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Abstract

Much interest has been drawn toward our near-Earth space with the advent of the

space-flight era. In order to better understand this highly dynamic environment, the

development of measuring instruments for use on near-Earth spacecraft has become

particularly important. The current inference techniques often rely on analytic for-

mulas with many assumptions. Some of those assumptions are not well-satisfied in

experimental conditions, thus leading to uncontrolled uncertainties in the inferred

physical parameters. With the development of computer hardware in the 21st cen-

tury, the computational power available enables us to do new science. Particle in cell

(PIC) simulations can be used to simulate the satellite and instrument interactions

with space environment under various space plasma and satellite conditions relevant

to near-Earth orbit. The response of the instrument to the various space plasma

and satellite conditions is used to construct a synthetic solution library. Following

machine learning techniques, the library can be used to create multivariate regression

models based on neural networks and Radial basis functions (RBF). The advantage of

using a simulation approach is that it provides uncertainties in the inferred physical

parameters, and it can account for more physical processes than can be accounted for

in an analytical approach. The drawback is that PIC simulations are time-consuming,

whereas inferences made with analytic formulas can be much faster. The multivari-

ate regression approach combines all those advantages: it provides uncertainties, it

accounts for realistic physical processes, and it can make inferences very efficiently.

Two selected instruments are studied using the simulation-based regression approach.

RBF-one of the regression approach is also modified to be more efficient.
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Preface

The third chapter of this thesis is based on a research article accepted for publication

in Computer Physics Communication named “Inference of m-NLP data using Radial

Basis Function regression with center-evolving algorithm”, by Guangdong Liu and

Dr. Richard Marchand. Finding optimal centers can be very time-consuming for

Radial Basis Function (RBF) regression. This work describes an original algorithm

that Dr. Marchand and I co-developed during my Ph.D. study, which is very efficient

in finding optimal RBF centers. Dr. Marchand and I wrote two separate programs

for this algorithm. I maintain my version of the program, and it accompanies the

paper.

The fourth chapter is based on a research article published in the Journal of

Geophysical Research: Space Physics (JGR), by Guangdong Liu and Dr. Richard

Marchand. The paper’s title is “Kinetic simulation of segmented plasma flowmeter

response in the ionospheric plasma”. This work describes an original concept of a

space plasma flowmeter that can be mounted on a low Earth orbit satellite to measure

the transverse plasma flow velocity.

The fifth chapter is based on another research article submitted to JGR in 2022

entitled “ m-NLP inference models using simulation and regression techniques”. This

work is done in collaboration with colleagues in Norway, namely, Sigvald Marholm

and Lasse Clausen from the University of Olso, and Anders Eklund from the Institute

for Energy Technology. I was fully responsible for doing the simulations, training and

validating the regression models, applying the models to simulation and in-situ data,

writing the original manuscript, and editing it. Dr. Richard Marchand supervised the
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project, and was involved in concept formation, manuscript composition and editing.

Sigvald Marholm and Anders Eklund assisted in conceptualization and manuscript

editing. Lasse Clausen contributed to in-situ data collection and providing feedback

in writing of the manuscript. This work presents a new approach to interpreting

multi-needle Langmuir probe (m-NLP) measurements over the currently used state-

of-the-art analytic approaches. Our approach, based on results from 3-D particle in

cell simulations accounts for more physical processes than possible in theories, will

improve the accuracy of the current m-NLP measurements and provide qualitative

uncertainties.
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Chapter 1

Introduction

1.1 Motivation

The 20st century is an era of the digital revolution. According to Moore’s Law,

the number of transistors per silicon chip doubles every year. We have never be-

fore had this much computational power available. This enables us to apply advance

techniques to solve real life problems in all field of science, including simulation of

complex physical processes in a virtual environment. One objective of this thesis is

to take advantage of the computational power available today to do new science.

With the advent of the space-flight era, much interest has been drawn toward our

near-Earth space. The highly dynamic environment influenced by space weather and

electric and magnetic fields around Earth makes it particularly difficult to study.

One reason is that instruments such as Langmuir probes rely on theoretical models

involving many simplifications and assumptions. When these assumptions are not

fully satisfied, the reliability of such models becomes questionable. It is also difficult

to calibrate an instrument in space. In order to do a calibration, there must be an-

other instrument to measure the same quantity, which is difficult in space considering

the cost of a spacecraft, and the calibration instrument can have uncertainties as

well. Thus it is especially cost-efficient to calibrate the instruments in labs or, more

conveniently using simulation techniques prior to launch.
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1.2 Thesis objectives and outline

In this thesis, I studied selected near-Earth satellite instruments using kinetic simu-

lations and assess their measurement skills based on simulation results. More specifi-

cally, the instruments considered are the multi-needle Langmuir probe (m-NLP) sys-

tem onboard the NorSat-1 satellite and a new type of plasma flowmeter. The specific

objectives are to:

1. Construct and assess a new regression-based model for m-NLP instrument based

on simulation results.

2. Compare the inferences made with various state-of-the-art m-NLP models with

those made with regression models based on simulation and in-situ data.

3. Propose a new concept of a plasma flowmeter, and determine its measurement

uncertainties based on simulation techniques.

4. Improve the efficiency of the Radial Basis Function algorithm to be able to

construct models using large data sets.

The remainder of this thesis is structured into six main chapters. In Chapter 1,

the general theme and background of the thesis are discussed. In chapter 2, the

general methodology is described. An improvement to the multivariate Radial Basis

Function (RBF) is presented in Chapter 3, where it is demonstrated that the new

technique can be significantly more efficient than the previously used straightforward

approach, at no cost in accuracy. A review of space plasma flow meter designs is

presented in Chapter 4, along with a proposed new design for a simple and robust flow

meter. Chapter 5 presents a new approach to infer plasma and satellite parameters

using m-NLP, based on simulations and regression techniques. The model is first

assessed on the basis of synthetic data, and then applied to in-situ measurements
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reported from the Norwegian NorSat-1 satellite. The currently used inference model

for needle Langmuir probe is often based on the Orbital Motion Limited (OML)

theory derived nearly a century ago based on several simplifications. These include

the assumption that the needle probe is much larger than the Debye length, that

the plasma is stationary; conditions which are generally not well satisfied for actual

needle probes used on satellites in low Earth orbit. A promising alternative to the

OML theory is to construct inference models based on computer simulations in which

actual dimensions of probes are taken into account, in more realistic space plasma

environment conditions. In this work, currents collected by an m-NLP instrument

are simulated under a variety of plasma and satellite conditions, which are then

used to build models to infer plasma density and satellite floating potentials. The

models are applied to in-situ data. While pure OML-based models fail to make

reasonable inferences from in-situ data, simulated-based model inferences are found

to be much more consistent with satellite observations. Chapter 6 includes some

concluding remarks and discussions of possible future work.

1.3 Background

Understanding our near-Earth space environment has been of strategic importance

due to applications such as communications, GPS positioning, monitoring of solid

Earth activities, and satellite maintenance. This highly dynamic environment is bom-

barded by energetic particles and solar UV, causing some of the valence electrons to

be liberated from the air molecules once they gain enough energy. This process is

called ionization, and an ionized gas is called plasma which is the main ingredient of

our upper atmosphere. Ionization of upper atmosphere atoms and molecules happens

mainly in the D, E, and F regions at altitudes of approximately 70 to 400 km. Once

ionized and energized, particles expand to higher altitudes beyond the ionosphere,

up to approximately 2000 km in the plasmasphere. This layer of plasma within the

magnetosphere co-rotates with the Earth.
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Figure 1.1: Illustration of electron and selected ion density profiles in the upper
atmosphere and ionosphere.

Two key parameters in plasma physics are the electron Debye length:

λDe =

(︃
ε0kTe
nee2

)︃ 1
2

, (1.1)

and plasma frequency:

ωpe =

(︃
nee

2

meε0

)︃ 1
2

. (1.2)

In these equations, ε0 is the free space permittivity, ne is the plasma density, e is

the elementary charge, k is the Boltzmann constant, Te is the electron temperature,

and me is the mass of an electron. The Debye length is a measure of how far a

perturbation of electric field can extend in a plasma. For example, if a charged object

is placed in plasma, opposite charges will be attracted near it and shielding it so that

other charged particles in a few Debye lengths will not be affected by the presence

of this object. Lighter electrons in plasma are more mobile than heavier ions. If

plasma is perturbed by an external force, electrons will be accelerated back and forth

around their equilibrium positions resulting in collective oscillations. The frequency
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of this oscillation, called the plasma frequency, depends on the electron charge, mass,

and plasma density. There are three requirements for an ionized gas to be called

plasma [1]. First, the dimension of the system must be larger than the Debye length.

Secondly, there must be many charged particles inside a sphere of one Debye length

radius. Lastly, the average time between electron-neural collisions multiplied by the

plasma frequency must be much larger than one. In other words, electrons must be

mostly unaffected by collisions.

1.3.1 Multi-needle Langmuir probe instruments

Langmuir probes have been used in labs and on spacecraft to infer plasma parameters

such as density and temperature. A Langmuir probe is a conductor, which can be

spherical, cylindrical, or planar. Once immersed in plasma with an applied voltage,

it can be used to measure plasma current. A commonly used approach to measure

plasma currents is to sweep the bias voltage on the probe, and measure the current

as a function of bias voltage. The resulting current as a function of bias voltage

is called the probe characteristic. An example characteristic is shown in Fig. 1.2.

The ion saturation region is where the probe is negatively biased and mainly collects

ions. In the electron or ion retardation region, the probe bias voltage is close to

zero, thus collecting both electrons and ions. In the electron saturation region, the

probe is positively biased and collects mainly electrons. The period used in sweep

mode mainly depends on two factors: sensitivity of the instrument, and conditions

in the surrounding plasma. In particular, short sweep periods are only possible in

plasma with a sufficiently high density for currents to be measured with an acceptable

signal-to-noise ratio. The sweep period varies based on the conditions, typically

on the order of hundreds of milliseconds to seconds for near-Earth satellites [2, 3].

Considering the orbital speed of a spacecraft in a near-Earth orbit is on the order

of 7500 m/s, the spacecraft can travel tens to thousands of meters during one sweep

which limits the spatial and temporal resolutions of the instrument. In order to
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Figure 1.2: Illustration of an IV characteristic curve for a Langmuir probe.

increase the sampling frequency, in 2010, Jacobsen suggested using a multi-needle

Langmuir probe (m-NLP) instrument that can be used to sample plasma at different

probe voltages simultaneously by having multiple fixed bias probes. Compared to a

sweep mode Langmuir probe, m-NLP instruments can have a sampling rate over kHz

range which is particularly important for the study of irregularities caused by various

plasma instability processes at high and low latitudes [3, 4]. The inhomogeneous

magnetic-field aligned density irregularities scale from meters to tens of kilometers

may interfere with the radio wave frequency band used in radio communication [4,

5]. Thus it is crucial to be able to study them and forecast the events that can cause

disturbances in radio communication and global navigation satellite signals [4]. The

Norwegian satellite NorSat-1 launched on July 14th, 2017 is equipped with an m-NLP

instrument consisting of four needle probes biased at 6, 8, 9, and 10 volts with respect

to the spacecraft [6]. The instrument can sample the surrounding plasma at a rate

up to 1 kHz. The high sampling rate of the NorSat-1 m-NLP instrument allows a

spatial resolution of a few tens of meters, which is sufficient to study such phenomena

and help to understand instability driving mechanisms. Despite these advantages, the

interpretation of m-NLP measurements in terms of plasma parameters has proven to

be more challenging than initially anticipated based on simple analytic models. Thus,
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the primary objectives of this thesis are to find alternatives to analytic formulas which

provide higher accuracy and uncertainties in the inferred physical quantities.

1.3.2 Multi-needle Langmuir probe theory

There are different theories for cylindrical Langmuir probes, such as the Orbital

Motion-Limited (OML) theory, the Allen-Boyd-Reynolds (ABR) theory, and the

Bernstein-Rabinowitz-Laframboise (BRL) theory. For example, the ABR theory re-

lies on the solution of Poisson’s equation to determine the electric potential in the

vicinity of a probe. The electrons are assumed to be Maximilian, whereas ions are

assumed to be cold. The ions initially at r = ∞ are drawn radially into the probe

without orbital motion [7], and Poisson’s equation is solved to calculate the probe

potential at the probe radius r = R for a given normalized probe current. Conversely,

the BRL theory accounts for both sheath formation and orbital motion [7]. In this

thesis, I focus mainly on the OML theory which was derived in the 1920s by Langmuir

and co-workers [8], and it is still used routinely for lab plasma and spacecraft data

analysis. In this theory, a collisionless plasma and purely radial force are assumed,

thus conservation of energy and angular momentum can be used to solve for the

collision impact parameter. The impact parameter b is the perpendicular distance

between the extended initial path of the incoming particle to the center of the cylin-

der as shown in Fig. 1.3. Assuming the cylinder is positively biased with respect to

the background plasma and it is in the electron saturation region, the equation for

conservation of energy for an incoming particle is given by:

1

2
mv20 =

1

2
mv2t − eV, (1.3)

and the equation for conservation of angular momentum by,

mv0b = mvtr, (1.4)

where r is the radius of the cylinder, v0 is the initial speed of the particle, vt is the

particle speed at a distance r from the probe center, m is the mass of the particle, and
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Figure 1.3: Illustration of attractive and repulsive charged particles moving towards
a cylindrical probe that is perpendicular to the page.

V is the probe voltage with respect to the background plasma. The two equations

can be used to solve for the impact parameter b:

b = r

√︄
1 +

2eV

mv20
. (1.5)

In order to calculate the amount of current collected by the cylinder, a Maxwellian

velocity distribution is assumed for the background plasma. The two-dimensional

Maxwellian distribution function has the following form:

f(v⃗) = n
m

2πkT
exp

(︃
−m | v⃗ − v⃗d |2

2kT

)︃
, (1.6)

where n is the density, m is the mass of the particle, and v⃗d is the drift velocity. The

particle flux density on a surface is given by:

Γ =

∫︂
d3vf(v⃗)v⃗ · n̂. (1.7)

Ignoring drift, the current collected on the cylinder can be calculated using the fol-

lowing formula:

I = e · Γ · A = e2πl

∫︂ ∞

0

vdvf(v⃗)2bv, (1.8)

8



where A = 2πrl is the surface area of the cylinder ignoring the ends, and l is the

length of the cylinder. Thus the current collected by a cylinder for an attractive

species can be calculated by combining Eq. 1.5, Eq. 1.6, and Eq. 1.8:

I = ne2r
m

2πkT
2πl

∫︂ ∞

0

dvv2 exp

(︃
−mv

2

2kT

)︃√︃
1 +

2eV

mv2
. (1.9)

With a change of variables:

x =
v√︁

2kT/m
, (1.10)

Eq 1.9 becomes:

I = 2nerl
m

kT

(︃
2kT

m

)︃ 3
2
∫︂ ∞

0

dxx2 exp
(︁
−x2

)︁√︃
1 +

eV

kTx2
. (1.11)

This can be rewritten as:

I = 4nerl

√︃
2kT

m

∫︂ ∞

0

dxx exp
(︁
−x2

)︁√︃
x2 +

eV

kT
. (1.12)

To evaluate the integral, let a2 = eV
kT
, and u2 = x2 + a2, thus xdx = udu, and the

integral becomes:

exp
(︁
a2
)︁ ∫︂ ∞

a

u2 exp
(︁
−u2

)︁
du. (1.13)

Integrating by parts, using f = u, g′ = u exp (−u2)du, and the fact that erf(z) =

2√
π

∫︁ z

0
exp (−t2)dt, erf(0) = 0, erf(∞) = 1 and erfc(z) = 1− erf(z), we get:

exp
(︁
a2
)︁(︃

−u exp (−u
2)

2

⃓⃓⃓⃓∞
a

−
∫︂ ∞

a

−exp (−u2)
2

du

)︃
= −u exp (a

2 − u2)

2

⃓⃓⃓⃓∞
a

+ exp
(︁
a2
)︁1
2

(︃∫︂ ∞

0

exp
(︁
−u2

)︁
du−

∫︂ a

0

exp
(︁
−u2

)︁
du

)︃
=
a

2
+ exp

(︁
a2
)︁√π

4
(erf(∞)− erf(a))

=
a

2
+

exp (a2)
√
πerfc(a)

4

(1.14)

This expression is found to be practically equal to 1
2
(1 + a2)

1
2 for a > 1.5 as shown

in Fig 1.4, and reported in [9]. Hence, eV
kT

=
√
a needs to be larger than two for the

approximation to be valid. Eq. 1.12 can then be rewritten as:

9



Figure 1.4: Eq. 1.14 is plotted against 1
2
(1 + a2)

1
2 . The two expressions are practically

equal for a > 1.5.

I = 4nerl

√︃
2kT

m

1

2

(︃
1 +

eV

kT

)︃ 1
2

. (1.15)

Using the fact that A = 2πrl, this can be simplified to:

I = neA

√︃
2kT

π2m

(︃
1 +

eV

kT

)︃ 1
2

. (1.16)

Many studies have been conducted to investigate the performance of the above equa-

tion and try to improve it over the years since it was first introduced in the 1920s. The

exponent term in this equation often written as β is only equal to 1
2
if all underlying

assumptions in the OML theory are satisfied, which is rarely the case in practice.

Empirically, it is found that collected current as a function of bias voltage can be

better approximated using a β value between 0.5 and 1. Thus replacing the 1
2
with β,

and the V with Vf + Vb where Vf is the satellite floating potential, and Vb is the bias

potential of the probe with respect to the spacecraft, a more generally used form of

Eq. 1.16 is given by:

I = neA

√︃
2kT

π2m

(︃
1 +

e(Vf + Vb)

kT

)︃β

. (1.17)
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For an isolated surface in plasma, the floating potential is the potential at which the

surface collects net zero current. The density, temperature, floating potential and β

can be obtained using these variables as fitting parameters to fit the measured cur-

rent as a function of sweep bias voltage in the electron saturation region [10]. This

approach is discussed in more detail in Chapter 5.

As first suggested by Jacobson, if the OML assumptions are satisfied, and β = 0.5,

a set of multi-needle Langmuir probes (m-NLP) can be used to infer plasma densities

independently of temperature. This is achieved by having multiple needle probes

biased at different fixed bias voltages in the electron saturation region. For example,

with two probes biased at Vb1 and Vb2, assuming β = 0.5, the current squared collected

by probe one is given by:

I21 =

(︄
neeA

2√
π

√︃
kT

2πme

)︄2(︃
1 +

e(Vf + Vb1)

kT

)︃
. (1.18)

The current squared collected by probe two is given by:

I22 =

(︄
neeA

2√
π

√︃
kT

2πme

)︄2(︃
1 +

e(Vf + Vb2)

kT

)︃
. (1.19)

Subtracting Eq. 1.19 from Eq. 1.18 to get:

I21 − I22 =

(︄
neA

2√
π

√︃
kT

2πm

)︄2
e

kT
(Vb1 − Vb2) , (1.20)

which can be rewritten as:

n =

√︃
π2m

2e3A2

√︄
I21 − I22
Vb1 − Vb2

. (1.21)

This equation can be used to calculate the density without the knowledge of the elec-

tron temperature or spacecraft potential. If there are more than two probes, the slope

of the current squared vs. bias voltage can be used to calculate the plasma density.

The main problem with such an approach is that the β value is rarely equal to 0.5

due to the end effect [4, 11–16]. This will be discussed in the following section and

in Chapter 5.
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1.3.3 Orbital Motion Limited assumptions

Several assumptions are made in the OML derivation in order to obtain an analytic

formula, these include:

• The plasma is collisionless, whence the energy and angular momentum of the

incoming particles are conserved.

• The plasma is non-drifting.

• Magnetic fields are negligible.

• The Debye length is much larger than the probe radius.

• The probe length is much larger than the Debye length.

• No other objects are in the vicinity of the probe.

Another condition required to simplify the OML formula is that the eV is larger

than kT by at least a factor of two. Experimentally, several of these assumptions

are rarely satisfied, and the theory needs to be adjusted for different experimental

environments. For example, Laframboise and Rubinste extended OML theory for

spherical and cylindrical probes to incorporate magnetic fields [17, 18]. When a mag-

netic field is present, instead of having a straight trajectory, an isolated particle will

do helical motion like in E × B drift. The current collected by a probe will be in-

fluenced by the particle’s gyro radius and the angle of the probe with respect to the

magnetic field. A typical gyro radius of electrons (∼ 20-40 mm) in ionospheric plasma

is much larger than the needle probe diameter (∼ 0.5 mm) considered in this study.

