34416
A

Ribhiothdque nationale
du Canada

\an.lf Librany
of Janada

THESES CANADIENNES
SUR MICROFICHE

CANADIAN THESES
ON MICROFICHE

,l» ‘ {7 m(e S
NAME O SAUTHOR VOM O a0 TEHCR N b :

ot) A { .
VAT OF TwE L T TRE LA TMESE 4 ~Un /\“ ! DIreachn Fo SE€Cond |y g

‘ : : . y —
e d D /’7/7(,({ - C»’u'{/)u't C/J(/'," A’{‘*(Qfﬁs
J 7 7 T .
, ,) |

UNIVERSITY A7y RS, IE fl /6(rtac

A

DEGREE FOR WHICH THESIS WAS PRESENTED | .
GRADE POUR [EQ CETTE THESE FUUT PRESENTEE

D

YEAR THIS DEGREE CONFERRED ANNEE D OBTENTION DE CE GRADE

‘ Dr.

NAME OF SUPERVISOR NOM DU DIRECTEUR DE THESE

/G977

Marsiand

Pormission 1+ hereby granted to the NATIONAL leRY OF
CANADA to microfifm this thesis and to lend or sell cobbnes
o% the frlm.

The author reserves other publication rights, and neither the

thesis nor extensive extracts from it may be printed or other-

wicr reproduced without the author’s written permission,

\

7-0/1(1
s

L’'autorisation est, pgr la préseme,gm:(:ordée K} ' BIBLIOTHE-
QUE NATIONALE DU CANADA de microfilmer cett- thése et
.de préter ou de vendre des exemplaires du f/‘/m‘

L'auteur se réserve les autres droits de publication: ni la
thésem‘ de longs extraits de celle-ci ne doivent étre imprimés

ou:?ut/emenl reproduits sans /'autorisation écrite de ['aute .-,

DATED DATE SCQ% 023ﬁ 977 SIGNED /S/GNE .,

PERMANENT ADDRESS. RESIDENCE FIXE

R INLN

Aoacl

(/Ch/z.ct, 3’6?

gdxrneq e

el - v
AUSTRALIA |

I* National Uibrary of Canada

Cataloguing Branch
Canadian Theses Dwision

Ottawa. Canada
K1A ON4

‘ NOTICE

The quahty of this rucrotiche is heavily dependent upon
the quality of the original thesis submitted tor microfilm-
ing Every eftort has peen made to ensure the highest
quahty of reproduction possible

If pages are mMissing. contact the university which
granted the degree

Some pages may have indistinct prnint especially if
the ornginal pages were typed with a poor typewriter
nbbon or if the university sent us a poor photocopy

Previously copyrighted maternials (journal articles.
published tests. etc) are not filmed

[

Reproduction in fullorin gart of this ilm 1s governed
by the Canadian Copyright ~~* REC 1970. c¢.-C-30
Please read the authorizatior 1orms which accompany

this thesis.

~ THIS DISSERTATION
HAS BEEN MICROFILMED
EXACTLY AS RECEIVED

Bibliotheque nationale du Canada
-

Direction du catalogage
Diwvision des theses canadennes

AVIS

La qualitr Ce ~icrofiche depend grandement de ia
qualite . sathe s miseau microfijmaqe. Nous avons
tout f une qualite superieure de repro-

ductic

Sl s pages. veulllez communiquer avec
| umversite qui a contere e grade

La qualite dimpression de certaines pages pem
jaisser a desirer. surtout si les pages originales ont ete
dactylographiees 51 aided unrubanuseous! l'universite
nous a tait parvenir une photocopte de mauvaise qualite.

Les documents qui font déja I'objet d'un dront d -
teur (articles de revue, examens publiies. etc.jnes
microfiilmes

Lareproduction. méme partielle. de ce microfiim est
soumise a la Lol canadienne sur le droit d'auteur. SRC
1970, ¢. C-30. Veulllez prendre connaissance des for-
mules d autonsation qui accompagnent cette « nse.

| LA THESE A ETE
MICROFILMEE TELLE QUE
NOUS L'AVONS REGUE

'y e

THE UNIVERSITY OF ALBERTA
r
*

AN UNTFIED APPROACQ TQ SECONDARY. STORAGE INPUT-OUTPUT

OPERATIONR
by

KEN J. MCDONELL

A THESIS * B
‘SUBMITTED' TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOK I'HE DEGREE

OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTING SCIENCE

EDMONTON, ALBERTA

FALL, 18977

THE UNLIVERSITY OF ALBERTA

FACULTY 7F CRADUATE STUDIES AND RESEARCH

Tt undersi, . cortify that thé& have read, and
rcgommbnd.to the Faculty oL "‘radv.te Studices andﬁRcsc?rch,
for acceptance, a thesis entitled "A Unified Approach to
Seccrdary Storcage Input-Ouput Operations", submitted by
Ken J. McDonell in partial fulfilment of the requiremenﬁs

-

¢
or the degree cf Doctor of Philosophy.

rilad s lond

Superv1sor

e
///7/

External Examiner
Date f‘%, /2) (?77

ARG RACT \

Within presont medium-to-large scale compufnr éys;cms,
the support ot 1nput—ou£put opcrétions involving secondaryy”
storage devicos'consumes‘a significaht propogt}on of-th
resources and'thg/:;;\ﬁt1onal budget. An initial survey

‘

indicates that current implementation strategles are far
frgm optimai in two major respects; firstly, the ﬁaximum
.potential hardware resou%cc utilization 15 not achiecved, and
secondly, the svstem software charged with supporting the
secondary storage operations 1s poorly structuréd. .As }
consequence, reliability, system processing overheads,
security enforcement, system adeptability and application
program stability are typicélly deemed unsatisfectory for

\

those tasks reguiring, or providing, access to the secondary

storage devices.

The uniform secondary storage input—outéut interfecg
proposed in this thesis is designed to alleviate the
shortcomings observed in conventional systems. Wherevex
practical, the interface development.has followed en

‘integrated hardware and software design philosophy.

Basically, the proposal hinges upon the mandatory N
. '

imposition of 2 single software interface to the secondary

storage recourcos for all operating system and user

iv

processes exccuting on the central processor. Tt 13 argued
that the benefits of this approach are maximized if the
interface is device independent and the permitted operations
Corresbond to logical operations within a well-structured,

conceptual data model.

Once the uniform software interface hes been jUstified,
further advantages are shown to result from moving the
software which supports the interface out of the central

8

processor, and into a dedicated external processor, having

substantial independent processing capability.

The criteria applied throughout this research, when
evaluatiﬁg alternative design and implementation choices,
are primarily qualitative in néture since the relative
advantages and disadvantages often relate to factors which
cannot be quantified. However, these qualitative
evaluations are guided by the global objectives of reduced
total system Costs (i.e. purchase, maintenance and operation

y

of both the hardware and software) and improved security

enforcement.

o

Ry

ACKNOWLEDGEMENTS °

I would like to thank Colleen McDonell for her
paticnce, encouragement, and espeajally for the manner in
which she hos sacrificed her own ambitions and carecr goals,

so that I could complete this work.

‘with respect to the éontent and its presentatign 1
would like to thank Dr. Tony Marsland, my supervisdr, for
Chie encouragement &and coﬁétructive criticisms. I am alsé
grateful for the careful rcadind and‘comments provided by-

the members of my examination committee, Dr. Clement Yu,

Dr. Bill Adams, Dp.ADéle Bent of Computing Services, and

-Dr. David Hsiao of the Ohio State University.’

>

I gratefully acknowledge the financial suﬁport of the

Canadian Commonwealth Schdlarship and Fellowship Committee
in the form of a Commonweelth Scholarship, and the

Department of Computing Science in the form of teaching

assistantships.

vi

TABLE OF CONTENTS

Chapter

Chapter 1: INTRODUCTION &ttt it s enesnsesononoansseos
1.1 Identifying the Problem I
1.2 Terminology et e s ee e et e e s s e e

1.3 'Préliminary Assumptions Concerning the
Operational Environmentccoeuecennnocnns

« 1.4 An Overview of the Research Directions,
Methods and CrNClUSLIONS v vt et ecerecesncecnoecens

Chapter 2: THE EVOLUTION OF INPUT-OUTPUT SUBSYSTEM

ARCHITECTURES ittt et etnecetocacennens
2.1 Early Configurations e
2.2 Channel Controllersceeeeven. et e e e e

2.2.1 Channel Controller FUNCtIONS tveveecoocnnnnes

2.2.2 Main Store Accesseg and Conflictso
2.2.3 External Processing Capabilities
2.3 Technological Factors;....
2.4 Input-Output PrOCEeSSOrS ...eeeeoeenens e
2.5 . Frontend Communications Processors
2.6 Distributed Support Processors;.....

2.7 Processors for Database and Non-Numeric

Applications R PR sese s seeann ce et eenaaan
2.7.1 Searehing Enginesc00iiiinan, Gt e
2.7.2 Backend ProcCesSSOIS. teeevesooss Ceeereeteaaen
'2.7.3 Database Processors e,

2.8 _Projected Evolution and DeJelopment e s e

Chapter 3: SOFTWARE INTERFACES TO THE INPUT-OUTPUT
SUBSYSTEM e cteeeet it ecsat e v vas e

vii

11

12

13

16

19

20
22
25
27

28

32
33
36
39

41

45

TABLE OF CONTENTS (continued)

Chapter
3.1 The Evolution of Multipl: Intertaces .a .----.--
u P € !,_‘.\ :
3.1.1 Hardware and Architrctural Influéncos cee e

3.1.2 Input-Output Support: The 'Add-On' Growth

PheNOMENON « i ot v o v e ononeoasrvosesasosososseses

3.2 Multiple Classesyof Input-Output Abstraction ..
3.3 Physical Interfacescoecuenvncnnnons
3.3.1 1Initial Advantagesccccec.on R,
3.3.2 Processing Overheadcc.ccecee-eennn
3.3.3 Security Consideratioﬁs e

“3.3.4 Database Access Patterns and Requirements

3.3.5 The Demise of the Channel'Program-Interface?

3.4 Logical Interfaces c e et eas e e e ees e
3.5 Simple Logical Interfaces et bt e ..l
3.6 Complex Logical Interfaces ettt c s se e

3.6.1 Alternative Data Structure Models‘.:..,.....

3.6.2 Alternative Database Management System
Implementationsccmeceeceenn et enee s

3.7 The Effect of a Module's 'Level' within the.
Systemccieeeecenens cees s e sseses cescens oo

3.8 Input-Qutput Facilities within Programming
LanguagesS .eeceecoesecses et e s e e ecan s s e e s e aenone e e

-

3.9 The Influenée of Computer Networks and
Distributed Databases e et e e e .

Chapter 4: A PROPOSAL FOR A HOMOGENEOUS INPUT-OUTPUT

INTERFACE-...... ceeseseessesesee s .o

4.1 The Case Against Heterogeneous Interfaces

- viii

60

64

66
67
10

72

73
74
76
81

84

87

90

92

95

97

98

TABLE OF CONTENTS (continued)

Chapter
4.1.1 Punctional Equivalence e e e e e e e e e e
4.1.2 Software Structure and

4.4

4.
4.

4,

4.5

.1.3 Resource Utilizqtion ;,Qf7'4

1.4 Security‘gnqueliaQéjiEy
- ke SN -\— {,'\ .

Duplication within the Input-Out:iut
Subsystemsc.0ae0.n E

Alternative Inte(faces éﬁ&}ﬁ&ta Structure Models

< SN
d <

.2.2 A Simple Logical Interface?c..
.2.3 A Complex Logical Interface?
" The Uniform Input-Output Interface e

.3.1 Data Definition Facilities R

4.3.1.1 Record Descriptioncceeceesccc.
4.3.1.2 Set Descriptioncceeeceece cennn e

4.3.1.3 Consistency and Integrity e e

.3.2 Data Manipulation FAacilities .veeeveeaocesns

4.3.2.1 Concurrent Access and Lockiné
4.3.2.2 The FIND Operationcecceccccenccs

Input-Output Oﬁerations Involving Secondary
StOrage ..c.ceeeccssoscs teseees s asaceneasne e e

4.1 The File Sysytemccceeeeccrcoccccaccnons
4.2 The Spooling Subsystemccccceececccens
4.3 The Paging Subsystemccceccececcccace

Input-output Operations Involving Sequential
BV LCES vi e teeenrsnccsasssrsressssssea oot

ix

Page

110

CTARLE OF CONTENTS (continued)
Chapter ®page

»

4.5.1 Terminal Input-output and the Communications
SUDSYSEOM v vt i ee e e e assseneesssssasssensc=- s 140
' Y '

4.5.2 Magnetic Tape, Archival and Mass Storage
Input-Output Operationscveernenne: [42

sl
.o Implementation LOgistlcs ... eeeenaeceeenneennns 144

Chapter 5: THE HOMOGFNEOUS INTERFACE AND AN AUTONOMOUS

SECONDARY STORAGE PROCESSORc0eeeen.. 147

5.1 Some Global Design Objectivesc.civenen.. 143

5.2 Access Control and Securityccciiaoo.. 150

™~ . A)
5.3 Reliability it eenneeeaanrsennsesns 153
N\

5}4‘ Functional Dependencies Between the Input-Output

Module and the Operating Systemc... 155

5.5 Resource Ut1lization ...eeeeeeeciieoeenneaneacncsses 162

5.6 Scope for Performance Improvement 167

5.7 Shared Databases and Network Environments 169

5.8 Distribution of Input-Output Module Software
Between the Central and Secondary Storade

PrOCESSOLS o aeeessosennnesassssenasnonssessssocs 171

5.9 Potential Disadvantages et 173
Chapter 6: THE ARCHITECTURE OF A SECONDARY STORAGE

PROCESSOR st evvetoesonceassnosssnsesscssssss 175

6.1 Performance Estimationccceceeneenoreenenn 176

6.1.1 Throughput, Response Time and Resource

Jt . 1Zation e vtveeereocassaonacesosenosnenese 176
6.1.2 "n:orference:Between Concurrent Data
Transfer Oper%tions Within the Input-output
SUDSYSEEM vt v vt veensveocssonassnoosscecccoss 182
6.2 Request Multi-Taskingee..ceieerveenennnnnns 185

TABLE OF CONVENTS (continued)
Chapter Page
6.3 The Hardware Architecture of a Secondar Storayn
Pl OCEESOT e s e s oo s aaaacmeas saeomseseesasnonssosass 192
6.4 Factors Influencing the Design of the Link to
Connect the Central and Secordary Storage
PrOCESSOIS vt eee et acereaseensssanssasans e e e e 195

6.5 Tasks, Buffers and Software Organization 198

6.6 Other Techniques Designed to Improve Performance

.. 200
Chapter 7: CONCLUDING REMARKS%..cccuienecnenenn 203
7.1 SUMMACY e v euvenoseonoanannecssseesanesssacsecsss 203
7.2 SignificCanCeeeeeieeeeceeeinnonosscscosaennns 205
7.3 Outstanding Problems and Areas Requiring More
Detailed Investigationcececeen e e e 207
BIBLIOGRAPHY .t iv it eeitoescaossnsenasassessansssccsos 210

APPENDIX A: A PROPOSAL FOR THE IMPLEMENTATION OF A
SPOOLING SUBSYSTEM USING A COMPLEX INPUT-

OQUTPUT INTERFACE ¢t et iecenceccnncncancae 227

A.l1 Data Structures and Declarationscceee.. 228

A.2 An Input Spooling Process ...; v.... 230

A.3 An Output Spooling Processc....oneenn 236

A.3.1 The Dispatcher e e e 238

—

A.3.2 The Output Spoolercceeoeeececceccn .. 240
A.4 Interaction with the Spooled Device 241

A.5 UsSer PrOCESSES ..eveeeeosnsccacacsnsns e e e 243

X

Table

Ll OoF TABLES

PDeoocraptiion . ~

-

Torm: and Concept o Relatoo to o General oo

External Storage Structi e e

Some Typical entral Proceas: o It ut-output
TNSErUCE TONE ot i et et e e e e s e e e e s e e e e e B

Examples of some Common B o~ Or jantzatiens and

Data Management Subsystems ..o e e e »

Parameter Values ior the Perlormance fstimates of
Figures 6.2, 6.4 and 0.5 ...l ...

Page

187

LIST OF FIGURES

Figure ‘Description Page
2.1 A Typical Channel Controller-Based Architecture . 15
2.2 A Sample Channel Program to Read a Record18
2.3 A Likely Computer System Architecture 44
3.1 The Physical Structure of a Secondary Storage

DOV ICE vttt et eeeaeanssaeensanaasoensesssnnsessss 49
3.2 The Logical Structure of a File System 50
3.3 The Generalized Storage Structure EEREEE 51

5.1 The Conventional Relationship Between the
Operating System, a User Process, and the Input-
Output Moduleciiiiieriroenenreennnns 158

5.2 \FunCtional Separation Between Part of the Input-
Output Module and the Operating System 160

5.3 The Structure Imposed by the Uniform Interface and
Its Secondary Storage Processor Implementation .. 161

6.1 The Simplified Queuing Model for the Secondary

Storage Processor Subsystem L.......... PR 181
632 Directed Graph Representation of a Sample Device \
Configuration e e et 184
. /\
6.3 Sample Throughput Estimatesccoceoe.n 188
6.4 Sample Response, Time Estimatesc....... 189
6.5 ¢ ..o Secondary Storage Processor Utilization -
TSEAIME T8 e e e e s aeaccan e seaeaee e 190
a.l ~+>,f -e Schema Declarations fc¢ * e User
I~ ti ication Data@8 ..eeeeieeneneanosasnacssonsss 229

A.2 Interface Schema Declarations for the General
Purpose Files and User File Directories 231

A.3 Interface Schema Declarations for the Device
Configuration Data et e e et 232

LIST OF FIGURES (continued)

Figure Description Page

A.4 Interface Schema Declarations for the Temporary

Sets Maintained by the Spooling Subsystem 233
A.5 Subschema for an Input Spoolipg Process 234
A.6 An Input Spooling Procedureu.uuuomuno... 237
A.7 Subschema for the Dispatcherwuui.... 239

A.8 A Procedure for Dispatching Output Spooled Files 239
A.3 Subschema for the Output Spooler 241
A.10 An Output Spoooling Procedure..... et et 242

A.1ll Subschema for User Processes Using Spooled Files

...

244

Xiv

CHAPTER 1

INTRODUCTION

1.1 Identifying the Problem~*a\\ —

S—

Ipput—output operations'inolving secondary storage
devices exert a significant influence Jpoh the performance
of pfesent medium-to-large scale computer systems. Fdr user .
programs, reliance upon these secondar? storage ‘resources
~varies from aﬁ obvious and direct requirement, as in the
éase Qf a large on-line inventory system, through té
indirect dependence, for example, the apparently process-

bound manipulation of large matrices in a virtual address

space.

In typical insfallations, the resources dedicated to
secondary storage operations,extend beyond the physical
hardwafe 6f the devices, controllers ahd data peths.
Considerable amounts of~p£ocessor time are devoted to
settihg up, verifying, initiating ana checking the supported
input-output operations, and a>signifiCant’percenta e of the
software development and maintenance budget is appgipriated

to input-output related routines and'sdbsyétems.
X .] Q

*®

One of the initial premises, which motivated this
rescarch, was the claim that conventional approaches to
secondary storage input-output support have been found
lacking in the following respects:

(1) The structure of the gupport software is generally
poérly organized, and consequently the software
development and maintenance costs are excessive 1in

‘relation té the facilities which are provided, the
enforcement of sécurity and privacy constraints is
inadequato, excessive central processor time is consumed
in input-output related routines, and the managément and
utilization of.the secondary storage resources is far
from optimal.

(2) Rapid advances are already visible in the technology and
speed of h;rdwaré components of the input-output

subsystem, however the poténtial benefits of these
_ P '

changes are not being fully realized, as far as the
sy 4m users are concerned.
13) The range of supported input-output subsystems is

needlessly large, due to the substantial overlap in

functional capabilities between subsystems.

'Cdnsequently, the research was conceived aé an attempt
to verify these claims, b&sed upon an investigation of
curfent approaches to the‘pro&ision of secondary storage
input-output operations. If the postulated shortcomings can
be established, then a second important goal is the

o
\

formulation of propésals for an integrated hardwarc‘nnd
software design to provide secondary storage input-output
facilities for all user and operating system routines. It
was Boped that such a unified rppioach would avoid some of
the shortcominfis ot 1regsont sttoms, and permit full
utilization ot the omor&ing input-output hardware

architectures with distributed processing capabilities.

1.2 Terminology

Before p;oceeding with the details of .the research‘area_
and the appréach, 1t seems essential to define some of the
terminology which will be used.

Main Store: :) L
The primary memory in the system, to which immediate

access 1s provided for the exccution of instructions by

1 and/or

the central processor, and for the logi

4

arithmetic manipulation of data ltems. 1In addition to

providing input-output -buffer areas for the block

transfer devices, main store is allocated to currently

loaded (i.e. potentially executable) procedures, or

parts thereof, and their associated local variableé.

Central Processor:

N

T?e main computational module in the syétem, which
eﬁecutes instruqtions held in mein store. This

' exécutibn may be achieved by a variety of methods
(eié. hardwired control, microcode or some hybrid
o;ganizétiqp), and proceceds in one of two modes,

e —

t
i

'supervisor' or 'restfﬁcted'. Supcrvisor mode is
rescrved for low level processes where all the resources
of the machine are potentially accessible, however, some
of the protection features of restricted mode may be
sélectively enabled. All other processes execute in
restricted mode where, for example, 'memory proteétion'
is enabled and certain instructions are designated 'non-
executable'. Physiéally, the central processor may be
either a single processor, or a homogeneous or ‘
heterogeneoué co}iection of coupled prdcessoré.

Secondary Storagé:
Encompasses all storage media external to main store and
the central processor. Data and instructions held in-
secondary storage cannot be directly manipulated by the
central processor, without prior transfer into main
store. With current technolggieg, secondary storage
typically cdnéists pf one or mbrévairect access devices
{e.g. fixed-head aisk,.moving—head disk, or drum), and
is used 2s a main store paging area, for permanent data
file storage, and for temporary storade (scratch files,

- spooling areas, etc.).

Input—Outppt Subsystem:
The hardware, firmware aﬁd software associated with
§econdary>storage, but external to the ceﬁtral
Lrocessor. Thi§ inclﬁdes input-output processors,
multiplexoré, channels, device controllers and devices.

-

.Opefhting System:

-

The group of software pfocedures which require
supervisor mode précessing; e.9. central processor
scheduling and main store management (paging, X
protection, garbage collection, etc.). This concept of
an operating system is similar to the ‘nucleus' of the
Multiprogramming System for the RC4000 machine (Brinch
Hansen, 1970), where the pfimitive system functions are
implemented in an environment which is not available to
‘the pfocesses which realize¢ the higher levelﬂsupport
functions.
Application Programs:
User supplied programs, system utility réutines
! (compiders,-editors, loaders, sort package, etc.), and
“some traditional operéting system procedures which do
not require supervisor mode processing. ‘
Process: g
A logically autonomous sequence of central processor
instructions which is always executed without
concurrency. A process may be an opérating system
précedure or a section of an aﬁpliéation program.‘
Taout-Output Module: ‘ L
Responsible for the interface between a :gocess and the

-~-cadary storage devices. Must co-ordivate both data

B -ween main store and secondary storage, and

e / control functions between secondary storage
4

a. - _cntral proc 3sor. An input-output module is

func v - scribe v the set of operations it 1is

capable of cxecuting. Physically, this module may be
implemented as a combination of software suppdrt
routines which have traditionally executed as part of
the operating system on the central\prbcessor, plus the
hardware components of the inpug—output subsystem (e.g.
channels, controllers, devices, etc.x.
Secondary Storage Input-Output Operation:
Any operation initiated by a user, or ‘a process which
causes a secondary storage access to be initiated, or a
secondary storage'device buffer to be accessed, or
invokes the process(es) responsible for.management of
the secondary storage resources. For the purposes of
the current investigations,Aa‘secondary storage input-
output operétion consists of two parts, namely
invocation (characterized-b§ fhe ;nterfacé betweeﬁ the
requesting process and the input—odtput module), and
eiecution (achieved by the input-output module).
Database Management System:
A collection of processes which support én'iﬁtegra;ed

7

database.
1.3 Preliminary Assumptioné Concerning the Operational

" Environment

w

Some of the more fundamental assumptions, regarding the
environment in which =2 unified approach to secondary storage
input-output support would be required, are discussed in the

following>paragraphs:

-

In broad terms, a typical configuration may suppo:: one
or more of the following computing environments:

(1) A time-shared operating system, suitable for on-line
program development and execution on behalf of mény
concurrent users.

(2) One or more on-line database ééplications, providing a
full range of transaction-oriented update, query and
report facilities.

(3) A batch processiné stream, providing less urgent access

to the facilities of (1) and (2).

AN

For such an installation, the program execution
environment provided by a typical operating system would
feature multiprogramming, virtual address spaces, spooled

devices, and all the associated mechanisms for concurrent

process interaction (e.g. resource allocation, protection,

scheduling, and synchronization primitives).

To provide these bperating system facilities, the base
hardware would include at least one central processor, a
large main stcre of the order of 106 bytesl, secOndary
storage capécity in the lO7 to lO9 bytes range, a Variety of
Vlocal peripheral devices, and some telecommunications

facilities (e.g. interfaces to processor-terminel and/or

processor-processor networks).

%

l: 'Bytes' will be used as the unit of storage capacity
throughout -- for the pupposes of these discussions, a
"'byte' asnd a 'character'/are considered synonymous.

Implicit in the foregoing scenario is the assumption
that large centralized computer installations will maintain
.their pOpularity and demands for service, despite attempts
to introduce decentralized and personalized computing
facilitieg. This assumption is based upon the the belief
that while the smailer, decentralized processors will be
used increasingly in those applications in which their cost-
effectiveness can be demonstrated, many applications cannot
be viably'transferred to a2 smaller processor. Examples of
applications or environments which are likely to maintain a
heavy dependence upon a large centralized processor include,
corporate data centers with very large databases, programs
requiring fast execution in ;ery large address spaces,
universities and similar computer resource or service
centers, programs requiring a variety of non-standard
peripheral devices, programs in which the input-output
workload is the most significant component of the reauired
processing, géEeLlite minicomputers with inadequate
secondary storage, and where users requiré the full sp -zrum

of services associated with large operating systems and

their ancillary utility programé.
' <3

It should‘be_notea that as programs and applications
are relocated on decentralized user processors, the relative
impor tanc f.secoﬁdary storage inputFoutput operations at
the remaining centralized sites will, in all likelihood,-
iggréaSe because it is the jobs whichnare not heavilf J

i

Y

dependent upon the secondary storage resources which are the
prime candidates for remote cxecution.
1.4 An Overview of the Research Directions, Methods and N

Conclusions

Chaptecrs 2 and 3 proéent the historical overview and
generalizetions required to establish the inadoéuacies of
present approaches to secondary storage input-output
support. These problems are highlighted from both a

hardware and software perspective.

As mentioned earlier, the balance of the reseearch
(i.e. Chapters 4, 5, and 6) has been directed towards using
this survey material to help identify:the desirable
attributes for the software interface to an input-output
module, and to specify a plausible structural basis for the
module's implementaticn. As é direct consequence of these

studies, the following contentions form the central findings

of the research:

(1) For scoftware. executing on the central prbcessor, the
~input-output moaule should present an interface which ;s/ 4
homogeneous, independent of the physical devices in the v
input-output subsystem, and based upon logical
operations within a conceptual data model.
(2) The software sections of the input-output module should

reside in a dedicated processor having a substantial

capability for independent proceséing with respect to

the central processor .,

In the procos% of substantliating these contentions, the
scope of the research has included the areas of database
management technology, operating system principles, softwaro

engineering, performance evaluation, and macroscopic design

techniques for multiprocessor architectures.

For the most part, 'the argquments, discussions and
interpretations of alternative designs/gre based upon
gualitative assessment of global constraints and those
attributes of the system as a whole which may be deemed
'desirable’'. From an early stage, the magnitude and scope
of the planned research dictated that thorcurrent work
should not be aimed at pgoducing defailed systems designs.
Rather, éhe objective throughout has been to establisﬁ a
unified proposal, which appears feasible, and to identify
the unresolved problems and areas requirihg subsequent

v

detailed investigation.

CHAPTER 2

P
7

p

THE EVOLUTION OF INPUT-OUTPUT SUBSYSTEM ARCHITECTURES

Input-output subsystem architectures have -wundergone
significant evolutionary changes over the past 20-odd years
Early computers tevatured very limited input-output support.
;féhsﬁoEs were executed one at a time, overlap betwcen
processing and input-output was not possible, all buffer
’storage was 1in main store, and all input—output related
processipg was performed on the central processcr. As
processo%s became faster with respect to the input-output

devices, and hardware logic costs decreased channel

controllers were introduced to permit multiple input-output

transfers to proceed concurrently with central processor
execution. Channel controllers also provided some
rudimentary processing capability external to, and

independent of, the centr: orocessor.

P

~Further advances in hardware technology, coupled with a
better understanding of multiple‘processor architectures has

led to the development of input-output processors. These

special function processors are generally minicomputer
based, and capable of executing idput—output operations

which are both significantly more complex than those

11

suppor ted by Lﬂnsﬁnnl controllers, and Targely independeont of
the physical devicee charocteristics., tn oddition, some of
the resource maonagement tunctions and housekeeping duticea
may be oftf-toaded from the central pro&vsaox to an input -
output proceasor. For database applications, the input =
output procescsor approach has more recently been oxtonded by-
the 1nclusion of special function provessors, based upon

non—-numer1c architectures.,

Current gtechnological and architectural predictions
tend to favoz the adoption, and extension of the input-
output proceccor approach as the norm for medium to large
scale machines in the next decade.

O

2.1 Early Configurations

Initial approaches to input-output implementation
involved simple, device dependent interfaces to the central
processor. The datum transferred across the interface was
determined by the characteristics of the peripheral.device.
For cxample, attached to an IBM 1401 (IBM, 1963), the 1402
card reader-punch transferred a card image as 12 B80-bit rows
of information, while the 1403 line printer accepted zero to
lOO characters in parallel, depending upon the contents of
the output line asnd the print train position. These early
input-output’ subsystems we' ¢~aracterized by:

(1) little or no buffer storage outside main store,

(2) very limited control logic and deta manipulation

u

K

13

facilities outside the processor,

(3) no concurrency between multiple input-output tfansfors,
even when acssogiated with different devices, and

(4) complete dedication of main store and processof to
inputﬂoutput'operations,)sinco no overlap was possible
between processing and input-output, except possibly for

time-critical periods during the input-output cycle when

the device was not engaged in data transfer.

Under these early machine configurations vjrtﬁally all
the processing associated with input-output operations was
performed in software which was largely 'visible' to the
programmer; e.g. record blocking and unblocking, character
code conversion, buffer management, file label processing

and format conversion.

2.2 Channel Controllers

By the mid 1960's the input-output architectures of
most medium to large scale machines featured an arrangement
thch was radically different, compared to the earlier
machines. Madnick and Donovan (1974, chapter 2) have
attributed this change to the following facts:

(1) Compared to earlier machihes, main.store qnd central
processor spéeds had increased one thousand fold, while
the peak transfer rates of égripheral devices had only
improved by a factor of 10. The conséquént reduction in

central processor throughput during input-output

14~

highlighted the 1nefficient use of the processor and
main store.

(2) Substantial overlap of central processor operation and

cdata transfers was technologically feasible using £

2N

=

external logic which was specialized, simple, not too
fast and cheap. These added logic modules were well
suited to the necessary computation, manipulation and
controi tfunctions, and provided a machine architccture
which was ééonomically attractive compared to the
alternative designs bascd exélusively upon a general

- purpose c§htral processor.

The resultant architectures feetured five distinct

functional units -- the central processor, mein store and

peripheral devices as in ~arlier machines, plus one or more

channel controllers and a main store arbiter (refer to

Figure 2.1). When coupled with an external interrupt
mechanism and multiple direct data paths between the channel
controllers and main store (i.e. by—péssing the central
processor), this érchitecture permits parallel execution of
central pfoccssor instructions with not just one, 'but many

input—butput transfers.

kl

The cenfral processor is typically interfaced to one or
more channel controllers, which are in turn interfaced to
the peripheral devices. Physically, a éhannel controller
may be constructed from two or more>component modules,

variously described elsewhere as input-output multiplexors,

CENTRAL ‘
00000000000 PROCESSOR 000000000
o) . o)
0 o
o B o
0 0
e} o
—0- 0
CHANNEL MAIN STORE 'CHANNEL
CONTROLLER ARBITER CONTROLLER
DEVICE ‘ MAIN _ DEVICE
STORE

DEVICE ’ o DEVICE
DEVICE

DATA PATHS

0000000000 CONTROL iINES FOR CHANNEL PROGRAM
- INITIATION AND TERMINATION

+

Figure 2.1, A Typicel Channel Controller-Based
Architecture

s

input-output p:ocessors,1 data channels, device controllers,

etc.
¢

l: Refer to Section 2.4 for clarification of the difference
between this type of channel controller and the class of
special purpose processors described as 'input-output:
processors' elsewhere in this thesis.

16

Three arcas of functional responsibilityyarc assignod‘
to a channel chtroller,.namely channel program
interpretation, device control and transfer co-ordination.
By supporting the device-level functions (e.g. issuing
device coﬁmands, servicing intermediaté device 1lnterrupts,
and multiplexing the main store data path(s) between the
devices), a channel controller frees the central processor
from the more mundane processing‘tasks associated with
input;output transfers. In addition, the cbaﬁheé/controller
provides a single hardware interface between the central
processor and multiple heterogeneous devices, thereby
masking\rany of tﬁe device idiosyncracies from ‘the central

processor.

2.2.1 Channel Controller Functions

A process executing on the central pro ¢ssor initiates
an input-output operation, or a sequence-0f operations by -

.constiucting a channel program from one:or more channel "
L4

commands. By way-of an example, Figure 2.2 shows the ¥

e

semantics of the éhannel commands for a chénﬁel program
designed to read one data record from an IBM 3330 series
disk device (IBM,~1973§f, assuming the réquired hardware
resources are available, and the physical cylinder, track
and sector address of the desired record .is known in

advance. .

Once the channel'program has been constructed_and"

17

placed in main store, the channel controller is called upon
to fetch and interpret the channel comands, one-by-one.

#Within the channel controller local scheduling strategies

+

N, . .
must be imple¢mented t6 ensure that confljicting channel

programs may be interpreted <in a sequence which guarantees

e

their individual integrity'—— for example a program passed
to the channel controller may request access to some
physical resource which is already allocated for the

interpretation of a previous channel program.

\

u

Interpretation of a channel command involves the second

-

area of responsibility for the channel gontroller, namely

device control. To achievye the intent of a channel command
it ls typically necessary to conduct a protracted
'conversation' with the device itself,.to set and clear
‘command lines, interrogate status, initiate pre-transfer
operations, assemble~characters, perform oarity checks,

hand ~ device interrupts} etc. Device conkrol functions are

often delegated to a separate dev1ce controlller, capable of
.\
servicing multlple homogeneous devices on behalf of a

14

channel program interpreter.

‘Co—ordlnation of transfers between main store and
multlple actlve perlpheral dev1ces constltutes the third
function handled by the channel controller. Basically this
involves multiplexing the data path(s) (i;eﬂ the channels

and subchannels) connecting the devices, device controllers,

channel controller and main store, based upon the real-time

18

urgency with which a given data t;ansfer must be completed.
The length of time for which a data path is assigned to a
particular device is determined by the channel controller
design, which in turn reflects the data transfer rates of
the attached devices. For example, a slow device is
typically assigned to a data path gnly dufing the transfer
of a one or two characters (simple multip&exor”mpde),
however a faster device remains connected to the data path
while a complete physical record is transferred eblock

multiplexor mode), or for the duration of an entire channel

program (selector mode).

SEEK cylinder/track address
-held in main store

LOOP: SEARCH ID EQUAL ID (= cylinder/track/sector
- address) held in main store
BACK TO LOOP A : -
IF NOT EQUAL 7 N

READ DATA - into main store buffer

Note: assumes the absolute cylinder, track and sector
address of the record is known in advance --
this may require some preliminary computation,
a main store resident index or a previous channel

program to access a disk resident index. X

L]

Figure 2.2 A Sample Channel Program to Read a Record

19

2.2.2 Main 'Stofre Accesses and Conflicts

In addition‘po reqguests originaEing from,6 the central
processor, main store.acééSées are required for the
following purp6§es}

'(1) The channel controllers must fetchvthe channel ‘programs
from main store, and return some.status information to a
main store location at the end of a transfer and/or a
channel program. v

(2) The input-ouput transfers involve main store accesses to
fetch, or store, the transferred:data ~-- an absolute

‘main storg-buffef address is usually specified in the

channel command which initiates the transfer.
I

In earlie; machine architectures, all main store
accesses were routed through the central processor, and the
seqguential :mode of operatfon ensured that no main store
contention was possible. However, the channel controller
organization features multiplerdata paths to-main store

’ e
since there is at least one path for each processor and each
channel, and pqssibly more in the case of {multi—port' and!
'multi—banfﬁ memories. .In theory, requests for memory
access could be generated on all'daté paths‘simultaneously,

-

or at least within the same memory cycle.

Concurrent main store accesses are prevented from

- interfering by the main store arbiter. In the event that
two requests for main- store cannot be simultaneously

honored, the srbiter permits one access and delays the

]

20
other, based upon ;ho priorigy of the requests. Usually the
priority séheme»énsures that t;ansfers 1v-volving the fast
devices are serviced before requests from -he slower
peripheral equipment, which in turn are honored before
accesses on behalf of the ‘central processor

‘

2.2.3 External Processing Capabilities

Be;ides freeing the central processor during input-
output, channel controllers permiﬁ a small part of the
processing associated’with data transfers to be performed

\
outside the centrel processor -- one of the mo%t obvious
examples being cbdé.conversion betwéen a standard internal
character set and various external character sets J
(e.g. program cqntrolled‘EBFDIC td BCD translatioq.performed.
by the controller on data passing betweeniﬁain store and a
7-track magnetic tape drive). ’Howevef, some non-trivial
features are also available, for example the 'File Scan'
option on an IBM 2311 diskAdéVice/controller (IBM, 1969)
shpported the execution of simple»charactér‘comparisons at
" the dévice (i e. the SEARCH KEY AND bATA channel commands)

-- this facility was subsequentiy enhanced and adopted as a

'standard feature for the later 3330 series devices.

Despite this external processing capability, the bulk
of the ig@utfoutput processing required to impleméht input-
output operations at the level reguired by typical data

‘managemept utilities (e.g. directory searching, logical

S 21

record blockjing and unblocking, and access via inter-record
pointers) still has to be performed by software, executing
on the central processor between the interpretation of
channel programs. 1In fact, the one characteristic which
distinguishes channel‘éontrollers from their more recent
counterparts is the simplicity of the channel programs
themselves. They are device dependent,2 and very low level
(e.g. read a block, rewind, seek, sense device status).
Existing channel programs are so simple that their
interpretation»requires little external logic Or processing
capability -~ to the extent that the cen processor and a
‘major part of the channel controllers for n1achines
(e.g..the IBM System/360 Model 50, (Flores, 96% chapter
7)) are both implemented via microcode oﬂ the .-~ 2 »hysical
-processor. As will be shown in Section 3.3.2, th:-
simplicity is achieved at the cost of considerable central
processor overhead associated with preprocessing and

postprocessing the channel programs.

