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Abstract

The dynamics of the lithosphere is a non-linear deterministic system, described by yet
unknown differential equations. The phase portrait of such a system can be reconstrucie
from a2 uime series of a single observable, an earthquake catalog, which I interpret as a
collection of Poincare points in the phase space. Using this point of view the system can
be analyzed by the methods of chaos which have recently become important for the study
of non-linear systems. The low dimensionality of the attractor, between 3 and 4, obtained
in the analysis of seismicity data for the west coast of Canada supports the argument that
the dynamics of the lithosphere is chaotic rather than random. The earthquake catalog
therefore contains all the information, in the sense of topological equivalence, about the
dynamics of the lithosphere; this information can be retrieved for earthquake prediction.

This justifies a pattern recognition study of seismicity on the West coast of Canada
with a view to predicting earthquakes of magnitude 6.4 or greater. The results of this
approach using the Russian M8 algorithm are promising. The premonitory seismic patterns
in the earthquake catalog for the west coast of Canada bear strong similarity to those found
in other areas of the world. This implies that they are intrinsic to the dynamics of the
lithosphere, and do not depend on local geological structure and tectonic regime. This
similarity suggests the existence of an underlying order in lithosphere dynamics.

When catalogs of earthquakes are analysed from this point of view it becomes clear
that aftershocks contain more information about integral dynamics of the lithosphere than
was previously suspected. Removal of aftershocks from earthquake catalog could result in
increased noise in the catalog. This suggests that aftershocks have more si gnificance for
earthquake prediction and as evi-ence of processes in lithosphere dynamics than currently
assumed.

The rate of loss of information imposes an upper limit of predictability of the
system, and it can be estimated from the catalog. Such an analysis shows that the upper

limit of the time for earthquake prediction for the west coast of Canada is about 20 years.



Such limit is intrinsic to the dynamics of the lithosphere in that area.

The chaotic behavior of the lithosphere is probably caused by interaction of fault
hierarchies and the non-linear constitution of fault zone. This can b2 demonstrated in a
simple thermally activated instability model but such a model has only limited value in the
analysis of hierwrchical fault systems in real lithosphere. A general model describing the
dynamics of such a fractured lithosphere can be approached by introducing two state
variables. These reflect, to a certain extent, the complexity and interaction ir. sub-fault
system. The general calculations required in this theory are extensive but a one

dimensional model illustrates the approach and contains a surprising amount of physics.
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Introduction

There are innumerable problems in geophysics that concern the dynamics of the lithosphere
and primary among those is the place of earthquakes in its dynamical development. The
dynanucs of the lithosphere can be completely described in terms of classical physics but
approximation has to be used for mathematical tractability in any particular case. Most
attempts use linear models to explore the consequences of particular aspects of the
dynamical behavior of the lithosphere and ignore its non-linearity. For example, linear
elasticity, or visco-clasticity will give a good approximatior: to wave propagation in the
lithosphere. The stress distribution analysis in the lithosphere by linear elasticity will show
an average effect of the stress states due to small deformation. Beyond this approximation,
many problems related to the dynamics of the lithosphere require consideration of the non-
linearity of the processes. In those circumstances, linear theory could be not only
ineffective but even misleading.

The approximation of linear theory is obviously insufficient to describe the state of
the lithosphere when an earthquake is about to occur. Under these circumstances, the
dynamical behavior of a fault system becomes more than a simple sum of each individual
aspect of the fault behavior. It must include all the effects together because it is necessary
to treat the dynamics of the lithosphere as a whole in a search for the gross integrated
characteristics of lithosphere dynamics. It is the purpose of this dissertation to explore this
non-linear dynamical behavior of the lithosphere in the light of recent progress in non-linear
dynamics; both in the context of the earthquake prediction in particular, and in the context
of the dynamics of the lithosphere in general. I hope this study will provide a better
understanding of those premonitory seismicity patterns precede strong earthquakes and
justify the pattern recognition technique for earthquake prediction on the basis of theory of
nonlinear dynamics.

In this introduction I review the phenomena and recent analyses that suggest that
theories of non-linear dynamics may be useful in the study of lithosphere dynamics. The
review is certainly not complete and is not intended to be. It presents those notions that

appear to me to be central to the problem of developing a viable theory of lithosphere



dynamics.

1 The Problems of lithosphere dynamics

The most apparent manifestation of non-linear lithosphere dynamics is the
occurrence of strong earthquakes and their prediction has both scientific and practical
interest. In the pursuit of this objective, lack of a theory for the non-linear dynamics of the
lithosphere led Keilis-Borok and his colleagues to seek an empirical approach to the
problem of earthquake prediction (Keilis-Borok, et al., 1988). They use a pattern
recognition technique to identify premonitory seismicity patterns that may precede a strong
earthquake and their results are encouraging; 80% of strong earthquakes can be predicted
within 1 to 2 years and a few hundred kilometers (Keilis-Borok, 1990). World wide tests
of the algorithm show that the <arthquake behavior is similar in different regions,
independent of tectonic environment and level of seismicity.

Despite its success, the limit of this approach are not clear. For instance, there may
be a limit to the amount of information useful for predicting future earthquakes that can be
retrieved from even a perfect earthquake catalog. Answers to such questions do not come
from the algorithm itself but from the fundamental principles of lithosphere dynamics.
Such questions could be explored by modelling but the existence of widely distributed fault
segments with complex local geology and tectonic regime raise tremendous obstacles to
mathematical modelling of their dynamical behavior. As a result little progress has
occurred in the study of the dyramics of the lithosphere in the last few decades.

At the preliminary stage of research on fauit physics and mechanics, a simple model
that deals with the essential phenomenology is fundamental. In chapter 1 I construct such a
model of a single fault along a subducting oceanic plate for the Vancouver Island region on
the west coast of Canada. The fault includes effects of temperature and displays high non-
linearity. Although the model is simple, it preserves some of the qualitative and
quantitative behavior we see in a real fault. The thermal instability in this model is one
tempting phenomenon. An artificial earthquake catalog will be generated by taking the

occurrence of such an instability as an earthquake. Clearly this model have little predictive



power, but it may have value as a mathematical analog of a fault system.

Unlike the situation for simplified models, the differential equations for the
lithosphere and therefore their solutions are unknown. In this case we cannot study the
system in a traditional way. But recent developments of chaos theory provide an
alternative; it allows us to proceed directly to qualitative information about the system by
applying a geometric analysis method. In chapter 2 and chapter 3, I discuss such a
geometrical approach to the dynamics of the lithosphere. Here I view the lithosphere
dynamic system as a black box which produces a stream of outputs without considering the
detailed fault structures or the physical properties of each fault. The best record of such
outputs is seismicity, and all cur questions about the dynamics of the lithosphere are posed
therefore in terms of earthquake catalogs. The catalogs will be used to reconstruct the
phase portrait of lithosphere dynamics, and thereafter I will determine some geometric and
dynamical invariants, such as dimensionality and Kolmogorov entropy of an underlying
strange attractor of the system. These invariants can be used to quantify the chaos or
characterize the randomness of the system. In particular I discuss whether the dynamics of
the lithosphere is a stochastic process or a deterministic chaos. Understanding this
question will help us model the dynamics of the lithosphere.

In chapter 4, I connect these ideas to observations by introducing the basic idea of
pattern recognition algorithm on earthquake prediction proposed Keilis-Borok and his
colleagues. The M8 algorithm can diagnose premonitory seismic patterns for the
Vancouver Island region that are similar to those detected in other areas of the world. ]
discuss those patterns in terms of the dynamics of the lithosphere, and link them to the
geometric patterns on the attractor. In this way we can use our knowledge about the
attractor in the dynamics of the lithosphere to impose limits on the pattern recognition
technique and to guide further improvement of the algorithm.

Although the lithosphere appears to be a low dimensional non-linear dynamic
system, what is responsible for this non-linearity and what kind of mathematical model can
descrit:e the dynamics is still not clear. This makes analysis of the dynamics of the
lithosphere a more difficult topic than that of other non-linear dynamic systems. In chapter

5 I argue that the non-linearity in the dynamics of the lithosphere results from the non-linear



constitutive relation among stress, strain and other state variables and the development of
the state of a faulted region. In addition to stress and strain, I introduce two more state
variables to describe the mechanical state of the lithosphere. The dynamical relation of
those state variables develops from the methods of statistical physics and they reflect the

complexity and interactions in a system.
2 Earthquake Catalogs and Their Conventional Interpretation

Seismicity data is central to the theoretical developments presented here and some
discussion of its nature will be useful to non specialists. In this section I introduce some
useful jargon and point interested readers to more thorough discussions.

An earthquake catalog is a collection of earthquake events. Each event usually has
five componenis: occurrence time, longitude, latitude, depth and magnitude. The
magnitude of an earthquake is an estimate of the elastic energy released during the fracture
process. C. F. Richter first suggested a logarithmic scale could characterize the local
earthquake magnitude M in terms of the maximum amplitude of seismic wave recorded by
local stations. For shallow earthquakes, surface waves are dominant in :5e seismic wave
recorded by a station far away from epicenter and B. Gutenberg suggested determining the
surface wave magnitude Mg from the maximum horizontal displacement of a surface wave
at 20 second period. The body wave magnitude My, is determined from the maximum
amplitude of a body wave and its corresponding period. My, is generally determined for the
deep and long distance events.

One or more of these three magnitudes appear in most catalogs, such as those from
the Geological Survey of Canada and the National Earthquake Information Service in the

U.S. The relations among them are often given empirically as

Mg = 1.59 M}, - 4.0

M = 1.27 My - 1)- 0.016 M2

For a more detailed discussion see Xu and Zhou (1982) and Aki and Richards (1980).



Since any magnitude is calculated from a maximum amplitude of a seismograph, the
question of the physical meaning of magnitude arises. Intuitively the magnitude depends
on the energy released through seismic waves, but it is difficult to relate theoretically to
other important parameters. A magnitude is calculated from seismic wave amplitude at a
given period while seismic energy release involves integration over the whole spectrum.
This comparison and in particular the relation between the surface wave magnitude and the
total energy E of seismic waves has been studied by many investigators. Gutenberg and

Richter (1956) obtained an empirical relation

logE = 1.5 Mg + 11.8

Kanamori and Anderson (1975) suggested that this relation results from assumption of a
unilateral propagating fault model together with a similarity assumption for source
parameters. Duda (1978) suggested that the magnitude at period T should be a measure of
the average energy flux density at this period. The average energy flux density W is related

to My, by

W =D10?M>" %0

where D=1/2n2pa is a constant , p and o are the density and the wave velocity
respectively.

Seismicity can be broadly classified into foreshocks, mainshocks and aftershocks.
Foreshocks and aftershocks appear to have a relationship to some particular mainshocks
and occur before and after those shocks respectively. Foreshocks do not appear as clearly
in catalogs as do aftershocks. The mechanism of foreshocks may be more complicated
than that of aftershocks, but the same windows used for determining aftershocks also can
be used for foreshocks when time is reversed and the magnitude of foreshocks is
recognized as smaller than that of the mainshocks (Lamoreaux, 1982).

To a first approximation mainshocks are usually Poissonian distributed (Gardner
and Knopoff, 1974) but recent stucies on earthquake catalogs ):ive shown that the non-
independence of earthquakes is a world wide phenomenon at all magnizudes for

carthquakes that appear on well-documented catalogs (Kagan an~ Knopoff, 1978, 1940,



1981a,b; Andrews, 1980, 1981). These studies show that a power law self-similar
distribution of the time intervals of the nearest-neighbor pairs of earthquakes in a certain
region. The spatial distribution of the dista~as between pairs of earthquake hypocenters,
the areas of triangles formed by taking triples of hypocenters, and the volumes of tetrahedra
of quadruples of hypocenters also show both a power law distribution and self-similarity.
There is no theoretical upper bound on the magnitude of earthquakes that appear in
catalogs but practically it is limited because of the finite strength of rocks. A lower bound
of the magnitude of recorded earthquakes comes from the detecting threshold of
seismometers and the space coverage of the observing networks. Consequently the time |
and space patterns of earthquake occurrence can be distorted by changes of completeness of
the seismicity catalogs at lower magnitudes. This means that studies of correlations
between large and small events above some magnitude M must be restricted to those =vents
that occur after a catalog becomes complete for the events larger than magnitude M.
Unfortunately the idea of completeness of a catalog is not well defined. In practice it can be
tested by considering whether the statistical behavior of small earthquakes is same a3
intermediate ones and whether the additional space coveragé of observing networks will

change the statistical behavior of the catalog.
3 Aftershocks and Omori's Law

Aftershocks are thc most obvious feature of an earthquake catalog. 1'wo major
characteristics of aftershocks are their existence in all catalogs and their decrement with time
both in numbers of events and in energy being released. Because aftershocks concentrate
both in time and space around mainshocks they are usually assumed to be local effects of
mainshocks and physically related to its fracturing process. In the analysis of the evolution
of lithosphere dynamics aftershocks are often excluded from catalogs. Nevertheless
changes in aftershock behavior may be a precursor of a large earthquake (Keilis-Borok et
al, 1980a,b).

The relation between the number of aftershocks and time is known as the Omori's

law (Lamoreaux, 1982)



n[Te)] = —C—

[Te)- "
where n[T(e)] is the average number of aftershocks during the e-th day after the mainshock
and C, o and P are constants. The usual value- for a and B are 1 and 0. The coefficient C
generally depends on the magnitude of the mainshock and the magnitude range in which the
aftershocks are counted. Lamoreaux (1982) has shown that the number of aftershocks will
not depend on the magnitude of the mainshocks, My, if the aftershocks are counted in a
magnitude interval from Mp-A to M, where A is a constant. This result suggests a self-

similarity which imposes an additional constraint on the study of the physical nature of

aftershocks.
4 Self-similarity and Magnitude - Frequency Relation

Stochastic self-similarity appears in many natural phenomena, suci as Brownian
motion and turbulent flow. A stochastic self-similar object is such that the "picture” of it
shows no characteristic length scale. This means that images examined at two different
magnifications will have the same statistical distribution. Mathematically, a set is said to be
statistically self-similar if it is congruent in distribution to itself under a self-similar
transformation (Mandelbrot, 1983), which transforms the point x = (x},...,Xg) into the
point r(x) = (rxy,...,;Xg), Where r is a real number, in a Euclidean space RE,

The self-similar sets are described as tractal by Mandelbrot. Many objects in nature
have fractal geometry. An important parameter of fractal objects is their fractal dimension.
It is the exponent D that might relate, for example, the apparent length P of the coastline of

England to the length / of a measuring stick used

p=/-D

Note that the apparent length of the coastline increases exponentially when the measuring

stick become smaller!. Recent measurements on the topography of natural faults and

1The west coast of Great Britain has a fractal dimension of D=1.25 (Mandelbrot, 1967).



fractures show that the surfaces are fractal or nearly fractal over a broad band (Scholz and
Aviles, 1985). They found that D from 1 to 1.26 for wavelength varying from
micrometers to meters.

In the dynamics of the lithosphere self-similarity appears in both time and space in
earthquake behavior. Besides the self-similar distribution of earthquake epicenters, recent
research on microfracturing in rocks indicates such feature exists at the scale of rock sample
size in creep experiments. Hirata, et al., (1987), found that the fractal dimension of the
spatial distribution pattern in their experiment ranged from 1.75 to 1.25 depending on the
stage of creep. The self-similarity in time of earthquake occurrence is reflected in the

magnitude and frequency relation (Gutenberg and Richter, 1954)
logN=a-bM

where N is the number of earthquakes with magnitude greater than or equal to the
magnitude M; a and b are constants which vary for each region. The value of b can
range from 0.5 to 1.5, but is usually between 0.7 to 1.0 for tectonic regions (Mogi, 1985).

Much theoretical and experimental work has been done to connect the value of b
with other physical quantities. Although observations and experiments indicate some
connections between b, the stress state of the region, and the properties of the materials,
none of the theoretical models was satisfactory (Geng, 1986). In laboratory experiments, it
is found that microfractures radiate elastic waves in a manner similar to earthquakes during
the deformation of rocks. Mogi (1962a, 1962b) found that the magnitude-frequency
relation of microfracturing events is the same as that for earthquakes. He demonstrated that
in many ways the statistical behavior of microfracturing activity observed in experiments is
similar to that which has been observed for earthquakes, and related the value of b to the
degree of heterogeneity of the model material. Scholz (1968) found, however, that the
state of stress, rather than the heterogeneity of the material, plays the most important role in
determining the value of b. The study of acoustic emission in rock creep experiments by
Mogi shows that b decresses with time under a constant stress state. He concludes that b
is mostly determined by the properties of t'e model material (See the review by Geng,

1986).
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The value of b often decreases temporarily prior to a large earthquake (Suyehiro, et
al., 1964; Mogi, 1985) and this change has attracted = “tention as a possible precursory
phenomena of large earthquakes. Scholz (1968) claimed that the change in b results from
an environmental stress change prior to a large earthquake, but Mogi (1981) argued that
even under a constant load, the value of b still gradually decreases before a majer fracture.
No matter what the mechanism may be, it is generally accepted that the value of b tends to
decrease prior to a large earthquake.

If we replace the magnitude M in the magnitude-{requency relation by the energy E,

we have a power law relation between N and E
logN =q +7.8b - %b-logE

The N-E curve is a straight line on a log-log plot. Such a power law relation is a universal
phenomenon, which appears in many physical systems and has been studied for over fifty
years. A classical study of the power law distribution of broken coal was carried out by
Bennet (1936). Other fragmented materials, such as granite, basalt, asteroids and
interstellar grains are also found to satisfy a power law relation (Turcotte, 1986). In the
case of the electric current in metals or semiconductors, it is found that the power spectrum
of the current depends on the frequency with a power law 1/f* (. generally 0.8 < ot < 1.4)
(Yu and Liu, 1983; Weissman, 1988), this is known as 1/f-noise.

Noticing the property of scale invariance of 1/f-noise, Mandelbrot argued that it can
legitimately be called "scaling noise" since it is noise whose character remains unchanged
as it is contracted or expanded in time (Mandelbrot and Voss, 1983). The mathematical
similarity between fractal and 1/f noise remains clear, but the physical connection is
obscure. It seems that there is no "universal” generating mechanism. However its near
ubiquity suggests that at least some feature of explanation should not depend on detailed
models of a particular material.

In some cases it may be related to chaotic behavior, for instance, a large class of
maps which generate intermittent signals display 1/f noise (Schuster, 1988). In other cases
it may due to a wide distribution of characteristic energies, such as 1/f noise in metal, and it

may be related to the non-Markovian diffusion transport (Yu and Liu, 1983).
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We have to notice that this self-similar picture has to be band limited. The fractal
description of time-distance-magnitude patterns of earthquake occurrence is a mathematical
approximation. For natural faults Scholz (1988) has found that geometrically unmated
fractal surfaces will develop a characteristic length when in contact under a normal load,
because long-wavelength apertures close under a load whereas short-wavelength apertures
may retn iz soen. In the magnitude-frequency relation we notice that either the logN-logE
cute huz o pend to decrease the slope at low energy end or to bend to increase the slope at
the high energy end to ensure a finite rate of energy release in earthquakes. Laboratory
acoustic emission experiments have shown that the slope decreases at the low energy end
of the curve (Scholz, 1968).

The existence of self-similarity implies that there is no particular scale involved in
the evolution of earthquakes and that therefore a model which is capable of describing the
dynamics of the lithosphere should also be scale free. Mandelbrot argues that a linear
system would preserve a scaling, i.e. fractal geometry, but some non-linearities are usually
required to create fractal structures (Mandelbrot, 1983). The fractal time and space patterns
of earthquake occurrence suggests, therefore that such a phenomenon results from the non-

linearity of the dynamics of the lithosphere.

S Some Earthquake Related Physical Models

The occurrence of an earthquake can be considered as a sudden rupture of a fault,
but the mechanics of those rupture zones is not well understocd. Most physical models of
the failure process of rock incorporate some kind of weakening behavior of the fault zones.
The effects of liquids cortained in many fault zones on the strength of rock, the so called
Rhebinder effect, was recently suggested as important in earthquakes (Keilis-Borok,
1990). It states that the liquids penetrate cracks to reduce their surface tension. The cracks
then grow with the drops of liquid propelling forward. Due to this mechanism alone the
effective strength of solid rock may drop by a factor 105,

Besides the instability due to the Rhebinder effect, constitutive models also contain

instability which can be interpreted as an earthquake (Rice, 1983). Slip weakening has
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been observed in laboratory shear tests and modeled by the finite element method
(Dieterich, 1978, 1979), and later had been worked into a state variable description by
Ruina (1980, 1983). He assumed the friction stress, T depends only on the slip rate V, the

normal stress ¢ and the state 8. The rate of change of state is assumed to depend only on

the instantaneous state, the normal stress and the state,

t=F(G,V,90)

é =G(o, V,0)

where 8 is a collection of variables 6;. One state variable is usually adequate to describe
experimental results; sometimes two are needed.

Figure la shows a slip weakening friction relation. The shear stress T required for
slip first increases to a peak T with slip J, then decreases to a residual value T, after an
amount of relative slip 8y (Rudnicki, 1988). This model is a generalization of the concept
of static and kinetic friction; instead of an abrupt drop from the static to the kinetic value
with the onset of slip. iiere is a transition reflected by the decrease of shear stress from
peak to residual value. Such models are rate-independent, they lack any mechanism for
regaining strength after reduction to the residual level and, consequently, they can not
simulate the earthquake cycle on the same fault segment.