Whence, the OML assumption of a nearly straight trajectory (oppose to a helical

trajectory, see Fig. 6 in [18]), is valid; which justifies the neglect of the magnetic field

in this work. For a large radius probe or a probe in a strong magnetic field, however,

the magnetic field should be taken into account.
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Figure 1.5: Illustration of ion (top) and electron (bottom) rarefied wake region created
by a cylindrical probe that is perpendicular to the page moving to the left. Both cases
are taken from the same simulation corresponding to 7500 m/s, +9 V, 1.5×1010 m−3,
2 amu, 0.10 and 0.08 eV for orbital speed, probe voltage, density, ion effective mass,
electron and ion temperatures, respectively.

At typically ionospheric temperature, the thermal speed of electrons (∼ 1.9× 105

m/s for 0.1 eV electron) is much higher than the orbital speed of a satellite (∼ 7500

m/s) plus the ionospheric wind speed (≤ 1000 m/s) in near-Earth orbits. In compar-

ison, the thermal speed of ions (∼ 4400 m/s and 1100 m/s for 0.1 eV hydrogen and

oxygen, respectively) is usually lower than the orbital speed of a near-Earth satellite

plus the ionospheric wind speed. Based on these estimates, one would expect that

the electrons can approach the probe from all directions, however, this is not the case.

When a probe is charged positively to collect electrons, ions are repelled, and form

an ion rarefied wake region downstream as shown in Fig. 1.5. Electron collection

from the wake region of the probe is therefore reduced due to the resulting repulsive

negative space potential. Thus the electron saturation current is also influenced by

an orbital speed.
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Another essential assumption made in the OML theory is that the needle probe

needs to be very long. Due to the end effect, the current collected on a needle probe is

not uniform along the probe. Due to symmetry, a probe that is much longer than the

Debye length will collect uniform current in its mid section, and the current collected

in this section approaches the value predicted by the OML theory for an infinitely

long probe. Near the two free ends, however, more current is collected and features

characteristic peaks. If the probe is short, the peaks in the two free ends will merge

into one another, and produce a single peak in the middle of the probe as shown in

Fig 3 in [15]. If a guard is used, the characteristic peak will also be attenuated on the

side attached to the guard. In Fig. 1.6, the probe length is 2.5 cm, and the Debye

length is 2 cm; the probe length is comparable to the Debye length. Thus, we can

expect to see a single peak in the middle of the probe. In order to attenuate the end

effect, the needle probe needs to be long enough so that the uniform current collected

in the midsection of the probe makes up the largest portion of the current collection.

Different studies suggested that in order for β value to be approximately 0.5, the

probe needs to have a length that is more than 30 times the Debye length as reported

in [15] and also in Chapter 5. However, the majority of the needle probes used in

near-Earth orbit have lengths comparable to or sometimes smaller than the Debye

length. In this case, the measurements are subject to end effects, thus, the accuracy of

such measurements using OML interpretation is compromised. With probes already

deployed in space, we need to find alternatives to interpret their measurements. In

chapter 5 of this thesis, different regression methods based on kinetic simulations of

the probe’s accurate dimension to interpret m-NLP data are presented.
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Figure 1.6: Illustration of measured current distribution on a needle probe with a
guard. The simulation inputs are 7500 m/s, +9 V, 2 × 1010 m−3, 8 amu, 0.15 and
0.12 eV for orbital speed, probe voltage, density, ion effective mass, electron and ion
temperatures respectively.
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Chapter 2

Methodology

The methodology is an essential aspect of this thesis since part of my contribution is

to create a new algorithm for Radial Basis Function (RBF) multivariate regression.

Although the methodology is briefly discussed in each chapter, it is beneficial to de-

scribe it in detail in a separate chapter.

We understand physics around us by creating mathematical models. For example,

Newton’s first law, F = ma, describes the motion of a moving object. With the

help of a computer, we can create more complicated models. For example, we can

simulate the motion of every single plasma particle inside a domain and calculate the

amount of current collected on a probe. We can vary the different parameters in the

simulation, for example, plasma density, electron and ion temperatures, potential of

the probe with respect to the background plasma, flow speed of the plasma, ion com-

positions in the plasma, magnetic field, etc. Then inference models can be created

for plasma parameters such as density and temperature, from probe characteristics.

This is challenging since the current collected depends on many of the conditions

mentioned above. However, advanced theoretical or computational models are never

exact, and uncertainties in the inferences will result and need to be quantified.

The obvious advantage of simulation is that it is efficient and less time-consuming
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than, for example, building a plasma chamber and modifying it for different experi-

mental conditions. Also, a measuring instrument needs to be calibrated independently

by other instruments with known confident intervals. In simulations, input physical

parameters are known exactly as opposed to an assumed conditions in experiment,

which needs to be measured and come with uncertainties. Furthermore, for structure

stress tests, simulations are safer and will not create safety hazards in case of failure.

In many cases, simulations are also fast and less expensive than doing large scale

experiments in which different configurations have to be considered. For simulations,

multiple trials for different configurations can be running at the same time. Of course,

simulations come with limitations as well. For example, background plasma particle

can have a Maxwellian or kappa velocity distribution, but these are only approxi-

mations to actual distributions encountered in space. Also in simulations, probes

are generally treated as ideal conductors while neglecting alterations resulting from

contamination and aging. Thus ultimately, simulations need to be validated with

experiments, but by using simulations and experiments, fewer validation experiments

are needed than if only experimentation were used. In contrast to a theoretical model

which needs to be re-derived, simulation models can be improved by incrementally

including more physical processes. Additionally, a computer can be programmed to

create simulation trials and find optimal answers automatically and tirelessly.

2.1 Particle in cell simulations

The kinetic simulations in this thesis are made using particle in cell simulation code

PTetra [19, 20]. The numerical approach used in PTetra is briefly discussed here,

readers interested in more technical descriptions of the code can find those in the

references above.

In PTetra, space is discretized using unstructured adaptive tetrahedral meshes.
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Although unstructured meshes are more complex than structured meshes, they can

represent objects or boundaries of irregular shapes while a structured mesh cannot.

The meshes in PTetra are generated using gmesh [21, 22] with Delaunay connectivity.

Excluding possible degeneracy in which more than four vertices are on a given sphere,

the Delaunay connectivity is known to be unique and is “as compact as possible”.

Due to a large number of particles in a simulation domain, simulating all particles

is generally impractical. In PTetra, macro-particles, or simulation particles, are used

such that each of them can represent multiple physical particles. The macro-particles

have a statistical weight ωα = Vdnα

Nα
, where Vd is the total volume of the simulation

domain, nα is the density of the species, and Nα is the total number of the macro-

particles of this species. Physical quantities such as density and temperature, can

be calculated from moments of simulated particle distributions with their respective

statistical weights.

Prior to starting simulations, the range of plasma conditions relevant to the instru-

ment’s working environment must be determined. For near-Earth spacecraft, this can

be done with the International Reference Ionosphere [23], to estimate plasma condi-

tions encountered over prescribed times and locations along a satellite orbit. In order

to initialize a simulation, the domain must be occupied with particles. A straight-

forward way to distribute particles would be to assign a random location for each

particle. However, the particle distribution created using this approach would not be

uniform enough, e.g. some cells might be empty. This in turn would lead to large

transients at the beginning of a simulation. In order to ensure a more uniform initial

distribution of particles, and minimize initial transients, PTetra uses a method such

that each tetrahedron τ of volume Vτ , is assigned int
(︂
Nα

V τ
Vd

)︂
particles, where Nα is

the number of total particles, and Vd is the total volume of the simulation domain.

If there are still particles left after the procedure, another iteration is performed in
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which single particles are added to randomly selected tetrahedra. This approach can

create a much more uniformly occupied simulation domain.

Particles must also be assigned an initial velocity. PTetra can account for multiple

species, each one with a given density, temperature, and drift velocity. In addition, for

ions, different charges and masses can be accounted for. PTetra assumes Maxwellian

velocity distributions for each plasma particle species. A random velocity can be as-

signed using the cumulative distribution function for the one-dimensional Maxwellian

distribution function:

F (v) =
1

2
[1 + erf(v − v0)/vth)] , (2.1)

by making F (v) = r, where r is a random number between 0 and 1, and solve for

v using a root finder. In this case, v0 is the drifting speed, and vth =
√︁

2kT/m is

the thermal speed. Note that PTetra assumes the velocity normalized probability

density function is separable, that is f(v⃗) = fx(vx)fy(vy)fz(vz). Thus, this procedure

needs to be done three times in order to assign velocities for x, y, and z directions.

Alternatively, PTetra uses a simpler method to assign a random velocity based on

the central limit theorem:

vβ = v0β +

√︃
12kT

Nm

N∑︂
i=1

(ri − 0.5). (2.2)

In this case, T is the temperature, m is the mass of the particle, k is the Boltzmann

constant, ri is a random number between 0 and 1, and N is the number of random

numbers in the summation. A good approximation to a Maxwellian distribution is

obtained with N ≥ 12. In practice, N = 96 produces an excellent approximation.

In PTetra, particles are injected at the boundaries at each time step. The number

of particles to inject is calculated by integrating the flux of a Maxwellian velocity

distribution function over the boundary surface [19, 20]. The point of injection is

generated randomly on the triangular surface, and a random velocity is assigned ac-

19



cording to a Maxwellian velocity distribution. In a time step, a particle might leave

the simulation domain. Unlike a periodic boundary condition, PTetra uses an open

domain, thus the particles leaving the system are lost. As a result, the number of

particles for a given species can vary in time.

In order for simulations to be numerically stable, the mesh spatial resolution should

be high enough to resolve the Debye length, and the time step should be small enough

to resolve the plasma frequency. When a magnetic field is accounted for in a simu-

lation, the time step should also resolve the electron gyrofrequency. Finally, in order

to obtain simulation results with an acceptable signal-to-noise ratio, simulation cells

(tetrahedra) should typically contain an average of 100 simulation particles or more.

Determining the electric field to update particle positions in PTetra is discussed

in full in the literature [19, 20], and will be discussed briefly here. In order to cal-

culate the electric field, the first step is to solve Poisson’s equation for the electric

potential. There are several contributions to a spacecraft and surrounding plasma

potential. These are i) volume charge densities, ii) potential differences resulting

from the motional electric field E⃗d = −v⃗d × B⃗ where v⃗d is the plasma drift veloc-

ity in the spacecraft reference frame, iii) spacecraft charging, and iv) different bias

voltages applied to spacecraft components. In order to have a well-posed problem,

the potential has to be specified on every boundary, including the simulation outer

boundary. Assuming a boundary sufficiently far from the spacecraft, the potential

there is determined only by the motional electric field, and it is given by

V (r⃗) = v⃗d × B⃗ · r⃗. (2.3)

Thus in the absence of an external magnetic field, the potential vanishes identically at

the outer boundary. The boundary conditions on each spacecraft component can be

calculated using the mutual capacitance matrix and the linear superposition principle
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using the collected charges, the space charge density, and the outer boundary con-

ditions [20]. To calculate the space charge density ρ, a linear interpolation function

ψj(r⃗) must be defined at every vertex j:

ψj(r⃗) =

{︄
1 where r⃗ = rj⃗

0 at every other vertex,
(2.4)

for all tetrahedra in the simulation domain. The function ψj varies linearly in every

tetrahedron. Then the space charge density ρj at the vertex can be calculated using:

ρj =
1

νj

N∑︂
i=1

ωiqiψj(r⃗i), (2.5)

where νj is the volume of the Voronoi cell at vertex j, and the summation is over

all tetrahedra sharing the vertex. An example of the Voronoi cell can be found in

[20]. Using this approach, the space charge of a particle is assigned to neighboring

vertices according to their relative weights in the linear interpolation functions. Once

the potentials at the boundaries and spacecraft components are determined, with the

space charge density, Poisson’s equation:

∇2ϕ = − ρ

ϵ0
, (2.6)

can be solved using finite elements. Then, the electric field is calculated from the

gradient of the potential:

E = −∇ϕ. (2.7)

With this expression and the linear (first order) elements used in PTetra, the electric

field is constant in a tetrahedron. In general, it is discontinuous at interfaces between

adjacent tetrahedra, which would cause inaccuracies when integrating particle tra-

jectories. In order to obtain a continuous electric field across tetrahedra, and more

accurate particle trajectories, the electric field E⃗j at each mesh vertex is calculated

by averaging the electric fields in the tetrahedra sharing the vertex. The electric field

at the particle position in a tetrahedron is then calculated by weighting the electric
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fields on the four vertices using the linear interpolation functions:

E⃗(r⃗) =
4∑︂

j=1

ψj(r⃗)E⃗j. (2.8)

This avoids any discontinuity in the electric field between cells. Once the electric

field is determined, the electron and ion positions and velocities are updated using

a standard second-order leapfrog algorithm, except when there is a magnetic field.

When a magnetic field is present, the electron positions are updated using the more

accurate but time-consuming Boris algorithm [24].

PTetra can be used to study various processes related to plasma. For example, the

code can simulate the amount of charge collected by each part of a spacecraft. This

is particularly interesting since the spacecraft might collect more electrons than ions

in space, and be charged negatively with respect to the background plasma. This can

cause problems because the performance of some instruments, such as a flowmeter

can vary at different floating potentials. PTetra can be used to study such processes.

PTetra can also be used to simulate more realistic physical processes than a theoret-

ical model can account for, such as, the accurate dimensions of an instrument, the

presence of a ram flow, magnetic fields, photoelectric effects, etc. Instruments such

as plasma flowmeters cannot be described using an analytic formula, and inferences

made from their measurements must rely on lab calibration or simulation techniques.

Such an instrument, however, can be studied straightforwardly using PTetra as de-

scribed in Chapter 4.

2.2 Machine learning and neural network

Machine learning is the field of study that allows computers to learn from data with-

out being explicitly programmed. There are different types of machine learning tech-

niques: supervised, unsupervised, semi-supervised, and reinforcement learning. One
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type of supervised learning is classification, for example, creating a spam filter, where

emails are labeled as spam or not spam. Another type of supervised learning, mul-

tivariate regression, involves the prediction of a target numerical value. Unlike New-

ton’s first law, there are often many independent variables X corresponding to their

dependent variables Y in a given data set. Multivariate regression, which is a method

to measure the degree to which more than one independent variable and their corre-

sponding dependent variables are related, can be used to cast the relation between

the measured and the inferred parameters in a data set. The feedforward neural

network and RBF are special cases of multivariate regression techniques. Contrary

to supervised learning, in unsupervised learning, the data are not labeled. Common

unsupervised learning techniques include clustering and anomaly detection. In clus-

tering, similar instances are grouped into clusters. Clustering is excellent for customer

segmentation, recommender system, search engine, etc. Anomaly detection, on the

other hand, learns what “normal” data are, and then tries to detect abnormal in-

stances. For example, outliers located far from other instances in a distribution are

likely to be anomalies. Semi-supervised learning has labeled data and unlabeled data.

For example, Google Photos might recognize people in a few photos. Once a label is

created for a person, that person is labeled in all instances. Reinforcement learning

is different from all the above techniques in that it has a rewarding system and learns

from mistakes. This is similar to training a mouse to take the right turn to get a

piece of cheese, and otherwise receive an electric shock when taking the wrong turn.

One example is that the DeepMind’s AlphaGo program played the game of Go with

itself and trained a model to beat the world champion Ke Jie in May 2017. A good

reference for machine learning can be found in [25].

Feedforward neural network

Feedforward neural network is a commonly used supervised learning technique to

create multivariate regression models. It contains multiple layers; each consists of
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Figure 2.1: Schematic of a feedforward neural network.

various number of nodes. There must be input and output layers, and there can be

different numbers of hidden layers between the input and output layers. The input

layer contains the independent variable X̄ corresponding, for example, to measured

probe currents. The output layer contains the numerical value of the inferred value

Y , such as the plasma density. Depending on the complexity of the problem, different

numbers of hidden layers and nodes can be used in a neural network. The independent

variable X̄ is a tuple. The dependent variable Y can also be a tuple, but for simplicity,

Y is assumed to be a scalar. As shown in Fig. 2.1, each node j in a given layer i in

the network is assigned a value ui,j, and the node in the next layer i + 1 are “fed”

numerical values from the nodes in the previous layer according to

ui+1,k = f

(︄
ni∑︂
j=1

wi,j,kui,j + bi,k

)︄
, (2.9)

where wi,j,k are weight factors, bi,j are bias terms, and f is a nonlinear activation

function [26]. The network mimics how the human brain operates, thus is called

a neural network. The number of hidden layers and the number of nodes in the

hidden layers need to be adjusted to fit the specific problem. For example, for larger

scattered data with a very complicated structure, more layers and nodes are required.

Many activation functions are available to choose from depending on the purpose of

the model. For example, a commonly used activation function is the ReLU function

defined as f(x) = max(0, x), more examples of activation function can be found
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in [26]. To train a model, a set of data with known independent variable X̄, and

dependent variable Y need to be provided. Then, the data are fed into a computer

program, and the coefficients w and b are initialized with random numbers and then

optimized using, for example, the stochastic gradient descent method [25]. A trained

model contains optimized coefficients w and b. For a given independent variable X̄

in the input layer, the result from the output layer needs to be close to the known

dependent variable Y . In order to assess the performance of a model, a cost function

(also called loss function) needs to be defined.

Cost function

A cost function has the following properties: i) it is non negative, ii) it vanishes if

model inferences agree exactly with a given data set, and iii) it increases as inferences

deviate from actual data. For example, the root mean square error is defined as:

RMS =

⌜⃓⃓⎷ 1

Ndata

Ndata∑︂
i=1

(Ymodi − Ydatai)
2, (2.10)

where Ydata and Ymod represent respectively the known and inferred plasma parame-

ters, and Ndata is the total number of data points. Thus, the goal of training a model

is to minimize the cost function while varying the various coefficients. The choice of

the cost function depends on the parameter to be inferred. Relative errors are better

for parameters which never vanish, and vary over several orders of magnitudes, as for

example, the density. Absolute errors, on the other hand, are better for parameters

which do not vary as much, or which may be close to zero, as for example, the satel-

lite floating potential. The choice of the cost function also depends on the nature

of the parameter. For example, the mean squared error is a good choice when the

noise in the training data has a normal, or Gaussian distribution, while the maximum

absolute error provides the most conservative error estimates on inferences when the

distribution of measurement errors is unknown. Feedforward neural network models

in this thesis are created using Tensorflow from Google [27]. Applications of neural
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networks can be found in Chapter 4 and 5.

2.3 Radial Basis Function

The RBF models in this thesis are created using the CERBF program 1. The basis

of RBF regression is straightforward, the dependent variable Y is given by:

Y =
N∑︂
i=1

aiG
(︁
∥X̄ −Xi

¯ ∥
)︁
, (2.11)

where ai are interpolation coefficients, G is the interpolating function, X̄ are the

independent variables, and Xi
¯ are the centers. The Euclidean distance between n-

tuples P̄ and Q̄ is defined:

∥P̄ − Q̄∥ =

(︄
n∑︂

i=1

(pi − qi)
2

)︄1/2

. (2.12)

where pi and qi are respectively the i-th components of n-tuples P̄ and Q̄. The G

function has radial symmetry and only depends on the Euclidean distance; whence

the name “radial” in “Radial Basis Function”. Illustrations of the RBF regression

approach are given in Fig. 3.1 and 3.2, this section will focus on other aspects of RBF.

There are four important factors to consider when training an RBF model, they are

the cost function, the number of centers, the G function, and the distribution of

centers. The cost function has been discussed in the previous section.

Number of centers

In RBF, the number of centers determines the complexity of a model. Too complex a

model will result in overfitting, as illustrated in Fig 2.2. The full data set to construct

a model is split into two disjoint sets, the training set, and validation set. Once the

model is trained, it is applied to the validation set to calculate the validation error

without further optimization. There are certain limitations on the refinement of a

model on a training set, such that further improvement of model inference skill in

1The CERBF program can be found at: https://codeocean.com/capsule/3524673/tree
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Figure 2.2: Illustration of overfitting.

the training set should result in reduced model inference skill in the validation set.