. In the light of their limited functional complexity, -
channel controllers appear to be rather expensive (i.e. not
péfticularly cost/effective).. Juliussen (1976) has shown

that the cost of the Eontroller may be many times the total

2: The mechanism for constructing channel programs,
initiating their interpretation and signalling channel
program termination is device independent, and in fact
this is one of the advantages of the approach. However
the channel commands, and hence the channel programs,
are singularly device dependent.

4 e

X

22

cost of the artgﬁ'gd peripheral devices. It 1s cxpected
that the integration of programmable microprocessors into
the channel controller, instead of the current hardwired
components, coupled with new integfated analoé circuits and
a shift in the manufacturers' pricing policies would reduce

the relative -osts of channel and device controllers.

2.3 Technological Factors .

The desire to reduce the central processor overhead
associated with input-output operations has led to a |
consistent trend away from the use of central processor
.resideﬁt software for the implementation of many input-
outpuﬁ functioné (Bachman, 1575; Wwithington, 1975).
Aiternative approaéhes ihclude.direct gérdware
implementation, firmware techniques, and software modules
executing in processor(s) external to the cen£ra1 processor.
‘Both loQ level and high level functions have been affected

(e.g. 'bit picking' operations and logical record

manipulation).

These changes have been made possible as a result of
the design flexibility-and economic advantages of p;ocessof
compdnents which have evolvéd following the advances in MSI
aﬁd LSI technology. Consequently, there has been a wider
acceptance of microprogrammable machinés, distributed

processor architectures and 'intelligent' device controllers

(Barron and Glorioso, 1973; Berndt, 1974; Coopér, 1973;

Jensen, 1975; Lee, 1974; Rice, 1970). While the impact of
this technologicual revolution is evident in all facets of
computer architecture, the following examples serve to
illustrate the range of potential applications conc;rned
with input-output subsystems and input—output operations.
(l) Sindelar and Hoffman (1974) have described a secondary
storage configuration in which an. 8-bit microprocessor
functions as a password security handler, and the disk
controller implements a hardwired data enciphering

14

alogorithm. .
(2) A microprogrammable minicomputer has been used on an
input-output channel fo‘achiéve autonomous data

coﬁpfession and expansion (Tao, 1974).
(3) The input-output architecﬁupe described_by Poujoulat

(1974) incorporates both hardware and firmware modules

for the control of multiple disk devices. All

23

" scheduling and request queueing is performed within the

input-output subsystem.

(4) For inter-record processing (e.g in searching and

shifting operations), processor architectures have been

extended, to include single microcoded instructions for

descriptor-based 'characte; move', 'character compare'
and 'hashing' procedures (Atkinson, 1974).

(5) Tomlin (1973) has proposed an intelligent,

'

microprogrammable disk controller, capable of.executing

simple file management operations; for example, space

I

allocation, retrieval of logical records from within a

~

TN

24

phys . block, link~d list insertion and garbage
collection.

(6) Acceptance of architectures incorporating input-output
processors has depended upon the availablilty of
processors with a_low manufacturing cost, ana high
.reliability (e.g. minicomputers). Examples-of'the use
of the small, cheap, reliable processor technology \
within the-inpu£—0utput subsystem include the
{peripheral prdcessor_uniés‘ of the larger Control Data
machines, which employ up to 15 programmable 12-bit
processbrs each with a local 4K core memory and central
processor connections (e.g. the CYBER 70 Model 76 (CDC,
1975b)), and Computer Automation's 'Distributed I1/0
System' (Computer Automation, 1976), which uses a
hardwired 'I/O'Distributor' along with microprogrammable
'Pico Processqrs', to support the central processor and

device interfaces respectively.

Within the next decade, it.ié inevitable that new
storage technologies will start to appear in commercially
avallable product iines. The following scenario for likely
secondary storage device attributés circa 1985 is |
constructed from publisheé ppééiCtions‘(Baum and Hsiao,
1976; Hoagland, 1976; Mar {n. 1975; Withington, 1975) and
the procggdings of‘a recent Symposium on Advance. Memory:
Concepts (Miller an _Gagliardi, 1976) :

(1) Current fixed head disgs will be replaced by megnetic

bubble, eXectron beam or charge coupled (CCD) devices,

-
Ny

L

with a capacity of 108 - 1010 bits.

(2) High density moving head disks will retain their favored

position for on-line bulk storage in the 1010 - 1012
bits range.
(3) Mass storage devices with capacities of 1013 and more

will be based upon magnetic recording or holog}aphic
technigues. Unlike current magnetic tapes, these mass
storage devices will require very little manual operator

assistance.

2.4 Input-Output Processors

within current computer‘systems, there are two commonly
accepted approaches to input-output subsystem architecture.
These two architectures afé significantly different with
respect to the distribution of processing cépabilities
between the central processor and the inputjputpgt
subsystem. The 'IBM channel' is the archetypeidf'the more
cehtralizod'alte}ﬁative discussed in the previous Section,
while the distributed techniques cover a wide spectrum of
architectures in which autonomous, special-purpose input-

output processors provide access and manage the physical

and/or logical data resources.
|

In the multiprogpamming environment of a general-
purpose computing facility theke is considerable economic
advantage associated with a,syétem architecgﬁ§F which helps

minimize the total time during which the central processor

is either 1dle, interrupt processing, oxecuting 'tark
swaps', or involved in mundane processing functions which
could be handled by a smallevr processor, like a channel i
. .
controller. Howevor, if a channel controller 15 to achiove
an evewfqronfor autonomy and capacity for parallelism with
respect to the central processor, then clearly the channel
programs must be able to initiate more complex data transter
sequences and to achieve data manipulation without central

processor intervention. This implies the following general

modifications to convert a channel controller into an input-

output processor:

(1) Upgrade the command interprétation and contfol }ogic in
the channel controller to the status of a bona fide
stored-program processor.

(2) Add considerable local storage for usé as intermediate
data and channel program buffers, and.for holding the
program(s) which interpret channel commands. N

(3) Include device Fontrollers with greater autonomy and a
more sophisticated interface to the command interpreter

(i.e. 'intelligent' device controllers) .-

An input-output processor accepts requésts for input-

output operations from the central processor, In general, a

channel controller would have to interpret‘many channel

commands, spanning multiple channel programs, to achieve a

result comparable to the inte:pretation of one operation by
. an input-output processor. As an example, £he input-output

operation 'FIND RECORD X' could conceivably reguire a

S 27

channel progrom considerably more complex than the one shown
innFigure\E.Z. Note that the channel commands, or thear
eqﬁivalent, are constructed from the requested input-output
operation within the input-output processor rather than at

the central vcessor as is the case for a channel

i

controller organization.

The relationship between channel programs and 1input-
output operations will be illustrated at greater length in
Chapter 3 when the functional attributes of verious software

interfaces to the input-output subsystem will be discussed.

2.5 Frontend Communications Processors

. Perhaps the most commonly accepted i: -putput
processor is the 'frontend communications processor'.
"Within a time sharing or on-line environment, the frontend
communications processor 1is charged with controlling all
communication to and from the terminal devices, supporting
*line editing functions (e.g. backspace, character
conversion, tabbing), data buffering and multiplexing the
liMk between itself and the central processor. For example,
the configuration des;fibed by Burner, Million, Rechard and
Sobolewskl (1969) uses ah‘Interdata/B as a dedicated
Aprocessor servicing up to‘32 acﬁiveﬂterminals, while dual
PDP 11/45's ét the University of Alberta are capable of
supporting approximately 110 simultaneous termihal users,

located both on-campus ‘and at remote sites. With respect to

both functionrn>l and hardware complexity, t.ae ‘rontend
communications processor 1s clearly a sign.ticant extension

of the classical channel controller architecture.

T input-output processor concept is not confined to a
telecommunications environment. Simllar processors are
findiﬁg INCreasing acceptance as elther general purpose
'satellite' processors (e.g. the 'peripheral processor
units' on the Control Date Cyber 70 series machines, CDC
(1971)), or as 'backend' processors between the centreal
processor and the secondary storage devices. Indeed, the
material presented in this thesis will concentrate upon the
use of inputfoutput‘processo:s in non-communications
applications, to the virtial exclusion of frontend

communicatians processors in the subsequent discussions.

2.6 Distributed Support Processors
. : l A

External‘processors have been'used'to implement some of
the inéut—outpﬁt related functions provided by conventional
operating systems. (A discussion of thg analogous
organization for supporting integrated database management

systems will be “presented in Section 2.7.)

Functionally, these distributed support processors
provide services for a global operating system. 1In a
typicel application, integral sections of the operating
sYstem.(e.g. the input-output control system, ﬁhe file

system, or the resource manager) are off-loaded from the

A,

eentral processor to .a suppbrt processor. The support
processors may operate either with considerable autonomous
control, or under the supecrvision of some centralized,
global control module, implemented in software or hardwere.
For heterogeneous configurations of support.prdcessors, the
allocation of functions to particular components 1is normally
static and designed to achieve the best possible match
'between the mddule's architeceure and the function it must
perform.. If the system is Configured with two or more
homogeneous support processors, then the ‘allocation of

functions may be either dynamic or static.

For a Contrel.Data Cyber 70 orl6000-Series machine -
running under the Kronos operating system (CbC, 1976) the
superv1sory functlons are partitioned Jbetween a central
processor resident monitor andla monitor executlng in a
dedicated perlpheral processor. This second monitor assi-ne
and releases blocks Qf main store, channels and devices on
the basis of requests for service posted by both the central
and‘the peripheral processoes. Tasks are assigned to the
"free' petipheral processors by the decentralized monitor as
the need arises. All peripheral processing units are
ideneical, and capable of providing jdb scheduling, input-
output control, joe control ianguage inte;pretation and

system housekeeping services.

IBM's ASP subsystem (IBM, 1972).execu£es in one

processor of a multiple-processor System 370 configuration.

30

ASP provides job control, spooling, operator assistance,
intcr-processok’/device sharing and media-to-media copying
utilities for use by the other processors, running under the

0S5/VS2 operating system.

Management of storage hierarchies is another area in
which distributed, support processors may assist a central
operatiné system,fFor example,(the IBM 3850 Mass Storage
System (IBM, 1975{\uses 'on-board' microprocessors to handle
the migratiohd of data between the tape cartridge based 3830
mass storage device and a conventional 3330 series disk
device, and to méintain the necessary data-set directories
'withoué any intérvention on the partvof the central
processor based operat;ng system. In fact, the‘mass.storage
ﬁevipe is not 'visible' from the central processor because
externally the 3850 system supports a 3330-like-hardware and

channel program intérface to the central processor.

Howie (1976) has suggeéted that a mass storage system
comprising a mass storage device and multiple staging
devices (e.g. hoving head disks) has considerable potential
as a replacement for convefttional disk and reel-to-reel
magnetic tape configurations. A self—ma&aging storage
;ieraEChy could provide economic storage with accepfable
response times for a wide spectrgm of applications, assuming
some communication with the operating sysfemvto optimize

.performance. Practical applications would include an

automatic bulk storage library, storage for .system files, a

3
-

N\

31

general purpose file system, shared databases, distributed
searching and subfile selection, and automated afchival and
backup procedures. The INFOPLEX system proposed by Madnick
{1975) also features a seif—managing storage hierérchy.
Howgver the "INFOPLEX configuration is not based upon a mass
storage device, but it does rely extensively upon'
distributed prbcessors cbarged with localised optimization

at each level in the hierarchy.

Record and file ofiented operations may also be handled
by external input-output pfocessors- The MICS system
(Ohmori, Koike, Nezu aﬁd Suzuki, 1974) incorporates a 'File
Processor Module' - currently a minicompute; - which
allocates disk space to the computatiohél processor (s) and
performs file management functions. All requests for disk

input-output are handled by the File Processor.:

Following a study of both the likely hardware
developments and the histeorical evolution of file and
database managemént systems, Gagliardi (1975) concluded that
the functions of data management and storaée ma:aéement
should be unified within a single dedicated processor. As a

conseguence,. an architecture was proposed in which the

'storage su sggmﬂproceséor' would be the centralized
master processing unit, with all other processors
(e.g. computatiohal, spooling and communications processors)

adopting subordinate roles. A recent paper (Bray, 1977)

indicates that Univac. are in the pfocess of implementing a

1

32

data management subsystem, based upon Gagliardi's model. *

Hardgrave (1975) h@§-proposed a computer system
architecture in which multiple special purpose processors
;re connected via a éommunications network. Besides
computatlional processors, the configurgtion featured spegial
minicomputer nodes to‘support text editing and the
cbmmunications subsystem, one peripheral processof per
device for device control and network interface functions, .

and a 'set processor' providing a 'set theoretic database'

interf%ce to all the bulk secondary storage devices.

2.7 Processors for Database and Non-Numeric Applications

Advances in hardware technology haQe 3also eased the
economic constraints on the development of viable
unconvéntional computer érchitectures, specificaliy‘taiaored'
for non-numeric processing; and in particular database
applications. Goals in the design of non-numeric .
archifec}ﬁ?es include the reduction of input-output chéhnel

: o , . .
bandwidth requirements, easier software development and

maintenance due to special instruction sets designed for

-

non-numeric manipulations, reduction or efimination of "time
cénsuming inde#‘maintenance, increased paréllél p;ocbssing,.'
_response times which are independent of database size, and a
closer match between ﬁhe physical data storageistructure and
the user's conceptual informatipn'struéture (Lipovski and

L2

Su, 1975; Ozksrahan, Schuster and Smith, 1975).

2.7.1 Searching Engines S

It is becoming obvious that traditional, software—baséd
searching procedures impose excessive demands on the central
processor for rether simple character comparison opprations,
and cannot achieve the fequircd response times demanded by
those apgligainns in which many on-line Qsers ?fe accessing

o :
a very large shared database. Altern&tiveﬂstrétegies have
generally involwved the replacement of the software ' .
procedures>by special function hardware units, often

supporting highly parallel modes of searching.
']

Since.l970, a gfeat deal of investigation has been
conducted into associative, or content-addressable,
secondary storage.units (Copeland, Lipovski and Su, 1973;'
Coulouris, Evans and Mitchell, 1971; Mitchell, 1976;
Ozkarahan et al, 1975; Lin, Smith and Smith, 1976). Most of
these proposals and implementations employ parallel-serial
searching to emulate content—éddressability on location—.
addressabié devices (i.e. a serial search over many tracks
or areas simultaneously). fﬁe‘necessary-hardware
modifications involve an alternate device controller or
special logic within the‘device. Prototype devices in this.
class are guite powerful, being éapaﬂle of many autonomous

;

operations including, complex retrieval, update, deletion

and garbage collection.

More recently, non-rotating-storage devices have been

used ' to build content-addressable memory modules with

34

asynchronous search capabilities. The prototype ve;sion of
the Relational Associative Proceséor (RAP) currently under
construction at the University of Toronto is an example of

this tfend, where 'tracks' of disk storaéé have beeﬁ

replaced by CCD memory modules.

Conventional all-electronic associative memories are
also being used to construct special purpose database search
modules. Berra and Singhania (1976) have propoged the use-
of multiple associative memory units, based upon the.
capabilities of the STARAN architecture, to proviée

'pipelined' searching of a hierarchic database directory or

~
index. At maximuh”utilizatioh, this a;chiteéture would
allow simultaneous prdcessing of N seafches through an N-
level tree—structured index. A more elabo;ate arrangement
‘is provided b} Honeywell‘s Extended Content Addressed Memory
(ECAM) (Anderson and Kain, {%76). ECAM uses CCD technology
to construct‘cOntent—addressablé arrays whi;h opérate under
the supervii;on of a mibroprogrammable 'slave coﬁ?rol unit'.
Multiple slave cqntrol units are in.turn'controlled by‘a‘
single 'master control unit' which also supports the cehtral
proéessor interface, query decd&ing (which involves the.
constrgctibn of microprograms for the slave control units),

buffer management and maintenance of the storage structure

descriptor tables.

The Leech processor (McGregor, Thomson and Dawson,

1975)'has been developed for use in a databaée system based

35

on the reclational data model proposed by‘Codd (1970).. This
special function unit is capable of performing the
relational dperations 'join' and 'projection' as well as the
conventionai selectian, sorting and mérginQ‘functions,‘all
under the general control of the central processor. Special
modified searching élgorithms have been.proposed which
exploit thé Leecﬁ hardware and use a- two pasé 'coarse' and
'fine' search strategy to minimize the total numbeerf
records fetched‘and scanned on a character—byfcharacter
basis. Wheﬁ éttached to a high speed bulk storage medium
(e.g. a drum) it is anticipated that thé Seérching

throughput of the Leech processor will approach 100

megabytés per second.

The viable storage capacity of the;e database searcﬁ
engines is éonstrained by the cost of the add- 2l logic
elements and the maximum density with which t. e logic
elements may be integrated into the storage medium. it
appears ﬁhat the échievable Qapacity,.which is in the order

of lO8 or 10° bits with pdltiple'devices, will nét bev‘
sufficient to permit the. complete database to be loaded
inté the available search eng:nes;‘therefore, séme
conventional'locafion—addressable backing storage will bei
required. Unde; thesé ci%cumstahces, a. search éngine could
be either dynamically loaded with sectiong of the‘datébase
as dictated by the current search'requirements, or

' AN

pefmanently loaded with indices and database 'summary'

records, to minimize the number of records fetched from

36

backing store during the search procedure.

2.7.2 Backgnd Processors

Thg term 'backend’ Qas intially coined to describe the
experimental data management system (XDMS) cbnétfucted at
Bell Telephone Laboratories‘(Canaday, Harrison, Ivie; Ryder
and Wehr, 1974). Within XDMS, a considerable portion of the
Univac DMS 1100 database management system was transferred
from a Univac 1100 series central processor to a dedicated
backend, in this case a Digital Scientific Meta-4
minicomputer. The backena processor was capabié of
executing commands expressed at the level of the CODASYL

Data Manipulation Language (CODASYL, 1971).

Heacox, Cosloj and Cohen (1975) héve described some
preliminéry,'but promising experimeﬁts with a 'Dedicated
. Data Man%gement" pro®essor architecture modelled upon XDMS,
while Lowenthal (1976) and Rosenthal (1977).have presented
some of the rationale behindithe backend approach currently
beiﬁg pursued by the MRI Systems Corporation for a2 new
'implementation of the System 2000 database management

system.

: The distributed database managémené system which
resides on a'network of heterogeneous.minicomputers and is
be ing déVéloped by Kansas State ﬁniversity and the U.S. Army
Computef Systems Comﬁand, features multiple backend

-
processors. 1In this system, some of the network nodes also

37

0

provide dual service, acting as backend database processors
and host processors for the execution of application

programs.

The relative merits and disédvantages of the backend
organization'will be discussed at s@me length in Chapter 5,
however the use of a processor dedicated to the database
management function seems to be justifiablé in the following
terms: |

(1) The devijopment of a dedicated database processor is a
viablé proposition -- especially-since current general
purpose central processors are not a griofi the most
cost/effective machines for‘specialized proce%sing tasks
(Flynn, 1977f Jensen, 1975; Juliussen and Bhandarkar, |

. 1976). Provided that a reasonable match can be made
between the throgghpﬁt capabilities of the database
processor and the.centtal processof, then'the.total
system performance will 5éhefit from improved throughput
and response time as a result of the inéreased

p .
parallelism. |

(2) A database processor 'is a natural extension of the
input-output processor organization, exhibiting
increased functional autonomy, expanded local storage
and mofe pbwerful-processing capabilities.

(3) Software considerations favor a situation where the

“operating system can be developed and maintained

2

“independently with respect to the database management

system and vice versa. This seip - ration 1is greatly

(6)

38

simplified if the two software modules reside in
separate processors. ' B

The central procéssOrvand main store resources allocated
to the databasc ménagoment functions are significantly

reduced.

An independent database processor provides the potential

for greatly increased system security and reliability.
Security enhancements result from preventing direct
access by-central processor resident softwarc to the
secondary storage devices and not forcing the database
management”systemdto share a processor or, more
importantly, main store with user proérams. The
interface protocol between the database and the central
pfocesssors could inélude automatic, bidirectional
consistencf/chec“q, thereby greatly enhancing the
capacity for early detection oftprocessor‘malfunct;bn
and providing improved system reliabiiity. |
Database shariﬁg between multipie central pfocessors in
a homogeneousior heterogeneous configuration is readily
suppdft;d. In a heterogeneous processor configurétion,
many of the data reformatting and translation problems
vanish,fsinée the bhysical dats storage is controlled by
the one database processor as opposed to multiple
central processors. For programs execufing in a network
: o , .
environment, it is much .easier to establish

communication between the central processor and a remote

database processor than between the central processor

39

and a remote secondary ntorage device. For the
sccondary storage devices, software multiplexing via the
da:abase processor is a much simplér approach that the
multi-prccessor interface and lock-out mechanism
necessary for hardware multiplexing. |

(7) The backend approach provides greater flexibility when a*
system upgrade is required, at less cost than an
eguivalent upgrade for o system with a central processor
based database management system. For example,
performance may be improved by adding an additional

... backend processor, or upgrading the existing backend

processor(s), or keeping the backend processor(s) and

upgrading'the central processor. -

2.7.3 Database Processors

Perhaps the greatest potential for ‘the adoption of
external processing capabilities in a database environment
lies with the developmeﬁt of'backend processors based upon
novel, non-numeric architectures -- as opposed to softwore
impi -“ntation on a conventional minicomputer. These
specially constructed backend processors will be referred to
as 'database processors'.

For example, a processor incorporating assbciative—tYpe

searching engines, a tailored instructio:. repertoire,
: 14

hardware aided security mechanisms (suited to the protection

of database objects in a shared, concurrent access

40
SN—

en‘ironment), and firmwaore driven dato structure *ranslation
could conceivably support a very efficient, intc -od
datébase management kernel (Lowenthal, 1977). "The
availability of such a backend databac anagement kernel
would euse the development costs for new applications, or
aléernative data models, whilst providing an acccptable
throughput rate, a stable interface to the central
processor, highly réliable'operatién and considerable
capacity for locel performance tuning and technological
adaptation within the database processor and secondary ‘

storage subsystem.

Some designs for databese processors have already been
proposed. The original 'database computer' (DBC) design
(Baum, 1975) included four specialized components within a
single database processor. Threé of these hardware
components were based upon content adaressable arc itectures
and supported directory storage and manipulation, 'list'
intersection and search evaluation, and the database storage
modules. The fourth component enforced the security
mechanisms, supported the central processor interface,
per formed command preprocessing and controlled the overall
operation of the database processor. Subsequently, the DBC
design has been extended (Hsiao and Kzannan, 1977) to include

7 special purpose processor and storage modules.

: &
Cook (1975) has described an ambtitious project in which

multiple 'user machines' would perform all the database

41

input-output functions. Descriptions for user machines
would be gencrated autom:tically from differences between
the description of the logical and physical data structures.
Each derived machine would then be emulated on a common

microprogrammable host processor. .

N

2.8 Projected Evolution and Development

Within the database environment, current
implementation strategies and research proposa': indicate

that the database secondary storage devices will

increasingly come under the exclusive control of a da&abase
processor (Whitﬁey, 1973; Baum and Hsiao, 1976) -- the_gﬁd
result of this trend is a éonffguratioﬁ in which'thé’céntral
prdcessbp is unawére of the secondary Storage devices
connected to the database processor. The database
prqceésor(s) will operate with considerable autonomy, simbly
communicating with the central prpceésor at the begihninq |

and end of a database operation.

Central processor resident programs will perform all
database operations via the database processor, using

requests phrased in terms of a database interface language.

In its simplest form, a database interface language m
~permit individual logical records to be referenced using a
unique identifier. Alternatively, the interface language

may feature a"Tich query syntax to be used in defining a set

42

of database r.cords (c.gl the relational gquery languages, of
which SEQUEL (Boyce and Chamberlin, 1973) is an example).
Further consideration of the mpt{ons related to the choice
of a da£abase interface language will be delayed until

- Sections 3.8 and 4.2.

Unfortunately, =not all secondary storage devices are
assigned to the database environment. As the discussions 1in
Chapters 3 and 4 wiil show, functions such as paging,
spooling and the provision of an on-line file sysﬁem have
historically been responsible for independently executiﬁg_
their own secondary storage input-ogtput. This has resulted
“in a t;gﬁt coupling between the physical device(s) andﬂ§he”
central pfocessor resident software. There is no'evidence
to suggest that'the major mapufacturéfs are planning any:-

marked departure from this approach in the near future.

In a similar manner, it is to be expected that the unit
record devices and mass storage devices will continue to be
connected to the central processor via a conventional
ﬁchannel program or input-output processor interface. (The
one possiblé‘exception being those mass'storagé deviceg‘
dedicated to database'archiVal and back-up procedures --
fhese devices may be attached directly to t° database

processbr.)§1f the computer is to operate . network

environment! then a i;;yokainterface processor will

cc -~lete the repertoiye of input-output related hardware

pc nts.

43

Given the assumptions and postulates of this Section,
medium to large scale computers which form the basis of the’
current investigations will generally conform to the

hypothetical configuration shown in Figure 2.3.

44

UNIT NETWORK
RECORD INTERFACE
DEVICES PROCESSOR

o 4
(@]
LY
——0 - O
| CENTRAL I
N . ? PROCESSOR o
[¢]
MAIN
- STORE.
-
o—
" v _DATABASE
0 ———O PROCESSOR
MASS
STORAGE o
) | DEVICES
1 _
O - O
N NON-DATABASE .DATABASE
SECONDARY SECONDARY
' STORAGE STORAGE
DEVICES DEVICES
o -
DATABLSE '
SEATR H'

i NE .

Figure 2.3 A Likely Computer System Architecture

-

CHAPTER 3

SOFTWARE INTERFACES TO THE INPUT-OUTPUT SUBSYSTEM

Within this Chapter the investigations will center upon
the interfaces which are available to a software module when

initiating an input-output operation from the central

processor. The software modules-under consideration include

user written programs, utility programs, file systems,
database management systems and operating systems. Emphasis

will be placed upon those interfaces which are suited to

operations involving secondary storage devices.:
. - .

Input-output support for central processor based
software, has fdllowed an evolutionary patlhy which has been

~

both unstructured and higﬁly incremental -- often following
the‘input;output subsystem.h;rdware developmentssdiscussed
in Chapter 2. As impfoved input-output facilities bécame
available, so new software support modules were deVeloped.
However continued supéort for existing programs dictated
tﬁat the support .modules be aggenaed to the existing system,
rather then reglacing fhe superceded modules. ,Conséquently,'

cdrreht systems typically provide user and applications

; . £
programs with many input-output interfaces; e.g. channel

program, stream data, spooled device, logical record,‘file

45

system, standaord file access methods, and database
management system. In addition, the operating system

generally supports multiple internal interfaces to the

physicael devices; e.g. the basic input-output routines
within the paging, spooling, general purpose file and

database management systems.

Clearly, a discussion of input-output interfaces
implies studying the structure of, and the interaction
between, the-operating system, the input-output support
subsystems, the input-output hardware and user programs.
However, the inputfohtput primitives of the available
programming language(s) also impacgnthe raﬁée and functional
complexity of the interfaces available to a software module.
Seyeral 'appiications oriented' languages will be analyzed
with respect to th; impact their input-output primitiwgé(

T

“have upon the potentiallinterféces.

Finally, processor network architectures, distributed
databases and the operational constraints of a network
environment will be examined tq determine the possible

v

. N
influences upon the input-output-.interfaces.

The multiplici;y of interfaces has led to a situa;ion
where.the 'input-cutput module'; as defined in Chapter l,ris
‘not a unique'unit. Rather, the specification of the 1input-
IOUtput module for a particular soft&are unit depends
criticallyvupdn the ﬁnit's 'level' in the global system

structure, the degree to which the operating system 'masks'

47-

Oor prevents access to posssible interfaces, and the
programming language in which the unit was originally

written.

Throughout this Chapter, the term 'interface' will be

used to mean either the functional capabilities which may be

invoked directly by a program, and/or the communication

protocols and mechanisms associated with the execution of an

input-output operation across the interface.

In order to»bfing some semblence of runiformity to the
following discussion, the. terminology and scheﬁatic data
structuré diagrams introduced by Bachman‘(1972) will be used
to introduce the neéessary terms and concepts. The
terminology relates to the objects qhich may be manipulated,
or accessed via-én input-output intefface. -Bachman'é terms
and paraphrased céncepts appear . in Table‘3.l, along with the
new term 'File Catalog'. Thé‘relativwship between these
terms is illustrated by-datavstrdcturc diagrams which éhow'
the physical storage structure for é-secondary storage
device (Figure 3.1), the logical storége structu:e for a
gene;alized'file system (Figure 3.2) and a compésite

generalized storage structure (Figure 3.3).

48

TERM

CONCEPT

Block

Cylinder ~

|Field

{File Catalog

Extent

Logical File
Logicdl Record
Page

Physical Record
Storage Device

Track

Volume

Unit of storage allocation, and data
transfer between the main store and
secondary storage. Contains one or
more physical records.

Unit of secondary storage,
characterized by the fact that multiple
accesses to one cylinder are much
guicker than consecutive accesses to’

‘different cylinders. .

Smallest unit of data which may be’
associated with an attribute of some
(real world) entity.

Central repository for the

descriptions of all logical files.
Unit of storage allocation comprising .
a contigquously addressed portion of a
volume. Accessed via its one or more
component blocks.

Named unlt of logical, storage whlch
serves-as a 'container' for logical
records. Subdivided into pages.

Unit of logical storage accessed by a
logical input-output operation.
Contains zero, one or more fields.

Unit of logical storage which has
contiguous addressability when resident
in main store. Contains.one or more
logical records. '

Smallest unit of secondary storage
which may be independently read/written.

The actual hardware unit, capable of
holding a volume. Has a cylinder
selection and read/write mechanism. -
Unit of secondary storﬁge which
provides the fastest serial transfer of
consecutively recorded data. It is
divided into physical records.

jnit of "secondary storage capable of
having data recorded upon it and
subsequently reread. It is associated
on a 1:1 basis with a storage device,
and is divided into cylinders.

" Table 3.1

Terms and Concepts Related to a Generalized
External Storage Structure

STORAGE
DEVICE

VOLUME

T — "
CYLINDER -

TRACK

—V
PHYSICAL
RECORD

Figure 3.1 The Physical Structure of a Secondery Storage
’ Dewvice ‘

FILE
CATALOG

—V
LOGICAL
FILE

LOGICAL
RECORD

Figure 3.2

The Logical Structure of a File System

i

50

STORAGE FILE
DEVICE CATALOG
’ : Vv
VOLUME - LOGICAL
. FILE
T -
i Vv v
KN Q EXTENT
I
e v v
| TRACK BLOCK | PAGE
v V— v
PHYSICAL . LOGICAL
RECORD ‘ RECORD

3 Y
l FIELD

51

Figure 3.3 The Generalized Storage Structure

52

3.1 The Evolution of Multiple Interfaces

Early computér systems ﬁrovided a single hardware
interface to the input-output subsystem, and no software
suppor t. By com@arisoh, current machines provide multiple
hardware interfaces (with respect to at least functional
capabilities, and sometimes invocation mechanisms), and
multiple layers of ;uppoft software implemented on top of
the hardware interfaces. Together; these two attrioutes
ensure a considerable variation in the range of input-output

interfaces available to a software module’

In the following Sections, the development of multiple
interfaces is discussed in the light of the hardware
changes, the dynamiqs of input-output support routine
evolution and_thé trend towards 'abscrecting’ input—output

objects and operations.

3.1.1 Hardware and Architectural Influences

The most. basic inpﬁt-output interface is providéd by
the central processor's machine instruction repertoire. At
ghis_ievel, the central processor architecture and the
hardware inferface to the input-output subsystem effectiveiy‘
define thé primitive mechanisms by which in?ut—output
operations -may be executed, Table 3.2 i11uétrates the
input-output related:machine instructions for several

medium-to-large scale central processors. Aspects of the

input-output protocol which are visible to the machine

53

language programmer and determined by the hardware design

incldde:~ \ ’ -

(1) Dedication of fixed main store locations for status
information, channel programs, pointers to channel
programs, the device and channel controller description
tables, and other 'housekéeping' data areas..

(2) Limitsoupon the device / channel controller topology and
addressing conventions.

(3) Procedures for interrupt handling.

(4) Formats for channel commands and the status information.

Techniques are often provided to ensure that routines
outside the central operating'system'dbmnot have direct
access to the machine's inpuf—output primitives. Rather,
hard&are enforced selective execution (depending upon the
'processor state') is coupled with a shared, software
service routine and a sofiware interrupt mechanism to givg
indirect, selective and controlled‘access.to the machine's
input-output instructions. For example, the 'UUO Handler'
within the ;esident portion of the DECSystem-10's operating
system (DEC, 1975), and the 'Supervisor Call' (SVC)
mechanism for IBM;S 370 series (IBM(1974) both execute
primitive inpupeoutput operations as a service function on
behalf of a calling process. A further discussion of the
attempts to 'mask' or 'hide' some df the input-output
interfaces from some of the éxecutihg processes will be

presented in Section 3.7.

‘IMachine

IBM Series 370

Burroughs B6700

.

. Input-Output
“Instructions

Start 1/0

Start I/0 Fast

Release
Test Channel
Test 1/0

Clear 1/0
Halt I/0
Halt Device:

Scan In

Scan Out

Honeywell Series 60 Level 66

. |eoc 6000

DEC PDP 10

Sources: IBM (1974), Burioughs (1972), Honeywell
-CDC (1975a), and DEC (19;0);

Connect I/0 Chan

Instruction
Operands

& device address,
program address.-:

channel
channel

same as for Start I/0
channel

address
channel & devicéd address,

resultant status
same as for Test
same as for Tes

same as for Test I/0

input-output processor
address, function
descriptor and operand.
same as for Scan In

nel
channel program address

Central Exchange Jump

Conditions In

Conditions Out
Data In

Data Out

Block In,

Block Out

iritial register values
for a peripheral
processor program

device and control word
address ’
same as for Conditions In
device and buffer address
same as for Data In
device address, buffer
address and count

sane as for Block In

(1975) ,

Table 3.2 Some Typical Central Processor Input-Output
Instructions

n

-

55

Alternative approaches to the conventional 'interrupt
based' communication between the central processor and the
input—output subsystem have been implemented using hardware
and firmwarc tdhnigues. The Venus mechine (Li:kov, 1972)
incorporates a microprogrommed Input-Output Channel which
communicates with a process executing on the central
prdcessor via a hardware extension bf;th@‘classical
semaphore mechanism (Dijkstta,‘l968), rather than vie
asynchronous interrupts. Besides a standard interrupt
mechangsm, the Burroughs machines (e.g..the B6700) use

hardware assisted queue maintenance operators to construct

lists of pending and completed input-out ut opfr. .ons.

24 , -

(Burroughs, 1976; Patel, °59). These lists are manipulated’
by intrinsic system ..nct: as, which may be inoned by‘ﬁhe
requesting process erecﬁtrh; in a central processor, opy5y~
other intrinsic functi -, or.by ‘hé ié%ht—output
_proceséor(s). Outside the nucleus of the the Multics system
(Organick, 1972), interrupts are not visible a§5?97
asynchronbgs interproqess communication is suppdrted with

four semaphore-like primitive operations. 'In this way, the

user and operating system processes may. synchronize

themselves by temporarily suspending execution, pending some

short-term system event (e.g the aﬁfival of a page 1n
. . UM NS .

. . . I'4 C
. mainstore), or pending some long-term procecss event (e.g. 3

I

! N A (1') . .
co-operating process notifie§ the suspended process that 1t

may now continue execution)®

-

“

The-zarchitecture of the input-output subsystem exerts a

56

strong influence upon the functional charact..i1stics of the
basic input-output interface available to a process
executing on the central rocessor. Conceptually, thce
potential interfaces fall into two classes, based upon the
complexity éf the operations which may be performed across

the basic interface -- the functicn.' complexity of the
interface in turn reflects the ex'<-' to which tbéjinput—
| : :
output subqy<t9m architecture can support autonomous
) - &y

proCe321ng‘functxons. The functlonally simpler categu.y

 features a! physical record interface (e.g. as supported by a
. .

channel controller organization), while the more complex

, group incﬂudes the logical file and logical record

1nterfaces {the dlrect implementation of which reguires an
input- output processor organlzatlonl). One important
dlStlnCtIOn between a logical and a physical interface
centers upon the translation of a record's; adgress from a
loglcal 1dent1fer to physical storage address " Operations
across ohy51cal 1nterface must 1nclude a phy51cal address
as an operand, therefore the translation must be done in
advancefby central gtocessor resident software. . For a
AN

logical interface, requests are independent of the
information's physigal location, and consequently the

translation is performed outside the central. processor. - The

att:ipdtes of these two fundamentally different input-output

g

R o

1: _As will be shown in Section 3.4, the logical interfaces
may also be implemented i ndlrectlz using one or more
layers of central processor based software on top of a

physical input-output interface.

[

" input-output contiol services which give the programmer

57

interfaces will be discussed in Sections 3.3 and 3.4.

3.1.2 Input-Output Support: The 'Add-On' Growth Phenomenon

‘%he ir*roduct on of software based input-output support

packages s ~x nsions of the basic central pregessor input -
ST
, \ K3
output fac 2S was motivated principall;ﬁby‘b desire to
make the programming of fregquently encountefed!input—output

operations easier. Subsequent considerations included
S
security and integrity threats, and poor resource .Qﬁw . -
. iGN S o571
s . . -_/ . - o
utilization, which were overcome to some extent by providing. °¥

"

indirect, rather than direct access to the basic input-

LS

output facilities.
e

‘i

:‘\4

Input-output support routines have gengrallyjevoyved
parallel with the development of new architectures or
improved performance within the hardware components of the

input-output subsystem. Lirst came the 'Input-Output

N

Control Systems', which freed the programmer from some of

: . <t ;o
the more mundane and tedious aspects oft input-output

operations associated with seéﬁeﬁtial file processing. The

implemented control functions were naturally influenced by ‘
! - .

the characteristics of the magnetic tape storage medium

(e.g. sequentialk blocked access) and the dedicated nature of

the peripheral uUhit (e.g. no concurrent. shared access to a

file or device).

Introduction of direct access storage devices

58

(e.g. disks) leq tO'thé upgrading of the input-output
support to provide a class of generaliged 'File Access
Methods' and database Mmanagement systems. As with the
carlier input-output control systems, the device attributes
Influenced the range of operations supported by the file

access routines (e.g. direct and indexed sequential access

methods, and device sharing between actijive processes).

However, the operations and access methods implemented under

an integrated database ﬁanagemeﬂt System are device
ggggggﬁgggg’—— they are specific‘lly tailored for conchrrnnt
access Lo a shéred file or da b‘ase. A typlcal database
management system supports a range of capabllltles which
include, as a subset, all the Ooperations supported -by the

input-output control and . ‘file access routines.

