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Abstract 

This thesis investigates the status of Mathematical Induction (MI) in an axiomatic 

system. It first reviews and analyses the status of MI in the works of Gotlob Frege 

and Richard Dedekind, the pioneers of logicism who, in providing foundations for 

arithmetic, attempted to reduce MI to what they considered logic to be. These 

analyses reveal that their accounts of MI have the same structure and produce  

the same result. This is true even though the two thinkers used different 

components as fundamental logical elements and went through different routes to 

eventually prove (on the basis of more fundamental logical axioms and rules  

of inference and definitions) what they considered MI to be. Based on these 

analyses, we infer a formulation, i.e., U-MI, that presents both Frege’s and 

Dedekind’s formulations of MI. 

We then evaluate the possible proof- and model-theoretic problems that such a 

formulation of MI faces. These problems include the problem of impredicativity 

and the unattainability of the infinitary nature of MI in a finitary logic. We then 

introduce and defend our own account of the status of MI in an axiomatic system, 

in which MI is axiomatizable/derivable in an infinitary many-sorted logic. The 

final part of the study investigates concerns with the metatheoretical use of MI – 

in particular the circularity problem in such a use. Within this last part, we  

also explicate and elaborate on one of the advantages of our account of the  

status of MI in an axiomatic system in comparison to the rival accounts. 
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Introduction 

One of the most important principles or methods of proof in mathematics is 

Mathematical Induction (henceforth MI), variants of which also apply to other 

well-ordered or recursively defined collections of items or entities (I use the word 

“items” or “entities” instead of “objects” to avoid any unnecessary ontological 

commitment). Historically, an implicit proof by MI can be traced back to Euclid's 

proof of the infinitude of primes, and perhaps even to one of the arguments 

proposed in Plato’s Parmenides
1
. However, it is a generally accepted opinion that 

the first explicit formulation of MI is contained in the Traité du triangle 

arithmétique (1653) by Blaise Pascal. Since Jacob Bernoulli’s use of it, this 

method of proof (in its complete form, namely the proof from n to n + 1) has 

become more or less well known. (In fact, Frege, in his Begriffsschrift
2
, 

considered Bernoulli to be one of the originators of MI.) However, the systematic 

treatment of MI came only in the 19th and early 20th centuries, with 

                                                           
1
 The argument occurs “in the discussion of the consequences of the second hypothesis, [when] 

Parmenides envisages in his inquiry about the nature of the ‘one’ ” (Acerbi, 2000, p. 65). 
2
 Frege, G. (1879); translated in Frege, G., & Bynum, T. W. (1972). 
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mathematicians, logicians, and philosophers such as Augustus De Morgan (who 

introduced the term “Mathematical Induction”),
3
 George Boole, Gottlob Frege, 

Charles Sanders Pierce, Richard Dedekind, Giuseppe Peano and Bertrand Russell. 

In fact, the vigorous development of mathematical logic, together with the 

development of the rigorous axiomatic method in the foundations of mathematics, 

during this period motivated mathematicians, logicians and philosophers to work 

on the foundations of arithmetic as well, focusing in particular on the 

axiomatization of arithmetic. The important role of MI in this context was 

recognized, and MI came to be considered one of the most important axioms of an 

axiomatic system of arithmetic. In addition, just as the importance of MI in 

axiomatic systems was acknowledged, its importance in metamathematical and 

metalinguistic proofs was also recognized. 

In providing the foundation for arithmetic, however, some mathematicians, 

logicians, and philosophers have tried to go one step further than merely taking 

MI as an axiom in an axiomatic system. They have sought to reduce MI to more 

fundamental axioms and prove it as a theorem. Frege and Dedekind – as pioneers 

and the most prominent thinkers among those who have provided foundations for 

arithmetic – tried, in particular, to justify and prove MI on the basis of more 

fundamental logical axioms and rules of inference and definitions. 

                                                           
3
 See Cajori (1918), p. 200, and Burton (2011), p. 466, in which they refer to the article "Induction 

(Mathematics)" (1838), in Long (1833-1843), Volume XII, pp. 465-466, written by Augustus de 

Morgan.  
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Therefore, in seeking justification and proof for MI, we are directed to the 

foundations of arithmetic. Logicism, among the doctrines of the foundations of 

arithmetic, defends the reduction of arithmetic to logic. It proves, first, that the 

axioms/theorems of arithmetic (including MI, which is our main concern from the 

proof-theoretic viewpoint) are fully derived from basic truths (axioms) and 

definitions of logic by its rules of inference; and second, that the concepts 

involved in such theorems, and the objects whose existence they might imply, are 

of a purely logical nature. Frege, Russell (in collaboration with Whitehead), and 

Dedekind are pioneers of this view. For the sake of brevity, due to the similarity 

between Frege’s and Russell’s works in what we are concerned about – namely 

the proof-theoretic status of Mathematical Induction – and due to Frege’s 

pioneering works on this issue, we concentrate on Frege’s works on MI on the one 

hand, and Dedekind’s on the other, as representatives of two types of approaches 

in logicism. 

There are dissimilarities between what these thinkers include within their 

conception of logic. At the same time, what they accept as the constituents of 

logic are different from what is generally accepted today; and this is one of the 

reasons that full-fledged logicism is problematic. For example, while Dedekind 

explicitly defends logicism, he, as one of the earliest founders of rigorous 

axiomatic set theory, uses “classes” and relation of “belonging to a class as an 

element” in his structure as logical foundational stones
4
, although these items are 

not commonly accepted as elements of logic today. By contrast, Frege uses 
                                                           
4
 As Quine mentioned in Quine (1970), p. 65, “pioneers in modern logic [explicitly or implicitly 

and directly or indirectly] viewed set theory as logic.”   
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“concepts” and “logical relations” as his logical foundational stones – items that 

are, in a sense, more compatible with modern views of the constituents of logic. 

However, Frege’s logical system includes second-order logic, about which there 

are debates; scholars are divided over whether it should be accepted in a logical 

system in addition to first-order logic. An example of such a debate is whether to 

consider second-order logic as a part of set theory, or set theory in disguise, or 

“set theory in sheep's clothing” as Quine calls it.
5
 Frege also makes use of 

additional principles, such as his Axiom V (or Basic Law V), that turned out on 

one hand to be inconsistent, and on the other not to be a part of logic. 

Subsequent attempts – most notably by Whitehead and Russell, and later, by  

Neo-Fregeans – to repair Frege’s system have also had to appeal to principles that 

are not considered logical. That is, in order to provide foundations for arithmetic it 

is necessary to add to logic other things such as set theory, as generally accepted 

in the literature, or second-order logic accompanied by Hume’s principle, as 

advocated by some neo-logicists. Therefore, based on what generally is accepted 

as logic, full-fledged logicism has failed. This conclusion is further reinforced by 

Gödel’s incompleteness theorems, which likewise reveal the problematic nature 

of the full-fledged logicist project. As Hellman argues
6
, according to Gödel’s 

second incompleteness theorem, we cannot formalize any finitely axiomatizable 

logicist system that includes elementary arithmetic, and although the non-finitely 

axiomatizable systems may exist we are not able to know of any particular system 

of this kind. 
                                                           
5
 See Quine (1970), p. 66. 

6
 See Hellman (1981). 
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The main goal of this research, however, is not a defence or critique of logicism 

or revised versions of it (though as a subsequent and a secondary result, it does 

end up, in a sense, to advocate a side of the debate). The focus is rather on the 

status of MI, from the proof-theoretic view, within an axiomatic system. 

However, since logicists aim to prove all the axioms and theorems of arithmetic, 

including MI, based on logic, their works are important in our investigation, and 

we will analyze them as far as they are related to our goal. Hence, we first analyze 

the proof of MI within the works of the pioneers of logicism, Frege and Dedekind. 

We then evaluate their proofs, and investigate possible proof- and model-theoretic 

problems. Finally, we introduce and defend our account. We also analyze and 

evaluate possible concerns in regard to the metateoretical use of MI.   

Accordingly, the first two chapters of the study are dedicated to the explication 

and analysis of Frege’s and Dedekind’s works in proving MI as a theorem within 

an axiomatic system. These works are the earliest, and at the same time, among 

the best available in the literature. They are also referred to by logicians and 

philosophers who defend the plausibility of the existence of such a justification of 

MI based on axioms of logic supplemented by some other necessary axioms. It is 

noteworthy that as a result of the dissimilarities between the logicist foundations 

of arithmetic introduced by Frege and Dedekind, their justifications and proofs for 

MI are constructed in different conceptual frameworks; however, as we will find 

in our investigation, they have the same structure and end up with the same result. 

Therefore, in the third chapter of the thesis, we analyze and evaluate Frege’s and 

Dedekind’s works together. In that chapter we begin to evaluate the plausibility of 
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Frege’s and Dedekind’s proofs of MI as a theorem based on a set of axioms, 

definitions, and rules of inference (supplemented by other required extra axioms), 

and we investigate the variety of problems that might be raised in their approach. 