A good model is one with the right level of complexity, which fits the training data

and validation data roughly equally well. For RBF, the complexity of the model

increases with the number of centers, and so does the computational cost. Thus, the

right number of centers needs to be determined carefully. In practice, the optimal

number of centers can be determined by gradually increasing the number until the

validation cost function reaches a minimum. A special case used to create models

for large scattered data is the Radial Basis Function partition of unity (RBF-PU)

method [28]. In this approach, essentially all entries in the training set are used as

centers, and the RBF interpolants are constructed in local sub-domains, which are

then combined to form the global interpolant. In this case, the training error is zero,

thus the validation error from the validation set is especially important as it gives a

measure of the inference skill of the model.

RBF G function

A G function must be selected a-priori to train an RBF model. For a specific problem,

many G functions are tested, and the one selected is the one which produces the lowest

cost function. The G function can be global as G(r) = r or local as G(r) = e−r2 . A

global G function generally vanishes at the centers where they are defined and it is
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significantly different from zero away from the center. In contrast, a local G function

is significantly different from zero only near the center. Different G functions have

different shapes in the parameter space and are used for different purposes. For

example, only local G functions are used in the RBF-PU method; otherwise, the

matrix involved is not sparse and is hard to solve. A sparse matrix means that most

of the matrix elements are zeros. In general, only a fraction of the nodes in the training

data set are used as centers, and there will be a training error and a validation error.

In this case, due to the smaller dimension of the matrix, it is more practical to use

global G functions. The optimal G function depends on the specific problem to solve.

Essentially, given a G function, training an RBF model is to find the right centers and

the interpolation coefficients that lead to the lowest cost function for the validation

set.

Distribution of centers

Center positions are generally selected initially from the training data set. If the

training data contains N nodes, and N centers are used to approximate the RBF

function, the most straightforward exhaustive approach to select N centers among N

nodes is to consider all combinations of N centers among the N possible nodes. The

total possible number of choices is given by:⎛⎝N

N

⎞⎠ =
N !

N !(N −N)!
. (2.13)

For every combination of centers, the interpolation coefficients ai must be solved

using:
N∑︂
i=1

aiG(∥X̄k − X̄ i∥) = Yk, (2.14)
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for k = 1, ..., N . This can be written in matrix form as:⎛⎜⎜⎜⎜⎜⎜⎝
G(∥X̄1 − X̄1∥) · · · G(∥X̄1 − X̄N∥)

G(∥X̄2 − X̄1∥) · · · G(∥X̄2 − X̄N∥)
...

. . .
...

G(∥X̄N − X̄1∥) · · · G(∥X̄N − X̄N∥)

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
a1

a2
...

aN

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
Y1

Y2
...

YN

⎞⎟⎟⎟⎟⎟⎟⎠ . (2.15)

The independent variables X̄ and the dependent variables Y are known from the

training data set, thus the interpolation coefficients ai can be determined using meth-

ods such as Gaussian elimination. With the coefficients and Eq. 2.11, we are ready

to solve for the dependent variable Ymod for each of the independent variable X̄ in

the training set. Then with the known values of dependent variables Ydata, the cost

function can be determined using, for example, Eq. 2.10. The combination of centers

corresponding to the lowest cost function and their interpolation coefficients will be

the outcome of the training. On the other hand, the optimal position of the cen-

ters may be close to, but not necessarily exactly at the nodes in the set itself. The

model can be further optimized by considering the “nugget effect” [29] as described

in Chapter 3.

CERBF approach

The problem with large training data set is that the number of possible combinations

can be prohibitively large. The CERBF program uses a new original algorithm that

is particularly efficient in determining centers. The strategy consists of successively

carrying out straightforward exhaustive searches on randomly selected small subsets

from the training set while calculating the cost function over the full training set.

In each step, the optimal centers found in the previous iteration are carried forward

to the next iteration, and the model is optimized by accounting for the “nugget

effect”. With a few hundreds of fast iterations, CERBF can often find a model with

a lower cost function than with the much more time-consuming exhaustive search.

The algorithms, applications, and user’s guide are described in detail in Chapter 3.
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The program and the implementation of the Message Passing Interface (MPI) in the

program are briefly discussed in Appendix A.
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Chapter 3

Inference of m-NLP data using
Radial Basis Function regression
with center-evolving algorithm

This chapter is based on a paper published in Computer Physics Communication

titled “Inference of m-NLP data using Radial Basis Function regression with center-

evolving algorithm” by Guangdong Liu, and Richard Marchand. The authors thank

A.Olowookere for testing the algorithm. This work was financially supported by the

China Scholarship Council (CSC), the Natural Sciences and Engineering Research

Council of Canada, and Compute Canada.

3.1 Introduction

Langmuir probes are useful instruments on spacecraft or in lab plasma experiments to

measure plasma parameters such as density, temperature, and spacecraft potentials.

A Langmuir probe consists of an electrically biased conductor immersed in a plasma

from which current is collected and measured. Probe characteristics; that is, collected

currents as a function of probe bias voltages, can then be used to infer plasma and

satellite parameters. The inference of these parameters is usually based on analytic

theories, which leads to analytic expressions for collected currents as a function of

probe voltages, and which can be implemented with modest computational resources.

A very common model used in this context is the Orbital Motion Limited (OML)
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theory developed nearly a century ago by Langmuir and co-workers in the 1920s [8].

However, a difficulty with analytic expressions derived from theory, is that they are

severely limited, owing to the many assumptions made, for these theories to lead

to analytically tractable solutions. For example, with cylindrical probes, the OML

theory assumes Debye lengths much larger than the probe radius, currents collected

per unit length identical to those collected by an infinitely long probe, and the theory

neglects the presence of any other nearby object. The use of such theories under

conditions in which all underlying assumptions are not well satisfied can lead to

uncontrolled uncertainties in inferred physical parameters. This predicament has

motivated several recent studies aimed at finding inference techniques to account for

conditions and physical processes unaccounted for in theoretical models. For example,

Chalaturnyk and Marchand [30] showed that RBF-trained models could accurately

reproduce plasma densities and temperatures from spherical probe characteristics

calculated in the OML approximation. Similarly, Guthrie, et al. [31] constructed,

and assessed the skill of RBF regression models from synthetic data, applied to fixed

bias multiple needle Langmuir probes (m-NLP). Their approach was then applied to

in situ data from the Visions-2 mission, with an excellent qualitative and quantitative

agreement between their model inferences, and reported values. Models have also been

developed and assessed, using synthetic data for fix bias spherical probes, to infer a

satellite potential [32], plasma density, and the ratio between the plasma density and

the square root of the temperature [32]. These previous studies made use of the RBF

regression technique with relatively small training data sets in which a straightforward

search of the optimal set of inference centers was practical. With larger data sets,

however, the time required to do a straightforward exhaustive search increases very

rapidly with the size of the training set, and the number of centers considered. In this

work, three-dimensional particle in cell simulations are used to compute the currents

collected by the m-NLP in order to build a solution library which is then used to

create multivariate regression models to infer plasma density. The size of the resulting
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solution library in this, and many similar problems, is such that an exhaustive search

would be too time consuming to be applicable in practice. The evolutive search

strategy described in this paper provides an efficient solution to this problem, by

significantly reducing the time needed to select near-optimal regression centers, while

allowing for the construction of models with inference accuracy comparable to those

obtained with straightforward exhaustive searches.

In complex systems where the relation between multiple independent variables and

dependent variables cannot be cast analytically with theory, a useful alternative is

to construct approximate predictive or inference models based on multivariate re-

gression. Several approaches have been proposed to achieve this objective, including

collocating analytic fits on selected data points or centers, kriging, radial basis func-

tions, or neural networks. The radial basis function considered here is particularly

convenient because of its relative simplicity and good accuracy. Kriging developed by

D. Krig in the 1950s was the first regression approach used to interpolate a dependent

variable (mineral contents) from scattered samples [33]. Kriging and RBF are nearly

the same; the main difference being that kriging requires the solution of a system

of linear equations of size N + d by N + d, where N is the number of centers, and

d is the dimension, or more precisely, the number of independent variables in each

entry X̄ in the data set. Conversely, with RBF, the linear matrix equation which

needs to be solved is only of size N by N . Thus, other than the additional d rows in

kriging needed to remove the “bias” in the inference model, the two methods are the

same. The radial basis function method as it is known today was developed in 1971

by Hardy [34], who introduced the multiquadric method for topological applications.

Since then, much work has been reported to extend and optimize RBF in speed and

accuracy [28, 35–43]. The major difficulty, when applying multivariate RBF to data in

which there is no analytic relation between multi-dimensional independent variables

X̄ and dependent variables Y , is that N centers have to be selected at, or close to

nodes {(X̄ i, Yi)} in a training set of size N . The straightforward, or exhaustive strat-
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egy, consisting of constructing models for all possible combinations of N -choose-N

centers in a training set, can be prohibitively time consuming when N is large. Other

strategies have been developed, such as k-clustering [38, 42], and Gaussian clustering

[40, 41]. While these center distribution strategies are significantly faster than the

straightforward exhaustive search, they have disadvantages of i) requiring many more

centers, and ii) not accounting for the “topography” of the data set in finding the best

distribution of a given number of centers. Excellent reviews of RBF have been given

in the literature, as in [44–47] where the reader can find more detailed descriptions.

In this paper, we introduce another algorithm, the Center-Evolving (CE) algorithm,

and identify its advantages with examples.

The basic concepts of RBF are reviewed in Sec. 3.2, where our new center evolving

approach is described. Example results are presented in Sec. 3.3, with quantitative

assessments of model accuracies. A guide for using the code is presented in Sec. 3.4,

and a summary of our findidngs and some concluding remarks are in Sec. 5.5.

3.2 Methodology

In this section, we describe the general RBF approach, in which multivariate regres-

sion is obtained from a linear superposition of functions of the L2 norm (Euclidean

distance) between an arbitrary point and reference points, or centers, in a multivariate

space of independent variables. This is followed by a description of a straightforward

exhaustive search for the best centers; that is, the set of N centers which minimizes a

selected cost function on a given training set. We then present a modified multi-step

search strategy based on an adaptation of the exhaustive search, using subsets of the

full training set.
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3.2.1 The RBF regression approach

Given a data set consisting of independent input n-tuples X̄ = (x1, ..., xn) with cor-

responding dependent output Y , RBF regression of Y on X̄ is written as

Y =
N∑︂
i=1

aiG
(︁
∥X̄ −Xi

¯ ∥
)︁
. (3.1)

In general, Y could also be a tuple, but for simplicity, and without loss of generality,

we limit our attention to scalar dependent variables. In Eq. 3.1, the X̄ i represent the

N centers, G is the interpolating function, and the ai are interpolation coefficients

which can be determined by requiring collocation at the centers, by solving the system

of linear equations
N∑︂
i=1

aiG(∥X̄k − X̄ i∥) = Yk (3.2)

for k = 1, ..., N . Improvements to this prescription will be discussed later, but

for now, we assume simple collocation as a first approximation. With this expres-

sion, RBF regression is seen to involve a linear superposition of a function G of

distances between centers Xi
¯ , and X̄, as illustrated schematically in Fig. 3.1 for a

two-dimensional space of independent variables.

Figure 3.1: Illustration of centers in a two-dimensional space of independent variables,
from which a dependent variable Y at a point X̄ is inferred.

To be specific, it is customary to define the “distance” between two n-tuples as
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Figure 3.2: Illustration of localized G functions in one dimension. Here the coefficients
ai are determined by requiring collocation at the centers (red circles).

their Euclidean distance, or the L2 norm of their difference; that is

∥X̄ −Xi
¯ ∥ =

(︄
n∑︂

j=1

(xj − xi,j)
2

)︄1/2

, (3.3)

where xj and xi,j are respectively the j-th components of n-tuples X̄ and Xj
¯ . The G

function has radial symmetry and only depends on the Euclidean distance; whence

the name “radial” in “Radial Basis Function”. The interpolating function G ap-

pearing in Eq. 3.2 can be chosen arbitrarily provided that the system of equations

be non-singular. Two types of interpolations can be used, consisting of “localized”

functions, which are significantly different from zero, only close to the centers, and

“global” functions, which generally vanish at the nodes where they are defined and

are non zero over the remaining range in X̄ parameter space. With localized G func-

tions, the calculation of Y at a given n-tuple X̄ is determined mostly from nearest

neighbors in the set of X̄ i centers. This is illustrated schematically in Fig. 3.2 for a

one-dimensional space of independent variables. With global functions, on the other

hand, Y is determined from a combination of all centers. With local G functions, fast
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Table 3.1: Example local and global G functions used in RBF regression. In each
case, c is an adjustable parameter which can be set to optimize accuracy.

G function Equation (r = ∥X̄ −Xi
¯ ∥) Type

Gaussian G(r) = e−cr2 local

Inverse quadratic G(r) = 1
1+(cr)2

local

Multiquadric G(r) =
√︁
1 + (cr)2 global

Polyharmonic spline G(r) = rk, k=1,3,5,... global

Polyharmonic spline G(r) = rk ln(r), k=2,4,6,... global

efficient algorithms exist to distribute large numbers of centers in which case, regres-

sions are effectively made from nearest neighboring centers. This in turn requires a

sufficiently large number of centers, and dense distribution of these centers, such that

there is overlap in the G functions between near neighbors. In this case, the exact

number and distribution of centers are less critical to the accuracy of the model, as

long as every region of interest in parameter space is “within range” of a few centers.

If, on the other hand, regression is made in a region far from any nearby center; that

is, where G(|X̄ − X̄nn|) is zero or very small, where X̄nn is a representative nearest

neighbor, then the accuracy of the interpolation would likely be compromised. For

models constructed with few centers, however, global interpolation functions are pre-

ferred, as every point in parameter space would be in the range of every center. In

this case, the choice of G and the exact distribution of the few centers are critical in

order to obtain good accuracy. This is considered in what follows, but for reference,

examples of G functions of both types are given in Table 3.1.

3.2.2 The cost function

The assessment of a model predictive or inference skill relies on a cost function (also

called loss function) with the following properties: i) it is non negative, ii) it vanishes

if model inferences agree exactly with given data in a given set, and iii) it increases
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as inferences deviate from actual data. Several possibilities exist for such functions,

including the root mean square error,

RMS =

⌜⃓⃓⎷ 1

Ndata

Ndata∑︂
i=1

(Ymod − Ydata)
2, (3.4)

the root mean square relative error

RMSr =

⌜⃓⃓⎷ 1

Ndata

Ndata∑︂
i=1

(Ymod − Ydata)
2

Y 2
mod

, (3.5)

the maximum absolute error

MAE = max {|Ymod − Ydata|} (3.6)

and the maximum absolute relative error

MRE = max

{︄⃓⃓⃓⃓
⃓Ymod − Ydata

Ymod

⃓⃓⃓⃓
⃓
}︄
, (3.7)

where Ydata and Ymod represent respectively known and inferred dependent variables,

and Ndata is the total number of data points. Many more cost functions can of course

be constructed, for different types of applications, provided that they satisfy the three

criteria stated above. The four cost functions defined in 3.4 to 3.7 are implemented

in CERBF, and can be selected conveniently from the code input file.

3.2.3 Exhaustive search RBF

In order to perform an exhaustive search on a training data set with N nodes, models

must be constructed for every possible combination of centers. In each case, the

system of Eq. 3.2 has to be solved for the interpolation coefficients ai, and the

cost function must be evaluated over the full training set. The optimal model is

then selected as the one with the best inference skill; that is, the one that yields

the smallest value of the cost function. For large training sets, the total number of

combinations ⎛⎝N

N

⎞⎠ =
N !

N !(N −N)!
, (3.8)
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can be prohibitively large, which motivated the development of the more efficient

technique presented below.

3.2.4 Center evolving algorithm

The Center Evolving (CE) algorithm presented here provides an efficient and accu-

rate alternative to the exhaustive search described in 3.2.3. The strategy consists of

successively carrying out exhaustive searches on randomly selected small subsets of

size Ñ , from the full N element training set, while calculating the cost function over

the entire training set. Finding an optimal set of centers on any given such subset will

take much less time than performing an exhaustive search on the full training set. A

model constructed from centers found from such a single subset would generally have

low inference skill. The reason is that a single random sample is unlikely to contain

the optimal set of centers, which would be found in an exhaustive search. However,

convergence to an optimal distribution of centers is dramatically improved by adopt-

ing an evolutive strategy whereby, optimal centers found in one subset, are kept in the

following one. To be specific, assuming that the optimal centers found with the first

randomly selected subset are {X1, ..., XN}, then these centers are included in the next

subset, or next iteration, in which only Ñ −N entries are actually selected randomly

from the full training set, excluding of course the optimal centers found thus far. In

this process, it is important to select additional nodes while excluding the centers

retained from the previous iteration, because if some of these centers were selected

again in an unconstrained random selection, the occurrence of two or more identical

nodes in the training subset would lead to a singular matrix in Eq. 3.2. An exhaustive

search is then carried out on the resulting subset involving all combinations of nodes,

including the optimal ones from the previous subset. This typically results in a new

set of optimal centers; with some previous centers remaining as optimal, and others

being replaced by new ones. With this strategy, the cost function calculated from one

subset to the next never increases, convergence is relatively fast, and the resulting
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model skills are found to be very close to those obtained with an exhaustive search

on the full training set.

The CE approach has been found to be both fast and to produce models with

good inference skills with several large training sets. For example, a CE search with a

batch size of 20 using 5 centers in a 200 entry training set typically requires 600 times

less computer time than an exhaustive search on the full training set, with a modest

(few $) gain of accuracy. A significant advantage of the CE algorithm in practice, is

that the computational cost can be controlled by selecting the size of the subset Ñ

and the number of iterations involved. With this gain in efficiency, it is also possible

to construct models with more centers, and thus more inference skills.

3.2.5 Parallel computing

An obvious advantage of using parallel processing is an increase in speed. The CERBF

is written so as to run on multiple processors in parallel using the Message Passing

Interface (MPI) [48]. In an exhaustive search, most of the computation time is spent

on going through all the possible combinations. The use of parallel processing is par-

ticularly efficient due to the fact that each processor considers a distinct subset of the

possible combinations so that this work is split between multiple parallel processors.

Communications with the main process only occur at the start and end of each CE

iteration, and it involves small data sets, consisting of the selected training subset Ñ ,

optimal centers, and cost functions.

3.2.6 The nugget effect

A further improvement in training accuracy is obtained by accounting for the “nugget

effect”, as it is referred to in geostatistics [29]. This is motivated by the fact that

the optimal position of the centers for a given training set may be close to, but not

necessarily exactly at nodes in the set itself. Thus at the end of each iteration in
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Figure 3.3: Schematic illustration of CERBF. In this particular example, the training
data set has 500 nodes, and the CE iteration batch size Ñ is 5. The RBF model uses
3 centers, and the workloads of 5 choose 3 are distributed between three processors,
where Eq. 3.2 are solved, and the cost functions are calculated over the 500 nodes.
Variations in the center points, when applying nugget corrections, are made with
gradient descent, so as to minimize the cost function.

the CE strategy, given a set of optimal centers found in a given processor, deviations

are considered in the vicinity of these centers and in the values of the corresponding

dependent variables {︁
X̄ i, Yi

}︁
→
{︁
X̄ i + δX̄ i, Yi + δYi

}︁
, (3.9)

and the cost function is further minimized relative to these deviations. In the code,

this optimization is made with straightforward gradient descent, which can lead to

an appreciable (several %) increase in inference accuracy.

3.2.7 CERBF schematic

In summary, the CE algorithm consists of the following steps:

1. Select a cost function and an interpolating function G.

2. Specify the number of centers N , the size of the subset Ñ in each CE training

iteration.
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3. Select Ñ elements randomly from the full training set.

4. Determine optimal centers among subsets of the Ñ randomly selected elements.

This is done while keeping optimal centers from one iteration to the next, as

described in 3.2.4 to 3.2.6.

