Effect of poloxamer (F127 and F68) on size and zeta potential properties of BSA nanoparticles loaded with Nicardipine

Introduction

- \succ Albumin is a potential substance for use in preparing controlled drug delivery systems due to its biodegradability, biocompatibility and the ease of its preparation. [1]
- \succ Poloxamer, a surfactant, can lower the interfacial tension and act as a dispersant, helping to overcome aggregation of the nanoparticles and improve the entrapment efficiency of hydrophobic drugs such as Nicardipine hydrochloride in Bovine Serum Albumin (BSA) nanoparticles.
- \succ Nanoparticles are usually characterized for their size, polydispersity index (PDI) and zeta potential properties.
- \succ Zeta potential is a measurement of surface charge which is the determinant of a nanoparticle's stability. It is a measure of the electrostatic potential between the Stern layer and Diffuse layer of a particle. [2]

Materials & Methods

Preparation

- \succ Desolvation technique was used to prepare the BSA nanoparticles using ethanol (95%) as the desolvating agent.
- \succ Ethanol is added gradually to the aqueous albumin solution until the solution becomes turbid which is then stabilized using glutaraldehyde. [1]

Figure 1.0: Preparation of albumin nanospheres through desolvation

 \succ Poloxamer 127 is more hydrophobic than poloxamer 68 as it has a higher molecular weight of poly propylene oxide and lower percentage of poly ethylene oxide.

Zeta Potential

 \succ Vials of the drug loaded BSA nanoparticles are prepared with either poloxamer F127 or F68. These samples are then put into folded capillary cells, and placed in a Zetasizer Nano, which measures the zeta potential.

Gabrielle Smith, Suleiman Saleh, Larry Unsworth Department of Chemical and Materials Engineering, University of Alberta, National Institute for Nanotechnology

Size

> Drug loaded BSA nanoparticles prepared and put in are These disposable cuvettes. cuvettes are placed in a Zetasizer Nano, which utilizes the dynamic light scattering (DLS) technique in measuring particle size.

Theory

> DLS measurement depends upon the Brownian motion, the random movements of particles. The correlation between the random movement and the particle size is defined by Stokes-Einstein equation.

 $D = \frac{\mu_q \ K_\beta \ T}{6 \ \pi \ \eta \ r}$

Where; D is the diffusion constant, μ_q is the electrical mobility of charged particles, K_{β} is the Boltzmann's constant, T is the absolute temperature, η is the dynamic viscosity and r is the radius of spherical particles.

- \succ This is done by shining a laser at the sample and detecting the scattered light, which comes in the form of a speckle pattern. [2]
- > As the particles are in constant motion, the speckle pattern will fluctuate and according to Stokes-Einstein equation larger particles move slower than smaller particles; therefore, the larger particles will fluctuate slower than smaller particles.[2]

Results

Size

Figure 2.0: Zetasizer Nano-ZS used for measuring nanoparticle size

Polydispersity Index

Conclusion

- reduction in the size and PDI of nanoparticles.

Acknowledgments

- lab for their help on this project
- could have this experience

References

- Jan 30;157(2):168-82. doi: 10.1016/j.jconrel.2011.07.031. Epub 2011 Aug 1.
- Malvern Instruments LTD. (2003, 2004). Zetasizer Nano Series User Manual. Retrieved from

women in scholarship, engineering, science & technology

 \succ Nanoparticles prepared with Poloxamer F68 had significantly lower size and PDI than that prepared with poloxamer F127.

 \succ Increasing poloxamer concentration (F68 or 127) leads to significant

 \succ Zeta potential is significantly changed with the change in poloxamer concentration and insignificantly with poloxamer type

> Thank you to Suleiman Saleh and Dr. Larry Unsworth and the rest of our

 \succ Thanks to the Rotary Club of Edmonton Glenora for sponsoring me so I

Ahmed O. Elzoghby, Wael M. Samy, Nazik A. Elgindy (2012) Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release. 2012