These problems include misrepresentation of MI, the impredicativity problem, 

and the unattainability of infinitary nature of MI in a finitary logic. Finally, we 

introduce and defend our account of the status of MI in an axiomatic system in 

which MI is axiomatizable/derivable in an infinitary many-sorted logic. That is, 

we take MI as a fundamental axiom independent of axioms of classical logic, or 

we derive MI as a theorem from a set of axioms that includes a fundamental 

axiom independent of axioms of classical logic. At the end we investigate 

concerns with the metatheoretical use of MI – in particular the circularity problem 

in the metatheoretical use of MI. Within this part of the last chapter, we also 

explicate and elaborate on one of the advantages of our account of the status of 

MI in an axiomatic system in comparison to its rival accounts.      
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Chapter 1 

Analysis of Frege’s Works on 

Mathematical Induction 

In this chapter we analyze Frege’s works on mathematical induction from a proof-

theoretic viewpoint. These works include Begriffsschrift (1879), Grundlagen
7
 

(1884), and Grundgesetze 

8
 (vol. 1, 1893; vol. 2, 1903), although his other writings 

have been investigated as well. Our focus is primarily on Begriffsschrift, and, 

when necessary, on Grundgesetze.  

As Frege remarks in the preface to Begriffsschrift, arithmetic “was the starting 

point of the train of thoughts that led”
9
 him to write Begriffsschrift and his later 

works. That was to make the fundamental concepts and basic assumptions upon 

which arithmetic is built absolutely clear, and eventually to prove the basic laws 

                                                           
7
 Frege, G. (1884); translated in Frege, G., & Austin, J. L. (1980). 

8
 Frege, G. (1893), and Frege, G. (1903); translated in Frege, G., Ebert, P. A., Rossberg, M., & 

Wright, C. (2013), and partly translated in Frege, G., & Furth, M (1964). 
9
 See Frege, G., & Bynum, T. W. (1972), p. 107. 
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of arithmetic. Confronted with the latter task, he had to decide what would 

constitute a proof. In the preface to Begriffsschrift, he tells us that “we divide all 

truths that require a proof into two kinds: those whose proof can be given purely 

logically, and those whose proof must be grounded on empirical facts.”
10

 In his 

later book, Grundlagen, Frege argues that not only are the laws of arithmetic not 

synthetic a posteriori truths, as Mill had thought, but they are also not synthetic  

a priori truths, as Kant maintained, which leaves only the possibility that they are 

analytic a priori truths. Therefore, the laws of arithmetic must proceed purely 

logically.  

In the explanation of the course he took to investigate “how far one could get in 

arithmetic by means of logical deduction alone,”
11

 Frege points out that he first 

sought to reduce the concept of “ordering in a sequence” to that of “logical 

ordering” or “logical consequence.” In striving to fulfil this goal in the strictest 

way, he found ordinary language inadequate: its words and phrases are often 

ambiguous and imprecise, having many different meanings. In ordinary discourse, 

assumptions are not explicitly and clearly stated. The modes of inference are 

numerous and loose, and Frege believed that they must be syntactically defined to 

ensure correctness of reasoning. Finally, he thought that two-dimensional writing 

must be exploited for the sake of perspicuity. Thus, Frege devised his symbolic 

language, with its definitions, axioms and inference rules, in his book 

Begriffsschrift, and further developed it in his book Grundgesetze. In what 

                                                           
10

 Frege, G., & Beaney, M. (1997), p. 48. 
11

 See Frege, G., & Bynum, T. W. (1972), p. 104. 
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follows, we focus on those parts of Begriffsschrift, (and Grundgesetze, when 

necessary) that are required for our present purpose. 

In the first part of his Begriffsschrift, ‘Definitions of the Symbols,’ Frege 

introduces his notation for his primitive connectives, and using ordinary language 

he provides us with pre-constructive or elucidative explanations for them. He also 

explains what the counterpart of these connectives are in ordinary language, and 

at the same time he presents the semantics of these connectives – a crucial step 

toward the invention or discovery of the truth tables
12, 13

 we have today. 

Frege chooses symbols for: (1) assertion, (2) negation, and (3) conditionalization 

(implication) of propositions; and then he uses negation and implication to define 

conjunction and disjunction. Furthermore, to state the fact that two formulae 

express the same conceptual content, he adds a sign indicating identity of content. 

Using these tools, he was able to express logical relations among judgeable 

(assertible) contents. To express relations within such judgeable contents, Frege 

“regard[s] sentences as functions of the names occurring within them, treating 

property-expressions as functions of one argument, and relation-expressions as 

functions of two or more arguments, and adding what would later be called 

‘variable-binding quantifiers,’ ”
14

 and he introduces new symbols for  

property-expressions and relation-expressions, and adds a sign indicating 

universal quantifiers.  

                                                           
12

 See Kneale, W. C., & Kneale, M. (1962), pp. 420, 531.  
13

 See Church, A. (1996), pp. 161-2. 
14

 See Frege, G., & Bynum, T. W. (1972), p. 13. 
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Furthermore, he explicitly introduces and labels Modus Ponens as his only mode 

of inference, “at least in all cases where a new judgment is derived from more 

than one single judgment.”
15

 He was apparently aware that he was using other 

modes of inference, in particular the rule of substitution, which is non-derivable 

from the rule of Modus Ponens, to derive a new judgment from a single given 

judgement. He also uses other rules such as universal generalization or universal 

introduction (as a rule of inference specific to predicate logic) without assigning a 

specific name to them as rules of inference. It is noteworthy that he introduces 

Modus Ponens (and the universal introduction rule) in Part I, ‘Definition of the 

Symbols,’ as a result of (or more precisely, in connection with) the definition and 

meaning/semantics of the conditionals (and universal quantifiers), and not in  

Part II, where he presents his axioms (that in principal, to some degree, are 

interchangeable with inference rules). This shows the close connection between 

conditionals and Modus Ponens. In fact, Frege explains that he chooses 

implication as his basic sign because it simplifies the formulation of his 

inferences, the main rule of which is Modus Ponens. (A similar argument might 

be given for the case of universal quantifiers and the universal introduction rule.) 

These preliminary steps enable Frege to develop the first system of predicate 

logic. 

In Part II of Begriffsschrift, entitled ‘Representation and Derivation of Some 

Judgements of Pure Thought,’ Frege lays down nine axioms through which 

(accompanied by the rules of inference) he shows how complex judgements can 

                                                           
15

 See Frege, G., & Bynum, T. W. (1972), p. 119. 
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be represented and derived in his axiomatic system. These axioms, presented in 

modern notation (along with their numbers in Begriffsschrift), are as follows: 

(1)    a  (b  a) 

(2)    [c  (b  a)]  [(c  b)  (c  a)] 

(8)    [d  (b  a)]  [b  (d  a)] 

(28)  (b  a)  (~a ~b) 

(31)  ~~a a 

(41)  a ~~a 

(52)  c = d f (c)f (d)      or        c = d Fc Fb  

(54)  a = a 

(58) (a) f (a)  f (c)     or        (a) Fa Fc 

 

 

Axioms (1), (2), (28), (31), and (41) can form a complete set of axioms for 

propositional logic (although, using negation and implication, we can form a 

complete set of axioms with fewer axioms). Axiom (8) can be derived (using 

inference rules Modus Ponens and substitution) from Axioms (1) and (2). Axioms 

(52) and (54) are concerned with identity of content, and Axiom (58) is the axiom 

for predicate logic (the counterpart of the inference rule universal elimination in a 

natural deduction system).  

Several developments in Frege’s philosophical views emerged between the 

publication of Begriffsschrift and that of Grundgesetze that necessitate some 

changes in and additions to his logical theory. In Grundgesetze, Frege makes two 

main additions to his notation: a new symbol, ‘ ἐΦ(ε) ’, to indicate the extension of 

a concept Φ (or course-of-value or value-range of the function Φ(ξ) ), and a 
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further new symbol, ‘ \ξ ’, representing the function to be used for replacing a 

definite article or definite description in ordinary language. Furthermore, he 

introduces certain additions to the axioms presented in Begriffsschrift, as well as a 

certain amount of reorganization and reformulation of axioms and rules of 

inference. In Grundgesetze, Axiom V (or the famous Basic Law V), the one 

responsible for the contradiction discovered by Russell, and Axiom VI, the one 

illustrating Frege’s theory of description, are new axioms
16

; and from a  

proof-theoretic perspective, we are not concerned about them.  

Nine axioms and one explicit inference rule, as well as three implicit inference 

rules, from Begriffsschrift are condensed into the first four axioms
17

 and expanded 

into eighteen rules in Grundgesetze. Axioms (1) and (58) in Begriffsschrift are 

retained unchanged as Axiom I and IIa in Grundgesetze. Axioms (2), (8), and (28) 

become provable by means of Rules 4, 2, and 3, respectively, in Grundgesetze. 

