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Abstract—Rooftop photovoltaic (PV) generation combined
with battery energy storage provides a promising solution for
solar energy integration in smart grid. Specifically, the home
battery energy storage systems can improve the efficiency and
reliability of PV integration while reducing the greenhouse gas
emissions. In this paper, we investigate the randomness of home
PV generation and the residential random load demand, which
may affect the efficiency and reliability of the power grid. A bi-
level stochastic programming problem is formulated to provide a
pricing strategy to customers for the optimal demand response in
smart grid. In particular, the operators model represents the cost
minimization of the power system operation, while the customers’
model represents the cost minimization of their household energy
demand. In the operators model, power loss calculated based
on power flow analysis is used as the system loss, while the
stochastic model of the household load demand is used instead of
the expected value to characterize the human random behaviour.
The performance of the proposed stochastic demand response
scheme is evaluated through extensive simulations. Simulation
results indicate that this novel scheme can help both power
system operators and electrical customers to better decide on
their operating schedule and energy usage, respectively.

Index Terms—Demand response, PV generation, residential
appliances, smart grid, stochastic programming, uncertainty

NOMENCLATURE

Superscript
b Human behaviour
ch Battery charging state
dch Battery discharging state
d Devices
PV PV power generation
L Power loss
Variables
A PV panel area
B Battery state
C Electrical price
P Real power
Q Reactive power
G Customer electricity cost
F Utility operation cost
V Voltage
ψ Probability distribution
η Battery charging/discharging efficiency
λ Battery operation state, binary variable
Set and individuals
t, T Time set t ∈ T
m,M House number set m ∈M
n,N Node number set n ∈ N

I. INTRODUCTION

Compared with traditional fossil fuels, renewable energy
such as solar and wind energy is eco-friendly as a clean energy
source, which can help reduce greenhouse gas emissions. Due
to the sharp decline in solar panel production cost in recent
years, residential solar power systems are reasonably priced to
help customers reduce their annual electricity consumption by
20% – 50% [1]. For example, solar energy was not a source
of power for utility companies in Canada a decade ago, but in
2016, the installed capacity was 2,310 MW in Ontario [2].

However, the electricity generated by renewable energy
sources may affect or disrupt conventional power generation,
and due to the random nature of renewable energy sources,
it is difficult to predict and integrate variable power sources
to the grid. Recent studies discussed the randomness of
renewable energy in distribution systems [3–5], small energy
consumers (such as buildings [6], marine systems [7] and
railway station systems [8]), and home energy systems [9, 10].
Specifically, in [3], the authors propose a semi-Markov model
for the stochastic scheduling of photovoltaic power generation
in microgrids to reduce fuel consumption. Multiple types
of stochastic distributed generation, such as solar and wind
power generation, and battery storage systems are considered
in [4]. Here, the authors implemented the heuristic moment
matching method to generate scenarios from random char-
acters. Randomness is also considered for real-time control
of an integrated solar-storage system in [5]. With the high
penetration of renewable energy generation, PV panels can
also be installed in a building with battery energy storage
system [6]. Accordingly, the size of the battery storage and
the number of installed PV panels need to be determined
based on the consideration of randomness. Similar applications
considering randomness are discussed in the sizing problem
of a merchant marine [7] and the energy management system
of a railway station [8]. In home energy management system
(HEMS), authors in [9, 10] propose learning algorithms for
scheduling distributed energy resources integrated with home
battery storage systems.

Most of the algorithms proposed in recent research works
are based on the formulation of stochastic programming
problems to handle the randomness. However, the solution
methods are based on specific scenarios [3–5, 7–10]. For
example, scenarios can be generated by the heuristic moment
matching method [4], innovative scenario generation processes
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[7, 8], and heuristic scenario reduction techniques [9, 10].
These algorithms can be categorized as the scenario-based al-
gorithms. Benders decomposition is a well-known method for
dealing with large-scale problems, and it is applied in research
work [6]. However, this work focuses on the optimization
problem in a building, without considering the distribution
system operation. Moreover, dynamic programming is an
effective method to reduce the computational complexity of
stochastic optimization problems. For example, the authors
in [11] propose a storage operation problem in distribution
systems considering in-house renewables and in-house energy
storage devices.

