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ABSTRACT

Recent field work has demonstrated that recording stress relief
displacements with double exposure optical holography shows promise for
the quantitative determination of stresses from a borehole. A practical
problem, however, is that the determination of the in situ stress requires
knowledge of the stress-relief displacements on the surface of a body induced
by drilling a small hole perpendicularly into the body. Two analytic
displacement models have already been developed but may be in error due

to the simplification in geometry and boundary conditions. Hence, the
| validity of these analytic models needs numerical and laboratory testing.

One part of this study consists of a three dimensional finite element
analysis of the displacement induced by the drilling of a finite depth stress-
relief hole into the surface of an infinite halfspace which is used to represent
the borehole wall. Displacement fields are calculated for various stress-relief
hole diameters, stress-relief hole depths, applied stresses and Poisson'’s ratios
in order to determine the influence of these parameters. Comparison of the
analytic to the finite element stress-relief models suggests that the analytic
models may underestimate the stress magnitude by 50 to 75 percent.

A series of holographic experiments and corresponding finite element
calculations were conducted on plexiglass blacks under uniaxial stress. In
these experiments, both the hole depth and the applied stress magnitude
were varied. The synthetic fringe patterns calculated on the basis of the finite

element analysis are in agreement with the observed fringe patterns. This



agreement suggests that numerical solutions to the three dimensional stress

relief displacement field may be preferable to the analytic models.
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Chapter 1 Introduction

The measurement of in situ rock stress is important both to constrain
active tectonic processes and to support the design of subsurface engineering.
Rock stresses are generally difficult to quantitatively measure due to the
complexities inherent in a rock mass and the difficulties of access to
measurement sites. To present, a few of the well-known quantitative
measurement techniques (Hudson and Cooling, 1988) include the CSIR
doorstopper cell, the USBM borehole deformation gage and the hydraulic
fracturing technique. Of these, hydraulic fracturing is the only technique that
has been successfully applied in a deep borehole. Since many of these
techniques are often very expensive or difficult to implement, there remains
much room for further development of stress measurement technology. The
research presented here was motivated by the need for a relatively fast and
inexpensive technique to acquire quantitatively the stress tensor from a
borehole.

In the 1970's, Schmidt et al. (1974) proposed a-technique to measure rock
stress magnitudes from a borehole by using optical interferograms commonly
referred to "double exposure holograms". The technique was further
developed in series by Cohn (1983), Bass et al. (1986), Schmitt (1987) and
Smither et al. (1988, 1992). In concept, double-exposure holograms are used to
record stress-relief displacements induced by drilling a small hole into the
wall of a borehole. The stress-relief displacements are manifested as a p2itern

of fringes in the resulting image. The stress tensor may then be determined
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from the fringe pattern if the relationship of the displacements to the stress
state at the borehole wall is known.

Consequently, in order to obtain the stresses in a stress-relief experiment,
the displacement-stress model must be found. Given a combination of hole
dimension, material properties, and stress magnitude level, a synthetic fringe
pattern may then be calculated. If the synthetic fringe pattern is in agreement
with the observed fringe pattern, then one may obtain the stresses.

Since the double exposure holograms are sensitive to all three
components of the displacement field, an analytic solution to describe the
displacement field induced by drilling a hole is difficult to obtain. To present,
two analytic stress-relief displacement models have been proposed to describe
these displacements. |

The first and simplest is the plate model of Bass et al. (1986) and Schmitt,
(1987), in which a small part of the wall of a borehole is approximated as an
infinite, homogeneous, isotropic elastic plate with a thickness of twice the
depth of a stress-relief hole. The plate is assumed to be subject to a state of
plane stress. Stress-relief displacemenfs resulting from a modelled stress-relief
hole which goes through the plate are considered to model the stress-relief
displacements caused by drilling on the wall of the borehole. The second
analytic model consists of an infinite homogeneous, isotropic half-space with
a throughgoing hole and with a plane state of stress loaded at infinity
(Smither and Ahrens, 1991). Due to the lack of the laboratory calibrations and
due to some differences between the synthetic fringe patterns and the
observed interferograms which cannot be accommodated by the analytic

models, their validity remains in question. A few queries are: Is the plane
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stress assumption of the plate model sufficient to explain stress-relief
displacements on the surface of a borehole due to drilling a hole? May a
sufficiently deep stress relief hole be modelled by the analytic formulations?
And does the existence of the bottom of a stress-relief hole substantially affect
the stress-relief displacements? Because it is difficult to derive a theoretical
model which allows an unambiguouws resolution of the three dimensional
problem we face, the numerical method of finite element analysis (FEA) is
used to test the validity of the analytic models.

An analysis of the stress-relief displacements with two dimensional finite
element method (FEM) was conducted by Smither et. al (1988). In this work,
some significant results were obtained. In particular the effect of changing the
depth of the stress-relief hole on the displacements was noted. However, the
application of the results are limited because it is impossible to produce a
synthetic fringe pattern from the two dimensional results. Also, the errors in
substituting the two dimensional results for a 3-dimensional problem are
unknown.

Due to the uncertainties inherent in the earlier analytic and two
dimensional finite element models, a three dimensional FEM is introduced
in this thesis. The first objective of the present research is to set up a versatile
tool to provide the stress-relief displacements whatever the possible boundary
conditions are. The second objective is to explore errors in the analytic
models in order to judge their reliability and applicability.

This thesis is organised as follows. First, the principle of double-exposure
holography, which involves the formation of the fringe pattern of an

interferogram, the reconstruction of a fringe pattern, the relation of the fringe
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pattern to the displacement vector and the calculation of a synthetic fringe
pattern of a known displacement field, is introduced in Chapter 2

Chapter 3 briefly discusses how stresses may be measured from a borehole
by drilling a small hole (the stress-relief hole) perpendicular into the borehole
wall, and reviews the existing analytic displacement models and the two-
dimensional FEA in detail.

The deficiencies of these prior models provide the motivation for a 3-D
finite element modelling of the stress-relief displacements in Chapter 4. The
geometry of 3-D finite element mode! (FE model) and the characteristics of its
stress-relief displacements are discussed. Then, the effects of various factors,
including the size of the stress-relief hole, the parameters of elasticity, and the
applied stress on the induced displacements are presented. In order to explore
the errors of the analytic models, a comparison between the analytic models
and the finite element model is made.

Finally, Chapter 5 describes the results of a series of laboratory holographic
experiments and direct comparisons between observed and synthetic fringe
patterns.

Chapter 6 concludes with é summary of the findings and future research

directions on this topic.



Chapter 2 Principle of Double-Exposure Holography

2.1 Formation of Fringe Patterns

The double-exposure method (e.g., Smith, 19¢9 ) is most widely used to
construct interferometric fringe patterns which provide information of the
displacements on the surface of an object. The method simply entails taking
two consecutive holographic exposures on a single piece of film. Interference
of the wavefields of the original and the changed state produce a fringe
pattern which is the record of the displacement field on the surface of an
object. In this chapter, the theory behind the formation of the fringe patterns
is briefly discussed.

In the present study, the holographic method is applied to measure stress-
relief displacements from the "blind hole" drilling of a small hole into the
surface of a stressed object. When the displacements are recorded by the
double-exposure holographic method, we can use the relation between the
displacements and fringe pattern to obtain in situ stresses. |

To create a hologram, a coherent laser light is first separated or split into
two beams. One is the object beam and the other is the reference beam. The
object beam is expanded or diffused to illuminate the surface of an object; this
light is nonspecularly reflected from the object and illuminates the
holographic film. Simultaneously, the reference beam is expanded directly
onto the holographic film ( Figure 2-1).

Interference of the object and reference beams within the emﬁlsion of the

film produces, upon developing, a diffraction pattern of finely spaced lines



Mirror Mirror
' Reference beam
/ P

Lens

# Film

Lens

Laser Borehole wall
(A stress-relief hole

Splitter Object beam will be drilled here)

Figure 2-1 Schematic of optical holographic system used for producing a
double exposure hologram.



7
which is called the hologram. When a replica of the reference beam is used to
illuminate the hologram, this diffraction pattern "reconstructs” the original
light wavefield scattered from the object; it is this wavefield which creates the
three dimensional holographic image. In a double exposure hologram, two
distinct wavefields are reconstructed and their interference results in the
fringe pattern which provides the information on surface displacements.

In the laboratory, the holograms are reconstructed by an intense laser
beam from a 30 mW He-Ne laser propagating through a point on the
hologram. The resulting "real" two dimensional image appears on a plate
below the hologram (Figure 2-2).

A detailed depiction of the formation of the fringe pattern of a double
exposure is given by Ostrovsky et al. (1991) and briefly reviewed here. The
amplitudes of light A1 and A2reflected from the surface of an object in two

different displacement states can be expressed as
A\ = ay exp(-ip) , 2.1)
Aj = ay expl-i(9+3)] , 22)

where a,and ¢ are the amplitude and phase of the wave scattered by an object
in its original state and § is the strain-induced phase change of the object
wave in the hologram plane. Similarly, the expression of the amplitude of

the reference beam is

Ar = a; expl(-iy)] , (23)



where 2, and y are the amplitude and phase of the reference wave. The total

exposure Ed after double-exposure on a film is
Ed=|A1 + Aft + [A2 + Afrp 2.4)

where T, and t, are the time durations of the first and second exposures,
respectively. Substituting equations 2.1, 2.2 and 2.3 into equation 2.4 and

letting t, = t,= 1, we obtain

Ed = 2a} +a?)t +tap aexplivexplio) + expl-{0 + 8))
+ tag asexpl-ioNexplio) + explo + 8]} . @)

According to the curve of amplitude transmittance vs. exposure, the relation
of the amplitude transmittance of a photographic layer T to the exposure may
be expressed as ( Smith, 1969; Francon, 1974)

T=bo +biEd , (2.6)

where b, and b, are constants.
When reconstructing a double-exposed hologram with a reference wave

(Figure 2-2), the wave at the back side of the hologram has the amplitude

A =T aexpl-iy) 2.7

Substituting equations 2.5 and 2.6 into equation 2.7, we arrive at



HOLOGRAPHIC FILM

H

N

LASER

PROJECTED
REAL IMAGE

Figure 2-2 Reconstruction of a double-exposure hologram. A real image of
fringe pattern is consizucted by using a laser beam which illuminates a point
on the hologram (aftzr Schmitt, 1987).
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A=[ bo + 2b|t‘a% + a%)]a,exp(-iw) +bytagatlexpl-io) + expl-ilo + 8)]}
+b ltaoa%{exp(iq;) + exp[i(¢ + 8)]}exp(-21w), (2.8)

where the first term represents the zero-order wave, the second term
represents the two object waves which will form a virtual image and the
third term represents that a real image of the object will be formed if the
hologram is illuminated by a wave which is conjugate to the reference wave.
The real image then can be recorded by a film which is placed at the back of
the hologram. If the distance from the hologram to the film in construction is
the same as that from the object to holographic film in the experiment, an

image with the same scale as the object may be obtained.

2.2 Relation of Fringe Pattern to Displacement Vector

Figure 2-3 is a ray diagram detailing the relationship between the surface
displacements and the resulting change in phase for the double-exposure
method. S is the source of object beam; s, €; and ez, e3 are the unit vectors
describing the propagation directions of the illuminating and'reflecting rays
corresponding to the points Q and Q' on the surface of the object. The point H
is the position of a point on the hologram. Q and Q' represent the original
and displaced positions of a point on the surface of an object. D is the
displacement vector from Q to Q'. r,, r,and R are the radius vectors of points
Q, Q and H, respectively. The path difference between the rays from the light
source through Q and Q' is

A=SQH-SQH (2.9)
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Figure 2-3 Arrangement of double-exposure holographic interferometry. S is
the source of object beam, es, e1, e2 and e3 are unit vectors of illumination
and reflection corresponding to the points Q and Q'. H is the position of a
point in the hologiam film. Q is a point representing the original state on the
surface of an object. r,, r, and R are the radius vectors of points Q, Q' and H,
respectively. The point Q displaces to Q' when the object is deformed. D is
the displacement vector from Q to Q".
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In terms of Figure 2-3,
SQH=és+r  +&1+(R -1y), (2.10)
SQH=e2¢ ry+e3+(R -r3) @.11)
Substituting equations 2.10 and 2.11 into 2.9, we obtain
A=€reri+e3 ¢ (R-ry)- éser; -e1+(R-1), (2.12)
_The unit vectors have the relation
€2 =es +Aes. e3=e€) +Ae; (2.13)
Substituting equation 2.13 into 2.12 a. d rearranging gives:
A=(€s-€))e(ra-1))- Aesery -Ae1 (R -1} (214

Note that [D} is in the order of a few microns whereas|r)| [rjand|R] are in the

order of centimetres, therefore, |r-| >lDl and |R - r2|>|D| indicating that
Aes and A€ are essentially perpendicular to r; and R -r whereupon the

second and the third terms in equation 2.14 vanish. Then equation 2.14

simplifies to:

A=(es-e1)ery-Ty) (2.152)
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which is the same as
A=(es-e1)+D. (2.15b)
The phase difference § due to the change in length of the ray paths, therefore,

is

e

where A is the wave length of the coherent light. A bright fringe in the image

exists under conditions of constructive interference and will appear if
d=2nn (n=0.il,i2,i3.-~-)_ (2.17)

Similarly, the destructive interference condition resuilts in a dark fringe when

= 1 =
8-2n(m+2} (m=0,£1,22,+3, ). 2.18)

Here, n and m are the dark and bright integer fringe orders, respectively.