"

Implicit inpﬁt—éutput support'was intrBducea with the
advent of virtual memory and multlpfogrammlng systemsvv1a
the paging and/or swapplng routinesqrmfor netyork
environments, special software modules were deQeloped to
support the hardware intérfnce»to the network, the 'line'

protocols and the 'host-to-host' protocols,

While these support systems are functionally related

(i.e. they make input-output easier, at some conceptual
level above the machine's basic input-output instructidﬁ
repertoire), they are often constrhcted as physically

. \

disjoi?f/ggﬁules, each implemented on top of its own low

level routines for achieving physical “input- output

(e.9. channel program construction and €Xecution). For
example, a current computer System may provide 1nput output
SUpport routines for Sequential devices, spooling, paging,
the file system, file access methods and a database'
Management system. Routines which are shared between these
subsystems have typlcally evolved 1in an ad hoc manner,
compounded by the pecullarltles and inadequacies of the

precursor subsystems.

In addltxgn tQ‘the unstructured 1mplementatlon of these
various support subsystems, the functional capabilitieS'of
the software interfaces have considerable overlap
(e,g. there are many ways in which a Program may execute -one

1nput Operation).. In part, this redundancy may be
S

attributed to an unw1111ngness on the part of the suppllers
to abandon earlier Support systems. Clearly, the unllateral

adoptlon of a new support System would have prec1p1tated

suppor t subsystems is that, despite the considerable

functional overlap, subtle dlfferences remain. No attempt

whlch could be 1mpdemented in a central support module, from
s
the non- standard functions requiring separate, specialized

routines.

i
0 N °
[hg

éo,further confuse the issue, .each input- output
2t ,
1nterface supports its own communlcatlon protocol. . Leaving

R
-

e

60

aside thc semantics of the operétlons eXxecpted via the
multiple in%erfaces, the variation in intermodule
cqmmunication mechanisms may be illustrated by the following
example; the range of module linkage conventions for 0S/360
(IBM, 1971) includes 4 parameter passing protocols and 6
techniques for the transfer of controi -~ for a gr%;d total

of twenty-four 'standard' (!?) interfaces.

The.problems associated wifh multiple input—output-
support subsystems will be éealt.with-at greater length in
Chapters 4‘and 5, however at th}s stage it should be noted
that the evolutiénarygapproach has resulted in a software
structure which is ofteg difficult to comprehend,
unﬁecessarily large, and prone to seéurity violations.

3.2 Mhltiple Classes ¢f Input-Output Abstraction

The repertoire o%%

dNput-output operations presented to
the applications programmer may be influenced by various
'abstractions' of the input-output devices, external data

/ S 4 _
structures and input-output operations.

 The technigue of abstractfng or virtualizing objects in

the input-output environment exhibits considerable
similarity to the concept of‘an 'abstract data type' ﬁéynd
in some programming languages (Gerschke and Mitchell, 1975;
Liskov and Zilles,bl974). An abstract déta type is
implemented as a set of user callable operations which

provide ngs,information concerning the internal procedures or

\

a—

61

data structures used to implement the operations; e.g. a
'stack’ may be defined by the operators 'push' and 'pop'
and the implementation details are irre}evant for a
procedure wishing to use 2 'stack' data type. The benefits
of this approach include improved program structure and

reliability, easfler program modification and simplified

proofs of program correctness.

The use of abstract input-output objects has becen most
evident in the design and development of multlprogrammlng
,systems to be used as vehicles for operating systems
research. When implemented these systems typically run on
rather small hardware conflguratlons, however the concepts

seem to be equally applicable to larger systems.

Twoﬁbasic tecnniques have been applied, namely the
'layered' or hlerarchlc virtual machlne approach, and the
concurrent co—operatlng process' or 'monitor' organization.
W1th1n the former category, the THE system (Dijkstra, 1968) -

T
is the archetype, in which successive layers (or virtual
machines) support abstractlons of the processor, main store,
operator's console and peripheral devices. Routines

communicating with a virtual device are unaware of physical

device allocation, scheduling, buffer management, physical
transfers or interrupts. Gagllardl (1975) proposed three
further levels of abstraction, in an attempt to upgrade the
~complexity of the input-~ output functlons suppor ted by

Dljkstra S original model These,new 1ayers provided

62

logical record input-output, file access methods and

database mansgement services.

A user process executing in the environment provided by
the Vesus machine (Liskov, 1972) may communicate with
'virtual devices' which are supported by the micfoprogrammed
‘operating system nucleus and three levels of software. 1In
attaining the visible attributes of a virtual device, the
softQare and firmware routines incrementally 'mask off‘ the
ﬁmechanics and real tyme constraints of device
communications, the buffefihg procedures,‘the gqueueing and
scheduling of outstanding requests and the necessary-.

interprocess synchronization.

‘The RC 4000 systém nucleus (Brinch Hansen, 1970,‘1971)
provides an environment in which all'inputfoutput objects
are uniformly treated as external procésses; Internal>
procesées communicate with themselves and exter 1 prbcesses
by means of a message exchange meéhan_iism.2 .One group of

. s . . . i
‘the RC 4000 ‘monitor functions' support operations involving

abstract objects (i.e. external processes) corresponding to
, W

2% Blasgen (1975) has pointed out that using an

© interprocess communication facility to execute input-
output asynchronously, with respect to the execution of
the initiating process, poses some serious disadvantages
in certain applications. Specifically, for terminal
input-output, real-time control devices, and handTing
input-output errors, a more efficient but equally
elegant solution would involve the use of synchronous -
input-output primitives which suspended executing of the
calling process until the input-output operation was
completed.

63

the non-sccondary storage devices and logical files which
are named, contiguous blocks of secondary storage. Multiple
operating systems may be implemented on the single RC 4000
nucleps. Boss/2 (Lauésen, 1975) is one such 6Leréting

system which.proyides 2 further abstraction in the form of"ﬁQn
virtual devices, implementéd via a spooling mechahism.

Despité the outward'symﬁetry between external and internal
processes, significant differences were evident with respect
to processor scheduling and access to the nucleus's data
structurés. Brinch Hansen (i973a) subsgquently identified

this distinction as one of the artificial constraints and

disadvahtages of the RC 4000 nucleus.

The concept of a 'monitor' aS«abéasic component from
which an operating system could be const: ted has evolved
from studies of various semaphore and critical region
techniques. Monitors were first described by‘Dijkstra .
(1971) and subseduently formaiized by Hoare 11973,‘ 374) and
Brinch Hansen (l973b). Because monitors afé based upon the

notion of mutually exclusive execution of shared routines
o

'd

‘and mutually exclusive access to sharable data structures,

théy are well suited to handling the types of ésynchrbnous,

conflicting requests for input—output'éervice found in a

multiprogramming system.

More tecently, the monitor concept has been included as
an integral part of the Concurrent Pascal programming

language (Brinch Hansen, 1975). Concurrent Pascal has been

64

used to implemen& the Solo operating system (Brinch Hansen,
1976a, 1976b), which supperts abstractions of the physical
devices, disk files (i.e. sets of cohtigudus physical

records}), and logical files.

3.3 Physical Interfaces

-

As mentioned earlier, the spectgqm~gf potential-input~
output interfaces may be partitioned into two .generic
groups, namely the logical interfaces and the physical
interfaces. 1In this section, the commdn aétributes of the
physical interfaces will be described, with particuler

attention being paid to the channel program interface.

A physical interface is characterized by the presence

of a physical record address as a parameter in all transfer

operations. 1In general terms, a physical record address

comprises a device address (usually a channel and device -

number pair, or a unique name. associated with one of a class

of identical devices), plus an absolute storage address.
For strictly~sequential devices (e.g. card readers, line
printers, or paper tape equipment) the absolute storage
address is al- s 'the next physical record', for block
addressable devibes'(like disk or drum units) it is 2

physical record number relative to the start of the volume

2

(8]

o

65

: ' 3.
or storage medium,

.

Given a physical input-output interface, then central
processor based software outside the input-output module
must be used to implement both the secondary storage space

allocation and the control of concurrent access to shared

o 4
devices and/or secondary storage .areas.

The units of data transfe-red across a physiéal
interface are either blocks or physical records, formatted
according td the predefined external storage layout -- often
the user's buffer areas are also used as device buf’ -s.

Consequently, the input-output module is not responsible for

any format chversion (ot than a possiblg chdracter-by-

c”haracter translation betw. . internal anernal-
cﬁaracter codes) , subrecord»selection or d&namic (e.g. table
driven) reformatting. 1In short the input-output module
treats the transferred data as integral unit which is

) 1
independent of all other physical records and not subject to

.any semantic interpretation.

3: Note, not the start of a logical file or relocatable
extent; for a disk device, the absolute storage address
would be composed of a cylinder number, a track number

.within the cylinder, and a physical record number within

. the track.

4: Queueing the pending input-output reguests to ensure

- exclusive access to a device for the duration of a
single operation or channel program would typically be
done within the ‘input-output module. However, any
integrity based constraints spanning multiple input- .
output requests from a single process, or high level
(e.g. transaction oriented) scheduling must be enforced
outside the input-output module. : '

66

Some physical interfaces have already been discussed in
this Chapter; for example, input-on!put ;elated machine
instrﬁctions, early input-output control systems, and the
abstract devices which have a 1:1 correspondence with an
actual peripheral unit. However the material covered in the
following Sections will concentrate upon the most widely
encountered physical input-output interface —- the channel
program interface. The discussion will COVer‘the channel
program execution mechanisms, the constraints upoh the
functional complexity of channel proarams, aﬁd the observed
advantages and disadvantages of Lhe’channel program

interface.

3.3.1 Initial Advantages

The initial advantages of a <channel program interface
were discussed in Seétion 2.2, and the points raised .
included: ’ |
(1) Increaséd parallel%sm and concurrent processing for
improved throughput‘performance. |
(2) The use of cheap external logic yielded superior i
cost/performance ratios. |
(3)>The lowest level dévice confrol functions were-diVCrced
from the central processor.

(4) A device independent mechanism was introduced for the

execution of input—output-opera;}ons.

Despite these advantages, the following discussion will

67

show that the channel program interface has somxbxcrlous

shortcomlngs for current input- ourput envigfonments.

3.3.2 Processing Overhead

—)
/

In his survey of input-output subsystem architectures,

Buzen (1975) identifies some of t*. 42tors which have
promoted and hampered the developm« ..t of channel program
interfaces. If parallel exec: .on of input-output

Operations and central processor instructions is permitted,
then some synchronizing mechanism has to be adopted -- the
uniQeréally éccepted approach has been the 'I1/0 Completion
Interrupt', But iﬁterrupt processing imposes a non-trivial
overhead, associated with saving the status of the
interrhpted task and initializing the.inferrupt handler.
Consequently, large bldck transfers and.hulti—command
channél programs (i.e. data and command chaining) have been
adopted in an attempt to reduce the total number of

interrupts.

Some machine architectures exhibit features which
reduce the overheads associated with interrupt processing’
and changing processor state. The first technique invglves
a 'stack' rather than a 'general purpoée register’ |
organlzatlon, since the current state of the system and the
1nterrupted process remains in the stack and does not have

to be copied to a static 'save area'. Examples include the

larger Burroughs machines and the ICT 2900 series (Doran,

’

L : o 68

1975). A second appronch involves the use of meifipiw sets

of gencral purpoge registo?s {o.g. oOne set per processor ¢
state, or one set per interrupt level) --\again‘fhe

advantage is that no explicit saving of state informatien is
required - -when the processor switches task or - ion modc. .

Exahples of this second approach include the In: iata 8/32,

the PDP 11/45 and the ModComp IV.

For virtual memory systems, considerable preprocessing

is required before a channel program can be forwarded to a

)
)

channel controller for execution. Typically, & 'page fault'"™
in the middle of a disk transfer constitutes an p
unrecoverable error, short of restarting the channel

program. Therefore, it is necessary tc ensure that all

virtual pages which will be accessed as a result of

executing the channel program are brou;hp ihto main store
and flagged aé 'unpageable' (i.e. locked in main store).
vThis must be done before any input-output transfer is
intiated, and involves .a software routine which preprocesses

the complete channel program.

Since the channel controllet does not have accessvtb

-

the 'page tables', further processing overhead results from

translating all virtual memory addrecses into the- real, main-

store address space. This must be done for all buffer and

[
3

operand addresses cited in the channel program. At the same

time, the validity of the requested ope%atioq and - the

ysupplied addresses for buffers, physical storage locations. -

i&;

. ’ . " N
s . .
N ' . .
\ ' o Y
) . ‘ R

ond operands must be checked against the access privileges

)

of the requesting process. Once the parameters have been ' ;@'

checked and translated, the channel program dispatching

\

routines must ensure that the parameter values are not
R - . : .
subsequently modified prior to their use by the.channel .
. ; . .l . ot _

controller. " For systems;which permit self modifying channel

: ' | ‘ - el

- B o

programs, unconstrained ﬁransfers of contol within a channel
. . s ' ‘

piogtam, or dynamic channei program construction, the
preb;ocessing procedures}become very complex, errgr-prone

A S : e
and time-consuming

’

‘Some novel and some messy technigques have been

developed to reduce the over’ i associated with channgl
program prepﬁocessing.‘ Whi Neélch (1975) hace

" described a modular main stor. Jesign in which the

. to real™ address translatlog table’

e 1ntegrateF 1nto the ..

storage médules. All ma1n stote acc sses are in terms of -

nf

N > :
virtual addresses, and -‘the ma1n store harGW1re handles the k

PR a L B
< 1

'translatlo‘ %o real addresses and the necessary gage .

R\

; £ \
allocatlgy and replacement algorlthms. Besides 7voiding

channel,programv ddress E;anf atlon, this scheme!prov1des
faster eentral processor state changes, since thfre is no <

~cache mei .ry to be 'flushed' and no page table control
registers to be set up. i‘
S z

» | {
A similar philosophy is involved in the ‘1nte111gent

{ » 1 . 7
>

paging device' which Wayne State University is gurrently;

- . . . Lo
considering &s a viable replacement for a conve?t1onal
N - ! B
i
R

~

e ’) !" ,;Jf_ . l N /
\@ . ' L

q‘x 4
@b 70

paging drum.5 This device would handle-its own space‘

management, and provide acecss to virtuali pages on the basis

of a process identifier ocnd a virtual page number.

p—
T

The Michigan Terminal System (MTS) avoids the address

. tran_lation phase for all paging operations, by having the
&

'ﬁh& . A .
Mzégzxﬁpaging routinc execute in the real address space (McDonell

P and Marsland, 1977).

1 Lo

E} -~ 73.3.3 Security'Copsiderations

v .

/ One of the moS%%crltlcal problems associated with the

o
’\' ! ﬁnl » o
,channel program 1nterfa§9 is Lts use as a mechanlsm fo&

penet%atlng the operat1nga§ystém ‘and v1olat1ng the system's

-

I .securlty constqudts. . ; .‘ - y

‘ T e

; 7 SRR e O A

L Linde (1975) has 1dent1f1ed three generlc,weaknesses

- o
A

-associated w1%h low level phy51cal input-output 1nterfaces
Q.‘ .
. whxeh fre commonﬂ@ﬁanany operating systems.{
s “u \
(1) Self modlfyLng’bhannel programs and/or dynamic channel
. 'e

. &2 .)J\ /
.

program construction prov1de mechdmlsms whereby the

i . L 1’
- valldlty checks assoc1ated w15h main store accesseszmay

o SR

%e bypassed, once channel program execution has

g ~ 4 o ~

commenced. " .)
4

12)’Channel'controllersjtypically have unlimited

asynchronous access to mafnstore. As a consequence,

e

| ‘Tittlé"or no access prrvllege checklng 1s perform d at

Ra
s,

5: See/the SHARE MTS Newsletter no. 40, June 1977,

&

found to 1nvolve the 1nput/output (I/@O fac111t& in some“ B

within the VM/370

71

the time the input-output transfer takes place.

{}) The operation of the system may be. halted or drastically
"downgraded by a channel program which assumes contrOl of
&an input-output path, and does not release it (e.g. a"

channel program containing an infinite loop).

’ Virtual machine architectures havgﬁbeen'aidely proposed
as onerﬁolution to the problem of enforcing protection
protocols ;%d constraknts upon concurrent users who require
acdéss to all the machlnos hardware facilities (Madnick

«<

and Donovan, P K d Kline 1974) However, an
i g;?%%” '

. organized attempt to pen&trate the VM/370 v1rtual machlne

system (Attanasiao, Marksteln‘and Phllllps,vlé76 revealed “

I

'that, almostzevety demonstrated fiawﬁin the-system was

v

LI

manﬂe;". These weaknesses wbﬂe attributed to VM/37O S -*t:

attéﬁpts to construct real channel programs ﬁrom v1rtual
g o ;f .
channed programs, dupllcatlon ‘of input- output*serv1ces

- - ”

'vf§or and parallél execution of v1rtual

machifies and channel :
. . . G -

It seems hlghly unlikely that the securlty requlrements
'.z E 5
of the next decade will be met by any computer system

. ’

featurlng 2 phy51cal input-output interface whicqyis as low
; , , & : X

B . o

level, generally accessibleJ and uncontrolled as.the current

a

channel program interfaces.

~
1Y

o~
- . .

72

3.3.4 Database AcceSs Patterns -and Rquiremqﬁ*s

Executlon of a single database level input-output
function 1nVolves the use of multlple, non-trivial channel

programs. Construcﬁi complex channel programs at the

central prOCPSSOQ}; W ves considerabTe o@erhead which

either may not be heCessary, or would be less expensive if

‘ - J . 5
the channel programs were constructed in an external input-

output processor.

"The repertoire of channel commands which are available’
for disk devices are not particularly well-suited to

database operations.. For exaTPle, searching at- the dev1ce
L
is llmlted to one key aqﬁ: within a fixed phy51cal record
[
format, and for short records (e.g. index rg&ords),.dev1ce

level searching may be«less efficient than‘transferring‘a

block of records to main store and then u51ng central
J5r0cessor bdsed software to search the block-(Buzen, 1975)

h If the input- outputkoperatlons requlred by a program

M

1nvolve physical-to-logical record restru&turlng, subrecord

‘
[}

selection, index accessing or. stepplng through 'llnked'

o~
storage structhres then a good deal of extraneous data, is

I3

passed between the channel controller and main store. In

:Bact, multiple‘ph§sical records must be transferred.to main

-

E .
stbre before a 1ogica1 record can be constructed by central:
processor re51dent software -- thlS means an Unnecessarlly

< SRy}
'&ﬁ

3

processor and the main store arbiter.

73

WY
ﬂNrB 3.5.. The Demise of the Channel Program Interface?

Y

'
b

In addition to the disadv%ntages outlined in the

preceding Sections, the channel program interface is simply

not required,by user processes, or by most operating system

procedures. Historically, low level device contrdl and a

physical record interface were provided in response to:

(1) a monoprogramming environment in which individual
programs‘exploited their control over dedicated devices
to reduce run timé'by ouerlappiug ihput—output”with |
processindﬁmend

(2) ‘machine architectures in which central processor

intervention was required'to perform input-output &

related pr%ggssing.

PRS2
“

v 4
T%ese condltlons have changed Wlth the introdugt of
w . 1 L‘ .m a
P . . w

multlprogrammlng systems and 1nput output prw

substantlal 1ndependent proce551ng capabllltles.

Multlprogrammlng%has meant that an individual program'no

-~

longer has guarauteed, dedicated‘control over a devigce and

‘ thgkresponsibility for aehieving overlap of operetions has ¢
’ e . B .

been assumed by the operating system. Concurrency between
input—output transfers and central processor execution is
ol . .

typically a%hieved'by overlapping the- central processor
executiort of one job. w1th the 1nput output transfers of

sécond job, rather than forc1ng the one monoprogrammed Job

LY

tQ 51multaneously execute instructions and external data’

R T B T . * ¥

transfers.*' e _ . L

Fa > v
74

As input?output subsystem architectures incorporate
further external processing capabilities, and security
considerations assume increased importance, it is to be
expected that -the importanee-of the channel program |
interface w§11 undergo a rather crltlcal revaluatlon. 70@@k,
the long term, it seems unllkely that such a~ ﬁﬁnctlonally
simple interface will survive, with the possible exceptlon

@ ¢

being for some very low level modulés:of the operatlng
o

system, charged with serv1c1ng non- standard or real- time
devices. Further justlflcatlon for the demlse of the..\gﬁr -
' chdmnel program 1ntérface w111 be presented in Sectlops 4.1
and 4.2, whéh the potentlal advantages of a homogeneous

input-output*interface,are dlscussed.

\D\.
g

3.4 Loglcal Interface;ah
F—)_. . y

»
3

A logical input-output interface is characterized by
.)) . 3 B
the absence of the rhysical record address which is f
'mandatory for all transfers across a phy51cal 1nterface

The unit of data passed across a logical 1nterface is a

logical record. ' ,

. o PN . :
Within the input—ouzput module, the 1oglcal record's

address or 1dent1f1cat10n is’ translated into the necessa¥y
¢

thS1cal records address(es) Slnce~the loglcal record may
. . Y

b

~be stored externally as one of many loglcal records w1th1n a

P,

- physical record aﬁbaS‘one phy51cal record,vor ‘as multlple

consecutlve phy51cal records, or spanning multlple d15301nt

13

physical records,

l:l,‘lzN, Or N:M. The mapping functlon 1s defined by the

implementation parameters for a particular logical file.

" Sir - rhec napping functions are implemehted within \\Qh
| \

'the input -ne ut module, =11 storage allocation, management,

%

and storage . level concurrent access control must also be

1mplemented 1n the 1nput output module.

. ¥ . :
Rv3 -

An 1nput output module SUpportlng a logical interface
may be 1mplemented in one of two, wa%s, either directly,

using an input- output processor to off-load the bulk of the

48

1nput -output module’ from the central processor, Ca'

. '
o L

'1nd1rectly,.u51ng one: Or mote layers of software on tOp of a

phys1cal 1n¢erface For the purposes of the curfent

dlscuss1oh the lnterface attrlbutes, not "the 1mplementatlod

a

detalls, are lmportant Con51derat10n of an 1nput output b
7
processor 1mplementat10n of a logical . 1nterface will be

C e~

delayed»untlvahapter 5.
' b W . ‘ ;}-1‘“‘

whlle all physical %ecord 1nterfaces are ba51cally »

-
alike, the logical 1nterfaces vary significantly with

respect to the cﬁpplexity of the relationships which are
dmaintained automatically between Jogical records, the |
complexity of the available mapplngs betwaén loglcal and
physital record addresses, .and the degree to which loglcal:
records may-.be reformatted durlng input-output.

Throughout this Section, the unqgiralified term 'record' -

¥ R

76

R
refers to a 1pqical record as defined in the logical storage
N : : v 5 _

structure. :

Q ‘ -
3.5 .’Simple Logical Interfaces

Many. logical interfaces simply provide minimal
facilities beyond those‘%ﬁsociated Qitn a physicel interface
(i;e. input-output without reference to a record's external
physical address, and no more). These interfaces will be

termed 'simple', ‘and they feature: ~

(1) The @apping betwden physical and logical record

addresses is 1:1 or 1:N.

(2) Either no record re rmatting facilities,‘or simple

lo ’~bn is unknown, the calllng procedure is not

. ‘insulated from the external format and structure of the

individual records. ‘ R

s

(3) Access to individual records is ejther sequential, or

via a single record identifier.

e
'Stream. 1nput&OUtput' is one of the simplest sequential

.

interfaces, whereby“varlable length unformattéd records are -’

supported u51ng an ‘end-of-line character’ convention. The

<

skream input- output 1nterface forms the basis of the 'ports'
<N
mechanism (Balzer, 1971) whlch prov1des a uniform protocol

for all process—process, process f11e and process dev1ce

data transfers. Implemented examples 1nclude the ISPL

i

i

71

(Balzer, 1973) and UNIX (Ritchie and Thompson, 1974)

systems.

Many of the abstract input-output objects discussed in

Section 3.2 support simple logical interfaces to 'a calling
. - - .

program; e.g. the logical file abstraction. Interestl
Casey (1973) hag asbposed a very similar interface, ter
the 'loglcal data lnterface however this proposal was

motivated by the unused external proéessingﬁootential of an
IBM 3850 Mass Storage system, rather than the programming

-, .
language and operating system structure concepts which led

to the abstract input-output devices. The 'logical data
interface' rglies upon an external Processor to manage the‘
secondary storage space allocation and to implement the
mapping from primary record identifiers into physicel
,addresses -- all acceSS‘requégfs to the inpnt—outout
pProcessor cite a logical fiie name and a value for the

desired record's unique identifier. .«
I3 . ’ J

Ihe'Multics.system provides two different‘input—output
interfaces; however they @re both 'loglcal and 51mple' The
segmented paged virtual memory architec re qs extended jnto ’ g/

the Flle System j— flles are syronymous with segments == to

~ S

prOV1de a unlform namlng conventlon, hierarchic catalog E)

¢

structure, controlled access and sharlng mechanysm, and

1mp11c1t 1nput ouhput Operations (i.e. demand paging)

(Organlck, 1972). - Thus all the objects in the storage

EE

hierarchy which are visible to an executing process may be

/ Ay

‘ PERMIT‘ACCESS, etc., and involve maintenance of a global

ey

78

accessed in the same manner, whether they be procedure

segments, program data s*&ments or file data segments. From
\

the proqrammer s perspect{te, a Multics segment forms part
of a potentially very 1ar;e address space which 1is
constructed from fixed size logical records (i.e. tne
pages). Access to the non-storage devices (e.g. terminals,
card readersocand line printers) is supported by the Multics
1/0 System, via a set of stream input-output operations =--
read; write and position. A segment within the File System
may also be‘accessed as a 'pseudo stream device' through the

I1/0 System (Feiertag and Organick,1971). A S :

Some of the most common s&mple logical interfaces are

»

those provided by the flle access methods which have been

elther 1nte9§pted or' ended to most op- ratlng systems.
("!, e ’ (8!
vbvide both file—level and record—level

These systex_‘

operations fd flles stored on- secondary storage. Typical .

g
file-level operations 1nc1ude CREATE, DESTROY, OPEN, CLOSE,

file catalog. This catalog i$ used to map a file .name onto

a set of physical areas of secondary storage, Wthh %eed not
o N

be either contlnguous, or pé%manently allocated {1 e, a

loglcal file spans one or more extents) Redords within the
l/‘\" s

"

flles are stored and accessed accordlng to oné of a number L
of general f1§; organlzatlons, For example sequentlal

parﬂ?tloned sequential, indexed sequentkg} ﬁplly 1ndexed, . La
orldlrect access. Table 3 3 llStS the generlc £1le

e ;)
organizations, along with some sample 1mplementat10n , deawn | ..

.

Y

4
79
from a number of common data management subsystems.
3 :
L 4
[-

FILE _SUBSYTEM!ACRONYM HOST - ‘"
ORGANZATION " OR NOMENCLATURE OPERATING SYSTEM
Sequential : .

- Honeywell MOD 1 (MSR)

BSAM ’ IBM 0S/VS

Sequential Files MTS
Partltloned Seguential

BPAM IBM 0S/VS
Indexed Sequential :

- - © Honeywell MOD 1 (MSR)

I1SAM "IBM,OS/VS - !
Fully Indexed - R © . - s

File System - Decsystem-10 -) A

vsaM © . IBM 0S/VS 3

\ Line Files -~ MTS' ' L D

Direct Access . S ' ¥ . g

- s ‘ Honeywell MOD 1 (MSR) .

BDAM . .#& - IBM 0s/vs
Sources Dﬁﬁr(1975), Honeyuéll 1968” IBM (1973Db)

(1973c) Unlve.!’s‘tﬁ\x of M}ghigan (1973).
.A‘.f92%2§ ‘&,
TR il

Table 3.3 Examples of Some Common File Organlzatlons and
’ ' Data Management Subsystems

e et R | |

)
=f

With the possible exception of the seqUehtial

prganizag@ons, certain field(s) of each record within a

“ particular file ar® chose@i&ﬁ)act as the 'primary key'

. " R v ¢ . - ‘
fields, the values of which serve to uniquely identify each .

y -

record.

bl .

The. file éccess.methodsféypically support_thfee basic

-record-level operations, namely 'read', 'write' and I - -

'position'. Read and write involve the transfer of -one.

- ot

W : %'_80
[N

r" ’
logical record, while positic. is used in conjunction with
sequential access to a subset of the records in the file.

Associated with each operation is .one record identifier,

which identifies a single logical record within the file.
For the fully indexed and direct access organizatlons, ﬁhis
identifier must be a primary key value. If the file is’
organized as sequential or partitioned sequential, them
transfer operatiens.use an implicit record identifer *
(i.e. 'the next record in primary key‘sequence'l, but- the
position operation requlfes either an explicit primary key
value, or a storage off-set (a number of charactere or
logical records, relative to the start of the file).

Indexed sequentlal files fequ1re a prlmary key value for the
p051t10n operatlon, whlle the read and wrlte operatlons may

'A»

yse either a the next record in primary key segquence'

idéntifier, or an expliéit.primary keys value. K .
. # 1.
The distinction between physical and logical interfaces

9.

is not as clear for those sequ@ntlal file organlzatlons
whlch permlg access to the logical records on the ba81s of a .,

storage off-set. Operatlons based upon this type of record. .

- ’ s .
1dent1f1er are sen51t1ve to the sequence and lengths of , 3% .
.

logacal records within the file, however they remain~ ’ \2,/

1nsulated from the phy51cal allqcatlon of the f11e 's extents

w1th1n the volume. In contrast, the 'next record in primary
o N . '

A

key sequence' and explicit primary key value identifier
mechanisms are ifidependent of any change in the record's

position within the file or the file's mapping onto the
.o N .

81

physical volume.

3.6 Complex Logical Interfaces

The evolution of input-output support routines from
data management to database management systems has seen the . R

emergence of logical interfaces which are significantly more QJ {
R . .

complex than those illustrated in the previous Section.

cu In comparison to the simple logical interfaces, these

L] : . .
systems pro'ae input-output interfaces which feature:

-
Eas

‘% (1) Logical-to-physical address tfanélations which range
from 1:1 upto the most general N:M typeé of mapp.ng.
(2) Fleﬁiﬁle'éeléc%ion, constructigp and formatting for the £§§

: o o A S
fields within a -Jlogical recotd, 1nclud§ng-the synthesis

’

.

of new logical relord types from thfvfields of existing

records. . ’ o V“

-~ (3) Access to ;pgical records via a priﬁgry key, plus a
o 4 .

2 vafiety»ngsecondary keys and logical positional
¥ o o g

[P

identifiers. | \ ' N

] N \

- W

A'typicaixggpabase management_éygtem provides user
T brocesses wiﬁh alﬁide ?ange*of services.iﬁThe %ollﬁy%ﬂg,list
is ag extendgd version of the databéée managemgnt’system ¥~
éesign objéé;i&es proposed by §nuggs, Popék.aqd Peteisen

(1974):

(1). Data Independence: Changes may be made to the,physiéal

representation and orgahization of the logical records

) ' o ~)
without impacting the correctness of programs which

5

&

5 3%
b

'.")‘-‘

(5)

management system, or expllcltly by the active

82
'

N

.access .those records. This stability must prevail

during record reformatting, record relocation and
installation of different access methods.
y . .

'Support'for a Global Data Model: One abstract model is

used to describe the user's perception of how the data
is organized and structured (i.e. what cr?teria are used
when grouping logical records into‘logiCal ﬁi]es or 3
subfiles, the classes of relationships whichgmyyﬂﬁf’

defined between logical records of similar or dissimilar

4

types) .
Data Integration: All the data files for a partﬁcular
LEV o - =
suite of programs or corporate application are L
* 4 oy ’

integrated into one data structureuto minimize the

unnecessary-data redundancy and maintenance costs.

Data Consistency: If a logical record is physftally
v‘ ' ;: . . . A . .
relocated or updated,.the database management:system .

. N N
v : - i

assumes full responsibility for automatically perférmigégi'
_ 2 , T K

' ' ' N . L :
the necessary secondary changes associated with indices,

multiple copies of a record, free space lists and,

pointers, inter-record relationships, etc.

¢ . .

Concurrent Access: The neceSsary lockiﬁg mechanisms must

be avallable to prevent 1nterference between concurrent
processes w1sh1ng to access the same data elements.:
These locks'may be’activated implicitly by the ‘database®

processes, however the 1ncﬁemental and unpredlctable

-

locking patterns assoc1ated w1th database appll&at;ons>

R . \ ! .
LW 7

(6)

(7)

(8)

83

invariably necessitates some deadlock detection and -
roll-back / recovery facilities.

Data 1ntoqrity; The database management system 1s
charged with the detection and prevention of erroneous
data values entering the databace and/or 1incorrect
inter-record relationships beiny established. The
integrity of the database must be maiptained dur ing user
generated updates in a concurrent access environment and
following a system mayfunction, due to either a hardware
or software failure. \ .

Security: Assuming the users and owners of the executing
processes have been correctly identified and
authenticated in advance, the database management system
imust prevcnt unauthorized access to the data resources
‘under 1it's control.

Access via Secondary Keys: Flexible facilities are
available for.the definition and subsequent automati<c
maintenance of such inverted lists and ind&ces as may be

necessary to provide acceptable performance for access

to logical records via secondary key fields.

(9) Compatibility: The database management system sh~111d

provide supﬁort for the current file organizations and

access methods, to allow the user to access files which

were previously m. 1~ sined and accessed with the file

access routines via the database management system.

To achieve these objectives, it is necessary to employ

"

a multi-level scheme for describing the data structure.

84

This approach has been adopted in both the CODASYL and

ANSI /X3 /SPARC proposals for a standardized database
management system org-nization (ANST /X 3/SPARC Study Group on
Data Base Management s stems, 1975; CODASYL 1971,1973;
Manola, 1976). These descriptions$, or schemata,, are used to
formally describe the data objects and their -t 77
relationships as they are viewed at differc ¢ lev in the
implementation hierarchy. Typically the uioe. ‘hema 1is
concerned with the user'é 'conceptual' view

information structure, while a second schema describes the
storage organization and access methods 1n a‘device
independent context, and a third schema details the device
leQel storage details (Bachman, 1975; Date and Hopewell,
1971; Nijssen, 1972; Palmer, 1974). The schemata are
heavily utilized =V the database management system toO
enforce intecrity aréd consistency constraints, however their
most obviour us. i€ is as an incremental definition of the
logical—to—physica; address mapping for each logical record
type. Since this transformation is effectively ‘table
driven', Fhé mapping may be altered by modifying one or mOore€

of the schema dAefinitions.

3.6.1 Alternative Data Structure Models

At the user level the desirable attributes for the data
structure model in terms of which the conceptual schema is
constructed, has provided considerable grounds for

discussion, published papers: impassioned pleas and dogmatic

disputes between the proponents of the various models. The
principal models are ‘termed ’Eelational', 'hierarchic', and
'network'; thelr origins may respectively be traced to the

-
work by Codd (1970) on a mathematically complete set of

construction rules and operators for data 'relations', the

IMS

1base management system which is based upon an

ordc. vy hierarchy of sequentially accessed record sets (in

other words, a tree) (IBM, 1974), and Bachman's influence

upon the CODASYL Committee and his earlier association with

General Electric's Integrated Data Store (General Electric,

197Q) from which evolved the concept of connecting

circularly linked sets to form a network. A comprehensive

esurvey and comparison of these three basic approaches may be

found in a special issue of the ACM's Computing Surveys

(Sibley, 1976).

While these three models constitute the popularly

accepted alternatives, many different and hybrid suggestions

."have been made. Some of these include:

(1)

The formal definitions proposed by Hsiao and Harary
(1970) for describing a wide range of list structured

files and their associated access mechanisms.

A 'Data Independent Access Model' (DIAM) which employs a

multilevel hierarchy of submodels to support the
éconceptuai) Entity Set model in which the basic unit of
information is the 'entity' and entities with similar
properties are grouped into named 'entity sets' (Senko,

Altman, Astrahan and Fehder, 1973).

86

(3) Separation ot the 'entity' and '‘relationship' concepts

into two identifiatle ser classes forms the basis of the
'Entity Relationshic' medel proposed by Chen (1976).
This model is very pcwer ful at the conceptual level,
since 1t providgs a cormon basis tor describing the
implementation independent aspects of many other models
(eig. relational hierarchic 1nd network). .

(4) In attempting to nrovide some gerneralized database
per formance evaluation tools, Reiter 975) has
developed a model based upon hybrid 'tree' and ‘liét'
structures which may be used to describe both the
logi. al structure and its physical realization.

(5) Hutt (1974) proposed the abstract 'data environment' as
a general structural model which could be used by all
user and operating system procedures to provide a
uniform view of the data objects accessible to a
proékss, and the valid manners in which they may be

' acceﬁsgai*u |

(6) The 'information object' consists of a definition for a
both a conceptual data structure and the pérmitted
operations on that structure. Minsky (1974) has

proposed this model as an extension of the (extensible)

abstract data types found in some programming languages.

Despite the initial disagreements and the development
of many alternative models, ther 1is an apparently growing
trend towards the acceptance of a good deal of similarity

between these models (Bac man, 1975; Olle, 1974,1975;

87

¢ bley, 1974). As Stonebraker and Held (1975) have
suggested, this is particularly true once the models are
analyzed a£ some common level which is independent of the
degree to which the' alternative data manipulation languages
may be procedurally oriented. Cohsequently, the material in
the later Chaﬁters of this thesis 1s based upon the-
assumption that there are only two generic classes of
complex logical input-output interfaces, namely the tabular,
relational interface and the graph structured, network

interface.

3.6.2 Alternative Database Management System

Implementations

A database management system may be impiemented in one
of three ways:

(1) As an additional software package, placed on top ofban
existing data management-subsystem. This is the
Aappréach most cdrrent,;mplementafions have followed,
however there are some serious disadvantages associated
with excessive processing overheads and poor security
enforcemert.

(2) By integrating many of the database management functions

into the operating sysi ilst this approach has

been suggested by Rodri uez-Rosell and Eckhouse (1977)
as a possible future direction for the development of
integrated softwar?/to handle .data management, the only

apparent implemMentation is the Data Base Access Method

(3)

88

described by Moriera, Pinheiro and D'Elia (1974). It
appears that this approach may be doomed to failure in
the long term, because the host operating systems are
knqwn to be insecure ana unreliable -- the integration .
of the non-trivial database management routines into the
operatingAsystem would only make matters worse.

The advances in input—output‘subsystem architectures and
external support processors may be utilized to off-load .
the database management system, or a large part thereof,
onto a databaseiprocessor. It is this typé of
implementation which will be investigated in Chapter 5,
since it has considerable potential for resolving the
performance and security pgoblems, and at the same time

enforcing the homogeneous input-output interface which

'will be introduced in Chapter 4.

Some of the input-output processors described in

Chapter 2 have been constructed to provide direct support

for logical operations which are compatible with one or more

of the structured data models,6 for éxample:

(1)

RARES (Lin, Smith and Smith, 1976) and RAP (Ozakarahan,
Schuster, and Smith, 1975) both support operations
tailored for the.non-procedural query languages

associated with" the relational data model. .

Here, 'direct support' implies that, for the .most part,
the operation is executed outside the central processor,
and an interface is available making these operations
accessible to a normal user program.