Different from previous recent works, in this study, we
propose a stochastic bi-level demand response scheme for
operator optimal pricing scheme in a distribution system. We
assume that the residence is equipped with various electrical
devices, rooftop PV power generation and battery energy
storage system. Residential load demand as the lower level
is modelled by the customer’s uncertain behaviour, and PV
power generation is determined by the probability distribution
of random solar irradiance. Next, considering the random load
demand response of the houses in the distribution system,
we revolve these customers random demand scenarios in the
operator economic model as the upper level. Therefore, we
solve the proposed problem through stochastic programming,
and an acceleration strategy is implemented to improve the
algorithm efficiency. The main contributions of this work are
summarized as follows:

• In this work, a bottom-up stochastic model is developed
for both residential electrical appliances and PV power
generation in the HEMS.

• We proposed a stochastic bi-level demand response
scheme aiming at seeking the optimal pricing scheme for
operator minimum system loss. The problem is solved by
simplex and mixed integer linear programming (MILP)
algorithms.

• The proposed algorithm is implemented by acceleration
strategy to improve its efficiency.

The paper is structured as follows: Section II describes the
system model including both customer’s model and operator’s
model. The proposed stochastic demand response scheme
formulation and solution method are introduced in Section III.
The simulation results are presented in Section IV, and Section
V concludes the paper.

II. SYSTEM MODEL

A. Customer Model – Lower Level

This subsection describes the customer’s electrical equip-
ment model. We assume that all of these devices, such as
renewable energy generation, household appliances and energy
storage units, are equipped in house m. To simplify the formu-
lation, we omit the subscript m in the following subsection.

1) PV Power Generation Probabilistic Model: We can
derive the PV power generation probabilistic distribution by
the solar irradiance s, as follows [12]:

PPV = sAηPV , (1)

where A and ηPV refer to the area of the PV array and PV
panel efficiency, respectively. As the solar irradiance is variant
by time, the PV power output distribution can be written as:

PPV
t = gs(st)Aη

PV , (2)

and the corresponding probability distribution can be derived
as:

ψPV = gPV (PPV
t ). (3)

An example of PV power output distribution is shown in
Fig. 1.

Fig. 1: An example of PV power output distribution, with a
20m2 solar panel at 10am in Ontario, July 2017.

2) House Appliances Load Demand Probabilistic Model:
The probabilistic home demand model can be derived from our
previous work [13], in which we assume that the probabilistic
use of all appliances is randomly controlled by the cus-
tomer. By considering the customer’s behavioural probability
distribution, the devices usage probability distribution can
be determined. For example, customer entertainment related
appliances such as television and stereo set have the same
distribution as entertainment behaviour. Therefore, the appli-
ance usage time distribution φd

t belongs to the same behaviour
φbt can be derived as:

φd
t = φbt , ∀d ∈ b. (4)

Here, we define the probability distribution of human
behaviour as φb, and the time of use distribution for the
specific behaviour b related appliance d is represented by φd.
Therefore, we can derive the power consumption distribution
for each time period from the probability distribution of all
devices and their rated power P̃ d as follows:

φt =
∑
d

φdt , ∀P d
t = P̃ d, (5)

where φt refers to the power distribution probability, and
the corresponding power is P d

t . Therefore, the probability
distribution of household electricity demand is:

ψd
t = gd(P d

t ). (6)
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3) Home Energy Storage Model: The limits on battery
charging power Bch and discharging power Bdch can be
described as:

0 ≤ Bch
t ≤ Bch(max),

0 ≤ Bdch
t ≤ Bdch(max). (7)

And the battery current state can be derived as follows:

Bt = Bt−1 + ηchBch
t − ηdchBdch

t ,

Bt(min) ≤ Bt ≤ Bt(max), (8)

where the battery current state Bt is related to the previous
state Bt−1, and is also related to the amount of charged
or discharged energy. Moreover, only one operation can be
performed between the charging and discharging process at the
same time. Accordingly, we impose the following constraint:

λcht + λdcht ≤ 1, ∀

{
λcht = 1, if Bch

t 6= 0,

λdcht = 1, if Bdch
t 6= 0,

(9)

where we define the variables λcht and λdcht as the binary
variables for the purpose of charging and discharging operation
constraints. Thus, we can ensure that only one battery storage
operation takes place.

