ .
sr

This completes the construction of ’ Osr
(

Part: B. Construction of Ojk where 1 < j < k <. N

For each 1 < j < k < n, we would like to replace Bd ij n CL 0j

by a larger open set U, . < 0k and still have A3 and A4. To do this

kj
realize that for j <2, Bd0,, n CRO; €0, . For '
(Bdo” n czoj)-,oz gBdoij nBd 0, n Bdoj = 9. Now, for j < 2 <k,
Bdolj n C!.Oj n Cl(Ok—-ij) c Bdolj n C,Q,O:j n Bd0k= # (A3, A2). HeFlce
k gk
we can find ‘sz ¢ B such that_Bd olj n CL Oj f-vlj <0, -and
k _ k
V!,j.,n Cl(Ok-—ij) = § which implies Vlj no < ij. It now follows

that by using normality, the fact that B 1is a base ring for a compact



space and by repeatedly dntersecting the open sets created we can con-

struct by lexicographic induction open sets Uki for 1 < j <k <n

such that the following holds:

Bl. ij and Ukj are members of B.

. L .
B2 Bdokjn C Oj —C-Ukj—c—ok

B3. (o ~0,) v k.) (U,,.n0,) <0, <O, .

,uCiU )n [Cl(oj—O)U(BdOjanok)u U (Ulianloj)u

' B4. (czok
‘ 1<j<g<k
U(CRO NCLO, nCLO )] @.
bt 3 ji
The stage 1s now set to define Ojk' Denote the longer expression in B4
by R. Since ‘CZij E.ij u Ukj U (X—CZOj) we know that
cL0 n[ceo, nX-(0,, uU )] =9p. Let V., € B =such that
kg " 1C20; Oy v Uy sk
RcCRO, nX-(0 ., vU.,)cV, and CRV n CRO = P. Let
£ CR 9, O ¥ Uiy = V5 3k ki
0 =V, nO0,. Thus the following holds:
jk T ik T &
ci. o, ., Ukj and Ojk are members of B.
c2. cLo nCLO = @,

. jk kj \

C3. ij u Ukj v Ojk = Oj U Ok.

Ch. (O O)UU(UanO)CO <0,

I ek
c5. (0 O)UIU (U nO)UU(O n0 nO)cO .
R e <3 3t E

Part C. The hypotheses of Proposition II.3 are satisfied by Ojk and ij

Hypothesis (1). Cé4 and C5 imply ojk < Oj, ;ij < Ok and

Ojku0k=0kjuoj=ojuok.
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Hypothesis (2). C2 implies Ojk n Ok’

’

J

- 0

%41 £ Ok

Hypothesis (3). Let 1 < j <k
(a) C5 yields Oi n Oj n
U no,<0,.
ji j — jk

(0, 0,) nO, €0
i b |

i

| n

1]

E-Oij U Ojk'

jk

U

0,. U [(Oirnojnwo

(b) C5 with 2. = k yields

(OilJOk) no, 0,

3

0,
J

€ O ¥ %4k

-

(c) C4 ylelds Uji n

(OilJO ) n o cO0

i k

k

E-Oki U Oij u

jk

ki

0

ki

0

U

vo,.

U

it’

Ignoring the order, we

0i E-ojk v ij U

Hypothesis (4a).

0

u

ij-

We did this in

3

Oij

0, = (oi—oj) v (o]L n Oj)

) . 0
i) U (Oirwojrwuji) U (Oi n

U

0

ik

(Oj—Ok) U (0k n Oj)

kS Oy

)

Hypothesis (4b). Let 1 < j <k

C3, we ge
Ok

This concludes the proof. a

= (0,-0.)

t

3

v

u Ojl

1]

0 = (Ok—Oi) U (0i n Ok)

v}

i

U

0

Oji

0,
J

ki’

and also with

The latter, using C3, yilelds

. .Therefore,

<0

J

jk’

3

3

no

i)

Using C3, we get

.Using C3 we get

vo,,.

ji

Therefore,

Therefore,

surely have:

05k

For distinct

part (a) above.

< 2.

uok) n o,

(0,

uo

n

ik

C5 yields U

Oj)

uo

J

ki’

<o,

it

ki
uo

n

ik

0,

j =

uo

i,]

ki’

hES

’k’

Using

Therefore,
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IV.11. Corollary. A separable metric space of dimension one has breadth'.

two.

Proof: . K. Menger [18] has constructed a universal one-dimensional
sebarable metric space which is also compact. .The result follows from

the monotonicity of the breadth function. [

The techniques used in these results seem to be peculiarly one-
dimensional in nature. Since all non-degenerate O-dimensional and
l-dimensional separable metric spaces have breadth two, breadth.does
not depend. upon dimension. The following intriguing question arises.
Do all separable metric spaces have breadth two? Equivalently, is the

breadth of the Hilbert cube two?
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