The rate-dependence of friction was demonstrated by Dieterich (1978, 1979, 1981)
and other geophysicists (Ruina, 1983; Weeks and Tullis, 1985). Figure Ib shows the
velocity weakening friction relation. The sliding velocity suddenly increase from Vito Vy,
the shear stress exhibits an instantaneous increase from 1g5(V) and then evolves to a new
steady state value Tg5(V5). The negative dtgg(V)/@V will generate instability.

An instability due to an explosive increase of temperature in faults has been
proposed by Griggs and Baker (1969), and may be a mechanism for deep focus
earthquakes (Ogawa, 1987, Mahboobi, 1981). In this model, the fault zone is a
homogeneous non-Newtonian viscoelastic material with a spatially variable initial

temperature distribution. The shear deformation in the material concentrates in a thin layer
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that initially has the highest temperature. The temperature increase due to the dissipation
causes meliicg und thus induces slip along the shear zone. The strength of the shear zone
1 be regained as it is cooled due to thermal diffusion. The entire process is a quasi-static
one in which inertia is not included explicitly. The instability generally takes the form that
the slip rate becomes unbounded on a portion of the fault. The model fails, or tremendous
difficulty is inolved in the modeling at the point when the inertial effect is not negligible.
In these models, an instability can be interpreted as an earthquake. The instability
arises becoase of the geometry of the fault or the nature of the constitutive relation. An
indication of the progress in understanding is the current general agreement that some kind
of weak« .iing behavior is needed for instability. These models, however, either lack
.. -chanism for regaining strength or fail beyond the unstable point. They are also

simplistic in terms of the geometric complexities of an actual fault syster.

6 Lithosphere and Its Dynamical Evolution

Most earthquakes occur within the lithosphere, which consists of top layers of the
earth and is composed of brittle materials. The development of plate tectonics has provided
a method for visualizing the structure of the lithosphere. Boundaries of major tectonic
plates, s:.oh as San Andreas fault on the west coast of the US and the subduction zone on
the west coast of Canada, define the major seismic zones around the world. Within the
plate, however, fracturing occurs on all scales, from continental to microscale. The study
of Allegre et al. (1982) has shown that the lithosphere presents a hierarchy of volumes, or
blocks, which move relative :0 each other. The size of the volumes range from tectonic
blocks as an upper limit to the m::rostructure such as quartz grains as a lower limit. These
results have led us to visualize the lithosphere as a fully cracked body with fractal geometry
of fractures (Figure 2, Keilis-Borok, 1990).

Tectonic plate motion is associated with mantle convection, which acts as a strain
energy supply to the lithosphere. The energy that enters the system escapes by earthquakes
and aseismic creep of faults. The fcllowine simple model will help to understand the

relation between tectonic driving and earthquake occurrence. If we know the average
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displacement, u, associated with earthquakes and the relative plate velocity v, the average

recurrence time depends on the driving velocity v by (Sykes and Quittmeyer 1981)

T=1
av
where o is the ratio of seismic slip to total slip. Real data, however, show a high deviation
from this mean value.

The high deviation possibly results from the complexity of fault mechanics and
interactions between block boundaries. Traditionally a fault is regarded as a passive
interface which is locked by friction or cohesion. Earthquakes are identified as the
fractures and unstable sliding, stick slip for instance, occur in these fault zones under
tectonic stress or local stress concentration. The healing processes that follow the rupture
of the faults invoke a micro process or a chemical process.

The studies in last a few years, however, suggested a new conception of the
boundary zones of blocks as an active interface (Keilis-Borok 1990). The boundary zones
are in active control of motion due to numerous processes, such as interaction with fluid,
influencing friction and cohesion. Therefore, while the energy of the motion is stored
within the whole lithosphere and well beneath, the release of the energy, the motion, is
controlled from within the boundary zones.

Considering the earthquake generating mechanism from the dynamical state of pre-
existing faults will result in what seems a paradox; are those pre-existing faults caused by
previous earthquakes? The conventional consideration of a single fault fracturing as an
earthquake source has its limitation in the understanding of the dynamical development in
source volume. An earthquake and the fault zone should be considered together as a result
of dynamical development of the whole domain of the crust, which could be weakened
thrr—gh the failure of anastomosed faults in a lesser scale (Newman and Knopoff,
1982,1983; Knopoff and Newman, 1983). Therefore, the fractal geometry of fault
distribution within the lithosphere can be considered, in this sense, as the result of the
dynamical evolution of the lithosphere.

A few theoretical models have explored the effect of the complex fault interaction on

earthquake occurrence in last decade. Gabrielov's model (1986) of a complex earthquake
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source associated with a large number of sub-faults has shown the significant role played
by the interactions within fault system. The observed radiation patterns of seismic wave
seem to support the idea that there is more than one fault related to the earthquake source
(Keilis-Borok, 1990).

Using the hypothesis of scale free distribution of fractures, a number of
geophysicists have attempted to use renormalization group approaches to model the
hierarchical fault structure (Allegre, at el., 1982; Smalley and Turcotte, 1985). These
studies have shown that the catastrophic failure is the result of asperity failure cascading
away from the nucleus of failure. Foreshocks and acoustic emission observed in .
laboratory tests als imply that fractures at the macroscopic scale are a consequence of
rupture at lesser scales.

Tremendous difficulties arise from the fact that fractures exist in all scales within the
lithosphere, while all the existing theories assume continuous media. As a result the
question o1 iiow to model the dynamics of the lithosphere including seismicity is still open.
As the most successful models have a small number of degrees of freedom, recent
developments in theoretical modeling of seismicity assume that the number of degree of
freedom in such models is small. Work done so far is mostly concentrated on the behavior
of a single fault plane as discussed in the previous section and it explores the consequences
of some particular aspects of the earthquake process in isolation from the complexities of
competing mechanisms occurring in the earth.

When more than one fault segments is involved, the strong interaction between
them will possibly lead to a chaotic behavior (Gabrielov, et al., 1986). As Keilis-Borok
(1990) pointed out that the dynamics of lithosphere is governed by the interaction of its
blocks across and along the hierarchy. This interaction is realized through the wide variety
of mutually dependent mechanisms. Each of them creates instability. None can be singled
out as a major one so that the rest can be neglected. The model which describes lithosphere
dynamics should be able to represent directly the gross integrated characteristics of the
lithosphere.

7 General Ideas of Premonitory Seismic Patterns

If gross integrated characteristics of the lithosphere exist, they should be reflected in
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detectable patterns in seismicity. Lacking a better understanding of the dynamics of the
lithosphere one has to seek ad hoc approaches to detect these patterns. One of such
approaches is to monitor the patterns of seismicity that precede strong earthquakes to meet
the need of earthquake prediction. Such an approach implies that the occurrence of large
earthquakes may be signalled by the seismic behavior of zones which are very far away,
and that some large events seem to be preceded by anomalous seismic behaviors (Keilis-
Borok, et al., 1980a,b).

The physics behind those patterns is not well understood so far, but several
qualitative theories propose some explané.tions. These include inhomogeneites in physical
properties of the materials along a fauit zone and the processes of crack population growth,
independent of the material in which these cracks are formed (Lamoreaux, 1982; Knopoff
and Newman, 1983). However, there is no satisfactory explanation which will account for
most of these patterns.

Lamoreaux (1982) summarized these patterns as a combination of quiescence and
activation, the former referring to a spatial-temporal reduction (gap) and the latter to an
increase of seismic activity in comparison to the normal activity. Many of these patterns
have been identified with the seismicity rate, the magnitude and the seismic energy
released. For example, Bursts of Seismicity refers to three related seismicity patterns:
Bursts of Aftershocks, Swarm and Pattern . These three patterns consist of the
abnormal clustering of earthquake in time, energy and space before a major earthquake.
Bursts of Aftershocks occurs when a medium magnitude mainshock is followed by an
anomalously large number of aftershocks concentrated at the beginning of the aftershock
sequence. Swarm can be defined as a sequence of earthquakes which are close to each

other in space, time and magnitude, and occurring at the time when the seismicity of the

region is not below average. Pattern I is defined as a sharp increase in the sum X E;,
where Ej is the energy of an earthquake occurring within a limited magnitude range and
within a sliding window. If those patterns are diagnosed, a strong earthquake will
probably be expected during a period of 5 or 6 years in future.

A pattern recognition algorithms for intermediate-term earthquake prediction
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(Keilis-Borok, et al., 1988; Brown, et al., 1989) consider different types of premonitory
seismicity patterns such as abnormal clustering, activation-quiescence, strong variation of
seismic activity in time. The characteristics of earthquake sequence are defined on large
areas and time-windows, and represented by several functions which by no means are
independent. These functions are mathematical description of these patterns, and they are
informative at distinguishing two kind of objects: the Time of Increased Probability (TIP)
for occurrence of a strong earthquake and the rest of the time domain. The remaining
problem of diagnosing TIPs is reduced to pattern recognition.

The premonitory patterns preceding a strong earthquake can be a more general
concept which includes those changes in geoelectric effects or shear wave velocity, but here

it only refers to those patterns which can be diagnosed from earthquake catalogs.
1.8 Tectonic Regime and Seismicity of the Vancouver Island Area

I chose the Vancouver Island area, which has been very active in the last few
million years, to test the theory developed in this dissertation. The tectonic regime of the
area is dominated by the relation of the Pacific plate, the America plate and the Juan de Fuca
plate (Keen and Hyndman, 1979). The northern part of the Juan de Fuca plate has been
named the Explorer plate since it is active and moves independently. The boundary
between the Explorer-Pacific plates and the Tuan de Fuca-Pacific plates is defined by
numerous en-echelon spreading axes, offset by short transform segments. The full
spreading rate of the motion across this boundary ranges from about 4 to 6 cm/yr. The
boundary between the Juan de Fuca and Explorer plates is known as the Nootka fracture
zone, which is a strike slip fault with a left lateral motion of about 2 cm/yr, extending
northeasterly from the north end of the Juan de Fuca ridge to the continental shelf off north
central Vancouver Island (figure 3).

The boundary between the America plate and the Juan de Fuca and Explorer plates
is a zone of subduction whose underthrusting probably starts near the base of the
continental slope. At present the Juan de Fuca plate moves relative to the America plate in

the direction of N350E with a convergerce rate of approximately 3.5cm/yr. The Explorer
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plate moves relative to the America plate in the direction of N6OE. The convergence rate
has been 1.4cm/yr during the last million years.

The seismicity of the west coast of Canada (figure 4) is of special interest to this
study. The catalog of the Geological Survey of Canada and the National Earthquake
Information Service in the U.S. contain some events with magnitude as small as 2, but not
all small magnitude earthquakes are present. Milne et al (1978) pointed out that most of the
seismicity on the western Canada margin (figure 4) has been concentrated along the three
major boundaries, the Queen Charlotte-Fairweather fault system (Pacific-America plates),
the offshore ridge-fracture zone system (Pacific-Juan de Fuca plates) and Vancouver
Island-Puget Sound region (Juan de Fuca-America plates). It includes the lithospheric

seismicity associated with the transition from the Pacific into the North America plate.
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Figure 1 is an illustration of slip-weakening model (a) and velocity-weakening model (b).
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Figure 2 illustrates the idea that the lithosphere displays the hierarchical structure.

Fracturing occurs on all scales, and has a fractal geometry of fault distribution ( Adapted
from Keilis-Borok 1990).
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Figure 3 shows the main lithosphere plate boundaries and the relative plate motion of the
west coast of Canada (Adapted from Li, 1986). The dashed line indicates the location of
the cross section that governs our modelling in chapter 1.
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Figure 4 shows the geographic distribution of epicenters for even:s of magnitude 4 or
greater on the west coast of Canada. Those events since May 1980 thar vezre clearly related
to the Mt. St. Helen's Volcanic Eruption were removed. The data mai 7y comes from the

seismicity catalog of the Geological Survey of Canada and the Nauona! Earthquake
Information Service in the U.S.



Chapter 1: A Shear Instability Model of Seismicity

Models are usually constructed in physics to complement phenomenc! >y Generally, they
are constructed to represent certain behaviors of a physical system wi:i:; not involving all
its possible variables, and hence the complexities of the real system are greatly reduced.
The simplicity is essential in modeling. A simple model may be so crude as to have little
predictive power, however, it still manage to have its value in an explanative fashion, and
serve as a starting point for more complete description.

One such model is an elastic finite element model of the Cascadia subduction zone .
including a subduction fault with nonlinear, temperature dependent rheology. It produces
almost no conclusive results about the seismicity in the Cascadia subduction zone due to the
uncertainties involved in the parameters of nonlinear rheology and the over simplified
subduction zone geometry, but the way the model itself depends on a few control
parameters is interesting. It suggests a relation between rheology of a fault zone and shear
instability and earthquake generating mechanism in general, rather than the seismicity in the

specific region.
1.1 Thermally activated instability: a quasistatic model

Griggs and Baker (1969) first investigated thermal instability of a creep process
with a view to its applications to deep focus earthquakes. They demonstrated that if a
material undergoing deformation has a creep rate that increases exponentially with
temperature, the temperature rise would tend to accentuate any initial spatial inhomogeneity
in the rate of deformation. Under certain boundary conditions of deformation this
accentuation of strain rate may lead to a very rapid temperature rise and possibly melting.
By introducing this idea to explain an occurrence of an earthquake in a subduction zone, we
have the following picture: as a subducting slab, which is homogeneous and non-
Newtonian viscoelastic, continues to plunge beneath another plate, the ductile part of the
deformation induces heating due to viscous dissipation. If thermal conductivity is low

enough, an explosive increase in temperature occurs due to a shear instability. The
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temperature increase causes melting and thus induces slip along the shear zone, which is a
thin region in which the deformation concentrated. The occurrence of the slip defines an
earthquake. After the earthquake, the shear zone solidifies due to cooling caused by
thermal diffusion and prepares for next earthquake. Figure 1.1 illustrates the idea that the
shear instability is considered a mechanism of earthquakes. Ogawa (1987) has
demonstrated the existence of such conditions for the occurrence of instability in
subducting slabs. He demonstrated that the instability will occur for a wet dunite when
stress exceeds 140 MPa based c.: the creep law of wet dunites determined by laboratory
experiments at a temperature 10000K.

The melting, however, does not necessarily lead to an earthquake for melting on a
fault surface is not always observed either in in-situ observation or in laboratory
experiments. Nevertheless, the exponential increase of the temperature is still a possible
way of triggering an instability, and this may be associated with some weakening
mechanism at the microscale such as grinding of the materials in a shear zone (Mahboobi,
1981). The words thermally activated instability include the instability which might be
caused in microscale and activated by the increase of temperature without melting,

This process was studied with a one dimensional model shown in Figure 1.2a
(Mahboobi, 1581; Ogawa, 1987). The model is a layer of a viscoelastic material of
thickness 2a embedded between two elastic outer layers with thickness 2(L- a). The
viscoelastic region is more deformable, and can be interpreted as fault gouge or shear zone.
The instability will take place within this region. The elastic region is taken to be of the
order of the size of fault planes; the elastic energy stored in this region will be released as
an energy source for shear heating when the instability takes place in shear zone. Such a
model can be represented more clearly with a spring and a dash pot model and its
equivalent form in which the effective elastic constant is used (.Figurp 1.2b).

The stress versus strain rate relation of the model is assumed to be

.=l_m- .
€ Ydt+8v (1.1)

where Y is the elastic modulus, 7 is the shear stress, € is the total strain and €y is the
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viscous strain in the shear zone. For a long duration of application of stress, the creep rate

in most rock depends on temperature and pressure by (Weertman, 1970)

. AT

€=Dy f()e T (1.2)
where Dy and A are material parameters, Ty, is the melting temperature, and f(t) is a
f... -tion of the shearing stress or deviatoric stress T. Since Ty, varies with pressure, this
relation is also pressure dependent. f(t) behaves linearly ai a low shearing stress t. A

specific atomic model that results in a linear function of f(t) could be the diffusive process

known as Nabarro-Herring or Coble Creep. At a higher stress where solidus creep is more
readily measurable f(T) is a nca-linear funiction of T generally iaken as a power law of the
form t", with n in the range of 2 to 5. When © >10-3y, where p is the modulus of quasi
rigidity governing rapid deformation of material, the nower law breaks down and a more
rapidly varying function of t has to be considered (Weertman and Weertman, 1975). At

such a high shearing stress, an exponential dependence of f(t) has been suggested (Dorn,
1955; Van Bueren, 1961; and othrrs). An empirical constitutive equation that represents
these different regimes of stress dependence below T,, and at the same time has some
physical basis may be written as (Mahboobi, 1981)

-E
s = cclass cinh VT
€=Cg €kT SmhkT (1.3)

where cg is a parameter related to vibration frequency of crystal lattice, E is the activation
energy, v is the activation volume, k is the Boltzman's constant, and T is the absolute
temperature. The hyperbolic function sinhﬁ’% is proportional to T at low shearing stress
and exponentially dependent on T at high shearing stress. It also has the right symmetry

with respect to changes of sign of T. A general physical basis for the form of equation
(1.3) can be given in terms of thermally activated dislocation movement that becomes
biased in a particular direction by an applied shear stress. In this case the processes of

dislocation intersection which restrict the motion of dislocations are characterized by a

stress-dependent energy of activation U(t) = E - Tv (Van Bueren, 1961; Feltham, 1966 )



which obviously must remain positive.

Urder 1 constant stress T, the temperature profile in this system, which evolves in a

qu “vv can be found as a solution of the conductive heat transfer equation with
distn . irces per unit volume.
or T _ . . . . .
PCp= - K—— = 1€ = distribution of heat (L.3)
ot 9x2

where p is the density, Cp is the specific heat, K is the conductivity, x is the divection of
heat flow, and t is time. The right side of equation (1.4) represents the heating due to
viscous dissipation. The other heat sources, such as radiogenic heat source, are not
included in the formulation.

Assuming a constant drive U at the boundary of the outer layers, we obtain the

following quasi-static equation,

L
edz=U.
0

Together with the boundary conditions for temperature,

T=T,, atz=L
§;r~=0, atz=0
0z

equations (1.1), (1.3) and {1.4) form an initial value problem that can be solved in a routine
way.
This development assumes both that inertial effects are negligible and that stress is

constant over the thickness 2L of the fault. If either condition is vioiated we can say that

an instability has occurred and this can be interpreted as a seismic event. Let i be the shear
elastic modulus of the fault material. Ii' the creep properties of the medium change

significantly in times of the order of shear wave travel time across the fault, —2L—. | inertial

wp
effects must be included. The criterion given by Mahboobi ( 1981) to indicate the moment

at which the quasi- static model breaks down is
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v> 1
pv—L

a
where v is the spatially integrated strain rate across the shear zone f €dz. In this case
0
inertial reactions are beginning to dominate applied forces and waves must be generated; we

perceive a rupture to be occurring.
1.2 A single degree of freedom autonomows system

The model discussed in the last section is described by a set of partial differential
equations (PDE's). For the purpose of simplicity in mathematics, it is useful to reduce the
PDE's to a set of ordinary differential equations (ODE's) under certain approximations
while the basic physical properties of the system still remain. Since temperature dependent
viscous shear occurs in a very thin layer of thickness 2a, compared with the tectonic scale,

it is reasonable to approximate the fault zone by an infinitely thin fault. If the anelastic

displacement at + a is + A, the shear strain rate 8-21‘1 %A Let = ;g the time rate of the
change of anelastic displacement can be written in terms of the stress and temperature by
writng equation (1.3) as

dA _ 1 e=*giph YT

" ek sin KT
When an instability takes place, the temperature will increase explosively within a very thin
layer (Ogawa, 1987). Therefore, it is reasonable to consider the explosive temperature

increase occurs within the shear zone, while the temperature distribution in the outer layers

2
is constant. With this approximation, we can represent the partial derivative %—'ZE by a
X

finite difference scheme. Let T be the temperature at the center of the layer and Ty be the

ambient temperature, equation (1.4) becomes

pcpdT =1¢- 2K (T-To) .
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Defining o as the mass per unit area of this fault, and K= 4K/a as the thermal

conductivity for a thin fault we have

ocp L = ol - ¢y (1-Ty) °

A similar simplification can be done in equation (1.1). If the total shear

displacement at £ a is + u, the shear strain rate is é=§15 d(;—% Defining Y 1=Y/2a as the

elastic modulus for the thin fault, we have the stress versus strain relation of the shear zone:

1d‘t+A

s = Y, dt

When we introduce an effective elastic modulus Y, defined as ?Yl—‘;_%l;—[: to replace Y1,
where Ye is the elastic modulus of the elastic region, the displacement rate of the shear zone
can be expressed in terms of the displacement rate at the boundary of the layer, U, which is
assumed {0 be a constant. The loading rate of an external load on the fault is given as
f=Y,U.

We assume temperature fluctuation in the shear zone will not affect the ambient
temperature distribution. As a result the temperature dependent creep behavior of a thin,

uniform, fault element is fully defined by

dT _ _t _.E X

" — e sinh X% kT - B(T-Ty). (1.5)
dt _ ___Y E vt

at =f €T Sinh X% T (1.6)

where B=K,/cc,,

A heterogeneous fault can be coarse grained into a number of fault segments. The
interaction between faults elements is mediated by the surrounding medium. This effect
can be treated by a finite element technique, and the stress equation (1.6) can be described
in a matrix form (sec section 1.4). The simplest case is the system with only one fault
element. Its dynamics is described by equations (1.5) and (1.6). The system is

autonomous since the right sides of the equations do not contain the time explicitly, Such a
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system is often referred as a single degree of freedom autonomous system, and its general

form is

).( 1=F1(X1,X2)
xp=Fa(x1,X9)

Quite often, in the case of a system of nonlinear equations, no explicit solutions in the form
of time dependent functions can be expected and we must be content with a statement
concerning the stability characteristics of the system in the neighborhood of known
motions. Of particular inter-st is the representation of a dynamical system in a phase space,
which is a 2-dimensional space with xy, x5 as coordinates for a single degree of freedom
autonomous system, and in general 2 N-dimensional space for a system described by N
differential equations. Each point in phase space corresponds to a definite state of the
system, and the motion of this point describes the time evolution of the system. Geometric
analysis of the integral curves provides a useful tool in the study of phenomena associated
with autonomous dynamical system. In particular, it provides éonsiderable insight into the
nature of the motion when our interest lies in the qualitative aspects of the motion rather
than in solutions in the form of explicit functions of time.