Since
n=2
2r (2.19)
and
=19
""5(- x '), (2.20)

theii equation 2.16 can be rewritten as

nA =K <D (2.21)
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for bright fringe and

[m- ;T) r=K-D (2.22)

for dark fringe. K =(es - €1)is called the sensitivity vector and is a function
of the geometry of the holographic apparatus, that is, the relative position of
S, Q and H. K is called the sensitivity vector because it controls to some degree
which component of the displacement vector D is best recorded in the fringe
pattern. That is, the fringe order at a point H on the hologram results from
the component of D in the direction of K as suggested by equations 2.21 or
2.22. Hence, the smaller the angle between the sensitivity vector K and the
displacement vector D, the greater the representation of the displacement in
the fringe pattern. Conversely, for example in equation 2.22, if K and D are
perpendicular then the fringe order equals zero for a dark fringe and -0.5 for
the a bright fringe. One must consider this fact in the design of the
holographic recording system in order to maximize the effectiveness.

In theory, the displacement vector at a point on th.e surface of an object
may be determined by equations 2.21 or 2.22 if the absolute fringe order is
known (Ostrovsky et al., 1991). In terms of equation 2.21, to determine the

three components of a displacement vector at a point requires three equations

K1 D= nlk ,
Kre D= nzl’
Ki*D=nsA (2.23)
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where K|, K. andK3; are three different sensitivity vectors corresponding to
three different illumination directions (i.e., source positions for a set of three
double exposure holograms) and n,, n, and n, are the fringe orders seen in
each of the three different double exposure holograms at the same position
on the surface of an object. This requires that three holograms must
simultaneously be taken with three individual holographic plates at different
positions. It is this rather cumbersome fact which has held up the
quantitative application of double exposure holography. In our study, we do
not attempt to invert the observed holographic fringe patterns for an actual
displacement vector at a point on the surface of an object. Rather, we use a
displacement model over an area of the object surface to construct calculated
frihge patterns which may be compared on a quantitative basis to those

observed.

2.3 Forward Modelling

It is experimentally difficult to record stress-relief displacements with
three simultaneous holograms due to the size limitations of the borehole.
Hence, we must attempt to solvé our problem with a single holographic plate
by matching the observed hologram to a calculated fringe pattern deduced
from a displacement field model.

A formula for constructing a synthetic fringe pattern may be derived by
rewriting equations 2.16, 2.19 and 2.20 as

5"=(27HK'D, (2.24)
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-
7 o, (2.25)
13 )

my=317 (2.26)

where 8y, nyy and myy are the phase difference and the real fringe orders of
bright and dark fringes, respectively, which correspond to the coordinates (x,
y) on the surface of an object (Figure 2-4). Let N and M be the closest integers
to the bright fringe order n,y and dark fringe order myy, respectively. In our
forward calculations, a bright fringe will be declared for the purpese of

plotting when

IN-nyy|<a (2.27)

is satisfied. Similarly, a dark fringe will be declared if

IM-my|<b, (2.28)

where a and b are the ranges for the bright and dark fringes, respectively.
Here, a and b are chosen equal to 0.25 to simulate the characteristics of a fringe
which has a range of 0.5 from an integral dark fringe to its closest integral
bright fringe. For example, if M equals zero the real numbers between -0.25 to
0.25 will form a dark fringe and 0.25 to 0.75 will form a bright fringe. The

plotting of these synthetic fringe patterns will be discussed in a later section.
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Figure 2-4 Forward modelling of fringe pattern. For a point Qxy on the
surface of an object, the corresponding displacement vector is Dxy and
sensitivity vector is Kxy. Fringe order at this point will be determined by
eguation 2.25 or 2.26. (revised from Schmitt, 1587).
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Chapter 3 Stress-relief Displacement Models

In this chapter, the geometry and the stresses near a stress-relief hole
drilled into the wall of a borehole will be discussed. The existing analytic
displacement models: the plate model (Schmitt, 1987), the infinite depth hole
model (Smither, 1991), as well as a two dimensional finite element model
(Smither and Ahrens, 1988), will be reviewed. The results of analysis of these
displacement models will be used for the basis in setting up the three

dimensional finite element model.

3.1 Method of Stress-relief

In order to set the stage for the stress-relief displacement model we first
consider a borehole drilled into a stressed medium as shown in Figure 3-1. If
we only consider the stresses on the wall of the borehole, there are only three
non-vanishing stresses which are Ggo, the hoop stress; Opp, the stress along the
axis of the borehole; and tgy, the shear stress on the borehole wall. These
stresses are related to the far-field stresses, Gxx, Oyys Ozz» Txy» Txzs Tyz, and are

expressed as (Hiramatsu and Oka, 1962; Leeman and Hayes, 1966)
Ogel0) = Oxx + Oyy - A0xx - Oyyk0520 - 414ysin26
o...,(e) = .\,{2(0,‘x - Gyyk0s20 + 4txysin29] +0z, (3.1)

te,,(e) = 214,510 + tyzcose).
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I
|
I
|
Oxx Txy |<>| Tyx Cyy

Figure 3-1 Stress field around a borehole. The far-field stresses with respect to
Cartesian coordinate system and the stress components around the borehole
with respect to cylindrical coordinate system. (after Leeman, 1966)
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According to Leeman's method, if three sets of stress components around
the periphery of a borehole are measured at different azimuths, the far-field
stresses may be determined by equation 3.1. This is the theoretical basis upon
which some stress measurement techniques, such as USBM borehole
deformation gage technique, were developed. Quantitative determination of
stress magnitudes by double-exposure holography may be used to determine
the borehole wall stresses at three azimuths by optically recording the stress-
relief displacements induced by drilling a small hole into the borehole wall.
Figure 3-2 shows the geometry of a small, centimetre scale stress-relief hole
on the wall of borehole. Since the stresses change rapidly in the radial
direction from the wall of borehole, the stress-relief hole must be sufficiently
shallow such that the stresses along the depth of the stiess-relief hole may be
approximated as uniform. Furthermore, we assume that a fringe pattern
produced by micron order stress-relief displacements is constrained within a
small area relative to the area of borehole wall such that the degree of
curvature over this region is small in order that the area is approximately
plane. The geometry of the problem is simplified as showﬁ in Figure 3-3
where the stresses applied are assumed to be the stress components at the wall

of a borehole and they are assumed uniform along the vertical direction.

3.2 Plate Model

The simplest analytic stress-relief displacement model is called the plate
model (Schmitt, 1987). The model assumes the borehole wall as an infinite,
isotropic, elastic plate with a throughgoing hole and with a thickness twice

that of the stress-relief hole depth (Figure 3-4a). The stress-relief



Figure 3-2 Borehole with a small, finite depth stress-relief hole.
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Figure 3-3 Simplified geometry for a small finite depth hole drilled into a
borehole wall.
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displacements on the surface which are obtained under the assumption of

plane stress are

u, = L (Ggp + Onp)(1 +V )ﬁ + (Cgp '0'hh)[iai -(I+v )ﬂi]cos 29
2E r r 3

+ 202 (1 +v )%]sin 20 }

*

Uy = L &a-v )lai +(l+v )Qi][(oee - Opp)sin 2¢ - 2Tg,cos 2¢ |
2E r r3 (3.2)

ug = VELL [(Gop - Ghn)COS 20 + 2Tgsin 20 |
r-

where u,, uy and ug are the radial, tangential and vertical displacements
related a cylindrical co-ordinate system as shown in Figure 3-3, G¢e: Chh and Tg
are the stresses applied to the plate at infinity, and ¢ is the azimuth between
Ogp and r. a is the radius of the stress-relief hole, t is the plate thickness, E is
the elastic (Young's ) modulus and v is Poisson's ratio. Note that in this
model the in-plane displacements u,and u, are independent of the depth of
stress-relief hole, whereas the out of plane displacement uzis linearly

dependent on the depth.

3.3 Infinite Depth Hole Model
Smither et al. (1988, 1991) indicated that some field holograms appear to
have smaller displacements near the stress-relief hole than were psedicted on

the basis of the simple plate model. There are two possible sources for this
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error in the plate model. The first may be related i the stress-relief hole
geometry ( e. g., the neglect of the effect of the bottom of a stress-relief hole ),
and the second may be related to the plane stress assumption which is used in
an elastic thin plate.

In addition, Smither et al. (1988) explored the error in the plate model by
using a two dimensional finite element analysis. The results of the
calculation shows that the plate model prediicts larger vertical displacements
and hence underestimates the in situ stresses. Calculations conducted in two
dimensions, in the x1 - x3 plane or the x2 - x3 plane of Figure 3-3, does not give
the stress-relief displacements on the entire surface of the model. Hence, a
synthetic fringe pattern which needs stress-relief displacements on the entire
surface can not be produced and the comparison with an observed fringe
pattern cs:: not be made.

In order to overcome these difficulties, Smither and Ahrens (1991)
proposed a more sophisticated displacement model ( the infinite depth hole
model ) consisting of an infinite isotopic elastic half-space with a
throughgoing hole loaded atinfinity under a plane st;ate of stress (Figure 3-
4b). This model was based on the plane stress relaxation approach of
Youngdahl and Sternberg (1966). In the calculation of the stress-relief
displacements, the principal stresses 6, and o, at infinity are decomposed into

a hydrostatic stress 6, and a pure shear stress o5 expressed as 01 = '%(Gl +01)
and 0s=12(01 - 02), respectively. The displacements on the surface of the

model are:

u,=(—lﬂ—)§{ SH + g,cos 20 [uB+4-(l:v—)-—L] }
E p P p3 ,
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Figure 3-4 Analytic stress-relief displacem:nt models with respect to
Cartesian and cylindrical coordinate systems. (a) Plate model; (b) Infinite
depth hole model.
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(1+v)a (1-2v .
Up == —F [-ug + 2—6—-)- + ;—3] sin 20 o

*

_ (l4v)a_ R
“i"""E_cs ugcos 20

, (3.3)

where u:®, u.t and uet are dimensionless quantities (Smither and Ahrens,

1991) referred to the residual displacement components of the solution to the

pure shear problem, 8 is measured from the 6, direction, and p =r/a is
dimensionless radial coordinate. Calculations demonstrate that the stress-
relief displacements obtained from this model are greater than that of the
plate model.

Does the infinite depth hole model more reliably predict the real
displacement field due to the predicted displacements greater than that of the
plate model? If so, why does the two dimensional finite element result in
smaller stress-relief displacements than the plate model? The contradiction
indicates that the analytic models and two dimensional FEM may
inappropriately model the geometry and the boundary conditions related to
the stress-relief problem at hand. This suggests that further work on this
problem is necessary. Since it may be difficult or impossible to construct an
appropriate analytic model due to the complexities of the boundary
conditions, we decided to use the three dimensional finite element method
(3-D FEM). The advantage of 3-D FEM is that it accounts for the complex
geometry of the stress-relief hoic and allows us to abandon possibly

inappropriate assumptions ri:gacding; the stress state. As in the other models,



27
the calculated surface displacement field of the 3-D FE model shown in Figure
3-3 may be used to produce a synthetic fringe pattern. This synthetic fringe
pattern may be compared to the observed fringe pattern. In the 3-D FE

calculations, the model will be considered as an infinite halfspace with a
small, finite depth stress-relief hole in terms of the boundary conditions in

which the applied stresses are uniform in the direction of the stress-relief

hole.
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Chapter 4. 3-D Finite Element Modelling of

Stress-relief Displacements

In this chapter, the results of three dimensional finite element modelling
of the displacements induced by the drilling of a finite depth stress-relief hole
into a stressed infinite halfspace are examined. In particular, the relationship
of the surface stress-relief displacements to the size of the stress-relief hole,
the material elastic properties, and the applied uniaxial stress will be explored.
The differences between the existing analytic models and the three
dimensional finite element modelling will be quantitatively compared in

order to evaluate the utility of the analytic models.

4.1. Introduction of Finite Element Calculation
In the present study, 3-D FEA relies on a finite element package ANSYS. A
description of the mathematical formulation for solving the nodal
displacement vector {u} of a static elastic problem from,.the equation
(K] fu} = (R} 4.1)
is reviewed in Appendix A, where (K] is the overall stiffness matrix and (R} is
the nodal load vector. A flow chart of the finite element analysis is shown in
Figure 4-1. There are three phases: preprocessing, solution and postprocessing,
required to perform a finite element analysis by ANSYS. In the preprocessing,
a model is formed by defining the coordinate systems, the element types, the
nodal coordinates, the material properties and the load data. The solution

phase goes tiirough the following four steps:



User input: coordinate
system, nodes coordinates,
element types, material
properties, boundary
conditions, etc.

Element stiffness matrix
[k calculation

J

Wave front solution ([k]
assembly and solution steps
simultanously)

!

Triangularized stiffness

matrix [K]

Back substitution

{u}

J {u}

Stress, force calculation,
etc

Figure 4-1 Flow chart of finite element calculation.

2¢
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(1) Formulate the element stiffness matrix [k]. |

(2) Assemble and triangularize the overall stiffness matrix iK1

(3) Calculate the displacement solution {u} by back substitution.

(4) Compute the strain vector (e}, stress vector {o} and reaciion forces.
The final postprocessing phase reviews the results of the analysis by
producing graphics displays and tabular reports of the displacements, the

stresses, and the reaction forces.

4.2. Model Geometry

Here, the problem geometry consists of an infinite halfspace with a small,
finite depth stress-relief hole under a uniform applied stresses along the
direction of the hole. Usually, there are errors caused by the finite element
analysis which uses a limited space to model an infinite space. To reduce the
error, one must limit the effect of the boundaries by making the model large
relative to the range to be studied.

The finite element model is one quarter of Figure 3-3 ( Figure 4-2 ) because
of the symmetry of the problem. A mesh of the finite element model as
shown in Figure 4-3 is adopted. The boundary conditions applied to the
model are: (1) an uniaxial stress is applied in the y direction ( ¢ = 0°); (2) the
boundaries I, I and the bottom are constrained in the normal direction with
zero displacements; and (3) the remaining boundaries, including the surface
of the model, are free from constraints. Note that for convenience, the
notation x,, x,, and x, of the coordinate system in Figure 3-3 is changed into x,
y, and z.