Furthermore, Axioms (31), (41), (52) and (54) in Begriffsschrift become derivable 

from Axioms IV, IV, III and III, respectively, in Grundgesetze. In fact, in 

Grundgesetze, for convenience and to ensure the brevity of inferences, Frege 

replaces some of the axioms and theorems presented in Begriffsschrift with new 

inference rules (that is, Rule 1 as a formation rule for horizontal stroke, Rules 2 to 

8 as inference rules of propositional and predicate logic, Rules 9 to 12 as rules of 

                                                           
16

 The new symbols ‘ ἐΦ(ε) ’ and ‘ \ξ ’are used in these axioms as follows: ‘ ἐΦ(ε) ’ in Axiom V, 

and both ‘ ἐΦ(ε) ’ and ‘ \ξ ’ are used in Axiom VI. 
17

 These four axioms exclude the two aforementioned new axioms proposed by Frege in 

Grundgesetze. 
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substitution, and Rules 13 to 18 for the use of brackets).
18

  

Axiom IIb of Grundgesetze, presented in modern notation,  

(f )Mβ (f (β))  Mβ ( f (β))     or        (F )Mβ (Fβ)  Mβ (Fβ) 

is a second-order formulation of Axiom (58) in Begriffsschrift. In fact, in proving 

Formula (81), i.e. his formulation of MI, in Part III of Begriffsschrift, Frege uses 

Axiom (58) and the derivable theorems from it (in particular Formula (68)). 

However, to be able to prove Formula (81), he needs Axiom IIb, and the derivable 

second-order theorems from it (in particular, a second-order theorem analogous to 

Theorem (68)), which allows quantification over functions or properties. 

Although he does not yet separate first- and second-order axioms in 

Begriffsschrift, and hence uses the first-order axioms when he needs their 

analogous second-order ones, this problem can easily be resolved through the 

addition of the second-order formulation of Axiom (58). Therefore, with that 

formulation available, from a proof-theoretic perspective his proof of  

Formula (81) in Begriffsschrift is unproblematic.  

By the end of Part II of Begriffsschrift, Frege has devised the tools necessary to 

undertake the first phase of his Logicism. As he mentions in the preface to the 

text, the course he took was first to seek to reduce the concept of “ordering in a 

sequence” to that of “logical ordering” or “logical consequence.” The crucial 

importance of this reduction, he says, was to provide the strictest possible logical 

                                                           
18

 Frege, G., & Beaney, M. (1997), p. 382. 
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base for the concept of “number” so that nothing intuitive could intrude here 

unnoticed, since he believed that any intuitive idea of “sequence,” at most, would 

have validity only in the domain of particular intuition upon which it was 

founded. In fact, it seems that one of the central ideas that Frege had in mind was 

that MI must be proven purely logically. Since MI essentially involves sequential 

ordering, it was a very appropriate choice to provide a logical base for the concept 

of “ordering in a sequence.”  

Therefore, in Part III (the final part) of Begriffsschrift, entitled ‘Some Topics from 

a General Theory of Sequences,’ he pays attention to propositions about 

sequences. In this part, Frege, using his formal language (i.e. his logic, devised in 

the first and second parts), and the primitive notion of function or relation f (as a 

two-place function or relation), starts by providing Definition (69), of a hereditary 

property in a sequence. He denotes this concepts as                    (we express it as 

H
 f

F ). The definition is as follows:  

 

which can be translated into modern notation as: 

(d)( Fd   (a)( f (d, a)  Fa) ) ≡  H
 f

F                       (69)  
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in which            (or  H
 f

F ) is translated into ordinary language as ‘(the 

circumstance that) the property F is hereditary in the f-sequence’. Within the 

explication of this definition he introduces the idea of a sequence based on the 

concept of logical ordering, and formalizes it using a two-place function or a 

logical relation f. 

Later, in this part of Begriffsschrift, he introduces his most innovative definition. 

This is Definition (76), of ancestral relation in a sequence or ancestral of a 

relation. He denotes this concept as                            (we express it as P 
x, f

y ). The 

definition is as follows: 

 

which can be translated into modern notation as: 

(F )([ H f
F  &  (a)( f (x, a)  Fa) ]  Fy ) ≡ P 

x, f
y         (76)  

in which             (or P 
x, f

y ) is translated into ordinary language as  

‘y follows x in the f-sequence’ or ‘x Precedes y in the f-sequence’.  In fact, this 
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definition is a logical analysis of the concept of ancestral relation in a sequence 

or ancestral of a relation. 

Using his axioms (including the required second-order axioms) and rules of 

inference (including those which he implicitly uses), along with Definitions (69) 

and (76), Frege manages, straightforwardly and without any problems, to prove 

Theorem (81): 

 

which can be translated into modern notation as: 

(   Fx      &      H
 f

F      )   ( P 
x, f

y  Fy  )             (81)   

      Basis              Inductive                                       
     Clause                Step                                                 

upon which, he claims, “Bernoullian induction” or Mathematical Induction (MI) 

is constructed.
19

  

Although Definition (76) is Frege’s logical analysis of the concept ‘y follows x in 

the f-sequence,’ from the proof-theoretic point of view, Definitions (69) and (76) 

are abbreviatory and stipulative definitions, without which one can also prove a 

                                                           
19

 See Frege, G., & Bynum, T. W. (1972), p. 177, footnote.  

Conclusion 
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formula equivalent to Theorem (81) without any problem. We can express such an 

equivalent formula or theorem as:                                      

(Fx  &  (d)( Fd   (a)( f (d, a)  Fa) ))    

 ([(F)([(d)( F d   (a)( f (d, a)  F a) )  &  (a)( f (x, a)  Fa )]  Fy )] Fy)                                   

 

If we use the uncontroversial abbreviatory Definition (69) to shorten this formula, 

we can derive Formula (81a) as follows: 

(Fx  &  H
 f

F) ([(F)( [H
 f
F  &  (a)( f (x, a)  Fa )]  Fy )] Fy)         (81a) 

For our purpose, we can simplify Formula (81a) as follows:                 

(Fx  &  H
 f

F  )   ((F)( [Fx & H
 f
F ]  Fy ) Fy  )                   (81b) 

where (a)( f (x, a)  Fa ) is replaced by Fx . That is, since a immediately follows 

x in the f-sequence (namely it is in the f-relation with x, or it is its immediate 

successor), and since we have hereditary property H
 f

F  (or H
 f
F ) in the f-sequence, 

appearing in both the antecedent and the consequent of the main conditional,
20

 

whatever is true of x is also true of its immediate successor a, and we can 

replace/transform each instance of x with/to its immediate successor a, such that 

                                                           
20

 In the latter case, in fact, it appears in the antecedent of the consequent of the main conditional. 
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we can consider a as the first member of the sequence. (In other words, in the                  

f-sequence the initial element of the sequence shifts from x to its immediate 

successor a.) Then, for convenience, we can rename a as x. The only change in the 

new formulation, (81b), is that not only does y follow x the in the f-sequence, but 

it can also be equal to x. In other words, y belongs to the f-sequence beginning 

with x, or x bears the weak ancestral of the relation f to y. However, it is 

noteworthy that for our purpose, whether x bears the strong or weak ancestral of 

the relation f to y does not matter, and as far as our arguments and conclusions in 

the following chapters are concerned, Formula (81a) is as adequate as Formula 

(81b), and we use Formula (81b) for the sake of simplicity and convenience.    

Finally, from (81b) we can derive Formula (81c) as follows: 

(F)( [Fx & H f
F ]  Fy ) ( [Fx & H

 f
F]Fy)                                 (81c) 

In this formula the antecedent of the main conditional is the second-order 

formulation of MI for an object y following an object x in an f-sequence, which 

we denote as MI2
 x, f

y ; and the consequent of the main conditional is the first-order 

formulation of MI (which can be considered as an schema) for a property F and an 

object y following an object x in an f-sequence, which we denote as MI1
 x, f

F, y . 

Therefore, we can summarize the Formula (81c), as U-MIF, as follows: 

 MI2
 x, f

yMI1
 x, f

F, y                                 U-MIF 
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or simply as U-MI, as follows: 

 MI2  MI1                                                 U-MI 

 By the end of Chapter 2, which presents an analysis of Dedekind’s works on MI, 

we are also able to arrive at a formula, which we call U-MID , derived from 

Dedekind’s formulation of MI. As we will see, U-MID has the same structure as  

U-MIF. Therefore, in the Chapter 3, we analyze and evaluate Frege’s and 

Dedekind’s works together. 
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Chapter 2 

Analysis of Dedekind’s Works on 

Mathematical Induction 

In this chapter, we concentrate on Dedekind’s main works on the foundations of 

arithmetic (from which Peano’s axioms were adopted), namely Was Sind Und 

Was Sollen Die Zahlen? (The Nature and Meaning of Numbers, or more literally, 

What are the numbers and what are they for?) (1888).
21

 The text, henceforth 

referred to as Was Sind Zahlen, also offers a pioneering contribution to set theory 

(although in its initial and early steps).  

In Section I of the essay, Dedekind sets out the basic principles of sets (which he 

calls systeme, meaning systems). He begins by stating what he means by the term 

dinge (things or objects), denoted with lowercase letters such as a, b, c, and s; and 

he describes the conditions under which two things are equal. Then he explicates 

the concept of sets, denoted with uppercase letters such as A, B, C, S, and T, 

                                                           
21

 Dedekind, R. (1888); translated in Dedekind, R. & Beman, W. W. (1909).   
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observing that they consist of elements (the things explicated before). Dedekind 

also defines the condition under which two sets are equal. He considers a set as a 

thing and hence allows for a set of sets.  