+(2)

(3)

(4)

89

\

The initial backend database processors, XDMS (Canaday,

Harrison; Ivie and Byder, 1974) and DDM (Heacox, bosloy

~, hY

and Cohen, 1975), were desighed to proceés commands

&

. 3] .
expressed in a CODASYL-like data manipulation language,

for use with a ﬁétwork or data structured set model;
Set>Theoretic Infdrmatipn Systems (Hardgrave, 1975;
STIS,_1976) have designed and ére planning to implement
speciél input-output subsystems hardware to support the
primitive operations of the 'extended set theory' datan
model (Childs, 1968).

Operations baéed upon flexible, query oriented data
models for repords with secondary key.fields are
provided by some of the database séarch~engines,
e.g. CAFS (Mitchell, 1976), CASSM (Copeland, Lipovski
and Su, 1973), and the 'database cbmputer; (Baum, Hsiao
and Kannan, 1976). |

The proposed backend implementation of MRI's System 2000

~ database managément éystem‘(Rosenthal, 1977b) would

‘provide direct execution of data manipulation operations

compatible with System 2000's underlying hierarchic data
. 2 - »
model.

90

3.7 The Effect of a Module's 'Level' within the System

Tne class‘of input-output operations directed towards
the secondary storage deyices originate from two principal
sources. Either a user program explicitly requests a
transfer (e.g. calls the input—output control system, or the
d atabase management “system) or a resource management
subsystem w1th1n the operating system initiates the transfer
. (e.g. paging operations in a virtual memory system, Or

transfers associated,with. a spoeling device) .

Performance considerations have historically led to the
adoption of physical and/ory to a significantly lesser
extent, simple iogical interfaces for the operating system
modules charged with executing input-output onerations.
However, there, appears to be considerable variation between
submodules in the some operating system. For example,
within the.Michigan Terminal System (MTS), disk input-output
is performed by many modules, including ‘the paglng subsystem
(PDP), the File System, the spooling subsystem (HASP), the
on-line File Editor, the Program Loader and the compilers.
Of these, the PDP executes channel programs from an absolute
vaddress space via an SVC to the operatlng system nucleus
(UMMPS)(the File System and HASP use different UMMPS
suppo:ted SVCs to execute channel programs from a virtual
address space, ana the File Editor, Program Loader and most
. compilers use the logical file interface routines supge;ted

by the File System (McDonell and Marsland, 1977) . /

ﬂ o /

91

For user programs, things be ome even move varied.
typically the many input-output support routines may be
organized into a hierarchy, not unlike Gag.iardi's
extensions to THE, based upon the functional complexity of
the input-output operations supported at each level - the
routines supporting the physical interfaces would be plaged
at the bottom, followed by the simple and then the complex
logicél interfaces. The wide variety comes nct with “he
ordering within the hierarchy, but with the extent to which
user programs interfaced to one level in the hierarchy héve

access to the interfaces at other levels 'in the hierarchy.

For a true 'virtual machine', or 'layered abstractions'
hierarchy, a process is dnly aware of the facilities
provided by the level . immediately below the one at whicﬁ it
is executing, and not-the.details of the facilities andi
implementqtion of the lower levels. This is not the case in
the input-output suppért hierarchy; for examplé, an 0S/VS
user program accessing a logical file-via the IMS databaée
management Sysﬁem may gain access to the SAme data via the
VSAM - file access routines, or directly via the 'execute

channel program' (EXCP) facility.

92
3.8 Input-Output Facilities with‘n Programming Languages

In this Section, the influence of various programming
languages upon the available 1nput output intertaces w111 be
discussed. The selected programming languages“have ueén
variously described as 'systems', or 1mplementaQ1on , Or
'applications'—programming languages. Many o;\kgv se

languages provide access to tBe data managgment and file
access routines described 1in Sectron 3.4. 1,“W1a standard
subroutine or macro call. Some add1t10na1 facilities may be

provided by the primitive language constructs and the run-

time input-output environment assumed by the compilers.
b -~

There are no intrinsic input-output primitives in the
"C" programming language (Ritchie, 1973). However, the
compiler supports a variety of calls to the routines of the
underlying operating system, which in the case of UNIX
(Ritchie and Thompson, 1974) support sfream input-output and

a positional operation (i.e. a call to 'seek').

The Espol language i$ an extension of Burroughs Algol,
designed for writing operating systems and compilers
{(Burroughs, i970a, 1970b). The Burroughs Algol>run—time
library supports a full repertoite“of'formatted, sequentiél
read and write routines. 1In addition, Espol provides an
intrinsic funct;on (INITIATEIO) wh}ch gives immediate access
to the basic hard - are inputfoutpug operatbrs (SCAN IN and

SCAN OUT) .

93

IMP72 (Bilofsy and Irons, 1973) and BLISS (wWulf,
Russell, Habermann, Geschke, Apperson, Wile and Brender,
1971) have been designed for, and implemented on, a specific
central proéessor and skeletal operating system -- the
DECSystem 1i1). These two Systems progijTing languages
provide v..y similar, but limited input-output capabilities;
In addition to calls across the simple logical interface
supported by the underlying File System, the programmer may
invoke the UUO Handler directiy, to execute low level input-
output operations. These operations are at the level of
"physical input-output, even though the channel and device

names are symbolic.

The dialect of PL/1 in which a large part of the
Multics operating systém is written (Honeywell, 1976)
©
fe;tures two basic input-output interfaces. The operators
GET and PUT are provided for 'stream data sets', while
‘record data sets' may be accesseJ by a group of standard
read, write and position primitivés. Record data sets may

be accessed in either a sequential mode, or via a unique

primary key value.

Very few att- pts have been made to support the complex
logical interfaces iitectly within existing systems |
programming languages (e.g. no common systems programming
language proviées a database managemrnt level interface to
secondary storage)./\ﬂithin the INGRES database management

system (Held, StonebraXer and Wong, 1975), a language

¥

J

/

94

preprocescor 14 used to allow the relational data
sublanguage QUEL to be embedded within 'he programming
language "C". Howecver this approach has not been witnout
its problems, principally related to the incompatitilities
between QUEL and "C" and the need to defer essential
consistency and validity checks until run-time, rather than
performing them at compile-time (Allman, Stonebraker and
Held, 1976). Wasserman (1976) claims that an integrated
approach is required to develop a programminag language and a
data management interface in parallel, rather tﬁan grafting
the necessary data management facilitigs onto an existing
p;ogramming language. Another promising approach is the
development of data definition facilities and data
manipulation primitives which are independent of any
particular conceptual data model, or host programming ®
language. The Link Selector Language (Tsichritzis, 1976)
and the proposals by Date (1976) for a general purpose

'database language' are tentative steps in this direction.

A significantly different approach involves suppor fing
logical operations in an external data structure simply as
an extension of the 'Multics-like' one level storage
architecture into the programming language. This technique
has been adopted in the non—Multics implementation of the
MUMPS programming language (Bowie and Barnett, 1976) which
treats all information objects uniformly, whether théy are
physically part of the program's local variableg, or data

elements within the external, tree structured file system.

95

Tie necessary (npu‘ outypt operations are executed by the
- al

MUV tun-time system, and the p ogrammer is unconcerned
with individual secondary stoxagé’oporﬁtion.. A similar
philosophy i: evident in the uéo‘of 2. ent .onced, P /1 basoa
structu: o' capability, to provide databa o st ucfures which
may be manipulated directly using the pxagrlnmlng language
facilities (Summers, Coleman and Fernandez, T9745. ‘This

general approach has been endorsed by Oile's (1974) ~
contention that one likely trend for the "proarammer'rc view'
is a one level virtual storage, with the database ﬁanagement
system handling the storage hierarchy management. |
‘
3.3 The Influence of Compupe;‘ﬂetworks and_DiStributed
Databases S a Lo .

A
Increased acceptance of computer networks' has meant

that a program executing at one site may validly require
_access to information which is held on secondary. storage' at .

a remote center.

However, the access path to a given pieceﬁof
information éannot be rigidly, defined in,advancé. " The
actual sequence of operations wiil be déEermined at
execution time, depending upon where thé information is
stored and in the event that the required information is not
held locally, the statgs of the neqyork. For user progréms

running under these conditions, low level input—output

operations (e.g. channel programs and direct device control)

96

are clearly impractical, and high level protocols must be
enforced (e.g. the File Transfer and File Access Protocols

for the Arpanet (Day, 1973; Bhushan, 1972)).

Consequently, networx based programs reguiring access
to data held on secondary storage must phrase their reqguests
in teims of 'network wide' logical record qualifications,
rather than physical record. addresses. All necessary access
path resolution and transfer initiation will occur outside

the calling program.

Coupled with high level information transfers between
general purpose ﬁodes in a network, there has been some
development towards speciel purpose nodes for secondary
storage only. The Datacomputer (Marill and Stern, 1975) iS
the prime example, providing other nodes in the netwogk with
facilities for the remote storage and effiqient management
of large volumes of information. Associated with the
Datacomputer 1is a Datalanguage (Winter, Hill and Greiff,

- 1973), providir . venvironment in which a complex input-
output interfa - cou.Z be supported across a r:tw rk link
connecting a ho: ©or zessor and a data management services
processor. A simi.ar approach is evident in the distributed
database management system which is under deyelopmgnt at
Kaﬁsas State University, although thednodes in this network

?
may éct as dual purpose hosts for some processes and back-

end database processors for other processes (Maryanski

Fisher and Wallentine, 1976).

CHAPTER -4

A PROPOSAL FOR A HOMOGENEOUS- INPUT-OUTPUT INTERFACE

Within this Chapter the structure of the input-output
support software and the associated multiple input-output
inter faces, described in the preceding Chapter, are
critically reviewed. The factors which shall be considered
»include functional duplication, global software structure,
resource utilization and reliability. from the shortcomings
and disadyantages of existing approaches, a proposal 1is

developed for the provision and enforcement of a single

interface for all secondary storage input-output operations.
This interface would be implemented using a- single input-
output module, whose internal structure and operation is not

visible to routines using the facilities of the interface.

A nuhber of altefnatives exist for the choice ofva
éipgle interface, héwever the one which will be advocated is
derived from the CODASYL data description and manipuiation
proposals, which in turn assume aﬁ underlying network data
model. This phéice provides a lbgical, high level,
programmer oriented interface, with many advéntages for ~oth

user and operating system procedures. IR
The feasibility of the proposed homogeneous interface

o 2 97

98

will be demonstrated using several examples based upon
common input-output oriented modules within the operating
system. Some conclusions ill be drawn regarding the
propoéed intorféce's applicability for non-secondary storage
devices, and a plausible scheme for 'phasing, in' a software
implementation of the homogeneous input-output interface

will be presented.

4.1 The Case Against Heterogeneous Interfaces

For most software routines initiating input-output .
operations there is a high degree of conceptual equivalence
between the traﬁsfer operations themselves. Thié fact forms
thevcorner—sﬁone of the justification for a éingle software
interface to the input-output module, namelyvthe observation
that-at least conceptually, multiple interfaces are not
required. Further substantive’evidence comes from the
inefficiencieé énd cost of the alternative heterogeneous
approach, e.g. unmanageable software structures, unnecessary
duplication of support functions across operating system

modules and inflexible device allocation strategies which.

are needed as a conseqguence.

99

4.1.1 Functional Equivalence

Functional eguivalence between input-output interfaces
may bg demonstrafed by showing that, despite the different
communication protocols, underlying data models, complexity‘
. of physical-to-logical structural and address mappings, and
other diverg:nt factors, there is a degree on commonaiity
with respect to the human conceptualization of "what -an
input-output operation involves". .For example, most
programmers would agree that, conceptually, there i;hﬁd
substantial difference between fetching a virtual page from
backing sfore, rettieving a database record, or requesting

the next record from a data set associated with a spooled

device.

At this poin£, it is appropriate to identify the common
attributes of the various interfaces which may be
synthesized into a set of generic attributes for a
functionally equivalent abstract interface. The following
list is presented in rather a broad frahework,l however,
further refinements and additions will be made later in this
‘Chapter;

(1) There is a unit of information which may be transferred

between an immediately addressable main store buffer

1: These attributes are described in terms of a logical
storage structure, however the same attributes apply to
a physical storage structure -- merely substitute
'block' or 'physical record' for 'flogical) record', and
'volume' or 'extent' for 'file'.

100

aréa and a secondary storage area which can only be
accessed via an input-output operation (i.e. the concept
of a record which is extern lly stored and internally
processed) .

(2) Records which have a similar structure, or are uéed for
a similar function or application are grouped together
and may be collectively referenced by a unigue external
name (i.e. the file concept) .

(3) The unigue identifier property ensures that individual
records within a fiie may be unambiquously identified
and accessed.

(4) .If concurrent usage 'is possible, then some synchronizing
and éccess control facilities are available.r

(5) Rudimentary security facilities provide restricted
écCess modes for particular users or user classes on a

-
file-by-file basis.

It is a trivial exercise;to demonstraté that all the
input—-output interfaces described in Chapter 3 éossess fiéigﬁ
five attributes. An equally trivial exercise involves
identifying the attributes which are not common. Most of
the characteristics in the second group are related to the
specific impl@mentation'details (e.g. 'how' a file‘is
structured, 'héw' a record is uniquely identified, 'which'
access paths are available, 'what' types of access mode are

available, etc.). However, there is sufficient evidence to

establish the premise that there is a good.deal of

commonality between the various interfaces.

: 101

Once this functional equivalence across the input-
output interfaces is acknowledged, a motivation 1is
establisﬁed for reviewing the current implementation
strategies from the perspective of "what advantages, if any,
accrue from ﬁhe heterogeneous implementation of operations

which are fundamentally similar?".

4.1.2 Software Structure and Duplication within the Input-

Output Subsygtems

It must be stressed that the near universal acceptance
of heterogeneous input-output interfaces: in current compﬁter‘
systems does not constitute an a priori justificétion for
the approach as either optimal or desirable. As the
discussions in Section 3.1.2 showed, the existence of
multiple softwére interfaces is a historical anomaly
resulting from the developmeﬁt of functionally felated, but
physically disjoint, support systems on top of low‘level
physical input-output capabilities;

The input-output.support subsystems described in
Chapter 3 form a set of concurrent processes which iﬂéeract
to varying, and often obsure, degrees and prbvide a>user
process with a set of interfaces which feature a broad
spectrum of communications protocols and functional
complexities. Within a distributed processing environment,
Jensen (i975) has expressed concern at the proliferation of:

heterogeneous interfaces between processes -- this trend

102

invariably leads to unreliable systems which are very
difficult to maintain and modify -- and there is no reason
té doubt that the same geﬁeral conclusions would hold for
the concurrent processes charged with supporting the input-
output interfaces, and the user or ope:ating system

procedures which use the interfaces.

By way of further evidence, "dynamic behaviour and
communication between processes", and changes involving
vinput—output related functions have been identified as two
of the significant causes of programming errors during one
series of modifications to the highly unstructﬁred IEM
DOS /VS operating'system (Endres, 1975). The development and
maintenance of reliable software for those modules and
subsystems requiring input—output services would be'
simplified if tﬁe routines could interaét with é single

autonomous process (i.e. the input-output module) which is
k3 .

responsible er executing all'secondary storage operations.

“ithin the input-output module itself, considerable
advantac=s flow from the adoption of a single interface,

specifica’ly:

(1) The ir~ "--_:put module would be physically smaller
(i.e. ‘¢ “structions) than thes current
cong{c;er of input-output support routines and
‘their asc" . -7 Auplicati. of service functioﬁs, such
as address -ti , direcvory maintenance, channel

progr:m CcC = _°L n. ~ncur- - nt access control, load

(2)

(3)

103

balancing, and storage management.

Since the input-output module is only required to
support one, invariant interface, internal
reorganization could be more easily performed to providg
a 'clean' strucéure for the componént.routines. This |
internal restructuring couid proceed without impacting
the roﬁtines outside the input-output module. Any of
the commonly accepted programming methodaologies

(e.g. 'top down', 'strdctured.programming', or whatever
the locally popular choice might be!) could-be used as a
basis for the module's internal organization.

As a result of (1) and (2) the input-output module would
be easier to implement and modify, and - the expécted
software reliability would be significantly superior to

the present ad hoc implementations.

4.1.3 Resource Utilization

Many of the current input-output support subsystems are

~implemented using a low level physical inﬁerface, and

minimal sharing of routines, even for the commodn functions.

Consequently, these subsystems are unable to co-ordinate

their ~oncurrent storage management and access requirements.

Typically the>Systems implementor is faced with no

alternative other than statically dedicating entire devices

to particular support subsystems.

The Michigan Terminal System presents something of a

¢

104

classic 'anti-example' in this regard --/ the available

/

secondary storage devices must be partitioned into three

/
/

disjoint groups, one for each of the paging, spooling and

on-line file subsystems.

There are many fundamental weaknesses evident in this

approach to resource allocation:

(1)

(2)

'Load balancing.l may only bé applied locally, within a
particular subsystem.

For a hetéfogeneous collection of devices (e.g. a drum
and disk hierarchy), the resource utilizétion is rather
insensitive and non-adaptive to changes in the demands
er'resources between subsystems. For example, a
frequently accessed file cannot migrate to the high
performance drum if that deviée.is undér thé contfol of
the paging subsystem, irrespective of the degree to .
which the drum is under utilized. : ‘

The unit of storage allocation (i.e. an.entire dévice).
is Eypiéally far too macroscopic.,iA subsystem may Qggg
to be aliocated significantly more storage than actually

required. For example, the allocation may provide an

N .

~integral number of devices whose combined capacity is

greater than or equal the largest conceivable demands by

the subsystem for storage -- however, this ﬁay‘be

several orders of magnitudeularge than the actual

maximum, or the mean requirement.

Software tends to be designed and written to exploit

this static device allocation. As a consequence, the

105

routines are heavily device dependent and not tailored
for easy reconfiguration following a change in the
device assignment. Such S‘reconfiguration may be
necessary for performance improvements, or during a
hardware upgrade, or as part of a post-failure recovery
procedure.

(5) As a whole the system is more vulnerable to device
failure since there is little device redundancy, and no

dynamic ‘device swapping between subsystems.

For a a system featuring a single input-output module,

all secondary storage devices would come under centralized

control —-- resource allocation, scheduling, and utilization

could be optimized over all subsystems and over all

heterogeneous devices.

To achieve full benefit from a single’input—output
module's capacity for centralized, dynamic resource
allocation,uit is necessary that the célling programs be
insulated from any adverse effects associated with a change
in the input;output subsystem configuration. For a logiéal_
interfacé,'this ié guaranteed since no program is aware of
~the physical addresses at which records are located. For a
phys;e;l iﬁterfacé, a simple solution would invblve
.translatingvthe address parameters within the input-output
module -- this m:pping need not be very complex and is |

analogous to the 'virtual physical devices'; supportgg~gz\iﬁ\\%\\

IBM 3850 mass storage device (IBM, 1975) -- so the user's

106

program 'believes' it is still dealing with physical devices

I3

and physical addresses.

4,1.4 Security and Reliabiligp\
. Ji
. " . / * 0
The uniform interface supported by a centralized input-
-~ . - o .,\ 7 B

output module provi&es_;ensiéerable potential for improving
the system's global security and reliability. Security is
enhanced directly, as a consequence of removing the multiple
access paths users are currently able to exploit when
attempting to retrieve or modify objects in the secondary
stOrage envihonment. These same factors have been

identified as one of the major advantages of current

database management systems (Manola, 1975). : \“k;

Typically,.the security checks performed in the
component support routines of a current operating system are
npt consistent, and as a result the one user‘may be
simultaneously presented with multiple, diffgrent 'views' of
the accessible secondary storage areas, dependihg only upon |
the particular input-output support routines which are used.
_When the same incomplete checks are performed in an
environment in which potentially conflicting, concurrent
accesses are being attempted, the situation becomes even
less secure. The privacy and integrity of large sections of
the external storage may be compromised by the relati&ely
simple expedient of simultaneously updating one physical
record using two disjoint input-output support subsystems.

k]

107

If all input-output reguests are. passsed to a
centralized module via a single interface, then the security
enforcement procedures may be centralized and applied
uniformly to all secondary storage accesses. Thié

centralization of the enforcement mechanisms is highly

advantageous, irrespective of the particular security policy

which is to be implemented.

There appears to be considerable parallelism between
this centralized security organizatipn for controlling
input-output operations, and the 'security kernel'
organizafions which are currently being investigated, with a
viéw to cOnstructing}a basic security nucleus from which a
. secure operating system may be constructed (Popek and Kline,
1974; schiller, 1975; Schroeder, 1975; Wulf, Cohen,‘Corwin,
Jones, Levin, Piersoh and Péllack,,l974). At least two
.systems have been proposedﬁég;ghfdgla‘segure data management
system (i.e. an input-output module) would be implemented on
top of an operating system security kernel -- the secure
'Data Management System' is based upon the kernel version of

the Multics operating system (Hi ke and Schaeffer, 1975),

and a secure 'File Management System' has been implemented

on top of a PDP 11/45 securitv kernel (e, 1975).

However, there appears to be sufficient variation in
the design objectives and supported facilities to w.rrant
divorcing the secondary storage protection mechanism from

the operatihg system prétection mechanism (Downs and Popek,

=.\)

'

\\ 108
\

1977). The principle justification for this approach\lies
with the fact that the 'unique name propertyf, upon which
operating system security.kernels'rely, does not hold for
secondary storage objects at the level at which users, or
user processes formulate access requests. As’an example,
the operating systems objects such asvprocesses, messages,
address spaces, devices and processors allvhave unique
names, and no two names fer ‘to the same physicél object.
However even if unique names are assigned to a device, a
volume, a file, a éage and a logical record (via its
1aentifier);‘the logical and physical objects which they
refer to mayinot be disjoint. Thus the security policies
for secondary storage‘objects may only be enforced if a
single convention and mapping function is implemented for
the conversion of nog;unique and overlapping names by which
users refer to data items and input-output objects, into a
unique, system wide, nomenclature. The natural place for
implementing this mapping is in the}input—outpﬁt module,
‘since it reguires access to the da.a definition schemata,
and the mapping is also required w. 1in the module for the
physical iﬂéa;;output ope:ations,'during'logical record
synthesis, and as a necessary prereqpisite for providing a

coherent scheme to control concurrent accesses.

One potential weakness of a single input-output
interface and its accompanying input-output module is that
the reliability of the entire system is dependent upon the

reliability of the input-output module -- a variation on the

109

time—honored_'weakest link' theme!. At this stage we are

concerned with software reliability-- the reliability of the

underlying hardware will be considered in Section 5.3.

Given the importance of the heavily utilized input-output

routineé, several techniques are available to improve the

module's expected recliability:

(1) If the module is to be sgbstantially developed from
scratch, there is considerable potential for starting
with a software structure which is 'clean' and easily
comprehended.

(2) Fewer errors per supported function would be exbected,
because the total code size will beosmaller, and the
interfacing between software routines should be standard
(this applies both internally, for the componéﬁt
routines‘of the input-output module. and for the input-
output module's interface to the rest of the operating
system and user worlds).

(3) "he techniques of software redund?ncy which have been
proposed (Randall, 1975; Melliar-Smith and Randall,
1977) are singularly well suited to the input-output
suppor t eﬁvironment, where the concepts of 'acceptance
test' and 're-try' are already evident. Note that
although the input—output module presents a single
interface to all calling routir -, it may have (f__ﬁ\\“\
conside;able internal reduhdancy; 2.9. performance
considerations may dictate that alternative access

methods be concurrently suppor ted.

In any cvent, given that the input-output module will
contaln software errors, and that it will have to be
modified and updated from time to time, and that fatal
s?stem failures may require extraordinary restart

X\Procedures,.thenrthere 1s an obvious reguirement for some
path to ‘the @nput—output subsystem which bypasses some, or
all, of the input-output module. Use of this special
’facility should be restricted, at least to one select group
of systems staff, détabaso administrators and operators. If
the lnput-output module runs on a separate processor (refer
to.the next Chapter), it will be argued that use of this
'ultra privileged' access mode be further confingd to)a
human interaction via the operator's console 06 the input-

output processor.,

4.2 Alternative Interfaces and Data Structure Models

The choice of an input-output interface influences both
the structure of the central processor based software, and
the range of feasible input-output subsystem architecturgs.
However, the economics of current computer system
implementations (Boehm, 1976) dictate that during the choice
of input-output interfaée, hardware considerations should be
largely subjugated in favor of software consiberations --
any shift ffom the 'hardware status ggg' should reduce the
software development and maintenance costs. Consequéntly,

N &
the following discussion aims to present a software-oriented

- //
//\// | 111

3

jyétification for the input-output interface design

/ . ' '
/decisions. Once the interface has been chosen, attention
'will be directed towards efficient implementations of the

input-output module (refer to Chapter 5).:

In selecting a single interface for all secondary
storage 1lnput-output 1t is necessary to choose an interface
which 1s both 'natural' (i.e. not unduly artificial with
respect to the operations which must be performed) and
economically viable for the complete spectrum of
applications supported by.the current heterogeneous software
interfaces. It must be stressed that adoption of a uniform
interface has an effect which impacts routines at all
'levels' of the system -- for example, at the upper most
level a éubsystem implementing a non-procedural database
query facility would use the same intérface employed by the
loweét level paging routines. 1In the‘following éectiong,
the physicél ana logical record intérfaces are studied with
respect to thei{ ability to support a flexible and economic
interface for all éecondary'storage oriented input-output.

4.2.1 A Physical Interface?

Obviously éll operations could be dérried out at the
channel program level -- after.all, this is the way most
currenﬁ systems are impleﬁented -~ however the resultant
code dup}icafion, device dependent procedures'and program

complexity renders this option increasingly unattractive

S 112

from a software development and maintenance perspective.

v
In Section 3.3, the disadvantages of the cHannel

program interface were presented from a software
perspective. Given the scenario for the input-output
subsystem architecture outlined in Chapter 1, the channel
progrem interface is even less att;active, since it 1is not

~

well suited to communication between a process and an
external input-output processor or a database search engine
(the overheads are simply too great ¢ realize the full

potential of these units, designed for highly parallel and

autonomous operation).

By this stage, it should be obvious that a low level
‘physical interface is not suitable as a homogeneous
interface -- mere (!?) common sense dictates that channel

programming should Become less, and not more widespread!

s v

4.2°.2 A Simple Logical Interface?

Another alternatlve for a unlform 1nterface is to adopt
one of the simple logical interfaces qescrlbed in Section
3.5, i.e. elther 'stream input- output' or a logical file

abstraction, or a file access method.

The most obvious advantage a uniform, simple logical
interface would provide over a physical interface, is
secondary storage device independence for all software

outside the input-output module. (This is based upon the

113

perfectly reasonable assumption that a storage off-set is

not permitted as a valid record identifier.) A number of

desirable system attributes would follow the achievement of

&

such a device independence, namely:

(1)

(2)

(4)

All secondary storage space allocation and management
could be centraiized in the input-output module, outside
the ‘knowlédgeJ of the routines reguesting inpgt4output
services.

Processes us1ng the interface would be insulated from

any changes to the 1nput output subsystem hardware,- or
data migration bétween heterogegefus devices.

The iﬁput*output related routines outside the module
would be smaller, since many of the commén-lower level
functions would be moved to the input-output module.
Enforcement of security and controlled accéss procedures
may be exécuted more efficiently if the objects
requiring protection are logical files or lqgical
partitions (i.e. 'areas') within a file -—+it is
31gn1f1cantly easier to valldate a file access request

when it is issued, rather than laborlously validating

every channel program which is generated by the request.

ThlS saving 1s p0551b1e because the input-output module -
is the only place in which channel programs may be

constructed.

Although these are significant improvements, the simple

logical 1nterfaces have some inherent disadvantages, one of

,the most important of which involves 1nadequate concurrent

114

\
access facilities. Concurrent access is typically
precluded, ignored (i.e. 'user beware'), or heavily

restricted interactions involving thésé interfaces.
Implementing an integrated database management system on
such an interface would entail, either, adding further
access control mechahisms outside ﬁhe input~output module,
or attaching and releasing the file or area once per
operation. The first solution invalidates the design
concept of a éentralized access control mechanism, and the
‘'second imposes a prohibitive processing pverhead. The
problems associated with concurrent access become even more
froublesome when an attempt 1is made to»su?port 'transactioﬁ
based' locking (i.e. spanning multiple requests to(the
input—output moduie), incremental lock requests, deadlock
.detection and roll-back. It is apparent that the primitive
mechanisms érc'iged by most simple logical interfaces to.
suppor t concurreﬁ% access are not adequate for the mofe

complex types of access control required in a database

management system.

Despite their device independence, the simple logical

interfaces do not provide any access path independence.

This has‘two unfortunate side effects; firstly, the iﬁput—
output module is not- able tovindependgntly alter the
internal organization of a file or data set to reflect an
alternafiVe access method (e.g. to improve performance).
Secondly, once a change 1is mgde to the access method for a

particular file, significant software changes must be made-

u

115

to all routines which access the reorganized data.

As a final point, it is apparent that neither the
stream interface, nof the file abstraétion, nor any single
access method’is adequate for the full range of applications
which must use the intenfacé; For example, how should a
programmer deéign a foutine requiring random access to
several files, usipg the 'get' and 'put' stream input—output
primitives, conversely, there is no obvipus trahéformation
which would permit sequential access using the operations
provided by a typical hash addressed random access.file'
‘method. Because the aCcess methods and ‘file organizations
are visible ét the input-output module intefface, there
‘would be considerable pressure to provide multiple, simple

logical interfaces .,.... and we're back to where we

started!!

4.2.3 A Complex Logical Interface? .

The last alternatiVe for a uniform input-output
‘interface is to adoét one of the complex logical interfaces.
Ali these interfaces Rrovide ;he same advantages mentioned
in the previous SectiOn, in relation to their simpler
counterparts. In addition, some of the disadvantages

mentioned at that time are avoided when a complex interface

is used.

Specifically, all the complex logicai interfaces are

designed for use in a highly concurrent environment, where

RN

116

uncontrolled access would cause sefious security, integrity
and reliability problems. Therefore, the concurrent access
controls tend to be more sophisticated than those associated

with the functionally simpler interfaces.

Access path independence is provided to vary extents
for the different complex logical interfaces. Proponents of
-the relational data ﬁodél stress this aspect of the
relational ‘interface, wﬁile systems supporting network data
models generally provide less access path ihdependence..‘By
empioyjng multilevel data description schemata, and a
judiéious choice’of data manipulation and accessing
primitives, there is coﬁsidérable potential for insulating
the calling routines from the details of the access methods
and Fheir implementation within an input-output module

suppdrting either data model.

The range 6f operations provided by a complex interface
is typically 'complete',‘in the sense that a programmer may
define dafa ofganizations of a complexity which is suitable
-for a_parficular application, and be'able to manipulate
items within that data organization usiné the facilities of
the input-output interfacg. ‘In other words, the interface
supports a"superset'lof the facilities required for the

rational implementation of a whole range of applications.

.

1f thé‘premise is accépted that, in general terms,; a
complex logical interface provides a suitable basis for a

homogeneous interface to secondary storage,‘then the next

117

decision centers around which complex interface :should be

chosen. As discussed in Section 3.6.1, the choice is

between the interfaces associated with the relational and

network data models. Some of the relévant factors which

should be considerea at this point are:

(1) Proceaqpal versus non-procedural data‘manipulationm

facilities. |

(2) Flexibility in matching the requirements of a particular
application to the available data sﬁrqctures and
.operations.

(3) Software stability in the face of data reorganization.

(4) \.Ease of embedding the interfacé into the necesséry
programming .anguage(s).

(5) Dynamic versus static data definitiom facilities.

There are certain advantages associated Qith the
adoption of an intérface which hasﬂa‘procedural approach to
recofd manipulation. The éltérnative interfaces designed
for‘non-pfocedural access to tabular data structures
(e,g; the query:interface for a relational data model) are
%highly desirable for a non-programmer's cénéeptualizatidn of
the data manipulation functions. ’But, they are less
suitable for an interface to central processor regidqét’
software, since this interface is basically procedural and

must”be comprehended principally by programmers.

a

As the éxamples in Section 4.4 will show, the network

model is sufficiently general to support the.:aﬁgé of data

118

"
structures which are required for rational solutions to ﬁany
of the non-database applications requiring secondary storage
‘resources. For some of these applications, the
transformations required to cbnvert the appropriate netwdrk
schema into a relational form are sdfficiently involvéd,
that the resulting data structure is no longer well suited
to the programmer's requirements or'conceptualization of the

problem ‘at hand.

There are two relevant aspects to data reo ~ization,
.namely changes in record format, and changes inv v the
access path(s) to individual records. Either of t = ci plex
logical interfaces insulafes programs from the first lac-
of reorganizatidn. The relétional interface prevents
calling routines from relying upon the access paths by
making them completely tfansparent. However, manipulations
and accesses within 3 network environment typicaliy require
some access path information (defined in the program's
subschema) , but the extent to which a routine is dependent’

upon a particular access 'path varies from one program to

another. o - ' _ N

For the’most parglthe applications programming
languages which are likeiy‘to find common acceptance are
procedural ih nature (e.g. derivaﬁives of Algbl, or PL/1)."
vAs a result, a prqcedurai input-output inteffa;e could bé.

[y

embedded more easily in the host programming langdage than a

non-procedural interface. Again, this situation favors the

119

network data model.‘?

For most applicationsé it is extfemely uplikely that
new data definigions will bé‘constructed during a program's
execution. (Although changes in data definition may be
introduced between.conwecutive executions of the
program.) ~For those applications in which non—pro;rammers
interact via a relational guery language, the ability to
create new relations (i.e. define new data‘structures) is
essential (Boyce and Chambérlin, 1973; Chamberlin, Astrahan,
Eswaran, Griffiths, Lorie, Mehl, Reisner and Wédé, 1976;

Date and Hopewell, 1971), howev.r the requirement for this

facility is less obvious for a software interface.
) o

Ffom the foregoing discussion, it appears that a
procedural interface based upon a netwbrk'datalmodel;
provides the best choice‘for possible adoption as a
homogeneous software interfacé to the secondary storage

resources.

4.3 The Uniform Input-Output Interface

There are two components of a complex’interface, which
.between,them define the functional capabilities of the

interfafe -- one compoﬁent is concerned with the definition
of\the elementary data iﬁéhs, the criteria'for aggregation
intS\Seté, the relationshipé_between sets, and the ldgical
relationship between the meﬁbers of a set. The ofher ' \

~component specifies "how' the data items and sets may be

;/g_e,f’/ 120
accessed and manipulated. [

The CODASYL Data Base Task Group and its more recent
off-spring -- the Data Description Language Committee and
the Data Manipulation Task Group (within the Programming

Language Committeefw¥— have spent the past ten years

‘

attempting to produce an interface to a network dataJmodel
which would find common acceptance and broad manufacturers'
support. Thus far, much‘progress has been made, but
consensus seems a long way off. If“isﬁin this context that
the decision was made to avoid propgsing a new iqterface as
part of the current research. Instead; I have opted to use
the CODASYL proposals as a base from which modifications
could be proposed, in order that the partlcular requirements
of a uniform,bnpot—output 1nterface may be achieved. While
this decision probably does not_oonstitute "standing opon
'the~shoulders ot those that have gone before", I feel it is .

at least an attempt to "get off their toes"!

It should be noted that whlle changes -to the CODASYL

proposals w1ll be suggested in the follow1ng Sectlons, they

-

are generally of a minor nature and tend to move the CODASYLf
interface. towards the 'conceptual schema' level of the /
proposed ANSI/X3/SPARC database atcﬁitecture. This has been
achieved by omitting, from.the'input—output module
interface, those CODASYL faciiities which have been

designated for the 'internal schema' level in the ANSI

proposal. It is also possible to hypothesize that the

N .
—

121

various CODASYL cuwmittees are moving in a similar
direction, based upon the pending changes and revisions to
the various data definition and manipulation language

specifications.

One iniﬁial'disadvantage of working with the CODASYL
proposals is the COBOL orientation and syntax of the Data
Definition Language (DDL) and the only Data Manipulation
Language (DML) fully specified to date. However, this will
be overlooked, since the available facilities of both the
DDL and DML coulg readily be translated into a semanticallly

/ : !
equivalent syntax which is more readily suited to a general

purpose implemeﬁtations programming language (e.g. DML verbs
could be mappéd onto Algol-like procedure calls, and DDL
¢clauses are'readily trahsformed into data structure
declarations).. Henceforth, the syntax will be ignqred, énd

attention directed towards the semantics of the DML and DDL

facilities.

Throughout the foliowihg discussion, it will be assumed
that the reader is familiar with the CODASYL concepts, in
particular, data item, database-identifier, database-data-

name record type, record occurrence, set type, set

occurrence, and run-unit Currency.

A

ol

122

- .
4.3.1 Data Definition Facilities

The CODASYL Committees have published proposals for two
data definition langquages; the schema DDL (CODAsSYL, 1973)
and the COBOL subschema DDL (CODASYL,.1971). The following
wcomments will be pased upon the schema DDL, given the
Aﬂ;qSumption that this is a good approximation to the desired
input—output module intérface. It is anticipated, that this
interface will support the 'middlé layer of at least three
levels of Fata description. Qne, or more, lower levels will
appear within the input~output module to describe the
mappin; of the uniform intérface data items onto the
physical storage media. An optional higher level of data
descrlptlon would be implemented within those appllcatlons
supporting non-procedural data manipulation and definition
tacilities for end-users (i.e. the user interface for non-
programmers). Each user or process will only haQe access to
those components of the interface schema for which expicit

usage permission has been granted by the database

administrator.

Most of the schema DDL facilities are adequate for the
requirements of the uniform interface. With specific
reference to the generic attributes described in Section
4.1.1, the unit of information transfer is a record, records
of similar type or usage may be grouped together into sets,
records must ‘be uniquely identified, at least within each

record type ~-- refer to the comments later in the Section

123

for further details -- and sccurity facilities are provided
via the privacy locks? associated with the schema, set and
record description entries.

¥ : .
4.3.1.1 Record Description

The DDL record description facilities require some
minor changes to meet the uniform interface requirements.

In particular, the location mode clause should be abandonea,

and a mandatory unique identifier declaration introduced.

Since the location mode clause is used "to control the
assignment by the DBMS of database keys to records", it
should be rembved from the uniform interface schema, and
subjugated to the lower level storage description within the
input-output module. This decision is based upon
consideration 'of the improved access patﬁ independence which
would be provided for the rdutines using the inteTrface. A

e
promising advance on the paétvof the Data Description

7%

Language Committee (DDLC) is the apparent removal of all

references to the database key-in the DDL (Mancla, 1976).
As with the location mode clause, this detail should not be
visible to interface users. In a similar véin, the use of
areas has been excluded from all the proposed interface

facilities, since the operations and'descriptions should

2: Manola (1976) reports that the term 'privacy lock' will,
'in all likelihood, be replaced by the more meaningful
term 'access-control lock', when the updated DDL
specifications are published. : ’

124

deal'entirely with the logical entities -- data items,
records and sets. Consequently, the within clause of the

record subentry woull also been dropped.