5. Repeat step 3 and step 4 for a specified number of iterations.

A schematic illustration of CERBF can be found in Fig. 3.3. For RBF, the model

complexity is proportional to the number of RBF centers. Increasing the number

of centers will result in a better inference skill in the training data set, but beyond

a certain number, overfitting generally occurs. Thus the full data set is split into

two distinct sets: the training set and the validation set. Model construction is

done only on the training set by minimizing the cost function on that full set. The

validation error is calculated by applying the model to the validation set without

further optimization. The data will be overfitted if a further increase of RBF centers

increases the inference skill in the training set, while leading to an increase in the

cost function evaluated on the validation set.

3.3 Example results

The CERBF program is written in Fortran 90 with the Message Passing Interface

(MPI) [48]. The m-NLP synthetic data set is created using the particle in cell code

PTetra [19, 20]. The independent variables X̄ consist of currents collected by four

needle probes, each one being biased to a different voltage Vb relative to a satellite, at

various satellite potentials Vf , and for electron densities and temperatures in a range

relevant to ionospheric plasma. The probe bias voltages and the range of satellite po-

tentials are such that, probe potentials relative to the background plasma, V = Vf+Vb

are in the electron saturation regime. These parameters are summarized in Table 3.2.

The dependent variable Y for which an inference model is constructed is the electron

density. Training is done with the known densities assumed in the simulations, and
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inference model skills are assessed by comparing model inferences with known densi-

ties in our synthetic data set. Doing an exhaustive search as described in Sec. 3.2.3

on a training data size of 200 nodes with 5 centers would require 2.5× 109 combina-

tions. Using G(r) = r3, gfortran, and the Open MPI implementation of the message

passing interface, it takes approximately 9.5 hours to complete the calculation on six

hyperthreads on an AMD Ryzen 5 2400G processor. The resulting maximum relative

error of the model, when applied to the full training set is 15.7%. The correlation

plot in Fig. 3.4 shows the inferred densities as a function of actual densities used in

the simulations.

The same problem was solved, under the same conditions, but using the CE tech-

nique with subsets consisting of Ñ = 20 nodes, and 200 CE iterations. The calculation

completed in approximately 55 seconds; resulting in a maximum relative error of 13.1

%. With a training set of 200 nodes, the time required to train a model with CE

iterations is smaller than that required with an exhaustive search, by more than two

orders of magnitude. Interestingly, this gain in efficiency is also accompanied by a

slight gain in inference accuracy. The increase in accuracy may be surprising, owing

to the fact that not all possible combinations of centers are considered. The expla-

nation is that many more optimizations are made and compared to one another, in

which nugget corrections are applied, and we find empirically that the best models

found after applying this correction, are not necessarily the ones which would produce

the lowest cost function without the nugget correction.

With larger training sets, the gain in computing speed would be even more signif-

icant. More tests were made using a synthetic training data set consisting of 3000

nodes which would require 2.0 × 1015 combinations if an extensive search were per-

formed. Based on the calculation time of the extensive search on 200 nodes on six

hyperthreads, the estimated time to complete this calculation would be about nine

hundred years. Under the same conditions, with a batchsize of 20 using 5 centers,
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Figure 3.4: Correlation plot comparing CERBF training on 3000 nodes (16.5%),
Extensive search RBF (15.7%) and CERBF search (13.1%), both on 200 nodes. RBF
regression is used to infer plasma densities from collected currents in a synthetic data
set.

Table 3.2: Plasma conditions considered when constructing synthetic data.

Name Unit Range

Electron density ne m−3 2× 1010 − 1× 1012

Floating potential Vf V −1−−6

Bias potential Vb V 6 8 9 10

Electron temperature Te eV 0.07− 0.3
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Figure 3.5: Illustration of CERBF approximated Maunga Whau volcano elevation.
The RBF approximation uses 60 centers with G(r) = r. The color bar in the plot
refers to the absolute error between the RBF approximation and the measured data.
The training and validation RMS errors are both 1.2 meters.

200 CE iterations require 3.1× 106 combinations which finishes in 8 minutes, with a

maximum relative error of 16.5 % as shown in Fig. 3.4. This demonstrates that the

CERBF is a highly efficient tool to create accurate RBF models for large-size data.

Another application related to Earth’s topography is also considered. This example

has been studied by Cavoretto and co-workers as an interpolation problem using the

Radial basis function partition of unity (RBF-PU) method [28]. In this approach, all

data in the training set are used as centers, and the RBF interpolants are constructed

in local sub-domains, which are then combined to form the global interpolant. The

data set contains 5307 volcano elevation measurements from Maunga Whau (Mt.

Eden) in Auckland, New Zealand [49]. Cavoretto uses 5200 entries as the training

data set, and the rest of the 107 entries as the validation data set. The same data

are approximated using the CERBF approach with 5200 randomly selected entries in

the training set and the other 107 entries as the validation set. In this study, we first

normalized the elevation data by subtracting all elevations by the lowest elevation,
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thus the elevation will start from zero meter. Using G(r) = r with 30, 40, 50, and 60

centers, the training RMS errors are 1.8, 1.5, 1.2, and 1.2 meters respectively. The

RBF approximated volcano Maunga Whau elevation using 60 centers is shown in

Fig. 3.5, the model is trained in three hours using 12 cores on the Compute Canada

Cedar cluster with Intel E5-2650 V4 Broadwell 2.2 GHz CPU. In each case, validation

is done by applying the trained models to the validation set, which results in RMS

errors of 1.9, 1.6, 1.4 and 1.2 meters, respectively. The validation error reported by

Cavoretto is in the range of 0.7 to 1.1 [28], which is close to the validation error

from our method using 60 centers. Interestingly, although interpolation problems can

be particularly computational costly using global RBF interpolation functions for

large scattered data, our approach works relatively well with a global interpolation

function, as illustrated in this example. The advantage of using CERBF is, of course,

much fewer centers are required to interpret the data, e.g. 60 vs 5200 centers in this

example. With fewer centers, the computational cost of inferences will be lower, and

less storage will be required.

3.4 User’s guide for program CERBF

The CERBF software package consists of a Fortran program, a makefile, a readme file,

input and output files 1. In this section, we briefly describe these components and

provide user’s guide to program CERBF.

3.4.1 Input files

Two input files are required for training. The file ‘rbf.dat’ contains all the param-

eters needed to construct and apply a model, including the names of all other files

involved. This is the only file with a fixed name. All other files can be referred to

by name, with absolute or relative paths, in ‘rbf.dat’. Input variables used in the

code are all part of namelists, which allows the user to specify default values in the

1The CERBF program can be found at: https://codeocean.com/capsule/3524673/tree
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Table 3.3: Variables appearing in rbf.dat, used to control the execution of CERBF.

ncenter number of centers in training

batchsize size of subset Ñ in CERBF

nbatch maximum number of iterations in CERBF

xdim dimension of independent variable X

ydim dimension of dependent variable Y

costfcntype type of cost function

trainingset name of the training data file

validationset name of the validation data file

inferenceset name of the inference data file

ndescent maximum number of gradient descent iteration

lr learning rate in gradient descent

shownug used to show gradient descent diagnostics

depind specifies columns of Y to use in training

program, or to specify different possible values for a given variable, using multiple

lines; the last occurrence of a given variable being the one used in the program. Each

variable is briefly described in the readme file, but for reference, Table 3.3 gives a

summary of the variables, with their meaning.

In the training data file, the actual training data begins after ‘$Begin data’, fol-

lowed by ‘ndata=’ to specify the number of data points to be used. From left to right,

the data file should contain first the X̄ columns, then the Y columns. The choice of

the G function needs to be specified in ‘CERBF.f90’ under function ‘g’, and of course,

the program has to be compiled each time the source code is modified. The types

of cost functions can be specified in the ‘rbf.dat’ file. The learning rate ‘lr’ which

is related to the step size in gradient descent needs to be adjusted to fit the specific

problem. A small learning rate will slow convergence, too large a learning rate will

lead to failure in the minimization of the cost function.
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The program can also do validation and inference, by setting the validation and

inference file names following ‘validationset=’ and ‘inferenceset=’ respectively. If

these variables are set to ‘null’, then the program will not do validation or inference.

It is important to use the same G function, and number of centers when validating

and inferring, as used when training a model. The validation and inference input files

should have the same format as the training input file, except for the Y columns,

which are not required for the inference file. Training, validation, and inference can

be done in a single execution. The program can also train and validate, train and

infer, only validate, or only infer in a single execution, as specified in the input file

‘rbf.dat’. The dimensions of X̄ and Y need to be specified in ‘rbf.dat’ with ‘xdim=’

and ‘ydim=’. The dependent variable Y can be multi-dimensional in the training data,

and users can choose to train on all the columns of Y or select one or a few columns to

train. For example, if the user wants to train on the second and third components of

Y and ignore the first column of Y , then the user can set ‘ydim=2’, and ‘depind=2 3’.

Several other parameters appear in the ‘rbf.dat’ file where they are briefly described.

3.4.2 Output

The output of the program depends on the options selected by the user. When

training, the program will produce a ‘centers.out’ file containing the best model

found so far in the run. This file is required for validation or inference. The program

can be stopped gracefully by creating a file named ‘.quit’ in the folder where it

is running. Training can later be restarted from the ‘centers.out’ file if this file

exists in the current directory. The program produces different ‘training.out’ and

‘validation.out’ files depending on the dimension of Y . If Y has dimension d,

the first d columns in these files, contain the known values of Y from the training

or validation file respectively, followed by d columns of the inferred Y . The last d

columns contain the differences between the inferred and known values of Y . When
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the code is used in inference mode, the first ‘xdim’ columns in the output file contain

the data X̄ from which inferences are to be made, followed by d-tuples of the inferences

Y .

3.5 Summary and conclusion

A computer code CERBF is described which uses a new algorithm, the Center Evolv-

ing (CE) algorithm, to select near-optimal centers in RBF regression to make predic-

tive models to infer plasma conditions from m-NLP data. The CERBF is designed to

be used on large training data sets. It is much faster than a straightforward exhaustive

search RBF algorithm by sequentially training models on small subsets of the training

data, while carrying the best set of centers found in one subset, into the next, so as

to progressively improve inference skills from one iteration to the next. The main

advantage of CERBF compared to the straightforward exhaustive approach is that,

for practically the same accuracy, it converges significantly faster on large training

data sets. Also, the required computational resources scale more favorably with the

number of centers used in a model. In tests made with a training set consisting of

200 nodes, models with comparable inference skills can be constructed faster by more

than two orders of magnitude, using CERBF, compared to the exhaustive approach.

This shows that the proposed CERBF approach is a promising technique to efficiently

construct regression inference models for large data sets.
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Chapter 4

Kinetic simulation of segmented
plasma flow meter response in the
ionospheric plasma

This chapter is based on a paper published in the Journal of geophysical research:

space physics, entitled “Kinetic simulation of segmented plasma flow meter response

in the ionospheric plasma”, by Guangdong Liu, and Richard Marchand. This work

was supported by the China Scholarship Council (CSC) and the Natural Sciences and

Engineering Research Council of Canada. The kinetic simulations used in this study

were made on the Compute Canada computing infrastructure. Simulation data can

be accessed through https://zenodo.org/record/4434879#.X 4BAdhKhPZ [50].

4.1 Introduction

Plasma winds are a key manifestation of the dynamical processes at play in the iono-

sphere, including ionospheric coupling with the magnetosphere and with solid Earth.

This has motivated the use of various instruments mounted on satellites to measure

plasma flow velocities under different space plasma environments. In addition to af-

fecting ground infrastructures [51], events such as magnetic storms or substorms can

be responsible for satellite malfunction and, in extreme cases, total loss [52]. These

storms cause turbulence in the magnetosphere, which often result in strong currents

and winds. Thus monitoring ionospheric winds provides key information for a better
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Figure 4.1: Illustration of an ion drift meter with integrated retarding potential ana-
lyzer. The side view in panel (a) illustrates a cross section of the aperture, grids, and
collector plates. Panel (b) illustrates the four collectors at the base of the sensor.

understanding of our near-space environment, which in turn can lead to improved

mitigation measures in case of extreme events. Ionospheric winds can also provide

information on solid Earth activity such as earthquakes, volcanic eruptions, or high

yield underground explosions [53–61]. Two types of waves are being considered in

relation to earthquakes. Post seismic acoustic and gravity waves have been observed

with satellites in low Earth orbit, and their connection with solid Earth phenomena

is well understood from theory and computer simulations [53–55, 58]. Direct obser-

vations and statistical analyses have also been reported to support the occurrence

of electromagnetic wave signatures prior to large earthquakes [56, 57, 59–61]. While

not yet demonstrated, the possibility of observing ionospheric perturbations prior to

large earthquakes remains a topic of vital interest, especially in countries located in

seismically active parts of the planet (ibid).

Several designs of plasma flow meters have been used on satellites to measure iono-

spheric winds, including retarding potential analyzers, ion drift meters, “top hat”

analyzers, ion imagers, and segmented Langmuir probes. The first satellites equipped

with ion drift meters were deployed in the 1960s and 1970s [62–67]. Drift meters
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are also used in several recent missions [68–72]. While the names differ, the working

principles are similar. A simplified schematic of such a device is shown in Fig. 4.1.

In this configuration, ions enter the sensor from the top aperture, and are collected

by four current collectors at the base. The ram speed is measured with a retarding

potential analyzer from which ion mass compositions, densities, temperatures and

satellite potentials can also be determined [64, 70, 73, 74]. As shown in panel (a) of

the figure, the voltage applied to the top grid is swept so as to block ions with varying

energies from entering the sensor. As voltage is increased, abrupt drops are measured

in the collected currents [73]. The voltages at which these reductions occur, corre-

spond to different energy to charge ratios of incoming ions, in the satellite reference

frame. The magnitude and shape of these drops also provide information on ion tem-

peratures and relative densities. The second grid is biased to a fixed negative voltage

to prevent the escape of photoelectrons from the base collectors. When collectors are

exposed to UV radiation, simulations suggest that most photoelectrons are reflected

back to the collector from which they were emitted [71]. The angle of incidence α of

the plasma flow is determined from the relative currents collected by the segments.

This, combined with the ram speed measured with the retarding potential analyzer,

is used to determine the transverse flow velocity. The retarding potential analyz-

er/ion drift meter is robust, and it was used in many space missions. For example,

VEIS on the WIND spacecraft was used to study the foreshock subsonic particles

reflected from the bow shock [68]. This instrument can also be used to measure elec-

tron energies by reversing the analyzer electric field polarization. Similarly, IAP on

DEMETER was used to measure plasma flow velocities with particular attention to

the perturbed flow induced by waves caused by seismic activity [70]. The accuracy

of ram speed measurements, obtained with IAP on DEMETER, was estimated to be

approximately 10%, based on laboratory calibrations and computer simulations [70,

75]. Similar flow meters are also used on spacecraft, such as Dynamics Explorer B

[67], C/NOFS satellite [71], and Ionospheric Connections Explorer [72]. A similar
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Figure 4.2: DIDM on the CHAMP satellite uses a back-plane design of ion drift
meter. Ions are deflected 180° once they are in the detector dome using a -2000 volts
potential.

instrument has been developed based on the same basic principle, referred to as the

”backplane design”. In this configuration, ions travel to the base of the sensor and

are deflected by a strong electric field, to be collected on the backside of collector

segments, as illustrated in Fig. 4.2. This configuration was used in DIDM on the

CHAMP satellite to prevent direct UV radiation from entering the collectors, and

minimize perturbations from photoelectrons [69].

The “top-hat” analyzer shown in panel a of Fig. 4.3 is widely used to sample

charged particles over 360° in azimuthal [76–78]. Trajectories of incoming particles

are bent by a radial electric field between two hemispherical electrodes of different

radii. For a given potential difference between the two hemispheres, only particles in

a narrow range of energy to charge ratio can follow a trajectory leading to the base

collectors. The energy spectrum of the particles is then obtained by sweeping the

potential difference between the two analyzer hemispheres. The “top hat” analyzer

provides a pitch-angle range over the full 2-dimensional plane through the analyzer

aperture. Ion imagers are yet another type of flow meter in which, as illustrated

in panel b of Fig. 4.3. Ions enter through an aperture, and are dispersed by an

53



Figure 4.3: Illustration of a ‘top hat’ analyzer in panel (a) and ion imager in panel (b).
Both devices use electric field to deflect incoming ion trajectories, and can sample
ions over 360° azimuthal angles.

electric field between two concentric hemispherical shields, onto a detector array, as

determined by their energy to charge ratio [79–83]. Depending on the setup, incoming

particle velocities are measured over 180°, or the full 360° degrees in azimuthal angles.

For example, the F3C Cold Plasma Analyzer (CPA) instrument on Freja can sample

ions over a range of 360° in azimuthal angles around the satellite [79]. On Swarm, the

Electric Field Instrument (EFI) consists of two imagers, each with 180° wide aper-

tures, oriented perpendicularly to one another, thus providing a three-dimensional

sample of incoming ion distributions [83]. Other spacecraft are also equipped with

ion imagers, including ePOP [82], and Plante-B [80]. In principle, ion imagers can

accurately measure ion drift velocities and ion masses without the need for sweeping

voltage. In space, the Swarm ion imager performance vary due to several factors,

including satellite potentials, changing plasma conditions, and attitude control [83].

The accuracy is estimated to be around 200 m/s, which should increase to about 100

m/s as more experience is gained using the instrument in orbit (ibid).

Segmented Spherical Langmuir Probes have also been used to measure bulk plasma
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flow [84–86]. The surface of the probe is divided into several equipotential spheri-

cal caps or segments facing different directions, from which individual currents are

measured. The relative currents from these segments and the supporting sphere can

in principle be used to infer plasma density, temperature, ion masses and plasma

flow velocity [84, 85]. This instrument was used on satellites such as DEMETER

and Proba-2 [84–86]. It is also possible to infer plasma flow velocities indirectly from

measured electric fields and the relation for the E⃗× B⃗ drift. Boom-supported electric

field probes are used on numerous satellite and rocket experiments, including ICE on

DEMETER [87], Fields Instrument on FAST [88] and EFW on Cluster [89]. At lower

latitudes, it is also possible to measure the neural wind speed in the ram direction,

from the Doppler shift in atmospheric emission lines using an interferometer with

laser beams [90].

One important difference between flow meters and more familiar Langmuir probes

is that several theories have been developed to interpret measurements made with the

latter, while no theory exists for the former. As a result, the inference of plasma flow

velocities from flow meters must rely on laboratory calibration and computer simu-

lations. Thus the goals of this study are to i) characterize the response of a proposed

simple flow meter applicable to ionospheric wind, using computer simulations, ii)

construct inference models based on multivariate regression, and iii), assess their pre-

dictive skills for conditions representative of the lower ionosphere. In the remainder

of this paper, we present the geometry of a plasma flow meter, which should combine

simplicity, robustness, and accuracy. The performance of the proposed instrument is

assessed based on a combination of synthetic data constructed with computer simula-

tions, and multivariate regressions. The simulation techniques, the sensor geometry,

and the regression approaches are presented in Section 2. Simulation results and as-

sessments of inference skills are presented in Section 3. The final section summarizes

our findings and contains some concluding remarks.

55



4.2 Methodology

The segmented flow (SF) meter geometry considered is shown in Fig. 4.4. It is

sufficiently compact to be mounted on small satellites such as attitude stabilized

CubeSats. In the satellite reference frame, ions are incident from the ram direction,

with speeds approximately equal to the satellite orbital speed. Thus, the meter needs

to be mounted on the ram face of the satellite to allow ions to enter the aperture. In

the proposed design, there are a total of 19 collecting segments, from which individual

currents are measured. The top ring aperture is biased to −4 V with respect to the

spacecraft in order to repel electrons and attract ions into the cone. This negative

voltage at the top also serves to increase the radial dispersion of entering ions. All

other segments at the base are biased to +3 V in order to i) enhance dispersion of

the ion beam penetrating the sensor, and ii) retain photoelectrons that might be

emitted, should solar UV enter the cavity. Enhancing radial spread of the incident

ion beam at the base should make the distribution of collected currents more sensitive

to the ion mass distributions and hence, to the ion effective mass. The curved conical

faces of the sensor, both inside and outside, are assumed to be grounded to the

satellite bus, implying that they would also be at the satellite potential Vs with respect

to background plasma. The following paragraphs describe the approaches used to

characterize the response of the flow meter to diverse space environment conditions,

to construct models to infer physical parameters of interest from measurements, and

to assess their predictive skills.