For a single degree of freedom autonomous system the trajectories of the equations
in the phase plane can be obtained by integrating the equations, with exception of the
singular points where the trajectories passing through an ordinary point cannot approach it
in finite time. The singular points are the fixed points for the flow, and the integral curve
passing through a singular point consists only of the point itself. The fixed point condition

is given as
F(x)=0

where F=(F1,F2) and x=(x,, X,). Examining the property of the system at the
neighborhood of a fixed point will help us to understand the dynamics of the system.
The geometry of the phase portrait of a single degree of freedom autonomous

system is characterized by either an attracting point or a limit cycle. A stable steady state of
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a physical system is represented by an attracting fixed point of the corresponding dynamic
system, while an unstable state is represented by a repelling fixed point. In the
neighborhood of the fixed point, the system can be linearized. The system near the fixed

point is then described as
x =[J]x

where [J] is a Jacobian. The behavior of the system near the fixed point depends on the
eigenvalues of [J]. The equilibrium state of the system is asymptotically stable if the real
parts of all eigenvalues are negative. If p and g are the trace and the determinant of the

Jacobian [J] respectively, we have eigenvalues:

A
1}:‘D._i B.)-q
2 V(z

Different regions in the p-g plot will correspond to different behavior of the system
(Meirovitch, 1970; Thompson and Stewart, 1986). Figure 1.3 shows such a classification,
it characterizes the motion, stable or unstable. In the entire left half-plane the motion is
unstable, it is characterized the saddle-point (SP) type of instability. In the right upper
half-plane the motion is of the unstable node (UN) and unstable focus (UF) types, and in
the right lower half-plane the motion is of the stable focus (SF) and stable node (SN) types.

If the eigenvalues cross the imaginary axis, the system will lose its stability.
Suppose the dynamical system depends differentially on a real parameter i (the bifurcation
parameter). If the Jacobian is invertible, the implicit function theorem implies that the
system should also have a unique fixed point when | moves away a little from its original
value. However, as [ is varied, the invertibility condition may eventually break down in
several ways leading to points of changing stability.

When two eigenvalues cross the stability boundary to the right half complex plane
as a complex conjugate pair, the system undergoes Hopf bifurcation. It replaces a steady
state by a periodic state, characterized by a small closed curve. Figure 1.4 shows the phase
portrait of Hopf bifurcation in the Guckenheimer-Holmes model.

There exist two parameters in the thermally activated instability model: the loading
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rate ‘which could correspond to a tectonic drive, and the ambient temperature which
represents the thermal regime ¢f the fault zone. In the numerical investigation of how the
behaviors of the model depend on the control parameters, it is atural to reduce equations
(1.5) and (1.6) to their non-dimensional forms by normalizing t, T, and T by 1/B, YiL, and

V.12
X&—. Here we introduce a length scale L which is related to the typical length scale of a

fault system. After this normalization, equation (1.5) and (1.6) become

-Q
‘g Ct 7 smh - (T-Ty) (1.7)

: Q. : 1.8
de - . Co sinh A% (1.8)
where t, T and T are non-dimensional variables and will be used as such in the following

wections. f is non-dimensional loading rate. C, A, and Q are non-dimensional constants

1 aee O = OPE ccpv
defined as: Q k?le’A i and C= BL“ .

In the above approximation, the quantities K, o, and Y, are defined with respect to

the effective fault thickness 2a. In order to obtain the finite shear displacement across the
infinitely thin fault, the elastic constant ?1 for the thin fault must remain finite, i.e. the limit

Lin}) —} remains finite. Y; is so determined that displacement across the infinitely thin
a—

fault is of the same order of magnitude as the displacement across a length of tectoric scale.
Since the stress in the infinitely thin fault and in its neighborhood are of the same order of
magnitude, Y = Ye/L, where Y, is the elastic constant of the neighborhcod of the thin
fault. In this case the effective elastic constant ?1 =Y,/2. We choose L=35km in our
modelling; it is the typical width of fault zones and is also a coarse grain characteristic size
of the fault geometry and layer size.

The material properties in the fault zone are largely unknown. The unquestioned
existence of grains, fluids, and non linear processes leads to great uncertainty. The
constants C, Q and A in this modelling are estimated from the typical physical constants in
subducting slabs (Ogawa 1987). The density p is about 3000 kg/m3, ¢p about 800 J/kg
deg, the thermal conductivity K is about 2 to 3 J/m-s-deg, the elastic constant Y is about 70
to 130 GPa, the activation energy E is about 390 to 570 kJ/mole. In our problem we deal
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with processes on a much larger scale than atomic and estimate the activation volume as the
square of the Burger vector of the dislocation times the jog spacing of dislocations
(Feltham, 1966). This gives activation volumes on the order of 10-5 to 10-6 m3/mole. The
atomic vibration frequency 1/cq is of order 1012 to 1014Hz. The thickness of the shear
zone 2a range from 0.1 to 1 km. In our one dimensional model. we choose the surface
density ¢ by 6/2a=p. B is of the order of 10-1!, Q is taken as 0.05, A as 0.2. C is order
of 1022 0 1023,

The dependence of the stability of the system on the loading rate and ambient
temperature can be investigated numerically. Figure 1.5 shows the relation between the
real part of eigenvalues of the Jacobian and the loading rate. When the loading rate is small
or large, the phase curves will be attracted to a fixed point in phase space. The system is
characterized by a stable focus. With an intermediate loading rate, the phase curve is
attracted to an invariant limit cycle. Hopf bifurcation occurs when the loading rate varies
both from low to high around 0.001 and from high to low around 0.018, where the
ambient temperature is taken as 7.8x10*4. The existence of a stable region corresponding
to high and low loading rate agrees with the results obtained from finite thickness fault
model (Mahboobi, 1981). Figure 1.6 shows the dependence of the real part of eigenvalues
of the Jacobian on the ambient temperature when the loading rate is taken as 0.01. The
system is characterized by a limit cycle when the ambient temperature is low, and a stable
focus when the temperature is high.

Figure 1.7 shows a limii cycle solution of the system calculated when the loading
rate equals 0.01 and the ambient temperature equals 7.8x10-4. After sufficient time, the
system will settle down to such a periodic solution asymptotically. The figure shows that
when the stress accumulates to a certain level, the temperature starts to increase
exponentially due to viscous flow and the system become extremely unstable. At this
moment the stress starts to decrease and the temperature increase. Such sudden drop in
stress could be interpreted as an earthquake. Eventually the stress starts to increase due to

tectonic drive, and the temperature starts to decrease due to thermal diffusion. It then leads

t0 a new period of the motion.
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When the system changes from focus to a limit cycle solution, it corresponds to an
aseismic sliding of different fashion: stable and periodic. As the state of the system moves
away from g axis in figure 1.3, the system become stiffer. The sudden drop in stress due
to a temperature increase in this case will be so fast that the quasi-static approximation
condition will be break down; it is associated with seismic wave generation. Figure 1.8
shows the stress change versus time for the model in which the loading rate is taken as
0.01 for both cases, and the ambient temperature is taken as 7.2x10 for the dash-curve
and 7.0x10 for the solid curve. A simple criterion to indicate the condition where the
quasi-static approximation breaks down is whether stress changing rate exceeds /T, where

1 is 1kbar, the typical shear stress in subducting plate, and T is 0.1sec, the typical period of

seismic waves.

1.3 The effects of the real fault gouge

In the model discussed in the previous sectinns, the fault gouge is approximated by
a layer of homogeneous miaterials. The difficulty of the simulation arises when it is noticed
that the stress at which the instability occurs is tens kilobars, while the generally accepted
value at which a rock will fail is not over one kilobar. Such a big discrepancy can not be
resolved simply by adjusting a few parameters in the system. Moreover, such a stress
seems not to depend on tmost of the parameters in the system.

We know from the previous section that the fixed points play a very important role
to the dynamic behavior of such a system, because they force a definite structure of the
trajectories in their neighborfiood. The system is stable in the neighborhood of an attracting
fixed point in phase space, and unstable in the neighborhood of a repelling fixed point. In
the ;aster case the instability will occur, which is interpreted as an earthquake. Therefore
the stress at the neighborhood of a repelling fixed point can be used to approximate the
stress at which the instability will occur. The stress corresponding to a fixed point is found

as
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It depends only on the loading rate and the difference between temperature at the shear zone
and ambient temperature. The most remarkable feature of above expression is that it is
independent of the creep law of the shear zone materials. This eliminates the possibility of
reducing the stress by choosing a different creep law. On the other hand, the loading rate
and temperature must be in a definite range in order to get a limit cycle solution and
therefore, the choice for these parameters is very limited.

Since the need for a high failure stress can not be resolved by adjusting parameters
in the model such a model is not realistic, and some important features of the fault gouge
are ignored in this model. In order to lower the failure stress, the concept of effective

stress is introduced as
Ta

Te =

f

where T, is an apparent stress, 0 <f< 1, Te is an effective stress, which is the stress that
actually participates in the mechanism of thermally activated instability. The factor f
allows the effective stress to rise to one to two order higher than the apparent stress. One
possible contribution to such a high stress within the fault gouge assumes that the fault is
blocky, and we deal with the stress transmitted across a small contact area. In this case, the
factor f equals the ratio of real contact area to apparent area. It is also well known that the
presence of fluid in a fault gouge and the interaction between microscale fractures also play
an important role in determining the strength of rock. How these effects contribute to the
factor fis still not clear.

The value of f should be an increasing function of normal stress on the surface
layer, however, this relationship is not very well supported by experimental observations.
Mahboobi (1981) has introduced this factor in a shear instability model to account for the
effect of presence of normal pressure (Figure 1.9). While the normal stress is below some
threshold, the real area of contact depends on surface roughness, and the lateral interaction
or interlocking of pre-existing asperities has to be taken into consideration. In the limit of
the high normal stresses, f increases from its minimum value zero and approaches unity,
therefore the region of contact will depend on a creep behavior similar to that of the

surrounding material. This is a more satisfactory result than an indefinitely increasing
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limiting frictional force inferred from the simplest extrapolation of the law of friction.

The effect of the factor f on the stability of the system is shown in figure 1.10.
The sudden increase of the real part of the eigenvalue of the Jacobian suggests a sudden
transition from stable state to unstable state as the factor f increases.

The jerky type of motion known as stick-slip is observed in many type of rock
experiments and is often cited as a possible mechanism for earthquakes. The effect of
confining pressure on the mode of sliding can be a promotion of a transition either from a
stable sliding to a stick-slip or from a stick-slip to a stable sliding. Byerlee and Brace's
(1968) experiments showed that stick-slip takes place when the confining pressure is high
(~106 MPa). The results from Scholz, et al. (1972) and Ohnaka (1973) supported the
effect of transition from stable sliding to stick-slip as confining pressure increases, but
there is little agreement on the value of the pressure at which the transition takes place.
However, Engelder (1974) showed the opposite effect of confining pressure on the
transition. In his experiments on a sandstone rock, stick-slip was observed at confining
pressure below 70 MPa and stable sliding above this value. The above seemingly
contradictory observations are easily resolved with the result shown in the Figure 1.10; it

predicts a stable sliding at both low and high confining pressure, and stick-slip in between.

1.4 The effect of inhomogeneity of a fault system

When a fault is inhomogeneous, different parts of the fault are generally in different
states. One part of the fault will interact with other parts through the surrounding medium.
In this case the fault can be coarse grained into a number of fault segments and the mean
values over each fault segment are used to describe the state of the fault segments. This
leads to a group of coupled ordinary differential equations. We know from the discussion
of previous sections that the dynamics of each fault segment is governed by two ODE's, a
stress equation and a temperature equation. It is reasonable to assume that the heat
generated due to viscous flow in a fault segment mostly diffuses to its surrounding
medium, and the heat transferred to its neighboring segments is negligible. The

temperature equations therefore are not coupled to each other. When the stress state in one
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fault segment changes, this effect will be transmitted to other fault segments by the
surrounding medium. This implies that the coupling among :ie stress equations depends
on the properties of the surrounding medium and its geological structure. The finite
element technique is obviously a good candidate for exploring this problem.

The finite element problem for a model with discontinuities can be formulated as the

solution of

Kd=f=A b+A,3+A, g (1.9)

where K is a stiffness matrix, d is the vector of N nodal displacements, and the source
terms are contributions from boundary displacements b, inelastic fault displacements 8, and
gravity g respectively. The matrices A}, A9, and A3 are the transformations :* t convert
their respective vectors into source terms or body force equivalents. A7 contains the
effective shear modulus of the fault. In the actual process of computation, the terms on the
right hand side arise from boundary constraints.

The slips are computed on fault elements by methods external to the elastic finite
element calculation. The shear stress on a fault element is T = Mid + M3A, where M
connects the displacements on the N nodes to the stress on the fault elements and M,
connects the inelastic displacements to the elastic stress on the fault elements. After

replacing d with the solution of equation (1.9) and differentiating this with respect to time
de_ -1[ db , 5,441, vydA
a VKT A + A2y + Moy
The boundary conditions are

K
b(t) = bo + tz vkCx = bg +tCv
k=1

where the vectors ¢y are composed of the indices of the nodes of all those boundary points
that move at velocity vi. In this case there are only K independent boundary conditions.

The time rate of change of stress on the fault elements can be written
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%@’T{ M, K 1A; C Jv+[ MIK-1A2+M2]%% (1.10)

= dA
Go +Gdt

The first term on the right side of the equation Gy, is the loading rate acting on the
fault segments, and the coefficient of the second term, G, reflects the interaction among the
fault segments. All the geological complexity of the fault region is reflected in these two
matrices. These equations together with the temperature equations constitute a group of
ordinary differential equations in the shear stress and temperature on the fault elements that
completely determine the time evolution of the fault system. The evaluation of the matrices
K, M,, M,, A}, and Aj is explained in Appendix A.

When the interactions among different fault segments enter the system, the dynamic
behavior of the system becomes far more complicated than that of a single fault element. A
simple case in this model involves two ‘.ol alemears, where Gy=(8q1, 892)7T.
G =[ g;i g;; }, and the ambient temperatures a:: ., anu: ,. Our first example uses
g,178»=-1 and g,,=g,,=0.1, the ambient temperatures are taken T1=T2=7.8x10“‘. The
loading rates g,1, and g, will impose two basic frequencies on the system. As the
loading rates change, frequencies locking occurs. Figure 1.11 shows the stress versus
time for one of the fault segments when the loading rates are g,1=0.01 and g;2=0.012.
The time sequence displays an erratic behavior. A further investigation of the one-
dimensional map constructed by choosing successive maximum stresses indicates the
motion is quasi periodic however. Figure 1.12 shows the one-dimensional map; it is a
cross section of a two dimensional torus. At other loading rates the frequencies are locked
to various rational numbers.

When we increase the interactions between two fault segments by increasing the
parameters g,, and g,, the motion of the system become periodic. The system becomes
very stiff when we decrease the ambient temperature, and this causes great difficulty in the
numerical integration. It is uncertain whether the system will become chaotic at conditions

of low ambient temperature and strong interaction between fault segments.
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1.5 A model of the subduction zone near Vancouver Island, Canada

The two dimensional finite element model used in the example calculation discussed
below is representative of the structure on a line crossin g Vancouver Island and
perpendicular to the coast of North America (Figure 3 in Introduction). Because the Juan
de Fuca plate has moved in a direction N350 E relative to the America plate for the last few
million years (Keen and Hyndman, 1979), we assumed the driving force on the Juan de
Fuca plate would be in this direction. The geometric configuration of our model is mainly
based on the results of analysis of LITHOPROBE seismic profiles (Yorath, et al., 198S;
Green, et al., 1985, 1986) and the gravity model of that area (Riddihough, 1979). Since in
a two dimensional elastic model, a bent fault must be accommodated by a more complex
structure, we ignored the known sudden increase of the slope of the subducting oceanic
plate beneath the continental plate under Vancouver Island and modelled the boundary
between the subducting plate and continenual plate and upper mantle which we considered a
fault zone, by a straight fault of 18 degree dip.

Figure 1.7 * shows the mesh of the model in which the material parameters are
those used previously (Nyland and Li, 1986). The oceanic plate and the upper mantle
beneath it move at a constant velocity along the fault. Such movement corresponds to the
push from the Juan de Fuca Ridge or drag from mantle convection. The gravitational pull
is not dominant in that area. The interface between the subducting plate and the continental
plate is modeled by 10 non-linear visco—elﬁstic elements. The surrounding materiais are
elastic and the fault elements interact with each other through this surrounding elastic
media. The finite element model was used to calculate the interaction matrix and the
loading rate on each fault element and the time evolution of the dynamics was explored for
a variety of fault parameters.

The integration of the differential equations by numerical means posed some
challenges. We used either a 5th order Gear backward differentiation method or a 12th
order Adams predictor method as implemented in DIVPAG (IMSL 1987). At certain times
the equations were clearly changing character, becomin g stiff. Notice that the part of elastic
energy stored in the medium will be radiated by seismic wave when an earthquake occurs,

while in our model the inertial effect is neglected, and ull the energy is converted to heat
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which increases the temperature in the fault element. Therefore, it is reasonable to drop a
certain amount of stress without increasing temperature to simulate the occurrence of an
earthquake. This step is taken when inertial effects dominate. I believe that it is plausible,
but cannot prove, that such a state corresponds to an earthquake.

Since the routine provides the option of controlling the minimum integration step
size, we set this minimum to a value of the order of the time of transit for shear waves
through the fault segment. When the routine sought to reduce the step size below this
minimum we stopped the integration. We interpret this condition, which can be diagnosed
as the approach of very rapid variation of the solution in time, as indicating thar the inertial
effect must be invoked and that failure is imminent. The equations discussed in the
previous section will not be adequate to describe this failure. In this situation we determine
which element has the highest rate of temperature increase. If the rate of change of stress is
negative, we drop the stress on this element until the rate of change of stress become zero.
Otherwise we raise the temperature of the element until the rate of change of stress become
negative. The state after the stress drop is used as a new initial condition for the
integration.

We chose the same fault parameters as those used in previous sections of this study
for this model. The ambient temperature is taken about 700°C for the top fault segment and
1200°C for the segment at the bottom of the model. The ambient temperature for other fault
segments are obtained through linear interpolation. The results of the calculation are shown
in figure 1.14. The magnitude of cach event is determined according to the stress drop
associated with this event. The scale disvlayed in the figure 1.14 is arbitrary. The
magnitude and frequency relation is shown in figure 1.15. Note that the curves have two
quite distinct slopes. The stress drops resulting from successful numerical integration of
the equations are more numerous than those that appeared when fracturing was invoked

and may correspond to aseismic creep.
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Figure 1.1 illustrates the idea that the thermally activated shear instability as a
mechanism of earthquakes.
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Figure 1.2 (a) illustrates a one dimensional model. (b) is its equivalent form described
by a spring and dash pots.
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Figure 1.4 shows the phase trajectories of the system described by the differential
equation T =r(c-r) and g =-1. Hopf bifurcation occurs when tiie parameter C
changes sign.
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Figure (.5 shows the relation between the real part of eigenvalue of the Jacobian and the
loading rate. Hopf bifurcation occurs when the curve crosses zero.
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Figure 1.6 shows the relation between the real part of eigenvalue of the Jacobian and the
ambient temperature.
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Figure 1.7 shows a limit cycle solution of the system.

0.0104

0.0130

45



46

"9AIND PI[OS 3Y) 0], OTX()'L PUB SAIND-YSEP 9Y) 10§ , ([XT'L St Anesadwiay
JUIqUIe Y} pue [(°() St AIEX JUIPEO] 3Y1 YIIYM Ul [POWL Y} 10J St SNSI9A JFueyd SSAIIS AY) SMOYS 8] Ty

SWIT], [PUOISUSWITP—UON
0'00Y 008 009 0oL 009 008 ooy oo 002 00t 00

5 1 4 L L. L . 0000
\
[
[}
[
-400°0
A
(]
... ;
\ - +:0°0 m.
/ 2 8
Ill u
~. 2.
I/‘/ u
1200 Wr
= )
n
(1]
w
7]
- 8200
€600




Figure 1.9 illustrates the idea that the real contact area is much smaller than the apparent

contact area. The effect of normal
factor f.

pressure is taken into account by introducing the
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Figure 1.10 shows the relation of the real part of eigenvalue versus the factor f. The sharp
increase of the eigenvalue with f indicates a sudden transition of the system from stable to
unstable.
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Figure 1.12 shows the one-dimensional map of successive maximum stress.
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Figure 1.13 shows the finite element mesh of the two dimensional model of the west coast
of Canada. The above table shows the elastic constants of each material.
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Figure 1.15 shows the magitude frequency relation for the simulated earthquakes.
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Chapter 2: Is the Dynamics of the Lithosphere Chaotic ?