Therefore, household power consumption from the grid is
given by

Pt = PPV
t (ψPV ) + P d

t (ψd) +Bt, (10)

and reactive power can be derived from this real power and
power factor cos θ as follows:

Qt = Pt

√
1/ cos2 θ − 1. (11)

Then, the customer’s electrical cost is given by

G = E
∑
t

Ct · Pt. (12)

Also, the constraints introduced previously and the follow-
ing power limit should be taken into account:

P (min) ≤ Pt ≤ P (max). (13)

B. Operator Model – Upper Level

For operators, the problem is to set the optimal price and
indirectly control the usage period of the customer’s load
demand, to achieve minimum system loss and maintain system
stability. In this work, we consider linear power flow analysis
[14] for analytical tractability. And the power loss is chosen
as the system cost, since other costs such as investment and
maintenance costs are typically charged as a fixed rate, which
does not affect the results. The piecewise linearized power loss
[15] between node i and node j is given by

PL
ij = (Gij/B

2
ij)

K∑
k=1

λ(k)∆Pij(k), (14)

λ(k) = (2k − 1)Pij(max)/L, (15)

where Gij and Bij are transmission line conductance and
admittance from node i to node j, respectively. And Pij refers

Fig. 2: Basic structure of the proposed problem.

to the power flow from node i to node j. The basic idea of
the linearized line loss modelling is to approximated the loss
by K linear sections.

Therefore, operator’s system cost can be formulated as:

F =
∑
n,t

Ct · PL
n,t + E

( ∑
n,m,t

Ct · Pn,m,t

)
, (16)

where the electrical price Ct refers to the optimal pricing as the
decision variable for the operator’s model. And the following
constraints are considered:

Pn,t =
∑

Pm,t, (17)

Pn,t(min) ≤ Pn,t ≤ Pn,t(max), (18)
Vn,t(min) ≤ Vn,t ≤ Vn,t(max). (19)

Here, Pn,t refers to the node power, which can be achieved
from the house power consumption Pm,t. The following two
constraints (18) and (19) refer to the nodal power limits and
nodal voltage limits, respectively.

III. THE PROPOSED STOCHASTIC DEMAND RESPONSE
SCHEME

We formulated the optimal pricing problem under customers
random load demand as a bi-level stochastic programming
problem as follows:

min
C

F =
∑
n,t

Ct · PL
n,t + E

( ∑
n,m,t

Gm

)
, (20)

min
B

Gm = E
∑
t

Ct · Pt, (21)

s.t. (1) – (12), (13) – (15), (17) – (19), (22)

where the decision variable of the operator objective function
is the electrical pricing scheme C, and for the customer
objective function it is the energy storage charging/discharging
process B.

As we can see, the formulated problem is linearly con-
strained in both upper level and lower level. Therefore,
we implemented the simplex algorithm for the upper level
optimization, and mixed-integer linear programming for the
lower level. Since there exists a large amount scenarios in
household random load consumption model, we implement
parallel computing to accelerate the algorithm. The details are
shown in Algorithm 1 and a flowchart shown in Fig. 2.

3

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 23,2022 at 04:34:01 UTC from IEEE Xplore.  Restrictions apply. 

READ O
NLY



Algorithm 1 Parallel stochastic demand response scheme

1: procedure UPPER LEVEL
2: for iteration i = 1 do
3: for t ∈ T do
4: Generate renewable power PPV

t by (3)
5: Publish pricing scheme for users
6: procedure LOWER LEVEL

7: end for
8: Evaluate the results using (20) and
9: if feasible then STOP

10: else Go to the next iteration, i = i+ 1

11: end if
12: end for
13: procedure LOWER LEVEL
14: for house m ∈M do
15: Calculate house load demand distribution for each

t from equation (6), and generate the home demand
scenario set

16: Parallel computing optimal solution (12) for each
scenario using MILP and saving the results

17: end for

Once the amount of renewable power generation is deter-
mined, our proposed pricing scheme can be utilized to find the
optimal operations for both operators and customers. More-
over, customer’s optimal operation under the published pricing
scheme considers all potential scenarios that are derived from
the distribution of household probabilistic load demand.

IV. NUMERICAL RESULTS

In this section, we evaluate the proposed pricing scheme
under stochastic demand response based on IEEE 33-bus test
distribution system. The one-line diagram is shown in Fig. 3,
and the system parameter can be found in [16]. The simu-
lations are implemented with MATLAB linear programming
toolbox on a Windows desktop with an Intel i7-4790 CPU at
3.60 GHz with 16 GB RAM.