4.2.1 Symmetry

One key feature of the device considered is symmetry. In order to characterize the

response of the multiple sensors to flows with components transverse to the cone axis,

we need to carry out many three-dimensional kinetic simulations assuming different

plasma parameters, consisting of densities, temperatures, ion compositions, flow ve-
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Figure 4.4: Illustration of the 3D geometry of the SF meter (left), and the 18 sectors
at the base (right). The conical shell has a height of 5 cm, the outer radius at the
base is 2.3 cm, and that at the top ring is 0.7 cm.

locities, and satellite potentials. These simulations are used to construct a solution

library consisting of collected currents by each of the 19 segments, with correspond-

ing space-plasma parameters. Without symmetry, simulations would be required for

transverse flows covering the full 360◦ around the sensor axis. With the six-fold rota-

tional symmetry, and the mirror symmetry in the 18 collecting segments at the base

of the sensor seen in Fig. 4.4, however, simulations are only needed in a much smaller

30◦ angular sector. For example, simulations can be carried out to calculate currents

collected by all segments, for flow velocities with transverse velocities in only the 30◦

sector 8. These currents can then be mirror imaged with respect to the horizontal

axis between sectors 7 and 8 (or 13 and 14), to extend results to transverse velocities

directed in sector 7. From there, the six-fold rotational symmetry can be used to

further extend our simulation results to transverse velocities in all sectors, covering

the full 360◦ of azimuthal angles; thus reducing the number of simulations by a factor

12 compared to what would be needed in the absence of symmetry.
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Figure 4.5: Scatter plot of plasma parameters obtained from the IRI model, corre-
sponding to different latitudes, longitudes, altitudes, and times, as listed in Table
4.1. The x and y axes, and the color bar refer respectively to the electron density
and temperature, and the ion effective mass. Numbered squares identify parameters
used in the kinetic simulations.
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4.2.2 Kinetic Simulations

The response of the sensor to different ionospheric wind conditions is simulated using

the three-dimensional PIC code PTetra [19, 20]. In this model, space is discretized

with unstructured adaptive tetrahedral meshes [21, 22], and Poisson’s equation is

solved at each time step, using Saad’s GMRES sparse matrix solver [91]. Electrons

and ions are treated kinetically, accounting for their physical masses, and particle

trajectories are calculated self-consistently using computed electric fields. The pa-

rameters assumed in the simulations have been selected so as to be representative

of ionospheric conditions encountered by satellites in low Earth orbit at mid, and

low latitudes. A sample of electron and ion temperatures, electron densities, and ion

mass distributions was obtained from the International Reference Ionosphere (IRI)

[23] model for different latitudes, longitudes, altitudes, and times. The result is shown

in Fig. 4.5, with points in the density-temperature scatter plot, and colors indicating

ion effective masses. The numbered squares in the figures identify the twenty sets of

plasma parameters (Te, Ti, ne, mi eff ) for which simulations were made. For each

of the selected set of plasma parameters, several simulations were made for different

satellite potentials, incoming plasma ram speeds, and transverse velocities distributed

in the 30◦ sector 7, for a total of 310 simulations. The detailed plasma conditions

and simulation results are given in [50]. When extended to the full 360◦ circle as

described above, this produces a solution library consisting of 2676 entries used to

train and assess our inference models.

For simplicity, and considering that in the conditions considered, O+ and H+

constituted 94% or more of all ion species, only these two ion species were considered

in the simulations. Earth magnetic field is not accounted for, owing to the fact that

typical ion gyroradii in the ionosphere are of order 1 m for H+, and 4 m for O+, which

are much larger than the ∼ 5 cm size of the sensor considered. Secondary electron
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Table 4.1: Range of ionospheric conditions considered with the IRI model, and cor-
responding ranges in space plasma parameters.

Environment and plasma conditions Parameter range

Years 1998 2001 2004 2009

Date Jan 4 Apr 4 Jul 4 Oct 4

Latitude −65◦ - +65◦ with increment of 26◦

Longitude 0◦ - −360◦ with increment of 30◦

Hours 0-24 with increment of 8 hours

Altitude 450-550 km

Ion temperature 0.07-0.12 eV

Electron temperature 0.09-0.25 eV

Effective ion mass 4-16 amu

Density 2× 1010 − 1× 1012m−3

Ram velocity 7000 -8000 m/s

Transverse speed 0-500 m/s

Angles 0-30°

Spacecraft potential -2-1 eV

emission is ignored in the calculations because of the low electron temperatures (below

0.5 eV) encountered in the regions of interest. Photoelectron emission is also not taken

into account, which is justified when the satellite is on the night side of its orbit or

when the meter aperture is not exposed to solar illumination.

The Debye length in the background plasma can range from 2 mm to 3 cm for the

plasma conditions considered. Due to the negative potential of the top ring, however,

electrons are strongly repelled, and the electron density in the vicinity of the top

aperture is much smaller than that of the background plasma. As a result, the region

near the circular aperture is practically devoid of electrons. This, combined with the

high speed of incoming ions in the satellite reference frame, leads to negligible Debye
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Figure 4.6: Example cross section of electron density around the top ring. This
corresponds to plasma condition 19 in Fig. 4.5, with ne, mi eff , Te, Ti being 1 ×
1012 m−3, 14 amu, 0.1 eV and 0.08 eV respectively, and a satellite potential of +1 V.

shielding in the immediate vicinity of the aperture, resulting in a potential across the

surface delimited by the ring being no less in absolute value, than approximately 35 %

of the the ring potential with respect the background plasma. This is illustrated with

a cross section of the electron density profile near the top ring computed with plasma

conditions 19 in Fig. 4.6, assuming a satellite potential of +1 V. In this case, the

Debye length in the background plasma is approximately 2 mm, and yet, electrons

are effectively repelled near the top ring, and shielding in the plane of the ring is

clearly negligible. Simulations indicate however, that if the satellite potential Vs is

larger than ∼ 1 V which could happen when the satellite is exposed to solar radiation

or carrying active experiments [92–94], the base sensors start collecting a noticeable

amount of electrons passing through the top aperture. This in turn would affect the

measurements. In the lower ionosphere at mid and low latitudes where photoelectron

and secondary electron emission are not significant, a spacecraft should be charged

negatively [95]. In the following, the proposed sensor response is assessed assuming

spacecraft potentials ranging from -2 to 1 V.
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4.2.3 Multivariate regression

Given a solution library, the next step is to construct models capable of inferring

plasma parameters from measurements. In the following, we describe two approaches

for constructing such models, which will be applied and assessed for their inference

skills in Sec. 4.3. Several approaches are possible, including empirical parametric fits

and multivariate regressions [96]. Here we use two regression approaches based on

i) Radial Basis Functions (RBF), and ii) Deep Learning Neural Networks. In either

case, two steps are involved in the construction of a model. The first step consists

of training a model on a subset of the solution library, the “training set”, while the

second step consists of applying the trained model to a distinct data set, the validation

set consisting of the remaining subset of the library. Considering that the models are

trained by optimizing their inference skill on a training set consisting of a subset

of the our solution library, and that in validation, it is applied to a different subset

without further optimization, it follows that predictive skills are generally better on

the training set than on the validation set. Model skills applied to the training set

can be improved by further refining the model, but improvements in training do not

necessarily correspond to improvements in validation inferences. Beyond a certain

level of refinement in training, “overfitting” occurs, and inference skill degrades for

the validation set. A good model is one with the right level of refinement so as to

provide the best inference skill when applied to the validation set. Let us now briefly

present the two regression methods used in our study.

Radial Basis function

Radial basis Function is one of the most basic regression techniques, and it is applied

in many fields, including image mapping, and data tracking [44]. Given a set of

independent vectors X⃗ and corresponding dependent vectors Y⃗ , a general expression
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for RBF regression is given by

Y⃗ =
N∑︂
i=1

aiG
(︂
∥X⃗ −Xi

⃗ ∥
)︂
, (4.1)

where Y⃗ is a vector of parameters to be inferred, X⃗ is a vector consisting of indepen-

dent, measured quantities, and (X⃗ i, Y⃗ i) are reference nodes or pivots in the space

of independent-dependent variables. G is a function of a real variable, ai are fitting

coefficients, and N is the number of pivots used in the regression. In RBF, X⃗ and Y⃗

can be vectors of different dimensions. In what follows, however, dependent variables

Y⃗ will always be scalars (vectors of dimension one), and X⃗ will be vectors of different

dimensions, depending on the physical parameter being inferred. In Eq. 4.1, the

argument of G is the L2 norm, or Euclidean distance between X⃗ and X⃗ i; whence the

name “radial” in RBF. The choice of G is arbitrary, provided that, for a given set of

pivots, the set of N interpolating functions in Eq. 4.1 be independent of one another.

When constructing a regression model with RBF, the function G, and the number and

distribution of pivots must be chosen so as to yield the best possible predictive skill

for a given problem. Two G functions have been found to give good predictive skill

for the inferred physical parameters considered. They are described with the physical

parameters in Sec. 4.3. The number and distribution of pivots have similarly been

selected so as to provide optimal accuracy when inferring dependent parameters in a

data set. Two types of cost functions have been considered, the maximum absolute

error (MAE):

ϵabs =Max | Ysim − Ymod |, (4.2)

and the maximum relative error (MRE):

ϵrel =Max

⃓⃓⃓⃓
Ysim − Ymod

Ymod

⃓⃓⃓⃓
, (4.3)

calculated over a given data set, where Ysim are known plasma parameters used in

the simulation such as density, and Ymod are the model-inferred parameters.
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In order to carry out this task and construct a model, the fitting coefficients ai in

Eq. 4.1 have to be determined. This is done first by requiring collocation of inferred

and known parameters at pivots; that is, by solving the set of equations

N∑︂
j=1

ajG(∥X⃗ i − X⃗j∥) = Y⃗ i,sim, i = 1, N. (4.4)

Given a training data set of N nodes, the selection of N pivots is made by construct-

ing models for all possible N choose N combinations of pivots among the N nodes,

and selecting the one which minimizes the cost function. When the best distribution

of pivots is found, the model can be further improved by relaxing collocation, by

allowing for small deviations from the Y⃗ i,sim and minimizing the cost functions with

respect to these deviations. Yet another improvement is to go over all N choose N

possible combinations of pivots in parallel on n processors, in such a way that each

processor goes through different combinations. In this case, each processor finds its

unique best combination of pivots. One obvious advantage of this is an increase in

speed. Another one is that relaxation, or accounting for the “nugget effect”, can be

applied to each of the distinct n best combinations, and selecting the combination

which, after relaxation, produces the smallest cost function. It is found that the best

combination then, is not necessarily the one that minimizes the cost function before

relaxation. With this strategy, and using several processors, it is possible to reduce

the cost function in a training set by several %, compared to a minimization made

without relaxation.

Given the size of the data, N choose N can be very large. One strategy is to

combine RBF with the Monte Carlo method to do a non-exhaustive search for the

model. In this approach, a small subset (e.g. 100 entries) is picked each time randomly

from the training data set to train a model, then the model is applied to the entire

training data set to calculate the cost function. The best model is selected after a

certain time and it is applied to the validation data set to determine the validation
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error.

Neural network

Neural networks have increasingly been proven useful in many applications, including

plasma physics and space physics [97, 98]. In this work, we use feedforward deep

learning networks to infer plasma parameters from currents collected from the 19

segments in the proposed flow meter. An illustration of a feedforward network is

shown in Fig. 4.7, with the input layer, hidden layers, and the output layer. In our

problem, each node in the input layer is assigned a current from one of the segments.

Node j in layer i is assigned a value ui,j, and each node of the next layer i+1 is “fed”

by all the nodes of the previous layer according to

ui+1,k = f

(︄
ni∑︂
j=1

wi,j,kui,j + bi,k

)︄
, (4.5)

where wi,j,k are weight factors, bi,j are bias terms, and f is a nonlinear activation

function. In this study, the bias terms are all set to zero. The w coefficients are

first generated using the Monte Carlo method, and then gradient descent is used to

further decrease the cost function over the training data. Training sets consisting of

500 data entries are used to train neural network models. As with RBF, many models

are trained before the final model is selected. The models are then applied to the

validation data sets to obtain the validation error.

4.2.4 Noise

Given a trained model, the skill and robustness of inference are tested against noise

in the validation sets. Noise in collected currents can be statistical in nature, or it

can be associated with physical processes such as waves and turbulence. The current

collected by a segment is given by the number of particles N collected in a given

sampling time τ , multiplied by their respective charges, and divided by τ ; that is,
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Figure 4.7: Schematic of a feedforward neural network.

assuming singly ionized ions for simplicity,

I =
Ne

τ
. (4.6)

Owing to the discrete nature of this process, the number N follows approximately

Poisson statistics. The standard deviation; that is, the noise level, in N is therefore

approximately the square root of N̄ , the average value of N : σN ≃
√
N̄ . Thus, it

follows that the standard deviation in the collected current is approximately

σI ≃
σNe

τ
≃
√︃
Ie

τ
. (4.7)

In simulations however, the number of simulation particles Ns accounted for, is gen-

erally smaller than the actual number of physical particles in a plasma. In order to

account for that, simulation particles carry a statistical weight w, corresponding to

the number of actual particles that they “represent”. Currents calculated in simula-

tions are therefore obtained by multiplying the charge of each collected particle by

its statistical weight as in

I =
wNse

τ
, (4.8)

and the resulting standard deviation in the current calculated in a simulation is

σI ≃
wσNe

τ
≃
√︃
wIe

τ
. (4.9)
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The standard deviation in the collected current can also be calculated directly from

our simulation results, by considering a case with zero transverse flow velocity. In this

case, by symmetry, all six inner segments should collect the same current, as should

the twelve outer segments. Thus, calculating the standard deviation in these currents

provides an estimate of the intrinsic statistical noise in the current collected by a

single segment. For example, in one of the simulations, using a sampling time of 1µs,

in which ions have a statistical weight w = 2, the average current per inner segment

is calculated to be I ≃ 2nA. In this case, the standard deviation of the current over

the six segments is found to be ≃ 29 pA, which is in good agreement with the 25 pA

estimated from Eq. 4.9.

In order to test the robustness of our models, additional noise is introduced in

our validation sets, in addition to the intrinsic statistical noise mentioned above.

Here again, this added noise is assumed to be proportional to the square root of the

collected current as per

Iσ = I0

(︄
1 + rσ

√︃
I0
1nA

)︄
, (4.10)

where Iσ is the current collected with added noise, I0 is the simulated collected cur-

rent from the solution library for a given segment, σ is a relative standard deviation,

and r is a zero-mean random number with Gaussian distribution and unit standard

deviation. For each value of σ, 100 sets of random noise have been used to calculate

the averages of the maximum errors and Root-Mean-Squared (RMS) errors reported

in Tables 4.3.

4.3 Results and discussion

We now proceed with the construction of models for selected plasma parameters.
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Figure 4.8: An example of cross section of the ion density in and out of the SF meter
(a), and collected current density profile at the base (b). The density is in units
of m−3, and current density in units of Am−2. This corresponds to condition 14 in
Fig. 4.5, with ne, mi eff , Te, Ti, satellite potential, ram and transverse plasma flow
speeds being 7 ×1010 m−3, 12 amu, 0.15 eV, 0.11 eV, 0 V, 7500 m/s and 500 m/s
respectively. Results from simulations made with different parameters shows similar
qualitative features.

4.3.1 Transverse flow velocity

The inference of transverse velocities relies on the symmetry and the currents collected

by the base 18 segments as described Sec. 4.2.1. This is made in two steps in which

i) the direction of the transverse flow velocity, and ii) its magnitude are determined.

Transverse flow direction - The vector approach

An obvious manifestation of a transverse flow velocity in incident plasma is an az-

imuthal asymmetry in the currents collected at the base of the sensor, as shown in

Fig. 4.8. Given the geometry of the sensor, the shift in the centroid of the collected

current must be in the direction of the transverse plasma flow velocity. This shift in

turn can be determined from the average of the unit vector pointing in the middle of

each sector, as shown in panel b of Fig. 4.8, weighted with the current that it collects.

In practice, two averages are made, for the inner sectors as

U⃗1 =
6∑︂

i=1

Iiuî, (4.11)
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Table 4.2: Examples of transverse wind angles obtained from U⃗ in the vector ap-
proach. Each run number corresponding to a set of plasma conditions mentioned in
section 4.2.2. The satellite potential in both cases is zero. “Inner”, “Outer”, and
“Simulation” refer respectively to the inner ring vector, the outer ring vector and the
wind direction used in the simulation.

Plasma condition# Wind speed (m/s) Inner Outer Simulation

1 125 18.8° 17.6° 10°

1 250 12.2° 13.0° 10°

1 375 12.4° 12.2° 10°

1 500 10.5° 11.9° 10°

2 125 28.4° 30.8° 20°

2 250 23.7° 23.6° 20°

2 375 23.3° 23.0° 20°

2 500 21.0° 22.8° 20°

and a similar expression is used for U⃗2, calculated with the 12 outer sectors. The

directions of the two vectors give indications of directions of the wind, as shown in

Table 4.2. These vectors are then combined linearly as:

U⃗ = (1− α)Û1 + αÛ2, (4.12)

where the parameter α is selected so as to minimize the absolute error in the inferred

transverse velocity over a given training data set. α ≃ 0.94 is found to be optimal in

all cases considered, and it is the value used in the inference models considered below.

Transverse flow speed and velocity

Given a direction of the flow from Eq. 4.12, the transverse velocity can be obtained

from the transverse speed. The magnitudes of U⃗1 and U⃗2 have a strong dependence

on the density of the plasma. In practice, it is found that if U⃗1 is normalized by the

sum of inner base currents, and U⃗2 by the sum of total base currents, the dependence
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Figure 4.9: Correlation plot of the transverse wind speeds inferred for the validation
set, vs. actual speeds used in the simulations. For reference, the dotted line corre-
sponds to a perfect correlation. In this case, RBF is used with 5 pivots, leading to a
maximum absolute error (MAE) of 40 m/s, and a RMS error of 15 m/s.

on the density is greatly reduced, and more accurate values of the speed can be

inferred. We then use the normalized magnitudes of U⃗1 and U⃗2 as the two components

of independent vectors X⃗ in RBF to infer transverse flow speed. For example, a

correlation plot of inferred speeds as a function of the actual speed from the solution

library is shown in Fig. 4.9. In this case, the model is constructed with a training set of

1338 randomly selected nodes from the solution library, using five pivots as explained

in Sec. 4.2.3, and it is applied to a validation set consisting of the 1338 remaining

nodes. The regression function used here is G(x) = 0.5x1.6× log(x2) for x > 0 and the

cost function is the maximum absolute error over the set considered. The figure also

shows the value of the cost function (40 m/s) and the RMS error (15 m/s) computed

on the validation set. Figure 4.10 shows predicted transverse velocities and actual

transverse flow velocities without (a) and with (b) 2% (σ = 0.02) added statistical

noise in the validation set using Eq. 4.10. Here the model uses the same training
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Table 4.3: Errors in inferred angles, transverse speeds, velocities, and densities cal-
culated without, and with noise added to currents in the validation set.

Parameter: Angle (°) Speed (m/s) Velocity (m/s) Density (%)

Method: Vector RBF Vector+RBF RBF

Skill metric: RMS RMS RMS RMSrE

σ = 0 3.2 15 20 11

σ = 1% 3.6 16 20 12

σ = 2% 4.2 17 21 12

Skill metric: MAE MAE MAE MRE

σ = 0 10.7 40 45 23

σ = 1% 15 52 58 32

σ = 2% 20 70 75 49

and validation sets as for Fig. 4.9. When the model is applied to the validation set,

the maximum absolute error, and root-mean-squared error are 45 m/s and 20 m/s

respectively, when no noise is added. These errors increase respectively to 75 m/s,

and 21 m/s when 2% relative noise is added to the validation set, which corresponds

to approximately 80% of the simulation statistical noise estimated from Eq. 4.9.

Results from neural network, not shown here, are comparable within 30%, with RBF

prediction being slightly more accurate. More inference skill metrics are listed in

Table 4.3, for different levels of added noise. As expected, our model predictive skill

decreases as noise is added, and the maximum absolute error is found to increase by

a factor two for a level of added noise of approximately 2%.