Currently, a unique identifier may be defined
implic1tly by appending tpg 'duplicates are not allowed’
D

phrase to either the location mode is calc clause of the

record subentry, or to one or all of the member, key, order,
and search clauses of the member subentry.(Nijsse?, 1975).
It appears likely (Manola, 1976) that the pending>action of
“the DDLC to add of an optional identifier clause within the
record subentry will pa?tially solwe the unique 1dentifier
problem by making thevdeclaration explicit -~ the 11%£
additional change proposed here is to make the declaration
mandatory, and enforce uniqueness either for all occurrences
of the record type, or fo; all records of the same type
within a particular set occurrence. A possible declaration
may bé of one of the forms:
(1) >IDENTIFIER database-identifier-1 [, database—
identifier-2 |
(2) IDENTiFIER database—identifier¥3 | , database-

identifier-4] WITHIN set-name-1 SET

L}

Note, more than one declaration of the second format may b
specified, up to a maximum of one declaration for each set

type in which the record type may be a member.

125

4.3.1.2 Set Description

With the possible exception of allowing records of the
same type to be¢ voth the owner and members of a‘set, the
restrictions upon multiple set membership and singular set

‘ownership are deemed to be not unduly restrictive.

The proposed addition of a fixed set member ship option
to the existing mandatory and optional modes (Manola, 1976)

is considered to be a positive step.

For similar reasons to those proposed in favor .of

dropping the location mode clause, the order and key clauses.
(o4l
defining the sequence of member recdrds within a set should

be omitted from the interface schema. The sequencing of

records within a set is considered to be a data'manigulation
function (refer to the ORDER DML operation), and not
appropriate for the data description, if ‘the interface is to
support access path indeﬁeﬂdence. As far as an interfacé
user is.concerned, reééids within a set may be accessed
randomly using fhe,identifier, in identifier sequence, or in
a user determined sequence (provided the records have been

o

explicitly sequenced with an ORDER DML operation).

Perhaps the most contentious aspect of the CODASYL DDL

is the set selection mechanism, used to describe which set

occurrence a member record should belong to. Olle (1975)
and Manola (1975) are amongst those who have attempted to

clarify this facility, however the issue remains very'

-

126

@
confusing. It appears that the original specifications
contained too many concepts which were only peripherally

related to set selection.

Recently, Nijssen (1975) has suggested replacihg the
whole selection clause and its five alternative formats, by
a single clause which would define se% membership solely on
the basis of equality between the identifier of an owner

record and nominated data item(s) in the member record.

This approach would be functionally equivalent to the.
~existing options, but it 1s conceptually much simplerl " But
.mandatory_imposition'of this scheme would cause significant
increases in aata redundancy, unless the input-output module
is 'smért enough' to remove the common data items from the
member records prior to storage, and then re;insert the

value prior to passing a retrieved record back to the user

process.

The DDLC's response to these suggestions has been .to

add Nijssen's proposal as a structural constragpt, to be

included in the set definition, and then allow the set
selection to be made upon the basis of a structural

constraint. _Thisféﬁfion has been added to the existing set
selection criteria. .

A further refinemeht of thé set selection clause would

involve replacing both the database-key and calc-key options
with a selection criteria based upon a supplied value for

the desired owner'record's identifier. The rationale here

127

1s to try and remove those DDL components which are
dependent upon the input-output module's internal operation,

\ .
or the actual placement of records in secondary storage.

For the homogeneous inte{face schema the following -

basic modes of set selection are proposed:

(l) THRU database-identifier—-1 IN OWNER EQUAL TO database-
daté—item—l IN MEMBER

(2) THRU COMPUTED datébase—identifer—Z FOR OWNER

(3) THRU CURRENT OF OWNER

(4) THRU SYSTEM {

It appears that these four'options provide sufficient
scope for clearly defining set membership, according to one
of several different Criteria -- all of which are

independent of the details of record storage and placement.

4,.3.1.3 iConsistency. and Integrity

At some point in.theAdata descr}ption pfocess,
provision must be made for the definition of assertions and‘
constrainﬁs to control the validity] infegrity and

_‘tbnsistency of thE\squndéry storag sident déta.
Currently, some facilities are disp§::j;sthrough thg record.
;gnd set description entries, however é'preferéble approaéh

wouid involve placing all these constraint definitions in

one special section of the Schema.

v

These definitions impose limits upon the valid ranges

128

. b ‘
for data item values, permit restricted classes of

relationships between data items or record occurrences, and
generally ensure that the stored data presents as accurate a
descriptioh of the corresponding real world entities as

possible.

Whenever a change is made to the stored dafa which may
affect one of the defined constraints, a checking procedure
is invoked before the change is made to verify that no
violation Qf.thé constraints will occur (e:g. the proposed

-

'trigger éubsystem"(Eswatan, 1976)) .

4.3.2 Data Manipulation Facilities

The 1971 Data Base Task Group report outlines the DML
facilities suitable for a‘COBdL host language environment.
| For each of thevprimitive operqtions, the following list
describes the general semantic intent of the operation
(i.e. 1its meaniﬁg, independent of the COBOL ffaﬁework), and
any modifications.deéméd necessary for the.impléﬁentatizﬁ of
a homogeneous input-output interface. A

(1) OPEN (and CLOSE): specify an intent to use (or release)

'a portion of the database. The subject of this

operation should be one or more interface»sbhema names.
By adopting.a more powérful concurrent access control
mechanism, it should be possible to omit the usage-mode
clause from the OPEN operation._ OPEN and CLOSE»afe used

principally to perform intefﬁ;l house-keeping within the

(3)

129

input-output module (e.g.‘buffer.allocatioh, user work
area initiélization, and establishing the necessary
mapping functions or tables‘to achie&e the structural
and address transformations between the v;rious levels
of data description).

KEEP (and FREE): an inadequate conéufrent access control
mechanism which notifies the reqhesting process after an
interferring update has occﬁrred. Section 4.3.2.1
outlines an alternative LOCK / UNLOCK mechanism designed
to replace the KEEP / FREE operations.

INSERT (and REMOVE): following an addition or an update

of a record, modify the record's set membership for

those sets in which membership is not defined to be
automatic. -
STORE (and DELETE): add (delete) a record, and make all

associated changes to sets in which the record is either

the owner, or an automatic member (STORE), or any type.
of member (DELETE). When a new record is added, the
input-output module must also create new empty set

occurences for each set type of which the added record

e .

’ typé is defined as the owner record. If the new record

is the member of a set with a selection clause involving

the thru computed identifier option, the STORE operation

must have an appended 'USING database-identifier =

<expression>' phrase, so that the record's correct set
membership'méy be determined. Deletion of a record

which is the owner of a non-empty set causes various

(5)

(6)

(7)

(8)

(9)

secondary deletions to occur amongst the member records

——.éll membe;s whiéh are mandatory members are deleted,
optional hembers are removed from the set and optionally
deleted from the database. The input;output module is
responsible for automatically executing the necessary
space allocation and / or recxamation, caused by the
addition or deletion ofva‘record 6ccurrence.

MODIFY: update an existing record, .and perform any
necessary set membership changes.

FIND: search for a specified record, on the basis of the

requested record's set membership or ownership, a record
) [

identifier, or the next / prior / first /'1ast / nth

record3 in a particular set. Section 4.3.2.2 presents

-the outl@ne;of a more general FiND operation, capable of

locating more than one record occurrence.

GET: retrieve (i.e. transfer f:oﬁ sécondary storage to
the user work area) a record which has been previously
located using a FIND operation.

N .
saves the identifier of the current record for a

MOVE :
particular record or set type in a.iocai, temporary save
area. ¢ | | | |
ORDER: logically reseguence the‘member records of a

particular set. This operation would normally precede a

sequence of GETs following a FIND which located more

w
.

The set sequence defaults to 'identifier sequence',
however this may be changed by a previous ORDER
operation. : C -

131
S
than one record, or prior to a FIND operation in which
the desired recofd‘was to be located positionally within -
the set (e.g. FIND NEXT, or FIND FIRST). |
(10) IF: test the emptiness of a set, or the current
record's ownership or membership of a set.

(11) USE: determine the status of the previous DML

operation. -

4.3.2.1 . Concurrent Access and Locking

As many writers have pointed out, the CODASYL KEEP and
FREE operations are inadegquate for a concurrent access
environment (Hawley, Knowles and Tozer, 1975; Robinson,

1975; Schlageter, 1975; Sﬁemer and Collmeyer, 1972).

.

Despite thé work by Papadimitriou, Bernstein and ' .
Rothnie (1977) into defining_élas‘se@ of transactions which
' may execute concurrently wiﬁﬁput any locking or mutual
interference, the.vasé méjority of appliéations_involving
shared secondary stérage reéourceSsrequire'some explicit

locking mechanism.

The principal issue in discussions concerning LOCK /
UNLOCK primitives seems to be the definition of 'what'
should be locked, and 'how' it should be described. 1In

general terms4 the options appear to be:

<

4: The locks considered here relate to logical objects, _
‘hence the physical locking mechanisms (e.g. Univac's DMS
. 1100 (Robinson, 1975)) have been omitted.

132

(1) Lock individual record occurrences using the record
identifier (Shemer and Collmeyer, 1972).

(2) Lock individual‘set occurrences by citiné the set nahe
and the owner record's identifier.

(3) Lock multiple recordé of the same type by:speciinng
desired values or ranges for particular data items
within the records; e.g. Schlageter's 'lock by value'
(Schlageter, 1976), or the 'predicate locks' propSSed

for System R (Eswaran, Gray, Lorie and Traiger, 1976).

\

Of these altérnatives}vthe lést is by far the most
elegant, however its implementation may be impractical given
the current state-of-the-art -- iBM's.System R project has .
since reverted to a less rigoroﬁs locking précedure based
upon varying 'degrees of consistency' (i.e. the extent tn
which you are willing to permit other users interfer. -
'your processing) and ;arying lock 'granula:itiés'

(i.e. locks may apply to'sets, records or fields within a

record) (Gray, Lorie, Putzolu and Traiger, 1976) .

Hence the current proposal to support both of the other
locking options. This constitutes a -ealistic solution
which should prove adequate for the majority of

applications.

A-lock may be explicitiy regué$ted (released) using the
DML operation LOCK (UNLOCK). Once granted, as far as -the
user is concerned, this lock will remain in effect until it

is explicitly released. Internally, the input—ouﬁput module

133

will apply implicit locks, using the same mechanism, for the
duration of single DML operations which modify the state of

the secondary storage resident data.

Relatedito concurrent ahcess‘and locking protocols are
the twin problems of deadlock detection and deadlock
recovery. It is assumed that the controlled procedures
nwhich are désigned to avoid deadlocks (e.g. requesting all
locks simultaneously, or imposing a cbnceptual ordering upon
the available locks (Sekino, 1975)) are not suitable for a
general purpose input-output interface. Hence the input-
output module must provide the necessary procedures to
3uppoft checkpoint, roll-baék and restart facilities.

Whilst this is a coStly service to provide, it is
unavoidable -- one compensation is that-a substéntial body
of literature has evolved concerning 'how' it should be done
(e.g; King and Col&Feyer, 1973;.Ma¢ri, 1976; Schlageter,

1975; Shemer and Collmeyer, 1972).

4.3.2.2 The FIND Operation

Current DM specificationé indicate that the result of
a FINDoperatio:\éyn be at most one record. 1In view of the
.potential for parallel processing in the input-output
‘subsystem, this type of one-record-at-a-time retrieval seems
unduly restrictive., For example, it would beqimpossible to
make éfficient uEiliz&tiOn of a‘RAP—like device using

operations which search for a single record.

134

‘The alternative is to permit the FIND operation to
generate a pséudo—set of zero, one or more records (call
this set the FIND~SET for the ﬁoment). Subseguently, a'GE?
operation would refer to the next record in the mosf recent
FIND-SET (the record sequence within the FINb—SET éould
default to identifier seduence, however - further flexibility
could be added by permitting the ORDER operation to be
performed on the FIND—SET). In this manner, the input-
output module interfa¥e cdgld provide a set retrieval
'capébility which could be implemented, either ih software,

or using a database search engine.

It is proposed that the record selection expression éf
the'FINb command be a éoolean combination of relétional Y
subexpreésions. Each subexpression would contain a
database-identifier (or database—daﬁa—iﬁem), a relational
operator ('>', '<', ;=', etc.) and a value or local data-
name containing an appropriate value. This format could be
used £§ replace the 'FIND record-name USING database—key-v

name' format of the current DML.

4.4 Input-Output Operations Involving Secondéry Storage

Having established the desh;ééllity of a homogeneous
J . .
dnterface betwé€en central procéésor resident programs and

the secondaty storage subsystem, and defined an appropriate

interface, the feasibility of the approach remains to be

demonstrated. /

— -

~
J

/
\\

See

135

A necessary precondition for the lmposition of the
uniform interface is that all secondary storage input-output
fuhctions can be effectively implemented using the
| facilities of the proposed interface. The following)
sections show that in particular, this precondition can>be“

achieved for those components of the operating system which

currently do not perform secondary storage input-output via

a complex logical interface.

4.4.1 The File Sysytem

‘ éor a typical time-sharing system (e.g. the Michigan
Terminal System (Pirkola, 1975), or the UNIX system'(Ritchie
and Thompson, 1974), the general purpose file.system cocld
pe readily implemented on t of the proposed input-output

interface.

The structure of the necessary user directories and
assorted file types can be 51mply mapped onto the conceptual
‘information structures supported by a network data model.
Thus, the user's view of the file system would not be
impacted by a change within the support softwarevwhich saw
the present low level input—output opérations, replacea by

calls to the input-output module.

All ccde concerned with the physical devices could>be
remoyed from the file system routines (e.g. device dependent
input-output operatiohs, the allocation/management of

T

o

2N

{
i
v

) 136

;x\ :
secondary storage space and device buffers, record blocking

dvé~unblocking, and input-output request scheduling). The
remaining file system functions -- 'file name' directory,
maintenance and searching, accounting procedures, and file
level control over.concurrent access to shared files --
would be implemented using the interface facilities.
Following minimal intervention on the part of the file
system, usef requests for file system operations would be

transferred to the input-output module for execution.

4.4.2 The Spooling Subsystem

In multiprogramming environments, spooling subsyStéms
are frequently employed to maximize dEVng;utilization and
tQ‘reduce the input-output wait time for p;;;:;;;\;Etes§ing
E;e slowef, unit record devices. ‘ |

In a typical implementation, user processes Whiqh
require access to6 a spooled device interact with a>gs§ﬁdo
deviqe, wh:-h is in fact a fiie held on seconda'ry'storfage.~
Outside the use- process's view, the spooling subsystem is
fesponsible for transferring information,between the

physical devices and the files corresponding to the pseudo

devices.

Appendix ‘A contains the preliminary designs and g

descriptions of a spooling subsystem implemented on top of -

“~

the proposed interface. This examblevlénds substantial

justification to the uniform interface proposals, in as much -

137

as the viability of implementing a non-trivial subsystem.
using the interface faciliti:s, has been demonstrated. 1.
following resume is derived from the material in that
Appendix, .and the eiperience gained during its velopment:
(1) Processes which have historically executed input-output
operations at the lowest level can readily be .
transformed to perform input-output at ‘a much higher

level. Such a change does result in smaller software

modules, the advantages of which were covered in Section

4.1. ! " | \

< :
(2) At the point where user processes intiate their input-

output fequests it is immaterial whether a data file is™
spooled or permanently resident,dn secondary storage,
since both classes of files 'lock alike' to an exeéuting
user process. |

(3) None of the processes which interact during sp@oling
operations need be aware of théjphysical representation
or structure of the_spocled data on secondary stdrage.
Again the advantages are adequately covered in Section

4.1.

4.4.3 The Paging Subsystem

)

Like spooling, the paging function in most virtual
memory ‘systems has been implemented using special sofgware
for handling the necessary input-output transfers invdlving

the dedicated paging device(s).

' 138

The potential barriers to adopting a high level
approach to paging input-output appear to lie with -
efficiency considerations, namely, can paging operations,
performed via a database management system, be executed with
sufficient speed to ensure that the central processor is not
excessively 'idle'? fThese issues will be discusged in
Chapters 5 and 6 when a database processor implemip tion of
the proposed'input—output module will be described At this
stage, it appears that the efficiency question can be
resolved; without compromising the conceptual ﬁoﬁﬁgations of

the homogeneous ihput—output interface. //

Another péoblem associated with a higﬁ/level invocation
of paging input-butput is buffer definit}én. When a'program
requesEs ssrvicé from a databasé management syétem the
buffer location is.tyﬁically ojtside the caller's direct

control (e.qg. programs’wgifteg/in COBOL). For paging.

operations, the paging subsystem must be able to define a
buffer location which ranges ov;r the;ehtire real address
space. A simple solutjion to this prgglem.would involve
permitting all programs to opt%onallyvspecify alternate
buffer locations within their virtual address space, and to
eqpatg the virfual address space of thelpaging subsystem to
the real address space. As with conventiqnal oberating
systems, the nuclggs or kernel hust assume responsibility
‘for translating the virtual buffer address into a real
buffer ahdress and 'loéking' the buffer in main store before
initiating a physical transfer operation.

4
SLY

139

Provision of this type of alternative buffer facility
would .also prove useful for those applications which requi
many occurrences of a particular record type to be resident

in main store, for example an on-line file editor.

4.5 Input-Output Operations Involving Sequential Devices

Cleafly a complex logicai intgrface is well suited to
the most active and expensive class of inpﬁf—oupput devices
~— the conventional, random access seqondfryrstorage
devices. However, the remaining éevices grg\basically
sequential in nature, and may be classif&s§>into three:
generic groups; \
(1) unit record devices (e.g. lineﬁprinters, card readers),
(2) terminal devices (e.g. teletypes, VDU's), and

(3) very large capacity devices (e.g. magnetic tape in

current systems, or mass storage devices).

If the proposed homogeneous input—ouiput interface is
to be>tru1y device indepéndent, then the interface to‘the
sequential devices shpuld, to the maximum feasible extent,
be: the same as the interface to the non—sequentiél devices.
This éonsistent.appearance must'incldde both the r “toire

avaliable operations, and the interface communication

- ocol.

t >e. < that the proposed input-output module

interface r e used for- all spooled devices, archival

- 40

devices and mass storage subsystems. On the other hand, the

interface 1is apparently not well suited to the support of -

.

communications equipment (i.g. terminals), and, by analogy,

[y

the non-standard real-time devices (e.g. in control

\,

£

\

applications).

In a typical configﬁration, the unit record devices
would all be spooled, and once the spooling subsystem is
implemented using thg}homogeneous interfacé, then user
processeé may access the spooled filés via the same input-
‘output module interface (refer to Section 4.4.2 aﬁd Appendix

A for further details).

4.5.1 Terminal Input-Output and the Communications

Subsystém

Based upon the current étaté—of—the—art in
éommunications and terminal-network systems engineering, it'
is highly likely that there will be some proéessor
capasility within the communications subsystem, but extefnal
to the central processor. Followiné the discussions in .
Chapter 2, it is clear that the actual processing may be.
done within a front end commdnicapioﬁs processor and/or
using a small processof in the terminal itself (e.g. the HP
2640 communications terminals). This gxterni} processing
capability means that,'irrespective éf the chosen software

interface, much of the input-output processing related to

terminal operations will occur outside the ihput—output

141

module which supports the proposed uniform 'interface.

Terminal input-output operations are inherently

different to secondary storage operations, as illustrated by

the following list of attributes, generic to the terminal

environment:

(1)

(2)

(3)

(4)

(5)

(7)

program.

Terminal users are typically involved in an interactive.

-

dialogue with the operating system, or an applications

.

Most users try to limit their terminal output to as

small a volume as possible.

Differences between the response times and transfer

speeds of terminal and secohdary sfbrage dévices are
typically in the range of 3 or 4 orders of magnitude.
Messages input from, or Qutput'to; a terminal are no

-

usually re-accessible once they have been sent, and are

usually processed and discarded once they have begn
received. By»coﬁpariéon, é record written to secondary
storage'may‘be re-read as many times as necessary.
There is a high degree of variability in mes;age langths
and‘forhats for terminal input-outp: ven within a
single application.

The terminal user is able to asynchr - - .sly interrupt

déta transfers, or gain the attention of the central

‘operating system (e.g. the 'BREAK' facility).

Transmission problems and syntax errors force the system
to provide the user with an immediate correctiof,

recovery or retry procedure.

142

When all these differences are taken into
consideration, it appears that the uniform interface 1is not
particularly suitable. Terminal support could be more
readily provided using a 'stream input-output' interface
which was physically and logically divorced from the
proposéd uniform interface. From a global perspective, the
communications and sécondary'storage subsystems would
'operate independently, and with considerable internal
autonomy, since each subsystem would support its own uniform ’

interface to the resources under its control.

4.5.2 Magnetic Tape, Archival and Mass Storage Input-
Output Operations
Veiy large capacity, serially accessed tertiary storage
media have conventionally been used for Qhree principal
purposes:
(1) archive of inactive files,
(2) storage of active files which are too large for
seébndary storage, and
(3) as a medium‘fqr.the'transfer,of’daté and programs

between different computer installations.

All these applications may be efficiéntly suppor ted
using the uniform input-output interface, in conjunction
with an 'intelligent' mass ‘storage subsystem (refer to
Section 2.6). Assuming that the mass storage subsystem is

under the general control of the input-output module and, in

143

particular, is not directly accessible from outside that

module, then:

(1)

(2)

(3)

Archival functions may be handled_automaticallx by the

input-output module in co-operation with the mass
storage subsystem. In addition, inactive files may be

automatically staged back to secondary storage when, and

- if, they are required. In other words, no explicit user

action is required to archibe,_or restore files as their -
usage demands fluctuate.
Since secondary storage is primarily dedicated to active

files, a very large file could be made secondary storage

’resident for the duration of its use (i.e. inactive

files which cﬁrrently occupy large portidns of the
second§ry stdrage resources may be archived to make more
room available for the active files). Alternatively,
very large. files could be ;éémented and staged to '
secondary storage one segment at a time.

A simple utility program could be provided to load /

unload files between a magnetic tape device_and the

_secondary storage areas under input-output module
N .

control. 1In this manner,,thé t;ansfer of standard
format tape reels between installations may be
supported, but only one system utility process reguires

a non-standard magnetic tape unit interface.

Consequently, those routines requiring access to files

currently held on tertiary storage may use the uniform

input-output interface, and the input-output module will

144

assume responsibility for ensuring that the requested file

is staged to secondary storage, if 1t is not already there.

4.6 Implementation Logistics

Any proposal for a new software architecture is doomed
to failure if it cannot be implemented within the budgetary
~and personnel constraints(gf those organizations capable of
supporting large scole software production. Consequeritly, a
few remarks will be made concerning feasible approaches for
the introduction of a homogeneous input-output interface to

secondary storage.

Firstly, no software in_current usage‘is so error-free,
adaptive and effiEient that it will never have .to be re-
written, and hence redesigned. By themselves, the arguments
raised in this research are érobably not sufficient to force
lthe development of new(operating systems Q radically
different structures for the inPut—output support software.
Rather; the objectiﬁes must be viewed from the perspective
of defining the desirable attributes for replaceﬁent systems

when the changes are made, for whatever reason.

In all likelihood, the strategy would have to involve a
phased introduction, rather than a unilateral imposition of
the new regime. Clearly the input-output module must be

Ruilt first, either from scratch or based upon an existing

g/ _ 145

A

database management system5 ~-- the essential criteria at
this early stage would be to introduce something which

supports the interface.

Once the input—output module is operational, those
programs and,subsysﬁems requiring secondary storage access
may be modified one at a time, or as they are updated and
replaced. As mentioned before, the internals of the input-
" output module may be revamped to reflec; pé??g;ﬁance N
improvements, withdrawal of thevunderlying interfaces from
direct usage, or dedication of hore programmers to the
project. The development of software to use the interface
and changes to the input-output module may proceed in:

parallel, since the interface remains invariant.

As the hete;ogeneous interfaces beéome less popular and
less heavily utiiized, they‘may'be Qithdfawn from public
usage. If they are used by the inpgt—output module_

(e.g. the channel program interface), then the support
routines would be absorbed into the input-output module,

otherwise the suppért routines may be- abandoned.

For the input-output nodule_to function correctiy, it

~5: The choice of 'a CODASYL based interface would assist
this early implementation phase, since considerable
knowledge and expertise is.available concerning 'how' a
CODASYL compatible database management system should be
implemented -- this would less likely for a relational
interface, and presents an almost insurmountable
obstacle for the intrepid soul attempting to develop a
'home grown' interface.

146

i
must—~be able to ensure that calling processes do not by-pass

the uniform interféce, or corru?t the ;ables and code within
the input-output module. This implies protected entry
points and controlled access to shared code and data, in
addition to fhe conventional addréss space separation
techniques. It is interesting to note that these very
‘mechanisms could be supported with minimal changes to
exiéting hardware and softwa&e;.e.g. even the IBM |
Serieé/370, with its notoriouély‘poor protection
architecture, could support these facilities provided all.
v ,
programming was done in a high level language, like PL/1
‘(Fernandez, Sumﬁeré, Lang and Coleman, 1976). Ap
alﬁernative technique for pr&viding‘the-neéessary ancillary
protection -- by implementing the input=output module in a.

separate processor -- will be discussed in Chapter 5.

 The laét considefation associated with the introduction
of a uniform interface involves the available compilers and
assemblers.’ Obviousfy, all the programming language
facilities which were previously available aqd in
contravention of the uniform interface philoéﬁphy would havé~
to be removed, or replaced -- this is especially true.of the
‘physical interfaces included in assembly ianguagés and many

systems implementations languages.

CHAPTER 5

THE HOMOGENEOUS INTERFACE AND AN AUTONOMOUS SECONDARY

STORAGE PROCESSOR

Moving the seftwate components of the input-output
module (described in Chapter 4) from the central processor
into a separate inpht—output processor is the final step in
the development of the global system afchitecture which has
been the objective of this research. Since the input-output
module-will be involved principallyein‘accesses to the |
secondary stprage devices, the special processor shall be

termed a secondary storage processor.

The juetification for the proposed configuration will
be largeiy qualitative in nature, based upon achievement of
global design goals, a desirable software structure, and -
economic, performaqce, and security criteria. Of the poihts ‘
raised in favor of the overall approach, some relate a
<exclusive1y to the impeeitiOn_of a uniform ‘input-output
interface, some relate to the use of a dedicated secondary
" storage procéssor, andveome relate to the cumulative effects
of implementing a uniform interface on a dedicaeed
procegsor. Arguments pertaining to the fifst cétegbry were
discussed in Chapter 4, while the balance of the

147 : .

148

justifications will be presented in this Chapter.

5.1

Some Global Design Objectives

The overall structure of a general purpoée computing

sygtem is influenced by a set of universally accepted global

design objectives, which include:

(1) Meeting the requirements for increased privacy

'ProVIdihg;g:ga

protectiom R - 3 by new legal considerations and

from both the users and the society

-3

fisystégrréliability because,

(a) reliability is é;necessary prerequisite for

trustworthy enforcement of privacy policies,
(b) technological advances have made hardware
architectures based upon 'fault-tolerant' and 'fail-

soft' designs economically viable propositions, and

(c) the penalties associated with the operation of an

unreliable system (i.e. real financial loss, user
discontent, poor utilization of resources, etc.)

will become increasingly unacceptable.

(3) Achieving a more rational approach to the structuring of

complex pieces of software since,

o
[N

(a) it is difficult to achieve the desired reliability

N

~ g

with software structures based upon design

philosophies which consider the code to be a single
{

'amorphous mass',

(b) the alternative approaches are less attractive with

'

cd

149

respect to software develogmeht and maintenance
costs, and

(c) as firmware and hardware techniqueé make greater
advances into traditional areas of software
implementation, there is an urgent need to define
and understand the role of specific software modules
in rglation to their operational environment. This
requifes an investigation of functional

4 dependencies, interfaces, and the\flow of both data

and/control -- a task which is'greatly siﬁpiified if
the pieces of software display some coherent
structural basis.

(4) Maximizing the productive utilization of the physical
resources, especialiy those which are most expensive to
pﬁréhase and operatef

XS)_P:Ovidiné increased throughput and flexibility, along
with reduced response time for those systems which must

support access to very large databases. .

Hopéfully, it will be universally accepted that
piecemeal attempts to.meet these goals are doomed to failuré
-- witness the unsatisfactory outcome of attempts to 'graft’
‘privacy protection schemes onto existing‘operating systems.
Cpnsequently,‘successful system'impleﬁentation will demand
that these criteriaiand objectives be applied to new

systems, not only from the earliest design phases, but also

uniformlv across all system components.

150

.

Imposition of the uniform input-output interface is one
approach to achieving some of these design objectives for
all system components requiring access to secohdary storage.
The following discussion will concenrrate upon a feasible

input-output.module implementation, which is also compatible

with the design objectives -- the proposed. solution is to
place most of the input-output module software in an
autonomous secondar, storage processor, not unlike the

database processors introduced in Section 2.7.3.

5.2 Access Control and'Security

fhe secondary storage processor enhances the input—
output module S centrallzed access control which was
dlscussed in Section 4.1.4. Since the necessary controlled
entry point mechanism is prov1ded by the physical partltlon
' between the processors, all process requests for input-
output operatlons.must be made via the secondary storage

processor, and thus the module's access control mechanisms

~cannot be by-passed.

When this controlled.access to input-output resources
is coﬁbined with the fact that the input-output,module is
not forced to share a processor or, more importantly, main
store with other software modules,‘it becomes evident that
’unauthorlzed access cannot be gained by self-modifying
channel programs, or 'trapping' the central processor in

superv1sor mqéeﬁgor tampering with operating system tables

151

resident in main store, etc. These approaches have all met
with considerable success in attempts tc-compromise the

~security of conventional systems (Linde, 1975).

In addition to the controlled access, the secondary
storage devices are not 'visible' from the central
processor, therefore neither systems' nor users' software
can reference the devices directly. 1In fact, the sec&ndg'
storage processor supports access to a logical structure,
not a dev1ce, therefore a program .may only access thoge //\\

-—
physical areas onto which a valid logical structure is

mapped.

N
However, it is necessary to by-pass the input-output

mddulefs software interfade and. hence the access control

meChanggﬁé for cértain functions. Thesé functions are

lisﬁed;bélow, and although executed infrequently, they
cannot be initiated from the central%proceésor ﬁsing the
uniform interface.)

(1) Rgcoﬁfigufation of the input-output module's internal
E%ruéture, inQolvingochanges to either'software,~)
existing schema définitions,faccess control information,
device descriptions, etc. These tasks couldlﬁe executed

via a special .interface DML operation,’however security

considerations dictate that their execution cannot be

-

initiated by any routine executing on the central

processor.

[

(2) Recovery procedures follo®ing a fatal system failure may

~loL
282N

152

require direct access to the secoﬁdary storage devices,

wlthout any intervening logical-to-physical translation.
Again this faciliwy should be invisible from the central
processor.

(3) During Initial Program Load (IPL) or system star¥-up, it
1s unlikely that the 'bootstrap"progra;\would be large
enough to includée the central processor resident portion
of the input-output module. Thege roﬁtines would be
required 4f the IPL was to be initiated from the central
processor, via the secondary storage processor {this
assumesltﬁe IPL file is in fact secondary ~torage
resident, and not loaded fr - a special, dedicatgé
device,.e.g. a cartride rtavp. reader). Therefore,'it 1s
proposed that the secor fary €->rage processor be started
first, and then the cent: © processc: iPL’ge intiated

from the secondary storage proeessor, using a predefined

W

absolute main store address as the target buffer
location. 'Once running, the central operating system
could respond with an 'acknowledge' signal, te indicate

that the IPL had succeeded.

Support for all these 'ultra—privilege&” operations
could be provided via the operator's console on the .
‘secondary stotage processor. Thus, gnvocation of these
}operatlons would be restr1cted to huﬁan interaction (i.e.
. . ‘w’v
~;not software initiated) via a console whlch provxdes good

g phy51cal securlty (i.e. 2 person must be in the computer

room to use these faciliﬁ-es).- Typically, use of this

153

access mode would be restricted to the 'database
administrator', the operator, the maintenance engineers, and
the systems programmers responsible for the input-output

module software.

5.3 Reliability

3 - \ any ’
(learly, the system is vulnérable to total failure

'f°11ﬂﬁ}“9.either a software failure in the input—oqtput//”//)

: a _ .
module, or a hardware failure in the secondary storage

5 .
proééssor;d Whilst this is riot necessarily worse than

5o,
ggireht systems, or the alternative desigrs, it is clearly
gﬁacceptable! SpeCialléreéautions will have to be taken to
érovide an acceptable :obustnéss to transient run-time
failures. ' : ‘ T

[y

Some of the possible fault-tolerant softuaré techniques
were disCué; ~ in Section 4.1.4, along with the improved
capacity for adaptive res?urce utilizatioh during unbalénced
access.patterns, or following a device failure. The
implemented fault tolerant hardware designs will depend
critically upon the-dégre%?}o which extra expenditure can be
justified ih relation to the improved reliability.

Avizienis 1?976) has described three aspects of tolerance .to
hardware ﬁog;le fail@re{ namely, idemtification and

characterization of the operational fault, selection and use

"of a suitable fedundancy technique, and ongoing modelling of

the system's"availability, reliability, fault frequency and

B

154
[

survivability.

As an example of a fault identification technique, the
inter-processor communication protocol could include

automatic bidirec:ionz. consistency checks, thereby greatly

enhancing the cép for early detectlon of processJ%
mal function. ' ' N %ﬁ

\

Besides programmed roll-back and retry, the designed
redundancy 1is likelysto be based upon 'macroscopic component‘yﬁb
redundancy' (Withington,.1976). Possible choices;include
dual data paths to all devices (l.e. switchable channels and
device controllers), a multiple secondary storage ptocessor

N >

arch1tectw5e, redundant service systems (e.g. cboling and
(4 .

power supply), easy modular replacement of faulty upits[f 9

data buffering in the device and channel controllers; a dual

bus arrangement for inter-processor communication,

etc. (Katzmén, 1977).
o 4

A |
Recovery from a detected failure could:slso be enhanced

w

. ‘
" by providing some functional redundapcy within the input-

output module; e.g. at least two lbgical access paths to
eéch data item, or parallel audit trail and logging
procedures in the portions.of the input—ouﬁput module
resideqt ih both the secondarywstdfagé and central S

processors.

Obv1ously, any successful attempt at modelllng the

system s reliability will require the COlleCtloh of

Pid

155

statistics concerning the input-output module's actual
operation. This facility should form part of an integrated
self-monitoring process within. the module, to collect

statistics for use by the: hardware engineers, operatlons‘

staff, systems programmers, and database adminstrator (s).

5.4 Functional Dependencies Between the Input-Output

Module and the Operattng System

In Section 4.1.2, some comments were made concerning
the software(étructure within the input—output support
subsystems. The objective of the following dlspussion is to
broaden the scope of those earlier comments to lnclude the

; » -

global system structure as it relates to secondary stor&qe.

input-output operations, and its influence upon the global

-

design objectives. . -

In attempting to illustrate the 'stﬁi@tore
Imoderﬁtely complex computer system, there.are many criteria
which may be used to decompose the 'whole’ into.smaller
'units' and to d;fine the relationships between the 'units'.
Possible criteria include process .interaction, reSource
allocation and ownership, protection, design methodology,
software modularization, and virtual machine abstractlons.
There is no 'a priori reason to belleve that the structural
models derlved from such diverse criteria should display any

mar ked similérity‘—— however, Parnas (1974) has shown that

some similarities have historically existed.

«t

156

For the purposes of the current discussion the criteria
for structural decomposition has been loosely defined as

functional dependencies between software modules. Once the

modules have been identified, these functional dependencies

define a conceptual system structure which may be used to

identify relationships of the form, "module A provides
services necessary for the successful execution of module

> _requests an input-output -

:*-U «f

B", or "when a user progy

operation modules P and Q must be invoked".

Based upon a macroscopic partition of the'system

software into three large modules -- a user process, the

secondary storage input-output module as 'viewed' from the

user process, and an operatlng system module which 1ncludes

the operating system routlnes and application programs wthh
are‘tradltlonally associated w1th the operating system, but
do not require supervisor mode processing -- three .
conceptual structures will be consideted as representative
of the range of possible structures (see Figures S.l, 5.2,
and 5.3). The threé structures are similar in as much as
'tne user process is directly dependent upon botn the
,‘operatlng system and the input-output module, howevez_the_

.extent of the dependency may vary from one structure to

N

-another, o; even between systems with the same gross
. Bowal
.;Stpwpture. leferences 1n the relatlonshlp between the

input- output module and the operatlng system hlghl1ght the

major varlatlons»aobeS these~alternat1ve structures.

-

Vel

, _ 157

In arriving at theée protdtype structures, and their
associated inter-module dependencies, it has béen assumed
that the processor'scheduling function is not undef the
operating system module's juristiction. This is a
reasonable approach if'processbr scheduiing is suppo;ted by
some typevof 'nucleus' outside the operating system module,
upon which gli software modules have an intimate functional

dependency.

':Most ﬁurreﬁt systems exhibit conceptual structures
similar to the one shown in Figure 5.1, in which the
execution of a user's_input~butput operation requireé the
“invocation of operating system procedures. IBM's IMS/VS
database management system (IBM, 1974)‘5ears this type of
relationship to its parent operating system, 0S/VS.
Potentially, there is a greagiégriety in the nature of the
dependency -- the operating éi%tem,module may be required to
initiate input-output operations, support various file

. . g \ ‘ .
access techniques, and/or perform secondary storage space
. * g ' .

‘allocation and management.

Some of the problems related to the adoption of this

#r

type of system structure are:
h(l) Poor potection and security enforcement; refer to
Section 4.1.4. | B '
(2) Ill—defined fuﬁctioﬁal anﬁ,control dependencies between

system components are very common, and very difficult to

isolate. Consequently, independent development and

158

USER PROCE:ss.'-—_—~——-| 3

INPUT-OUTPUT NON
OPERATIONS ‘ ‘ INPUT-OUTPUT
OPERATIONS B
v v
INPUT-OUTPUT > OPERATING
MODULE SYSTEM

Figure 5.1 The Conventional Relationship Betweeh the

Operating System, a User Protess, and the Input-Output

Module

‘?haintenance of the input-output and operating system
‘ sy o ’ '

(3)

(4)

modules 1is oftéﬁfsevefelyﬂhampered. rMost of these
problems stem from either allowing procedures‘to have
default access to data areas ang;or data structures
which are unrelated to their own successful execution,
or the use of module interfaces which‘are so weakly
enforced that violationé of the prétocol cannot be
detected. ' .

For non—triviai input—dutput operations (e.g. those
invoked via a complei ldgical.interfach, thesebsystems
are very inefficient, due mainly to handling of ﬁhe'
request by many layeré of central processor resid;nt
software; | |

Even assuming that the software was constructed with a

high degree of modularityiand module interfaces which

159

were both well defined and rigidly enforced, systems
with this type of gross structure are not well suited to
a distributed processor implementation. The tight
coupling between the operating system and input-output
modules implies that parallel execution could only be
realized with an unacceptably high volume of inter-

process communication and co-ordination.

In Figure 5.2, the input- output module has been
partltloned into two submodules, one of which is completely
1ndependent of the operating system, whlle,the other retains
its dependency upon the Ooperating system. This arrangement
~is typical of the backend processor approach to database
management, where the database management system executes>
.independentiy upon a separate processor. HoWever, under
this scheme non—database input-output is performed using
conventional support routines which executer along with the

operating system, on the central processor. .