Lithosphere dynamics can be represented by a stochastic model (Knopoff, 1971; Kagan
and Knopoff, 1987; Kagan, 1988) or by a deterministic model that usually considers only a
single fault in isolation from the others (Rudnicki, 1988) and emphasizes the onset of
instability of the model. Long term behavior of seismicity secms to reflect a stochastic
process but it is not necessarily true that complex behavior must be due to complicated
causes. Recent development in non-linear dynamic theory suggests that the random
behavior of a system can be inherent to the system, ra "er than imposed by the environment
or other uncontrolled forces. Clearly simple systems also behave randomly. This inspired
several studies into the possibility of chaotic earthquake occurrence (Huang and Turcotte,
1990; Carlson and Langer, 1989). The results from the modelling discussed in last chapter
and those by others are encouraging. It may be possible to extend such a view of the fault
models to a general view of the dynamics of the lithosphere, and to treat the dynamics of
the lithosphere as a non-linear system. |

In the next few sections, I will explore the dynamics of the lithosphere in terms of
the idea of chaos. This suggests that the lithosphere dynamics is better described by chaos
rather than by randomness. Such a view of lithosphere dynamics suggests that problems
such as earthquake prediction should be addressed in a completely different way, and that
some useful information about the general behavior of a non-linear dynamic system can be
used in the study of earthquake occurrence. The following discussions are heuristic rather
than mathematically rigorous, the latter is impossible now in the study of lithosphere
dynamics. Our understanding of the lithosphere dynamics is still in its infancy. The
following discussion attempts to bring the lithosphere dynamics closer to the realm of

quantitative science.
2.1 Chaos Theory and Its Implications on Lithosphere Dynamics

If an explicit integration of a group »f differential equations is impossible, one
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increases emphasis on qualitative behavior of physical systems, and examines geometric
properties of phase portrait in phase space where its evolution can be visualized. For
example, the motion of a simple pendulum can be expressed in a phase space witn the
nosition and velocity of the pendulum as coordinates. In the presence of friction, the phase
curve is a spiral which approaches a fixed point known as an attractor since it attracts
nearby orbits. Starting from any point in phase space, the system will come to rest with a
passage of time. Therefore, knowing the property of the fixed point, one will know the
asymptotic behavior of the system (Crutchfield et al., 1986). More generally, instead of a
fixed point phase curves can be attracted to a smaller region, a limit cycle for instance.
Therefore, an attractor in general is a lower dimensional object embedded in a phase space
whose dimensionality is associated with tiie number of a priori degrees of freedom of the
system. When the state of the system is close to an attractor, the number of degrees of
freedom of the system may be greatly reduced.

Most dissipative systems are characterized by an attractor. This makes things much
easier since we don't need to consider the rest of the phase space, only the attractor.
However, an attractor can become very "strange” when it does not attract in all directions.
It may stretch in some directions while contracts in others. The volume element of the
attractor will be stretched and get folded at same time to remain confined in a bounded

domain. A simple example to illustrate this operation is the usual baker's transformation
(Schuster, 1988),

= ay, for 0<x,<1/2
Yn= 12+ay, for 12<x, <1

When a = 1/2 the map is area preserving, and the map is non-area preserving when
a < 1/2. The wransform stretches a unit square in the x direction and contracts it in the y
direction. After the unit square be stretched it is then folded back to keep the object within
the unit square. The object is made a strange attractor after repeated application of this
map. Figure 2.1 illustrate the operation of the baker's transformation on an object within

an unit square. After a few steps, the object becomes unrecognizable.
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an unit square. After a few steps, the object becomes unrecognizable.

Chaos mixes orbits in phase space ways like the baker's transformation. Nearby
trajectories on a chaotic attractor will stretch first, and then fold back on themself. After
some time the attractor will have a multisheeted structure, and become cantor-set like in
some directions, and accordingly a fractal (Mandelbrot, 1983). Such a complex orbits
therefore lead to a random behavior of the system.

Another property of a chaotic attractor is that any error associated with the initial
condition will increase exponentially. For a physical system, it is impossible to make
precise measurements without any error. Therefore the state of the system is within a small
phase volume. Such a small volume stretches and folds due to the chaotic behavior of the
system. We will soon loss the track of the state of the system. Any microscopic
fluctuations in the sysiem will be amplified to macroscopic scale on the chaotic attractor,
and therefore causes loss of the ability to predict. The prediction of future made for such
kind of system is effective only in short term.

The idea of strange attractors entered physics with Lorenz's remarkable discovery
of a fundamental regularity in a chaotic system (Lorenz, 1963). Lorenz equations are a
severe truncation of the Navier-Stokes equation, motivated by the desire to understand the

predictability of the weather. His system has three ordinary differential equations:

X = -OX + Oy
y=-X7+Yx-y
z=xy-bz

Nevertheless, the system behaved in an apparently random fashion. It is the first example
of a low-dimensional system that displayed a complex behavior.

Such systems are deterministic, but the output data sequence from the system can
be very chaotic. The apparent randomness shown in the output is inherent to the system; it
cannot be removed by a better understanding of any part or aspect of the system. A chaotic
data sequence may behave statistically the same as those generated by a stochastic process.
It may pass the conventional statistical tests of randomness. Some simple maps, a

triangular map for instance, can produce uncorrelated time series, ie. <xt x¢+j> = 0 unless j
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random phenomena. If a system has a wide distribution of characteristic energies it should
be described as a stochastic process. Other may relate to chaotic behavior generated by a
deterministic system of a few degree of freedorn. The possibility of the latter provides us
an alternative view of the dynamics of the lithosphere that appears quite random. We hope
that we may possibly find a deterministic mode! to describe the dynamics of the
ithosphere.

Occurrence of earthquakes is an inseparable part of the dynamics of the lithosphere.
Therefore, the understanding of earthquake occurrence is a key to the understanding of the
dynamics of the lithosphere. Data about mechanical state of the lithosphere from direct
underground measurement is sparse and poor. This situation will not improve soon due to
the tremendous difficulties involved in the in situ experiments required to gather such
information. Earthquakes, however, provide an essential cognitive link with the dynamics
of the lithosphere, ind the main way we can understand it is through interpretation of
earthquake ocgurrences. It should come as no surprise that earthquakes become important
phenomena, exemplifying some aspect of our views on the evolution of the dynamics of
the lithosphere.

The statistical analysis of the nature of earthquake occurrence shows that the
dependence between events is very weak (Keilis-Borok, et al., 1971). Several other
statistical investigations led to the conclusion that the mainshocks are mainly Poissonian
distributed (Gardner and Knopoff, 1974). Those statistical results suggest a complex
lithosphere dynamics but recent advances in non-linear dynamics have shaken such a view
of the dynamics of the lithosphere. Further investigation by Kagan and Krnpoff (Kagan
and Knopoff, 1980; Kagan, 1981a,b) show that earthquake fault zow:- i - a three
dimensional structure that has a fractal distribution of size. The fractality 1upites that the
underlying dynamic field governing the occurrence of earthquakes does not have an
intrinsic length scale. This suggests that an analogy to structures associated with other
non-linear dynamic systems, which are deterministic, may exist in the earth. The dynamics

of the lithosphere may be non-linear and deterministic.
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2.2 Reconstruction of the Lithosphere Dynamics from Earthquake Catalog

The model discussed in chapter 1 is simple, but very instructive. In that simplified
model the state of the fault can be described by a few state parameters, such as stress and
temperature. A group of differential equations describes the evolution of the dynamics and
the onset of an earthquake. I assume this idea can be extended. The state of the lithosphere
may be described by a few state variables. The lithosphere dynamics is described by a
group of partial differential equations.

Such a system described by a group of partial differential equations usually has an
infinite number of degrees of freedom. A simple way to reduce a partial differential
equation to a group of ordinary differential equations is to truncate its series expansion in
the way Lorenz truncated the non-linear Navier-Stokes equations for the atmosphere. The
procedure is necessary since the current non-linear dynamic theory only applies to systems
described by a group of ODEs. A simple and straight forward way of illustrating the
discretization of the dynamics of the lithosphere into a group of ODEs is to follow the
exercise in chapter 1, where the fault along the subduction plate is coarse graining into 10
small segments. Each segment depends on two ODE:s that couple to the ODEs for other
segments.

We can, in principle, coarse grain a region of lithosphere into N small patches
(Figure 2.2a). The state variables in each patch can be treated as uniform. If each patch
has k state variables, the system has kN coupled ODEs. The state of the system at a given
time will correspond to a point in a kN dimensional phase space. The evolution of the
system will draw a trajectory in this space. If there exists ar attractor, and one exists for
most dissipative systems, the trajectory will settle on it after the transient period.

To relate individual seismic events to the evolution of the dynamics of the
lithosphere we need to introduce the idea of a Poincare map. The abstract idea often has

value for discretization of a continuous system. To this end consider a piece of
hypersurface £ which is one dimension less than phase space. We then consider the

successive intersection of the trajectory with I, and obtain a series of points on the

hypersurface. The time evolution of the governing differential equation is then reduced to a



series of successive poinrs on this surface.

It is often easier to study such a discrete mapping than a differential system. Many
ideas that are somewhat cumbersome to state for ordinary differential equations are more
clearly seen for a Poincare map because the irrelevant details of the short term evolution
vanish there. Experience shows that the essential properties of the differential system
reflect in equivalent properties of the mapping (Henon, 1981). For example, a simple
periodic orbit of the differential system, closing back upon itself after one revolution,
corresponds to a fixed point of the mapping. The periodic orbit is stable if and only if the
fixed point is stable (Wiggins, 1988). We can thus forget about the system of differential
equations and consider mapping instead.

Here, we can imagine selecting a special surface of section in a kN dimensional
phase space. The lithosphere states on the surface correspond to the states when an
earthquake will occur. Each time the trajectory crosses the surface corresponds to the
moment of on-set of an earthquake. The time needed for the trajectory to Icave the surface
and return, will correspond to the interval between successive events (Figure 2.2b). A
collection of the points marked on the surface will give us an earthquake catalog. We can,
therefore, consider the earthquake catalog only and ignore the rest of trajectories, ie. the
detail of what happens between intersections. Here we may disregard the physics and view
the system as a black box which produces a stream of seismic events. We explore then
how the geometric properties of the earthquake catalogs reflect the equivalent properties of
the dynamics of the lithosphere. All our questions about the lithosphere dynamics are
posed in terms of these outputs.

Such an interpretation of earthquake catalogs seems artificial, but it helps
understand the role that the catalogs play in the dynamics of the lithosphere. The advantage
of this consideration is that the earthquake catalog is now viewed as an output time series of
a deterministic system, and the data analysis techniques developed recently for studying
such systems are applicable. The justification for selecting such a surface of section is this:
Each earthquake will correspond to puint i kN dimensional phase space, and if the
dimension of such a collection of points is one or more dimension less than the embedding

space, ie. less than kN, selecting such a surface of section should be possible.



All this suggests that if the surface of section exists, and if the existence and
uniqueness theorem holds for all times for the differential equations governing the
lithosphere dynamics, the solution of the equations can be written out as an vector sp(t),
where ty<t <t,., for the initial condition s,. This guarantees the existence of mapping

G:
Sn+1=G(sn)

The problem of earthquake prediction then becomes the study of the mapping G. If we
know a state of the lithosphere when a certain earthquake occurred, the state of the
lithosphere at which next earthquake will occur can be determined by G. In this case, there
will be no increase in predictive ability upon learning more historic states Sp-15 Sp-g -
However, when the measurement is incomplete, a subset of s;, for example, it can only
partly constrain the system state. The degree of freedom left out can be determined by
considering more history measurements.

One may notice that the earthquake catalog mentioned above differs from real
earthquake catalogs that are obviously an incomplete measure of the state of the lithosphere.
The real catalog contains only occurrence time, epicenter and magnitude of each event but
no other information associated with the state of the lithosphere, such as stress and
temperzture. They are definitely important to the onset of a seismic event. Can we hope to
understand the system without knowing all this information?

This is possible because we restrict our attention to the dynamics of a finite
dimensional attractor, and therefore the information can be retrieved from the historical
data. Packard, et al. (1980) and Takens (1981) have proved the existence of an embedding
from an m-dimensional manifold to a n-dimensional Euclidean space R" defined by
D (x)=(v(x), v($(X)),..., v($p(x))) when n=2m-1, where ¢, is the flow of the system,
and v a smooth function on the manifold. This forms the basis of reconstruction
techniques for phase portraits from time series measurements in experimental domains.

In practice it is necessary to relate this embedding theorem to a time series of

measurements made on the system. A method of reconstructing a phase portrait from a
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time series is to create more signals from a single one by using time delay (Grassberger and
Procaccia, 1983; Roux, at el., 1983). Consider a time series {B()} and time delay T.
Suppose we create a state vector x(t) by assigning coordinates {xy, X2, weexp ) by [ B(1),
B(+T), ...... ,» B(t+(n-1)T) }. If the dynamics takes place on an attractor of dimension D,
then a necessary condition for determinism is n = D. Besides, an n-dimensional phase
...... » B(t+(n-1)T) } will have the

same properties (topologically) as one constructed from measurements of m independent

portrait constructed from the vectors { B(t), B(t+T),

variables, if n>2m+1, where m is the dimension of a manifold containing the attractor.

In the case of the dynamics of the lithosphere, the portrait of the phase space can
therefore be reconstructed from the earthquake catalogs. With the above discussion, we
arrive at following conclusions: The determinism of the lithosphere dynamics is ensured if
we use sufficient number of historic events in the earthquake catalog, and this leads to the
possibility of predicting future earthquake by decoding the earthquake catalog. If
premonitory seismicity patterns associated with nature of the attractor exist at all, they can
be found in earthquake catalog as long as we use sufficient number of historic events, since
the phase portrait obtained in this way preserves its geometrical invariants of the dynamics.
However, such arguments are effective and useful in practice only if the attractor is
characterized with a low dimensionality since, until present, only low dimensional

attractors have been successfully reconstructed in the experimental domain (Roux, et al,,
1983).

2.3 Measuring chaos in lithosphere dynamics

Any mechanical system on the scale of classical mechanics is deterministic.
Randomness is only a matter of degree. It occurs to the extent that something cannot be
predicted, and that usually depends on the available information. Such unpredictability
depends very much on the dimensionality of an attractor. If a time series is produced by
motion on a low dimensional attractor, then the motion is not random and it is possible for
us to make predictions. If the dimension of the attractor is large enough, the amount of

data needed to make a good prediction may be prohibitive. The problem gets exponentially
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worse as the dimension increases (Froehling, et al., 1981). The dimensionality therefore
can be used as an important criterion in distinguishing systems associated with low
dimensional attractors from those with high dimensional ones.

The dimension of an object describes how its volume scales with increasing linear
size. Various dimensions have been defined for this purpose. Of these Hausdorff
dimension is most commonly used. The Hausdorff dimension, also referred as fractal
dimension by Mandelbrot (1983) for a self-similar set is given by (For a general definition
see Farmer (1983) and Eckmann (19853))

_ 1 i 10gN(E)
Dn = EL _1)rr(1) log(1/e)

where, if the set in question is a bounded subset in m-dimensional Euclidean space, then
N(€) is the minimum number of m-dimensional spheres of diameter € needed to cover ihe
set. To illustrate the idea of the dimension for a self-similar object, first consider a square.
Since a plane has Euclidean dimension of 2, it follows that a unit square can be divided into
N=b2 squares of side r=1/b, b is number of subintervals divided on the side of the square,
and the length of the subintervals is r=1/b. The dimension in this case is given by
d=logN/log(1/r)=2 (Figure 2.3a). The pattern shown in Figure 2.3b is a Sierpinski carpet
(Mandelbrot, 1983). It can also be decomposed into reduced-size pieces, and with r=1/3,
we have N=8. The resulting dimension in this case is d=logN/log(1/r)=1.893.

Fractal dimension is a purely geometrical measure, independent of the frequency
with which a trajectory visits the various parts of the attractor. Another dimension which
takes into account the frequency of visiting, is the information dimension. Using the
partition of phase space into cells with diameter €, the information, which measures the
average knowledge gained after we have learned that the system is in a specific state, can be

written as:

Ne)
I(e) =- 2, PilogP,

i=1

where Pj is the probability for the trajectory to fall into the i-th cell. The information
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dimension is defined as

_ I(€)
Dr = e — 0 log(1/e)

Note that I(g)=logN(e), if all cells have equal probability, and hence Dy, = Dy. However,
for the general case the information dimension always a lower bound to the Hausdorff
dimension (Grassberger and Procaccia, 1983).

Consider now (Schuster, 1988) an infinite set of dimensions Dy, D,. D,,

crey

which relates to the f-th power of Pj via

Neg)
lo 2 Pf
D¢ =Lim -1 i=!

; f=0,1,2, ...

where Pj is defined as before. When f =0 and 1, we obtain the Hausdorff dimension and
information dimension respectively. Numerical determination of the dimension Dr by
covering the phase space with a set of cells of diameter £ and counting the number of
iterates which e in a certain cell is rather cumbersome and, in fact, impossible for high
dimensional attractors. However, things become simpler when f = 2. In this case

Ne)

> P? = the probability that two points of the attractor lie within a cell

i=1

= the probability that two points at the attractor are separated by a
distance smaller than €

=Lim L {number of pairs (i,j) whose distance Isj-sjl is less
N-oa N2

than £}

where sj and s; denote the states of the system at time t; and tj. This quantity is defined as
correlation integral, denoted by C(€). It measures the spatial correlation of the points that
lie on an attractor. Most pairs will be dynamically uncorrelated due to the exponential
divergence of trajectories, but the spatial correlation will remain if the trajectories are

confined to an attractor whose dimension is lower than the phase space. Similarly, D,,



which is called correlation dimension, is given by:

1 i 108C(E)
D2 "!‘ _’fr(l) log(e)

Numerical calculation of Dj is relatively easy and straight forward; it is thus a most
widely used parameter for characterizing an attractor. Generally we have following

relation:
De < Df for £>f

where the equal sign holds only when the attractor is uniform (Schuster, 1988). Of these
dimensions, the correlation dimension, therefore, gives a lower bound to all the others.
According to the discussion in the last section, the correlation integral C(g) can be
calculated from a single experimental measurement by applying the method of delays to the
time series. The method has brought a transition from purely mathematical and theoretical
results to the quantitative determination of chaotic effects in experimental data. The
correlation dimension D, therefore becomes an important parameter to indicate the
randomness of a physical system.

The dimensions are defined as a local property of a fractal set. In a purely
deterministic system, the complete past and future history of the dynamics is determined by
the infinitesimal structure to be found &t any part of the attractor. Thus we expect that a
chaotic attractor has locally the same dirmension everywhere. But for a real system the base
length scale may limit the degree of structure the actual attractor can have. So it is expected
that the dimension will usually vary across ihe attractor (Shaw, 1985). The correlation
dimension D, calculated from a time ¢<ries ir: the way discussed above should therefore
yield an average value for the dimension of the uttractor.

The calculation of the correlation dimension D, was carried out for the west coast of
Canada, from 118°W to 130°W and from 45°N to S1°N, which is a tectonically active
area. The earthquake catalog for this area, selected from the seismicity catalog of the
Geological Survey of Canada and the U.S. National Earthquake Information Service, has a

sufficient number of small earthquakes since the early 1950's. (See more discussion on the
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catalog in chapter 4). In the period of 1950 to 1985, the catalog contains 5200 seismic
events, ameng them there are 3160 events with magnitude above 2; 360 mainshocks with
magnitude .above 4 and 2000 mainshocks with magnitude above 2. The mainshock
catalogs -re generated after the aftershocks are deliberately removed according to a certain
empir il time and space windows because they are the events closely related to
mainshocks. The calculations were carried out for both mainshock catalogs and the catalog
including aftershocks in order to compare the results respectively, and see how aftershocks
affect the integral dynamic evolution of the lithosphere.

The set of time intervals between successive events are used as the data series for
the calculation, because they are accurately recorded and their physical meaning is obvious.
Figure 2.4 shows the result of the calculation for mainshocks of magnitude above 4.
Successive curves are generated by taking the data in successive groups of 3, 6,9 ...
and so on. Each curve corresponds to an increase of the dimension of the phase space by
three. The observed dimensionality of the attractor should also increase until the
dimensionality of the embedding space is large enough for the attractor. Once there is
enough room in the embedding space, larger than 2m+1 according to Takens (1981), the
dimension will then arrive at a constant value m, ie. the dimension of the attractor. This
dimension is measured from the slope of the curves in Figure 2.4; it is between 5 and 6.
The same calculation has also been done for the mainshocks of magnitude above 2. Figure
2.5 displays the result of the calculation. The slope of the curves is between 11 and 12.
There is no clear indication that the slope reaches saturation. Figure 2.6 shows the result of
the calculation for the catalog containing the events of magnitude above 2, including
aftershocks. The slopes of the curves saturate at a value between 3 and 4.

There are a few possibilities that can cause the inconsistency of the results from e
calculations for the catalogs which contain mainshocks whose magnitudes ure above 4
above 2. One is that errors can be introduced into the calculation due to incompi.
recording of small events. Since the data used are time intervals between successive
events, missing events could greatly distort the data, and therefore make the data appear
more noisy. We know thz; the dimension for a random noise is infinity. More noise can

also be brought into the mainshock catalogs by the operation of removin g aftershocks from
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the catalog. The effects become significant for the small mainshock events whose
epicenters generally have a large uncertainty. It wili therefore affect the selection of space
window for reroving aftershocks.

The low dimensionality shown in the catalog which contains all the events indicates
that the aftershocks are integral part of the whole dynamics. It contains significant amount
of information about the dynamics of the lithosphere. Removing aftershocks from the
catz!og will eliminate useful information about the lithosphere dynamics. Certainly there is
ancther possibility that aftershock events are characterized by a smaller length scale in the
attractor than that of mainshocks since they are local events of mainshocks both in time and
space. The section of the attractor corresponding to aftershocks has a lower dimension
than that of mainshocks. The overall effect of the dimension across the attractor is less than
what we obtained trom the mainshock catalog.