4.3.2 Density Prediction

While our primary objective is to infer ionospheric plasma flow velocities, it is in-

teresting to explore the possibility for the proposed instrument to be used to infer

other physical quantities. This is motivated by the fact that the currents collected

by the many segments in the meter, and their relative values, are sensitive to sev-
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Figure 4.10: Actual and inferred transverse velocities without (a) and with (b) 2%
added noise in the validation data set. The color scale shows the absolute errors in
the model velocity predictions. Inferred velocities were obtained with RBF regression,
using 5 pivots.

eral satellite plasma environment parameters, including ion densities and masses, ion

temperatures, ram, and transverse velocities, and satellite potentials. Models were

constructed for the plasma density using both RBF and neural network regression,

and both are found to yield inferences with comparable skills. Here, however, con-

sidering the nearly two orders of magnitude range over which densities vary in our

solution library and the fact that the density is a positive definite quantity, the cost

function chosen in the construction of the models consists of the maximum relative

error (in absolute value). This is preferred to the absolute error because, with the

latter, models can be constructed with excellent skills for the larger densities, but

poor ones for lower densities. Among the several G functions tested, the best one for

predicting density was g(x) = x5. Here, 5 pivots were used as a good balance between

training and validation inference skills. 500 entries were used to train models using

neural networks, with a four-layer network with 19, 15, 7, and 1 nodes. Figure 4.11

shows correlation plots of inferred density, as a function of actual densities obtained

with neural network (a) and RBF (b) regression, for the validation set without the

addition of statistical noise. Both regression techniques yield comparable predictive
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Figure 4.11: Predicted densities vs. densities used in simulations obtained by mini-
mizing the maximum relative error. The neural network prediction with 500 points is
shown on the left (relative error 27%) and the RBF predicted density using 5 pivots
is shown on the right (relative error 23%). The dotted line corresponds to a perfect
correlation between predictions and actual densities.

skills, with maximum relative errors of 27% and 23%, and root-mean-square relative

errors of 7.4% and 11% respectively for the neural network and RBF. As for the

transverse flow velocity, the models’ robustness to statistical noise was assessed by

adding random noise to the currents collected by each segment, as per Eq. 4.10. The

impact on predictive skills is given in Table 4.3, which again shows a degradation of

skill with an increase in the level of noise.

4.4 Summary and conclusion

Results are presented for a particle sensor, which could be mounted on satellites, to

infer in situ transverse plasma flow velocities. The device consists of several elec-

trically biased segments at the base of a conical enclosure, and a circular ring on

the top aperture, from which ion currents are measured. Three-dimensional kinetic

particle in cell (PIC) simulations are made to construct a solution library and data

sets, for plasma environment conditions of relevance to satellites in low Earth orbit.

The symmetry of the device enables the construction of data sets for transverse ve-

locities directed in the full 360◦ in the plane perpendicular to the ram direction of

plasma flow velocities, from simulations made in only a 30◦ sector. Owing to the
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large computational resources needed to carry out kinetic simulations, symmetry is

key in reducing the required number of simulations. Training and validation data

sets, constructed with our solution library, are used to construct regression models

capable of inferring transverse velocities and plasma densities. Two approaches are

assessed for constructing such models, consisting of radial basis function, and neu-

ral network regressions. The two approaches are found to have comparable skills

for inferring both transverse velocities, and plasma densities. With the configuration

considered, it was not possible to make an accurate inference of the plasma flow speed

in the ram direction. This is because the ion current collected by the base sensors

is approximately proportional to the product of the density and ram speed, and the

variation in ram speed is small compare to the orbital speed. Better inference of

the ram speed should nonetheless be achievable by using a separate, or integrated

retarding potential analyzer as illustrated in Fig. 4.1.

The level of statistical noise in the collected currents, associated with the discrete

nature of kinetic simulations, explains in part the relatively small discrepancies be-

tween our model predictions and actual values in the data sets. Considering that

simulations are made with significantly fewer particles than there would be in an

actual plasma, the statistical uncertainties in our simulated currents are larger than

those that would occur in space under similar conditions. The tolerance of our models

to statistical noise is assessed by adding varying levels of normally distributed noise

to the currents in our validation sets, in addition to the numerical simulation noise

mentioned above. The skill of both RBF and neural network regressions decreases as

noise is added, and it is estimated that an additional 2% relative noise leads only to

approximately doubling in the uncertainty of model inferences in both cases.

Several approximations were made in the simulations used to construct our training

and validation sets. In particular, the presence of a satellite bus was not taken into
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account, which is justified if the flow meter is mounted on the ram face of a satellite,

and the fact that satellites in low Earth orbit have supersonic ram velocities. The

geomagnetic field was also neglected, which is justified by the fact that typical ion

thermal ion gyro-radii is a factor 10 or more, larger than the size of the sensor. The

neglect of solar illumination and photoelectron emission is valid when the satellite

is on the night side of its orbit or when no solar radiation enters the sensor. When

the satellite is sunlit, however, it would be possible for the negatively biased ring at

the sensor aperture, to emit photoelectrons which, owing to the negative bias, would

be repelled, and appear as collected positive current. Solar UVs could also enter the

aperture and reach directly, or indirectly through multiple reflections, the positively

biased segments. This in turn would result in photoelectrons being emitted inside the

flow meter which, owing to the positive bias of the segments at the base, would likely

be attracted back to the segments, albeit, not necessarily at the exact position where

they were emitted. This, and the exposition of the negative ring at the aperture, would

likely affect measured currents, and require corrections in the models presented above

to infer plasma parameters. These effects should be included in models constructed

to support missions, in which specific spacecraft geometry, orbital parameters, and

expected range of plasma environment parameters would be taken into account. Such

an analysis is of course well beyond the scope of this preliminary study, as it would

require accounting for a broader range of parameters and environmental conditions,

and would require significantly more simulations. Considering the costs, efforts, and

years of preparation preceding a space mission, such an investment, enabling better

data acquisition, should nonetheless be well justified.
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Chapter 5

m-NLP inference models using
simulation and regression
techniques

This chapter is based on a paper submitted to the Journal of geophysical research:

space physics, entitled “m-NLP inference models using simulation and regression tech-

niques”, by Guangdong Liu, Sigvald Marholm, Anders J. Eklund, Lasse Clausen and

Richard Marchand. This work was supported by the China Scholarship Council, the

Natural Sciences and Engineering Research Council of Canada, the Research Council

of Norway (Grant Agreement No. 275655 and 325074), and the European Research

Council (ERC) under the European Union’s Horizon 2020 research and innovation

program (Grant Agreement No. 866357, POLAR-4DSpace). The kinetic simulations

used in this study were made on the Compute Canada computing infrastructure.

S.M. also acknowledges Dag Mortensen, Øyvind Jensen, and the Institute for Energy

Technology for permission to participate in this research.

5.1 Introduction

Langmuir probes are widely used to characterize space plasma and laboratory plasma.

A variety of Langmuir probe geometries are being used, such as spherical [99], cylin-

drical [6], and planar probes [100–102]. Probes can be operated in sweep mode [85],

harmonic mode [103], or fixed biased mode [3], for different types of missions and mea-
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surements. Despite operational differences, all Langmuir probes consist of conductors

exposed to plasma to collect current as a function of bias voltage. A common approach

to infer plasma parameters from Langmuir probes is to sweep the bias voltage and

produce a current-voltage characteristic, which can be analyzed using theories such as

the Orbital Motion-Limited (OML) [8] theory, the Allen-Boyd-Reynolds (ABR) the-

ory [104–106], and the Bernstein-Rabinowitz-Laframboise (BRL) theory [107, 108]

to obtain plasma parameters such as density, temperature, and satellite floating po-

tential. The temporal and, on a satellite, the spatial resolution of Langmuir probe

measurements are determined by the sweep time, which varies based on the mission’s

scientific need and available resources. Considering the orbital speed to be around

7500 m/s for a satellite in low Earth orbit (LEO), the spatial resolution of sweep

bias Langmuir probe can vary from tens of meters, to kilometers, depending on the

sweep frequency. In order to study the formation of density irregularities that scale

from meters to tens of kilometers at high and low latitudes, a sampling frequency of

near 1 kHz is required [3, 4]. A solution, proposed by Jacobsen is to use multiple

fixed biased needle probes (m-NLPs) to sample plasma simultaneously at different

bias potentials in the electron saturation region [3]. This approach would eliminate

the need for sweeping the bias voltage, and greatly increase the sampling rate of the

instrument.

The first inference models for m-NLPs relied on the OML approximation, from

which the current Ie collected by a needle probe in the electron saturation region is

written as:

Ie = −neeA
2√
π

√︃
kTe
2πme

(︃
1 +

e(Vf + Vb)

kTe

)︃β

, (5.1)

where ne is the electron density, A is the probe surface area, e is the elementary

charge, k is Boltzmann’s constant, Te is the electron temperature, Vf is the satellite

floating potential, Vb is the bias potential of the probe with respect to the satellite,

and β is a parameter related to probe geometry, density, and temperature [4, 15].

Several assumptions were made in the derivation of this inference equation; such as
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the probe length must be much larger than the Debye length, and the plasma is

non-drifting. If these assumptions are valid, then β = 0.5, and as first suggested by

Jacobsen, a set of m-NLPs can be used to infer the electron density independently of

the temperature [3]. For a satellite in near-Earth orbit at altitudes ranging from 550

km to 650 km, we can expect a Debye length of around 2-50 mm, and an orbital speed

of around 7500 m/s. A common length for m-NLP instrument used on small satellites

is ∼ 25 mm [2, 6, 109], which is often comparable to, and sometimes smaller than

the Debye length. In lower Earth orbit, ion thermal speeds are usually less than the

orbital speed, while electron thermal speeds are usually higher than the orbital speed.

Thus, the orbital speed is expected to mainly affect ion saturation region currents

for Langmuir probes. However, electrons can only penetrate the ion rarefied wake

region behind the probe as much as ambipolar diffusion permits [10]. As a result,

electron saturation currents are also influenced by an orbital speed. One consequence

is that the β = 0.5 assumption does not hold in Eq. 5.1, and a better approximation

for the current is obtained with β values between 0.5 and 1. For example, in a hot

filament-generated plasma experiment, Sudit and Woods showed that β can reach

0.75 for a ratio between the probe length and the Debye length in the range of 1 to 3.

For larger Debye lengths, they also observed an expansion of the probe sheath from

a cylindrical shape into a spherical shape [11]. Ergun and co-workers showed that

with a ram speed of 4300 m/s in their simulations, the current collected by a 40.8 cm

needle probe is better approximated with Eq. 5.1 using a β value of 0.67 instead of

0.55 calculated in a stationary plasma [16]. In the ICI-2 sounding rocket experiment,

β calculated from three 25 mm m-NLPs varied between 0.3 to 0.7 at altitudes ranging

from 150 to 300 km [4]. Simulation results by Marholm et al. showed that even a

50 mm probe at rest can be characterized by a β ∼ 0.8 [14], in disagreement with

the OML theory. In practice, needle probes are mounted on electrically isolated

and equipotential guards in order to attenuate end effects on the side to which it is

attached. The distribution of the current collected per unit length is nonetheless not

78



uniform along the probe, as more current is collected near the end opposite to the

guard. A study by Marholm & Marchand showed that for a cylindrical probe length

that is 10 times the Debye length, β is approximately 0.72. For a probe length that

is 30 times the Debye length, β is approximately 0.62, and with a guard, this number

is reduced to 0.58 [15]. Although this number approaches 0.5, 30 times the Debye

length is a stringent requirement for OML to be valid, and it is hardly ever fulfilled in

practice. Experimentally, Hoskinson and Hershkowitz showed that even with a probe

length 50 times the Debye length, β is approximately 0.6, and the density inference

based on an ideal β = 0.5 is 25 % too high [12]. Barjatya estimated that even a

10% error in β (to 0.55) can result in a 30 % or more relative error in the calculated

density based on the β = 0.5 assumption [13]. In what follows, we find that densities

estimated using Eq. 5.1 assuming β = 0.5 are about three times larger than the

known values used as input in our simulations, as illustrated in section 5.3.1. This is

consistent with findings in [13, 31], considering β calculated in our simulation is in

the range of 0.75 to 1. Another approach proposed to account for the fact that β is

generally different from 0.5, consists of determining the ne, Vb, Te and β, as adjustable

parameters in nonlinear fits of measured currents as a function of voltages. This lead

to remarkable agreement with density measured using a radio frequency impedance

probe on the international space station [10, 110, 111]. This method was originally

applied to a probe operated in sweep voltage mode, but it can be straightforwardly

adapted to fixed bias m-NLP measurements [4, 10, 13].

In the following, we assess different techniques to infer plasma densities, and satel-

lite potentials from fixed bias needle probe measurements based on synthetic data

obtained from kinetic simulations. We also present a new method to interpret m-NLP

measurements based on multivariate regression. Our kinetic simulation approach and

the construction of a synthetic data set are presented in Sec. 5.2. In Sec. 5.3, re-

gression models are trained using synthetic data sets, and they are assessed using

distinct validation sets. In Sec. 5.4, the same models are applied to NorSat-1 data,
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Figure 5.1: Scatter plot of plasma parameters obtained from the IRI model, corre-
sponding to different latitudes, longitudes, altitudes, and times, as listed in Table
5.1. The x and y axes, and the color bar refer respectively, to the electron density,
electron temperature, and the ion effective mass. Numbered squares identify the set
of parameters used in the kinetic simulations.

to infer densities and satellite potentials from in situ measured currents. Section 5.5

summarizes our findings and presents some concluding remarks.

5.2 Methodology

In this section, we briefly describe our kinetic simulation approach, and how it is used

to construct synthetic data sets used to train and validate inference models, using

two regression techniques.

5.2.1 Kinetic simulations

The space plasma parameters considered in our simulations are selected so as to be

representative of conditions expected for a satellite in low Earth orbit at altitudes
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ranging between 550 and 650 km. This is done by sampling ionospheric plasma

parameters using the International Reference Ionosphere (IRI) [23] model in a broad

range of latitudes, longitudes, altitudes, and times as shown in Fig. 5.1. The ranges

considered for these parameters are summarized in Tab. 5.1. Forty-five sets of plasma

parameters approximately evenly distributed in this parameter space are selected

as input in simulations, as shown in numbered squares in Fig. 5.1. The three-

dimensional PIC code PTetra [19, 20] is used to simulate probe currents in this

study. In the simulations, space is discretized using unstructured adaptive tetrahedral

meshes [21, 22]. Poisson’s equation is solved at each time step using Saad’s GMRES

sparse matrix solver [91] in order to calculate the electric field in the system. Then,

electron and ion trajectories are calculated kinetically using their physical charges

and masses self consistently. The mesh for the m-NLP and the simulation domain

illustrated in Fig. 5.2, is generated with GMSH [22]. The needle probe used in the

simulation has a length of 25 mm and a diameter of 0.51 mm, as those on the NorSat-

1. The needle probe is attached to a 15 mm long and 2.2 mm diameter guard which

is biased to the same voltage as the probe. The outer boundary of the simulation

domain is closer to the probe on the ram side, and farther on the wake side, as shown

in Fig. 5.2. The simulations are made using two different domain sizes depending on

the Debye length of the plasma. For plasma density below 2×1010 m−3 corresponding

to a Debye length of 1.9-7.2 cm, a lager domain is used. For plasma density above

2× 1010 m−3, corresponding to a Debye length of 0.2-2.2 cm, a smaller domain with

finer resolution is used. The simulation size, the resolution, the number of tetrahedra,

and the corresponding Debye length are summarized in Tab. 5.2. There is overlap

between the two simulation domains for simulations with Debye lengths around 2 cm.

No obvious difference was found in the simulated currents, indicating that simulation

results from both domains are consistent in the transition range. Simulation results

from both domains are included when training the regression models. All simulations

are run initially with 100 million ions and electrons, but these numbers vary through
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Figure 5.2: Illustration of a m-NLP geometry (left), and the simulation domain
(right). The needle probe has a length of 25 mm and radius of 0.255 mm, with
a guard of 15 mm in length and 1.1 mm in radius. The ram flow is from the top of
the simulation domain and is assumed to be 7500 m/s.

a simulation, due to particles being collected, leaving, or entering the domain. In

the simulations, the probe is segmented into five segments of equal length, making it

possible to estimate a rough distribution of the current along its length. The current

used to build regression models is a sum of the currents of the five different segments.

The orbital speed of the satellite is assumed to be fixed at 7500 m/s in the simulations,

with a direction perpendicular to the probe. For the voltages considered, probes are

expected to collect mainly electron currents. For simplicity, only two types of ions

are considered in the simulation, O+ and H+ ions, and no magnetic field is accounted

for, which is justified by the fact that the Larmor radius of the electron considered is

much larger than the radius of the probe.

5.2.2 Synthetic solution library

In order to assess the inference skill of a regression model, a cost function is defined

with the following properties: i) it is positive definite, ii) it vanishes if model inferences

agree exactly with known data in a data set, and iii) it increases as inferences deviate

from actual data. The cost functions used in this work are: the root mean square

error,

RMS =

⌜⃓⃓⎷ 1

Ndata

Ndata∑︂
i=1

(Ymodi − Ydatai)
2, (5.2)
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Table 5.1: Spatial and temporal parameters used to sample ionospheric plasma con-
ditions in IRI, and the corresponding ranges in space plasma parameters.

Environment and plasma conditions Parameter range

Years 1998 2001 2004 2009

Dates Jan 4 Apr 4 Jul 4 Oct 4

Hours 0-24 with increment of 8 hours

Latitude −90◦ - +90◦ with increment of 5◦

Longitude 0◦ - −360◦ with increment of 30◦

Altitude 550-650 km with increment of 50 km

Ion temperature 0.07-0.16 eV

Electron temperature 0.09-0.25 eV

Effective ion mass 2-16 amu

Density 2× 109 − 1× 1012m−3

Table 5.2: Parameters used in the two simulation domains are listed. The first two
columns give the distances between the probe to the outer boundary on the ram side
(Dram), and the wake side (Dwake) respectively, followed by the simulation resolutions
at the probe, guard, and the outer boundary. The number of tetrahedra used in the
simulations is in the order of millions. The corresponding range in Debye lengths is
also listed.

Dram Dwake Probe
resolu-
tion

Guard
resolu-
tion

Boundary
resolu-
tion

TetrahedraDebye
length

3.5 cm 7 cm 51 µm 220 µm 2 mm 2.5 M 0.2-2.2 cm

30 cm 40 cm 51 µm 220 µm 1 cm 1.7 M 1.9-7.2 cm
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Figure 5.3: Comparison between calculated currents from PIC simulations, and fitted
values using Eq. 5.6, assuming a density of 2× 1010 m−3, an effective mass of 8 amu,
an electron and ion temperatures of 0.15 and 0.12 eV respectively, corresponding to
point 16 in Fig. 5.1. The fitting errors in the figure are calculated over all 45 sets of
plasma conditions using Eq. 5.3 and 5.5.

the root mean square relative error

RMSr =

⌜⃓⃓⎷ 1

Ndata

Ndata∑︂
i=1

(Ymodi − Ydatai)
2

Y 2
modi

, (5.3)

the maximum absolute error

MAE = max {|Ymod − Ydata|} , (5.4)

and the maximum relative error

MRE = max

{︃⃓⃓⃓⃓
Ymod − Ydata

Ymod

⃓⃓⃓⃓}︃
, (5.5)

where Ydata and Ymod represent respectively known and inferred plasma parameters,

and Ndata is the total number of data points.