Because of the existence of a stress-relief hole, stress concentration around
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Figure 4-2 Shadow portion which is one quarter of the whole model as shown
in Figure 3-3 is used in the finite element analysis. Here, SH is the applied
uniaxial stress.
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Constraints of the model :

1. Boundary I zero nodal displacement ‘V
_in y direction .
2. Boundary II: zero nodal displacement ¢0

3. Bottom: zero nodal displacement in 2 A
direction.
4, z axis: zero nodal displacements in
 octions. N
5. Origin: zero nodal displacements in x, @
y and 2 directions.

Figure 4-3 Three dimensional finite element model with a stress-relief hole.
The model has the dimensions of 15 cm x 15 cm x 6 cm with 1101 nodes and
768 elements. The stress-relief hole has a diameter of 0.5 cm and a depth of 2.0

cm. The axes %, y and z form a globe coordinate system, and the angle ¢, the

axes r and z form a cylindrical coordinate system, where ¢ is the angle
between the direction of the applied uniaxial stress and the radial direction.
The uniaxial stress SH is applied in the form of surface pressure.
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the stress-relief hole is expected and consequently the finite element mesh
must be dense in this region. In plan view of the model, the high density
mesh region around the hole is determined from the stress concentration
area in an elastic thin plate with a hole (e.g., Fenner, 1986). The area defined
in the radial direction from the centre is approximately five times that of the
hole diameter. The area outside of the region should not experience large
stress concentrations and a lower density mesh is sufficient. Around the hole,
the high density mesh region in the vertical direction was determined by trial
due to the lack of any prior work. This was accomplished by first obtaining a
stress field from the FEA, then modifying the calculated model on the basis of
where the stress concentration appears. These calculations suggest that the
high density mesh volume along the vertical direction is approximately twice
the hole depth. Considering the stress concentrations in the horizontal and
the vertical directions, a refined three dimensional space around the hole was
formed as shown in Figure 4-3.

An 8-node isoparametric solid element with orthotropic material
properties was used. A prism-shaped element is formed by duplicating of two
nodes. This kind of element is useful in constructing the mesh at the centre
of a model.

The element loading may be input as any combination of nodal force and
face pressure. In our analysis, the uniaxial stress is applied in the form of face
pressure. The solution for an element includes the stress components, the
principal stresses, the elastic strain components, and the principal strains. The
nodal solution includes the displacement components, nodal stresses and the

nodal forces. Because the output of stress components is in the form of nodal
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stresses calculated from the element stresses, which are stored per element
and are averaged at a node whenever two or more elements connect to the
same node, the nodal stress components related to the normal direction on
the free surfaces of a model may be not equal to zero. This problem will be
encountered in the analysis of the stress field of the plate model.

When a hole is modelled, there are three primary factors affecting the
accuracy of the stress-relief displacements, especially those on the surface of a
model, due to the effect from the applied stress boundary. This effect on the
surface stress-relief displacements are similar to a bending. We refer to these
displacements as boundary effect displacements.

The first factor is the ratio of the model width to the model thickness; the
smaller the ratio, the greater the boundary effect displacements. From trial
and error if this ratio was equal to 2.5, the surface stress-relief displacements
wereAfound to converge to zero at an appropriate radial distance from the
hole and the boundary effect displacements were sufficiently small to be
unresolvable by the interference fringes.

The second factor is the ratio of the hole depth to the model thickness
which primarily affects the surface vertical displacement. Figure 4-4 shows an
example of the stress-relief displacements along the direction of the stress-
relief hole wall at the radial distance of the hole radius for a model with
thickness of 12.0 cm and a hole depth of 2.0 em (i. e., the ratio is equal to 6.0).
From the figure, the radial and the tangential displacements rapidly converge
to zero near the bottom of the hole. The vertical displacements, however, do
not converge to zero until the bottom boundary of the model. There results

suggest that the optimum model should have as large a ratio as



‘[Ppow 3y} jo Arepunoq woNoq 3y Je [HUN 013z 0} $30U3819AU0D
juawaderdsip [edonIaA ayy INq (WD 0°7) I[OY Y} Jo W0NOq Y} Ieau 013Z O} a>uaSiaauod syudwaderds:p
[enuasue; pue [erpe1 ayL ‘wd 0°Z jo Yidop e pue un g'Q JO IAIWEIP S[0Y JIIPI-SSANS € RIM (ssauwpny) wd g1
X WD QE X WD OF JO SUolsuawIp sey [Ppouwr 4 YL “[fem 3[0Y jdI[a1-ssans 3y} Jo uonisod [erpes ay3 e (w O°Z1)
woN0q 3y} 03 (WD (°0) deyns Iy woly Sul[apowr JUIWSLA AUl € jo sjuswade[dsip JoI[oI1-ssang §-p N8y

v
(o2

(ur) sjudwddepdsi( JAI[II-sSaNS

3 S0 0 S0- - Sv ¢ i 0 b- e € v- 14 e o e | A 9-
TN EENENEI YT U EEUNUNENNRNENN] " .-..—..-—-..-—--—-.- " s 2 2 bl 2 2 2. 0 2 2 2 1 9 2 ¢ 1 2 0 2 W—
”.N_ L2 -2
. pet-—— | Ly
-—— L L 01 L0 =
; o sut-—— f 8
= . e p o
. 1) Sh=b —— - 8 -8 =2
= 3 9 b n
: SH9=0_ —a— : ; ms
o u.'llo.ll p 3 a
‘-Io..l .lv X’ Ly mm.
el EweL 3]
¢ IN IN IN p
" [ ]
Lo 0 PR
'“ 'NO 'Nl



36
possible. A ratio of 6.0 or more was found appropriate for the calculations.

A final factor is the ratio of the width of model to the diameter of a stress-
relief hole. The larger the diameter is, the greater the boundary effect
displacements. If the ratio is too small the boundary effect displacements will
contaminate the displacements induced by the stress-relief hole. In the
calculations and again on the basis of trial and error, 15.0 was adopted as the
smallest value of this ratio. In most of the models, this ratio was either 30.0

or 60.0.
A program of ANSYS 4.4 used for computing a finite element model is

given in Appendix B (Program I).

4.3. Stress-relief Displacements

As regards a FEA, a two step process is needed to calculate the stress-relief
displacements. First, the displacements without a stress-relief hole and subject
to the desired stresses are calculated. Next, the same calculation is performed
for the model but this time ¢ontaining a finite depth stress-relief hole. The
stress-relief displacements are the difference between the displacements of
these two calculations. In our study, the surface stress-relief displacements are
of the most concern because they will be used to produce a synthetic fringe
pattern for comparison with the observed fringe pattern.

Figure 4-5 gives an example of the surface stress-relief displacements in
the cylindrical coordinate system for a model with a hole diameter of 0.5 cm
and a depth of 2.0 cm, a Poisson'’s ratio of 0.25, and a ratio of the applied stress
to Young's modulus ( SH/E ) of 1.0 MPa/GPa. In this case, negative radial

displacements denote motion towards the hole axis, that is, the hole presses
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Figure 4-5 Surface stress-relief displacements of a FE model with the
dimensions of 30 cm x 30 cm x 12 cm (thickness) and with a stress-relief hole
of a diameter of 0.5 cm and a depth of 2.0 cm. The model has a ratio of the
applied uniaxial stress to Young's modulus of 1.0 MPa/GPa and Poisson’s
ratio of 0.25.
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inward. Negative vertical displacements indicate that tpe surface of the
model is displaced down whereas positive vertica] Qisplacements imply
outward bulging. Hence, at ¢ equal to 0" and 45, the yp0de] surface moves in
and down towards the hole. At ¢ equal to 9C°, the Mogel surface bulges
outward from the surface. These displacements form § Saddle shaped surface
near the stress-relief hole.

The primary variables affecting the magnitude asq distribution of the
induced displacements are the size of the stress-yelief hole, the elastic
properties of material, and the magnitude of the applied sgress. The effect of
these variables on the induced surface displacements sfe discussed below in
terms of the displacements on the boundary of the stresS-rejief hole at ¢ equal
to 0", 45° and 90°.

Table 4-1 summarizes all the parameters used it the finite element
calculations. |

For the size of the stress-relief hole, the two parayitteys of diameter and
depth, are considered. This is fundamental to the refationship between the
stresses and the stress-relief displacements in the desig\ of a field experiment
as we must know what drilling depths and diametefs yre appropriate for
proper measurement of typical stress levels in the crust

A model of width 15.0 ecm and thickness 6.0 cm, with 1101 nodes and 768
elements, was used to explore the effect of the fioly diameter on the
displacements. In this series of calculations, the hole diameter was the only
variable. The hole depth (2.0 cm), the elastic moduluy B (20.0 GPa), Poisson's
ratio v (0.25) and the applied stress SH (20.0 MPa) wey@ held constant. Figure
4-6 gives the result for stress-relief displacements at the edye of the hole in the
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directions of ¢ equal to 0°, 45’ and 90’ for hole diameters of 0.3 cm, 0.5 cm, 1.0
cm, 1.5 cm, and 2.0 cm.

In Figure 4-6, the relationship between the hole diameter (for a constant
hole depth) and the stress-relief displacements is nonlinear. Secondly, the
radial displacements at ¢ = 90" increase from roughly 0.6 um to 4.5 pum and
decrease at ¢ = 0° from -0.25 pm to ~16.1 pm. The vertical displacements
increase at ¢ = 90° from 0.25 um to 2.6 pm and decrease at ¢ = (° from zero to -
4.0 um. The variation of the displacements is very large, therefore, control of
the stress-relief hole diameter in practice is important.

The depth of the stress-relief hole is also a crucial parameter in our study
because in a stress measurement using the holographic stressmeter the depth
of the stress-relief hole is limited by practical experimental constraints. A
query here is at which depth of stress-relief hole will the deepening of the
hole result in no further variation in the stress-relief displacements. In other
words, may the hole depth be neglected after a certain depth or does the hole
depth always remain a significant variable? In order to explore this question,
a model of width 30.0 cm, and thickness 12.0 cm with 1782 nodes and 1352
elements was used. The calculations were conducted with stress-relief hole
depths of 0.5 cm to 4.0 cm with an interval of 0.5 cm. The constant variables
are the hole diameter (0.5 cm), Poisson's ratio (0.25), Young's modulus (20
GPa), and the applied stress ( 20 MPa).

Conceptually, the holographic stress-relief technique is similar to residual
stress measurements in nondestructive tests. The difference is that the
measurement of residual stress by the hole-drilling technique employs strain

gages to measure the surface deformation of an object. In terms of the
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experience in residual stress measurement, if the residual stresses are
uniform with depth, the surface strains around the hole are fully relieved
when the hole depth is approximately equal to the hole diameter (Rendler
and Vigness, 1966; Flaman and Manning, 1985 ).

Since strain gage measurement is not sensitive to the surface normal
displacements, the residual stress measurement consists of an analysis of the
in-plane strain or displacements only. If we do not consider the vertical
displacements here the finite element analysis supports, to a degree, Rendler
and Flaman's conclusion (Figure 4-7). That is, when the hole depth equals the
hole diameter, (i. e., when the ratio of the hole depth to the hole diameter is
. equal to 1.0), the radial displacement approximates its minimum value ( -4.5
um ) at ¢ equal to 0°and 70 percent of its maximum value (1.5 pm) at ¢ equal
to 90°. However, the vertical displacements are not so well behaved. For
example, if we assume that the vertical displacement is at its limit with ratio
8.0, then only about 45 percent of the displacement at ¢ = 90" is relieved when
the hole diameter equals the hole depth. Therefore, due to the variation of
the vertical displacements and their substantial influence in holographic
stress measurement, the ratio of hole depth to hole diameter of 1.0 cannot be
used as an experimental guide-line. This effect is especially crucial when the
object beam has a small angle with respect to the normal direction of a
surface, whereupon the surface normal displacements are more heavily
weighted.

The stress-relief displacements as a function of the ratio SH/E for a stress-
relief hole diameter of 0.5 cm and a depth of 2.0 cm, a Young's modulus of 20
GPa, and a Poisson's ratio of 0.25 are plotted in Figure 4-8. The SH/E ratios
used in the calculations were 0.1°5,0.25,0.75, 1.0, 1.5, and 2.0 MPa/GPa. As
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seen in Figure 4-8, all stress-relief displacements vary linearly with SH/E
ratio. This characteristic shows that the existence of a stress-relief hole does
not affect the relationship of elasticity between the displacements and the
applied stresses. The linear relation is expected and is useful in that it will
allow simplification of further stress analysis. That is, for a rock with a given
set of elastic properties, ont: needs only to set up its linear relation by using a
few calculations and then scaling the results to obtain the displacement field
expected. The fact that the displacements are linear with respect to the SH/E
ratio further indicates that the goodness of the finite element moiz:lling as a
nonlinear response would indicate an erroneous solution.
' Finally, the stress-relief displacements are calculated for the values of
Poisson's ratios of 0.15, 0.25, 0.35, and 0.45. The hole diameter (0.5 cm), the
hole depth (2.0 cm), Young's modulus (20.0 GP) and the applied stress (20.0
MPa) were held constant. The results of these calculations at ¢ equal to (", 45°
and 90° are given in Figure 4-9. Compared with the above factors related to the
dimensions of stress-relief hole and the SH/E ratios, the effect of Poisson’s
ratio on the stress-relief displacements is more complex. For example, the
magnitude of radial displacements increases while the magnitude of the
vertical displacements decreases with Poisson's ratio at ¢ equal to 90°. This

relationship switches 2t ¢ equal to 0'.