Systems w1th thls general structure dlsplay many of the
dlsadvantages of the first organlzatlon, along yith some of
“the advantages of.the third organization, to be discussed in
the followrng paragraphs. Consequently, no specific
comments will be made about this second strnctural
arrangement, other than the observation that support for the
(non—database) secondary storage devices 1mp11es that all ‘

the assoc1ated low leyel input- output services, device-level

protectéfn‘mechanism +/directory searching procedures, and

160

algorithms for generating secondary storage addresses from

logical addresseé must be duplicated in both input-output

modules.
USER PROCESS | '
DATABASE |' NON
INPUT-OUTPUT NON DATABASE INPUT~OUTPUT
OPERATIONS INPUT-OUTPUT OPERATIONS
OPERATIONS
v \ , v
INPUT-OUTPUT INPUT-OUTPUT +————> OPERATING
SUBMODULE #1 SUBMODULE #2 e SYSTEM

Figure 5.2 Functional Separation Between Part of the
Input-Output Module and the Operating System

.System structures of the form shown in Figure 5.3
result from the adoption of a uniform input—outgut ititerface
and sﬁpporting.the interface from entirely withiﬁ the input—
output module (i;e.»with no functional dependeﬁcy upon the

operating system). Consequently; the operating system

bécomes dependent uéon the input-output module, since no
input-output related functions are supported within the

operating system module.

Removing all functional dependencies of the input-

-

lel

USER PROCESS —————e1
INPUT-OUTPUT NON
OPERATIONS INPUT-OUTPUT
: OPERATIONS
v \
INPUT-OUTPUT < OPERATING
MODULE ~ SYSTEM

Figure 5. 3 The Structure Imposed by the Uniform
Interface and Its Secondary Storage Processor
Implementation

output module upen the operating system does have the

following apparent benefits:

(1) The enforcement of securlty policies is significantly
simpler -- the objects requiring protectlon by the
operatrng system and the input—output.module have been
separated and placed under unambiguous control.

(2) The obvious ‘gingle functional dependency, coupled with a
uniform intertace permits software development and
maintenance to . performed with less chance of
introducing spurious secondary consequences.

(3) anctional redundaney is minimized, yielding smaller
software modules.s |

(4) Application of a distributed processor architecture is
stralghtforward and prov1des an appeallng symmetry

A§a>een the system s concegtual and hardware structures.

.
/
7 -

162

4

“

N

It must be stréésed that. the technology and expertise
required to implement distributed processor configurations
is availablé (Anderson and Jensen, 1975; Jensen, Thurber and
Schneider, 1975). However, the wider acceptaﬁce of this
approach to hardware organization appears to be stalled,
pénding the development of software structures with suitable
inter-process communication protocols, which are capable of
exploiting the inherent parallelism and local autonomy
(Jensen, 1975; Flynn, 1977) -~ the uniform input-output

interface forms the basis of one such software organization.

5.5 Resource Utiliiation ,
M@:y of the comments in this and the follOSection
are prefaced by the assumptions that: |

(1) The secondary storade prOCessof will be smaller than the
fcentral processor. '\j

(25‘The cost per byte_of main store attached—fo the
se;oddary‘gtorage proéessor isfsignificéntly less than
the cost per bytebof central main store.

(3) Fof the processing t;sks associated with the input-
output module, the secondary storage processor provides
'anpaccegtable throughput for less cost than performing
the same tasgs with acceétable_thrdughput on the central
;ptocessor. Here 'ecost' includes the initial capitalv

purchase price, recurrent expenditure to operate the

machine, and maintenance charges.

163

Recent studies, surveys and predictions appear to
substantiate these assumptions, namely:

(1) Backend processors based upbn minicomputers have been
implemented, and shown to be capable of supporting large
portions of a sophisticated database management system
(Canaday, Harrison, Ivif, Ryder and Wehr, 1974; Heacox,
Cosloy and Cohen,-l975; Maryanski, Fisher amd
Wallentine, 1975). A .

(2) Minicomputer main storage is clearly cheaper (per byte)
than main store fdr a large central proc senr; for -
example; half a megabyte of In‘e. Corporaticn's 'add-on'
memory is currently listed at $..,0N0 foi1 an IBM 370/158
préﬁessor, but only $20,000 ‘0r a PDP 11 series
processor. |

(3) The ratio of cost to procegsing effectiveness'hasvbeen
shown to favdr the small processor over its larger
counterpart (Juliussen and Bhandarkar, 1975). This
differential in_processof éerformance appears to reflect
the more'advanced technology and manhfacturing .
technlques which can be readily 1ncorporated into new
mlncomputers, as a result of thelr relatlvely short -

design cycles.

The functionally dedicated, distributed processor
approach is economically attractlve since, as Flynn (1977)
p01nts out;

"Whenever, or wherever, there is a recurring
computatlonal functlon that can be satisfied

- 164

completely by @ mini or micro computer it 1s now 53
almost invariably better to isolate the function and
assign it to that specific piece of than to ™
centralize the computation on a larger and hitherto
presumably more efficient engine.”

Further cost-performance improvements for the secondary
storage processor could be expected following specialized
design and development, or emulatior,” of & rachine tailored
for the particular needs of input-out—t module software

(refer to Chapter 6), and high volume producti®y of this

processor.

Besides the improved device utilization associated with

a centralized input-output module Ksee,S:iZi;n’i;ly}ﬁ, the
secondary storage processor provides consi able scope for

making efficient use of the available main store and

processor resources. Studies of backend database management

system (Canaday et al, 1975; Maryanski, Fisher and

. Wallentine, 1976) have identified the folloWing advantages

‘related to resource utilization (by simple analogy, these

benefits are also available in the proposed secondary

storage processor implementation):
(1) Less central main store allocated to the routines within
the input-output- module. .

(2) Less central main store required per process using the

input-output module facilities.
(3) A decrease in the operating system overhead associated
with central processor resident routines.

(4) Less interrupt processing per request to the inpnt-

2

.

e | " 165

output module. . B ;
: o R .

(5) More central processor time available for normal user

S

process execution.

Management »>f the storage hierarchy may be per ned

U

very efficiently under the secondary storage proce:

control, since:
(1) Data migration does not irvolve the central processor or
central main store. The processor and buffer

requirements for all inter-device transfers are

"available in the secondary storage processor and/or the

mass storage subsystem. ‘

f2) Migration for, optimization (i.e. not associated with an
immediate uéer request for data) may be performed during
times in which the necessary input-output subsystem
..
‘modules are'operational, but idle'——_this.means that
adaptive performance tuning.may be ﬁ?BVided for very

-

"little additional cost.

For systems featu;ing multiple centtal'grpcessors, the
uniform interface and secondary sto: procésébrﬁcpmﬁineﬁto
ﬁprovide a flexible input-output capability_bétweeh any |
processor and any secondary storége;device.ﬁ Software
multiple;ing of the devices is moke adab%ive'and possibly
more efficient with respect to 'device connection' | &
overheads, load levelling,‘and the'cpmplexity of the
necessary hardware switch(es), than theakltegﬁatiye multi-

chanpel controller and the iock—out mechanism necessary for

¢

2]

.

166
hardware multiglexing. ..

The la:* ‘'resource' which 1s put to more productive use

;{/’ .

under the proposed rejime is by far the most 1mportant,

-4

namely people! As the expenditure on software developmént

.
and matntenance approaches 60-80% of the total system costs

(Boehm, 1973 and 1976), any improvement in programmer
morale, programmer productivity, softQare correctness[
software reliabilrty or software portability will have a
significant impact upon the‘total cost / benefit analfsis of
a computer installation. Under the proposed inout—output

. support organization, all five‘fac 1re‘impro§ed, sinse:
(1) Programmers areofreed‘from los ‘input-ootput

‘considerations.’ This.,is especially important in those .

application's ‘where the mechaniﬁs of ilngt ou*tput o e
. -3 0

operatlons merely act as a dlver51on from the central

)

G

loglcrand organlzatlon of the code ;64
- ..;“"'\""""‘ -
(2).The uniform 1nterﬁace clears the way for wlder

acceptance qf hlgher level programmlng languages
featurlng 1nput—output_1ntrinsic functions which are

compatible)with the brogramming languages' data. .

structures and procedural foundations.

E]
"
i

(3) SoftWare~reliabil§ty is improved‘ and correctness -
enhanced through smaller, less complex software modules.’¢)
{ e
- (4) Once 1mp1emented the input-output module may be : .

,dupllcated and interfaced to dlfferent central

processogs and different operatlng systems w1thout

’

modlfylng the-roqglnes which execute on the secondary\

167

storage proceSfsor. :
5.6 Scope f3¥ Performance Improvement
o
Tﬂgkzackeno approach to database management has
provi : ple evidence that the use of a dedlcated external

- ' P . . . :
processor can provide dramatic 1mprovements in the reSponse—

¥

,jiqugnd throughput of a database management system (Heacox,

Cosl®y and Cohen, 1975; Lowenthal 1976a, 1976b; Maryansk1

Fisher andjWaLlentlne, 1975 Maryanskl and Wallentlne 1976) .

T

it is expected that a secondary @&orage processor o

~

,.1mp1ementat10n of the input- outpué&module”would produCe~
v S i
pé oy g
51m11ar 1mprovements over aq)alternative central processor
based 1mplementat10n. BN AR : v 4

!reasonable strate§¥'for 1mp{9v1ng the throughput cachlty of

e

]

Simulation StudieSgby“MarYanshi (197$¥*have indicated

<

‘that’ the use’of multiple bacgénd processors prov1des a

]

K2 £ L 4

a database management system”under condltlongyof "moderate

R N

to heavy 1nput output activity" (definedy’ somewhat‘
1S
<
arbltrarllY, s less than 130 mllllseconﬂs‘of central \x)'

processor executlon between succe551ve dat‘base requests for ~
each actlyeﬁprooess). The saime results should hold for a

7

multiple secondary storage processor conflguratlon.

o
3

~

One added advantage'of'the_proposed impleméntation is

. ,1-\]

that all central processor re51dent processes requiring

input- output module service would beneflt ‘M a multlple

Jsecondary storage procedSor conflguratlon, as opposed to the

° o

168

backend‘database management system scheme, in which only

database applltatlons would recelve 1mproved input-output

serv1ce..

the intevnal details of i t—output modu%@'s opgration

to be hidden from.central processor resident routines, the
implementor ofbthevinput—output'suhsystem configuration may
exp101t the amblgu1ty of the secondary storage devices to.
inst&all hlgh per for. anceqsearch {9g1nes, or.other non-

, ¥

magponse t1me and/or

‘» standard dev1ces, to
s ‘
throughput. These hardware ghanges would haveua mlnzmal
[oi
uimpact upon the softg@re5§51nce a mod1f1cat10n to the

i

N;;approprlate storage level schema ma{ be all that is- ‘
() & 4
requlred In ‘the worst case, the 1ggpt outplt module code
Vf‘a
would, hage to be modlfled to add the necessary drlver and

- g
<

o "’ff\r o1

support for the new dev1ce, and the resoutce. managquﬁt
¥

algorithms would have to bewoapnged to permlt data m1grat10n

v
&

, i %
to /, from ‘the new dev1ce,f

29 user or'operatlng system ,

rouﬁgie would have~tp be mod%fied.G/‘; B . o ¢
R . . - " .) . o
' ‘ . . m\ s

Over an extended period, the propoaed organrzatlon

provides con51derah}e advantages for 1ncremental system :
R
upgrades,'w1th mlnlmal‘cost and dlsturbance to'operational

. . software. ® Flrstly, the secondary storage’ processor could be , -,
1ntroduceﬂ to upgrade the total throughput, w1thout

purcha51ng a new central processor (assuming the input-

¢ output module already supported the uniform interface).

Y

/ .) BT
N

. 169
e
Thereafter,‘tne system throughput could be improved by any
of .the following‘actions: .)
(1) .pgrade the central processor, ¥

(?add another secondag”

Li§r age processor, or
. SN N- “A .“'\‘ s
upgrade the eiistinqp' 'ndary storage processor(s) .-

. :
n. each case, the equlpment cost is less than the

alternatlve central processor upgrade, and the assoc1ated
software changes would involve either a new operating

system, and hence a new secondary storage processor

intérface, or a new input-output module, or no change at all

> =]

1n the case where thé replacement processor was 'object coddgw

cqmpatlble - Any of these a&t‘bnatlves seems pre@grable to

the ch01ce offered most current 1nstallat10ns -- a new *

‘

central processor, maybe a new operatlng system and pOSS1bly

a new sgﬁ of 1nput output support routines.
N s .

Speci%ic guestions concern@pg the internal designs for
i s o

the 'secondary storage processor and input-outputimodule
WWich would be required to achieve the necessary througﬁput
and response»time Qﬁl} be addreSséE/in'Sections 6.2, 6.3 an

¥
6.6. P ‘
R : K3 ¢ . .
DR 2 R , | * - .
5.7 -wShared Databases and Network Environments °

- ’ FARS . ”~_ -

]) -
A database is ”shared' if the,same.logical_data-is P AR

accessible from two or more equivalent database management
systems. This is the logical equivalent of the physical

resource sharing discussed in Section 5.5. The database

- / -

- "g".\ s i
management systems may execute on the same processor, on two

or more homogeneous processors, or on heterogeneous

processors.

o
Database sharing is a more realistic proposition if the

datanase managenent systems are all implemented on top of

the the same uniform'input—output interface._ Many of ‘the

%
assoc1ated data reformattlng and translation problems

B

%%anlsh, since the physical data storage is controlled by the
one module. Under these conditions, the input—output module
acts -as a common database kernel (Rosenthal, 1977). If‘the
kernel is to be accessible from multiple central processors,n

then the use of a dedA¥ated segondary storage processor is

o7 , further vindicatef.

S o)
) | to ' .at V'\'.

‘ For programs requirb%gwacqess to information

e

a remote site in a network environment, the possible options

are to explicitly establish a link between two central

‘ : o A .

" processors, or between the local central processdt and-a °*
remote secandary storage processor. If the second

-

alternative,yas possible, thén a third option would also be

available -- since the secondaty storage processor already
» . N ! .
3 :

has a network connection, an implicit link could be .

\\2! . _
established between dlstrlbuted secondary storage : ‘”Q};
X . P LV
, v E

processors. By making the scope of the uniform interface
¢ uﬁewtend beyond the resourc%s under the Local input- output

module 's control user software could- be 1nsu1ated from

-i network operations. At this stage, it would be unwise to

.

— vy

171

I
speculate on the potential use, or ramifications, of

2 'network-wide' data operations, however if they were
justified, the secondary storage processor in conjunction-
with a uniform inout—output inter face could readily support

the facility. %g ‘ o
. A _"- . . } 4“

A,

5.8 Distribution of Input-Output Module Software o

N

Between the Central and Secondar; Storage Processors

PN : o

Outside the internai orgaﬁiZation'of the routines - &
executing on the secondagy storage processor (to be . "
d;scusseéan SectLon 6 2) the only unresolved issuelrs how

-much of the.1pput—output module. code should be off-loaded to

the secondary storage processor.(or»conversely, how much

should remain hin the central procéssor). Intuitive

~arguments seem’ to suggest 5%@2 the ‘more processing off-
loaded$from tpe central processor, the better, howeVer the
same conclusion may bé reached from an alternativeﬁargumeht,

as follows.

e ‘ | J ! S
Initially, assume the software drivers for the

/ B 4
'

secondary storage devices reslde in the external processor,

W
along ‘with the necessary dev1cefouffers _ Now con81der the

R

followxng anut—output module components in turn: - .
(1) the device level schema, s 4 R ", . B ¥

Ys

'(2)-the‘function for mapping;igﬂerface schema objects onto

~ >

B RPN
FAEN M e a -~

_ ¥ = device level schema gggects,. ‘ ‘ L,

- (3) the»interface schemata,
' s .

’

(.‘ y “"

S

¢

»

(4) the function for mapping interface schema names onto
unique names for the protection precedures,

(5) the concurreat ccec< and security mechanisms,

(65 the physica. acce : methods, and

(7) the'BML routines.

It 1s clear that _no._ sen31ble, proper subset of these

ey

components ,may be p&aced 1n the secondary storage processor
without cau51ng ‘a. hlgh volume of. 'housekeeplng information

to be transferred between;the,two processocs. Consequently,

o
i, v)

«,1f the secondary storage processor is -to prov1de a ‘non-

the,central_processor.:,

‘tr1v1al serv1Ce, then- all seven components must moved out of

iy ~ - - S o -
“7"“' A SRS .
< g . N ' ~ R 3 u" L4 s
. s

~ The only 1nput output module functlons whioh would’

‘remain’ to be supported by central processor re51dent

A

software are those routlnes requ1red for:

+

(1) dr1v1ng the inter- processor communlcatlons protocol (to

R i : ;,\ -
be dlscussed in Sectlon 6.%), .ﬁ

(2) managing the User Work‘Areas, and

+(3) identifying to whi&h processor an interface operation

-should be directed (for a multiple secondary storage
T . . ~ ! ‘ '
processor configuration). . 5 g

: _

'S

173

<

. - s, l
5,9 Potential Dishévan;ages'
SR

Obviowgly, the structure proposed in ;his-thesis is not
without soﬂ!“inherent disadvantages -- otherwise systems
would already have been constructed along the proposed
gu1delinesl These dlsadvantagdg‘are almost 1dent1cal to
thﬁ;e which have been identified for the backend approach to
database management. Despite the unexplained abandonment of

Ny

the early backend prOJects (i.e. XDMS, DDM, ECAM, etc.) =

L

there is renewed _interest in the concept, and the ongoing
developments at MRI Systems Incorporated, Kansas State and
Ohio State Universities seem to 1nd1cate that the advantages
.outweigh the disadvantages.

A - _ . -;,L

"3 L[&ksadvantages (as succ1nctly described by

(l)»Multiple Vendor Maintenance~ the system contains at 4

, least two heterogeneous. processors, connected via a link

. ¢
which may be_ non-standard' -- this may cause some

\

difficulties concerning maintenance responsibility. The

- ~

emergence of third—partyamaintance\contractors (i.e. not
N .

the original equ1pment sqppller) may provide extra

freedom for the purchaser in this area.

A

f%ditional Cost: the secondary storage processor “

1nvolves a visible,‘additiopél cost, Unfortunately, the

-

financial sav1ng constitute only a portion of the

beneflts and even so, thelr 1mpact may be less obv1ous

(e g. improved software longev1ty, or delayed peripheral

o

(3)

(4)

‘database’management systems suggests that thé

174

upgrade due to iﬁproved resource-utilization).
Reliability: viable solutions do exist, refer to
Sections 4.1.4 and'5.3.

Performapce:.%}Aremains to be demonstrated that the

secondary storage procéssor can providé”khe{throughput

and response fime reqd??ed:for high perfomance
applications (e.g. the‘paging function) -- this issue

will be covered in Section 6.6. Experience witﬁcbackend
V]
requirements of the update and simple retrieval class of

applications can be easily met with the proposed
organization. ?hose applications which require
extensive secondary ‘storage searching before returning
one, or a few,»qualifying records:will undoubtedly-
tequire special Hardware assiStaQSe, since tragitional
software exechtioﬁ_of these fd;ctions is becoming
increasingly inadequaté: Howéver this requirement can
be accommodated, and the Erobiem is independént_of the

[4

proposed input-output‘module organization.

\

aege

*

L

THE ARCHITECTURE OF A SECONDARY STORAGE PROCESSOR
9 .

CHAPTER 6

Implementation of the proposed input-output support

organization requires detailed c0nsideration of a number of§>,

design factors which are unlque to the secondary storage

processor itself.
architecture,

and the organization of the software resident in the

the inter- processor link,

secondary storage progessor.
o : kN -

the predlcted performaﬂce of the input- output moduhe will be

dlSCUSSGd,

far.

per formance will be made on the basis of qualitative

arqguments, or clear trends whicQDh

along with the methods which have been tried thus

»

3

¢

L

Some of the dif&

oy i

Iﬁles a55061ated w1th quant;fylng

patics

Py

underlying intuitive appeal.

AN

’

&

h] C:(\\rf

Throughout~this Chapter, the term '

assumed "to réﬁgr to the secondary storage processor, unless

explicitly stated to the contrary.

v

4

175

buffer management,

processor'

will be

These factors 1nclude the processor

Consequently, the design decisions which impact

,the‘available performance estimation tools, and have an

h

ave Qeen established. u51ng

/

a

<

WA
&7
a3

176

6.1 Performance Estimation?

-

"6.1.1 Throughpot, Response Time and Resource Utilization

‘Since no implementation of a secondary storage

processor is available for performance measurements, some

preliminar? per formance estimation tools must be developed.

1

For the backend configuration, Maryanski and WaIlentinev
have developed a discrete event simulation madel as part of
the project at Kansas State Unlver51ty “(Maryanski and

Wallentlne, 1976; Maryanski, 1977). Unfofiunately, the

published results of this work aﬁéﬁﬁotrsufficiently detailed”
. N «'3 :

to allow specific inferences to beAdrawn -- general trends

- ,«_1\' R

are ev1dent, but thﬁﬁ@ls all. Atﬂ

V’J‘\

ﬁe o?&tical

{tage ’ ﬁ!e operation
of the model is not' clear, and someﬂg |

parameters are émbiguously defined, and/or essentlal

parameter values are not specified. .

As én‘alternative approach,’ some pre mlnary work has
been done in the current research ééwards developing an
analytioqueueiﬁb model for a subsystem comprising a central

L. - e - 7
processor, a communications 11n@§3§ secondary storage ‘
. - v L
— -

processor, and multiple 1nput output dev1ces° Some

immediate problems were encountered in thlS work namely: .

(1) The number of parameters is potentially very large, ;due

P

(2)

(3)

i faﬁf7177

-

to the complexity of the network which has to dé

modelled. . !

It is not possible to use observed values for the
parameters, and it appears that the best intentioned
estimates weuld only be accurate to within 'half an
order of magnitude'.

Analysis of the resuléiné network is sufficiently
comple# that no immediate solution is obvious,'and even
if a solutiqn can‘ge foSnd, the effort required to
complete the analysis is not justified in terme of . the

\

underlying uncertainty of the parameter estimates.

4

Consequently, the model was%%eaviiy'modiflea to reduce

zthe number of nodes and pafameters, under the follow1ng o

-#~-s Lo) R

N

assumptlons'

(1) At eadh node, the arrlval of reque§ts is descrlbed by a

(2

).

P01sson process, and the service tlmes at fhe nodeq have

v

a ‘negative exponential dlstrlbutlon. : : ‘

There is no request contention or“interference between

&

the actual devices. Consequently, the nodes associated

with the devices section of the model corxespond fo

t

-identical, unique channels which operate independently:

}Further, allichannel‘nodesnare accessed with equal

probability, and any serial cOr:elEtioh,in the access’

1l:

In this- context, a 'network' refers to a gueuelng
network -- a collectlon of connected nodes and gueues,
with input-output requests cycling between the server
nodes —-- not a distributed computer network. .

W 4 N\ :

)

178

pattern generated by a single DML operation is ignored.

(3) All scheduling is first come, first served (FCFS) .

(4) Each DML operotionirequires»service(from the secondary
storage.processor once initially, and then once again
following each device access.

(5) Processor service times are drawn from a single neoative
exponential distribution, independent of the degree to
whi@h a DML operation ie nearing completion.

(6) Following each'slice" of processor execution, the DML -~
gperatlon which has just been pr0cessed is either
completed (1 e. ready for the result to be transmltted
back to the oenttal pr0cessor), or the DML operatlon
requ1res a further input- output opefatlon. ThlS

-

behav1our is modelled by a551gn1ng a statlc*brobabllltx

of complet1on to all DML operatlons which have just

flnlshed processor service -- in eff ct this probabllity
b
@éflnes the meanmhumber of" phys1cal 1nput output
®
operatlons requ1red per DML operatlon.

The first assumption is critieial, since it permits the

A

W known M/M/1 queuelng'model2 to be used at each.node ln

(3

the~ru_etwork.£7 Although the M/M/llmodel is .not partlcularly

realistic in'this'ehvironment, it‘does have the 1mportant
property that many M/M/l models may be comblned either in-

parallel, or serially, to prov1de analytic expre551ons for

N

s

2: Any introductory text on queuelng theory w1ll contain an
analysis of the M/M/1 model; for example, Kleinroc¢k
(1975), Chapter 3. s

ey

179

the entire subsystem.

[

Unfortunately, the M/M/1 model will tend to K ~.

overestimate the variance of the inter-arrival and service

times -- this will result in longer queues, and-reduced
throughput estimates;/,This trend is illustrated by \the
.followrng example; Omahen (1975) has developed expressions
for the mean and variance of the flow time for a
configuration.in which.multrple deviccs. are connected,to a
single block'multiplexor channel, with FCFS scheduling,
throughout - For one partlcular configuration of eight
unlforml% 3§cessed Hev1ces, Omahen S ex@re551ons y1e1d a
.mean segylce tfme of 75 25 midliseconds, and a4 variance of

105 mllllseconds. ‘A negative exponentlal dlStflbuthn with
a’ mean of 75.25 has a var;ance of 5660!!’ _ | g g
‘w» In the next Section, attempts to overcome the. second
assumptlon will be descrlbed The remaining assumptlons
(i.e. (3) to (6)) are probably notiunduly restrfctive/fbr a‘
'frrst ofder approximation t%‘&he system's-behaviour;‘ /

[£

Eigure 6.y/1llustrates the 51mp11f1ed model 1n wh1ch

D !

.

DML requests enter via a queue for the central'to=secondaryﬁ

S » <

7st0rage'proceSSor link, are transf%rred to the secondary

storage processor and queued awa1t1ng executloh ‘ Once fx.
served,.the request erther exits via the queue for'the
secondaryﬂstorage to.central‘pr0cessordlink, or.is'queued o
for a physicalninput—output at oneoof the channel/device §

.
s
¢ - @

servers. 'Upon completion of arphysicagainput=output,ﬁ

180

operation, the request re-joins the single queue awaiting

secondary storage processor service.

The M/M/1 queueing model has been implemented, and
tested, howeveg some further problems remain. Firstly, it.
has not bee? possible to re sncile the model's predictions
with the Kansas State simulation results; for an example,
refer to Figure 6.3 in Section 6.2. 1In particular, this
relates to absolute values, not trends, and may be partly
due to an incomplete description of the simulation modei,
and partly due to the M/M/1 %odel's Lnderestimated
thfoughput as discussed earlier. Secondly, the queueing
model is rather sensitive to variations in the parametef
values: From earlier experience with the stochastic
simulation of file organizations, it is evident that the
combination of parameter sensitivity and a large ;umber of
input'parameters, each with a wide range of 'plausible’

values, leads to a situation in which the model's use may be

‘severely limited.

Consequently, the results from thg queueing model will
not be explicitly presented, however a few of *he observed
general trends will be used to substantiate the arguments

kS

and designs presented in the following Sections.

CENTRAL PROCESSOR]
TO SECONDARY STORAGE

PROCESSOR LINK
v Vv SECONDARY STORAGE
PROCESSOR TO CENTRAL
Q PROCESSOR LINK
A%
AR Q
SECONDARY
STORAGE A
PROCESSOR
P (done)
1-? (dcne)
\% . A"
Q Q
. ~
Y A" \ vV
CHANNEL CHANNEL CHANNEL
/ DEVICE / DEVICE / DEVICE
1 2 N

181

Figure 6.1 The Slmpllfled Queuing ‘Model for the Secondary

Storage Proc

3s0r Subsystem

-

182

6.1.2 Inter ference Between Concurrent Data Transfer

Operations Within the Input-Output’ Subsystem

Another performance related investigation concerns thé
effects of concurrent input-output operations v ithin thg
device, channel, and controller subsystém -- the desired
predictions céncérn the degree to which potential transfers
are 'blocked' because a channel or controller or device 1is
Aot available, and the expectéd peak and mean transfer. rates
of the entire device subsystem. This informatipn is

- _\Eggpired_when estimating the device service time
;diétribution for the throughput,énalysis, and when

considering the necessary bandwidth for the communications

link between the central and secondary storage processors.

«

L J
Rosenthal (1977) has made some first order

approximations in this area, however these calculations
ignored the distribution of requests between devices, and
the details of the path connections between shared devices,

controllers and channels.

[
°

As part of the preliminary investigations for the '

current research, some work was done in this area of

-

4

transfer concurrency. The'generél~approach involves

modelling the subsystem with a directed graph in which .the
¢ .

nodes cq;respond to the secondary storage processor, the

cpannels, the controllersf virtuél controllefs (added -to

enforce the'cdnStraint that the controlier can only gervice

I

, . : . ' .
one device at any instant), and the devices. Each arc

o

-

.83

corresponds to a data path, and is assigned an appropriate
transfer bandwidth fi.e. a 'flow capacity'). Finally,

static aécess prepabilities must begassigned to the device
nodes. Figure 6.2 shows the graph for a sample subsystem

with 7 disk devices, 3 controllers qnd 2 channels.

The estimation pro.«:ute initially requires the

enumeration of all the possible access sets involving 1

access request, 2 requests, 3 requ sts, and so on until the

number of requests in the access set 1is equal to the number

. of channels connected to the processor. An access set of N

.>omhers is formed by sampling N times with replacement from
the set of device nodes in the configuration graph. For
each access set, an adaptation of the well known 'maximal

flow" algorithm3 is used to determine how many of the

. desired accesses can be performed concurrently. Once this

has been established, the ‘access set's probability of
occurrence may be determined from the individual device
access probabilities, and thus the mean and maximum transfer

rates can be computed.

As with the qgueueing modél, these measurement
techniques have not been rigoréusly pursued, because: B
(1) The-omnipreéént parameter‘value problem poses further |

difficulties.

(2) The technique assume. heavy device utilization, and in

3: Refer to Deo (.974), Chapter 14,"pp 384-393.

’ il

184

V— —V
DISK DISK]
1 2

\Y

1

. CHANNEL

%
CONTROLLER
1

Vv
VIRTUAL
CONTROLLER

Foa

i

]

IS
3 .

SECONDARY
STORAGE’
PROCESSOR
v ‘
CHANNEL /
2
)

vV V— \"
‘CONTROLLE CONTROLLER
2 ' 3
'

vV vV
VIRTUAL VIRTUAL
CONTROLLER CONTROLLER
2 3

ISK

DISK
4

—_ U § S
DISK DISK
6 7

o}

" Figure 6.2 Directed Graph Representation of a Sample

(3)

its current form cannot be used in a situation featuring

significant device, idleness.

Device .Configuration

Implicit in the method is the assumption that the

scheduliny algorithm and incremental nature of path

allocation to asynchranous requests will not influence

the attainable transfer concurrency -- unfortunately

185

this is not true. These factors would reduce the
projected mean transfer rate by an undetermined amount,
“and there is no obvious way in which the method could Qe
adapted to correct this omission.

(4) For a single configuration, the method has some
potential (e.g. gér tuning or reconfiguring a particular

implementation), however, other than trivial results, no

valid generalizations have bee% found.

Thus, despiteigood intentions, it appears that
considerable effort (beyond the scope of this research, and
current technical skills'of this researcher!) must be

invested to produce adequate performance estimation tools.

P
6.2 Request Multi—qu(ﬁng

Undoubtédly, the secondary stofage processér will have
= ,
to support multi-tasking between simultaneous DML
operations. This élaim is balsd upon the performance
estiﬁétes from the Kansas Staté‘simulatioh sfudies and the

M/M/1 queueing model, whicﬁfboth indicate that the

improvemen® in throughput‘achieved by allowing the secondary

.

storage processor to handle 2 or more DML operations b

concurrently is so-great, comparéd_tO\serial processing,
that is cannot be ignored. Basically, the rationale is
simply that the secondary storage processor should have

something useful to do during physical input-output.

Some sample estimates, reg;esentative of the general

)

S~

o™

186

trends, are presented in Figure 6.3, based upon secondary
storage processor throughput for varying levels of multi-"
tasking. Two opérationa] environments have been pgdelled;
the first (Experiment 1) is taken from thé Kansag‘Sta e
study, and illustrates an imélementation which feaéUS:s no
communications overhead, ahd'é small number of physical
inpdé*output operations per DML operation. In Expermient 2,
the DML operatioﬁs generate mor e physical input-output, énd
some communications overhead has 5een included. The

critical parameter values are presented in Table 6.1.

Once the decision has been reached to provide some

‘xmulti—tasking facilities, choosing the limit on the maximum

number of operations to be handled concurrently depends upon

the particular application. Significant factors include the

amount of local main store available for interface schemata

‘Ehgxngfers, the required response-time, the projected
roc

P ssor utilization, and the desire to maintain the.

processor task_switch overhead within reasonable limits. It

should be noted that the relative improvement in throughput'

7

associated with adding an additionalvtask decreases with the

number of tasks. Therefore, the largest increase occurs at

the transition from serial processing to concurrent

processing of th DML operations. The software complexity
required to suﬁport multi-tasking is virtually all ‘
associated with that same in%tial step from one to. two
concurrent tasks -- after that, higher levels of multi-

tasking may be supported without a significant increase in -

<87,

Parameter ‘ Experiment 1 Experiment 2

Mean Number of Physical
Input-Output Operatidns
per DML Operation 0.443 1.5

-Number of Parallel Channel/
Device Modules : 8 8
Mean Device Service Time = - ‘
per Input-Output Op.ration - . 30.0 msec 30.0 msec

Mean Link Transfer Time »
from the pentral Processor 0.0 msec 2.0 msec

Mean Link Transfer Time
to the Central Processor 0.0 msec 2.0 msec

Mean Secondary Storage
Processor Service Time' -
per DML Operation

(Includes Task Switch
Overhead) 5 14.4 msec 25.0 msec

Table 6.1 Parameter Values for the Performance
Estimates of Figures 6.3, 6.4 and 6.5

software complexity.

.Figufes 6.4 and 6;5 have beeh included to illustrate
the changes—in response-time and processor utilization which
can 5e typicalLyvéXpected as the le&el of multi-tasking
increases. No%e that the although the thr?ughput and’
processor«utilization éppear to level off, Ehe response—time
inc?eases linearly as more concurrent tésks'are added.
Therefore, while ﬁulti—taéking improves both thefgggg at
which DML operations may‘be executed and the cagaqitz 6f

>

input-output module, the turnaround for a single operation

188

70.00
1

60.00

i

50.00

40.00

1

RTIONS PER SECOND

ER
.00

1

ML OP
30

0
20.00

i

10.00

)

——M/M/1 GUEUEING MODEL
——— KANSAS STATE SIMULATION MODEL

.00

S 00 1.00 - 2.00 3.00 4.00

/

5.00

- LEVEL OF MULTI-TRSKING

4

L%

Figure-6.3 Sample Throughput Estimates

189

- | . T - T

M/M/1 QUEUEING MODEL ' 2 |

Y
/

.00 1.00 2.00 3.00 4.00 5.00

LEVEL OF MULTI-TASKING

Figure 6.4 Sample Rgsp0nse Time Estimates

130

UTILIZA
-63

SOR
0

0.50

0.38

1

Y STORAGE PROCES

AR
.25

1

COND
0

Sk
0.13

] /

——MN/NM/1 GQUEUEING MODEL

N | /
%00 1200 | 2.00 3.00. 4.00 5.00
LEVHL OF MULTI-TASKING

00

/
,

Figure 6.5 Sample Seco dary Storage Processor Utilization
imates

/|

191

may deteriorate significantly, even when the throughpu!

increasé is only marginal.

Within the Kanéas Sate project, multi-tasking has been
approached with an "OS MFT" philosophy, in which.a fixed
number of partitions, or tasks, are created in the backend,
and a dispatching algorithm is used to allocate an
outstanding DML request to a partition when one becomes
free. There is no apparenf difficulty associated with an
alternative operating system for the secondary storage
processor which would support a level of mdlti—tasking which
varies with the demand, up to the limit imposed by the

available resources and response-time constraints.

e

A number of fundamental design decisions concerning the
processor and its operation are impacted by the requirement
~ for a multi-tasking environment. For example, the software
overhead associated with task switching, and hardware
technigues to reduce this overhead assume increased i
importance, a 'task' m‘bt be clearly defined (a task could
be assigned to a partition of the logiéal data resources, to
a partition of the physical resources, to one active DML
operation, or to a particular function within the input-
output module), efficieng inter—task communications
facilities are obviously required‘(possibly spénning

physical processor boundaries), etc., etc.

It should be noted that the implicit locking mechanism

mentioned in Section 4.3.2.1 is essential to the correct

N

192
SN

operation of 2 multi-ta .ed secoriary ctoraus processo..
Depending upon the de:inition ~: a task, furthe: inter-task

locks may be required for logical nd/or physical resources.
{ N

6.3 The Hardware Architecture »f a Secondarv Storage

Processor

Wwhen considering the 1nternal architecture of a
secondary storagé processor, a number of desirable
characteristics are immediately obvious. However, beyond

these basic feature's, further options are less clearly

justified. Therefore, an effective implémenpatiOn strategy '~

would appear to involve first choosing (or. designing, then

building and/or emulatiné) a machine with the basic
attributes, and then impleménting the input-output moaule.

Not until this has been done can the feal:requireménts;for

‘\

the less obvious features (e.g. a 'tagged' architecture, a
cache memory, or hardware :implemented 'capahility'

mechanlisms) be evaluated.

The basic attributes:have beén independently‘%ormuiatedn

by at least three different groups (i.e. MRI Systems
Corporation, thé Kansas State projecﬁ,‘and at an. early stégé
of the current research). There is_remarkablé agieemégt
between these proposals, namely:
(1) A 32-bit minicomputér seems to form the host logical
base machine, for three reasons:
(a) These machines provide sufficient‘raw!procesSo;f

- i

et

v 193
ra

speed.

The total main store address space and the maximum
address space for a single task on a 16-bit
minicomputer 1s simply not large enough to hold the
required software and buffer areas without
partitioning and/or overlaying, which would 1impose
an unacceptable overhead upon the processor's
operation. These.storage requirements for
conventional database management éystem have been
variously estimated to lie in the range of 5 x 104

to 1 x {Bi,chAPéézgls (IBM, 1974; Wallentine,

Maryané;i, Fisher, McBride, Fox, Chapin and Allén,
1975) . Txyicalli, a 32-bit machine would support
20- or 24-bit intérnal addresses, giving a total
address space of l‘—‘l6 X lO6 main store locations.
This 1s large enough to support multiple (1.e. 8 or
16) tasks with adequazgr;ddress spaces‘in the rangé\
of 1 x 105 to 1 x 106 main store locations.
. Art for very large databases and/or large
rolur 3 of integrated on-line st . :ge willvrequire
-'er :1 physical pointers whicr" 2> capable of
ag’ .sing of the order of 109.itéms resident, in
secondary storage. This implies pointers of at
least 32 bits. On a machine with 16-bit data paths
and arithmetic logic unit (ALU), pointer ‘

manipulations would be very expensive compared to a

32-bit machine.

(2)

(3)

(4)

(5)

194

The requirement for a small task switch overhead has
AR Y
been mentioned. previously. Machines with a 'multiple

stack' capability appear to have a considerable
A\

advantage in this area over the *genera urpgse
\P P

register' based architectures.