The error in the correlation integra! caused by the finite length of data series is
relatively small. It can be shown that for a data series with n data, the error will less than
1/a (Appendix B). Therefore, this error is not significant in the above calculation. The
main source of error in this case probably come from missing events in the catalog. Since
the lithosphere is a spatially open system, when we use a space window to select a study
area, some events which are significant to the dynamics may be left outside of the window.
It is not clear, however how those missing events will affect the reconstruction of the phase
portrait.

Another source of error is due to the way of investigating the scaling of the
correlation function. Ruelle (1990) showed that the correlation dimension calculated from a

data series of length N is meaningful unless it satisfies (Appendix B):
correlation dimension < 2log,N

He argued that the measurement should take at least over one decade, therefore, a should
be 10. Only those dimensions which are well below 2log,,N have credibility. In the
above exercise only the analysis for the catalog containing all the events meets this
requirement. The analysis for the catalog contains mainshocks of magnitudes above 4 is

far from it. Thez region within which the correlation function behaves linearly in the log-log
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plot is only across a scale of 3 for the mainshock catalog with magnitude above 4.

Therefore the results obtained from the analysis are far from conclusive.
2.4 Application of singular spectrum analysis to earthquake catalog

The method proposed by Grassberger and Procaccia (1983) for computing the
correlation dimension of strange attractor is powerful,but its validitv for a short and noisy
data series is questionable (Ruelle, 1989), especially when data is poiluted with white
noise. Earthquake catalogs are data series of this kind; short and noisy. Nevertheless,
with such a short and noisy records there may be some quantities other than the correlation
dimension that one may try to compute; they may be better behaved and still able to indicate
the underlying order in the data.

The answer to this question is provided by the singular spectrum analysis proposed
by Broomhead and King (1986). It is a sophisticated linear analysis of a time series which
was intended to provide good phase reconstructions. It is an application of the Karhunen-
Loeve expansion for random processes (Fukunaga, 1972). The applications of the method
to the paleoclimatic time series, which contain only a few hundred data samples, and to the
earthquake catalog from the Parkfield, California showed significant results (Vautard and
Ghil, 1989; Horowitz, 1989).

The basic idea of singular spectrum analysis (SSA) is to apply an n-window, which
makes visible n elements of the time series, to obtain a sequence of vectors in R" by using
the time delay method. These vectors are then used to form the rows of a trajectory matrix,
X, which will therefore contain the complete record of the patterns that occurred within the
window. If the rank of the matrix X is lower than n, ie. the number of the linearly
independent vectors is less than n, the patterns within the window are only a subset of all
n-element patterns in R®. The rank will indicate the dimensionality of the subspace in
which the embedded manifold is to be found. This dimension provides a reasonable upper
bound to the dimension of the attractor m, but it is not an invariant of the embedding

process.

Broomhead and King showed that the rank of the matrix X can be found by
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examining the eigenvalues of the structure matrix © = XXT. The analysis can be done
equivalently with the covariance matrix = = XX, since the rank of the matrix ® is same
as the rank of Z. The matrix £ gives the time averaged correlation between all pairs of

elements in the n-window, and it is more tractable than ® since it is implicit to the approach
that the embedding dimension is small.

When the matrix is polluted with experimental noise, Broomhead and King showed
that every singular value, the eigenvalues of = will be augmented by the variance of the
noise. Thus noise dominates any of those components whose corresponding eigenvalues
are comparable to the variance of the noise, and such components should be discarded.
The significant singular values which are above the noise level, represent the deterministic
aspects of the time series and the remaining singular values represent noise.

The SSA was applied to the earthquake catalogs discussed in last section. The
spectra shown in figure 2.7 are calculated when the n-window is chosen 20. The spectra
for the catalogs containing mainshocks of magnitude above 4 and 2 and the catalog
containing all the events of magnitude above 2 are displayed in figure 2.7a, 2.7b, and 2.7c
respectively. They do not show the simple structure proposed by Broomhead and King in
which the singular values decrease monotonically until they merge into the flat noise floor,
which obtains only when the noise is truly white. Several plateaus occur in each spectrum.
Surprisingly in all three cases, there are three singular values above the first plateau which
are probably associated with a noise floor. This agreement strongly supports the result
from the correlation dimension analysis for the catalog containing all the events in last
section. It supports the argument that aftershocks contain significant amount of

information about the integral dynamics of the lithosphere.

2.5 Discussion

What we are really interested in at the present stage of the study on the dynamics of
the lithosphere is whether we should view the system as deterministic or stochastic. The

answer to this questior depends on the dimension of the attractor associated with the
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lithosphere dynamics. If the dimension obtained for an experimental signal is less than F (
the dimension of phase space) one knows that signal stems from deterministic chaos rather
than random noise, since random noise will always tend to fill the phase space and result in
a dimension F. The results of the analysis in above sections are encouraging. Both the
analysis of the correlation dimension and the singular spectrum analysis suggest the
existence of a low dimensional attractor. However, it is by no means conclusive.

It is necessary to point that distinguishing a deterministic process from a stochastic
one according to the value of the correlation dimension was questioned recently by Osborne
and Provenzale (1989). They demonstrated that a stochastic self-affine time series can also
yield a finite correlation dimension, and argued that such a correlation dimension
corresponds to the fractal dimension of the fractional Brownian motion trail. Note that all
methods for experimental determination of the attractor dimension rely on & certain space
scale. If the fractality is generated by deterministic chaotic dynamics then small space
scales are associated with long time scales (close returns on the attractor). On the other
hand the small space scales associated with a Brownian motion trail are related to small time
scales. Therefore we can distinguish them according to this nature of the time series. A

fractional Brownian motion, Vy(t), has a variance (Voss, 1989; Mandelbrot, 1985)
(VEi(t)) oo ¢

when we choose Vy(0) = 0. It is obvious that V(D) is not a stationary process, while a
time series generated by a chaotic dynamics is generally stationary. If we scale V;(1) by the
factor t# to make V(1) stationary, the scaled time series will have a exponent H=(). As
demonstrated by Osborne and Provenzale such time series have a dimension of infinity.

[ would like to emphasize again the conceptual framework discussed in section 2.2,
which is based on the embedding theorem proposed by Packard and Takens. It is
important to notice that the phase portrait reconstruction from an carthquake catalog
conceptually links the earthquake catalog to the entire dynamics of the lithosphere. This
broadens our understanding of the earthquake catalog. It is possible for us to link, in the
sense of topological equivalence, the earthquake catalog to other geophysical observables.

Some of them, strain meter measurements or the earth tilt measurements for example,
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seemingly unrelated to earthquake occurrence may also be used for the study of earthquake
prediction.

The existence of a low dimensional attractor in the lithosphere dynamics also has its
implications on the way of analysing the dynamics of the lithosphere and the strategy in
selecting what kind of model to describe the system. Successful physical models generally
have small number of degrees uf freedom. If it is true that the dynamics of the lithosphere
is deterministic, ie. it characterized by a low dimensional attractor, we may possibly
construct a deterministic model of a few degrees of freedom to describe the dynamics of the

lithosphere.
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Figure 2.1 illustrates idea of baker's transformation. An object is stretched in one
direction while contracted in others and then gets folded at same time in order to remain
confined to a bounded domain.
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(a)

(a)

Figure 2.2 (a) illustrates the idea of discretization of the lithosphere into N small
patches and each patch is described by k state variables. (b) illustrates the idea of
considering earthquake catalogs as corresponding to Poincare points.
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Figure 2.3 illustrates the idea of fractal dimension. (a) shows a plane that has a
dimension of 2. (b) shows a Sierpinski carpet that has a dimension of 1.893.
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Figure 2.4 shows logC(e) versus log € for different D calculated for the mainshock catalog
containing earthquakes of magnitude above 4.
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Figure 2.5 shows logC(g) versus log € for different D calculated for the mainshock catalog
containing earthquakes of magnitude above 2.
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Figure 2.6 shows logC(g) versus log € for different D calculated for the catalog containing
all events of magnitude above 2.
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Figure 2.7 shows the results of the SSA. (a} is the spectrum for the catalog containing
mainshocks of magnitude above 4. (b) is the spectrum for the catalog containin g
mainshocks of magnitude above 2. (¢) is the spectrum for the catalog contair; ir.g all the
events of magnitude above 2.
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Chapter 3: The Limit on Earthquake Prediction

Since the discovery of deterministic laws of physics, it was believed that predictions can be
made in an unlimited way into future, at least in principle. This led to Laplacian
determinism a century ago. But this is restricted at quantum scales by the Heisenberg
uncert'aimy principle, a central dogma of quantum mechanics developed in this century.
Recent development of chaos theory has now had a strong impact on large scale classical
deterministic system; it shows that some dynamic systems are inherently unpredictable in
long term. Although the future of a deterministic system is completely determined in
principle by its past, any uncertainties, no matter how small, grow exponentially as time
evolves. Prediction is, therefore, only possible in short term.

I believe that the dynamics of the lithosphere is a system of this kind. Although the
analysis in the last chapter indicates that the dynamics of the lithosphere may have low
dimensionality, and therefore should be treated as a deterministic system, it is not certain
that the evolution of the lithosphere can be predicted far into future. The predictability of
evolution of the lithosphere state encompasses all the complexities of understanding the
dynamics of the lithosphere. The determination of the state of the lithosphere dynamics at a
certain time is so difficult that it greatly diverts our attention from the fundamental
dynamics. Taking advantage of recent development in non-linear dynamics, we can
overcome apparent complexities in the dynamics of the lithosy . ere, and concentrate on the
geometric properties of a low dimensional attractor for the dynamics. We therefore can
possibly study the predictability of the lithosphere dynamics without having complete
measurements and understanding of the dynamics of the lithosphere.

The discussion in the following sections are basically built on the works of Robert
Shaw (1985) and others (eg. Farmer, 1982). Their view of predictability is the ability of a
system to carry stored information into future. In applying such an idea to the dynamics of
the lithosphere, I will again consider the earthquake catalog as an output of the dynamic
system, and I will examine the Kolmogorov entropy of the systein, arid thereafter,

determine the upper limit of time on earthquake prediction.
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3.1 Information theory and dynamics

The information theory of communication was originated by C. E. Shannon in
1940's (eg. Shannon and Weaver, 1962). A communication system has three essential
parts: transmitter, channel and receiver. Information is conveyed from the transmitter via
the channel to the receiver. Statistical distributions are used in this theory to describe
possible transmitted and received messages. The properties of the communication channel
are described by a conditional distribution P(y ! x), which gives the probability of receiving
message y given that message x was transmitted.

The idea of extending Shannon's communication system theory to a dynamic
system is due to Shaw (1985). He views a dynamic system as a communication system
which communicates some of the information about its past state into the future. The past
and future variables in this case are the same set of coordinates at two different times,
Figure 3.1a depicts the idea how the past of a dynamic system is related to the future. In a
purely deterministic system the state is described as a point, which represents an infinite
amount of information, and is unphysical in this sense. A way around this difficulty is to
apply a partition to the domain of the continuous variables. Figure 3.1b schematicaily
shows the idea. The initial measurement finds that the state is contained in the little block
si> and at a later time the state may fall over several blocks. The probability of finding the
state at sj is given by a conditional distribution P(Sj I'sj), which shows the causal
connection between past and future

If a state s is associated with the probability P, the information that we have

gained by learning the system is in the state sy, is defined as

I(sy) = -log P

The smaller the probability associated with the state Sk, the more information we will gain
after learning the system is actually in the state Sx. Therefore, I(sy) measures the
uncertainty associated with the state s,. The binary base is generally used for the base of

the logarithm. The unit of the amount of information is call a bit, where one it is the
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amount of information we can gain by answering one yes or no question. For a certain

distribution { Py}, the average amount of information is given by

H(S) = I(s) = - 2, Pilog Pk
k

where S is a random variable defined over the sample space. H(S) quantifies the amount
of information gained when we learn that a variable is distributed as { Py}, relative to a flat
distribution. Analogous to I(sy), H(S) represents the expected value of the uncertainty
associated with our probability scheme. It is also called entropy for, jusi as in
thermodynamics, H(S) measures the level of our ignorance about the state of the system.

If the state variables at a past time impose any constraint on the future state of the
systemn, then they must store some information about the system, and thus permit a certain
degree of predictability. Consider a dynamic system which relates its future states sj to its
past sj through a transition probability P{sj Isi}. For each past state sj, there is a
probability P{s; | sj} of evolving to a particular state sj through the dynamic development
of the system. According to the discussion above, one may ask for the quantification of the
amount of information stored in the past state variables that can be transmitted to the future.
ir. another words, how many bits of information do we obtain by knowing that the future
state s; corresponds to the past state s;, when we know the overall probability of 8§
happening along with different s;? A measure for the amount of information passing from
past to future is given as

) P[sjlsi}_ P{Si|Sj}_ N P{Sj,Si}
% F(sy ~ BTP(s;)  U8P(s;)P(sy
) J

I(sls) =

Imagine two observers with access to the same system at two different times. The
observer making the first observation could atternpt to communicate to the later observer by
putting the system in a particular state; the system then carries the information to the later
observer. The later observer, however, knows nothing of the system state at the earlier
time. His a priori knowleiige that the system was at the state s; earlier is the marginal
probability P{s;}. The a posteriori knowledge of the observer after knowing that the

system is at the state $j, is based on the conditional probability of being at the state sj
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earlier, that is, P(s; |Sj). Therefore, the gain of information is the logarithm of the ratio of
P(s; | sJ') and P(s;).

The information gained after we learn that the past state s; and the future state §j are
distributed as P(s;, Sj), is given as the average of the amount of information I(s; Sj) we

gained for the system passing from each particular past to future.
I(S; 1S;) =Z P(si, 5;)1{s; I's;)

—ZP{S‘ ZPSJIS,}I og———1= Plsi!si)
P{s;}

The subscript i indicates the past state and j indicates the future state. It will be zero when

P(Sj| sp) = P(Sj), meaning the future and past are statistically independent.
3.2 Minimum information distribution and the earthquake cycle

Information is a relative concept, and is measured relative to our a priori knowledge
of the system state. Lacking any measurement on the system, our a priori knowledge of
the system state at a particular time is its asymptotic probability distribution. This special
distribution represents a minimum knowledge of the system state. Shaw (1985) has
brought this concept into the study of dynamic systems, and argued that the minimum
information distribution is the base line against which all the information we have about the
system should be measured. If our knowledge about the system differs from minimum
information distribution, we are eligible to make a prediction to a certain degree.

A simple example to illustrate this concept is a harmonic oscillator with known
energy but unknown phase (Figure 3.2). The probability of finding the oscillator at some
position is proportional to the inverse of the velocity at that point:

P(x) oo —L—
Vi-x2
In the expression I(S; ! §j), the average information transmitted, the marginal

distributions describe our a priori knowledge of the system states. Since before we make
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any measurement on the past and future system states, our a priori knowledge of the

system state is its minimum information distribution, the average information transmitted is

I(S; 1S = 3, P(s;) Z P(s; Isi}lo gptsi ' s}'}
i §j
where P is the probability distribution corresponding to minimum information. This
formula quantifies the average increase in our ability to predict the future state of the system
when we learn its past. I(Sj I'Sj) is defined as the average information stored in the
system.

For the dynamics of the lithosphere, our a priori knowledge of the system is the
distribution of certain measurements related to earthquake occurrence. The information in
this case is measured relative to those distributions, which are generally not uniform both in
space and time.

The seismic cycle is often mentioned in describing different characteristics of
seismicity in the periods before a strong earthquake, after a strong earthquake, and in the
period between consecutive strong earthquakes. It refers to the characteristic time intervals
between the strongest earthquakes in a given seismic region. However, it is not a cycle in
the usual sense of the word since the periods between the strongest earthquakes are not
equal and can deviate considerably from the average characteristic period. Such concept
can also be extended to the spatial variation of the epicenters of the strong earthquakes.
Seismic gaps usually display a repetitive pattern (Shimazaki and Nakata, 1980:; Thatcher,
1984; Mogi, 1985).

The existence of the earthquake occurrence cycle in time and space has led to a
number of attempts to forecast the occurrence time and location of future events. Data on
large earthquakes have indicated that the recurrence time of earthquakes in the Nankai
Trough in Japan and southern Chile is 100-200 years (Ando, 1975; Kelleher, 1972).
Sykes and Quittmeyer (1981) show that the recurrence time can vary from as short as 35
years in some areas to more than 150 years in others. Some surveys on active faults show
roughly constant intervals of repetitive occurrence of large earthquakes over a long period
(Sieh, 1978a, 1978b, 1981; Wallace, 1977). The spatial regular’ ":s of earthquake
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occurrence appear as gaps in the spatial distribution of rupture zones of large earthquakes in
» ~" =ic belt. Mogi (1979) has pointed out a certain regularity of occurrence of great

akes in space along southwest Kurile Trench-northern Japan Trench. The focal
1.,.uns almost completely cover the seismic zone of this area without overlapping, and
display a periodic pattern in space. The development of seismicity in space shows a
remarkable pattern along the southern Kurile trench. A similar spatial pattern was also
found in the major plate boundaries of the Pacific and the Caribbean (Kelleher, et al.,
1973).

The phenomenon of a seismic cycle indicates that the distribution of earthquakes is
not uniform either in time or in space. If the system is ergodic, the distribution will be
independent of time, and therefore it describes the time independent part of the lithosphere
dynamic system. The knowledge about the time and space distribution of earthquake
occurrence we have learned is our a priori knowledge of the system. This is the most we
know about earthquake risk for a certain region without intervening with any further
measurements on the system, and it is the information we generally use to make a
earthquake risk estimation. However, if we make any further measurement, we will
acquire an additional information about the lithosphere state that we can use to make a
prediction of the lithospheric state in future. Earthquake prediction therefore results from
information gained by further measrements on the lithosphere. How far we can predict

into future, however, will depend how fast the information will be lost as time progresses.

3.3 Rate of loss of stored information

One of the properties of a chaotic system is that the uncertainties or errors in
measurements will increase exponentially. If the future state variables are calculated based
on the system equations with present measured state variables as the initial condition, the
information stored in the future state variables will reduce due to the increase of
uncertainty. In another words, such a system is incapable of carrying all the information
into future. Eventually all the information obtained in the initial measurement will be lost

and the distribution of the state variables will relax to the asymptotic minimum information
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distribution.

However, if we continue mzke new measurements to monitor the system, our
knowledge about the system will be updated by information that would have been lost if the
measurements had not been made. The information acquisition rate of an observer who

1akes a series measurements at time ty, 4, - ty, ... should be same as the rate of
information loss of the system. The Kolmogorov entropy provides a measure of this
information acquisition rate.

Suppose that the phase space of the dynamic system is pastitioned into small boxes,
and the state of the system at time t; is denoted by s;, which corresponds to a small box in
phase space. A history of n measurements of the system at time t,, ty, ... tp are then

expressed by a string of symbols (s, s,, ... sp), abbreviated s. The probability
P(sy, 89, oo Sp) = P(s™)

describes the joint probability that the system state is at state sy when t = t;, at s, when
t=t,,.., and at s; when t = t;. The information needed to locate the system on a special

trajectory sy, S, ... Sy, if our a priori knowledge i3 P(sD), is given as

H(S™)=- 9, P(s")log P(s")
$:...S:

where sum is taken over all possible patterns of symbols of length n. Therefore, the
additional information needed to predict which state the system will be in if we know the

system was previously in the state s® can be written as

AHjp = HGS"*1) - H(S™)
=- D, P(s")P(stlsy.1) log P(snlsn.y)
S1...801
This means, that AHp, measures our loss of information about the system from time t, to
time tp+1. AHj should be independent of n if s; is a complete measure of the system state
at time t;, i.e. there will be no increase of information about the system state upon learning

the history of the system s; ;, §; 5, ---. If s; is not the complete measure of the sysiem,
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which is caused by the imperfect projection of the system state to the measured variables,
more information can be gained by considering the past history of the measurerr cnts. AHp
should be independent of n if n is made large enough. The average rate of loss of

information is given as

K = lim -1 Y, {(H(S"*) - H(E"))
n—ee nAt 11

= lim -L-H(S™)
n—e nAt
The quantity K is defined as Xolmogorov entropy and is due to Kolmogorov and Sinai
(Kolmogorov, 1959; Sinai, 1959). It characterizes the degree of dynamical disorder of the
system, or how sensitively the system depends on its initial state. Figure 3.3 schematically
illustrates the motion of a dynamic system in three situations correspond to K =0, K >0
and K = e respectively. As is well known, K = 0 is in an ordered system, K is infinite in
a random system, and K > O is a chaotic (deterministic) system.

We know from the discussion in the last section that I(S; | S;) measures the degree
to which an observer at t; can predict = state of the system at tj. Suppose we start at time
t;, and denote I(S5 | 81) by I;. Such a sequence can go on with I(S3 | §;) denoted by I,
and so on. We then cbtain a sequence of numbers Iy, I, ..., describing the ability to
predict further and further into future (Shaw, 1985). At beginning when j =i = 1, the

conditional probability P{s; | s;} must satisfy P(sj I sj} = 1, therefore we have
I(S; 1 S;) = H(S;)

This is the initial information we have about the system after we determine the system is at
a certain state. Based on this information we are trying to predict the future states of the
system. If the system is not chaotic, the next state will be uniquely determined by the
previous one. In this case P{Sj I'si} = 1, and we have I(Sj ['Sp) = H(Sj), the system will
carry the initial information far into the future. If the system is chaotic, the system will tend
to lose the information. As time tends to infinity, the initial state s; of the system will be

dynamically uncorrelated to the future state s;, for an ergodic system, and



86
lim P(s, Is1) = P(s,)

This implies that I(=) = O that is all the information stored in the system will be lost
eventually. The general form of I(t) is illustrated in Figure 3.4. The curve is concave and
approaches zero asymptotically (Shaw, 1985). Initially I(t) decreases at a linear rate given
by the Kolmogorov entropy (Farmer, 1982).