4.4 Synthetic Fringe Patterns
A surface stress-relief displacement field from the finite element analysis
is transformed to a synthetic fringe pattern by the forward modelling

mentioned in section 2.3. These calculations are conducted first by the
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program DISFRI (Program II in Appendix B) which first calculates the stress-
relief displacements by subtracting nodal displacements for the finite element
modelling without a stress-relief hole from the modelling with a stress-relief
hole. Next DISFRI calculates the corresponding fringe orders from the
obtained stress-relief displacements. The fringe orders are then interpolated
by UNIMAP in UNIRAS (Program III in Appeniix B) into a 200 x 200 grid.
The fringe pattern image is then plotted by the program FRIIMA in UNIRAS
(Program IV in Appendix B) over a 10 x 10 cm? area with a superposed
centimetre net. For the synthetic fringe patterns to be shown, the vertical
direction (y axis) is the direction of the applied uniaxial stress and the
horizontal line crossing the centre of the hole is the x axis.

Here, equation 2.26 is used to calculate the fringe orders. Hence, when a
zero stress-relief displacement appears, the corresponding bright fringe has
order -0.5. In the synthetic fringe pattern calculations, the coordinates of
source S of the object beam (9.7, 0.0, 23.5) and the centre of the hologram (0.0,
0.0, 17.85) in centimetre, respectively, as well as the laser wave length ( 632.8
nm ), are the same as those to be used in the holographic experiments. This
optical configuration gives the vertical displacements more weight than the
horizontal displacements in the formation of fringe pattern because the angle
between the object beam and the normal direction of the surface of object is
only 17",

The position of the source point of the object beam affects the shape of
fringe pattern (Nelson and McCrickerd, 1986) as the sensitivity vector will
differ. Combining Nelson and McCrickerd's explanation with the coordinates

of the source point S and the observation point H in our calculations, the



48

fringe patterns are symmetric with respect to x axis because S, H and the
centre of the hole, are all within the x-z plane (Figure 4-10). The greater phase
shifts occur on the right side of the image because S has positive value of x
and consequently the dispdacement vectors on the right are more closely
aligned with the sensitivity vector. Therefore, denser packing of interference
fringes would be expected on the right side of the patterns despite the fact that
the displacement field is symmetric with respect to the x and y axes.

The fringe patterns for different sizes of stress-relief holes, SH/E ratios and
Poisson's ratios are presented based on the FE calculations. Both the fringe
order and density are high in the vicinity of a stress-relief hole as would be
expected for the larger displacements there. In some cases, the density even
exceeds our ability to resolve individual fringes in the 200 x 200 point grids.
Thus, lower order fringes that are more removed from the stress-relief hole
may be used to determine stress magnitudes.

The fringe patterns which have different hole diameters corresponding to
the calculations of Figure 4-6 are shown in Figure 4-11. This type of study will
aid in the choice of an appropriate stress-relief holé diameter both in the
laboratory experiments and in the borehole measurements. In Figure 4-11, the
fringe patterns change rapidly with increasing diameter of the stress-relief
holes. The fringe patterns for the larger hole diameter easily exceed the
expected bounds. Only the first fringe pattern for a 0.5 cm diameter hole has
the fringe pattern ‘butterfly' lobes contained within a limited ar¥a, e, the
fringe of order -0.5 represents zero stress-relief displacements locaw:d outside
of the ‘butterfly'. Consequently, a hole diametes af 9.5 cm may be used in the

laboratory experiments..
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Figure 4-10 Variation of displacement vector with radial position when a
hole is drilled and the relation between the sensitive vector K and the
displacement vectors when an uniaxial stress is applied in the direction
normal to x-z plane (y direction) as shown in Figure 4-3. On the left side, the
fringes are less dense because the angle between the sensitivity vector and
the displacement vector is large, and on the right side, the fringes are denser
because the angle is small.
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Figure 4-11 Synthetic fringe patterns for stress-relief hole diameters equal to
0.5 cm, 1.0 cm, 1.5 cm, and 2.0 cm, and constant depths equal to 2.0 cm. The FE
model has the ratio of the applied stress to Young's modulus of 1.0 MPa/GPa
and Poisson's ratio of 0.25. The fringe patterns are shown in an area of 10.0 cm
x 10.0 cm with centimetre grids.
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Figure 4-12 Synthetic fringe patterns for stress-relief hol'@"aepths equal to 0.5
cm, 1.0 em, 2.0 cm, and 4.0 cm, and constant diameters §#jual to 0.5 cm. The FE
model has the ratio of the applied stress to Young's miedulus of 1.0 MPa /GPa
and Poisson's ratio of 0.25. The fringe patterns are stkywn in an area of 10.0 cm
x 10.0 cm with centimetre grids.
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Figure 4-13 Synthetic fringe patterns for the applied uniaxial stresses equal to
10MPa, 20 MPa, 30MPa, and 40 MPa with a constant Young's modulus = 20
GPa (SH/E ratios are equal to 0.5, 1.0, 1.5, and 2.0 MPa/GPa). The FE model has
the hole diameters of 0.5 ¢m and the hole depths of 2.0 cm and Poisson's ratio
of 0.25. The fringe patterns are shown in an area of 10.0 cm x 10.0 cm with
centimetre grids.
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Figure 4-14 Synthetic fringe patterns for Poisson’s ratios equal to 0.15, 0.25,
0.35, and 0.45. The FE model has the hole diameters of 0.5 cm and the hole
depths of 2.0 cm and the ratio of applied stress to Young's modulus of 1.0
MPa/GPa. The fringe patterns are shown in an area of 10.0 cm x 10.0 cm with
centimetre grids.
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Figure 4-12 examines the effect of varying hole depths. Here, we chose
cases with hole depths of 0.5 cm, 1.0 cm, 2.0 cm and 4.0 cm ( Figure 47 ) to
evaluate how the fringe patterns change for hole depth/hole diameter ratios
larger than unity. The depth of 0.5 cm, which is considered as a guide-line for
stable displacements in the measurement of residual stress from strain gages,
is not the limit for obtaining stable holographic fringe patterns here. The
change of the fringe pattern is substantial even for hole depths greater than
2.0 cm which is four ﬁmes the hole diameter. This comparison suggests that
the stress-relief hole depth must be considered in the analysis of the fringe
patterns.

The fringe patterns showing the effect of increasing the SH/E ratio from
the calculations of Figure 4-8 are given in Figure 4-13. The number of visible
fringes along the vertical axis increases from one to four with SH/E of 0.5, 1.0,
1.5, and 2.0 MPa/GPa. The changes of the fringe patterns in this study indicate
that the SH/E ratio strongly influences the formation of the fringe patterns.

The effect of Poisson's ratio on the fringe patterns is another important
consideration in our study. It has a noticeable effect on the synthetic fringe
patterns and hence a different interpretation would be arrived at if the value
of Poisson's ratio using in the analysis was substantially in error. Figure 4-14
shows the fringe patterns corresponding to the calculations of Figure 4-9 for
Poisson's ratios equal to 0.15, 0.25, 0.35, and 0.45. Comparing the fringe pattern
of v = 0.15 with that of v = 0.45, the change in the fringe patterns is apparent.

4.5 Comparison of Displacement Models

The finite element analysis supplies a comparative tool for exploration of
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potential errors caused by the analytic plate and infinite depth hole models in
calculating the stress-relief displacement field. In the following, we will
discuss the possible sources of error for these two analytic models.

As noted in the background sections, there are two possible inadequacies
for these analytic models. One is the assumption of plane siress and the other
is the geometry of the modelled stress-relief hole.

As regards the assumption of plane stress, Sternberg and Sadowsky (1949)
examined the inadequacy in the stress solution for a cylindrical hole in an
infinite plate of arbitrary thickness (Figure 4-15) in which the x- and y-axes are

parallel to the principal stress directions and the boundary conditions are

0,= T, =19 =0 onz =*c (surfaces of plate)

0;r=Tg=Tz; =0 onr=a wallofhole

Ox = 01,0y =02, Tryy =0 at infinity (4.2)

O,= Tp= Ty, =0 at infinity_

For a hole radius a=1 and the principle stresses G, = - 6, = 1, the plane-stress

solution is

= .4 i.i!_(.c.‘-:-_3_zz_) 2

o =1 r3+r3 Tov)r cos 20

= |- -l-M 20

Og lr‘ TP cos '
4v (c2-32%)| .

.2 }__.____] 2
o r +r4 (1+v)r? -
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0, =Tg=Tu =0, (4.3)

Apparently, the solutions violate the given boundary conditions in
equation 4.2 because the following relations from equation 4.3 differ from

equation 4.2.

0,= Tu=T,g =0 cnz =%c (surfaces of plate)
G; = -1-4%\7(323- c2)cos20 at r=a=1 (wall of hole)

Tg= %(322- c)sin20 , 1, =0 at r=a= 1 (wall of hole)

O;=0g=0,="T9=Ty, =T,=0 atinfinity (4.4)

where the radial stress 6, and the shear stress t, are no longer zero at the wall
of the hole (r = a).

For a comparative analysis, a finite element calculation of the plate with a
thickness of 4.0 cm and the hole diameter of 0.5 cn. at v = 0.25, E = 20.0 GPa
subject to principal stresses of ¢ = 20.0 MPa and ¢: = 0 MPa was conducted.
The model has the size of 30 cm x 30 cm x 4 cm with 1281 nodes and 1040
elements. The result of the stresses on the wall of the hole for 8 equal to 0" to
90°is shown in Figure 4-16. It is apparent that the plate problem really is not a
plane stress problem because all stresses are related to the vertical coordinate
z. The variation of the stresses with the vertical coordinate occurs principally
near the model surface. The vertical stresses are disturbed to the depth
approximately equal to the hole diameter. Note that here the radial stress
does not equate to zero at the free surface of the hole wall. This is because we
use the nodal stresses that are stored per element and then are averaged at a

node whenever two or more elements connect to this node. Since the
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elements stresses are not equal to zero, the nodal stresses cannot vanish.

For a further analysis, Figure 4-17 compares four stress-relief displacement
models which are the analytic plate model, the analytic infinite depth hole
model, the FE plate model with a throughgoing hole discussed above, and the
FE model with a finite depth hole discussed in 4.2. The parameters held
constant are the hole diameter of 0.5 cm, v of 0.25 and the SH/E ratio of 1.0
MPa/GPa. Since the modelled hole depth is 2.0 cm, the thicknesses of the
analytic plate model and the FE plate model both are 4.0 cm. The calculated
radial and tangential displacements are shown in Figure 4-17a and Figure 4-
17b, respectively. The infinite depth hole model has the greatest magnitudes
whereas the FE model with a finite depth hole has the smallest. In Figure 4-
17¢, the vertical displacements of the analytic plate model are very large in the
vicinity of the hole and are roughly ten times those of the FE models at the
edge of the stress-relief hole. This difference will increase with hole depth
because the vertical displacement of the analytic plate model increases
linearly with the hole depth.

Figure 4-18 gives the fringe patterns corresponding to the displacements of
Figure 4-17 for the analytic plate model, the infinite depth hole model and the
FE plate model. The fringe pattern corresponding to the FE model with a
finite depth hole is shown in Figure 4-11 for a hole diameter of 0.5 cm.
Comparing these fringe patterns, the FE plate model (Figure 4-18a) is most
similar to the finite element model with a finite depth hole (Figure 4-11), but
the fringes along the horizontal axis expand and along the vertical axis
shrink. The difference could be a consequence of the hole geometry because

one has hole bottom and the other has not. However, the fringe patterns of
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Figure 4-17a Comparison of the radial surface stress-relief displacements of
the infinite depth hole model, the plate model, the FE model with a
throughgoing hole, and the FE model with a finite depth hole for a stress-
relief hole diameter of 0.5 cm.
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Figure 4-17c Comparison of the vertical surface stress-relief displacements of
the infinite depth hole model, the plate model, the FE model with
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hole diameter of 0.5 cm.
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the analytic plate model (Figure 4-18b) and infinite depth hole model (Figure
4-18c) are very different. The expansion of the fringes along the horizontal
axis is shown. The dark fringes of the infinite depth hole model almost cover
the entire 10 cm x 10 cm area while the other models only cover a small part
of the area. Note that no fringes are seen in the 2.0 cm diameter region for the
infinite depth hole model because the solution of Smither et al. (1991) is not
provided in this region.

Discussions related to the above comparison are, admittedly, somewhat
qualitative. However, as may be seen from the differing fringe patterns, if
taken in reverse the models would yield substantially different stress
magnitudes. That is, what stress magnitudes would be determined using
different displacement models for a nearly equivalent displacement field or
fringe pattern?

A surface trend analysis (Unwin, 1969) is used to quantitatively compare
the stress applied to two analytic models with respect to that of the FE model
with a finite depth hole. The ratio RSS (Ratio of Sum of Squares) is expressed
as a percentage or a decimal of the corrected sum of squares of the
displacements Us of the FE model to that of the displacements Uapai from the

analytic models. That is

>3 (

i=l j=1

ii g{ Uznal, - (i i Uanal.,) /(NxM)

Uf“)-/ (NxM)
RSS =

, 4.5)

where N and M are the number of data points in the x and y directions,
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respectively. This method can be used to obtain the equivalent coefficient of
correlation, VRSS, directly. If VRSS were to equate to unity the fit of two
groups of the displacement data from different displacement models is
considered the best. The present computational procedure consists of varying
the stress applied to the analytic models until a value of VRSS closest to 1.0 is
reached whereupon the displacement field of an analytic model is considered
to best approximate that of the FE model. At this point the ratio of the stress
applied to an analytic model to the stress applied to the FE model is
determined. The calculations were conducted both using only single
displacement components and using all displacement components. The

results are listed in Table 4-2.