Since the bulk of the interrupt processing load has been

shifted from the central processor, the secondar

storage processor must support very eff1C1ent\Qechanlsms
for interrupt handllnq A multiple priority level
vector based 1nterrup€\ echanism would mlnlmlze the
interrupt_ scheduling a;::)dentlflcatlon overheads.
Actual processing of an interrupt'may'be sﬁeeded up by
providéng multiple general purpose register sets, or
employing a stack architecture. - |
The non-numeric natu{giog the work load on the secondary

A
storage processor dictates thatﬁsbme hardware aids be

provided for character string manipulation and
comparison. This is especially true if no database

search engines are employed, and the searching function

'is implemented in.softnare. Obviously, local main store

«

should be character addressable, and the data
manipulation facilities should be enhanced, either with
a very fast 8-bit ALU / shlfter / comparator, or a
character based ALU w1th variable length descrivi.ous
based inputs and output(s).

Communication between the secondary storage procecsov

and the input—output devices should be achieved via

195

central prbcessor c@mpatible channel contfollefs and
channels, ;ith bandwidths not less than those of the
channels att 'hed to current central processors.
Typically, this Qill require an upggade in the input-
output interfaces provided with present minicomputers,
however the investment' is essential if the transfer
rates and distributed procesging capabilitie5~at-the
channel and device controllérs of current input—output
subsystems are to be maintained, or extended. :
(6)'Re11ab111ty and/or performance considerations may i .
ldlctate that a multlple secondary storage processor
configuration be used initially, or at some forseeable
subsequent upgrade. In this situation, the processor
architecture must provide additional features for local
main store sharing between processors, and inter-
processbr communication. In addition, the channel.
controllers would have to provide switchable connections

to more than one processor.

6.4 Factors Influencing the Design of .the Link to -

Connect the Central and Secondary Storage Processors

The 'link' between the central and secondary stéfage
processors consists of some hardware, and.-one software
routine in each processor to control the hardware. For the
hardware:componént, three choices are aQailable:

(1) A standard telecommunicationé line.

(2) A channel-to-channel adaptor.

v , 7196
(3) A shared bus.

Of these, fhe first is the cheapest, supports the
lowest throughput and, although it is suited to
configurations in which the central processor and.secondafy
storage processor are not situated in close proximity} it is
prob-bly unsuitable for the application proposed here:’-This
decision is based upon the maximum bandwidth of guch é link;
which would be about 50 Kbytes per second. Even with the
reduced bandwidfh requirements of the central processor
resident saftware (since all the data associated with
physical input-output does not havé\to be transferred to the
central main store), this upper limit is appgrentiy too
small to ééter‘fo} all input-output module operations. For
~example, the block multiplexor channel on a conventional
system may have bandwidth of approximately 3 Mbytes per.
seco;d; the reduction in data transfer rate between th
devices and the inter—processotilihk would have to be 60¢
before a 50 Kbyte per second communications link could
provide the same throughput of useful information to an
applications program.

Chanhel—to—channel adaptors provide an’immediate _/(
solution with reasonable capacity (approximately 1 - 4)
Mbytes pef secdngi. These devices are currently available
from minicomputer vendors, to permit their machines to be
interfaced to larger central processors. Typically; a

channel-to-channel adaptor emulates a standard sequential

o

[l

N

P

the tightly coupling which is.enforced between one central

}

197

device for both the attached processors (e.g., the link may

appear to be a magnetic tape unit, or a pgper tape reader /

punch). Herein lies one »f the potential disadvantages,

namely the link control software must support a device which
really has nothing to do with the task of inter-processor

i »
communication. One further disadvantage of the approach is

3

processor and a particular secondary storage processor.

The shared busléommunication teéhnique would permit
data transfers between the main store attaqhed‘to any one of
a number of central and/ér secondary storage proéeésors.
This flexibility could be enhanced by an intelligent bus
coﬁtroller, which is capable of re-routing transfers in the
event of a proces%ot.pr main store module failure. Transfer

rates from a common bus could conceivably approach 50 Mbytes

per second in the forseeable future. \‘ .

In order that the processor resources devoted to
servicing the link are minimized, iﬁ is essential that
either the hardware link, or the processor interface to the
link should contain sufficient logic and buffer storage so
that o?ce initiated, a single transfer generates no more .

\
than one interrupt per processor.

For current systems, the channel-to-channel adaptor
method is the most attractive. Since it can be incorporated
into existing hardware and input-output subéystem

architectures, this choice appears to give the best

-

198

compromise between banowidth potential end.engineering costs
associated'with non—standard interfaces. The shared bus
wapproach will only b&ﬁome feasible when, and if, the central
processor and main store modules are redesigned around a

high bandwidth central data bus, with external ports.
’ A

Given the channel-to-channel communication facility,
software drivers in each processor musf not only 'drive' the
‘link, but implement the basic functions for communication
-between input-output module components located in separate
processors. This will require buffer management, error
cﬁ;cking on completed messages, and routing messages'to the
<orrect destination processor (a message will be addressed
to a particular process, either in the in the secondary
storage processor or the central processor resident portion

of the input-output module).

6.5 Tasks, Buffers and Software Organization

As described in Section 5.8, the software.exeouting on
the secondary storage processor will inciude virtually all
ﬁhe components of a conventional database managenenf syst
It is expected that the processS; will function under the
control of a specialized operatlng system, whose principal
functions will include processor multiplexing between tasks,
'1nter—task communication and synchronization primitives, and
enforcement of each task's local address.space limits. The

scheduling procedures within the input—output module's

1

199

oberating system must cater for tasks with varying
priorities, in order that the necessary performance may be
achieved, and less important tasks (e.g. internal management
of the storage hierarchy) do not inhibit the quick
processing of urgent DML request:. ‘ijven these basic
facilities, all other functions mg;: implemented directiy
by the input-output module software, which iﬁ all likelihood

would be reenﬁrant.

It is proposed that one task should exist within the
secondary storage processor for each aétive DML opefation,
where 'actiQe' implies a message initiating the operation
has been received by the secondary storage processQf. ' This
choice .permits the number of tasks to vary with the:demind,
hence maximizing the’main.store resources avlilable to the

\ i
activeAtasks, and allows all the variable inflormation

associated with a single DMQ operation (e.qg. bles, status

information, schema, record and message buffers) to be

aésigned to one task.

Since the central processor resident .section of the

.7 =-output module is responsfb{g for dispatching new DML

cComT ~his module must also assume respopsibility for
er.z.Ti "t the secondary storage processor is not

ove. _oa< Transmission of a new DML operation to the
seconda - ~cije mUOCces.LOr may bé‘delayed if, that
process~r

(1, ind:ca%>: .at - ma: um level of multi-tasking has

200

been reached, or
(2) indicates that no schema or message buffers are

available, or

(3) is not operational.

. 6.6 Other Techniques Designed to Improve Performance

A number of options are available for per formance
improvements to be introduced via extended interface schema
facilities. These involve 'hints' to the input-output
module regarding the applieation environmnent, schema usage,
or processing patterns. From the application's viewpoint,
these extra declarations are transparent, excepg fc. a
possible reduction in the interface's capacity to support

full data independence.

.

DDL declarationsjcou;d be added to invoke same of the
following functions,~fdrla few performance sensitive '
applications (e.g. the pagieg subsystem) :

(1) '"Turn oﬁf' all struceural transformation fer a .
particular record type.

(2{ Permit the. interface sehema for exclusive, single
applicationxusage ——-this allows the concurrent access
checks to be execuged once when the schema is OPENed,
and then by-passed during subsequent. accesses.

(3) The specified buffer address is in the user's data area,

g

not the User Work Area (i.e. do‘not move records to / .

from the User Work Area).

(5)
(6)

(7)

201

'

Ihhibit statistics collection.

-

Prefetch the 'next' record whenever po%§ib1e.
Retrieve the member records whenever the owner of a
particular set type is retrieved.

Allocate extra large buffers for a particular record

type.

- For applications requiring quick response, it is

reasonable to assume that DML operations, and hence input-

&

output module tasks, would be assigned a high priority.

Further factors which contribute to faster response-times

and higher ‘throughput include:

(1)

Automatic management of the seeondary storage hiefarchy
will tend to minimize the physical access and transfer
times betweep tﬁe devices and the secondary storage
processor.

It is'possibie forza single software module (e.g. a
paging Ssubsystem) to request many DML operations which

may, in fact, b% subsequently executed in parallel.

" Since the secondary storage processor's operatind system

isnhighly~specia1ized, and a single input?output module
is implemented, the software overhead associated with an

input~output operation will likely be less than the

°

‘multiple layers of software and redundant checks in-a

‘conventional system.

Under these assumptions, the peak rate at which the

202

input-output module could handle requests may indeed be
INgher than the maximum rate achievable with direct

execution of physical input-output.

CHAPTER 7

" CONCLUDING REMARKS

7.1 Summary

v

A study of the evolution of hardware components within
the input-output subsystem has shown that, for medium-to-
large scale machines, the adoption of distributed processor

(

architectures is already well established. This ;;iﬁé\seemsv
benefits

likely to gain momentum over the next decade as t

of the approach ——'ihcreased parallelism,‘more cost-
effecLive operation due to special purpose modules, and
improved resource Qtilization ana management --. are more

widely recognized, and accentua£e6 in the face of falling

hardware costs. ~

Compared to their earlier codlterparts, the use of
. o8
external support processors will extend beyond management of

thevdevice control functions, as much of the repetitive,
specialized input-output processing is off-loaded from the
centra; processor. Under these circumstances, the secondary
storage devices may be entirely hidden from thé,processes

executing on the central processor, and replaced by a device

L . /
203 L N
\

oy ' 204

i ’ \
independent interface to an external input-output processor,

f .
or database processor.

From uéefsoftware perspective, current approaches to
1nput outppt support are generally rather unsatlsfactoryi
Uncontrolled and incremental development of the varlous
support Snbéystems has left the applications programmer with
a 1egacy of multiple interfaces supportlng functionally
equ1va1en/'operatlons in a variety of manners. Protection

epforcement is often weakest within these input-output code

moddles. The total performance of the system is hampered by
_excessiye software overheads and non-adaptive resource

manageﬂent.

Spftware development and malntenance costs assoc1ated
w1th7€he input-output support routines are unnecessarily
. < . . : ‘
high, due to the poor organization of some very complex

p%éées of code. This lack of software structure and obscure

Jf/nctional dependencies ‘also inhibits the implementor's

’Jf eedom to utilize new hardware input-output components and‘
xternal support processors. Since the necessary software
changes (e;g. to interface a new device or controller, or to
off-load certain functions to a dedicated processor) are
usually quite extensive, the potential performance
improvement is devalued by the large changeover costs and
A unreliable operation following a major software

reorganization.

Consequently, the homogeneous secondary storage input-

A) : 205

output interface has been proposed, as a unified solution to
the software problems, which may be easily integrated into
either existing, or future, hardware confiqurations, as a

résult of its proposed setondary storage processor

AN
implementation.

Compared to conventional techniques, the proposed
organization for secondary storage support offers easier
usage from high’level programming languages, smaller, more
easily comprehended source programé, improved security and
protection enforcemeﬁt, sﬁperior éhtoughput and response-
ﬁime performance, more effective resource*utilization, and
greater flexibility during hardware reconfiguration. 1In
general terms, a homogeneous interface based upon a
secondary storage prbcessor a:dﬁitecture provides a system

which has an attractive cdst—performance ratio compared to

the alternative organizations.

7.2 ' Significance

Whilst the findings of this research are certainly’
encouraging, it must be stressed that the justification
éonducfed thus far for the proposed system organization is
exploratory and df}ected towards general guestions of
apparent feasibility. An attempt at Qetaiied aesign,
per formance ev%luation, and complete ;ustificatfgn lies

beyond the physical, technical and chronological constraints

of the current research.

206

However some signiticant conclusions regarding desiqgn
techniQues may be drawn from the work cohpleted to date.
Firstly, an iﬁtegratéa design based upon either current, or
projected, technoloéies, components, and attributes which
are universally accepted as desirable, 1s intellectually
possible -~ the problem is not too large -to justify avoiding
it. Any successful attempt at implementing a system
requiring sophisticated seéondary storage input-output
facilities must be based upon a very broad pe;spective of
the hardware and software components, and theilr mutual
interaction. Piecemeal approachegs have been inadeguate in
the past, and will become even more so as the attention
shifts from the hardware constraints to the global design
weaknesses in present systems. Further, the design process
should be initially guidedrﬁy global objectives, and the !
finer implementation details should evolve in a general

'top-down' sequence. ’

In its completed form, the proposal presented in this
thesis constitutes a significant departure from accepted
design and implemenfation practices. ‘However, the
ach%gvement of a single input-output module, running on an
externajy support processor, d~es not demand the construction
of a new machine or operating System from 'the ground up' --
existing hardware and software may be used to realize the
completed proposal through a series of incremental

evolutionapyMQQQEF.

Al

v
[

207

7.3 Outstanding Problems and Areas Requiring More Detailed
Investigation
o .

One of the remalning unresolved 1ssues concerns the
suitability of the proposed 1interface for implementing
multiple database management systems. Basically, two
subproblems arise, (a) "How convenient is the 1nterface for
supéorting non-network data models, and implementing non-
software{ end-user interfaces?", and (b) "Can thé input-
output module -be used to 1mplement procedures which would 1in
turn support multiple 'views' of a single logical data
structure, or could this facility be provided entirely by
the input-output module?". The first guestion concerns the
extent to which the interface facilities are funétionally
completé. Resolving the secénd que;tion is more difficult,
and assumes considerable design of thé input-output module's

internal structure mapping and locking mechanisms as a

prerequisite.

fhe interface's functional completeness also comes
under consideration when an attémpt 1s maae to complete the
desigh of those operating system‘and ugllity appliéation;
which require the input-output module capabilities to.be

substituted for the input-output facilities upon which they

are currently based.

another area of potentially fruitful research would be
to assume the desirability of the symmetry between the

input-output support system's conceptual (functional) and

208

v

physical (hardware) decomposition, and then to investigate
; | N
the applicability of generalizing this approach to other

macroscopic system support functions.

Pefhaps one of the most potentially productive areas
warranting further research is that of performaﬁce
evaluation. This work should be directed towards two goals,
namely:

(1) Increased monitoring of current systems to extract
reliable parameter values. Undoubtedly, "ié is already
béipg done witpz@ the manufacturers' software support
grdups, howevéf very litpleiéuantified evidence has

'appeare; in the published literature. '

(2) The current modelling and analysis techniques need to be
extended to remove some of the more restrictive
assumptions of the earlier attempts. Advanced concepts
in gueueing theory and controiled} discr?té event |
simulation could possibly be combined to produce some °
hybrid ﬁodel of the secondary skprage processor

subsystem, which is significantly more realistic’thah

the current models.

The last major issue worfhy of ongoiné investigation
relates to inter-processor communication -- both th%/ ,
hardware and software aspects. Initially an efficiént
mechanism must be found to handle the central processPr té
secondary storage processor link, first for one proceésor at
each’end, then for multiple processors. However a reléFed

AN

N

problem, but one for which possible solutions are much /Te

apparent, concerns the link between the secondary stor
v
rocessor and a highly parallel associative search engige.

t this stage, it is uncléar'where these devices fit in 0
the overall 'scheme Jf things' f&r systems with centrai
proceésor based input-output support, therefore there are no
predecessor systems to study. Perhaps the‘secondary storage
processor organization will make it easier to use these very -
specialized modules efficier iy, since they are not visible

for the central processor resident software, howéver the

issue is not at all clear.

BIBLIOGRAPHY

\
Allman, Eric; Stonebraker, Michael??geld, Gerald (1976):
"Embedding a Relational Data Subfanguage in a General
» Purpose Programming Language", Memorandum No. ERL-M58&4,
Electronics Research Lab., Univ. of California, Berkeley,
October. ' :

Anderson, George A.;\Jensen, E. Douglas (1975): "Computer
Interconnection Structuras: Taxonomy, Characteristics and
Examples", Computing Surveys, vo' 7, no 4, pp 197-213.

Anderson, George A.; Kain, Richard Y. (1976): ."A Content-
Addressed Memory Designed for Data Base Applications", Proc.
1976 Internat. Conf. on Parallel Processing, Wayne State U.,
Michigan, August, IEEE Comp. Society, California, pp 191-
195. - ’

ANSI/X3/SPARC -Study Group on Data Base Management Systems
(1975): "Interim Report 75-02-08", ACM SIGMOD FDT Bulletin,

vol 2, no 2, pp 1-140. { \\\\
64"

r

Atkinson, Toby (iQ?A): "Architecture of Series 60/Level
Honeywell Computer Journal, vol 8, no 2, pp 94-106.

Attanasaio, C.R.; Markstein, P.W.; Phillips, R.J. (1976):
"Penetrating an Operating System: A Study of vM/370
Integrity", IBM Systems J., vol 15, no'l, pp 102-116.

- ~

Avizienis, Algirdas (1976): "Fault-Tolerant Systems", IEEE
Trans. on Computers, vol C-25, no 12, pp 1304-1312.

Bachman, Charles W. (1972): "The Evolution of Storage
Structures", Comm. ACM, vol 15, no 7, pp 628-634.

Bachman, Charles W. (1975): "Trends in;Détabase Management -
1975", Proc. AFIPS National Comp. Conf., vol 44, Anaheim,
California, May, AFIPS Press, Montvale, New Jersey, pp 569-
'576. . .

Balzer, -Robert M. (1971): "PORTS - A Method for Dynamic
Interprogram Communication and Job Control", Proc. AFIPS
Spring Joint Comp. Conf., vol 38, Atlantic City, New Jersey,
May, AFIPS Press, Montvale, New Jersey, pp 485-489.

210

211

Balzer, R.M. '(1973)- "An Overview of the ISPL Computer
System Design" %omm ACM, vol 16, no 2, pp 117-122.

Barron, E.T.; Glo 1oso, R.M. (1973) "A Micro Controlled
Peripheral Processor", Preprints 6th Annual Workshop on
Mlcroprogramm ng, Maryland, September, ACM, New York, pp
-122-128.

Baum, Richard Irwin (1975): "The Architectural Design of a
Secure Data Base Management System", Report OSU-CISRC-TR-75-
8, Computer & Information Sci. Research Center, Ohio State.
U., November, (NTIS report AD AQ21 158).

Baum, Richard I.; Hsiao, David H. (1976): "Database , v
Computers - A Step Towards Data Utilities", IEEE Trans. on
Computers, vol C-25, no 12, pp 1254-1259.

Baum, Richaxd I.; Hsiao, David K.; Kannan, Krishnamurthi
(1976): "The Archltecture of a Database Computer, Part I:
Concepts and \Capabilities", Report OSU-CISRC-TR-76-1,
Computer & Infsrmation Science Research Center, Ohio State
U., September, (NTIS report AD A034 154). '

Berndt, Helmut (1974): "A Multi-microprocessor Désigh
Preprints 7th Annual Workshop on Microprogramming, Palo
Alto, California, September, ACM, New York, pp 299-306.

Berra, P. Bruce; Singhania, Ashok K. (1976): "A Multiple
Associative Memory Organization for Pipelining a Directory
to a Very Large Data Base", Digest of Papers: 12th Spring
COMPCON . San Francisco, February, IEEE Comp. Society, Long
Beach, C~lifornia, pp 109-112. ° : '

Bhushan, Abhay (1972): "The File Transfer Protocol", NIC
Document # 10596, Network Information Centre, Stanford .
Research Institute, Menlo Park, California, July.

Bilofsky, Walt; Irons, Edgar T. (1973): "PDP-10 IMP72
Version 1.5: Reference Manual", Dept. of Computer Science,
Yale University, New Haven, Connecticut, August. -’

Blasgen, Michael W. (1975): "A Comparison of Two I1/0
Programming Interfaces", IBM Research Report RJ 1510, Thomas
J. Watson Research Center, Yorktown Heights, New York, -
February.

BoéﬁﬁT’gjrry W. (1973): "Software and Its Impact: A
Quantitative Assessment", Datamation, vol 19, no 5, pp 487_

59. \

Boehm, Barry W. (1976): "Software Engineering", IEEE Trans.
on Computers, vol C-25, no 12, pp 1226-1241. '

22

Bowie, Jack; Barnett, G. Octo (1976): "MUMPS - An Economical
and Efficient Time-~Sharing System for Information
Management", Computer Programs in Biomedicine, vol 6, pp 11-
22,

Boyce, Raymond F.; Chamberlin, Donald D. (1973): "Using a
Structured English Query. Lanquage as a Data Definition
Facility", IBM Research Report. RJ 1318, Thomas J. Watson
Research Center, Yorktown Heights, New York, December.

Bray, O.H. (1977): "Data Management Requirements: The
Similarity of Memory Management, Database Systems and
Message Processing”, presented at the 3rd Workshop on
Computer Crchitecture. for Non-Numeric Processing, Syracuse
U., New York, May. : .

Brinch nsén, Per (1970): "The Nucleus of a Multi-
programmin® System", Comm. ACM, vol 13, no 4, pp 238-
241, 250.

Brinch Hansen'(ed.), Per (1971): XYRC 4000.Software
Multiprogramming System", RCSL No.\55-D140, A/S
Regnecentralen, Copenhagen, February.

Brinch Hansen, Per (1973a):»0perétihg Systems Principles,
Prentice-Hall, Englewood-Cliffs, New Jersey. .

Brinch Hansen,'Per (1973b) : "Concurrent.Programming o
Concepts", ACM Computing Surveys, vol 5, no 4, pp 223-245.

Brinch Hansen, Per (1975): "The Progréhming Language
Concurrent Pascal"”, IEEE Trans. on Software Engineering, vol
SE-1, no 2, pp 199-207. : ’

Brinch Hansen, Per (1976a): "The Solo Operating System: A
Concurrent Pascal Program", Software - Practice and

Experience, vol 6, no 4, pp 141-149. "

Brinch Hansen, Per (1976b): "The Sblo Operating“System:
Processes, Monitors, and Classes", Software - Practice and

Experience, vol 6, no 4, pp 165-200, :

‘Burner, B.H.; Million, R.P.; Rechard, O.W.; Sobolewski, J.S.
(1969): "A Programmable Data Concentrator for a Large .
Computer System”, IEEE Trans. on Computers, vol C-18, no 11,
pp 1030-1038. '

Burroughs (1970a): "B6500 Infdrmation Processing Systems:
Extended Algol Reference Manual", Form 1039559, Burroughs
- Corporation, Detroit, Michigan, January. ~*

E9LS

. ,) 213

éurroughs (1970b) : "86500 Information Processing Systems:
Espol Reference Manual™, Form 1042744, Burroughs
Corporation, Detroit,_Michigan, January. ,

v

Burroughs (1972): "B6700 Information Prdéessing Systems:
Reference Manual", Form 1058633, Burroughs Corporation,
Detroit, Michigan, May.

Buzen, Jeffrey P. (1975): "I/0 Subsystem Architecture",
Proc. IEEE, vol 63, no 6, pp 871-879.

-i _Harrison, R.D.; Ivie, E.L.; Ryder, J.L.:
1974): "A Back-end Computer for Data Base
Comm. ACM, vol 17, no 10, pp 575-582.

Canad
Wehr
Manadement"

14

Casey, \D.P. (1973): ¥Logical Data Ihterface", IBM Technical
Disclosyres Bulletin, vol 16, no 4, pp 1203-1207.

o

C (1971): "CYBERE7O Model 72 Computer .Systems Reference
Manual: System Des ription and Programming-Information,
vol 1", Publicqtjon No. 60347000, Control Data Corporation.

CDC (1975a): "6000 Series Computer Systems: Reference
Manual", Publication No. 60100000, Control Data Corporation,
February. '

CDC (1975b): "7600 Series and CYBER 70 Model 76 Computer
Systems: Hardware Reference Manual", Publication No.
0367200, Control Data Corporation.

CDC (1976): "Cyber 70 Segies: Kronos 2.1 wWorkshop Reference
Manual", Publication No. 97404700, Control Data Corporation,
April. .

Chamberlin, D.D.; Astrahan, M.M.; Eswaran, K.P.; Griffiths,
P.P.; Lorie, R.A.; Mehl, J.W.; Reisner, P.; Wade, B.W.
(1976): "SEQUEL 2: A Unified Approach to Data Definition,

" Manipulation and Control", 1IBM J. Research and Development,
vol 20, no 6, pp 560-575. - i

Chen, Peter Pin-Shan (1976): "The Entity—Relationship Model
- Towards a Unified View of Data", ACM Trans. on Database
Systems, vol 1, no 1, pp 9-36.

Childs, D.L. (1968): "Feasibility of a Set-Theoretic Data
Structure: A General Structure Based on a Reconstituted
Definition of a Relation", Proc. IFIP Congress 68, Edinburgh,
August, New-Hollangd, Amsterdam, pp 420-430.

CODASYL (1971): Data Base Task Group ‘Report, CODASYL DBTG,
‘April, ACM, New York. : !

< -

214

-

CODASYL (1973): Data Definition Languagce Committee Journal
of Development, CODASYL DDLC, June, IFIP Administrative Data
Processing Group, Amsterdam. ‘ :

Codd, E.F. (1970): "A Relational Model of Data for Large
Shared Data Banks", Comm. ACM, vol 13, no 6, pp 377-387.

Computer Automation (1976): "Distributed I/0 System: User's
Manual", Reference 91-53629-00B1, Computer Augpmation,
Irvine, California, August. . '

Cook, Thomas J. (1975): "A Data Base Management System
Design Philosophy", Proc. ACM SIGMOD International
Conference on the Management of Data, San Jose, California,
May, ACM, New York, pp 15-22. o '

Cooper, Richard G. (1973): "Micromodules: Microprogrammable"
Building Blocks for Hardware Development", Proc. lst Annual
Symp. on Comp. Architecture, Florida, December, ACM SIGARCH
Comp.- Architecture News, vol 2, no 4, pp 221-226.

Copeland, George P.; Lipovski, G.J.; Su, Stanley Y.W.
(1973): "The Architecture of CASSM: A Cellular System for
Non-nui 2ric Processing", Proc. lst Annual Symp. on Comp.
" Architecture, Florida, December, ACM SIGARCH Comp.
Architecture News, vol 2, no 4, pp 121-128.

Coulouris, G.F.; Evans, J.M.; Mitchell, R.W. (1971): "A
Hardware Aided Approach to Content-addressing in Data
Bases", Hardware Software Firmware Trade—offs: Proc. IEEE
International Conf., Boston, September, IEEE Computer
Society, California, pp 19-20.

Date, C.J.; Hopewell, P. (1971): "File Definition and
Logical Data Independence", Proc. ACM SIGFIDET Workshop on 3
Data Description, Access and Control, San Diego, California,
November, ACM, New York, pp 117-138.

Date, C.J. (1976): "An Architecture for High-Level Language.
Database Extensions", Proc. SIGMOD International Conf. on
the Mahadement of Data, Washington, June, ACM, New York, pp
101-122. ‘ »

Day, John (1973): "A Proposed File Access Protocol
Specification", NIC Document # 16819, Network Information
Centre, Stanford Research Institute, Menlo Park, California,
June. . : :

DEC (1970): "PDP-10 Reference Handbook", Order code: AIW,

Digital Equipment Corporation, Maynard, Massachusetts.r
¥ . . -

e

215

i
B

3

DEC (1975): "DECSYSTEM—IO: Technical Summary", Digital
Equipment Corporation, Maynard, Massachusetts.

Deo,'Narsingh (1974): Graph Theory with Applications to
Engineering and Computing Science, Prentice-Hall Inc.,
Englewood Cliffs, New Jersey. o

Dijkstra, Edsger‘w. (1968): "The Structure of the 'THE'- -
Multiprogramming System", Comm. ACM, vol 11, no 5, pp 341-
346. - '

Dijkstra, E.W. (1971): "Hierarchical Ordefing of Seqguential

Processes", Acta Informatica, vol 1, no 2, pp 115-138.
Doran, R.W. (1975): "The International Computer Ltd. ICL2900
Computer Architecture (compared to the Burroughs
B6700,/7700)", ACM SIGARCH Comp. Architectur- ‘lews, vol 4, no
3, pp 24-47,

Downs, D.; Popek, G, (1977): "Similarities anc ~ -rences

Between 0O/S and Data Management Security - A ¢ uay ‘owards a
Kernel Design of Data Base Security Software", rese-ted at

IEEE Comp. Society's Workshop on Operatihg and D:-a Lise. ‘
Management Systems, Northwestern Univ., Illinois, #a c-.

Endres, Albert (1975): "An_Analysis of Errors and The. r
Causes in System Programs", IEEE Trans. on Software
Engineering, vol SE-1, no 2, pp 140-149. . C

Eswaran, Kapali P. (1976): "Specifications, Implementations
and Interactions of a Trigger Subsystem in an Integrated
Database System", IBM Research Report RJ 1820, Thomas J.
Watson Research Center, Yorktown Heights, New York, August.

Eswaran, K.P,.; Gray, J.N.; Lorie, R.A.; Traiger, I.L. g

. (1976): "The Notions of Consistency and Predicate Locks in a

Database System", Comm. ACM, vol 9, no 11, pp 624-633.

Feiertag, R.J.; Organick, E.I. (1971): "The Multics
Input/Output System", Proc. 3rd Symp. on Operating sttems
Principles, Palo Alto, October, ACM SIGOPS (Op. Sys. Review,
1972, vol 6, no 1&2, pp 35-41. s

Fernandez, E.B.; Summers, R.C.; Lang, T.; Coleman, C.D.
(1976): "Architectural Support for System Protection and
Database Security", Report G320-2683, IBM Los Angeles -
Scientific Center, December, (IEEE Computer Society

“ Repository R76-324).

Flores, Ivan (1969): Computer Organizatidn, Prentice-Hall

. Inc., Englewood Cliffs, New Jersey.

216

Flynn, Michael J. (1977): "Some Remarks on High Speed
Computers", Digest of Papers: 14th Spring COMPCON, San
Francisco, March, IEEE Comp. Society, Long Beach,
California, pp 18-20. . o

Gagliardi, U.0. (1975): "Trends in Computing-system
Architecture", Proc. IEEE, vol 63, no 6, pp 858-862.

General Electric (1970): "GE-600 Line Integrated Data Store:
Reference Manual”, reference no. CPB-1565A, General Electric
Corporation, April.

Gérschke,'C.M.; Mitchell, J.G. (1975): "On the Problem of
Uniform References to Data Structures", IEEE Trans. on
Software Engineering, vol SE-1, no 2, pp 207-219.

)

Gray, J.N.; Lorie, R.A.} Putzolu, G.R.; Traiger, I.L. |,
(1976) : "Granularity of Locks and Degrees of Consistency. in
a Shared Data Base®, Proc. IFIP Working Conf. on Modellin
in Data Base Management Systems, G.M. Nijssen,(ed.), North-
Holland, Amsterdam, pp 365-394, '

Hardgrave, W.T. (1975): "Set Processing in a Network
Environment", ICASE Report’' No. 75-7, Universities Space. .
Research. Assoc., Hampton, Virginia, March, (NTIS report
N75 21035). . :

Hawley, D.A.: Knowles, J.S.;'Tozer; E.'(l975): "Database
Consistency and the CODASYL DBTG Proposals", Computer J.,
vol 18, no 3, pp 206-212.

Heacox, H.C.; Cosloy, E.S.; Cohen, J.B. (1975): "an
Experiment in Dedicated Data Management", Proc. 1st
International Conf. on Very Large Data Bases, Massachusetts, .
Ségsember, ACM, New York, pp 511-513. ' '

Held, G.; Stonebraker, M.; wong, E. (1975): "INGRES - A -
Relational Data Base Management System", Proc. AFIPS
National Comp. Conf., vol 44, Anaheim, California, May,
AFIPS Press, Montvale, New Jeresy, pp 409-416.

‘Hinke, Thomas H.; Schaefer, Marvin (1975): "Secure Data

- Management System", Report RADC-TR-75-266, Systems
Development Corporation, Santa Monica, California, November
(NTIS report AD A019 201).

Hoagland, Albert S. (1976): "Magnetic.Recording'Storage",
IEEE Trans. on Computers, vol 'C-25, no 12, pp 1283-1288.

Hoare, C.A.R. (1973): "a Struétured'Paging System",'C%mQuter
J., vol 16, no 3, pp 209-214, ’

" GH20~1173-1, IBM Corporatlon.

217

Hoare, C.A.R. (1974): "Monitors : An Operating System
Structuring Concept", Comm. ACM, vol 17, no 10, pp 549-557.

Honeywell (1971): "Series 200: MOD 1(MSR) Data Management
Subsystem", File No. 123.60Q5.141C.5: Order No. 618,

~ Honeywell Information Systems Inc., March.

Honeywell (1975): "Series 60 Level 66: Summary Descriétion",
File No. 1P0l: Order No. DC64 (Rev. 1), Honeywell
Information Systems Inc.,_Waltham, Massachusetts. -

Honeywell (1976): "Multics PL/1 Language Spec1f1cat10n
File No. 1L23: Order No. AG94 (Rev. 2), Honeywell
Information Syslems Inc., Waltham, Massachusetts, July.

Howie, H. Robert, - (1976): "More Practical Applications
of Trillion-Bit Mass Storage Systems"., Digest of Papers:
l2th Spring COMPCON,¢San Francisco, February,~IEEE Comp.
Society, Long Beach, Callfornla, pp 53-=56.

Hsiao, David; Harary, Frank (1970): “A'Formal System for
Information Retrieval from Files", Comm. ACM, vol 13, no 2,°
pp 6&7-73. : '

Hsiao, D.K.; Kannan, K. {(1977): "The Architecture of a

" Database Computer", presented at the 3rd Workshop on

Computer Architecture for Non-Numeric Proce551ng, Syracuse
U., New York, May. ‘

Hutt, Andrew T.F. (1974): "A Data Base Approach to System
Architecture", Proc. IFIP Congress 1974, Stockholm, August,
New-Holland, Amsterdam pp 252-256.

IBM (1963): "System Operation Reference Manual: IBM
1401/1460 Data Proce551ng Systems", form A24-3067-0, IBM
Corporation. o ,

IBM (1969): "Introduction to System/360: Direct Access
Storage Devices and Organlzatlon Methods", form GC20~1649-4,

~ IBM Corporation.

IBM (1971): "IBM System/360 Operating System: Supervisor
Services“ form GC28-6646, IBM Corporation, June.

IBM (1972): "IBM S/360 and S/370 ASP Version 3 Asymmetrical
Multiprocessing System: General Informatlon Manual", form

v

" IBM (1973a) "Reference Manual for IBM 3830 Storage Control

Model 1 and IBM 3330 Disk Storage" form GA26-1592~-3, IBM.
Corporatlon. ’ . .

218

IBM (l973b):‘"OS/VS Data Management Services Guide", form
GC26-3783~-3, IBM Corporation, December.

IBM (1973c): "OS/VS Virtual Storage Access Method (VSAM):
Programmer's Guide", form GC26-3838-0, IBM Corporation,
- December. ‘.

IBM (1974) "Information Management System, Virtual Storage .
(IMS/VS): General Informatlon Manual", form GH20-1260-1, IBM
Corporatlon, July. :

IBM (1975): "Introductlon to the IBM 3850 Mass Storage
System (MSS)", form GA32-0028-2, IBM Corporation, July.

Jensen, E. Douglas (1975): "The Influence of
Microprogramming on Computer Architecture: Distributed
Processing", Proc. ACM Arnnual Conf., Minneapolis, Minnesota,
October, ACM, New York, pp 125-128.

<

Jensen, E. Douglas; Thurber, Kenneth J.; Schneider, G-:
Michael (1976): "A Review of Systematic Methods in
Distributed Processor Interconnection", Presented at IEEE
International Conf. on Communications, Philadelphia,
Pemnsylvania, June.

, .
Juliussen, Egil; Bhandarkar, Dileep (1975): "A Comparitive
Evaluation of the Cost-Effectiveness of Computer Systems",
Presented at ACM Annual Conf , Minneapolis, Minnesota,
October. :

Juliussen, J. Egil (1976): "Why is Peripheral Interfacing so
Expensive?", Digest of Papers: 13th Fall COMPCON,
Washington, September, IEEE Comp. Society, Long Beach,
California, pp 274-276.

Katzman, James A. (1977): "System Architecture for Nonstop
Computing", Digest of Papers: l4th Spring COMPCON, San
Francisco arch, TEEE Comp. Society, Loéng Beach,
California;, pp 77-79. - :

1

King, Paul F.; Collmeyer, Arthur J. (1973): "Database
Sharing - An Efficient Mechanism for Supporting Concurrent
Processes", Proc. AFIPS National Comp. Conf., vol! 42, New
York, May, AFIPS Press, Montvale, New Jersey, pp 271-275.
o€ . .)

Kleinrock, Leonard (1975): Queueing Systems, Volume 1, John
Wiley and Sons, New York.

Lauesen, Soren (1975)v "A Large Semaphore Based Operatlng
System", Comm. ACM, vol 18, no 7, pp 377-389.

219

Lee, Imsong (1974): "LSI Microprocessors and Microprograms
for User Oriented Machines", Supplement to the Preprints 7th
Annual Workshop on Microprogramming, Palo Alto, September,
ACM, New York, pp S.1-5.13 -

Lin, Chyuan Shiun; Smith, Dianne C.P.; Smith, John Miles

(1976): "The Design of a Rotating Associative Memory for

Relational Database Applications", ACM Trans. on Database
Systems, vol 1, no 1, pp 53-65.

Linde, Richard H. (1975): "Operating System Penetration",
Proc. AFIPS National Comp. Conf., vol 44, Anaheim,
California, May, AFIPS Press, Montvale, New Jersey, pp 361-
368. .

Lipovski, G. Jack; Su, ®Panley Y.W. (1975): "On Non-numeric
Architecture", ACM SIGARCH Comp. Architecture News, vol 4,
ne 1, pp 14-29. '

Liskov, Barbara H. (1972): "The Design of the Venus”
Operating System", Comm. ACM, vol 15, no 3, pp 144-149.

Liskov, Barbara; Zilles, Stephen (1974): "Programming with
Abstract Data Types", ACM SIGPLAN Notices, vol 9, no 4, pp
50-59. -

Lowenthal, Eugene I7 (1976a): "Backend Machines for Data
Base Management: A Tutorial", Proc. 5th Texas Conf. on
Computing Systems, U. Texas, Austin, October, IEEE Comp.
Society, Long Beach, California, pp 21-25.

 Lowenthal, Eugene I. (1976b): "The Backend (Data Base)
Computer - Parts I and II", Auerbach Data Base Management
Series, 24-10-04 and 24-01-05, Auerbach Publishers, New

- Jersey. : .

Lowenthal, Eugene I. (1977): "A General Pyrpose DBMS
Kernel", presented at the 1977 USAFA Computer Related
Information Systems. Symposium {CRISYS) ,>Colorado Springs,
Colorado, January.

Macri, Philip P. (1976): "Deadlock Detection and Resolution
in a CODASYL Based Data Management System", Proc. ACM SIGMOD
International Conf. on Management of Data, Washington, June,
ACM, New York, pp 45-49.) C

Madnick, Stuart E.; Alsop, Joseph W. (1969): "A Modular
Approach to File System Design”, Proc. AFIPS Spring Joint
Comp. Conf, vol 34, Boston, Massachusetts, May, AFIPS Press,
Montvale, New Jersey, pp 1-13.

o
|29]
<

Madnick, Stuart E.; Donovan, John J. (1973): "Application
and Analysis of the Virtual Machine Approach to Intormation
"System Security and Isolation", Proc. SIGOPS-SIGARCH
Workshop on Virtual Computer Systems, Harvard U., March,
ACM, New York, pp 210-224.