Since the information decays linearly to begin with, the initial change of the stored

information can be written as

It)=10)-K-t

One should recall the information dimension Dy = lim I(g)/log(1/e) (chapter 2), where € is
N—oeo

the lipear cimension of the partition and 1/e therefore represents the signal to noise ratio.

The above expression can be written as
I(t) = Dy log ('15) - K-t
The characteristic time is therefore given as (Farmer, 1982)
=D el
T= K log ( 8)

This characterizes the upper limit of the time over which the state of a chaotic system can be
predicted. The initial data become useless after the <lharacteristic time T, and T is only

influenced logarithmically by the precision € w**hin which the initial state is located.
3.4 Estimate the upper limit of time on earthquake prediction

According to above discussion, the estimation of the upper limit of time for
predictability of an earthquake becomes the problem of estimating the Kolmogorov entropy
of the dynamics of the lithosphere. There have been numerical attempts to determine K

based directly on the definition. Grassberger and Procaccia (1983b) have suggested a way
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of estimating K by using a generalized correlation integral, which we will apply here to
earthquake prediction. This approach has a high potential in implementation to a measured
time series.
Consider the entropy series K, X5, ... defined by
K =-lim -1 _log Y Pf(sn)
nenAt £ 1 7
It is straight forward to see that K; corresponds to the Koln..»gorov entropy. Generally we

have following relation:
Ke<Kf for f<f

Therefore, K, serves as an upper bound of the Kolmogorov entropy. It can be easily
determined numerically.

Recall that the correlation integral is given as
Ce® = 2 P}
i

where Pj is the probability that the trajectory of the phase portrait will visit the i-th box.
The summation over i runs through all the boxes which could be possibly visited in phase
space. In the case of a history of states sy, s, ...... Sp, the correlation between the state

strings can be similarly considered, and the correlation integral can be generalized to

Ca(€)= D, PX(sn)

S$1...8a

n
= lim -1~ number of pairs ij with z (Siem - si+m)2 < 8\
Noreo N2 ) J

m=1

As nincreases, the generalized correlation C,(€) will decrease exponentially as
Ca(e) ~enaik2

K, therefore can be written as



Ko =L lim1 [————C"(E)]
2% Ao Bl ®

In practice we do not need to follow the evolution of all the degrees of freedom.
Since the phase portrait can be reconstructed from a single time sequence while still

preserving geometrical invariants of the dynamics, Cp(c) can be calculated from a time

sequence {x;} by

Ca(®) = lim -1 {number of pairs ij with i i4m - Xjoml2 <€
N-reo N2 ‘ m=1 ’

The analysis was done for the west coast of Canada. The average time interval between
successive events is used for At in the calculation of the entropy K,. The results shown in
Figure 3.5 are the analysis for the earthquake catalog that contains the events of magnitude
above 3, and has 1700 events. Figure 3.5a is logCp(€)/At against n. Different curves are
the results calculated for different . logCp(e)/At is a measure of information, and as
expected the information increase as we consider more historical events. The slopes of the
curves, K5(€,n), is the rate of information acquisition when we make more measurements,
or the rate of information loss of the system. Figure 3.5b shows K,(g,n) decrease as n
increase, and finally tend to a constant value of K entropy 0.6 bit/year. Different € does
not effect K5(g,n) converges to the common value as expected. Figure 3.6 shows the same
analysis for the catalog that contains the events of magnitude above 2, and has 3160 events.
It shows that K; is 1 bit/year. A higher entropy in the latter case is probably due to the
reason that the catalog becomes noisier when more small events are included.

The value of D5 calculated in the last chapter can be used as the estimate of the
information dimension. The earthquake catalog can be polluted with various kinds of noise
as discussed in the last chapter. We do not have a clear guideline on how o choose the
value of the signal to noise ratio for the catalog of the west coast of Canada. I suggest the
value of 10 as the signal to noise ratio. Such choice is not significant to the determination
of the characteristic time because it depends on the signal to noise ratio logarithmically. By

using 0.6 bit/year for the entropy K7, the characteristic time, which is the upper limit of
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time for the earthquake prediction is estimated as 20 years for the Vancouver Island aica.
This upper limit indicates how far into the future we can predict an event of magnitade
above 3 in an ideal case, in practice however it could be much less.

The catalog for the west coast of Canada presents with marginal homogeneity, and
contains minimum required number of events for the statistical analysis discussed above.
Therefore, I cannot conclude from this analysis whether the results obtained ar= stable to
the drawbacks of the catalog. Such analysis can be done for the catalog contains more
seismic events and have a longer time coverage.

I should emphasize here that according to the conceptual frame work discussed in
the last chapter, the attractor of the lithosphere dynamics can be reconstructed from an
earthquake catalog, therefore, it is important to notice that the upper limit of time on
earthquake prediction obtained from the analysis of seismicity data for the west coast of
Canada is not only a limit on the earthquake prediction by using the earthquake catalog, but
is a fundamental characteristic time of the system. This characteristic time is intrinsic to the
attractor of the lithosphere dynamics, and characterizes the predictability of the system. It
can not be improved by better understanding of the lithosphere, or making more
measuremerts on other geodynamicai observables. All attempts at earthquuke prediction

are subject to this limit.
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Figure 3.1 (a) illustrates the idea that the past of a dynamic system relates to the future in
the same as a communication channel. (b) illustrates the idea of applying a partition to the
domain of continuous variables so as to the deterministic dynamics can now map an
image of each little block (Adapted from Shaw, 1985).
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Figure 3.2 is an example to illustrate the concept of minimum infermation
distribution, which is the probability of finding the position of an oscillator
without knowing any information about its phase (Adapted from Shaw, 1985).
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Figure 3.3 schematic ~ Justrates the motion of a dynamic system in the extended
phase space. (a) is reguiar ~otion; the next state is uniquely determined. (b) is
chaotic motion; the trajectory spreads. (c) is random motion; it can be in any state in
the next time. (Adapted from Schuster, 1984)



I(t)
Slope = Kolmogorov enfrnyy

Figure 3.4 illustrates the typical behavior of I(t) for a cuaotic attractor. Initially I(t)
decreases at a linear rate which equals Kolmogorov entropy (Adapted from Farmer,
1982).
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Figure 3.5 (a) shows logCp(€)/At versus n calculated for the catalog containing all events

of magnitude above 3.

The slopes of the curves K7(g,n) are shown in (b), which describe

the rate of information ioss of the system.
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Figure 3.6 (a) shows logCp(€)/At versus n calculated for the catalog containing all events

of magnitude above 2.

The slopes of the curves K2(g,n) are shown in (b).



Chapter 4: Detecting premonitory seismicity patterns

The analyses in the previous chapters suggested that the dynamics of the lithosphere are
chaotic rather than random. Therefore we expect that there may exist an underlying order
associated with a low dimensional attractor. The existence of precursors preceding strong
earthquakes and world wide similarity of seismicity supports the argument that the
dynamics of the lithosphere is not as random as it seems to be. This gives us a hope to
make a prediction for future earthquakes. Predicting future earthquakes is a process of
extracting the information about the present dynamic state of the lithosphere, which will
impose certain constraints on the future development of the lithosphere dynamics. If the
dynamics of the lithosphere is chaotic, the information associated with occurrence of future
earthquakes can be extracted from the eartt.quake catalogs. The problem of earthquake
prediction then become a matter of finding a way of decoding earthquake catalogs.
Although my analysis suggests that a low dimensional attractor exists in lithosphere
dynamics, its geometrical properties are by no means well undérstood. Generally, we need
to have complete knowledge about the attractor in order to understand the dynamics of the
lithosphere, and thereafter to understand occurrence of earthquakes. However, things
become much easier in the case of earthquake prediction. We only need to determine
whether the lithosphere is in a certain dynamic state which is believed to precede a strong
earthquake, and to discriminate these states from others. Since the dynamic properties of
the system will be reflected in geometrical structure of the attractor, those lithosphere states
preceding a strong earthquake may correspond to a region in the attractor characterized with
a special geometric pattern. Pattern recognition techniques may clarify the complexity of
identification of such regions and it is possible to automate this function using computers.
Two pattern recognition algorithms for long-term earthquake prediction have been
developed by Soviet scientists in the last decade. The precursors preceding strong
earthquakes are sufficiently well defined in these algorithms to be tested statistically.
World wide application of these algorithms continues to add credibility to the technique.
These pattern recognition algorithms are basically empirical methods motivated by

some abnormal seismic activity found in earthquake catalogs. Linking these patterns to the
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geometric patterns on the attractor of the lithosphere dynamic system is a small conceptual
leap. The advantage of this consideration «.. to introduce the theory of the dynamics of the
lithosphere into the algorithm. We therefore can take advantage of recent achievements in

non-linear dynamic theory in our further study of the algorithm.
4.1 General Idea of Pattern Recognition

Many important applications of pattern recognition can be characterized as either
waveform clarification or clarification of geometric figures. In either case the subjects can
be described as a vector x=(x;......x;). Thus, the purpose of the pattern recognition
becomes to discriminate between two sets of points in an n-dimensional space. For a
simple two-dimensional case as shown in Figure 4.1, v = can set up a boundary, g(xqs X9)
= (), between these two distributions if we know two disrributions of vectors x from past
experience (Fukunage, 1972). We then ‘can decide which group the vector x=(xy, X,)
belongs to by examining whether g(x, x5) > 0, or g(x;, X5) < 0. The discriminant
function g(x;, x,) is a classifier which has to be determined according to our knowledge of
the distribution of the vector x.

With a large number of primitive measurements, high dimensionality makes human
judgement impossible; human beings usually make a classification based on a small number
of features of an object. The most common treatment for such a case is to map the
primitive n-dimensional space o a lower dimensional space. The mapping, of course,
should be carried out without severely reducing the class separability, Obviously, the
selection of such variables is important and strongly affects classifier design, ie. if the
variables show significant differences from one class to another, the classifier can be
designed more easily with better performance. Therefore, the selection of these variables is
a key problem in pattern recognition.

Unfortunately, in many applications of pattern recognition, such features are not
linear functions of original measurements, but highly nonlinear functions. Because of the
complexity in mathematics, we do not have a general theory to generate mapping functions

systematically and to find the optimum one. However, if a set of data is associated with a
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low dimensionality, the existence of a minimum number of effective features is then
guaranteed. Due to the lack of systematic treatments in mathematics, effective features
primarily have to be found in practical application by the designer's knowledge of the
physical system. : simple way of testing whether the feature functions selected by the
designer are informative in separating two classes of objects is to examine the one
dimensional distribution histogram of the functions for different objects. The more
different the distribution is for different objects, the more informative the function is in
separating two class of objects.

In the problem of earthquake prediction, we are interested in choosing those
features which are most effective for separating two classes: one is the objects N (standing
for Not dangerous or Nyet) consisting of time periods within which there will be no
earthquakes in a particular region, another is the objects, denoted by D (standing for
Dangerous or Da), during which earthquakes will occur in that region (Keilis-Borok, et al.,
1986). If we select a feature function P which varies in an interval [Py P,l, we may
compare distributions or the values of P for objects N and D in order to find out whether
this function is useful for discrimination between N and D. Figure 4.2 shows an example
of such a one dimensional distribution. Within the interval [2, 7], the distribution of the
values of function P is quite different from one class to another. It implies the function P is
effective in discriminating class N from D. If, on the other hand, the distribution does not
show significant differences, then the function P is not useful.

The value of the function P in discriminating class N and D can be quantified by

defining an informative function (Keilis-Borok, et al., 1986)

Ip=(l- E)H%E)A) -e "T]%A)

where np(A)/np and ny(A)/ny are empirical cumulative distribution functions of P for
objects D and N. ng, is the total number of points in class D, and np(A) is the number of
the points in class D with P2A. ny and ny(A) are same for class N. The parameter O<g<I

determines the relative costs of failure to predict and false alarm. € and A are parameters

can be adjusted to maximize Ip.
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The set of functions used in the following analysis is the standard set of functions
used in the algorithm M8. Worldwide experiments indicate those functions are informative
at distinguishing the Time of Increased Probability (TIP) for occurrence of a strong
earthquake from the rest of the time domain. With such a set of functions, the pattern
recognition technique can be performed. The idea of this approach is illustrated in Figure
4.3. The vertical dashed line shows a sliding moment of time. At each moment we look
back in time and define several characteristics (traits) of the earthquake sequence within the
sliding dme windows, indicated by the horizontal lines. Each of these characteristics is
represented by several functions, and these functions are considered as the components of a

vector. The variation of the value of a vector will indicate the time of increased probability.
4.2 Definition of the Functions of Algorithm M8

Pattern recognition requires a separation between mainshocks and aftershocks.
They are strongly related and the aftershocks are considered as dependent events of the
mainshocks. Aftershocks are generally defined empirically with some selected time and
space windows. If two events are denoted by 1 and j, the event i is an aftershock of the
event j if and only if the distance between their epicenters is less than R(Mj), the time
difference 4 < T(Mj), and, M; < Mj. T(Mj) and R(Mj) are empirical functions which can
be viewed as simple box car windows containing obvious "mainshock-aftershock”
clustering (Lamoreaux 1982). Gardner and Knopoff (1974) suggested logarithmic
relations between time T and magnitude Mj; and distance R and Mj. Inspection of the
events in the Western Canada test data that we used clearly indicated aftershocks at larger
distances than considered in the California area by Gardner and Knopoff. As a
consequence we increased the maximum distance at which an event could be considered an
aftershock by 50% (Table 4.1). After this operation, we can obtain a main shock catalog,
with a certain number of aftershocks following each events.

The algorithm MS8 involves 7 functions, which form a vector with seven
components. In other words, the high dimensional space of primitive measurements is

mapped to a 7-dimensional space. Those functions are divided into four groups, each of
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which consists of functions defined by the same formula, but different in the values of
numerical parameters. Definitions of the functions are as follows:

The level of seismic activity is the number of main shocks that occurred in an
interval s before a time t and had a magnitude greater than a lower limit M. We refer to this
count as N(t ; M,s). A more sophisticated measure of main shock activity calculates a
weighted form of this sum where the weights are proportional to the size of the earthquake.

Instead of simply summing the events we calculate S = 2 10BMi - 0 For B=b/3 thisis a
i

measure of the rate at which the radius of circular fractures is generated and for B=2b/3 the
rate at which fracture area is generated. Here b is the usual coefficient in the energy
magnitude relation log(E)=A+bM. We carry out this process for all events whose
magnitude M; is between M and an upper limit M (M = My - 0.1) and call the result
St M, M, s, a, B). (The parameter o is often inserted to normalise the functions.)

The spatial concentration is the combination of the pair of functions described

above to produce a measure of the way seismicity concentrates in space.

St M, M, s, a, B)

ZGM M s, o, B) = o,
(N(t; M s) - N(1; Ms))?/3

defines the ratio of the average radius of a fracture (S/N) to the average spatial event
separation for all events between M and M, if they are uniformly distributed in the region
(N1/3).

The long-term variation of seismicity is defined for the situation where the
rate at which main shocks are produced is not uniform. If we assume that on the average

the rate is constant, the function

L M, 5) = NGt M, t10) - Nt M, tto-5) -0
measures the degree to which the generation of main shocks deviates from a long term
linear trend.

These three functions depend explicitly on the parameter M. If we expect to

compare results with those in other areas we must find some way to normalise the result
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and we dc 17 at hy adjusting M so that the average yearly rate of occurrence of main shocks
is in one case ten per year for one set of functions we designate as Ny, L, and Z; and is as
close to twenty per year as possible for another set Nj, L,, and Z;. Thus, we considered
six functions in three groups.

The clustering in time and space is the count of aftershocks that occur within a
few days of a main shock. The occurrence of abnormally large clusters of aftershocks of

main shocks has been proposed as a precursor of strong shocks.

b(t; M, M, s, Mg, €) = max b (Mg, €)
1

Here bj(M,, e) is the number of aftershocks of M 2 M, for the i-th main shock at the time
interval (tj, t; + €); maximum is taken on the main shocks with M £ M; < Min the time
interval (t-s, t).

We can now consider the earthquake stream to be characterized ar a time t by a
vector of functions deduced from the preceding time period s and a selected square region.
Our problem is to deduce, by pattern recognition, whether such a time belongs to a TIP, the
times of increased probability. The duration T of such a TIP, the time within which a
strong earthquake is expected, is taken to be the 5 years used in all recent applications of
MBS world wide.

In order to declare a TIP at time t we require that over a period ¢, prior to and
including t, three of the groups {Ny,Ny}, {L,,L,}, {Z1,Z;}, and {B} contain functions
that have extreme values and that at least four of the functions Ny, Ny, Ly, Ly, Z;, Z, and
B have extreme values. In this sense extreme values are values in the upper 10% of the
range achieved by the function from the start of the catalog to the time of occurrence of the

first large (M>M,, the prediction threshold) event. Once this condition occurs the interval

[t,t+7] is declared to be a TIP.

4.3 Diagnosing the premonitory seismicity patterns near Vancouver

Island, Canada

The algorithm M8 was tested for the Vancouver Island region. The following
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analysis was directed by V. L. Keilis-Borok, from O. Yu Schmidt Institute of Physics for
the Earth, Moscow, while he visited the University of Alberta at summer of 1987. D.
Brown, E. Nyland and D. H. Weichert also participated the work. The results of the
analysis is published in the paper "Premonitory seismicity patterns near Vancouver Island,
Canada" in Tectonophysics, Vol. 167, 1989. What follows is an extract from this paper.

An area such as the southwest coast of Canada can be considered as a collection of
overlapping regions defined by their seismicity. We do such regionalization by first
dividing the area into rectangular cells defined by equal intervals of latitude and longitude.
The square region centered on this event is then defined to have a side of length
R =¢eMo- 5.6 in degrees of latitude. Each such proposed region is then examined to see
whether over the time span covered by the catalog an average of at least 10 main shocks
occur per year. Those proposed seismic regions that do not contain 10 main shocks per
year are discarded and the M8 algorithm is applied to the rest to determine whether a TIP
exists in any of them.

The seismicity of the west coast of Canada has been described by many authors
(e.g. Milne, et al., 1978; Basham, et al., 1982; Basham, et al., 1985). In the area we
studied, from 118°W to 130°W and from 45°N to 51°N, we merged the seismicity catalog
of the Geological Survey of Canada with the catalog from the National Earthquake
Information Service in the US. Particularly for the earlier years thc Canadian catalog
contained many significant earthquakes as far south as 450N. The duplicate events were
removed manually. Usually NEIS data was accepted in the United States and GSC data
was accepted in Canada. If only one agency reported a magnitude the report of that agency
was accepted. Events for which no magnitude was reported were assigned zero
magnitude, and if a preferred magnitude was given it was used. For these data that is
usually M;. We also removed those events since May 1980 that were clearly related to the
Mt. St. Helen's Volcanic Eruption. The data is summarized in table 2, a time magnitude
histogram, and in figure 4.4, a map showing the largest magnitude earthquakes that
occurred in regions 1 degree by 1 degree.

Patterns in space and time can be distorted by changes in the observin g networks

and associated changes in the degree of completeness of the seismicity catalogs at lower
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magnitudes. Evolution of the station configuration in the Vancouver Island area, and the
associated increase in completeness of the catalog at small magnitudes has been discussed
by Basham et al., (1982). The pattern recognition approach used in this work does not
require as stringent a completeness condition as discussed *=re. Thus table 4.2 indicates
*Fat since 1952 a sufficient number, but certainly not all of the magnitude 2.5 earthquakes
are present in the catalog for some parts of the test area. The effect of missing small
magnitude events seems to predominate in the function that counts aftershocks and
probably reduced its effectiveness as a diagnostic in Vancouver Island.

Similar considerations apply to the time variable location accuracy of the catalog.
The spatial resolution of the analysis in this paper is about 0.59, reflecting epicentral
accuracy. Focal depths are the least certain, or nonexisting in some subareas, however the
only application of focal depths is an exercise to determine whether patterns in shallow
seismicity precede an intermediate earthquake.

In the analysis of the subcatalog discussed above we used primarily the standard
parameter set developed for M8 by an analysis of a large nvmber of regions world wide.
We adjusted the threshold for prediction My, and the start time of the catalog tg, to satisfy
completeness considerations (Table 4.2) as required to normalise the Vancouver Island
earthquake flow to others used in M8 and applied local judgment to adjust the windows
used to eliminate aftershocks.

Table 4.3 shows the 9 strongest earthquakes of the area and indicates that the
threshold for prediction should be My=6.5. This choice is by no means unique but is a
stable choice; small variations do not seriously affect our conclusions. In order to select
earthquakes for prediction we chose, before beginning the prediction process, all main
shocks of magnitude greater than 6 that occurred since 1957. Since a main shock of
magnitude 6.4 that occurred in 1971 near S0°N and 128°W was followed within 1 year by
one of magnitude 6.0 near 490N and 1299°W we noted the both events as candidates for
prediction. The 6.0 magnitude is substantially lower than our threshold for prediction so
we place no great emphasis on the results for this event. We excluded two large
aftershocks of magnitude 6,4 and 6.1 that occurred in 1972 and 1978, two large events of

magnitude 6.3 that occurred in 1954 and 1956 are not candidates for prediction since the



104

preceding seismicity catalog is inadequate. Two events of magnitude 6.0 that occurred in
1958 and 1961 were ignored on the grounds that their magnitudes were both small and
their time of occurrence was uncomfortably close to 1957, the beginning of a useful
prediction data set. We therefore set as our goal the prediction of one event near Seattle and
three west of the northern end of Vancouver Island.