For each set of plasma conditions corresponding to a square in Fig. 5.1, 5 simu-

lations are made assuming 5 probe voltages with respect to background plasma, and
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the simulated currents vs probe voltage are fitted analytically with:

I = a

(︃
b+

eV

kTe

)︃c

, (5.6)

where a, b, and c are adjustable fitting parameters. The MRE calculated for all 45

fits is 1.4%, and the RMSr is 0.7%, which shows excellent agreement with simulated

collected currents. A comparison between fitted and computed currents is shown in

Fig. 5.3. The NorSat-1 m-NLP probes fixed biases Vb are +10, +9, +8, and +6 V,

and the probe voltage with respect to background plasma is given by the sum of the

spacecraft floating potential plus the probe bias V = Vf + Vb. In simulations, probe

currents are calculated for voltages with respect to background plasma in the range

between 0 to 9 volts are considered as shown in Fig. 5.3. Considering the probe bias

voltages Vb given above, probe currents can be determined, corresponding to arbitrary

floating potentials between -1 V and -6 V. A synthetic solution library is created for

randomly distributed spacecraft floating potentials in the range between -1 and -6 V

with corresponding currents obtained by interpolation using Eq. 5.6 with the fitting

parameters computed for each of the 45 cases considered. The result is a synthetic

solution library consisting of four currents collected by the four needle probes at the

four different bias voltages, for 160 randomly distributed spacecraft potentials in the

range between -1 V to -6 V for each of the 45 sets of plasma parameters. In each

entry of the data set, these four currents are followed by the electron density, the

spacecraft potential the electron and ion temperatures, and the ion effective mass as

listed in Tab. 5.3. The resulting solution library consisting of 45×160 = 7200 entries

is then used to construct a training set with 3600 randomly selected nodes or entries,

and a validation set with the remaining 3600 nodes. The cost functions reported in

what follows, used to assess the accuracy of inferences, are all calculated from the

validation data set unless stated otherwise.
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Table 5.3: Example entries of the synthetic data set, with currents I1, I2, I3, and I4
calculated using Eq. 5.6, and Vb set to 10, 9, 8, and 6 V, respectively. The floating
potential Vf is selected randomly in the range of -1 to -6 V, and the probe voltages
with respect to background plasma are given by V= Vb+Vf . The coefficients, a, b
and c are obtained from a nonlinear fit of the simulated currents using Eq. 5.6. The
first and second entries correspond respectively to points 16 and 21 in Fig. 5.1.

I1(nA) I2(nA) I3(nA) I4(nA) Vf (V ) ne(m
−3) Te(eV) Ti(eV) meff(amu)

233 208 183 129 -2.50 2× 1010 0.15 0.12 8

596 533 467 323 -2.93 5× 1010 0.07 0.07 4

5.2.3 Multivariate regression

The next step is to construct a multivariate regression model that maps the currents

to the corresponding plasma conditions in the solution library. In a complex system

where the relation between independent variables and dependent variables cannot

readily be cast analytically, multivariate regressions based on machine learning tech-

niques are powerful alternatives to construct approximate inference models. In this

approach, the model must be capable of capturing the complex relationship between

dependent and independent variables. Once the model is trained using the training

set, it can then be used to make inferences for cases not included in the training data

set. In this work, two multivariate regression approaches are used to infer plasma

parameters: the Radial Basis Function and Feedforward Neural Networks. The mod-

els are trained by optimizing their cost function on the training data set, and then

applied to the validation data set to calculate the validation cost function without

further optimization. The use of a validation set is to avoid “overfitting” because

there are certain limitations on the refinement of a model on a training set, such

that further improvement of model inference skill in the training set will worsen the

model inference skill in the validation set. A good model is one with the right level

of training so as to provide the best inference skill in the validation set.
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Radial basis function

Radial basis function (RBF) multivariate regression is a simple and robust tool used in

many previous studies to infer space plasma parameters using a variety of instruments

with promising results [30–32, 112]. A general expression for RBF regression for a set

of independent n-tuples X̄ and corresponding dependent variable Y is given by:

Y =
N∑︂
i=1

aiG
(︁
∥X̄ −Xi

¯ ∥
)︁
. (5.7)

In general, the dependent variable Y can also be a tuple, but for simplicity, and

without loss of generality, we limit our attention to scalar dependent variables. In

Eq. 5.7, the X̄ i represents the N centers, G is the interpolating function, and the ai

are fitting collocation coefficients which can be determined by requiring collocation

at the centers; that is, by solving the system of linear equations

N∑︂
i=1

aiG(∥X̄k − X̄ i∥) = Yk (5.8)

for k = 1, ..., N . Here, the dependent variable Y corresponds to the physical

parameter to be inferred, and the independent variable X̄ is a 4-tuple corresponding

to the currents or the normalized currents from the m-NLPs depending on which

physical parameters are being inferred. There are different ways to distribute the

centers in RBF regression. One straightforward approach is to select centers from the

training data set, and evaluate the cost function over the entire training data set for

all possible combinations of centers, then select the model which yields the optimal

cost function. For this approach, the number of combinations required for N data

points and N centers is given by⎛⎝N

N

⎞⎠ =
N !

N !(N −N)!
. (5.9)

This, of course, can be prohibitively large and time-consuming for a large training

data set or using a large number of centers. An alternative strategy is to successively
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Figure 5.4: Schematic of a feedforward neural network.

train models with randomly selected small subsets of the entire training data set using

the straightforward approach, while calculating the cost function on the full train-

ing set, and then carrying the optimal centers from one iteration to the next. This

“center-evolving strategy” is very efficient in finding near-optimal centers for large

training data sets and has proven to be as accurate as the straightforward extensive

approach. The RBF models here follow this procedure. Different G functions and

cost functions are tested, and only the models that yield optimal results are reported

in this paper.

Feedforward neural network

The second multivariate regression approach is a Feedforward neural network as il-

lustrated in Fig. 5.4. This consists of an input layer, hidden layers, and an output

layer. Each node j in a given layer i in the network is assigned a value ui,j, and the

node in the next layer i + 1 are “fed” from numerical values from the nodes in the

previous layer according to

ui+1,k = f

(︄
ni∑︂
j=1

wi,j,kui,j + bi,k

)︄
, (5.10)

where wi,j,k are weight factors, bi,j are bias terms, and f is a nonlinear activation

function [26]. In this work, the input layer neurons contain the four-needle probe

currents or normalized currents depending on the physical parameter to be inferred,
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whereas the output layer contains one physical parameter. The number of hidden

layers and the number of neurons in the hidden layers are adjusted to fit the specific

problem, and attain good inference skills. The Feedforward neural network is built

using TensorFlow [27] with Adam optimizer [113], and using the ReLU activation

function defined as f(x) = max(0, x). The input variables are normalized using the

preprocessing.normalization TensorFlow built-in function which normalizes the

data to have a zero mean and unit variance. The structure of the network will be

described later when presenting model inferences.

5.3 Assessment with synthetic data

In this section, we assess our models using synthetic data, which allows us to check the

accuracy, and quantify uncertainties in our inferences. A consistency check strategy

is also introduced to further assess the applicability of our models.

5.3.1 Density inference

The density can be inferred using Eq. 5.1 which can be rewritten as

ne

T
β− 1

2
e

=

√︃
π2me

2A2e3

⎛⎝I 1
β

1 − I
1
β

2

V1 − V2

⎞⎠β

. (5.11)

In this equation, subscripts 1 and 2 indicate different probes. A special case of this

equation was first proposed by Jacobsen, assuming an infinitely long probe, for which

β = 0.5, resulting in

ne =

√︃
π2me

2A2e3

√︄
I21 − I22
V1 − V2

, (5.12)

which gives an expression for the electron density, independently of the temperature

[3]. With currents from more than two probes, the density can be calculated from the

slope of the current squared as a function of the bias voltage from a linear least-square

fit of all probes [3]. This will be referred as the “Jacobsen linear fit” (JLF) approach.
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Figure 5.5: Correlation plot for the density inferences made with different techniques
applied to our synthetic validation set. The Pearson correlation coefficient R is cal-
culated using the inferred densities and the density used in the simulation. Black line
represent idealized perfect correlation line.

On the other hand, the β = 0.5 assumption requires that the needle probe be very

long compared to the Debye length, which is in general not satisfied for NorSat-1

satellite. As a consequence, when this method is applied to the solution library, the

inferred density is typically three times larger than the actual density as shown with

red boxes in Fig 5.5. Despite this offset, the high Pearson correlation coefficient R

shows that inferences made with this method can be significantly improved with a

simple affine transformation. The best results are obtained by applying an affine

transformation to the log of the JLF inferred density as in:

ln(n′
e) = a ln(ne) + b. (5.13)

In this equation, the density ne is first obtained using the JLF method, then an affine

transformation is used to calculate the inferred density n′
e. The affine transformation

coefficients a and b are obtained from a least-squares fit of the log of these densities,

to those in the training data set. The fitting coefficients in this case, a = 1.13261 and
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b = −4.82735, are then used to perform an affine transformation on the validation

data set, leading to a significant improvement in RMSr from 74% to 19%, and in

MRE from 83% to 66% compared to densities inferred from the JLF approach, as

shown in Fig 5.5. RBF regression can also be used to correct JLF density. This is

done by using RBF to approximate the discrepancy between the densities used in the

simulations and the ones inferred with JLF. This correction is then used to improve

the accuracy of the inferred density obtained with JLF method. Using the four cur-

rents as input variable X̄, by minimizing the MRE, using G(x) = |x|, and 5 centers,

the RBF corrected JLF density yields an RMSr of 17 % and a MRE of 79%. The cost

functions of the two methods are comparable, but an obvious advantage of using an

affine transformation is its simplicity.

Barjatya’s nonlinear least square fit method is also assessed using our synthetic

data set. The original method was applied to sweep mode measurements, to obtain

the electron temperature and the satellite potential from currents in the ion satura-

tion region and electron retardation region currents, before fitting the density and β

from the electron saturation region [10]. This is however not possible with fixed bias

probe measurements considered here. On NorSat-1, four currents are measured simul-

taneously, by four probes at different fixed bias voltages, all in the electron saturation

region. A similar approach can nonetheless be applied in our case, using a nonlinear

fit to the currents, with the density, the electron temperature, the satellite potential,

and β, as fitting parameters. As shown by Barjatya and Merritt [13], however, it

is difficult to infer the temperature using this approach, owing to the weak depen-

dence of collected currents on the electron temperature (see Eq. 5.11). A solution,

proposed in [4, 13], then consists of estimating the electron temperature from other

measurements, or from the IRI model, and perform the fit for the remaining three

parameters. This simplification is justified by the fact that, following this procedure,

a 50% error in the temperature, still produces acceptable results for the other param-
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eters [13]. Thus in this study, we assume a fixed electron temperature (∼ 2000 K),

which is in the middle of the temperature range considered in the simulations, and

fit 4-tuples of currents using potentials, densities, and β values as fitting parameters.

This will be referred as the “Barjatya nonlinear fit” (BNLF) approach. The Python

3 differential.evolution package is used to do the nonlinear fit with an evolution

strategy of ‘best2exp’, with a tolerance of tol=0.001. In the fits, the upper and lower

bounds for the density, the potential and the β value are 1 × 109 to 1 × 1012 m−3,

-6 to -1 V, and 0.5 to 1, respectively. The potential lower bound of -6 V is needed

to ensure that the values under exponent in Eq. 5.1 are positive. We obtain 3600

fits for each of the 3600 entries of four currents in our validation data set. The fit

minimizes RMSr as the cost function, and the overall RMSr calculated using Eq. 3.5

for the 3600× 4 currents is 0.02 %, and only 0.26% of the points have relative errors

larger than 1%. The resulting density inferences have an RMSr of 27 % and a MRE

of 61 %, which is better than the densities inferred from the JLF approach, but less

accurate than the affine-transformed JLF density. The β values calculated are in the

range of 0.75 to 1. The inferred potential using this method is discussed in the next

section together with other methods. With only four fitting points, the fit can fail

into local minimums instead of the global minimum, thus, the tolerance of the fit

must be small. As a result, the nonlinear fits tend to be somewhat time-consuming.

with each fit requiring approximately 1 second using an AMD 5800x processor. In

comparison, linear fits of the currents square, followed by an affine transformation

of the log of the inferred density can be done using fixed formulas, and thus are

considerably faster than a nonlinear fit. Regression methods such as RBF or neural

network are also numerically very efficient, considering they involve simple arithmetic

expressions with pre-calculated coefficients.

Direct RBF regression can be applied to infer density using the four currents as

input variables. When constructing an RBF model with G(x) = |x|, minimizing

MRE, and using 6 centers, the RMSr and MRE calculated on the validation data set
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Figure 5.6: Correlation plot obtained for satellite potential inferred with RBF and
OML techniques.

are 17% and 35%, respectively. Using a neural network with 4 nodes in the input

layer, 14 nodes and 12 nodes in two hidden layers, and 1 node in the output layer,

results in a 14% RMSr and 43% MRE for the inferred densities. This is calculated

using TensorFlow with ADAM optimizer with a learning rate of 0.005 and an RMSr

as a cost function. The input layer is normalized to have a zero mean and unit

variance, while the output layer is normalized by dividing the largest density. The

densities calculated using the synthetic solution library, as well as the cost function are

shown in Fig. 5.5. Compared to the other density models considered, straightforward

RBF yields the smallest MRE, thus it is the preferred model to infer density in this

work. However, the affine-transformed JLF method enables density inferences with

accuracy comparable to those of more complex approaches. This simple and practical

technique should be of interest in routine data analysis.

5.3.2 Potential inference

The floating potential of the spacecraft can also be inferred using the OML equation,

by rewriting equation 5.1 as:

Vf ≈ Vf +
kTe
e

=
V2I

1
β

1 − V1I
1
β

2

I
1
β

2 − I
1
β

1

=
V3I

1
β

2 − V2I
1
β

3

I
1
β

3 − I
1
β

2

. (5.14)
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In this equation, the subscripts 1,2, and 3 refer to different probes, thus there must

be at least three probes in order to solve for β. The bias voltages of the probes and

their corresponding collected currents are known from measurements, thus β can be

solved using a standard root finder. Given β, equation 5.14 then provides a value

for Vf + kTe

e
. In this expression, kTe

e
is the electron temperature in electron-volt,

which in the lower ionosphere at mid latitudes, is of order 0.3 eV or less. Thus,

considering that kTe

e
is generally much smaller than satellite potentials relative to the

background plasma, any of the two terms in the right side of Eq. 5.14 provides a first

approximation of Vf [31]. This will be referred to as the “corrected OML” approach.

This equation works well when it is applied to the synthetic solution library with a

MAE of 0.3 V calculated using currents collected with probe biases of 10, 9, and 8

volts probes. The error of 0.3 V is likely due to the maximum electron temperature

of 0.3 eV considered in the simulations. The β values calculated in the synthetic

solution library is in the range of 0.75 to 1. It is also possible to build a model

to infer floating potentials directly using RBF regression. In this case, currents are

normalized by dividing every current by their sum, in order to remove the strong

density dependence on the currents. Using G(x) = |x|, and 5 centers, and minimizing

MAE, the calculated MAE on the validation data set is 0.4 V. The inferred satellite

potential from the BNLF approach has an RMS of 0.07 V, and a MAE of 0.18 V,

which proves this method to be the most accurate compared to the other methods

considered. A correlation plot for potentials inferred using the RBF, corrected OML,

and BNLF approaches is shown in Fig. 5.6. All methods show good agreement with

values from the synthetic solution library.

5.3.3 Consistency check

In order to further assess the applicability of our inference approaches, we perform the

following consistency check. First, RBF modelsM1(ne) andM1(Vf )) are constructed

to infer the density and satellite potential using 4-tuple currents from our synthetic
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Figure 5.7: Correlation plot of inferred +10 V probe current against +10 V probe
current from the synthetic data set is presented. The calculated +10 probe currents
in purple curve is calculated using the validation data set, while the green curve is
calculated using inferred densities and floating potentials from RBF regression.

data set. A second model (M2) is constructed to infer collected currents from densi-

ties and floating potentials in our synthetic data set. Since we are not able to infer

temperatures from the currents, the temperature is not included in M2. Consistency

is then assessed in two steps, by i) using currents from synthetic data and models

M1(ne) andM1(Vf ) to infer densities and floating potentials, and ii) applying models

M2 to these inferred values, to infer back collected currents. RBF density and float-

ing potential inferences are used in M1(ne), and M1(Vf ) as described in sec. 5.3.1

and 5.3.2. RBF is also used in M2 with G(x) =
√
1 + x2.5, and minimizing RMSr

with 5 centers. With perfect inference models, the results for these back-inferred cur-

rents, should agree exactly with the starting currents from synthetic data. Variances

between back-inferred and simulated currents in the synthetic data are presented as

indicative of the level of confidence in our regression techniques. The correlation plot

in Fig. 5.7, shows back-inferred currents (green) calculated for a probe with 10 V bias

against known currents from synthetic data. For comparison, the figure also shows

the correlation between directly inferred currents (purple) when model M2 is applied

to densities and floating potentials in the synthetic data set. Both back-inferred and

directly inferred currents are in excellent agreement with known currents from syn-
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thetic data, with comparable metric skills of ≃ 15% and ≃ 48% for the RMSr and the

MRE, respectively. Considering that errors are compounded between the first and

second models for the back-inferred currents, the nearly identical metric skills in Fig.

5.7 is seen as confirmation of the validity of our regression models.

5.4 Application to NorSat-1 data

In this section, we apply our density and potential inference models constructed with

synthetic data, to in situ measurements made with the m-NLP on the NorSat-1

satellite. The NorSat-1 currents were obtained from a University of Oslo data portal

[6]. The epoch considered corresponds to one and a half orbit of the satellite starting

at approximately 10:00 UTC on January 4, 2020. We start with a comparison of

simulated and measured currents to verify that our simulated currents are in the

same range as those of measured in situ currents. Inferences made with RBF, neural

network, BNLF , corrected OML, and the two corrected JLF approaches constructed

in 5.3.1, are also presented.

5.4.1 Measured in-situ, and simulated currents

The relevance of the space plasma parameter range considered in the simulations, to

NorSat-1, is assessed in Fig. 5.8, by plotting currents collected by the +9 V probe

against that collected by the +10 V, from both synthetic data, and in situ measure-

ments. The close overlap, and the fact that the range of in situ measurements is

within the range of simulated currents, indicates that the physical parameters se-

lected in the simulations, are indeed representative to conditions encountered along

the NorSat-1 orbit.

The current measurement resolution for the NorSat-1 m-NLP probes is approxi-

mately 1 nA [6]. The noise level from the environment, however, is estimated to be

of order 10 nA. In what follows, darker colors are used to represent inferences made
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using currents above 10 nA, and lighter colors are used to represent inferences using

currents between 1 to 10 nA. This is done by filtering out all data that contain a

current that is below 10 nA or 1 nA in any of the four probes. A word of caution

is in order, however, for inferences made from these lower currents, as a conservative

estimate of the threshold for sufficient signal-to-noise ratios, is approximately 10 nA.

This lower bound current is supported by a consistency check made with models 1

and 2 described in Sec. 5.3.3, and presented below in Sec. 5.4.3.

Figure 5.8: Correlation plot between currents collected by the +9 V and the +10 V
probes for both NorSat-1, and synthetic data.

5.4.2 Density and satellite potential inference

Our models, trained with synthetic data as described in Sec. 5.3, are now applied

to infer plasma densities and satellite potentials from in situ measured currents, for

the time period considered. The results obtained with the different models presented

in Sec. 5.3 are shown in Fig. 5.9 for the inferred densities, satellite potentials, and

measured currents collected by the four probes. The position of the satellite relative

to the Earth and the Sun given by the solar zenith angle, is also plotted in the figure.

For example, a small solar zenith angle means that the satellite is near the equator

on the dayside.
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Figure 5.9: Illustrations of NorSat-1 collected currents considered in this study in
panel a, inferred densities in panel b, inferred potentials in panel c, and the NorSat-
1 current near 0 A in panel d. The solar zenith angle is also plotted against the
secondary axis. Curves in darker colors are from model inferences using data above 10
nA, whereas those in lighter colors show inferences using data with currents between
1 nA and 10 nA.
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Fitting the in-situ data with the BNLF method using the four measured currents

is challenging. The +8 V probe currents are often slightly lower than expected for a

downward concavity of I as a function of Vb, and tend to produce an upward concavity

with β larger than 1. In this case, fitting the 4-tuples of currents using Eq. 5.1, for

the density, the floating potential and β, with a specified electron temperature is not

practical. Thus we used a fixed β value of 0.85, and fit only density and potential to

the 4-tuples of currents using Eq. 5.1. This choice for the value of β is justified by

the fact that it produces the best inferences when applied to synthetic data, with an

RMS error of 0.39 V for the floating potential, and an RMSr error of 27 % for the

density. Based on comparisons made with our synthetic data sets, the use of a fixed

β value results in a small loss in the inference accuracy for the satellite potential,

but the accuracy of the inferred density is the same as when β is included as a third

fitting parameter. Using the fixed values of 0.172 eV for the electron temperature,

and 0.85 for β, the RMSr error in the fits of the measured in situ currents, is 9%. The

resulting inferred densities and satellite potentials are shown in Fig. 5.9. For reasons

mentioned above, it is clear that no satellite potential below the fitting lower bound of

−6 V can appear in the plot. On a practical note, an advantage of computing BNLF

inferences with fixed temperature and β value, is that the nonlinear fit is made for

only two fitting parameters (ne and Vf ), which results in faster convergence rates,

compared to fits made with 4 or 3 adjustable parameters. In our calculations, for

example, the convergence rate is 8 times faster with two, compared to three fitting

parameters.