Based on his view, a set that contains only one element (namely a singleton set 

{a}), should not be considered the same as the element itself (namely an 

urelement a). However, he uses the same notation for a singleton set {a} and an 

urelement a. In fact, he does not use curly brackets to indicate sets. Later, when he 

defines the subset relation, he mentions that since every element s of a set S can be 

regarded as a set (a singleton), he employs the notation ‘ ɜ ’ for both the 

membership relation, i.e. s ɜ S, and the subset relation, i.e. A ɜ S. For the sake of 

convenience, however, we use modern notations, namely s  S for the membership 

relation, and A  S for the subset relation, in this study. Interestingly, he mentions 

that “we intend here for certain reasons wholly to exclude the empty system [set] 

which contains no element at all, although for other investigations it may be 

appropriate to imagine such a system.”
22

 Therefore, when he later discusses the 

intersection of sets, he states that if some sets do not have a common element, 

their intersection is meaningless. 

Dedekind then defines subset (part), proper subset (proper part), union 

(compounded out), and intersection (community), and presents and proves their 

typical properties.   

                                                           
22

 Dedekind, R. & Beman, W. W. (1909), pp. 45-46.   
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In Section II, Dedekind deals with mappings (transformations, or functions) Φ of 

a set S, S’=Φ(S), the so-called transform of its members (elements) s’=Φ(s), and the 

composition of two or more mappings. First he provides their definitions, and 

then he presents and proves principles governing them.  

In Section III, he develops the idea of one-to-one (similar) mappings, similar sets 

(which means sets that are in one-to-one correspondence), and the class of sets 

that are similar to a determinate set – the representative of the class. He defines 

these concepts, and presents and proves their fundamental properties.     

The core of our analysis is on Section IV of Was Sind Zahlen. This section starts 

with Dedekind’s Definition (36), of a mapping Φ of a set in itself. Then Dedekind 

introduces his innovative idea of a chain K in respect to mapping Φ, in  

Definition (37). This definition goes as follows: a set A is a chain in respect to a 

mapping Φ, when K’  K, or Φ(K)  K (or K is closed under Φ).  Based on 

Dedekind’s definitions, K’  K is equivalent to (x)(x  K  Φ(x)  K).  

The Definition (37), of a chain K in respect to mapping Φ corresponds with  

Definition (69), of a hereditary property F in an f-sequence, in Frege’s 

Begriffsschrift.  

However, the main innovative idea that enables him to demonstrate MI is 

expressed in Definition (44). There, he defines the chain of set A in respect to 

mapping Φ, or simply chain of A (distinguished from chain A), as the intersection 
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of all those chains (in respect to mapping Φ) of which A is a subset. He denotes it 

by Φ0 (A) or simply A0 .  

Before we present Definition (44) in modern notation, it is worth noting that in 

Was Sind Zahlen, Dedekind, in contrast to Frege, does not obligate himself to use 

a purely formal language. In particular, he does not use logical notation to present 

his definitions and the proofs of his theorems. Moreover, he does not explicitly 

provide the axioms and inference rules of logic required in the proof of his 

theorems.) In this study, however, we present Dedekind’s definitions and 

theorems in the formal language of logic and set theory in order to discover and 

demonstrate the fundamental structure of his definitions and theorems.  

As we mentioned above, Dedekind, in Definition (44), defines chain of A (in 

respect to mapping Φ), denoted as A0 , as the intersection of all those chains (in 

respect to mapping Φ) of which A is a subset. We can present this definition in 

modern notation of logic and set theory as follows: 

y A0 ≡ (K)([(K’  K ) & (A  K)] ( y K))       (44a) 

or:     

 y A0 ≡ (K)([(t)(t K  Φ(t) K) & (x)( x A  x K)]  ( y K))       (44b)  

or: 
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y A0 ≡ (K)([(x)( x A  x K) & (t)(t K  Φ(t) K)]  ( y K))        (44c)  

Dedekind’s Definition (44), of chain of A in respect to mapping Φ, is closely 

related to, and corresponds with Frege’s Definition (76) of following x in  

f-sequence (or ancestral relation).  

In Frege’s Definition (76), where we have universal quantification ranging over 

all properties as variable, we used Gothic letters to denote these properties. 

Likewise, for the sake of convenience we use Gothic letters where we have 

universal quantification ranging over all sets as variable, as follows: 

y A0 ≡ (K )([(x)( x A  x K ) & (t)(t K  Φ(t) K )]  ( y K ))     (44d)  

After developing and proving all the necessary properties about chains, using his 

other set theoretic definitions and theorems, Dedekind manages to prove, without 

any problem, what he calls the theorem of complete induction (we call it MI).  

This is represented in Theorem (59) as: 

“In order to show that chain A0 is part of system Σ – be this latter part of  S – 
it is sufficient to show, 

ρ. that  A ɜ Σ, and 

σ. that the transform of every common element of A0 and Σ is likewise element 

of Σ.” 

which can be presented in modern notation (with partial use of Dedekind’s 

notation) as follows: 
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((A  Σ ) & [(A0  Σ )’  Σ])  (A0  Σ )                 (59a) 

We can proceed through the following steps to arrive at Formula (59c): 

((x)(x A  x Σ ) & (t’)(t’ (A0  Σ )’  t’ Σ))   (y)( y A0  y Σ )          

((x)(x A  x Σ ) & (t)(Φ(t) Φ(A0  Σ )  Φ(t) Σ))  (y)( y A0  y Σ )          

((x)(x A  x Σ ) & (t)(t (A0  Σ )  Φ(t) Σ))  (y)( y A0  y Σ )          

((x)(x A  x Σ ) & (t)((t A0 & t Σ )  Φ(t) Σ))  (y)( y A0  y Σ )       (59b) 

         Basic Clause                             Inductive Step                                      Conclusion 

which is Mathematical Induction, MI.  

In Paragraph (60) of the essay, Dedekind restates MI, “known by the name of 

complete induction (the inference from n to n+1),”
23

 in two alternative forms. In 

the first case, he states that we can replace Σ with a certain property E to be 

possessed by all elements of the chain A0. This can be formalized in modern 

notation as follows: 
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 Dedekind, R. & Beman, W. W. (1909), p. 60.   
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((a)(a A  Ea) & (n)((n A0 & En)  En’))  (n)(n A0  En)              (60a) 

      Basic Clause                      Inductive Step                              Conclusion 

In the second case, Dedekind states that we can replace Σ with a certain theorem 

S which deals “with an undetermined thing n” that holds for all elements n of the 

chain A0. 

This can be formalized in modern notation as follows: 

((a)(a  A  Sa) & (n)((n  A0 & Sn)  Sn’))  (n)(n  A0  Sn)        (60b) 

This formulation of MI is subsequently used in Theorem (80) at the end of 

Section VI of Dedekind’s essay, in which he restates his theorem of complete 

induction (inference from n to n’.) This move is based partly on the steps he takes 

in earlier sections of his essay. In Section V, he introduces his famous definition 

of infinite sets, and provides a few theorems concerning finite and infinite sets. 

By the end of Section V, he has completed his general theory of chains. In 

Section VI, he starts by defining a simply infinite set, N, as a one-to-one mapping 

“Φ of N in itself such that N appears as chain … of an element not contained in 

Φ(N),”24
 which is the chain of its initial element, denoted by symbol 1. Later in 

the essay, he shows that N can be considered to be the set of natural numbers. In 

                                                           
24

 Dedekind, R. & Beman, W. W. (1909), p.67 
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Theorem (80), he introduces MI for N (as the number-series or number-chain). It 

can be presented in formal notation as follows: 

((m)(m {m}  Sm) & (n)((n m0 & Sn)  Sn’))  (n)(n m0  Sn)          (80) 

in which set A in formula (60) becomes a singleton {m}, and the chain {m} is 

denoted as m0 (which we can also denote {m}0). Dedekind notes that “the most 

frequently occurring case is where m=1 and therefore m0 is the complete number-

series N.” Hence Theorem (80) can be rephrased as follows: 

(S1 & (n)((n 10 & Sn)  SΦ(n)))  (n)(n 10  Sn)            (80b) 

and since chain 10 is N, then: 

(S1 & (n)((n N & Sn)  SΦ(n)))  (n)(n N  Sn)          

For our purpose, we take Formula (59b) as Dedekind’s general formulation of MI. 