Table 4-2 The Ratios of Stresses (SH) Between Various

Displacement Models
Model Single displacement All displacement
component components
Radial Tangential ~ Vertical

FEM* 1.0 1.0 1.0 1.0

Plate Model 0.9 0.78 0.12 047
Revised Plate Model** 0.9 0.78 0.47 0.84
Infinite Depth Hole 0.26 0.12 0.22 0.25

Model

* with a finite depth hole.
* jgnore the displacements within 1.0 cm radial distance.

If we compare the calculations for all the displacement components of the
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analytic plate model to the FE model, the applied stress ratio is 0.47. That
suggests that the stress magnitude obtained from the plate model would be
less than half of that from the FE model. This ratio rises up to 0.84 when the
data points within radial distance 1.0 cm from the centre of the hole are
ignored. The infinite depth hole model is in even poorer agreement with the
FE model because the ratio is only 0.25.

If the displacement cmponents are considered separately, the radial
displacements ¢ the plate model has the highest stress ratio of 0.9. However,
the ratio of the infinite de th hole model are still low at only 0.26. For the
tangential displacement, the infinite depth hole model is again in poorest
agreement at 0.12. For the vertical displacements, the plate model has the
lowest ratio of 0.12. When the data points within diameter of 1.0 cm are
deleted, the ratio reaches up to 0.47 which still low.

From the above comparison of the stress ratios, the analytic plate model
may better approximate, in a statistical sense, the finite element model if we
ignored the displacements close to the edge of the stress-relief hole. However,
the infinite depth hole model may not provide a proper stress-relief

displacement field to obtain the precise stress magnitude.
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Chapter 5 Laboratory Experiment

In earlier sections, we contrasted the two existing analytic displacement
models with the 3-D finite element model in order to determine possible
sources of error of the analytic models. However, both analytic and numerical
techniques remain suspect until they are experimentally verified. In this
chapter, we will discuss a series of laboratory holographic experiments which
test the validity of the finite element modelling. This section includes
descriptions of the experimental set-up, the calibration of the applied stress
measurement system, the recognition of experimental noise, and most
importantly, the comparison of the fringe patterns from the resulting

holograms to those produced from the finite element calculations.

5.1 Set-up and Calibration

The holographic experiment set-up consists of three components: the
optical system, the mechanical system and the stresé measurement system.
Because local vibrations are potentially deleterious to data quality, the set-up
is installed on a 1.2 m x 2.42 m vibration-isolation steel honeycemnb platform.

Figure 5.1 shows the configuration of the optical system. A He-Ne laser
with maximum outpiit of 10 mW at a wave length of 632.8 nm is the source
of coherent light. This laser beam is separated into reference and object beams
by a beam splitter which here is only a simple piece of glass. The reference
beam is reflected at mirror 1 and then propagates through a lens to directly

illuminate the holographic film. The object beam is reflected at mirror 2 and
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Figure 5-1 Configuration of double-exposure holographic optical system. A
HeNe laser with maximum output 10 mW at wave length 632.8 nm is used for
the source. The iaser light is separated into reference and and object beams
by a splitter. The reference beam is reflected at mirror 1 and then passes
through the lens to illuminate the holographic film. The object beam is
reflected at mirror 2 and then passes through a ground glass which diffuses

the beam to illuminate the surface of the sample and then is reflected to the
holographic film.
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then passes through a ground glass which diffuses the beam to illuminate the
surface of the sample. This light then is scattered (nonspecular reflection) back
to the holographic film. The distance between the sample and the
holographic film is 17.8 cm (7.0 in) and the angle a as shown is 17°. The origin
of the coordinate system about this optical system is located at O as shown in
Figure 5-1 which is the centre of the block surface and also coincides with the
axis of the stress-relief hole. The axis of the stress-relief hole, the centre of the
holographic film, and the source point S of the object beam are all contained

within the x-z plane. The coordinates of these points are given in Table 5-1.

Table 5-1
X Z

(cm) (cm) (cm)
Source point S 9.7 0.0 235
Centre of sample
surface O 0.0 0.0 0.0
Centre of holographic
film 0.0 0.0 17.85

The mechanical part of the experimental configuration consists of a
manual hydraulic pressure pump of 69 MPa (10 kpsi), a manual pressure
generator of 207 MPa (30 kpsi), a hydraulic pressure gauge, and a steel
stressing frame which holds the sample (Figure 5-2). When a sample is placed
into the steel frame, the pump first applies an approximate pressure via two
hydraulic rams and then the pressure is adjusted to the desired value by the

pressure generator.
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The hydraulic pressure gauge used is of insufficient accuracy to measure
pressure to the degree of sensitivity required in the tests. Consequently, a
Wheatstone bridge consisting of four strain gages of type CEA-06-500UW-120
with size of 15 mm x 5 mm and resistance of 120+0.3% Ohms (at 24'C) is
mounted on the top of the steel frame. This bridge allows the stress applied

on a sample to be measured by the output voltage resulting from the

deformation of the steel frame.

This force measurement system requires calibration; that is, the
relationship between the output voltage of the mounted Wheatstone bridge
on the steel frame and the applied force is required. To calibrate, a load cell
consisting of four strain gauges in a Wheatstone bridge arrangement
mounted on a steel pipe (outer diameter: 5.5 cm, internal diameter: 5.0 cm
and height: 4 cm) was constructed. The response of this load cell to force
under an activation voltage of 7.0 volts was determined by using a standard
testing machine in the structure engineering laboratory of the Department of
Civil Engineering at the University of Alberta to obtain a linear relation of
the applied force to the output voltage. The calibrated load cell was then
placed into the steel frame in our laboratory, and the responses of the load cell
and the steel frame were simultaneously recorded under the same activation
voltage as used in the standard testing machine (Figure 5-3). The response of

the load cell is represented as

y = -02174 + 0.07046 x (5.1)

with the correlation coefficient R = 0.998 and the standard error S3 = 0.097.
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Figure §-3 Output voitages vs load applied to a sample for the
Wheatstone bridge mounted on the steel frame and a load cell under an
activation voltage of 7.0 volts.



The response of the steel frame is
y = 3.7496 - 0.03075 x (5.2)

with the correlation coefficient R = 0.999 and the standard error S§ = 0.0076.
Here, y represents the output voltage of Wheatstone bridge in millivolts and
x represents the load applied to a sample in kN. Comparison of these two
linear relationships thus allows determination of the force applied to a
sample. The uniaxial stress applied to the sample then may be obtained by
giving the area of a surface over which the force is applied. In Figure 5-3, the
curve labelled "frame" is used to measure the applied force in our
experiments. For the response of the load cell, the beginning part of the curve
is not linear. This nonlinearity is not understood but it and the linear part of
the curve are repeatable. Since the forces applied in the experiments are above
the range where this nonlinearity appears, the nonlinear part is ignored in

the calibration fit of equation 5.2.

5.2 Finite Element Models

Blocks of plexiglass with dimension of 12.7 cm x 12.7 cm x 5.08 cm (5 in x 5
in x 2 in) are used in the experiments. Strain tests on two cylindrical plexiglass
samples in the steel frame show that the plexiglass has a Poisson’s ratio of 0.4
+ 0.01 and Young's modulus of 3.0 £ 0.05 GPa. The geometry of the finite
element model of the plexiglass block is the same as shown in Figure 4-3

except the dimensions and the boundary conditions. There are 1452 nodes
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and 1092 elements in this finite element model.

The boundary conditions on the plexiglass block are that the top and
bottom surfaces as shown in Figure 5-2 are constrained by friction because
they contact the stressing frame as the force is applied through them. Because
the distribution of friction on these two surfaces is unknown, calculations
were conducted for two extreme cases of either infinite friction or nonexistent
friction. The real distribution of friction on these two surfaces may be
considered to lie between these two extreme cases. The remaining boundaries
of the block plexiglass sample are free of constraints.

The finite element model is only one quarter of the whole plexiglass block;
these two extreme friction cases were tested by constructing the boundary
conditions as follows:

The case of infinite friction is modelled by giving zero in-surface nodal
displacements ( in the x and z directions ) on the boundary over which the
force is applied (Figure 4-3) regardless of the existence of the stress-relief hole.

The case of zevo friction is modelled by two different methods. The first
method is to conduct a calculation without a stress-relief hole and free of
constraints on the applied force boundary. Then, the in-surface nodal
displacements obtained at the boundary are input as the displacement
boundary condition for the calculation with a stress-relief hole. This process
maintains the same in-surface displacements on the applied force bousi.ary
whether there is or there is not a stress-relief hole.

The second zero friction model was calculcted by keeping the applied force
boundary free of constraints in the calculations both with and without a

stress-relief hole. A characteristic of this modelling is that there are no
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anomalous boundary effect displacements in the calculation without a stress-
relief hole; however, the displacements appear due to the loss of the
symmetry when a stress-relief hole is modelled.

For convenience, we call these three models, model 1, model 2, and model
3, respectively.

Figure 5-4 shows the stress-relief displacements resulting from these three
models for a sample subject to an uniaxial stress of 6.0 MPa and for a stress-
relief hole having a diameter of 0.5 cm and a depth of 1.0 cm. The radial and
tangential displacements for these models are similar. The vertical
displacements of model 3, however, differ from those of model 1 and 2. This
is a consequence of the boundary effect displacements inherent to model 3.

Synthetic fringe patterns produced from these three mosels are compared
in Fizure 3-5. The fringe pattern of model 1 differs somewhat from that of
mode! 2. However, the fringe pattern of model 3 is substantially different
from the other two. The large bending of model 3 is illustrated by the
existence of the fringes with order -2, -1, 0, 1, and 2 in the vertical direction
from the top o‘r bottom boundary towards the stress-relief hole. Note that the
uniaxial stress is in the vertical direction in the fringe pattern.

Based on the comparison of the displacements and the fringe patterns
above, model 1 was chosen for use in further calculations due to the large
bending in model 3 and the similarity of model 1 and model 2.

In order to illustrate the weight of the different displacement components
in the formation of the fringe patterns, the synthetic fringe patterns which
separately employ each of three displacement components from the

caiculation of model 1 of Figure 5-5 are plotted in Figure5-6. This figure
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shows that the optical system used is most sensitive to the out-of-plane
displacements as this displacement component forms many more fringes
than the other two in-plane components. The tangential component
contributes little to the formatior of the fringes because only a very small area
near the stress-relief hole is covered by dark fringes with order -1; the

remaining area has the bright fringe of order -0.5 that represents zero

displacements

5.3 Experiments

The primary objective of the laboratory experiments here is to test the
feasibility of the 3-D finite element method in the determination of stress-
relief displacements. If the finite element method satisfactorily predicts the
stress relief displacements observed under controlled laboratory conditions,
then it may be applicable to in situ stress measurements. A series of laboratory
experiments using plexiglass blocks were conducted with the experimental
parameters listed in Table 5-2. In these experiments, the surfaces of the
plexiglass blocks were painted with a white flat paint for the purpose of
reflecting light. A centimetre net was drawn on the surfaces of the blocks as a
reference to determine the position of fringes.

The analysis of the experimental results are based on the comparison of
the synthetic fringe patterns from the finite element calculations to the
observed fringe patterns. This analysis is, at present, orly semiquantitative in
that the fringe patterns are compared visually with respect to the centimetre

grid scale. Deficiencies of this approach are that possible bias may be
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Table 5-2 Holographic Experiment Parameters

Type of Hole diameter Hole depth  Applied stress Time between exposure
experiment (em) (cm) (MPa) (hour)
Experiments with  0.510.05 0510.05 6.010.21 30

variable hole 0.510.05 1.0£0.05 6.0:0.21 25

depth 0.520.05 201005 6.010.21 25
Experiments with  0.5:0.05 1.0:0.05 £0:0.21 30

variable applied 0.520.05 1.0£0.05 6.0:0.21 25

stress 0.510.05 1.0£0.05 8010.21 10
Experiments on 0.5£0.05 101005 6.010.21 $ min.
thermal effects 0.5£0.05 1.0:005 6.0:0.21 1.0°

* The first exposure immediately after drilling.



81
introduced via the observer's perception of a fringe in the photographs.

In the experiments, the diameter of the stress-relief hole needs to be
sufficiently small in order that the fringe pattern is constrained to a limited
areaand to limit the potential for effects between the top and bottom surface
of the plexiglass and the stress-relief hole. Based on the calculations of
Chapter 4, a stress-relief hole diameter of 0.5 cm was chosen. The maximum
depth of the stress-relief hole was chosen as 2.0 cm. This depth is about 40%
the thickness of the test plexiglass block.

Since the material elastic properties have been determined and the
diameter of the stress-relief hole is fixed, the only variables in the
experiments are the depth of the stress-relief hole and the magnitude of the
applied uniaxial stress. Hence, two series of experiments, in which one of
these two variables was varied, were conducted.

The first series of tests consisted of three experiments in which the deptis
of the stress-relief hole were 0.5 cm, 1.0 cm, and 2.0 e with the blocks subject
to an applied stress of 6.0 MPa. These depths are equal to, double and four
times the diameter of the hole, respectively. They were chosen to determine
whether the fringe patterns stabilize with increasing hole depth.

Figure 5-7a shows the synthetic and observed fringe patterns for the hole
depth equal to 0.5 cm. Note that this depth is considered to be the stabilization
depth of the induced stress-relief strain in the residual stress measurements
by strain gages as described earlier. Comparing these two fringe patterns, the
vertical lobes are similar. In particular, the lower lobe matches very well in
terms of shape and position. One major difference between the observed and

the synthetic fringe patterns, however, is that a few roughly
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circular fringes appear in the upper part of the observed fringe pattern. Based
on the analysis of Schmitt (1987), these fringe are likely due to a translation in
the z direction away from surface of the sample. Also, it is possible that these
fringes are caused by the thermal expansion due to the drilling of the stress-
relief hole.