Figure 4.5 shows the TIPs that resulted from the analysis of all the seismicity data
available to us. The heavy lines under the time scale indicate TIPs, the light lines point to
the center of the region in which the TIP occurred. The three events west of the northern
end of Vancouver Island, of magnitude 6.0, 6.4, and 6.7 are associated with three re gions
in which TIPs occurred. Although the prediction for the magnitudes 6.0 and 6.4 should
strictly be considered false alarms, we accept them as being within the uncertainty of
magnitude determinations. The magnitude 6.7 was preceded by a TIP in two regions and
preceded by a 5 year long TIP, which expired two years before the event, in another
region. It was not seen in the data from a region due east of the event. The magnitude 6.0
event just to the north west was seen in three TIPs and not seen on the region to the east.
The magnitude 6.4 event resulted in a TIP for both regions that contain it.

The magnitude 6.5 event near Seattle occurred at a depth of 59 km but the activation
that preceded the event was largely shallow. Nevertheless the existence of four successful
TIPs, one almost successful TIP, and only one region in which a TIP did not appear argues
strongly for coupling between the shallow and deep seismicity in this area.

The quality of prediction is estimated by space-time volume of all TIPs in
percentage of total space-time volume considered. The space-time volume is area (km2)
multiplied by time (years). The analysis shown in figure 4.5 gives a quality estimation of
30%.

The regions considered here are fairly large (figure 4.6) and it is an interesting
speculation whether their overlap or their sum defines the region of high risk. We note that
the events associated with the TIPs all occurred in that part of the activated regions common
to each TIP. The part of the time domains common to all TIP is shown in the bottom of
figure 4.6 and contained both the 6.5 and the 6.7 event. This does not prove that the

intersections of the separate domains will in fact refine the predictions, but it is certainly



105

suggestive.

In order to explore more closely the potential of shallow tectonic activity to predict
deeper events we attempted to separate the catalog into essentially crustal earthquakes and
events related to subduction. Depth determinations in this area are not adequate to a careful
separation so we chose to discriminate by considering only events of depth known to be
less than 25km. This is clearly a set of lithosphere events but does not include all of them.
The results of an analysis of this subset are shown in figure 4.7; there are not enough
events in the remainder to allow application of M8. As expected, since most seismicity
near Seattie is shallow, the TIPs around the Seattle event are unchanged. One region to the
south of the 6.7 event is lost due to insufficient events in its subcatalog but the others
remain viable TIPs.

The analysis that exploits the entire data set is associated with two TIPs for which
large events have not yet occurred. In one case the seismicity data indicate that a Time of
Increased Probability of an earthquake of magnitude greater than 6.5 began in the middle of
1982 and will expire in 1991. If past experience is a guide this TIP is associated with the
northern end of Vancouver Island. The other TIP is associated with the northwestern
corner of the United States. It began in the middle of 1983 and also expires in 1991,

Some traits of the catalog contribute to the TIPs and others do not. In figure 4.8 we
illustrate the time intervals that created TIPs for 5 windows. The stars indicate the
occurrence of extreme values for functions on the left at times indicated at the bottom of the
plots. The shaded regions are the time intervals in which the catalog activation was
sufficient to establish a TIP. Table 4.4 is a different way to summarise these results.

As indicated in figure 4.5, the M8 algorithm is not particularly effective in
specifying the location of the anticipated earthquake. We and others have found it helpful
to examine activation and quiescence on a more detailed scale and in figure 4.9 we show
some of the regions subdivided in 256 cells. We have examined each cell to determine if
significant activity occurred in it during the 6 years prior to the large event. If no such
activity occurred the cell was identified as quiescent. A collection of quiescent cells
bounded by activated cells may indicate the area in which the next strong event will occur.

In each of the four cases, the ¢ vents plot on the boundary between the quiescent and
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activated areas, but the regions in the northwest show a better deftined area of quiescence
than those in the southeast.

The same process can be used to refine the time of occurrenc of the anticipated
earthquake. The quiescence in time will help us to refine the time when an earthquake will
occur. Table 4.5 is a histogram of event number against magnitude and time for the
magnitude 6.7 and 6.5 events. A quiescent period occurs before the magnitude 6.7 event
and a courageous analyst would have predicted the event when the activity began to

increase. The histogram of magnitude 6.5 event does not show such an effect as clearly.

4.3 Discussion

It is scarcely surprising that the seismicity of Vancouver Island bears a strong
similarity to twenty areas previously tested by Keilis-Borok and his colleagues (Gabrielov,
et al,, in prep.; Keilis-Borok, 1990). Apparently identifiable patterns exists in the
seismicity of Vancouver Island prior to at least four large seismic events. These
premonitory patterns alone are not convincing, but the agreement of this phenomenon with
many cases world wide suggests that existing an underlying order in the dynamics of the
lithosphere, which governing earthquake occurrence. Since these patterns are universal,
not depend on local geologicai structure and tectonic regime, it implies that they are intrinsic
to the dynamics of the lithosphere.

Despite the success in world wide application of the algorithm, the physics behind
those patterns still has not been understood. We have reason to believe that these patterns
are linked to geometric properties of the attractor that exists in the lithosphere dynamics, but
how they are related to each other qualitatively or quantitatively is still not clear.
Nevertheless, linking the two together is not only conceptually inspiring in assuring us that
earthquake prediction can be done as long as we dig deep into earthquake catalogs, but also
constructive in suggesting us in which direction we could make a further improvement on
the algorithm, which can not be provided by the algorithm itself. According to the
discussion in previous chapters, we can make following suggestion for further

improvement on the algorithm:
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1) The dimension of the attractor is an important parameter which characterizes the
dynamics. It can vary from region to region depends on the dynamic state of the area. If
the dimension is n for a study area, we should choose at least n independent feature
functions in order to obtain the maximum information about the dynamical state of the
lithosphere. if the seismicity patterns are associated with some geometric properties of the
attractor, we should choose at least 2n+1 independent feature functions in order to recover
those properties of the attraciar. Using too many feature functions will not retrieve more
information but only incr¢:iwe:- computing tirne.

2) The feature fu. cions are defined according to a certain time window. The rate
of lose of information indicates the existence of a characteristic time, which gives a upper
limit for selecting the time window, while the dimension of the attractor gives a lower limit.
If the time evolution of these feature functions is examined in the algorithm, the sampling
rate of the feature functions should be less than the characteristic time in order to resolve the
determinism,.

3) Most feature functions selected in the algorithm are the projections of a
mainshock catalog. However, the analysis in chapter 2 indicates that aftershocks contain
significant amount of information about the dynamics of the lithosphere. They deserve

more consideration in the algorithm.
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g(xla X ‘2)=0

Figure 4.1 illustrates idea of pattern recognition. For a distribution of x for two clusses,
we classify the waveform belong to class 1 or class 2 depending on g(x;, x5, ) or

g(x1, X9)<0.
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Class D P Class N P
D1 5.8 N1 6.3
D2 7.4 N2 2.2
D3 8.6 N3 2.9
D4 8.5 N4 5.8
R 6.6 N5 1.4
1o 9.3 N6 3.3
D7 7.4 N7 4.5
| A 6.7 N8 0.6
o 4.1 N9 3.2
D10 7.2 N10 2.7

(a)

Figure 4.2 shows an example of one dimensional distribution. (a) is the values of function
P for the data belong to different classes. (b) is a one dimensional distribution of the values
of function P.
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Clustering
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Earthquake

Time

Figure 4.3 illustrates the idea of integral description for diagnosis of TIP. At each moment
we look back in time and exam those characteristics of the earthquake sequence within the
sliding time window, indicated by the horizontal lines, and determine if it belongs to a TIP
(Adapted from Keilis-Borok, 1990).
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46.5
130

Figure 4.5. The centers of the regions analyzed with M8. A heavy line on the pointer
to a location indicates the occurrence of a TIP in the time interval read from the scale in
the upper right of the diagram. In this analysis we used a magnitude threshold of 6.5
and a start time in the catalog of 1952.
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Figure 4.7. The results of the analysis using only events whose depths have been
determined to be 25 km or less.
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Figure 4.8. The part played by each function in establishing the TIP. The shaded area
are the time intervals in which the activation was sufficient to establish a TIP (referred

to here as a "vote").
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2.5 29 6
3.0 33 11.5
3.5 39 22
4.0 45 42
4.5 52 83
5.0 60 150
5.5 70 290
6.0 81 510
6.5 91 790
7.0 105 915
7.5 121 960
8.0 141 985

Table 4.1. If a mainshock has magnitude M or less, any event within R occurring
within T days after the event and having a magnitude less than M is an aftershock.
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2.00 3.00 4.00 5.00 6.00 7.00
S T SN S Y U U VNN Y BN
1841 1 1 . . . . 1
1 . .
1861 1 1 2 .
. . 1
1881 1 1 2 . . .
2 1 4 . .
1901 1 1 2 . : 2 . .
. . . . 14 2 3 2 i i
1921 1 1 . 3 1 4 2 5 4 2 1 .
. . 12 1 4 4 1 2 .
1941 1 1 . . . . 17 15 4 8 2 l 2
1951 1 1 42 . 22 10 5 6 . 1 .
45 10 37 5 6 l 4 i
1955 1 1 84 37 22 9 4 . 1 1
83 49 30 9 9 . 2 . i
1959 1 1 61 28 24 14 3 7 1 . 1
33 23 19 7 6 3 3 4 .
1963 1 1 19 17 18 15 24 8 ) .
3 26 26 20 14 13 2 1
1967 1 1 24 39 52 14 15 4 2 . .
13 22 16 5 6 6 1 . .
1971 1 1 3 9 15 4 13 9 4 2 3 .
4 7 9 5 17 8 1 . .
1975 1 1 40 42 25 15 9 11 7 . 1
78 43 18 7 11 4 1 2 1
1979 1 1 67 42 23 55 152 7 13 )
129 72 25 10 12 7 1 1
1983 1 1 77 48 24 2 3 5

Table 4.2. shows a two dimensional time magnitude histogram of event; in the
catalog.



Year Mon Day Hour Min Sec Latitude Longitude Depth Magnitude
1872 12 15 5 37 48.6 121.4 7.4
1917 12 23 15 48 50.0 128.0 6.5
1918 12 6 8§ 41 5.8 49.6 125.9 7.0
1926 11 1 1 39 18.0 48.8 128.5 6.6
1939 2 8 6 39 258 49.1 128.0 6.5
1946 6 23 17 13 258 49.8 125.3 7.3
1946 7 18 6 6 58.5 49.5 129.7 6.5
1965 4 29 15 28 44.0 47.4 122.3 59 6.5
1976 12 20 20 33 12.0 49.0 128.7 18 6.7

Table 4.3. The nine strongest earthquakes in the study region.
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TIPs Strong carthquake .
Time of
Center of cxpectation,
- . months
window Time date M
o | A
1976,6,27 6.7
49N [129W 1970,6,20 - 1977,6,20 1971,3,13 6.4 72
1971,12,5 6.0
1976,6,27 6.7
SON | 128W] 1970,6,20 - 1978.,6,20 1971.3,13 6.4 72
1971,12,5 6.0
1970,6,20 - 1975,6,20 1971,12,5 6.0 60
48N [128W
1983,6,20 - 1989,6,20 ? ? 72
48N | 124W 1959,4,29 - 1967,4,29 1965,4,29 6.5 72
49N [123W] 1957,10,29 - 1964,10,29 - = 84
48N | 122W 1960,4,29 - 1965.4,29 1965,4,29 6.5 60
49N |121W | 1957,10,29 - 1964,10,29 - - 84
1962,4,29 - 1967,4,29 1965,4,29 6.5 36
47N | 121W
1982,4,29 - 1989.4,29 ? ? 84

* Time period from start time of a TIP to an strong event of M>M,

Table 4.4. A summary of the TIPs for the Vancouver Island area.
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Center of window: 50N 127W

2.00 3.00 4.00 5.00 6.00 7.00
! ! ! ! ! ! ! ! ! ! ! !

1869 1 1 3 2 1 2 .

. 7 3 . 1 2
1870 1 1 1 1 1 2 2

1 3 3 3 1 1 . .
18711 1 1 . 1 2 1 . 1 . 1

1 1 2 . 1 1 1 1
1972 1 1 1 . 2 . 1

. 1 . 1 . .
973 1 1 1 1 1 . . 1 1

1 2 1 1 .
1874 1 1 1 1 2 1 1 .

. 2 2 1 3 1 .
1875 1 1 . 1 2 1 1 1

4 6 3 . . 2 .
1876 1 1 5 6 2 1 1 1 2

4 1 1 1 2 1 1 1
1977 1 1 8 . 3 2 1 . .

8 5 2 . 1
1978 1 1

Center of window: 50N 127W

2.00 3.00 4.00 5.00 6.90 7.00
! 1 ! ! ! 1 1 ! 1 ] ! 1
1858 1 1 13 7 5 1
10 3 3

1859 1 1 9 4 2

8 6 6 2 2
1860 1 1 8 1 2 .

9 2 1 . 1
1961 1 1 6 7 1 . .

6 3 1 1 1
962 1 1 5 1 1 .

. 3 . 1 1
1863 1 1 4 2 .

2 1 2
1864 1 1 . 1 1 .

. 1 . 2 2 . . . . .
1865 1 1 1 . . . . . . . . 1

1 2 .
1966 1 1

Table 4.5. Magnitude-time histograms of events in regions centered on two large
earthquakes.



Chapter 5: On modelling of the lithosphere dynamics

A model is generally re=Jed 10 ¢ >mplement phenomenology of a physical system such as

seismicity. In the fie; - wicity building a model directly from the observational dara
is difficult due to limits y the data both in time and space. But we have the
alternatives of bwilding < . * . the fundamental principles of physics. Such a model

is explanative. It allows us t. . derstand more of the general behavior of the system and
can generate a synthetic time series to complement the observable data.

How should we model the evolution of earthquakes? The discussion in the
previous chapters and recent investigations of other (Horowitz, 1989; Huan g and Turcotte,
1990) suggest that the geodynamical processes that generate seismicity in the lithosphere
result in chaotic rather than random time series. It has been shown that the lithosphere
dynamics is characterized with a low dimensional attractor. This indicates a deterministic
model that describes the dynamical evolution of the lithosphere is possible. Lithosphere
dynamics should appropriately be described in a deterministic way. The evolution of
earthquakes should be studied together with the entire dynamics of the lithosphere since
they are the integral part of the lithosphere dynamics.

Our understanding of the lithosphere dynamics results, by and large, from
mechanical models for a single fault isolated from the rest of the lithosphere. The insight
into lithosphere dynamics we draw from these models is limited only to a certain spatial
scale. Any extcnsion of such an approach to general lithosphere dynamics could be wrong,
since the lithosphere is characterized with hierarchical structure of volumes. Little study
has been done io characterize the integral dynamic evolution of the lithosphere, but despite
our lack of physical understanding, an analc  can be drawn between some of the
phenomenology of lithosphere dynamics and the general behavior of other non-linear
dynamic systems.

For example, Kagan and Knopnff (1980, 1981) have shown that earthquake fault
zones have three dimensional structure that has a fractal distribution of size. The fractality
implies that the underlying dynamic field, such as stress and strain field, governing the

occurrence of earthquakes does not have an intrinsic length scale. This is reminiscent of a
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very similar phenomenon related to the velocity field of a turbulent flow, where the flow is
governed by the Navier-Stokes equation that is scale invariant. When the Reynolds
number becomes large, the flow will change from a laminar flow to a turbulent flow with
eddies on all scales. The length scale imposed on the system due to the boundary effect
will become weaker when the flow is away from the boundary. The symmetry of the
equation is partly recovered. I believe there is a analogy between the velocity field of a
turbulent flow and the strain or stress field of the lithosphere. The dynamics of the
lithosphere might be similar, in some aspects, to the development of a turbulent flow.
Through the interactions between fault zones, or their related stress and strain fieid, the
fault zone will develope to a structure with a fractal distribution of size, that is not affected
by the length scale imposed on the system by the regional tectonics.

It is my hope that the dynamics of the lithosphere is a system of this kind. There
might exists an as yet unidentified group of non-linear differential equations that describe
the dynamics of the lithosphere. In such a system only the values of some state variables
will distinguish fault zones from intact areas of the lithosphere, and time evolution of these
state variables is governed by the differential equations. Just as in the scenario of a
turbulent flow, the strain or the state fields will have regular behavior under small
deformation rate, ar | become irregular under the large one. In the chaotic regime the
processes will generate some spatial structures which may display a self-similarity. The
present fractal structure of the lithosphere is not necessarily an inherent property of the
lithosphere. Since the occurrence of earthquakes is a process of faulting, it is designated in
this model as the weakening in the fault zone corresponding to the change of a state
variable, and therefore causes the strain or stress field change in the surrounding medium.
Since the fault is inherent in the model, seismicity must be studied as an integral part of the
developmen: of the entire dynamics of the lithosphere.

[ believe the chaos established in the lithosphere is a result of coherent interaction
between fault systems. The block model of the lithosphere (Gabrielov, et al., 1986),
which assumes that the lithosphere consists of many blocks and earthquakes occur due to
the shear deformation along the block boundaries, suggests that the interactions between

blocks dominate the dynamics of the lithosphere. It also shows a scaling in the magnitude
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and freouency relation for the earthquakes simulated in the model. Theoretical treatment of
the medium like this is the major difficulty involved in the modelling the dynamics of the
lithosphere. The lithosphere is basically full of fractures, while the continuum assumption
is required in most theories dealing with mechanical deformation of a medium.

™ this chapter, I attempt to formulate the stress and strain field of a blocky
lithosphere by introducing two state variables. Irelate these state variables to the internal
structure of the block arrangement following the rationale of the statistical mechanics
(Landau and Lifshitz, 1958; Pathria, 1972; Gong, 1982). I expect that a certain extent of
the macroscopic response of the internal structure of the lithosphere could be reflected in
these state variables, and that it can be used to characterize a fault zone. This avoids

treating the fault as a special boundary with constraints artificially imposed on it.
5.1 Mesoscopic structure of the lithosphere

The lithosphere is different when it is measured with different spatial scales (Figure
5.1). With the largest measuring scale, the macroscopic scale, detailed structures of the
lithosphere are smeared, and the lithosphere behaves like a continuum. At an intermediate
scale called here the mesoscopic scale, the lithosphere consists of many small solid phase
blocks. It is a discontinuous material at this scale. The interfaces between blocks play a
significant role in the mechanical behavior of the continuous phase, particularly when the
the structural arrangement breaks down. At this resolution each individual solid block can
be treated as a continuous body to which the theory of solid mechanics applies. The
smallest measuring scale, the microscopic scale, applies to the atomic phase. With this
resolution we can look into the lattice structure of the solid phase, and explained the
viscoelastic and plastic behavior of the solid phase in terms of lattice structure and its
defects. Axelrad (1984) first introduced the concept of the mesodomain in the probabilistic
mechanics. He argued its existence within the medium form the link between the
microscopic and macroscopic description of the material behavior.

Most approaches to modelling the mechanical behavior of the lithosphere are

applied to the continuous phase of the lithosphere, and ignore the presence of the
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mesoscopic structure in the material. A continuum theory, such as elasticity or
viscoelasticity, is generaliy adopted as a mathematical tool to describe the mechanical state
and its time evolution of the system. But such approaches fail when we deal with fracture
processes or earthquake dynamics. In this circumstances the lithosphere can not be
approximated as a "fine" continuous phase without any internal structure. Structural
arrangement changes in the mesodomain will play a part in the macroscopic properties of
the continuous phase. Therefore, besides considering the response of various classes of
the continuous phase, we should equally consider the effects that are due to the inherent
geometrical and physical properties of the structural elements in mesodomain.

The complete understanding of the dynamics in mesodomain can be obtained,
conceptually, by writing down the elasticity or viscoelasticity equations for each solid
phase block and solving the boundary value problen., but that is mathematically impossible
due to the complexity of the system. Shi (1988) proposed a reasonable approach to solve
the system of this kind in his suggested method Discontinuous Deformation Analysis. In

his formulation, he describes each solid phase block by the coordinates of its center of

mass r, the rotation angles 6, and the deformation eij‘ The dynamic evolution of each

block is described by their corresponding time derivatives fx, 9 , and &;; (Figure 5.2). The
mechanical properties of the blocks are described by the material parameters such as elastic
constants and viscosity coefficient. The strain eij is taken as a basic variable here, it
accounts for the deformation of the block under the first order approximation. The total
potential energy of the system is designated ITp, which is the summation over all the
potential energy sources, individual stresses and forces. With the quantities defined above,
the total potential energy I'Ip can be expressed as a function of r, 8 and eij of all the
elements considered. For a specific configuration of solid phase blocks and a given

boundary condition, only those among the admissible states that minimize the total potential

energy Iy, are stable and physically possible. Discontinuous Deformation Analysis works
well for a system of a reasonably low number of degree of freedoms. When the number of
degree of freedom however increases to the level required in the lithosphere, the

calculations needed to solve the problem will be beyond the capacity of any modern
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computer.