That is: 

((x)(x A  x Σ ) & (t)((t A0 & t Σ )  Φ(t) Σ))  (y)( y A0  y Σ )      (59b) 

in which A0 (or y A0) is defined by Definition (44d): 
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y A0 ≡ (K )([(x)(x A  x K ) & (t)(t K  Φ(t) K )]  ( y K ))       (44d)  

For the sake of convenience, and to match the letters used in Formula (59b) with 

those used in Definition (44d), instead of the letter Σ in Formula (59b), we use the 

letter K when it is a free variable, and the letter K  when it is a universally quantified 

variable, as follows: 

((x)(x A  x K) & (t)((t A0 & t K )  Φ(t) K))  (y)( y A0  y K )         (59c) 

If we substitute the equivalent of y A0 (from the Definition (44d)) in the consequent 

of the main conditional in Formula (59c), by using axioms and inference rules of 

logic, we can infer Formula (59d) as follows:  

(y)((K)([(x)(x A  x K ) & (t)(t  K  Φ(t) K )]   y K )    

          ([(x)(x A  x K ) & (t)((t A0 & t K )  Φ(t) K)] y K ))   (59d) 

In Theorem (59d), for the sake of simplicity, we can take y as a free variable and 

reformulate this theorem in a schematic form, which is presented in (59f): 

(K)([(x)(x A  x K ) & (t)(t  K  Φ(t) K )]   y K )    

           ([(x)(x A  x K ) & (t)[(t A0 & t K )  Φ(t) K)] y K )       (59f) 
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Here, in the analysis of Dedekind’s works, A,Φ, K, K, and y, correspond with x, f, 

F, F, and y, respectively, as presented in the analysis of Frege’s works in  

Chapter 1. 

In this formula, as in our analysis of Frege’s formulation of MI, the antecedent of 

the main conditional, which we denote it as MI2 
A,Φ

y , is a second-order 

formulation of MI; and the consequent of the main conditional, which we denote 

as MI1
A,Φ

K, y , is a first-order formulation of MI. Therefore, as in the previous 

chapter, we can summarize Formula (59f), as U-MID, as follows:  

MI2 
A,Φ

y  MI1
A,Φ

K, y                            U-MID   

or simply as U-MI, as follows: 

 MI2  MI1                                                 U-MI 

It is worth noting that in the Formula (59f), the presence of t A0 (which is equal 

to MI2 
A,Φ

y) in the antecedent of the consequent of the main conditional, that is in 

MI1
A,Φ

K, y , as an additional condition, in fact repeats the antecedent of the whole 

conditional. As we will see, this does not affect the validity of our analysis 

concerning this formulation of MI, since this additional condition duplicates and 

reinforces those assumptions and conditions that are already present in the 

antecedent of the main conditional, and based on this formulation of MI, are 

needed in order to use MI in any domain of entities.          
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U-MIF (from the first chapter) and U-MID (from this chapter), or simply U-MI, 

together with Frege’s Definition (76) and Dedekind’s Definition (44), will be used, 

in the third chapter, for our evaluation of Frege’s and Dedekind’s works on MI.  
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Chapter 3 

A Proof- and Model-Theoretic Analysis  

 of the Status of Mathematical Induction (MI) 

in an Axiomatic System 

In this chapter, we evaluate Frege’s and Dedekind’s formulations and proofs of 

mathematical induction. As we showed in Chapters 1 and 2, the theorems U-MIF 

and U-MID , which the two authors claimed to represent mathematical induction, 

are not problematic from the proof-theoretic viewpoint other than requiring some 

amendments and corrections. We will, however, address three major problems and 

issues in Frege’s and Dedekind’s formulations of MI, and we will present our 

account of the status of MI in an axiomatic system. 

The initial concern is that U-MI or MI2  MI1 is not the principle of mathematical 

induction, MI, accepted as the central principle in arithmetic and also as an 

important principle in mathematical and metatheoretical and other realms of 

reasoning. In fact, MI2  MI1 is a formulation of an axiom (or in its alternative 

formulation, a rule of inference) of second-order logic, namely the universal 
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instantiation axiom, and that is why we call it U-MI. We defend the view in which 

MI is expressed either in its second-order formulation, i.e. as MI2, or in its first-

order formulation (that is, in schematic form), i.e. as MI1, such that either 

formulation is true of any collection of entities – abstract or concrete – which are 

recursively defined, constructed or ordered. To be sure, one can take or define a 

statement of universally quantified form (of first-order or second-order level), and 

using Axiom (58) of Begriffsschrift, or Axiom IIb of Grundgesetze (which are 

analogous to the universal instantiation rule of first- and second-order logic, 

respectively) one can prove a theorem by instantiation of the first-order or the 

second-order quantified variable. In the case of U-MI or MI2  MI1, we have a 

statement of a universally quantified form of second-order level, i.e. MI2, in 

which the second-order variable is instantiated, which results in MI1; and based 

on axioms of logic (in particular, Axiom IIb), we can show that MI2  MI1 is a 

theorem of logic, whereas, in principle, MI2 or MI1 can be true or false. Hence, 

disregarding the fact that MI2 might independently be shown to have a model,  

U-MI by itself is devoid of any content as far as the content of MI2 or MI1 is 

concerned, and in this sense, from the proof-theoretic view, U-MI, standing alone, 

is vacuous and uninformative. Therefore, from the proof-theoretic view, by 

proving U-MI or MI2  MI1, one cannot claim that s/he has proven MI2 or MI1 as 

a theorem of logic.  

It seems that the only way to use U-MI or MI2  MI1 in any proof, such as a 

proof in arithmetic or a metatheoretical proof, is to provide a model that satisfies 
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MI2.
25

 Hence, the question of the status of MI, in a sense, shifts from the proof-

theoretic level to the model-theoretic level. Here there seems to be three options: 

one can prove MI2 at the model-theoretic level (to be able to have a model for it), 

postulate it as an axiom at the model-theoretic level (again to be able to have a 

model for it), or define a model containing a set of entities by using MI2 as 

definiens.
26

 In the first option, in fact, the initial problem at the proof-theoretic 

level is shifted to the model-theoretic level, and we face the same issue as we did 

at the proof-theoretic level, and obviously the solution cannot be another (or a 

higher level) U-MI account at the model-theoretic level. The second option is, in a 

sense, close to the account that we defend in the following sections, in which we 

postulate MI, but at the proof-theoretic level in an infinitary many-sorted logic. 

The advantage of our account is that it is more faithful to the actual proof-

theoretic status of MI – that is, taking MI to be a principle independent of the 

axioms and inference rules of classical logic. Furthermore, it has the advantage of 

saving the model-theoretic level for dictating stronger (or alternatively weaker) 

restrictions than those MI2 dictates in the model, depending on the realm of 

reasoning in which we use MI. (This will be discussed in later sections.) The third 

option, which is more commonly taken into the consideration in the literature, 

also has some problems. The first problem is the impredicativity of such a 

definition, which will be discussed in the next section. Furthermore, there is a 

problem in re-defining entities that are already defined or constructed by 

                                                           
25

 It worth noting that a model that falsifies MI2, or a model with an empty domain, makes U-MI or 

MI2  MI1 vacuously and uninformatively true. 
26

 Alternatively one might define a special predicate at the proof-theoretic level by using MI2 as 

definiens. 
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independent criteria. This problem is more serious in the metatheoretical use of 

MI, as we will discuss in the last section. Finally, any proof concerning the 

properties of the entities in such a model, which is defined by using MI2 as 

definiens, provides only a circular argument. For such a definiens, which is used 

to define the model (or alternatively is used to define a special predicate as 

mentioned in footnote 26), is a stronger assumption
27

 than that which can be 

achieved by the truth of the consequent, MI1, in the theorem MI2  MI1, since the 

content of MI1 is contained in the content of MI2, which is, in turn, assumed by 

definition at the model-theoretic level. In other words, U-MI or MI2  MI1 as an 

axiom at the proof-theoretic level of a theory cannot prove anything other than 

what is already assumed at the model-theoretic level. 

3.1  The Problem of Impredicativity 

From model-theoretic point of view, the main problem with U-MI, or MI2  MI1, 

as a formulation of the principle of mathematical induction, MI, is related to an 

obligation imposed at the model-theoretic level
28

: predicativity. That is, as we 

have explained, the model consists of those items that have to satisfy, and in fact 

have to be defined by using MI2 as definiens.
29

 However, such a definition is 

impredicative. 

                                                           
27

 At best, it is an identical assumption, in the case in which we take MI1 as a schema equal to MI2 

itself, namely MI2  MI2. 
28

 In the work of some philosophers, such an obligation is imposed at the proof-theoretic level. 
29

 In the case the obligation imposed at the proof-theoretic level, some philosophers 

impredicatively define a specific predicate by using MI2 as definiens; for example in the case of 

arithmetic, the predicate Natural Number, “N”, is defined by using MI2 as definiens. 



35 
                                                                                                                                                                                                                                            

Frege’s Definition (76) in Begriffsschrift, which is the logical analysis of the 

concept y following x in f-sequence,                         , or P 
x, f

y   as we present it, is:      

                         ≡    (F)( [Fx & H f
F]  Fy ) 

Furthermore, in the analysis of Frege’s proof of U-MI or MI2  MI1, we saw that, 

in MI2  MI1, or MI2
 x, f

yMI1
 x, f

F,y , in fact, MI2 or MI2
 x, f

y  is the definition 

of y following x in f-sequence, or P 
x, f

y .  