Figure 5-7b shows the fringe patterns of the experiment and the finite
element calculation for the hole depth of 1.0 cm. Here, the vertical lobes of
the two fringe patterns are in very good agreement. Unfortunately, the
horizontal lobes are obscured by scattered light during reconstruction because
the film was scratched.

Figure 5-7c shows the fringe patterns of experiment and finite element
calculation for the hole depth of 2.0 cm. The agreement between the observed
and the synthetic fringe patterns is considered to be excellent in this of
experiment.

The second series of experiments were conducted with hole diameters of
0.5 cm and hole depths of 1.0 cm under increasing uniaxial stress magnitude.
Figure 5-8a shows the synthetic and observed fringe patterns under an applied
stress of 4.0 MPa. The lobes of both fringe patterns are consistent with the
exception that the zero order fringe in the synthetic fringe pattern covers a
larger area. In the observed fringe pattern, the white streaks caused by a
scratch on the film again obscure the horizontal lobes.

Figure 5-8b shows the synthetic and observed fringe patterns under an
applied uniaxial stress of 8.0 MPa. Both fringe patterns also are consistent.
However, the horizontal lobes of the observed fringe pattern do not appear

because the time duration between exposures is only one hour. This time



86

*3[0Y Ja1[aI-sSaIls A} spremoy Lrepunoq 3J3] 10 3ySux ay3 woay Z- pue ‘1- ‘0
pue ‘a[oY JarjaI-ssa1}s 3} spiremo) Lrepunoq woyoq 10 doj ayj woy g pue ‘§ ‘g ‘g ‘1 ‘0 SIapI0 Y} aAey saSuLyy
yaep ay) ‘urapied aSuuy onayjuds ayy uj 'SpLIS ANPWIRUD PIM EIIE UD ('8 X WD ('8 € Ul umoys are sumped
aSuwy ayL ‘uondanp reontaa ayy ut pardde eJN 0'F JO SSanS [erxerun ue pue ‘ud o[ Jo Yidap e pue un g'g jo
Iajowrerp 3oy jJora1-ssans e yim afdwes sseBixaid ayy jo sursiyed a8uny pasresqo pue ouayyuig eg-g am8rg

kS
I- e 0 = JOpIo ULy




87

3]0y JOI3-862136 8YJ SPIemo; Arepunoq o] 10 ISy Ay w0y ¢- pue ‘z- ‘1- ‘0 ‘I pue
‘3[0Y JaI[a1-ssaIs ) spIemo} Arepunoq io}aq 1o doj ays woty 9 pue ‘G § ‘€ ' ‘1 ‘0 sI9pio 3y asey saguryy
srep ayy “wraiyed a8uury opayjuds 3y} uj ‘SPHS SneWNUd YIIM aTe U §'g X WD '8 B Ul uMoys are sur)ed
aguury ay L ‘wondaap [eontaA ay) ur pardde eJN ('8 JO $SaXIS [eIXeIun ue pue ‘U '] Jo \pdep e pue u ¢'0 Jo
Ia1awrerp a0y JaraI-ssans e ynm apdures sse3neid ayy jo suraned a8uwy paaresqo pue onayiuds qg-g am3rg

- L] 0 - Jop10 98urLg

'
]
] L2y




88
period is one and half to two hours less than that used in other experiments.
The non-emergence of the horizontal lobes is possibly due to the effects of the
thermal expansion. A detailed analysis of this effect will be given in next
section.

According to these two series of experiments, the following preliminary
conclusions may be made. First, the effect of the depth of a stress-relief hole
on the fringe patterns is substantial. When the depth is 0.5 cm, the lobes cover
only a small area, this area increases rapidly to the depth of 2.0 cm. The
substantial change of the fringe patterns for the hole depth greater than the
hole diameter indicates that the stability criteria used for strain measurement
in nondestructive testing is inadequate for the holographic experiment.
Second, a general observation is that the noise, which may consist of spurious
translations or thermal expansion, is suppressed for the deep holes due to the
larger stress-relief displacements. Finally, and most importantly, the synthetic
fringe patterns match well with the observed fringe patterns. This fact
indicates that the finite element analysis appropriately models the stress-refief
displacements. '

Analytic calculations are usually easier to implement, especially when an
iterative analysis is required. In practice, therefore, one would still hope that
an analytic model would suffice to provide the correct displacements. In order
to test the validity of the existing analytic models, Figure 5-9 gives the
synthetic fringe patterns of the analytic plate model and infinite deep hole
model with the same parameters as Figure 5-7b. As seen in Figure 5-9, the

fringe patterns are substantially different from that of Figure 5-7b. In
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particular, both analytic fringe patterns display large horizontal lobes. This

suggests that neither analytic models correctly model the observed fringe

pattern.

5.4 Thermal Error

The thermal expansion induced by frictional heating by the drill bit is
manifest as the thermal displacements of the surfaces of the plexiglass
sample. This is a major source of the error in our experiments and is the
reason that the time between exposures was a few hours long. The following
analysis of the thermal effects may be able to explain the mismatch of some of
_ the fringe patterns, such as seen in Figure 5-8b.

The magnitude of thermal expansion is related to the speed of the drilling,
the force applied to the drill bit, the time used for drilling, and the size of hole
to be drilled. Here, the speed of the drilling is considered constant. The force
applied to drill is unknown because the drill is manually applied. In general,
the deeper the hole is drilled, the greater the thermal heating and subsequent
expansion.

'In the experiments, if the second exposure is taken immediately after
drilling, the fringe patterns are seriously disturbed by the thermal expansion.
This case is especially apparent when a deep hole is drilled. In some cases, the
fringes induced by stress relief are nearly entirely obscured by thermal fringes
and are uninterpretable with respect to stress information. In order to
eliminate the effect of the thermal expansion, the iime duration between
exposures was tested from a half hour to three hours by increments of a half

hour. A time duration of two and half hours or more was finally chosen for



91

use in the experiments to allow the samples to cool.

The surface thermal displacements caused by thermal expansion have the
following characteristics. First, since the thermal source is the wall of the
stress-relief hole, the thermal displacements are large around the edge of the
stress-relief hole and decline with increasing radial aistance. Second, unlike
the out-of-plane stress-relief displacements which are positive in the axis
perpendicular to the uniaxial stress direction and negative in the axis parallel
to the stress direction, the out-of-plane thermal displacements are always
positive and result in a bulging out of the material.

Two cases are most interesting in our study. The first is the fringe pattern
produced only by thermal displacements. The second is the fringe pattern
produced by the displacements in which the stress-relief displacements mix
with the thermal displacements.

The fringe pattern produced only by the thermal displacements was
observed by taking a double-exposure hologram with toth exposures after
drilling. Figure 5-10 shows an example of the experiment subject to the same
conditions as Figure 5-7b. The difference of this experiment from Figure 5-7b
is that the first exposure was taken immediately after drilling (within two
minutes) while the second exposure was taken one hour later. This fringe
pattern may be described as a series of concentric circles with increasing fringe
density near the hole. This is consistent with the first expected characteristic
of the thermal expansion mentioned above.

The case in which the thermal displacements mix with the stress-relief
displacements was observed by taking the second exposure immediately

(within three minutes) after drilling. An observed fringe pattern subject to



92
the same conditions as Figure 5-7b is shown in Figure 5-11. In comparison,
the observed fringe patterns of Figures 5-11 and 5-7b are much different. The
fringe lobes along the vertical axis in Figure 5-11 are reduced while those
along the horizontal axis are expanded. The reason for the change of the lobes
is that the out of plane thermal displacements increase the magniiude of the
out-of-plane displacements in the horizontal axis and suppress those in the
vertical axis.

As indicated in Figure 5-6, the out-of-plane displacements dominate the
formation of the fringe patterns. This suggests, to some degree, that the
thermal expansion may be approximately modelled by out-of-plane
displacements. An attempt by a trial and error process was made to model the
observed fringe pattern of Figure 5-11 by superposing a out-of-plane thermal

displacement with an exponential function
u, = 5.329 x 10%e25r (5.3)

on the displacements of he finite element modelling bf Figure 5-7b. In this
equation, the units of out-of-plane displacement u, and the radial distance
from the centre of the stress-relief hole r both are in centimetres. When r is
equal to 0, the displacement value of 5.329 x 10" cm which equates the
coefficient of equation 5.3 is twice of the magnitude of the out-of-plane
displacement at the edge of the stress-relief hole at ¢ = 90°for the finite
element modelling of Figure 5-7b. Comparing the observed and synthetic
fringe patterns in Figure 5-11, two fringe patterns are very close, especially

with respect to the horizontal lobes.



93

Note that this simple thrsrmal displacement model is for purposes of
illustration only; temperature measurement of the plexiglass sample may
help to determine the areal distribution of the thermal displacements.
Meanwhile, the substantial thermal expansion we see from this modelling
and the experiments indicates that, in retrospect, plexiglass was a poor
material to choose due to its extremely high thermal expansion coefficient
and low thermal diffusivity. The plexiglass material characteristics required
that the experimenter sit quietly in a lightless room for a few hours. Schmitt
(1987) observed these thermal displacements in rock also but they were not

nearly as severe due to a low coefficient of expansion in dolomitic marlstone.
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Figure 5-10 Observed fringe pattern induced by the thermal heating when
a stress-relief hole of diameter of 0.5 cm and a depth of 1.0 cm is drilled
into a plexiglass sample under an uniaxial stress of 6.0 MPa applied in the
vertical direction.
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Conclusions

The primary objective of this thesis was to develop and test a numerical
model of stress-relief displacements. The ultimate goal of this work is to
determine the in-situ stress tensor by interpreting an interferometric fringe
pattern from a double-exposure hologram which records the surface
displacements induced by drilling a small finite depth hole into a borehole
wall. Assuming that surface stress-relief displacements are induced over a
small area relative to the borehole dimensions, the stress-relief displacement
model is simplified to a plane surface with an uniform stress distribution in
the direction of stress-relief hole. Two existing analytic displacement models
for modelling the surface stress-relief displacements are the plate model
(Schmitt, 1987) and the infinite depth hole model (Smither and Ahrens,
1991). The interpretation of the field holograms suggests these analytic
models may have considerable error due to inappropriate assumptions in
their derivation about stress states and the geometry of stress-relief hole. This
situation supplies a motivation o use a three dimensional finite element
method where the restrictive assumptions of the analytic models are not
necessary. |

Using the 3-D finite element method, we explored the characteristics of
stress-relief displacements and the resulting synthetic holographic fringe
patterns under an uniaxial stress. In particular the analysis focussed on the
effects of stress-relief hole size, the elastic material properties and the applied

stress on the stress-relief displacements. In this analysis, the following results
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were obtained:

1. The diameter of a stress-relief hole for a constant depth results in the
greatest variation of the magnitude of the displacements. This suggests that
selection of the diameter of a stress-relief hole is crucial in measurements of
the expected stress state in a given area on the borehole wall.

2. The effect of the stress-relief hole depth on the displacements, especially
those out-of-plane, is substantial. Two important results were obtained. First,
the stability criteria used in the residual stress measurements when the depth
of the stress-relief hole is equal to its diameter is insufficient for the
holdgraphic experiment. Second, unlike the analytic plate model of Schmitt
(1987), the in-plane displacements from the finite element calculations are a
function of the hole depth and the out-of-plane displacements do not depend
iinearly on the hole depth.

3. The relationship between the applied stresses and the surface stress-
relief displacements determined in the finite element modelling is linear as
expected. This implies that the applied stress may easily be obtained if the
elastic properties of materials remain the same. |

4. Poisson's ratio also has a substantial effect on the stréss-relief
displacements. The change of the displacements due to variation in Poisson's
ratio is more complex than the other factors. The magnitude of the radial and
vertical displacements in the direction parallel to the applied stress increase
and decrease with increasing Poisson's ratio, respectively. The relationship
switches at the azimuth perpendicular to the direction of the applied stress.

A comparison of the analytic and the finite element models were

conducted by using an example with a stress-relief hole diameter of 0.5 cm
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and a depth of 2.0 cm for a SH/E ratio of 1.0 MPa/GPa and a Poisson's ratio of
0.25. The results show that the finite element model with a finite depth hole
produces the smallest displacements while the infinite depth hole model
produces the greatest. The difference between these models are quantitatively
evaluated by a least squares method. When the stress-relief displacements of
the analytic models best fit those of the finite element model with a finite
depth hole, the applied stress predicted by the analytic plate m~del is 53
percent less and by the infinite depth hole model is 75 percent less.
Application of these analytic models to stress analysis consequently results in
an underestimation of stress magnitudes.

To further prove the feasibility of the 3-D finite element model,
holographic experiments were conducted on blocks of plexiglass with
dimensions of 12.7 cm x 12.7 cm x 5.08 cm. Young's modulus and Poisson's
ratio of the plexiglass were measured in the laboratory to be 3.0 + 0.05 GPa and
0.4 £ 0.01, respectively. Two groups of experiments were carried out. In the
first set, the depth of stress-relief hole was varied whereas in the second set
the magnitude of the applied uniaxial load was changed. The comparison
shows that 3-D finite element method is effective because the observed and
the synthetic fringe patterns are consistent. One problem in the experiments
was that the thermal displacements generated by drilling a stress-relief hole
are a major source of noise. This noise was eliminated by allowing the
samples to cool prior to taking the second picture.

One of the remaining problems is that the simplified model used in this
thesis with a plane surface and uniform applied stress distribution along the

depth of the model may not satisfy the actual boundary conditions and stress
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state encountered in a borehole. At present, the errors introduced by this
simplification are unknown. Hence, modelling according to the actual
boundary conditions of a borehole will be necessary.