In the problems of the dynamics of the lithosphere we are not interested in the
mechanical behavior of each solid phase blocks but rather in their effects on the mechanical
behavior of the continuous phase in the macrodomain. Isuggest here that the macroscopic
properties of the lithosphere are connected with the mesoscopic composition of the system.
Also the number of macroscopic quantities used to describe the continuous phase in the
macrodomain is generally much less than the number of degree of freedoms of the system
in mesodomain. Macroscopic properties of the lithosphere do not depend on what each
individual solid phase block is doing, rather depend only on some average behavior of all
the blocks. A given macroscopic state may correspond to numerous structural
configurations in the mesodomain which are compatible with a given macroscopic
specification. Thus we could take advantage of this to study the problems of predicting the

average behavior of many blocks.
5.2 Phenomenological formulation in mesodomain

A system with a great number of degree of freedoms generally has many stable
states corresponding to different structural configurations. The set of all possible stable
states of the system forms a sample space over which the statistics of many solid phase
blocks can be examined. Under the internal interactions or perturbation from outside, the
system will change from one state to another. Some dynamic systems may experience all
their possible states during a period of measurement of their macroscopic quantities.
Therefore, the quantities measured must be considsred 25 time averaged values, which are
hopefully the same as those averaged over a statistical ensemble, a collection of a large
number of identical systems. Since the time needed to take a measurement of a physical
quantity over a selected sample of the lithosphere is much shorter than the time during
which the system experiences all the possible states, the mesoscopic structure of the
selected system therefore can be considered fixed, at least for the duration of the
measurement. Yet, for a collection of samples of the lithosphere that are compatible with a

given macroscopic specification, the measurement of a physical quantity are generally
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different for different samples. The average value of a measured observable, which is
taken over the statistical ensemble, should therefore be taken as the best obtainable estimate
of the actual value for the sample. Such a value is the most probable vzl.:e of the ensemble,
it corresponds to many more mesoscopic states than other values do. Therefore, it is
reasonable to expect the lithosphere is in such a state, and the fluctuation is small.

Consider a large collection of isolated identical systems, which is usually called a
microcanonical ensemble, each system exists in a specific mesostate. Suppose we try to
measure a physical quantity 4, we will find each system will give a different value of A.

By counting how many systems have the value of A within the interval A+dA, we will

obtain the probability distribution p(A). The ave.age value of A is therefore given as

~ a0

K:J p(A)A dA

The expectation A is the best guess of the value we will obtain prior to an observation. We
assume that among all the possible distributions of p(A), there is one most probable
distribution which corresponds to the reality of the nature. The distribution can reasonably
be expected to have a sharp peak around the expectation A, which is therefore the most
probable value of A. The states at which the system will yield a value of A around A are
the most probable states of a natural system. Therefore, the situation will become much
easier if we study only those physical quantities associated with the most probable states,
and believe that they are the reasonable representation of the nature of the system.

In thermodynamics a special state we are interested in is the thermal equilibrium
state, which is the state a thermalized system tends to reach. We use the word equilibrium
in thermodynamics when the system reaches the dynamical equilibrium, but the situation
discussed here is different. Therefore, we emphasize the word "the most probable” to

indicate the state we will most probably encounter in the nature.
Consider a microcanonical ensemble with N systems, each system has Q number of
stable states under a given deformation, where Q is much smaller than N. If there are N;

systems in the state €;, the probability of finding the system in state Qis
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P; =

Z|Z

With the above probability distribution, the entropy of the system is defined as
S=-Y PlogP
i

The sum is over all possible states. Shannon introduced this function and argued that it
measures the amount of information in any message (Shannon and Weaver, 1962). For the
system considered here, entropy can be said to measure our ignorance of the well defined
mesoscopic configuration of the system, if all we know is the probability distribution.

Maximum entropy describes maximum ignorance when we know absolutely
nothing about the system. Therefore, the distribution obtained by maximizing the entropy
will give the most reasonable assumption about the distribution of the system one could
give without having any knowledge of the system. It is also the most probable distribution
the system can have if there is no constraint imposed on the systems. It is not surprising
that a uniform distribution in which all the states of the system are equally probable gives
the maximum entropy.

If we gain some knowledge about the system, the probability distribution will
change, and so will the entropy. For the system considered above, we assume the system
has energy E; when it is in the state Q;. If we make an observation of the energy E, the
best we can do is to infer that it represents the expectation energy E. To generate the

appropriate probability distribution, we maximize the entropy with the following
constraints:

(5.1)

By introducing two Lagrangian multipliers o and B, we are led to the Boltzmann
distribution:

P, = e-:BE; (5.2)
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of statistical mechanics. It is the most probable distribution of the system under the above
constraints. Introducing the notation Q(E;) which represents the number of states with the

same energy E;, we have

Pg; =4 Q(Epe B

where PEi, the probability that the system is in a state of energy E;, depends both on the
energy E; and the number of states Q(E,) at this energy. The term ePEi indicates that the

chance of finding a system in a high energy state is small, on other hand since Q(E;)

generally increases when the energy increases, this will increase the probability. In the
above expression « is included in Z, which is known as partition function in statistical

mechanics.

Z=) QE)ePE
E;

The partition function is a controlling function which determine: the average values of
physical quantities.

If the system also depends on paranieters al, a2, ... as, the most probable
distribution is obtained by maximizing the entropy with the following constraints as well as
(5.1,

Y Pigm =am m=1, 2, ... s
i
The resulting distribution is (Appendix C)
p. - g ®B(Ei-X, Ama™
1 m

or expressed in an equivalent form when the number of states corresponding to the energy

E, and parameters al, a2, ... aS is denoted by Q(E;,{a/})

PE; (am) = % Q(E;, {aim})C'B(Ei'; Amat")
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where A, are partial derivatives of the energy,
oE;
oa"s
For a mechanical system, we replace the parameters a™ by the strain €;;- When the strain

3
€;j changes, the energy of the system also will change, and the partial derivatives

oE

aeij Y

indicate the stress acting on the system.

In the above formulation we have two quantities, S and B, associated with the most
probable distribution. They generally depend on the other macroscopic parameters, such as
strain and stress, that control the system. We have a form of a very well known relation
(Appendix C)

las=dE- Gi;de;;

B
This is the first law of thermodynamics in mesodomain. It indicates that the total energy
stored in the system is composed of two parts: one is due to the work done on the system
that is the energy associated with macroscopic deformation, another is an energy associated
with random arrangement of the solid phase blocks.

This formulation can be applied to any physical system with a large number of
degree of freedoms, when its macroscopic properties are associated with a distribution. It
is not specific to the mechanical system we consider. The argument is that the lithosphere
can be considered a system of this kind. Therefore, besides the strain or stress that are
generally used to describe the mechanical state of the lithosphere, two more state variables,
S and [3, should be used to describe the state of internal structure of the lithosphere. The
rationale behind this consideration is the assumption that among all the possible
distributions of the mesoscopic states of the system there is a most probable one, and all the
questions about the mechanical properties of the system are only addressed to the system at

such a state.
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The mutual relationship between state variables, here is stress, strain and B or S, is
the equation of state. By assuming a geometry and mechanical properties for the solid
phase blocks, one can, in principle, derive the equation of state, but it is mathematically
very difficult for realistic cases. It may be appropriate in practice to obtain such an equation
of state through an intelligent guess. The implicit assumption embodied in the possibility
of making an useful guess about the equation of state is that the effects of geometry of the
solid phase blocks is a high order correction to the equation of state. The rationale behind
this consideration is the analogy to the case of the classical gas, where the effects of the
molecular structure of the gas is added as an high order correction to the equation of state

for the ideal gas.
5.3 Equation of state for a one dimensional material

A one dimensional model is a trivial example of such an approach, but I discuss it
due to its simplicity in mathematics. It allows an explicit evaluation of the partition function
Z, from which the average values of macroscopic quantities of the model can be calculated.
Although the model is naive, it is instructive as a way of demonstrating how the mechanical
properties of a material might depend on those parameters introduced above, and how to
proceed in more realistic cases.

Consider a system of N elastic blocks of side length a and 5. There are two
possible states for a block in a chain which forms a one dimensional material. Under the
constant force F acting on the both ends of the material, each block will contain a certain
amount of strain energy corresponding to which state it is in. When the block is in the state
a, (Figure 5.3), the strain of the block is

L F
“*pY

where Y is the elastic constant of the block. The corresponding strain energy stored in the

block is

=1 -1F%
Ea= 3%V =2
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where V is the volume of the block. The same reasoning applies when the block is in the

state b, the strain cnergy stored in the block in this case is

=1 _1F%*»
By =50V =5,

Assume that there are N, blocks in the state a and Ny, blocks in the state b. The total

strain energy E; and length L of the system will depend on the N, and Ny in the

following way
EI(L) = Na Ea + Nb Eb
L =Nga+Npb

For the given distribution N; and Nj, corresponding to the system of energy E; and

length L, the total number of ways in which the process of distribution can be carried out

is

Q(E;, L) —N‘—Na INg1

Substitute the above relations into the partition function Z, where we replace A, by the

force -F and a™ by the leng*i L,

Z= ), QE;, L) exp{-BEi(L) + BF L}
E. L

=Y Y @B a-Ed)ya B(F b-Ep)N-Na
Ne

=[eB(F a-Ea) + eBF b-Ep)N

The equation of state of the material can be obtained by differentiating the partition function

with respect to the BF,

L= dlogZ = NaQB(Fa' 2) + b ePF b-Ep)
dpF eB(F a-E,) 4 eB(F b -Ep)

Replace E, and Ep by F2b/2Ya and F2a/2Yb respectively, we have
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1+eBry

where y=(b -a)- i% (% -g). a and b are taken as constants f~ their zeroth order
approximation. The mutual relation among L, B and F is plctted in a 3D plot (Figure
5.4a). The quantities L, B and F shown in the plot are non-dimensional quantities, they
are normalized by the factors Na, 1/Ya? and Ya respectively. The ratio between b and
a is chosen as 1/2.

The relation between L and F is highly nonlinear. As J increase, L changes very
rapidly with F. The derivative of L with F is plotted in figure 5.4b. The deep notch in
the figure indicates a sudden weakening of the material as the force increases. The state of
the system at this point is very unstable, the sudden transition from one state to another can
be explained as an earthquake.

The physical meaning of B is clear in this mo. .. The syrzie. the value of B, the
more random is the arrangement of the blocks. When the ... . of i .nds to zero, about
half of the blocks are in state a and half are in state b, this is the nost random state.

When the value of B tends to infinity, most of the blocks will be in state b.
5.4 Discussion

Introducing two extra state variables, which are not independent, can account for
the effect of complicated blocky structure in mesodomain on larger scale in macrodomain of
the lithosphere. In principle the equation of state can be derived for the material that is
composed of solid blocks of certain geometry and mechanical properties. It gives a relation
among stress, strain and one state variables. This implies that the state variable is uniquely
determined by the instantaneous values of the stress and strain. If the state variable is kept
constant there will be a unique relationship between the stress and strain. For the fast
changes of stress and strain, the state is expected to be unchanged. These implications

indicate the existence of a family of curves on stress and strain plane that cannot intersect.
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This provides a necessary condition for the legitimacy of above consideration that can be
verified by exhaustive experiments (Ruina, 1983).

Since the strain energy in a sample can be measured, there will be a unique
relationship between the energy and strain if we keep stress constant. Discontinuous
Deformation Analysis (Shi, 1988) provides a numerical way of testing this relationship.

The arguments refer to static problem. The description of the system is incomplete
unless we include the equations that describe the time evolution of the state variables. The
dynamical evolution of the system may be determined from the investigation of dynamic
interaction of the solid blocks in mesodomain and the interaction between the solid block
phase and the atomic phase in microdomain. Such investigations may encompasses all the
complexities of the system, and are not discussed here.

In the one dimensional model the occurrence of an earthquake corresponds to a
sudden transition from one state to another. A two dimensional model can behave very
differently, since such a model allows both normal anc shear stress. We can speculate that
a fault in this case is a weak zone where entropy is probably high; the blocks are more
randomly organized therefore allow shear displacement to occur more easily (Figure 5.5).
When the ci.ivopy is low, the blocks are well organized and therefore they are interlocked
with each other. The material in this case has a high shear strength. The occurrence of an
earthquake is probably associated with a sudden increase of the entropy, or weakening of
the material in the fault zone. After the earthquake, the blocks start rheological deformation
under the tectonic stress, and tend to become more organized. The entropy therefore will
decrease and this can be considered as healing of a fault. Since rheological phenomena are
always associated with heat generation, they produce entropy in atomic phase. From this
we see that healing is a result of interaction between the solid block phase in the

mesodomain and the atomic phase in microdomain.
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Figure 5.1 illustrates the idea ot dividing the lithosphere into three phases according
to three measuring scales.
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Figure 5.2 shows one block of a block system. It is described by its position,
rotation and deformation.
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Figure 5.3 illustrates a one dimensional block model which consists of a chain
of blocks in different states.



Figure 5.4 (a) shows the mutual relations among L, P and F. (b) shows the relation
among the derivative of L with respect to F, f and F.
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Figure 5.5 sketches a two dimensional model, in which a fault is described as a weak
zone where the blocks are randomly organized. It corresponds to a state of high
entropy.



Concluding Remarks

This thesis has introduced the use of nonlinear dynamics methods for the study of
lithosphere dynamics and earthquake prediction. The primary objective of this study is to
show that it is more appropriate to treat the dynamics of the lithosphere as a deterministic
nonlinear dynamic system. I believe that better understanding of occurrence of earthquakes
can result from investigations of the nonlinearity of the lithosphere dynamics. The results
are not exhaustive and further investigations in other areas are needed to extend the results,

I consider the dynamics of the lithosphere to be represented by a nonlinear
deterministic system. Earthquakes are an integral feature of lithosphere dynamics since
they correspond to a collection of Poincare points in the phase space of the lithosphere.
The assumption behind this consideration is that the lithosphere dynamics can be described
by an as yet unknown group of differential equations. This leads to the result that the
attractor of the lithosphere dynamics can be reconstructed from the earthquake catalogs.
Therefore, all the properties of the attractor obtained from analyzing the earthquake catalogs
are intrinsic to the lithosphere dynamics. For example, the low dimensionality of the
attractor, between 3 and 4, found from the analysis of the earthquake catalog of the west
coast of Canada suggests lithosphere dynamics is chaotic rather than random. Such an
analysis of other geodynamic measurements should yield the same dimensionality. The
upper limit of time for earthquake prediction, found to be 20 years on the west coast of
Canada, is a fundamental characteristic time of such dynamics. It is not only a limit for
earthquake prediction but also a limit of the predictability of any other geodynamic
quantities.

The determination of the physical model of the lithosphere and its differential
equations is still in its infancy. It has produced few results to support this conceptual frame
work of the lithosphere dynamics, but such considerations are meaningful because they
predict some results that can be tested experimentally. For example, it predicts that other
geodynamic measurements of the lithosphere are topologically equivalent to earthquake
catalogs. Investigation of the equivalence between earthquake catalogs and other

geodynamical measurements, such as strain meter measurements, can be used to test
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whether such consideration is legititnate. At the present stage of this study it is reasonable
to believe that lithosphere dynamics is such a nonlinear system for it displays a similar
phenomenology to other nonlinear dynamic systems, such as fluid dynamics.

The argument made here implies a new perspective for earthquake prediction. We
can retrieve enough information from an ideal earthquake catalog to predict the future.
More geodynamic measurements will not result in additional information about the
dynamics of the lithosphere. Still, when we deal with the imperfect earthquake catalog we
encounter in practice, many difficulties arise. These difficulties may be overcome by
analyzing other geodynamic measurements. It is also possible that the pattern recognition
algorithm designated to analyze earthquake catalogs can be extended to other geodynamic
measurements. It is intuitively obvious that more measurements of different quantities will
yield greater predictability.

The low dimensionality found in the earthquake catalog suggests that earthquake
flow (Keilis-Borok, 1990) only occupies a low dimensional subspace. With such a low
dimensionality, between 3 and 4, it seems possible to build a model directly from the data
for some areas with good seismic records (Masdagli, 1989). For noisy data that we will
inevitably encounter when we deal with geodynamic measurements, there is still need for
better numerical methods to build a successful model which is not discussed in this thesis.

A physical model may not directly relate to the problem of earthquake prediction,
but it helps explain why lithosphere dynamics behaves as it does. It suggests
generalizarions beyond earthquake prediction for a particular region, and allows us to relate
the dynamics of the lithosphere from one area to another, allows predictions about how the
lithosphere dynamics will vary with system parameters. The preliminary attempt toward
this objective I made is to introduce two state variables in addition to stress and strain to
describe the lithospher= state. These state variables reflect, to a certain extent, the
complexity and int. iction in sub-fault systems. The result from a one dimensional model
shows that the const.. i+ . relation is very nonlinear, and catastrophic failure could happen

at the critical point.
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Appendix A

The finite element procedure is based on the well known principle of minimum total
potential energy. Displacements are taken as the primary unknowns, therefore the

appropriate functional of potential energy Hp 1s

m, =§Z{d}T[ K] (d} - 2.{d}T(r} - {D)T(P)

(r) =f [BIT[E] {eo}dv-f[B]T{oo}dwf [NF {F}dv+f[N]T (@}dS
v \Y% \%

S

where (d} is a nodal displacement vector. {D} and {P} are the structure vectors of nodal
displacements and nodal forces. {6} and (g} are initial strain and stress vectors. {F} 13

a body force vector and {®} is a surface traction vector. [N] is a shape function or
interpolation function matrix. [B] is a strain-displacement matrix. [Z] is a material matrix.

The infinitely thin fault element is described as a bilinear rectangular element subject

to the limit ¢ — O (Figure A.la). The shape function for a bilinear element is given as

[N]=[N1 0 N, 0 Ny 0 Ny O
0 Nl 0 N2 0 N3 0 N4

N1 =l (b-x)(c-y)
Ny =zl b+ %) -y)
N3=4—éz(b+x)(c+y)
No =2z (b-0(c+y)

The strain-¢isplacement matrix [B] is

1M 0 @©y) 0 (c+y) 0 -(cty) O
Ibc 0 -(bx) 0 -(b+x) 0 (b+x) 0 (b-x)
-(b-x) -(c-y) -(b+x) (c-y) (b+x) (c+y) (b-x) -(c+y)
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For the infinitely thin element, we define the elastic constant as Lim % =Y, which has to
c—0

be finite in order to obtain the finite displacement across the thin fav't element. In the case

of plane strain, the stiffness matrix [k] is

2 0 1 0 a1 0o 2 o]

0 4 0 20 0 20 0 -4r

0 2 0 2 0 -1 0

[k]= Y1 0 2L 0 4L 0 -4r 0 -2\
20+v)| -1 0 2 0 2 0 1 0

0 20 0 -44 0 4r 0 2

2 0 -1 0 1 0 2 o
L 0 4 0 20 0 24 0 4n _

where A = -1—1% , V is Poisson ratio.
The initial strain {€g} in above general formula can be considered as the strain due
to inelastic deformation. We assume that inelastic deformation causes shear strain only,
that is {€y}=(0, 0, €,,}T. €;, equals A/2c by the definition of strain, where A is the

inelastic displacement (Figure A.1b). The contribution of the inelastic deformation to {r} is

T = DA o T
IV[B] [E]{eo}dv-—————4(1+v) (-1,0,-1,0,1,0,1,0)

It forms elements in columns of the matrix A, in (1.9).

The average shear stress in an element is given by

0

T=_L[bgc 1 ‘

=L [E] [B]() 2—0-‘ 0 [ dxdy
A

Yi__{Lo-LoLoL .
4(1 +v) ( 2’0’ 2’0’ 2’0’2,0){(1} A

Comparing with the expression T = M;d + M,A in the chapter one, we know that the

elements in rows of M, is formed by Y, /4(1+v)(-1/2, 0, -1/2, 0, 1/2, 0, 1/2, 0), and M, is
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a diagonal matrix with elements Y ,/4(1+v). The matrix A, can be evaluated by following

the standard procedure.
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& y
4 3
}
Cc
' .
X
1 2
el PR
(a)
s
A
€=
— 2c

(b)

Figure A.1 (a) shows the definition of a binear element. (b)shows the difinition of
shear strain.



Appendix B

i) The error in the correlation function

We define a random variable N, as

n

2 &

e where &ij =H(e - IX; - Xj )’
n2

n:

H(e - IX; - X I) is the Heaviside step function, it have a value of 1 if the distance between

xi and xj is less than €, and O for the distance larger than €. In the limit where n tends to
infinity, N, tends to the correlation integral C(€), which is the probability of two points
separate within the distance €. For the finite n, T, is @ random variable since it depends on
the result of the particular n investigation. The mean of N, is the probability.

Assumes &;j has a probability of p to have the value of 1, and (1-p) for 0, and &;j is

independent of &}, when i and j do not equal 1 and m. Since the mean of a random variable

is the sum of all possible values multiplied by their respective probabilities, so we have

SSHESY
02(&ij) = (- p)2) = (1 - p)%p +p2(1 - p) =p(1 - p)

For n, we have

EMp) =p=CQO)

o*ma) =L p1-p) <L
nz

n

ii) The upper limit for the correlation dimension estimated from a finite

length data series

Consider the slope in the Grassberger-Procaccia algorithm is measured as
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log N(") - log,N(r")

1 =

siope log, 1" - loggr'
where ' < r". Since N(r')21 and N(r'")<I1/2N(N-13<N->, we have following
approximation,

loggN(r") - loggN(r') = logaN2
If we take " > ar', we then have
loggr" - log,r' 2 log,a

and therefore

slope < zlog,N

One may choose small base a to satisfy above relation, but it seams unreasonable

to measure a slope over a very small length.
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Appendix C

When a system depends on parameters E, al, @2, ... a%, the most probable distribution

can be obtained by maximizing the entropy with the following constraints,

Y Pi=1
i PE =E
i Pig™ =a™
i
Introducing Lagarangian multiplies o, B, ¥, ... ¥, and maximizing the entropy, we obtain

the distribution,
P, = e“’BE”; T
The entropy can be expressed as
S=a+BE- ; Yma™
The change of S is
dS = BdE - ; Ymda@®
Since the most probabile distribution requires dS = 0, therefore
o= B[] =B

da™ s
Replace Y, by PA,,, we have

P; =C'a-ﬁ(a-; X,Ha,-’“)

éds = dE - Apda™
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