The counterpart of this definition in Dedekind’s Was Sind Zahlen is Definition 

(44) of the chain of set A in respect to mapping Φ, Φ0 (A), or simply chain of A or 

A0 , which is defined as:      

y Φ0 (A) ≡ y A0 ≡ (K)([(x)(x A  x K ) & (v)(v K  Φ(v) K )]   y K ) 

Likewise, in the analysis of Dedekind’s proof of U-MI, or MI2  MI1, we saw 

that, in MI2  MI1, or MI2 
A,Φ

y  MI1
A,Φ

K, y , in fact, MI2 or MI2 
A,Φ

y is the 

definition of membership of  y in the chain of  set A in respect to mapping Φ, or 

the definition of the chain of  set A in respect to mapping Φ, Φ0 (A).                                         

As we have argued, to be able to have any model for U-MI, or MI2  MI1, we are 

forced to define our model by using MI2 (or MI2
 x, f

y , or P 
x, f

y which is Frege’s 

definition of the property following x in f-sequence; or MI2 
A,Φ

y or Φ0 (A) which is 
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Dedekind’s definition of [membership in] the chain of set A in respect to a 

mapping Φ) as definiens. But these definitions are impredicative. For they 

invokes or range over (that is, they consist of universal quantification over) a set 

of properties/sets containing the property/set being defined, i.e. P 
x, f

y , or Φ0 (A).  

Hence, as a result of deriving MI2  MI1 as a presentation of MI we are forced to 

adopt an impredicative definition at the model-theoretic level or at the proof-

theoretic level as a new predicate. Our analysis is a comprehensive approach to 

the analysis of MI for any discourse in which MI is required as a theorem or 

axiom, such as arithmetic, mathematics (in general), metatheoretical discourse, or 

other realms of reasoning. In the literature on the foundations of arithmetic, some 

philosophers impredicatively define special predicates for natural numbers at the 

proof-theoretic level. However, we have tried to analyse MI in as broad as 

possible a framework, and not just in arithmetic. Hence, we prefer not to define 

such a predicate at the proof-theoretic level, and consequently we separate the 

proof-theoretic realm from the model-theoretic realm to gain a more general 

account of MI. However, if we define a predicate, impredicatively, at the proof-

theoretic level, we will have the same problem of impredicativity. 

In the philosophical literature in general, and in particular in the foundations of 

arithmetic, there are views that reject and views that accept impredicative 

definitions in which an entity of a certain type is defined in terms of entities of the 

same or a higher type which contains the entity being defined. Some of these 

circular and self-referencing definitions or constructions end up in paradox, and in 
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this case, there is more agreement that we should avoid such constructions or find 

some way out of them. Other constructions lead either to circularity or to infinite 

regress. Either we argue that since an entity is defined/constructed partly by itself, 

it is circularly defined/constructed, or we argue that to avoid circularity, in the 

definiens we substitute the entity being defined by its equivalent, and we know 

that this will lead to infinite regress. Putting it differently, if one defines an entity 

in terms of entities of the same or a higher type than that which contains the entity 

being defined, s/he implicitly presupposes the entity being defined. Several 

philosophers, logicians and mathematicians claim that this is a vicious circle. 

Impredicative definitions are similar to implicit equations (or functions, or 

definitions) in practical mathematics, but the difference is that in practical 

mathematics, we are able to change the implicit definitions or equations to explicit 

ones, which is to solve an equation to find the definiendum in an explicit 

presentation. However, in many cases this is not possible and we use a numerical 

method, which is not applicable in philosophical and foundational discourse. 

One of the main reasons to accept impredicative definitions and constructions in 

mathematics is a concern about how much of mathematics would be constructible 

solely by using predicative constructions and definitions. Since for example, in 

classical mathematics, analysis is claimed to be constructed based on 

impredicative constructions and definitions, several philosophers and 

mathematicians, such as Ramsey, Bernays and Gödel, accept at least some form 

of impredicativity. They argue that if an entity can be specified independently of 

the totality to which it belongs, and in terms of which it is defined, or if it exists 
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independently of our construction and definition, then an impredicative definition 

is allowed, and reference to this totality is permissible as in the famous example 

the “tallest person in the room.” It is noteworthy that the view that requires an 

entity being constructed or defined to exist independently of our construction and 

definition is committed to a realist metaphysical view of the entities being 

constructed or defined.  As we will explain, we prefer not to defend a view that 

forces us to accept such a metaphysical commitment with respect to numbers.  

On the other hand, there are several philosophers, such as Poincaré, Russell and 

Whitehead, Weyl, and more recently Solomon Feferman, who defend 

predicativism. It has turned out that a large part of mathematics, and in particular 

the part that is required for scientific purposes (including analysis), can be 

achieved with predicative constructions given natural numbers.  

Our concern in this thesis is MI in general, the particular model of which is 

natural numbers that might or might not require impredicative definitions. The 

independent existence of entities being defined or constructed is too strong a 

restriction, and we may not be willing to accept it, since it restricts the nature of 

entities in our domain that we would like to accept in the model, either in the case 

of arithmetic or in other discourses in which we would like to have MI as an 

axiom or theorem.  

For example, in some versions of structuralism, which gives a plausible account 

of sequences, about which MI holds in general (and in particular about natural 

numbers), one might not want to be committed to a full-blown realist account. 
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Furthermore, if the entities are obviously fictional, there are well known 

difficulties with a realist account.  However, even if one accepts the independent 

specifiability of entities being defined or constructed, there is no doubt that this 

also introduces a new restriction that one might want to avoid, if s/he can achieve 

the same result without the use of impredicative definitions in constructions. 

Furthermore, although impredicative definitions or constructions of entities that 

are independently specifiable might not be paradoxical, they also might be 

unusable due to their self-referential nature (analogously to an unsolvable implicit 

equation or function in practical mathematics in the absence of numerical 

methods). Moreover, the use of impredicative definitions forces us to have 

independently specifiable entities, and this is a restriction that we might want to 

avoid (if we accept such an impredicative definition for independently specifiable 

entities at all); and furthermore, if one can specify or characterize an entity or set 

of entities, further definitions (especially impredicative ones) might not even be 

needed. In fact, as we will discuss later, in the metatheoretic use of MI, such a 

definition (re-specifying) of something that already exists or is specified might 

cause some difficulties. 

In our account of MI, which is not limited to arithmetic, we do not need 

impredicative definitions either in constructing/specifying our model, or in the 

proof-theoretic realm, and hence we avoid the potential problems of impredicative 

definitions. In fact, by avoiding the first problem (explained above) concerning 

the U-MI or MI2  MI1 formulation of MI, we automatically avoid an 

impredicative definition of the model, since we do not need to define the entities 
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in the model (or in the axiomatic system itself) by using MI2 as definiens, which 

is required for any use of MI2  MI1. Our solution is to postulate an infinitary 

axiom for such specifiable/constructible entities.         

3.2  The Unattainability of the Infinitary Nature of MI  

in a Finitary Logic, and the Axiomatizability/Derivability  of MI  

in an Infinitary Many-Sorted Logic 

The next issue with U-MI, or MI2  MI1, as a formulation of the principle of 

mathematical induction, MI, is that it lacks a part of the nature of MI, i.e., its 

infinitary nature. Our account of the status of MI, just as it does not have the 

previously mentioned problems, captures this fundamental characteristic of MI, 

which is absent in the alternative accounts of MI. In this section, as we introduce 

our account of MI, we will examine this third problem with the alternative 

accounts. 

MI is a unique type of axiom or inference rule that can also be derived from a 

similar type of axiom or inference rule of infinitary nature such as the ω-rule, or 

any other axiom or inference rule that allows one to prove claims about an infinite 

number of items (phrases or premises). In fact, MI in its standard form, as it is 

used in different realms of discourse, has a potentially infinite number of phrases 

(or premises, in its inference rule form), since the “inductive step”, i.e. 

hereditariness Fx  Fs(x) 

30
, can be expanded as potentially infinitely iterated 

                                                           
30

 Here, for the sake of simplicity, instead of relation f or a function with two arguments f (x, y), we 

use a function with one argument s(x) such that y which is f-related to x is shown as s(x). 
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conjoined conditionals (or a potentially infinite hypothetical syllogism, in its 

inference rule form), that is: 

( F0  &  (x)(Fx  Fs(x)) )   (n)(Fn)   

or:  

( F0  &  Fa  Fs(a) &   Fs(a)  Fs(s(a))  &   Fs(s(a))  F s(s(s(a)))  &  . . .  )   (n)(Fn)   

or:  

( F0  &  Fa  Fa’  &  Fa’  Fa’’  &   Fa’’  Fa’’’  &  . . . )   (n)(Fn)            

in which F is a predicate in a schema formulation of MI
31

 that is true of a set of 

linguistic items,
32

 namely individual constants and variables (which are  

sorted-constant or sorted-variables, 0, or a, or n, in a many-sorted logic). It 

consists of a sequence (in the case of taking MI as a rule of inference) or sentence 

(in the case of taking MI as an axiom) of infinite length constructed through a 

recursive application of function  s  by applying function  s  recursively to an item. 