Madnick, Stuart E.; Donovan, John J. (1974): Operating
Systems, McGraw-Hill Book Co., New York.

Madnick, Stuart E. (1975): "Design of a General Hierarchical
Storage System”", presented at IEEE International Convention
and Exposition (INTERCON), April, New York,

Manola, Frank A. (1975){ "Principles of the CODASYL Approach
to the Description of Data Structures", NRL Memorandum
Report 3068, Naval Research Laboratory, Washington D.C.,
June.

Manola, F.A. (1976): "The GODASYL Data ‘Description Language:
Status and Activities, April 1976", NRL Memorandum Report
8038, Naval Research Laboratory, Washington D.C., November,
(NTIS report AD A033 401).

Marill, Thomas; Stern, Dale (1975): "The Datacomputer - A
Network Data Utility", Proc. AFIPS National Comp. Conf., vol
44, Anaheim, California, May, AFIPS Press, Montvale, New
Jersey, pp 389—395;

Martin, R.R.; Frankel, H.D. (1975): "Electronic Disks in the
1980's", Computer, vol 8, no 2, pp 24-30.

Maryanski, Fred J. (1977): "Performance of Multi-Processor
Back—-End Data Base Management Systems", Technical Report CS °
77-07, Dept. of Computer Science, Kansas State University,
Manhattan, Kansas, April.

Marygnski, F.; Fisher, P.; Wallentine, V. (1975): "Usability
and Feasibility of Back-End Minicomputers", Report under
USACSC Grant No. DAHC04-75-G-0137, U.S. Army Computer
Systems Command, Fort Belvoir, Virginia, June. ‘

Maryanski, Fred J.; Fisher, Paul S.; Wallentine, Virgil E.
(1976): "Evaluation of Conversion to a Back—-End Data Base
Management System", Proc. ACM Annual Conf., Houston, Texas,
October, ACM, New York. '

Maryanski, Fred J.; Fisher, Paul S.; Wallentine, Virgil E.;
Calhoun, Myron A.; Sernovitz, Louis (1976): "A Minicomputer -
Based Distributed Data Base System", Proc. Trends and
Applications Symp.: Micro & Mini Systems, Gaithersburg,
Maryland, May, IEEE Comp. Soc., Long Beach, California.

"

221

Maryanski, Fred J.; Fisher, Paul S.; Wallentine, Virgil .
{1976): "A User-Transparent Mechanism for the Distributifn
of a CODASYL Data Base Management System”", Technical
CS 76-22, Dept. of Computer Science, Kansas State
University, Manhattan, Kansas, December.

Maryanski, ¢ 'u J.; Wallentine, Virgil E. (1976): "A
Simulation Model of a Back-End Data Base Management System"
Proc. of the 7th Pittsburgh Conference on Modeling and
Simulation, April.

5
McDonell, K.J.; Marsland, T.A. (1977): "The Michian
Terminal System: Internal Architecture”, Technical Report
TR77-3, Dept. of Computing Science, U. of Alberta, September.

McGregor, D.R.; Thomson, R.G.; Dawson, W.N. (1976): "High
Performance Hardware for Database Systems™, Proc. 2nd
International Conf. on Very Large Data Bases, Brussels,
Belgium, September, ACM, New York. N

Melliar-Smith, P.M.; Randell, B. (1977): "Software
Reliability: The Role of Programmed Exception Handling"
-Proc. ACM Conf. on Languag. Design for Reliable Software, N.
Carolina, March, (SIGOPS Op. Sys. Review, -1 11, no 2), pp
95-100. - ' .

. ‘ / :
Minsky, Naftaly (1974): "Another Look at Data Bases", ACM
SIGMOD FDT Bulletin, vol 6, no 4, pp 9-17.

Miller, Stephen W.; Gagliardi, Ugo 0. (1976): Final Report
from the Symposium on Advanced Memory Concepts, Symposium
held at Stanford Research Instltute, June, (NTIS Report

AD AQ29 631).

Mitchell, R.W. (1976): "Content Addressable File Store",
presented at Online Conf. on Database Technology, London,
England, April. -

Moreira, Alberto Cezar de Souza; Pinheiro, Claudio; D'Elia,
Luiz Fernand (1974): "Integrating Database Management into
Operating Systems - An Access Method Approach", Proc. AFIPS
National Comp. Conf., vol 43, Chicago, Illinois, May, AFIPS
Press, Moptvale, New Jersey, pp 57-62. - v

Nijssen, G.M., (1972): "Common- Data Base Languages", ACM
SIGBDP Data Base, vol 4, no 4, pp 7-11.

Nijssen, G.M. (1975): "Two Major Flaws in the CODASYL DDL
1973 and Proposed Corrections”, Information Systems, vol 1,
no ‘4, pp 115-132. o

S o | 222

Ohmori, K.; Koike, N.; Nezu, K.; Suzuki, S. (1974): "MICS -
A Multi-nfiicroprocessor System", Proc. IFIP Congress 1974,
Stockholg, August, North-Holland, Amsterdam, pp 98-102.

Olle, T. ""illiam (1974): "Current and Future Trends in Data
Base Mar > ment Systems", Proc. IFIP Congress 1974,
Stockholm, August, North-Holland, Amsterdam, pp 998-1006.

Olle, William T. (1975): "A Practitioner's View of .
Relational Data Base .Theory", ACM SIGMOD FDT Bulletin, vol
7, no 3&4, pp 29-43,.

Omahen, Kenneth (1975): "Estimating the Response Time for
Auxiliary Memory Configurations.with Multiple Movable-Head
Disk Modules", Proc. lst International Conf. on Very Large
Data Bases, Masachusetts, September, ACM, New York pp 473~
495,

Organick, Elliot I. (1972): The Multics System: An
Examination of Its Structure, MIT Press, Cambridge,
Massachusetts.

Ozkarahan, E.A.; Schuster, S.A.; Smith, K.C. (1975): "RAP -
An Associative Processor for Data Base Management", Proc.
AFIPS National Comp. Conf., vol 44, Anaheim, California,
‘May, AFIPS Press, Montvale, New Jersey, pp 379-387.

Palmer, Ian R. (1974): "Levels of Database Describtion",
Proc. IFIP Congress 1974, Stockholm, August, North-Holland,
Amsterdam, pp 1031-1036.

Pépadimitriou, Christos H.; Bernstein, Philip A.; Rothnie,
James B. (1977): "Some Computational Problems Related to
Database Concurrency Control", an unpublished manuscript.

Parnas, David (1974): "On a 'Buzzword': Hierarchical
Structure”, Proc. IFIP Congress 1974, Stockholm, August,
New-Holland, Amsterdam, pp 336-339. .

Patel, Rajini M. (1969): "Basic I/0 Handling on Burroughs
B6500", Proc. 2nd Symposium on Operating Systems Principles,
Princeton, New Jersey, October, ACM, New York, pp 120-129.

Pirkola, Gary C. (1975): "A File System for a Genera}—
Purpose Time- Sharlng Environment”, Proc. IEEE, vol 63, no 6,
pp 918-924,. :)

Popek, G.J.; Kline, C.S. (1974): "Verifiable Secure
Operating System Software", Proc. AFIPS National Comp. Conf.,
vol 43, Chicago, May, AFIPS Press, Montvale, New Jersey,

pp 145-151.

223

Poujoulat, G.H. (1974): "Microprogramming of a Burst
Structure”, Preprints 7th Annual Workshop on
Mlcroprogrammlng, Palo Alto, California, September, ACM, New
York, pp 48-51. :

Randell, B. (1975): "System Structure for Software Fault
Tolerance”, Proc. International Conf. on Reliable Software,
Los Angeles, April, ACM SIGPLAN Notlces, vol 10, no 6, pp
437-449, ' .

Reiter, Allen (1975): "Data Models for Secondary Storage
Representations”, MRC Technical Summary Report #1554,
Mathematics Research Centre, U. of Wisconsin, Madlson, July,
"(NTIS report AD AQ0l6. 347). .

Rice, Rex (1970): "LSI and Computer Systems Architecture"
Computer De51gn, vol 9, December, pp 57-63.

Ritchie, Dennis M. (1973): "C Reference Manual", Bell
Telephone Laboratories, Murray Hill, New Jersey.

Ritchie, Dennis M.; Thompson, Ken (1974): "The UNIX Time-
Sharing System", Comm. AC™ vol 1%, no 7, pp 365-375.

Robinson, K.A. (1975): "DMS 1100:.An Indepth Evaluation"
Software World, vol 6, no 2, pp 8= ~14.

Rodriguez-Rosell, J.; Eckhouse, Rl}(l977): "Management of
Data by Future Operating Systems", New Directions for -
~Operating Systems: A Workshop Report, J.C. Browne (ed.), -rw
SIGOPS Op. Sys. Review, vol 11, no 1, pp 23-25.

Rosenthal, Robert S. (1977): "An Evaluation of Backend Data
Base Management Machines", presented at the 1977 USAFA
Computer Related Information Systems Symposium (CRISYS),
-Colorado Springs, Colorado, January.. .

Rosenthal, Robert S. (1977b): private communlcatlon, MRI
Systems Corporat1on, Austin Texas, May.

Schiller, w.L. (1975): "Design of a Security Kernel for the
PDP-11/45", Report ESD-TR-75-69, MITRE Corp., Bedford,
Massachusetts, May, (NTIS report AD AQll 712).

Schlagetqr,_G.'(1976): "The Probiémcof Lock By Value in
Large Data Bases", Computer J., vol 19, no 1, pp 17—20.

Schlageter, Gunter (1975): "Access. Synchronization and
Deadlock Analysis in Database Systems: An Implementation
Oriented Approach" Information Systems, vol 1, pp 97-102.

224

Schroeder, Michael D. (1975): "Engineering a Security Kernel
for Multics", Proc. Sth Symp. on Operating Systems _
Principles, U. Texas, Austin, ACM SIGOPS Operating Systems
Review, vol 9, no 5, pp 25-32. -

Senko, M.E.; Althan, E.B.; Astrahan, M.M.; Fehder, P.L.
(1973): "Data Structures and Accessing in Data-base
Systems", IBM Systems J., vol 12, no 1, pp 30-93.

Shemer, J.E.: Collmeyer, A.J. (1972): "Database Sharing: A
Study of Interference, Roadblock and Deadlock™, Proc. ACM
SIGFIDET Workshop on Data Description, Access and Control, |
Denver, Colorado, November, ACM, New York, pp 147—164,

- Sibley, Edgar H. (1974): "On the Equivalences of Data Based
Systems", Proc. ACM SIGMOD Workshop on Data Description,
Access and Control, vol 2, Ann Arbour, Michigan, May, ACM,
New York, pp 45-76. :

Sibley, E.H. (ed.} (1976): "Data-Base Management Systems",
ACM Computing Surveys, vol 8, no 1, (Special Issue).

Sindelar, Frank; Hoffman, Lance J. (1974): "A Two Level Disk
Protection System", Memo ERL-M452, College of Engineering,
U. of California, Berkley, May, (IEEE Comp. Society
Repository R75-86).

Snuggs, Mary E.; Popek, Gerald J.; Peterson, Ronald J.
(1975): "Data Base System Objectives as Design Constraints",
Proc. ACM Annual Conf., Minneapolis, Minnesota, October,

ACM, New York, pp 641-647.

STIS (1976): private communication, Set Theoretic
Information Systems Corporation, Ann' Arbor, Michigan, .
September. :

Stonebraker, Michael; Held, Gerald (1975): "Networks,
Hierarchies, and Relations in Data Base Management Systems",
presented at the 1975 ACM Pacific Conf., (Memorandum No.
ERL-M504, Electronics Research Lab, U. California, Berkeley,
March) . : '
Summers, Rita C.; Coleman, Charles D.; Fernandez, Eduardo B.
(1974): "a Programming Language Approach to Secure Data Base
Access", Technical report G320-2662, IBM Los Angeles
Sc¢ientific Center, California, May.. ' S

Tao, W.Y.Y. (1974): "A Firmware Data Compression Unit",
Report UIUCDCS-R-74-617, Dept. Computer Science, U. of
Illinois, Urbana, January. :

225

Tomlin, E.L. (1973): "Microprogrammed Disc Controllers”,
M.Sc. Thesis, Naval Postgraduate School, Monterey, '
California, December, (NTIS report AD 789 812).

Tsichritzis, D. (1976): "LSL: A Link Selector Language"
Proc. SIGMOD International ‘Conf. on the Management of Data,
Washington, {Ene, ACM, New York, pp 123-133. .

University of Michigan. (1973): "The Michigan Terminal
System, Volume 3: Subroutine and Macro Descriptions", The
University of Michigan Computing Center, Ann Arbor,

Michigan, May.
Wallentine, V.; Maryanski, F.; Fisher, P.; McBride, R.; Fox,
S.; Chapin, W.; Allen, L. (1975): "Technical Report on the
Implementation of a Backend Data Base Management System"
Technical Report TR-CS-09-75, Dept. of Computer Sc1ence,
Kansas State University, Manhattan, Kansas, October.

Wasserman, Anthony Ira (1976): "Embedding Data Management
Operations in Programming Lanquages", Digest of Papers: 12th
Spring COMPCON, San Francisco, February, IEEE Comp. Society,
Long Beach, California, pp 79-82.

Withington, Frederick G. (1975): "Beyond 1984: A Technology
Forecast", Datamation, vol 21, no 1, pp 54-73.

.withington, Frederic G. (1976): "Future Computer
Technology", ACM SIGBDP Newsletter: Data Base, vol 7, no 4,
pp 7-14.

Winter, Richard; Hill, Jeffrey; Greiff, Warren (1973):
"Further Datalanguage Design Concepts", Computer Corporatlon
of Amerlca, Cambridge, Massachusetts, December

White, J.C. C (1975) : "Design of a Secure File Management
System", Report ESD-TR-75-57, MITRE Corp. Bedfokeg
Massachusetts, April, (NTIS report AD AOlO 590).

White, Lionel S.; Welch, T.A. (1975): "Analysis of Virtual
Memory Implementation", Technical report TR 174, Information
Systems Research Laboratory, Un1v. of Texas, July, (NTIS
report AD AQ023 116).

Whitney, Kevin M. (1973): "Fourth Generation Data Management
Systems", Proc. AFIPS National Comp. Conf., vol 42, New
York, May, AFIPS Press, Montvale, New Jersey, pp 239-244.

Wulf, W.A.; Russell, D.; Habermann, A.N.; Geschke, C.;
Apperson, J.; Wile, D.; Brender, R. (1971): "BLISS Reference
Manual", Computer Science Department, Carnegie-Mellon Un1v
Plttsburgh Pennsylvania, October..

226

Wulf, W.; Cohen, E.; Corwin, W.; Jones, A.; Levin, R.;
z Pierson, C.; Pollack, F. (1974): "HYDRA: The Kernel of a

Multiprocessor Operating System", Comm. ACM, vol 17, no 6,
pp 337-345. :

APPENDIX A
T
A PROPOSAL FOR THE IMPLEMENTATION OF A SPOOLING SUBSYSTEM

USING A COMPLEX INPUT-OUTPUT INTERFACE

#
5

The example presented in- this Appendix is intended to .
illustrate arpsssible level of input-output interaction
across a complex logical 1nterface. The skeletal de51gn of a
_hypothet1ca1 spoollng subsystem will be,@resented a

IR
spoqllng subsystem was chosen since this is one application
which has historically beeq‘implemented using a low level
interface and a tight coupling between the actual devices

and the qudiing routines.

The patticulaf interface which has been selected is-the .
proposed uniform interface described in Section 4.3, wh}ch
is in turnfbased upon the CODASYL Data Definition (DDL) and
bata Manipulation‘Languages (DML). Interface schemar
definitions (Eigures A.l, A.2,.A.3 and A.4) based on the
modified CODASYL DDL will be usedato‘describe the data
structures accessed and manipulated by user.processes;and

the spooiing routines during spoéling operations.

~

It is not intended that this proposal be critically:
evaluated with respect to its run-time eff1c1ency, rather

the aim is to show that a logically cons;stent view of

P

227

228"

o

input:;utput operations assists, réther than hinders the
sound&development of cooperating, concurrent software
modules., If the desirability and feasibility of #he concept
can been established, Eggg.éttenfion ma&y be turned to _
details of efficiency and implemeﬁtation (refer to Ch;pters
5 and 6). | |

s

A.l1 Data Structures and Declarations

The hypothetical spooling subsystem (described in the
folléwing!sections) requires access to three logical .
partitions of the total secondary étorage resources, each of
whiéh is described by a correspénding interfaces schema:

(1) USER-CONTROL: this partition holds the user ‘
idenpificafion and déséription data for vaiid users,

-

accoﬁnting information, user'validation passwords, etc. -
On{y the unique user ide:iiigcation field (USER-ID) o
thé USER—NAME‘:ecord typé is visible to the spooling
subsystem' (see FigurevA.i)) since it will be assumed
that-thewinput?output accounting>and user- validation
functions are perférmed elsewhere.

(2) FILE-SYSTEM: the directbries; access!ihformatibn, file
degcrip£ions and files for thé user accessible secondary
storage data structures are held in the partition
describéd'by this schema_(see_Figure A.2). Thelépoolingv
subsystem has(accesé to two permaneqf'set types in this

area, namely USER-DIRECTORY which associates zero, one

or more FILE-ID's with a USER-ID, and WORK-FILE, where

229

each occurrencedis a set of TEXT records which aré
uniquely identifier by their line numbersw—— e.g. a
'‘Tine' file under the Michigan Terminal System. All the
pseudo device files are stored in this region.
(3) DEVICE-CONTROL: the data held in this region .is y
dependent upon the hardware device confiéuration, and it
is used by the spooling‘subsystém to identif& groups of
identical devices (i.e. occurrences of the DEVICES set
type), the physical device attributes and thé individual
devices (see Figufe-A.3). Note, the devices described in
this area are the spooled devices, not the secondary
storage devices. In addiﬁioh, no process outside the

spooling subsystem may use this schema, or access one of

the spooled devices directly.,

o

SCHEMA name is USER-CONTROL
;CALL ... ON ERROR during ... _
;ACCESS-CONTROL lock for ... is <o o

RECORD name is USER-NAME
;s IDENTIFIER is USER-ID N
;CALL ... ON ERROR during . .
;ACCESS-CONTROL lock for ... is ...
. 01 USER-ID : . -TYPE 1is CHARACTER ...

A} -

Figure A.1 1Interface Schema Declarations for the User
Identification Data -

In additian, tﬁe spooling subsystem maintains three

temporary set types, linking together records in the three

TR e e o

230

previously mentloned areas (see Flgure A.4). These sets are
used to 1mplement a queue of outstandlng reguests for files
to be spooled to output devices (SPOOL-QUEUE), to associate .
user information with spooled files (SPOOL-DIRECTORY), and
to record the allocation of a.specific spooled file to a

particular device (DEVICE-ASSIGNMENT).

‘Using these interface schema declarations, it is

possible to spe;ify the derived subschemata éppropriate for
an input spoolihg procesé, an output spooling proéess and a
user process performing spooled input-output. Data

structureidiagrams Qi}l be uséd to describe those sections
of the database which a particular.subschema makes visible
to its associated process. Where necessary, the procedural

operation of a process will be illustrated using the

modified CODASYL DMLL. , %
A.2 An Input Spooling Process : - .

.

The input spooling process's view of the database is

illustragsi in Figure A.5, and the associated procedure for

a typical Input spooling process (in this case, servicing a
rd : . '

card reader) is outlined in Figure A.6.

1: While COBOL i$ not the ideal language for this exercise,
at the present time, the operations outlined in Section
4.3.2 constitute a complete set of DML capabilities -
undoubtedly, any systems programming language designed
to interface with the proposed input-output module would
support a set of DML primitives which would be, at
least, semantlcally equ1valent to the proposed DML
facilities.- - . - .

231

_SCHEMA name 1is FILE-GYSTEM
;CALL ... ON ERROR during ...
; ACCESS-CONTROL lock for ... is ...

RECORD name is FILE-NAME Ny
; IDENTIFIER is OWNER-ID,FILE-ID *
;CALL ... ON ERROR during . .
s ACCESS-CONTROL lock for ... is ...
01 OWNER-ID ’ "TYPE is CHARACTER ...
01 FILE-ID : TYPE is CHARACTER ...
01 FILE-ATTRIBUTES TYPE is. CHARACTER ...

RECORD name 1s TEXT
;:IDENTIFIER is LINE-NUMBER WITHIN WORK -FILE set

:CALL ... ON ERROR during .

rACCESS—CONTROL lock for ... is ... :
01l LINE-NUMBER TYPE is FLOAT DECIMAL ...
01 LINE-DATA : TYPE is CHARACTER ...

SET name is WORK-FILE
;OWNER is FILE-NAME
:CALL ... ON ERROR during ...
; ACCESS-CONTROL lock for ... is
MEMBER is TEXT FIXED AUTOMATIC
:SET SELECTION is thru CURRENT of OWNER
;CALL ... ON ERROR during ...
: ACCESS—-CONTROL lock for ... is ...

SET name 1s USER-DIRECTORY
;OWNER is USER-NAME
;CALL ... ON ERROR durlng .o
: ACCESS-CONTROL lock for ... is .
MEMBER is FILE-NAME OPTIONAL MANUAL
:SET SELECTION is thru USER-ID in OWNER EQUAL to -
OWNER-ID of MEMBER
;CALL ... ON ERROR during ...
; ACCESS—-CONTROL lock for ... is ...

~

' Flgure A. 2 Inter face Schema Declarations for the General
Purpose Files and User File Directories

232

SCHEMA name is DEVICE-CONTROL
;CALL ... ON ERROR during ...
" t+ACCESS-CONTROL lock for ... is

RECORD name is DEVICE-CLASS
;IDENTIFIER - is DEVICE-TYPE

;CALL ... ,ON ERROR during ...
i ACCESS-CONTROL lock for ... is ... ,
01 DEVICE-TYPE : TYPE is CHARACTER ...

01 DEVICE ATTRIBUTES TYPE is CHARACTER ...

RECORD name is DEVICE-NAME
IDENTIFIER is° HARDWARE-DEVICE-ADDRESS
-CALL «+. ON ERROR during ...
;ACCESS-CONTROL lock for .., is ...
01 DEVICE-ID v TYPE is CHARACTER ...
01 HARDWARE-DEVICE-ADDRESS TYPE is CHARACTER

SET name is DEVICES
;OWNER is DEVIC CLASS
;CALL ... ON ERROR during ...
;ACCESS-CONTROL lock for ... is ...

MEMBER is DEVICE-NAME MANDATORY AUTOMATIC linked .to OWNER
;SET SELECTION is thru CURRENT of OWNER
;CALL ... ON ERROR during ... o
;ACCESS-CONTROL 1lock for ... is ... :

SET name is DEVICE-ASSIGNMENT
;OWNER is DEVICE-NAME :
;CALL ... ON ERROR during ...
;ACCESS-CONTROL lock for ... is. ...
MEMBER is FILE-NAME OPTIONAL MANUAL linked to OWNER
;SET SELECTION is thru CURRENT of OWNER
;CALL ... ON ERROR during ...
; ACCESS-CONTROL lock for ... is. ...

o

Figure A.3 Interface Schema Declarations for the Device
‘ Configuration Data

233

SCHEMA- name is SPOOLER ,
;CALL ... ON ERROR during ...
_ ;ACCESS-CONTROL lock for ... is ...

SET name is SPOOL-DIRECTORY
;OWNER is USER-NAME
;CALL ... ON ERROR -during ... ’
; ACCESS~CONTROL lock for ... is ...
MEMBER is FILE-NAME OPTIONAL MANUAL
;SET SELECTION is thru USER-ID in OWNER EQUAL to
OWNER-ID of MEMBER
;CALL ... ON ERROR during ...
; ACCESS-CONTROL 1lock for ... is ...,

SET name is SPOOL-QUEUE"
;OWNER is DEVICE-CLASS
;CALL ... ON ERROR during ...
.3 ACCESS~CONTROL. lock for ... is ...
MEMBER is FILE~NAME OPTIONAL MANUAL
; SET SELECTION is thru CURRENT of OWNER
;CALL ... ON ERROR during ...
ACCESS-CONTROL lock for.... is ...

Figure A.4 Interface Schema Declarations for the
Temporary Sets Maintained by the Spooling Subsystem

N

234
DEVICE-CLASS USE. AME
DEVICES SPOOL-DIRECTORY USER-DIRECTORY
. s
—V DEVICE- J \Y v //
DEVICE-NAME FILE-NAME J {
‘ ASSIGNMENT \
WORK-FILE . /!
V__.
, T%ET ' ,

Figure A.5 Subschema for an Input Spooling Process

For the sake of simplicitijit will be assumed that
each spooled device is 'driven’ by é separate Spéoling
routing -— 1in reality, re-entrant code, or one spoc” ing
‘monitor' for each class of spooled devices would be used.
But, in" this simplified example, each spooling process is
concerned with only a single occurrence of the DEVICE-NAME
record type (corresponding to the single device being

serviced by the process).

On input, a spooléd device, or indeeé an individual
spooled file, maybe associated with either a batch job or a
non-batch job. Non—bétch jobs are data files reguired as
input to a prbcess other than fhe éysﬁem commadd language
procéssor - they 'belong' to the process which fequires the
‘data file as input and should be stripped of all 'start-of-

job' and ‘end-of-job' system commands during spooling. On

’ A ‘ 235

tﬁe other hand, batjch jobs 'belong' to the system command

language proce , and all system commands must be included

in the sgdoled file. This presents no real problem
(assuping/ a sensible system command language in which the
commands may be readily identified), and the operation of

both types of input spool&ng processes will be discussed.

_ & |
The sequential execution of the input spooling process

shown in Figure A.6 may be summarized as follows,

1. Identify the next USER-ID: normally the use 's unique
identification is givep in the first input record.

2. Determine the eventfai owner of the spooled file:
non<batch: the USER-ID, frdm step 1. |
Qgggg: the special USER-ID associated with the system

”~commaﬁd language processor (e.g. *BATCH*).
3. Check that the owner exists: find USER-ID record.
4. Extract the FILE-ID: this name must be unique within

USER-ID, so that the FILE-NAME can eventually be added

to the approriate USER-DIRECTORY.

M

non-batch: the FILE-NAME is either explicitly given .
(with optional FILE-ATTRIBUTES) via a system command, or
the FIEE—NAME and FILE-ATTRIBUTES may be assigned ”
default values, based upon the DEVICE-TYPE. ‘
batch: the FILE-NAME is artificially constructed to be
.unique for each batch job submitted (e.g. a serially
assigned receipt number) .

5. Assign the device to the file: insert the FILE-NAME into

the DEVICE-ASSIGNMENT set for this device - this set may

"
\:.(;7,

S

! | . 236

contain at most one FILE-NAME record.

6. Establish the owner,file-name association: insert the
~FILE-NAME into the SPOOL-DIRECTORY for thel owner'é USER-
ID, and lock the file. |

7. Do it: input records serially from the spooled device
and store them in.the WORK-FILE set for the curfenﬁ
FILE-NAME. This operation ends when an 'end-of-job'
system'commana is encountered in the input stream.

8. Make file available £o\owner: rémové FILE-NAME from the
SPOOL-DIRECTORY set (the spooling procesé has finished
with it) and the DEVICE-ASSIGNMENT set (the device is
'free'); then insert the FILE-NAME into the owner[&
USER-DIRECTORY, and unlock the file. At this point, any

& -

prbcess executing under the owner's USER-ID may access

the spooled file.

A.3 An Output Spooling Process

As shown in the previous section, an input spooling
process may-handle at‘most ohe°spooled file per sbqoled
device (since the devices are sequential by nature) .
However, the number of active files under the control of an
output spooling process may exceed”thq nur- - of spooled
devices serviced by the process. As a res.. ., the output
spooling process ig'a little more complex,.énd’in the
f lowing example i£ has 'been split into tyo concurrent

‘bp. .cesses, namely a (de&ice independeﬁtf Dispatcher and

an ;put‘Spooler“(in this case, for a single line_prihter).

237

INITIALIZE.
NOTE open the necessary schemata.
OPEN DEVICE-CONTROL, USER-CONTROL, FILE-SYSTEM,
SPOOLER.
NOTE this routine is configured to drive the card
reader at hardware address "CROl".
FIND DEVICE-CLASS RECORD USING
DEVICE-TYPE = "CARD-READER".
GET DEVICE-CLASS. ’
FIND DEVICE-NAME RECORD USING
HARDWARE-DEVICE-ADDRESS = "CROl".
GET DEVICE-NAME. :
NOTE at this point, we have the correct record
» occurrence as CURRENT of DEVICE-CLASS and
. DEVICE-NAME.
NEW-JOB. ,
NOTE fetch next input record, identify new user and
set up owner's id in TEMP-OWNER.

FIND USER-NAME RECORD USING USER ID = TEMP-OWNER.
NOTE determine the FILE-ID and construct approprlate‘
"FILE-ATTRIBUTES.

STORE FILE-NAME. ,
LOCK FILE-NAME, WORK-FILE USAGE is EXCLUSIVE UPDATE.
INSERT FILE-NAME INTO DEVICE ASSIGNMENT, ..
SPOOL-DIRECTORY.

SPOOL.

MOTE this is where the spooled file is generated;
fetch input card images one at a time (into
LINE-DATA), construct LINE-NUMBER; branch to
SPOOL-EOF at logical "end-of-file" on input.

STORE TEXT; GO TO SPOOL.

SPOOL-EOQOF.

NOTE make the file part of the regular file sy§QEm,
accessible from the USER-DIRECTORY set-

FIND OWNER record of WORK-FILE set.

REMOVE FILE-NAME FROM ’

SPOOL-DIRECTORY,, DEVICE-ASSIGNMENT;

INSERT FILE-NAME INTO'USEB-DIREGTORY.

UNLOCK FILE-NAME, WORK-FILE. ‘)

NOTE go back and start all over agaln for next 3ob

GO TO. NEW-JOUB. .

. - Figure A.6 An Input Spooling_Procedure

238

A.3.1 The Dispatcher-

Since the Dispatcher handles the scheduling of spooled
files for all devices, when called from a user process it

must be passed three parameters,(DEVICE—TYPE, USER-ID and

FILE-ID) to specify 'which filé is to be spooled where'.

As the fbllowing ségquence shows, the Dispatcﬁef is a
relatively simple process (refer also to Figures A.7 and
A.8)y, , . \ : ' “

1. Remove file from_owner's control: remove FILE;NAME from
the owner's USERfDIRECTQRY. Once this has been done ‘the
spooigd file is no longer éccessible to processes ‘
ekeéuting under the owﬁer's USER-ID - in fact the file
cannot be accessed fromranx USER-DIRECTORY !

2. Sghedule the\file’fo: spooling:*insert the FILE-NAME
into the SPOOL-QUEUE set. for the cited DEVICE-TYPE. The
ordef of the member records in this set detefmines the
sequence in ;hich file;"%ill be ocutput - in this example
the scheduling discipline is FCFS. 4

3. Preserve the oWner—file-néﬁe association: thié
association was maintained :n the USER-DIRECTORY and it
is preserved by inserting‘:he FILT—-NAME intq the file
SPOOL-DIRECTORY; the SPOdL—DlHECTORY‘set typé‘is not

visible to“any process outside the spooling subsystem.

239

DEVICE-CLASS ‘ A USER-NAME .

USER-DIRECTORY

‘SPOOL-DIRECTORY

SPOOL~QUEUE .

FILE-NAME

"Figure A.7 Subschema for the Dispatcher

NOTE a procedure entry with 3 parameters;
the desired schemata are assumed already OPENed
by this process;
the parameter values are stored in local
temporary areas.

FIND DEVICE-CLASS RECORD USING

DEVICE~-TYPE = parameter-1. : .
FIND USER-NAME RECORD USING USER~ID = parameter-2.
FIND FILE-NAME USING OWNER-ID = parameter-2,
FILE~ID = parameter- -3.

LOCK FILE-NAME USAGE is EXCLUSIVE UPDATE.

NOTE make the file inaccessible from the
USER-DIRECTORY, then include it in the
SPOOL-DIRECTORY and the SPOOL-QUEUE sets.

REMOVE FILE-NAME FROM USER-DIRECTORY:;

INSERT FILE-NAME INTO SPOOL-DIRECTORY; ¢

UNLOCK. FILE-NAME. o)

INSERT FILE-NAME INTO SPOOL-QUEUE;

NOTE finished.

Figure A.8 A Procedure for Dlspatchlng Output Spooled

Files

\71\.3'.

the

A.2,

(1)

(2)

the

240

2 The Output Spooler

The operation of the Output Spooler is very similar to
input spooling pfocess described pfeviously in Section

however there are two significant_differences,
The output process is 'idle' whenever the SPOOL—QUEUE
set associated with the partichlar.DEViCE—CLASS is empty
(i.e. when no files'are awaivring outpuﬁ on this DEVICE-
TYPE) . ‘Consequently, it will be assumed that suitable
,Synchronization primitives areiavailable to ensure the
correct execqtion of this 'wait' operation. Once,the

spooling process has something to do, it degqueues the

'fileh assigns the file to the device and uses the SPOOL-

DIRECTORY set to 1dent1fy the owner.

Once all the TEXT records in the WORK FILE have been

output, the spooled file is available to be deleted from

the database. This is necessary to avoid 'clogging up'

the "database with-o0ld spooled oqtput files which are

inaccessible from user processes.

\

" A database subschema and the necessary DML commands for

hypothetical Output Spooler are shown in Figures A.9 and

A.lOerespectively._ -

241

DEVICE-CLASS

DEVICES

v

' SPOOL-QUEUE

DEVICE-NAME

USER-NAME

DEVICE- Vv V
: $f;ILE—NAME
ASSIGNMENT
WORK-FILE
—V—
TEXT

SPOOL-DIRECTORY

Figure A.9 Subschema for the Output Spooler

A.4 Interaction with the Spooled Device

Upto this point, no mention has

spooling process achieves the transfer of information

“2en made of 'how' a

~.between the database management system record buffers in the

User Work Area and. the physical (spéoled)'device. a

possible approach is to make the necéssary low level input—

output operations part of the spooling process, and thus

allow direct interaction with the device.

-

Assuming all devices-within a particular class are

either spooled or non-spooled, then this technique results

in a rigid hierarchic relationship between ‘a spo

~Z

oling

procedure and its associated low level routines. For .

3

242

" INITIALIZE.
NOTE open the necessary schemata
OPEN DEVICE-CONTROL, USER-CONTROL FILE-SYSTEM,
SPOOLER.
NOTE this routine is configured to drive the line
printer at hardware address "PROLl".
FIND DEVICE-CLASS RECORD USING _
DEVICE-TYPE = "LINE-PRINTER". : .-
" GET DEVICE-CLASS. ‘ .
- FIND DEVICE-NAME RECORD USING -
HARDWARE-DEVICE-~-ADDRESS = "PRO1",
GET DEVICE-NAME. TN
NOTE at this point, we have the correct record
occurrence -as CURRENT of DEVICE-CLASS and
. DEVICE-NAME. .
WAIT-FOR-SOMETHING-TO-DO.
IF SPOOL- QUEUE SET EMPTY THEN :
NOTE suspend execution of this' process, waiting for a
file to be spooled to a line-printer.

&

FIND OWNER OF SPOOL~ QUEUE SET,
ELSE NEXT SENTENCE.
FIND NEXT FILE-NAME RECORD of SPOOL-QUEUE SET.
LOCK FILE-NAME USAG is EXCLUSIVE UPDATE.
NOTE we're rready to ; remove the FILE-NAME from the
SPOOL-QUEUE set, and place it in the
" DEVICE-ASSIGNMENT set.
REMOVE FILE-NAME FROM SPOOL-QUEUE SET;
INSERT FILE-NAME INTO DEVICE-ASSIGNMENT SET.
UNLOCK FILE-NAME. o
NOTE determine the USER-ID, and output identifying
- information.
FIND OWNER SPOOL-DIRECTORY- SET,
GET USER-NAME.

. - - - e o . .

OUTPUT—LOOP,
FIND NEXT TEXT RECORD of WORK-FILE SET; IF
ERROR~-STATUS QUALS END—OFESET, GO TO OUTPUT-END.
GET TEXT. ’

NOTE output this 11ne.
GO TO OUTPUT—LOOP;

OUTPUT-END.

NOTE tidy up by deleting the FILE-NAME record, and
(by implication) all the TEXT records.

FIND OWNER record of WORK-FILE set.

DELETE FILE-NAME. .

GO TO WAIT-FOR-SOMETHING-TO-DO.

/..

Figure A.10 An Output Spooling Procedure

! 243

;

example, the spooling process for card readers is the only
process 1in the system which may call routines to control and
service the hardware interface to the card reader - all
other processes execute card input operations on a pseudo

card reader, via the input—oufput module.

.A.S User Processes

Each user has access‘to a single USER-DIRECTORY ser,
ddfined in the FILE-SYSTEM schema. A spooled file is stored
as a single occurrence of the WORK- FILE set type, with a
unique FILE-ID in the FILE-NAME owner record. It is likely
that other WORK- FILE sets would be used for the convent10na1
unstructured dlsk flles maintained by a time-sharing system

(elg. source code files, object libraries, load modules,

sequential data files and scratch files).

Specifically, within the context of the Michigan
Ternlnal System, spooled files and all user disk files would
be malntalned as WORK—FILE sets. However, some file systems
(e.q. under the UNIX ooerating system) support highly
structured user dlrectorles and user filesQ Such facilities
can be implemented by 1nc1udlng record occurrences of type
other'than FILE-NAME as meQESES of the USER-DIREQTORY set,
and/or allowing FILE-NAME records to be owners of sets of"
type other than WORK-FILE. Hoﬁever; these extensions are
not visible in the subschema of Figure A.ll, where a user

process views spooled files as 51mp1e, seguenced sets of

244

TEXT records.

Spooled Input File Spooled Output File
\ USER-NAME _ USER-NAME
-y .
USER-DIRECTORY USER-DIRECTORY
V . Y%
FILE-NAME (*) FILE-NAME
WORK-FILE WORK-FILE
V . v
TEXT | « ~ TEXT

Figure A.1ll Subschema for User Processes Using Spooled
‘ Files

Just as the Output Spooler is fesponsible for deleting
the FfLEdNAME record (and hence the WORK-FILE set) once'tﬁ&‘u
spooled file has been output to the phyéical device, someone
must assume the responsiblity for deleting an input spooled
file once the user proces; has 'finished' with it. To
guarantee that this is done correctly, the_ﬁask is not left
to the usér,vrather the input-output moduie removes the set -
and ensures that ﬁﬁe disk spaée can be re-used. This

~distinction between input,andnqutput spooled files is shown

245

hY

in Figure A.ll, by appending the.annototation '(*)' to the

N ’ .
FILE-NAME record type for the input spooling subschema.

In their present form, the CODASYL DDL specifications
do not support a 'delete after use' facility, hgwever it
wou be relatively simple to include, given a clear

definition of what constitutes having 'finished' with a set

.g. the- user process must close and release a

an be removed). Of course, the necessary

occurred —% Otherwise the user process may not be

restartable following. a system failure or rollback.