The other is a 3-D 20-node isoparametric solid element should be used in
future study. This element is a higher version of the 3-D 8-node isoparametric
solid element used in this thesis and is better suited to model curved
boundaries such as the wall of a stress-relief hole or the wall of a borehole in
our problem.

From this study, we see that the combination of the holographic method
and the 3-D finite element method shows potential for accurate quantitative
measurement of the in situ stress tensor. Although the research in this thesis
is motivated by borehole measurements, the method may be more applicable
to the determination of in situ stresses in other areas of interest related to
civil and mechanical engineering.

Future work which builds on the present study will include development
of a scheme for the direct inversion of the fringe patterns for the stresses and
the construction of a holographic tcol for use in mining applications. We are
also presently working collaboratively with Dr. T. Ahrens on his present
holographic system and hope to soon apply this system to stress

measurements near the San Andreas fault in Southern California.
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Appendices
APPENDIX A: Introduction of 3-D Finite Element Method

The basic equation of the finite element analysis for a linear, static

problem is (Desalvo and Gorman, 1989)
[K]{u}=(R}, (A.1)

- where

[K] = total stiffness matrix (sum of element stiffness miai:ices);

{u} = nodal displacement vector;

(R} = nodal load vector.
Equation A.1 is a set of linear equations. In theory, the finite element
calculation is to solve this set of linear equations in order to obtain the nodal
displacement vector {u] of a finite element model. To solve {u}, the essential
work is to establish the total stiffness matrix [K]. Because the matrix [K] is an
assembly of element stiffness matrices [k], the derivation of the element
stiffness matrix [k] is the basis of the finite element method. In the following,
we will discuss how the matrix [k] is derived and how the total stiffness
matrix is then assembled.

First, we review three fundamental equations which describe the
relationship betwesn stress tensor, strain tensor and displacements of a three

dimensional problem of elasticity with isotropic material properties. These



equations are

(i) The equilibrium conditions
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, (A.2)

where o,, 6y, G, Tyy, Tyz, and T, are stress components and Fy, Fy, and F; are

body forces.

(ii) The constitutive equations
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(A.3)

where E is the modulus of elasticity (Young's modulus) and v is Poisson's

ratio and &,, &y, &, Yy, Yy, and ¥, are strain components.
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and (iii) the strain-displacement definition

9 90 o
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where u, v, and w are the displacement components in the x, y, and z

directions.
Using F, 0, €, and e to represent the body forces, the stress tensor, the strain

tensor and the displacement vector, respectively, equations A.2, A.3 and A4

may be abstracted to
ATg=-F, (A.5)
o=De, (A.6)
and
e= Ae, (A.7)

respectively, where A is the strain-displacement operator, and D is the stress-

strain matrix.
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We now turn to discuss the relationship of the nodal displacements and
the displacements in an element. For a finite element analysis, the
displacements in an element need to be approximated by a set of displacement

functions which usually are a set of polynomials with the form

u(X,y.z) = aj +aiX + a3y + a4z + asx* + agy> + a7z2 + agXy + agyz + a,0zX + ...+ A",

s
V(X.Y\Z) = ame] + Bma2X + a3y + AnadZ + dneSXS + Aneey + Ape722
+ am+8XY + Am49YZ + Aip+102X + ...+ 2220

W(X,y.Z) = 8ams1 + Bame2X + A2ne3Y + Q2nedZ + A2nesX? + Aama6Y> + 224727
+ 22 +8XY + A2m+9YZ + An+ 102X + ...+ Q32" (A.8)

These polynomials may be truncated at an arbitrary order according to
accuracy requirements. The polynomials with higher order will results in a
more accurate displacement solution for an element. If the truncation is at
the fourth term, a set of linear displacement functions will be given.

The ultimate objective here is to express the displacements in an element
by the nodal displacements. To reach this objective, the nodal coordinates are
first substituted into the polynomials which have been truncated such that
the left side of the polynomials is the nodal dispiacements represented by the
nodal coordinates and the coefficients on the right side. Secondly, the
coefficients which are the functions of the nodal displacements and the nodal
coordinates are obtained by solving the polynomials. The relation of the
nodal displacements and the displacements in an element are finally derived
by substituting the resulting coefficients into the original polynomials. The

relation is
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e=NJ¢, (A9)

where N is a matrix consisting of element shape functions. The element
shape function is important in finite element analysis because it gives the
displacement 'shape’ in an element.

For example, a linear rectangular brick element of eight nodes as shown in
Figure A-1 has the shape functions (Smith, 1982) of

1 i=
Ni=k(i+&o)(14mo) (1+8). (i=r23..8) o

Figure A-1 Rectangular brick element

where &, 0, and { form a local coordinate system with the origin at the
geometric centre, €0 = EEj, Mo = nnj and Lo = {{; are the variables in this
element, and &;, nj, and §j are the nodal coordinates which are either equal to

1 or -1. The full matrix N is
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Z
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(A.1D)

where N, = N, =N, =[N}, Na, N3, Ny, N5, Ng, N7, Ng] corresponds to the three
displacement components u, v, and w. The transpose of the nodal
displacement vector ( 8¢)T = [y, up, u3, uy, us, ug, uz, ug, vy, va, v3, va, Vs, Ve,
V7, V8, W1, W2, W3, W4, ws, wg, wz, wg |. If the matrix N and the nodal
displacement vector &€ are substituted into equation A.9, the relationship of

the nodal displacements and the displacements in this brick element will be

established.
Once the shape functions are obtained, the next step is to derive the

element stiffness matrix [k] from energy principles. For an alternative

method, the principle of virtual work (Fenner, 1986)

Y F d5; = j I f ( Oxdex + Oydey +07de; + Oxydeyy
i
+ Oy, dEy, + Opdez ) dx dy dz, (A.12)

is used here, where F;" is the external load, and d§;", and de, ", de, and so on
are the infinitesimal virtual displacement and virtual strain changes,
respectively. Assuming that there are virtual displacements in an element,
the corresponding nodal virtual displacements vector and virtual strain

tensor are 5*° and e*, respectively. Consequently, from equation A.12 we have

(S'C)TFC =I [ j ("7 o dx dy dz
. ' (A.13)
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where F€ is the nodal force vector of an element. Substituting equations A.7

and A.9 into equation A.13, thus

(5 pe = j I I (5] (ANJT & dx dy dz

(A.14)

Because the virtual nodal displacements in 8*¢ are constant variables,

F°=f j I(AN)Tdedydz
. (A.15)

In terms of equations A.6, A.7, and A.9, we have

equation A.14 becomes

c=D(AN)&. | (A.16)

Using this relation in equation A.15, and considering the nodal displacement

components in 8¢ are constant variables, hence

FC=III(AN)TD(AN) dxdydz‘Se
)] . (A17)

Letting B = AN and rewriting this equation, we have

Fe=[k] & (A.18)



where the matrix

[k]=f I I(B)T D(B) dx dy dz
. (A.19)

is the element stiffness matrix.
If the displacement functions are linear the matrices B and D will enly

contain constant variables then equation A.19 simplifies to
[K=(B)' D (B)AV, (A20)

where AV is the volume of element.

When the element stiffness matrix [k] is derived, the assembly of the total
stiffness matrix [K] is able to be implemented in terms of equation A.18. This
is a relatively straightforward as the elements are mathcmatically connected
to each other by their nodes. If the total stiffness matrix [K] is established, the
nodal load vector {R} will be formed automatically according to the
arrangement of nodes and finally the nodal displacement vector {u} in

equation A.1 will be solved.
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APPENDIX B: Programs

Program |

......................................................................................

THIS IS A PROGRAM OF ANSYS 4.4 OF STRESS ANALYSIS USED FOR COMPUTING STRESS-RELIEF
DISPLACEMENTS ON THE SURFACE OF A INFINITE HALF-SPACE. THE COMPUTED MODEL HAS SIZE
OF 30 CM X 30 CM X 12 CM WITH 1782 NODES AND 1352 ELEMENTS (WITHOUT HOLE). THE
SIZES OF THE STRESS-RELIEF HOLES ARE DIAMETERS OF 0.5 CM AND DEPTHS OF 0.5, 1.0, 1.5
,2.0, 2.5, 3.0, 3.5, 4.0 CM.

FILE NAME: FEMSRD

SEPTEMBER 6, 1991

.............................................................

Iprep7
/show,,,2 (vector plot)
/vievs,,-0.2,0.2,-0.2
eplot
C Set coordinate systems by key peints and change the vertical axis from y to z
k,1
k,2,1
k ? 3 e 1
cskp,11,0,1,3,2
cskp,12,1,1,3,2
Active cylindrical coordinate system
csys, 12
Define element type
et,1,45

Define material properties (elastic modulus and Poisson's ratio)

OO0 OO0 OO0

ex,1,2e11
nuxy,1,0.25
Cc .
C Generate nodes in the horizontal



Cc

C Active globe coordinate system

Cc
csys,11

Cc

C Generate nodes continuously

Cc
n,57,16
n,58,16,6.6274
n,59,16,16
n,60,6.6274,16
n,61,,16
n,62,30
n,63,30,12.426
n,64,30,30
n,60,12.426,30
n,61,,30

Cc

C Generate nodes in the vertical

c
ngen,2,66,1,66,1,,,2.0
ngen,2,66,67,132,1,,,1.5
ngen,2,66,133,198,1,,,1
ngen,2,66,199,264,1,,,1
ngen,2,66,265,330,1,,,0.8
ngen,2,66,331,396,1,,,0.4
ngen,21,66,897,462,1,,,0.25

C

C Generate gisments.

c

3
.0

2,3

3,4,4,6 '
4,5,5,67,70,71,71
5,6,6,67,71,72,72
7,8,3,68,73,74,69
5

6. 521
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oXoloXoXe]

12Xe X o)

OO0 OO0 OO0 QDOOOOOO0

OO0

Specify boundary conditions
constraints

nsel,y,-0.1,0.01
d.all,ux

nall
nsel,x,-0.1,0.01
d,all,uz

rall
nsel,z,-0.1,0.01
d,all,uy

load (uniaxial stress)
nsel,y,29.9,30.1

psf.all,,,2e8
nall

Delete some of elements to form a stress-reli
deletions is used in practical computing for a

hole depth 0.5 cm

edele,1301,1312
edele,1249,1260

hole depth 1.0 cm

edele,1197,1208
edele,1145,1156

. hole depth 1.5 cm

edele,1093,1104
edele,1041,1052

hole depth 2.0 cm

edele,989,1000
edele,937,948

hole depth 2.5 cm

edele,885,896
edele,833,844

hole depth 3.0 cm

ef hole. Only one of the following
given hole size.
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edele, 781,792
edele, 729,740

OO0

hole depth 3.5 cm

edele,677,688
edele,625,636

hole depth 4.0 cm

o XoXo]

edele,583,594
edele, 521,532

Write data into soiver

(o XoXe]

sfwrite
finish
C
C SOLUTION
C

C
C POSTPROCESSING
C

/solve

/posti1

set

/show,,,2
/view,,-0.2,0.2,-0.2

Active cylindrical coordinate system

csys,12

O 000

C Display the deformed shape of a model
Cc

pldisp, 1
C
C Contour display of stresses and displacements
C

pinstr,ux (uy,uz,sige,sig1,sig2,sig3)
C Output stresses
Cc

prastr,all
C Output displacements
Cc

prndis,all
c

c

finish
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C Exit from ANSYS
Cc
{eof
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Program i

C THIS PROGRAM IS USED TO COMPUTE STRESS-RELIEF DISPLACEMENTS AND THE

C CORRESPONDING FRINGE ORDERS. THE DATA OF DISPLACEMENTS IS FROM 3-D FINITE
ELEMENT C CALCULATION.

Cc

C FILE NAME: DISFRI

JULY 1, 1991

A, wave length of laser light.
NP, NR number of nodes in one path and number of paths.
N, Nt number of nodes in one quadrant and in four quadrants.
M1, M2 real numbers in calculation of direction cosine.
X1, Y1, Z1 coordinates of light source of object beam.
X2, Y2, Z2 <zoordinates of the centre of hologram.
R(100) nqga positions in the radial direction.
X(408§,Y(4D0) riode positions in globe coordinates.
UHR(100), UHT{100), UHZ(100) node displacements with stress-relief hole.
UBR(100), UBT(100), UBZ(100) node displacements without stress-relief hole.
HBR(100), HBT(100), HBZ{100) stress-relief displacements.
NODE1, NODE2 node number.
RD1(20,5),TD1(20,5),ZD1(20,5) arraies used for rearranging stress-relief
displacements.
RD(100),TD(100),ZD(100) stress-relief displacements in cylindrical
coordinate system, .
C XD(400),YD(400),ZD(400) stress-relief displacements in globe
coordinate system.
ND(400) fringe orders in four quadrants.