If we substitute 0 – of which the “basis clause” is true, namely F0 – in a, in the 

expanded conjoined conditionals mentioned above, then:  

                                                           
31

 Alternatively, it can also be a predicate variable F ranging over all predicates in second-order 

form. 
32

 We say “linguistic” to make a minimal metaphysical claim about these entities. 
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( F0  &  F0  F0’  &  F0’  F0’’  &  F0’’  F0’’’  &  F0’’  F0’’’  &  …. )   (n)(Fn)            

and by axioms and rules of logic we can infer: 

( F0   &   F0’   &   F0’’   &   F0’’’     F0’’’’  &   …. )   (n)(Fn)            

Likewise, if we take MI as an inference rule, a form of a potentially infinitely 

iterated instances of Modus Ponens (or Modi Ponentes) can be inferred, as 

follows: 

F0     

F0  F0’  

---------- 

         F0’     

           F0’  F0’’  

         -----------                   

                  F0’’     

                      F0’’  F0’’’  

                  ------------ 

                            F0’’’                      

                            F0’’’  F0’’’’  

                            ------------                                           

                                       F0’’’’     

                                              …                  

                                                  … 

                                                      … 

------------------------------------------------- 

                        (n)(Fn)            

and hence: 

F0 ,  F0’ ,  F0’’ ,  F0’’’ ,  F0’’’’ ,  … 

------------------------------------------------- 

                        (n)(Fn)            
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In classical first-order logic, a well-formed formula cannot contain an infinite 

number of symbols, and a deduction cannot be of infinite length; hence we do not 

have any axiom or rule of inference that can accommodate what can be proven by 

MI, and that can prove a result holding for an infinite number of items.  

As we can see above, MI in its axiomatic form has an infinite number of symbols; 

in its rule-of-inference (or deduction) form, it is infinitely long. This feature 

enables us to prove results for an infinite number of items. This is a unique feature 

of MI in comparison to other deductive rules of inference or axiom; it makes MI 

irreducible and hence independent of other axioms and rules of inference of 

classical logic, unless we claim that an axiom or a rule of inference of classical 

logic is reducible to MI. In fact, this is a more radical claim than the claim we are 

defending, and it can be investigated separately. However, one might defend the 

view that Modus Ponens is a special case or an instance of MI, and hence MI is a 

mode of reasoning even more fundamental or general than Modus Ponens in 

classical logic. In this sense an axiomatic system with MI, instead of MP, is a 

more general deductive system.  

It is worth noting that our claim about the status of MI is not particularly 

concerned with its axiom-hood or theorem-hood – statuses that are usually 

interchangeable in any axiomatic system. It is about the fundamentality and 

independence of MI, or any MI-type infinitary principle, from the axioms or rules 

of inference of classical logic. That is, in our account we can take MI either as a 

fundamental and independent axiom (or a rule of inference) which is irreducible 
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and un-derivable from axioms and rules of inference of classical logic, or as a 

derived theorem (or a derived rule of inference) from another fundamental and 

independent MI-type infinitary axiom (or rule of inference) which is irreducible 

and un-derivable from the axioms and rules of inference of classical logic. For, in 

the latter case, we can derive MI from the ω-rule, which is: 

F0   &    F0’  &  F0’’  &   F0’’’    F0’’’’  &  … (n)(Fn)   

or: 

F0 ,  F0’ ,  F0’’ ,  F0’’’ ,  F0’’’’ ,  … 

------------------------------------------------- 

                        (n)(Fn)            

Hence, MI is a counterpart of the ω-rule, which is accepted, in the literature, as a 

semi-formal inference rule (or axiom), that cannot be captured by classical logic. 

Therefore, we can consider MI as an axiom or theorem (or alternatively a rule of 

inference) of infinitary logic. Later, we will argue that since MI is true of specific 

domains of items or entities (that is, in its most general formulation, in addition to 

being true of numbers in arithmetic, it is true of any infinitely recursively defined 

or constructed or ordered entities), we should use a many-sorted infinitary logic 

such that we can assign sorted-variables to these recursively defined or 

constructed or ordered entities. 

Since MI is not reducible to classical logic, one might consider MI (and hence 

arithmetic) to be synthetic. In other words, MI, as an axiom, is a truth about 



45 
                                                                                                                                                                                                                                            

infinite items; as an inference rule, it is a method of reasoning about infinite 

premises.  In neither case is it derived from classical logic. However, from the 

point of view that it is a part of a generalized deductive system, one might argue 

in defence of its analyticity. In fact, the idea that classical logic requires the length 

of the sentences and number of premises to be finite is based on the fact that logic 

has to simulate or formulate the finitude of the human mind. But since the 

dependence of logic on the human mind and psychology has been criticized by 

many philosophers and logicians (including Frege in his arguments against 

psychologism), there have been several attempts to remove finitude restrictions on 

logic (for example in works of Löwenheim or Tarski, who allow conjunctive or 

disjunctive infinitely long formulae, or formulae having an infinite number of 

quantifiers). As well, results from research about infinitary logic or ω-logic allow 

us to include infinitary axioms or rules of inference within a broader definition of 

logic. In this sense, although we have defended the view that MI is not reducible 

to classical logic and that it is a fundamental and independent infinitary axiom or 

rule of inference, if we are to decide whether MI is synthetic or analytic, we take 

the latter position. The only reason that MI is irreducible to classical logic is 

because of its infinitary nature (and the infinite number of application of axioms 

or rules of inference within it).  Therefore, in light of several 20
th

 century studies 

in mathematical logic that expand our understanding of logic, we can take MI as a 

generalized deductive rule or axiom. This account of MI is in contrast to that of 

synthetic knowledge or of a synthetic truth, for which other sources of knowledge 

or truth are required.  
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It is noteworthy that Gödel’s incompleteness theorems prove that no consistent 

formally axiomatizable theory that includes an elementary fragment of arithmetic 

can prove all truths of arithmetic, and such a theory cannot demonstrate its own 

consistency. It has been shown that the extra resource or axiom that enables us to 

prove the theory’s own consistency is an infinitary axiom or inference rule, which 

is higher-level induction (or more specifically, transfinite induction up to ε0). This 

might show the fundamentality of infinitary axioms or inference rules. In regard 

to the fundamentality of MI and its independence from other axioms and 

inference rules of logic, based on Gödel’s incompleteness theorems we might also 

argue as follows: Gödel’s incompleteness theorems are only true of those theories 

that include an elementary fragment of arithmetic, and the essential part of this 

fragment is MI; therefore, the presence of MI in a theory makes the proof of some 

truths, including the consistency, of the theory impossible. Hence MI must be an 

axiom (or theorem) independent of axioms of classical logic.   

In regard to a model that can satisfy MI in its full strength (namely an account of 

MI which is not a finite number of iterated Modus Ponens inferences but an 

infinite number), we need a model that consists of infinite entities that can be 

defined, constructed, or ordered recursively.  

As noted above, we do not define this model using MI2 as definiens. As we 

argued, such a definition is impredicative; it also removes the specific content and 

information from an MI axiom at the proof-theoretic level and as a result any 

proof based on it becomes vacuous and circular. On the other hand, it seems 
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wrong to follow a strategy that forces us to postulate MI2 at the model-theoretic 

level, or locate MI2 as a defining condition or restriction in the model, since in 

general, the restriction that is required for entities to satisfy MI might turn out to 

be weaker or stronger than MI2 upon investigation. A better strategy, therefore, is 

to include MI or MI2 itself at the proof-theoretic level and leave the required 

restrictions on the entities in the model as an open question. (For example, in the 

case of MI in arithmetic, such stronger [or alternatively weaker] assumptions or 

restrictions might be needed to avoid non-standard models.)          

In regard to our model theoretic account and possible related concerns, the 

question of whether we can have entities that correspond with our syntax in proof-

theoretic discourse depends on our metaphysical commitments. In fact, the 

individual constants and variables play the role of placeholders; the sequence is a 

relational structure, and the places in this structure have a specific relation to each 

other. That is, they are recursively constructed by a function or relation f (or 

function s). In such a minimal syntactic account, the entities in the model do not 

have any intrinsic or internal properties. Therefore, all of their properties are 

relational, meaning that they are based on a relation that a place (or a set of 

places) might have with another place (or set of places). For example, a place (or 

a place-holder) in the sequence, which is constructed by relation f, is in a complex 

relation with a reference (or initial) place or placeholder x, and these new complex 

relations and their consequent properties are ultimately derived from relation f . In 

the case of arithmetic, the relation f  is the successor, and the relational properties 

that we prove for these places or placeholders are constructed based on some 
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recursively defined operations on these placeholders (that are themselves 

recursively defined). These recursively defined operations can all be reduced to 

the operation addition, which can also be reduced to the successor function or 

relation f, and the initial placeholder. Therefore, all properties that are attributed to 

these recursively defined places, or placeholders, or entities, can ultimately be 

reduced to the recursively defined operation addition, and in turn to the relation f 

and the initial place or placeholder. Therefore, these non-intrinsic relational 

properties are complex functions of the relation f on places or placeholders or 

entities that are themselves recursively constructed based on the relation f. It is 

worth noting that hereditariness is based on the fact that the sequence is 

recursively constructed by the relation f, and that all hereditary properties are 

complex functions of this relation f within/among complex combinations of places 

or placeholders in the sequence. (In cases in which entities in the sequence are 

concrete physical objects, such as the case of the domino effect, the hereditary 

property will still be necessitated by a physical relation among the objects of the 

sequence). 