Fig. 3: One-line diagram of IEEE 33-bus test distribution
system.

In this simulation, the home energy system consists of a 5
kW rooftop PV system, a 6 kWh energy storage system and
several kinds of electrical devices. Specifically, the maximum
and minimum energy storage states are 600W and 5400W,
respectively. The typical home appliance parameters can be
found in [17]. We assume that PV power is randomly gener-
ated by Monte Carlo simulation to simulate the real cases.

Therefore, the optimal pricing for each simulation varies,
and we use Time-of-Use (TOU) price in Ontario for pricing
scheme comparison. The details of TOU price is introduced
in TABLE I. In addition, the minimum costs of the operator
and the customers are compared under these different pricing
schemes. For the voltage magnitude, the lower and upper limits
are 0.96 p.u. and 1.04 p.u., respectively.

TABLE I: Time of Use price, Ontario (2018 – 2019).

Period Price
Peak hours 11:00 – 17:00 13.2 ¢/kWh

Mid-peak hours 17:00 – 19:00, 7:00 – 11:00 9.4 ¢/kWh
Off-peak hours 19:00 – 7:00 6.5 ¢/kWh

Firstly, we test our proposed home energy storage system
with the TOU price, and the results are shown in Fig. 4. In
this figure, we compare our proposed method with the highest
probability method, the random scenario selection method,
and the scenario selection technique proposed in reference
[7]. The blue line indicates the average cost by implementing
the average value of home load demand instead of scenarios.
The proposed scenario based algorithm and other comparison
methods correspond to the red lines in the results. Furthermore,
the daily total electricity cost are: 9.667$, 11.637$, 11.322$,
10.269$, respectively.

Fig. 4: A comparison of the domestic cost: (a) The proposed
method; (b) The highest probability method; (c) The random
scenario selection method; (d) The scenario selection tech-
nique proposed in reference [7].

As we can see, our battery storage system can effectively
reduce the peak-hour cost in comparison with the other meth-
ods. The voltage profiles of these cases are shown in Fig.
5. From the figure we can see that our proposed algorithm
can improve the voltage profile, while some other scenario
selection methods may violate the lower limit of voltage
requirement (0.95 p.u.). The power loss versus iterations is
shown in Fig. 6. It can be observed that all the methods
can converge to the optimal value within 30 iterations, and
our proposed method converges faster. It is worth noting that
the convergence of the active power loss also indicates that
the proposed pricing scheme converges to the optimal value
under bottom-up stochastic models of both residence electrical
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appliances and PV power generation, which is different from
the existing research works.

Fig. 5: Voltage profiles obtained based on different methods.

Fig. 6: Convergence of power loss based on different methods.

To further demonstrate the effectiveness of the proposed
parallel process, several cases with different numbers of ap-
pliances are designed to compare the proposed parallel and
sequential computing. The results are shown in the TABLE
II. The number of home electrical appliances and their cor-
responding scenarios are also listed in this table. We can
observe that for a single core, when the number of scenarios
is small, the execution time is shorter than multi-core parallel
computing. However, as the number of appliances increases,
the execution time of the single core sequential process is
dramatically increased compared to the parallel process.

TABLE II: Execution time (s).

Number of appliances 4 6 8 12 24

Number of scenarios 16 48 83 198 520

Sequential process (s) 97.33 296.41 528.75 1294.46 3525.66

Parallel process (s) 309.51 390.04 467.77 735.38 1046.52

V. CONCLUSION

In this paper, we propose an optimal pricing scheme under
user’s random load demand to achieve the optimal demand
response in the smart grid. In the residence model, PV power
generation, household appliances and energy storage unit
are considered. Besides, PV power and electrical appliance
demand are modelled based on a probabilistic model. The

simplex and MILP algorithms are utilized to find the optimal
pricing scheme under user’s random demand response, while
parallel computing technique is embedded in the algorithm to
accelerate the computational process due to a large amount
random scenarios. The proposed method has been evaluated
through the simulations. Comparing several scenario selection
technique that implemented in most research works, the pro-
posed scheme is more effective and efficient in terms of cost
reduction and voltage regulation.
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