[eNeNoNoRo NN NoNoNeNo N NoNoNoNoNo N NoNoNoReo Ne N

----------------------------------------------------------------------------------

o L]

PARAMETER (A=6.328E-5,P1=3.141591)

PARAMETER (X1=9.70,Y1=0.0,Z1=23.05)

PARAMETER (X3=0.0,Y320.0,Z3=17.85)

DIMENSION X(400),Y(400),XD{400),YD(400),2D(400),R(100)
DIMENSION RD(100),TD(100),RD1(20,5),TD1(20,5),2D1(20.5)
DIMENSION UHR(100),UHT(100),UHZ(100),HBR(100),HBT(100),HBZ(100)
DIMENSION UBR(100),UBT(100),UBZ(100),NODE1(100),NODE2(100)

REAL M1,M2,ND(400)

CHARACTER*20 INFILE1,INFILE2,INFILE3,QUTFILE1,OUTFILE2C
c .
C Enter the number of node
C
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WRITE(",50C)

500 FORMAT(enter NR and NP')
READ(*,600) NR,NP

600 FORMAT{215)

N=NR*NP

N1=4"N
c
C Deline input file names and -output file names
c

WRITE(*,1000)

1000 FORMAT('enter node position: tile in cylindrical coordinate systen:)
READ(*,1100) INFILEi

1100 FORMAT(A20)

WRITE(*,1200)
1200 FORMAT('enter hole displacement file in cylindrical coordinate system')
READ(*,1100) INFILE2

WRITE(",1250)
1250 FORMAT('enter block displacement file in cylindrical coordinate system')
READ(*,1100) INFILE3

WRITE(",1300)
1300 FORMAT('enter output file for fringe order’)
READ(*,1100) OUTFILE1

WRITE(*,1350)
1350 FORMAT(‘enter output file for stress-relief displacements’)
READ(*,1100) OUTFILE2

OPEN(UNIT=1,FILE=INFILE1,STATUS="0ld,ACCESS='SEQUENTIAL',FORM='FORMATTED)
OPEN(UNIT=2,FILE=INFILE1,STATUS='0ld' ACCESS='SEQUENTIAL',FORM='FORMATTED')
OPEN(UNIT=3,FILE=INFILE1,STATUS='0ld', ACCESS='SEQUENTIAL',FORM='"FORMATTED')

c
READ(1,*) (R(l),I=1,N)
READ(2,*) (NODE1(l),UHR(!),UHT(!),UHZ(}).1=1,N)
READ(3,*) (NODE2(1),UBR(l),uBT(l),uBZ(l),I=1,N)
c
CLOSE(1)
CLOSE(2)
Cl.OSE(3)
c
C Calculate the difference of displacements
c
DO 20 {=1,N
HBR(1)=UHR(])-UBR(l)
HBT(l)=UHT(1)-UBT(!)
HBZ(l)=UHZ(1)-UBZ(l)
20 CONTINUE
c

C Set the tangential displacements of patht and pathS to zero (due to too small)



(o]
C Patht
o]
DO 25 I=1,N,5
nBT(1)=0.0
25 CONTINUE
o
C Paths
o]
DO 26 I=5,N.5
HBT(1)=0.0
26 CONTINUE
Cc

C Rearrange the displacements frem the order in terms of node number
C to the order in terms of paths
c
DO 30 J=1,NR
K=N-5+J
L=0
DO 30 I1=J.K,NR
L=l+1
RD1(L,J)=HBR(!)
TD1(L.J)=HBT{(l)
ZD1(L Jy=HBZ(I)
30 CONTINUE

K=0
DO 40 J=1,NR
DO 40 [=1,NP
K=K+1
RD(K)=RD1(l,J)
TD(K)=TD1(1,J)
2D(K)=ZD1(1,J)
0 CONTINUE

:I‘ransform displacements from the cylindrical to the globe

o NeoNe R J

TH1=0.0
TH2=Pl/p.0
Tl-déﬂljm
THé=3°PW8.0
THSaPl/2.0

DO 100 I=1,NP
NT1al
NT2al+NP
NT3=l+2°NP
NT4=l+3°NP
NTS=l+4°NP

C Transform the coordinates
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X(1)=R(1)*COS(TH1)
Y(1)=R(1)*SIN(TH1)

X(NT2)=R(NT2)*COS(TH2)
Y(NT2)=R(NT2)*SIN(TH2)
X(NT3)=R(NT3)"COS(TH3)
Y(NT3)=R(NT3)*SIN(TH3)
X(NT4)=R(NT4)*COS(TH4)
Y(NT4)=R(NT4)*SIN(TH4)
X(NT5)=R(NT5)*COS(THS)
Y(NT5)=R(NT5)*SIN(THS)

C Transform the displacements

XD(l)=RD(i)*COS(TH*\+TD(I)*COS(P1/2.0+TH1)
YD(1)=RD(1)*SIN(TH )+ TO(I)*SIN(P1/2.0+TH1)

XD(NT2)=RD(NT2)*COS(TH2)+TD(NT2)*"COS(P1/2.0+TH2)
YD(NT2)=RD(NT2)*SIN(TH2)+TD(NT2)"SIN(P1/2.0+TH2)

XD(NT3)=RD(NT3)*COS(TH3)+TD(NT3)*COS(P1/2.0+TH3)
YD(NT3)=RD(NT3)*SIN(TH3)+TD(NT3)*SIN(P1/2.0+4 TH3)

XD(NT4)=RD(NT4)*COS(TH4)+TD(NT4)*COS(P1/2.0+TH4)
YD(NT4)=RD{NT4)*SIN(TH4)+TD(NT4)*SIN(PI/2.0+TH4)

XD(NT5)=RD(NT5)*COS(TH5)+ TD(NT5)*COS(PI/2.0+ THS)
YD(NT5)=RD(NTS)*SIN(THS)+ TD(NT5)*SIN(P1/2.0+ THS)
100  CONTINUE
Cc
C Reflect one quadrant to four quadrants
Cc
DO 150 i=1,N
IN=l+N
INN=l+2'N
INNN={+3*N

X(IN)=-X(1)
X(INN)=-X(1)
X(INNN)=X(1)
Y(IN)=Y(1)
Y(INN)=-Y(l)
Y(INNN)=-Y(1)

XD(IN)=-XD(l)
XD(INN)=-XD(i)
XD(INNN)=XD(1)
YD(IN)=YD(l)
YO(INN)=-YD(l)
YD(INNN)=-YD(l)
ZD(IN)=20())



ZD(INN)=ZD(1)

ZD(INNN)=ZD(1)
150 CONTINUE
c
C Calculate fringe order
c
DO 200 1=1.N1
M1=SQRT((X(1)-X1)""2+(Y(1)-Y1)**2+21°*2)
M2=SQRT((X(1)-X3)*"2+(Y(1)-Y3)**2+23""2)
c
ALFA1=(X(1)-X1)/M1
BLTA1=(Y(I)-Y1)/M1
GAMM1=-Z1/M1
c
ALFA2=(X3-X(1))/M2
BLTA2=(Y3-Y(i))/M2
GAMM2=Z3/M2
c
ALFA=ALFA1-ALFA2
BLTA=BLTA1-BLTA2
GAMM=GAMM1-GAMM2
DELTA=2"'PI*(XD(l)*ALFA+YD(1)*BLTA+ZD(l)*GAMM)/A
c
ND(l)=(DELTA/PI-1.0)/2.0
200 CONTINUE
c
OPEN(UNIT=4,FILE=OUTFILE1,STATUS='NEW' ACCESS='SEQUENTIAL', FORM="FORMATTED)
OPEN(UNIT=5,FILE=OUTFILE1,STATUS="NEW' ACCESS="SEQUENTIAL',FORM="FORMATTED)
c
C Output fringe order and stress-reliet displacements
c

DO 300 f=1,N1
IF(ABS(X(1).GT.6.5.0R.ABS(Y(1)).GT.6.5) GO TO 300
| WRITE(4,290) X(1),Y(1).ND(!)
290 FORMAT(2F10.5,2X,1F20.10)
300 CONTINUE
c
WRITE(5,400) (RD(1),l=1,N)
WRITE(5,400) (TD(l).}=1,N)
WRITE(5,400) (ZD(1),!s1.N)
400 FORMAT(E20.14)

c
CLOSE(4)
CLOSE(S)
C
sTOP

B\D
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Program Ili

THE INTERPOLATION OF FRINGE ORCzRS BY UNIMAP OF UNIRAS FOR THE DATA FROM THE
GROGRAM DISFRI. THE DATA WITH 200 X 200 GRIDS IS OBTAINED AND WILL BE USED FOR
PLOTTING IMAGE OF SYNTHETIC FRINGE PATTERN.

--------------------------------------------------------------------------------------

UNIMAP
select mcgi;exit

C Enter stress-relief displacements
data
irregular
read
file name 1.8m2

Enter control parameters to avoid interpolating within stress-relief hole

OO0

data

region
read

file name Cir/cir0.5ex
plot

Interpolate

OO0

interpolate

gridcells
gridcells in x direction 200
gridcelis in y direction 200

----------------------------------------------------------

c
C Output the interpolate data
c

data
regular
write
file name interpolate.1
start variables 2
number of 2 variables 1
Exit



Program 1V

Rt R T

C THIS PROGRAV IS USED FOR FLOTTING THE IMAGE OF A SYNTHETIC FRINGE
C PATTERN. THE DATA IS FR.OM THE INTERPOLATED DATA IN UNIMAP.

c

C FILE NAME: FFIIMA

O 00000

(e X o Ne]

OO0 MP™M™ OOO®

[y
(=
o

200

300

400
C

AUGUST 18, 199¢

.........................................................................

PROGRAM FRIIMA

PARAMETER (NI=30,NZ=29)
REAL Z1(250,250),ZCL{. NSIZE
INTEGER INDEX(30),NCHAR(3)
CHARACTER®1 LABELS(3)*S
CHARACTER"20 INFILE
CHARACTER*S0 TITLE,SUBTITLE

Set colours of fringes

DATA INDEX/1,11,1,11,1,11,1,11,1,15,1,30,1,0,1,0,
1,0,1,0,1,0,1,0,1,0,1,0,1,0/

Set number of fringe order

DATA ZCL/ -5.2%,-4.75,-4.25,-3.75,-3.25,-2.75,-2.25,
-1.75,-1.25,-0.75,-0.25,
0.25,0.75,1.25,1.75,2.25,2.75,3.25,3.75,4.25,4.75,
5.25,5.75,6.25,6.75,7.25,7.75,8.25,100.25/

Define title and subtitle

WRITE(*,100)
FORMAT(‘enter titia*)
READ(*,200) TITLE
FORMAT(A40)

WRITE(*,300)
FORMAT('enter subtitie’)
READ(*,400) SUBTITLE
FORMAT(A50)

C Define numbers of image grids and cm net grids in one dimension

c

WRITE(*,500)
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500 FORMAT(‘enter image grids NGR/net grids NET/plot size NSIZE")
READ(*,600) NGR,NET ,NSIZE

600 FORMAT(2I5,1F5.1)

c

C Define file name of the interpolated data

Cc
WRITE(",1000)

1000 FORMAT({'enter interpolated file')
READ(",1100) INFILE

1100 FORMAT(A20)

(@] o NeNe

c
OPEN(1,FILE=INFILE)
READ(1,") ((Z1(1J),1=1,NGR),J=1.NGR)
CLOSE(1)
C
C Connect to UNIRAS
c
CALL GROUTE(SELECT MCGIEXIT)
CALL GOPEN
Prepare an image with an expected ratio
CALL GRPSIZ(XSIZE,YSIZE)
SX=XSIZE/100
SY=YSIZE/100
ORX=15.0"SX
ORY=15.0"SY
DIMENS=MIN(SX,SY)*NSIZE
c
C Set background colour to white
c
CALL RRECT(0,0,XSIZE,YSIZE,1,0)
C
C Set size of image grid
C
CALL GIMGRD(DIMENS/NGR,DIMENS/NGR)
¢ .
C Set scanning direction
c
CALL GIMSCN(1)
CALL GIMDIR(1,1)
c
C Select CMY colours of 10 levels
c
CALL RVMODE(1,0,9999.3,Ni)
CALL GGREY
CALL RSHADE(INDEX NI}
CALL RCLASS(ZCL,NZ &
c

C Initialisation
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c
CALL GIMORI(ORX,0ORY)
CALL GIMAGE(0,NGR.0)
Cc
C Read data and process image
C
DO 30 I=1,NGR
30 CALL GIMAGE(Z1(1,1).NGR,1)
Cc
C Terminate image generation
Cc
CALL GIMAGE(0,NGR,9999)
c
C Piot frame
Cc
CALL GWICOL(MIN(SX,5Y)*0.45,0)
CALL GVECT(ORX,0RY,0)
CALL GVECT(ORX+DIMENS,ORY, 1)
CALL GVECT(ORX+DIMENS,ORY+DIMENS,1)
CALL GVECT(ORX,ORY+DIMENS, 1)
CALL GVECT(ORX,ORY,1)
C
C Plot cm net in y direction
o
CALL GWICOL(MIN(SX,SY)*0.15,23)
Cc
NF=NET+1
DO 40 I=1,NF

CALL GVECT(ORX+0.35'DIMENS/12.7+(l-1)*DIMENS*NET/NET/12.7,0RY,0)
CALL GVECT(ORX+0.35'DIMENS/12.7+(1-1)*DIMENS/12.7,0RY+DIMENS, 1)
40 CONTINUE
C
C Plot cm net in x direction
C
DO 50 I=1,NF
CALL GVECT(ORX,0RY+0.35'DIMENS/12.7+(l-1)*DIMENS/12.7,0)
CALL GVECT(ORX+DIMENS,ORY+0.35'DIMENS/12.7+(l-1)*DIMENS/12.7,1)
50 CONTINUE
c
C Pilot title
c
CALL RTXFON('CENB',0)
CALL RTXCOL(0,0)
CALL RTXHEI(SY*3.)
CALL RTXJUS(2,0)
CALL RTX(-1,TITLE,92'SX,7°SY)
CALL RTXCOL(0,0)
CALL RTXHEK(SY*1.5)
CALL RTX(-2,SUBTITLE,52"SX,11*SY)
C
C Plot colour legend



CALL RTXCOL(0,0)
CALL GSCAMM

CALL RTXFON('SWIM1)

CALL GCLOPT(NCHAR,LABELS,SY*1.5,2,0.0,1)
CALL GCOSCL(80°SX,10°SY)

CALL GCLOSE

STOP
B\D
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