The densities shown in Fig. 5.9 panel b are obtained using the five density in-

ference methods mentioned in Sec. 5.3.1. At 10:45, the neural network density, the

RBF corrected JLF density, the RBF density, and the BNLF density (β = 0.85)

overlap nicely, while the affine transformed JLF density is smaller than other inferred

densities, particularly near the density maxima. The density inferences nonetheless

qualitatively agree with each other. Using the +10, +9, and +8 NorSat-1 probe cur-
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rents and Eq. 5.14, the inferred satellite floating potential is about -8 V for most

of the data range considered in this study as shown in Fig. 5.9 panel c. This is in

stark contradiction with observations in Fig. 5.9 panel d, which shows that the +6

V biased probe collects net positive electrons during most of the period considered.

Also, there are periods between 10:15 to 10:30, and after 11:45 when the + 6V probe

collects ion current(negative), indicating drops in the satellite potential below -6V.

The poor performance of Eq. 5.14 to infer the satellite potential here, results from

the fact that Eq. 5.14 yields erratic values of β ranging from 0.3 to 1.2. Attempts

have also been made to approximate the satellite potential with Eq. 5.14 using a fixed

value of 0.58 and 0.78 for β, also resulting in satellite potentials in the −8 V range,

and no improvement was found. This failure to produce acceptable values of the

satellite potential clearly shows that this generalized OML approximation in Eq.5.14

does not provide a sufficiently accurate approximation for the currents collected by

the NorSat-1 probes.

The RBF inferred floating potential shown in Fig. 9, is within -4 and -6 V, which

is consistent with the observation that the +6 V probe collects electrons during most

of the time period considered. Interestingly, the inferred satellite potential using cur-

rents between 1 and 10 nA (light color) is seen to join smoothly with the darker color

inferences, and to decrease below -6 V around 10:25, which is consistent with the

observation that during that time the +6 V probe no longer collects electron current.

The floating potentials inferred from the BNLF model are systematically lower than

those from RBF, and they also fit within the acceptable range for the satellite po-

tentials. The two potentials have otherwise a very similar time dependences. The

+6 V probe collects zero net current near 10:25 in panel d. The BNLF potential is

bounded by the fitting lower limit of -6 V at these ranges, as opposed to RBF with

which inferences are made without imposing an upper or lower bound. The currents

collected by the probes are determined mostly by the density and the satellite po-
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tential, and to a lesser extent, by the electron temperature. In Fig. 5.9, the density

and floating potential are seen to peak at around 10:45 and 11:00 respectively. The

currents from the +8, +9, and +10 V probes (green, orange, and blue) in panel a

peak at around 10:45, coinciding with the peak in the plasma density at this time.

Then, as time goes forward to 11:00, the currents of the three probes decrease, also

coinciding with a decrease in plasma density. However, the +6 V probe (red) current

is increasing during these times, possibly due to an increase in floating potential.

This increase is captured in the RBF and BNLF inferred potential, but not in the

one derived from corrected OML. Another observation is that the inferred floating

potential decreases significantly at 10:15, as the satellite crosses the terminator. On

NorSat-1, the negative terminals of the solar cells are grounded to the spacecraft bus

while the positive side is facing the ambient plasma [114]. A likely explanation for the

potential drop is that the solar cells facing the ambient plasma get charged positively

and suddenly start collecting more electrons upon exiting solar eclipse. This would

agree with findings reported by Ivarsen et al. [114].

5.4.3 Consistency check

In the absence of accurate and validated inferred densities and satellite potentials

from NorSat-1 data, it is not possible to confidently ascertain to what extent the

inferences presented above are accurate. As an alternative, we proceed with a consis-

tency check, following the same procedure as presented in Sec. 5.3.3 with synthetic

data, but using measured currents as input. This is done by first applying models

M1(ne) and M1(Vf )) trained with synthetic data, to infer floating potentials and

densities from measured currents. Then M2 (also trained with synthetic data) is

used to infer currents from the M1 - inferred floating potentials and densities. If the

models constructed from the synthetic data also apply to NorSat-1 data, the inferred

currents should closely reproduce the measured NorSat-1 currents. A correlation plot

of inferred against measured currents is shown in Fig. 5.10 for the +10 V probe. In
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Figure 5.10: Consistency check is performed in the in situ data following the same
procedure as in the synthetic data set. Both models 1 and 2 are trained with our
synthetic data, and applied to currents from the +10 V probe on NorSat-1. Darker
colors refer to inferences made with currents above 10 nA, while lighter colors refer
to inferences obtained with currents between 1 and 10 nA.

this plot, the orange and green curves show back-inferred currents obtained with the

RBF M2 model. For the orange curve (Affine JLF), the density used as input in M2

is obtained with the affine transformed JLF method. For the green curve (RBF), the

density used as input in M2 is obtained with RBF density, while in both cases, the

floating potentials are obtained with the M1(Vf ) model from RBF regression. The

parts in lighter color are obtained using data with a 1nA filter, whereas the darker

color parts are obtained using data with currents above 10 nA. While the graph only

shows currents above 30 nA, the 1 nA filter curve extends to the left down to about

5 nA, however, these calculated +10 volt probe currents plateau in this range and

are far from the measured currents. This behavior is likely due to noise levels of

about 10 nA, thus extra caution should be taken when using model inferences for

data below 10 nA. The RMSr calculated for the 10 nA NorSat-1 current using direct

RBF density as M1(ne) is 9%, and the MRE is 28 %, whereas these numbers for the

affine transformed JLF densities are 11 % and 23 %, respectively. The calculated

+10 V probe currents based on RBF regression and affine transformed JLF method

nicely follow the measured +10 volt probe current except for a small increase in the
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variance at lower currents, thus indicating that our model constructed with synthetic

data set should be applicable to in situ data.

5.5 Conclusions

Two new approaches are presented and assessed, to infer plasma and satellite param-

eters from currents measured with multiple fixed bias needle Langmuir probes. In

the first approach, inferences are made with two multivariate regression techniques,

consisting of radial basis functions, and neural networks. The second approach relies

on a simple affine transformation combined with a technique first proposed by Ja-

cobsen to infer the plasma density. Yet another approach, proposed by Barjatya, et

al. is considered, which consists of performing nonlinear fits of measured currents, to

an analytic expression involving the density, the floating potential and the exponent

β as fitting parameters, while the electron temperature is estimated by other means.

In all cases, the accuracy of inferences is assessed on the basis of synthetic data ob-

tained from kinetic simulations made for space-plasma conditions representative of

those encountered along the NorSat-1 satellite. In addition to assessments based on

synthetic data, a consistency check is presented, whereby densities and satellite po-

tentials inferred from collected currents, are used as input in an inverse regression

model to infer currents for one of the probes. The advantage of this consistency

check is that it is applicable to both synthetic, and in situ measured currents, and

in the latter case, it does not rely on a priori given inferred densities and satellite

potentials. Inference consistency checks are made with both synthetic and in situ

measured currents, showing excellent agreement.

The density inference methods considered in this study yield excellent results when

applied to the synthetic data set. The models constructed with synthetic data are

then applied to currents measured by the four m-NLP on NorSat-1. When applied to

NorSat-1 data, the Barjatya nonlinear fit approach is modified by assuming a fixed
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value for the temperature and β, and carrying the fit with only the electron density

and satellite potential as fitting parameters. The density inferences from all meth-

ods show good agreement, which suggests that either method should be a significant

improvement over the commonly used OML approach based on β = 0.5. From on

our findings, direct RBF and the combination of Jacobsen’s linear fit with β = 0.5

with an affine transformation, appear as being the most promising, and deserving of

further study. These two methods provide inferences that are consistent and quanti-

tatively similar, while being relatively simple and numerically efficient. The former

yields the lowest maximum relative error when assessed with synthetic data, whereas

the latter is the simplest method and produces inferences with comparable accuracy.

The spacecraft floating potential is also inferred using RBF regression, a modified

OML approach and Barjatya nonlinear fit method. The modified OML inferences are

inconsistent with the measurements from NorSat-1 data since it indicates that the

satellite potential is below -6V, while measurements indicate that the +6 V probe

is collecting electron current. Conversely, spacecraft potentials inferred with RBF

regression, and the nonlinear fit approach yield potentials that are consistent with

measured currents from the +6 V biased probe, showing that the satellite potential

must have been at or above -6 V for most of the one and a half orbital period con-

sidered. This failure to produce acceptable values of the satellite potential using Eq.

5.14, and the fact that the Barjatya nonlinear fit approach with ne, Vf , and β as

fitting parameters, results in β values appreciably larger than one, shows that in situ

measurements on NorSat-1 generally do not closely follow the empirical expression in

Eq. 1.

The analysis presented here has been focused on fixed bias multi-needle Langmuir

probes, with the same dimensions as the ones mounted on NorSat-1, to which it has

been applied as a case study. We stress, however, that the simulation-regression ap-

proach to infer space plasma parameters, is not limited to fixed bias probes or to this
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particular configuration of probes. With kinetic solutions capable of reproducing ana-

lytic results in conditions when they are valid, and also capable of accounting for more

physics, and more realistic geometries than theories, solution libraries, training and

validation sets can just as well be constructed for different probes, mounted on satel-

lites, operated in fixed or sweep bias voltage mode. By following standard machine

learning procedures, whereby models are trained on a subset of a solution library of

known independent and dependent variables, and tested by applying them to distinct

subsets, we can estimate uncertainty margins specifically associated with different in-

ference techniques. Another important strength of the proposed simulation-regression

approach is that it enables relatively straightforward incremental improvements to a

model, by accounting for more physical processes or more detailed geometries; some-

thing that would be very difficult to do in a theory. Implementation of regression

models and affine transformation of the Jacobsen linear fit model involve simple arith-

metic expressions with pre-calculated coefficients and can easily be programmed for

onboard processing of low level data. These approaches, however, would require the

creation of custom data sets, when applied to a given mission, so as to account for the

geometry relevant to the measuring instruments, and the space environment condi-

tions expected along a satellite orbit. This is where the BNLF technique could prove

convenient, as it does not rely on the construction of extensive synthetic data sets and

training strategies. Custom regression models, however, would require more compu-

tational resources, which would necessitate optimization in order to be implemented

onboard a satellite. The work presented here is by no means final. The development

of improved inference approaches based on simulations and regression techniques will

require significantly more efforts, involving collaborations between experimentalists

and modelers; an effort well worth doing, considering the cost and years of preparation

involved in scientific space missions.
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Chapter 6

Conclusion

6.1 Summary

The main goal of this thesis is to take advantage of the computational power available

today to do new science. Particle in cell (PIC) simulations are used to simulate the

current collected on selected spacecraft instruments in conditions relevant to near-

Earth orbit in low and mid latitudes. Machine learning techniques are used to create

regression models to interpret the results from simulations. The uncertainties in the

regression models are assessed, and the inferences are compared with existing state-

of-the-art theoretical models. In addition, a new efficient algorithm for Radial Basis

Function multivariate regression is also presented.

In Chapter 1 and Chapter 2, the background and methodology are presented. In

Chapter 3, a new algorithm for radial basis function is presented. Speed can be a se-

rious issue when training a model with Radial Basis Functions (RBF) on a large data

set. This is particularly true when training is made with a straightforward construc-

tion of models for all combinations of N centers among N ≫ N nodes, and selecting

the one leading to the highest inference skill, as per a given cost function. This is

because the computational cost in such “exhaustive training” increases exponentially

with the number of nodes in the training set. In contrast, the fast Center-Evolving

(CE) RBF presented here is significantly more efficient, and proves in practice, to be
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nearly as accurate as the exhaustive approach. The CE strategy consists of train-

ing models on randomly selected smaller subsets of size Ñ of the training set, with

N < Ñ < N , while retaining the optimal centers from one subset to the next. This

in turn, ensures that the cost function never increases from one Ñ -subset to the

next. Example applications are presented where differences in CE training times are

reduced by approximately two orders of magnitude compared with those of the ex-

haustive training.

In Chapter 4, a relatively simple design of a segmented flow meter is presented

for measuring in situ plasma flow velocities and other space plasma parameters. The

response of the flowmeter to space environment is simulated for plasma conditions

representative of the ionosphere at mid and low latitudes using PTetra. A synthetic

data set consisting of ion currents collected by several segments of the flow meter,

and the physical parameters for which they were calculated, is then used to construct

a solution library from which inference models can be constructed, using RBF and

neural network regressions. Simulation results show that with such a flow meter, it

should be possible to infer plasma flow velocities in the direction perpendicular to the

ram direction, with uncertainties of 45 m/s or less. Models can also be constructed to

infer plasma densities, with a maximum relative error of 23 %. This work is presented

as a first assessment and proof of concept for an original design of a simple and robust

flow meter.

Finally, in Chapter 5, multi-needle Langmuir instrument onboard NorSat-1 satel-

lite is studied using PIC simulations. Current inference techniques for processing

multi-needle Langmuir Probe (m-NLP) data are often based on adaptations of the

Orbital Motion-Limited (OML) theory which relies on several simplifying assump-

tions. Some of these assumptions, however, are typically not well satisfied in actual

experimental conditions, thus leading to uncontrolled uncertainties in inferred plasma
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parameters. In order to remedy this difficulty, three-dimensional kinetic particle in

cell simulations are used to construct a synthetic data set, which is used to com-

pare and assess different m-NLP inference techniques. Using the synthetic data set,

regression-based models capable of inferring electron density and satellite potential

from 4-tuples of currents collected with fixed-bias needle probes similar to those on

the NorSat-1 satellite, are trained and validated. The regression techniques presented

enable excellent inferences of the plasma density, and floating potentials. The new

inference approaches presented are applied to NorSat-1 data, and compared with

existing state of the art inference techniques.

6.2 Contributions

The main accomplishments of my thesis are summarized below:

• The formulation of an original algorithm for Radial Basis Function that is par-

ticularly efficient in training using large data sets.

• The design and assessment of a new type of plasma flowmeter using simulation

results and regression techniques.

• The creation of simulation-based regression models and their assessment by

comparison with state-of-the-art inference techniques for m-NLP instrument.

• The assessment of various state-of-the-art m-NLP inference techniques and

simulation-based regression models using NorSat-1 in-situ data.

6.3 Future work

Multi-needle Langmuir probe instrument

• There are studies for Langmuir probes in a magnetic field, but few can be

applied under realistic space plasma conditions. This would be particularly
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difficult to study with theoretical approaches but it could be a potential future

project using a simulation approach. Probe characteristics could be calculated

as a function of magnetic field strength and angle, the satellite attitude, as well

as the orientation and magnitude of the plasma drift velocity.

• With a satellite moving at approximately 7500 m/s in a magnetic field, there

can be potential differences between satellite components resulting from the

motional electric fields (v⃗ = −E⃗ × B⃗). Some probes might have effective po-

tentials with respective to the background plasma, that would be different from

the ones in the absent of the magnetic field. This effect might be studied in

another project.

• It would be interesting to investigate the NorSat-1 m-NLP instrument probe

biases. If the fixed bias probe voltage under a long operation is shifted to

a different voltage, it is hard to detect this shift without a calibration. For

example, the fact that the + 8 V probe current is often slightly lower than

expected for a downward concavity of collected current as a function of bias

voltage might be indicating that the real bias voltage of this probe is less than

+ 8 V.

• There are other cube satellites with identical m-NLP probes as these onboard

NorSat-1. The regression models created in this study are ready to be applied

to these satellite instruments.

Plasma flowmeter

• The vector method to interpret measurements with symmetry is a very conve-

nient approach that might be applicable to other instruments with symmetry,

for example, segmented spherical Langmuir probe.

• Building the flowmeter, testing it in a lab, and eventually using it on a spacecraft

would make an interesting extension of this project.

109



CERBF program

• A similar algorithm to CERBF can be applied to neural networks. The cost

function of a neural network model as a function of the various coefficients

has different local minimums. When training a model, the neural network

coefficients are initially determined using the Monte Carlo method and then

refined using, for example, the gradient descent method. However, in such an

approach, the coefficients might be trapped in local minimums and never be

able to reach the global minimum if the coefficients determined from the Monte

Carlo method are far. This is especially true if the training time is short.

Therefore, multiple training trials using neural networks with identical inputs

might result in different cost functions. A more efficient approach is to restart

the training multiple times and select the lowest cost function among the trials.

This approach takes advantage of gradient descent and finds the lowest cost

function once the coefficients are close to the optimal values.

• In CERBF, randomly selected subsets of the full training set are used to do

extensive searches. An alternative would be to select subsets using approaches

such as K-clustering or Gaussian-clustering.
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Appendix A: CERBF
Implementations

This appendix describes the implementation of Message Passing Interface (MPI) in
the CERBF program. The CERBF program consists of several subprograms that
are called in sequence in the main program to perform the training and validation
procedures. The purposes of the essential subprograms are discussed in the order in
which they are called in the main program as follows:

At the beginning of the program, the control parameters in the ‘rbf.dat’ file are
read in the main program, then the subprogram readtrainingdata is called.

readtrainingdata The purpose of this subprogram is to read and prepare the data
for training. The subprogram will read the training data only once at the be-
ginning of the program. The main processor will select a random subset from
the training set and broadcast the indexes of the selected elements to all pro-
cessors each time this function is called. After the first iteration, the randomly
selected subset has to be distinguished from the optimal centers carried from
the previous iteration to avoid identical elements in the list. The first N nodes
in the selected subset will be replaced by the optimal centers from the previous
iteration.

The CERBF program uses multiple processors to share the workload by distributing
the combination lists to the different processors. This is achieved using the combi-
nationStep subprogram.

combinationStep This subprogram will move the list containing the indexes of the
current combination forward once. For example, if the training data contains 5
nodes, and 3 centers are used to approximate a function, then the first list of 5
choose 3 is (1, 2, 3). After applying this subprogram once, the list will become
(1, 2, 4), and after applying it twice, the list will become (1, 2, 5), and so on.

To initialize a training, every processor will contain the list of (1, 2, 3). Then, the
nth processor will run the combinationStep subprogram n− 1 times. For example,
if there are three processors, then the second processor will run this subprogram once
and have the list (1, 2, 4). The third processor will run this subprogram twice to
have the list (1, 2, 5). Then subprogram stepcal will be called.

stepcal For the current list, the matrix of Eq. 2.15 is solved, and the cost functions
are calculated. The lowest cost function and the list that this cost function is
calculated are saved in each processor.

In the following steps, each processor will run the combinationStep subprogram
the total number of the processors times and then call stepcal subprogram, till all
possible combinations have been gone through. For example, following the previous
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example, in processor one, run the combinationStep subprogram three times, and
the list in processor one becomes (1, 3, 4). The lists in the second and third proces-
sors become (1, 3, 5), and (1, 4, 5). This way, the work to go through all possible
combinations is split between different processors. The main program checks if all
combinations have been gone through after each one hundred times that the stepcal
subprogram is called to minimize the number of if statement in the program. Af-
ter all combinations have been gone through, the gradientdescent subprogram is
performed to further optimize the model in each processor.

gradientdescent This subprogram accounts for the “nugget effect”. The cost func-
tion is minimized using the gradient descent method.

Then the subprogram gathertoroot will be called to gather the necessary infor-
mation from all processors to the root processor (1st processor). Then in the main
program, the root processor will determine if the lowest cost function from the current
CERBF iteration is better than previous iterations and save it if it is. The X̄ and Y
of the optimal centers are also broadcast to all processors. The root processor will
then determine if the training process is ended. If not, the program will select an-
other subset using the readtrainingdata subprogram and start over a new CERBF
iteration. If the maximum number of training iterations is reached, then the program
will do validation or inference if the corresponding files are provided using the val-
idateorinference subprogram. The program is a little over one thousand lines. A
schematic of CERBF is shown in Fig. 3.3. The complete program, with some sample
data and results, can be found at https://codeocean.com/capsule/7662817/tree.
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