Based on this account of MI in which we only need places or placeholders that are 

recursively constructed, we defend a structuralist view of MI, the model of which 

takes the most minimal, abstract and general form, and it enforces a minimal or no 

metaphysical commitment. However, these places or placeholders or individual 

constants also can be filled or replaced or interpreted by abstract entities or items 

such as linguistic items (in particular, in meta-linguistic discourse, in which we 

are not necessarily interested in the semantics of these linguistic items) or by  
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non-abstract or concrete (or physical) ordered objects. In the latter case, the 

relation f becomes concrete (or physical) such that it can be related to internal or 

intrinsic properties of objects. However, even in this case, the properties which 

are to be proven true of these objects can be considered independent of the 

intrinsic or internal properties of objects, as far as a proof by MI is concerned. (An 

example of this might be found, again, in the domino effect.) Although I have 

defended a minimal ontological account in regard to MI and its model (which is 

based on a structuralist view), the debate about the metaphysical account of a 

structure and the places in it is as complex as the metaphysical account of 

universals; hence all of those epistemic and semantic concerns might play a role 

in accepting an account. In referring to a minimal account, I am suggesting a view 

that takes the minimal requirement that is needed for establishing the status of MI 

in an axiomatic system, disregarding epistemological and semantic concerns. If 

we consider these concerns, however, we might accept more ontological 

commitments, to be more accountable to these concerns.     

In arithmetic, we are dealing with the most abstract case. If we disregard 

philosophical concerns, we need only the places or positions in a structure, and 

the relations among these places in the structure. In fact, in the case of arithmetic, 

the entities in the model, which are natural numbers, have no intrinsic properties 

but only relational properties. In this sense we defend a structural and ordinal, 

rather than a cardinal, conception of natural numbers. However, in order to 

provide a plausible account so as to be accountable for epistemic and semantic 

concerns, we might accept more metaphysical commitments, and accept a model 
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which consists of abstract entities that are recursively defined or constructed, such 

as those defined by Zermelo or von Neumann.  For example the numeral 2 (as a 

singular term), which is the Arabic-number-name for the second place in the 

structure, can refer to an entity that is recursively constructed by von Neumann as 

{Φ , {Φ}} or by Zermelo as {{ Φ }}. Therefore, in a sense, the ontology of these 

entities that fills these places in the structure is arbitrary, and they need only be 

recursively constructed or defined. In other words, places or positions in the 

structure can be considered to be a generalization or abstraction from a set of 

ontologically defined entities that might fill these places.  

An important point is that these recursively defined or constructed entities (or 

places) have to be infinite in number to capture the unique infinitary characteristic 

of MI. Therefore, we need a form of the axiom of infinity, such as Zermelo-

Fraenkel’s axiom of infinity or Neumann-Bernays- Gödel’s axiom of infinity, that 

guarantees the existence of at least one infinite set.  

It seems that the axiom of infinity can be understood in terms of MI – that is, as 

an instance of the use of the principle of mathematical induction in which, in the 

place of a property (predicate) to be held by existing entities (name), we 

instantiate existence (which in a metaphoric and analogical sense, should be a 

property/predicate in metaphysical/linguistic realm), which guarantees the 

existence of infinite entities or items.
33

 In this sense, one might think of the axiom 

of infinity as the ontological basis that might be needed for a structuralist account 

                                                           
33

 This is the case if there exists a first entity or item and the existence of any entity or item 

guarantees the existence of the next one. 
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of MI. Interestingly, similar to the fact that MI is independent of the other axioms 

of classical logic, the axiom of infinity is also independent of other axioms of set 

theory, and in a sense they are counterparts of each other in the proof- and model-

theoretic realm. In fact, as we move toward a minimal ontological account of the 

model, the axiom of infinity becomes more similar to MI, in the sense that places 

in the sequence continue to infinity and can be filled with anything, and we are 

just interested in the relational properties of these places that are provable by MI. 

Note that the axiom of infinity is needed for the problem of impredicativity, 

although one might still not accept that it solves the problem, as was discussed 

earlier.     

3.3  Concerns with the Metatheoretical Use of MI 

The last concern that might affect the status of MI in an axiomatic system is the 

role of MI in other realms of reasoning, a particular case of which is in the 

metatheoretical and metalinguistic realms – that is, the use of MI as an axiom or 

theorem or inference rule at the metatheoretical and metalinguistic level, either in 

proving the required properties of the syntax and semantics of a recursively 

defined or constructed formal language (or system or theory) in which there are 

entities with infinite length, or in justifying the metatheoretical properties of a 

system or theory. One of the most important examples of the latter is consistency. 

An example of the former is the syntactic property according to which the left and 

right parentheses in sentential logic are equinumerous. Note that in this example, 

which is an example of the use of MI in metatheoretical discourse, we do not 
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define the objects of the domain by MI or MI2 as definiens, but we define or 

construct them recursively, and we accept MI or MI2 as an axiom of many-sorted 

infinitary logic postulated at the proof-theoretic or syntax level.   

This raises an important question. Given that we use MI in the meta-language, 

ML, or metatheory to prove metatheoretical claims such as the above examples 

involving the construction of the syntax and semantics of a formal system or a 

theory, or to prove such metatheoretical properties of an axiomatic system as its 

consistency, is it plausible to claim that we have proven or justified MI as a 

theorem in the theory, that is, in the Object Language (OL)? In other words, if MI 

is a derived theorem in the axiomatic system OL, can it play such an essential role 

in the construction of the OL, or in proving its essential metatheoretical properties 

such as consistency that show the legitimacy or acceptability of the system? Does 

this involve any circularity?    

We will address these questions in the pages that follow.  When necessary, we 

will, for the sake of simplicity, focus on two examples of metatheoretical issues as 

representative of others, namely the use of axioms and inference rules of a system 

that are needed, first in proving some syntactic properties of the system (when we 

are constructing a system), and second in proving some metatheoretical properties 

of the system the most important of which is a consistency proof.  

First of all, it seems that in the construction of a system and in a consistency 

proof, we legitimately use many resources of the OL, such as the axioms and 
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inference rules of classical logic and MI, without any hesitation. In fact, 

historically, when there was no sharp distinction between object language and 

meta-language, not only was it not a defect to use the resources of a system 

including its axioms and inference rules, in proving a metateoretical properties of 

a system, but also it was a desired goal to use only the axioms and inference rules 

of the system under scrutiny. For example, in the case of the consistency proof of 

a system, not only was there not any hesitation to use the axioms and inference 

rules of the system itself in proving the consistency of the system, but the goal 

was to prove consistency using only the system’s own axioms and inference rules. 

(Interest in such a goal is reflected in Gödel’s works on completeness; he 

eventually proved that such a goal is not always attainable. That is, Gödel’s 

second incompleteness theorem proved that a formal system containing arithmetic 

cannot prove its own consistency.)  

Therefore, historically, the use of the resources of a system for metatheoretical 

purposes was at least permissible, and not problematic. A reason might be that, in 

general, we are inclined to use the underlying logic of ordinary language in any 

intellectual activities, in particular in formal metatheoretical investigations, since 

that is the way we naturally reason. Furthermore, since classical logic is at least 

one of the best formal languages that closely and straightforwardly capture the 

fundamental structure of the underlying logic of ordinary language, we are 

inclined to use its resources (including its axioms and inference rules) in formal 

metatheoretical investigation. Likewise, in order to reason about infinite 

sequences at the metatheoretical level, we need MI in addition to axioms and 
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inference rules of classical logic. In this respect, we may either take it as an 

independent axiom/inference rule or as an axiom/inference rule that is reducible to 

the axioms/inference rules of classical logic. 

A separate investigation would be required in order to determine in what 

categories of cases it is desired, possible, or necessary – and under what 

conditions – to use a metalanguage that does not use any resources of an OL 

(including whatever axioms and inference rules such an OL has) to prove its 

metatheoretical properties such as its consistency. The answer to these questions 

depends in part on what we mean by consistency, and whether we look for an 

internal or an external conception of consistency. We will address this issue at the 

end.      

The second issue is whether being an axiom or a theorem in an OL makes their 

use in metatheoretical proof more or less legitimate. In principle, we have some 

degree of freedom to replace the set of fundamental axioms of a system with 

another set of fundamental axioms, while maintaining equivalence among the old 

and new systems.
34

 As a result, some axioms in the old system become theorems 

in the new system, and some theorems in the old system become axioms in the 

new system.  

Likewise, in our account of MI, in which we take MI in its standard form  

(in contrast to MI2  MI1 or U-MI), and accept it as an infinitary axiom of a  

 

                                                           
34

 In addition, there is a trade-off between the axioms and inference rules of a system. 
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many-sorted logic, we do not believe that we necessarily have to take it as an 

axiom. Our claim is that MI is logically independent of the axioms of classical 

logic. It can be inferred as a theorem from another axiom or inference rule of the 

same nature, namely another infinitary axiom or inference rule, such as the  

ω-rule; or alternatively, the ω-rule can be taken as a theorem and MI as an axiom.  

Therefore, at first glance, it seems that it does not make a difference whether we 

use axioms or derived theorems for metatheoretical proofs. This is because, 

neither axioms nor theorems precede each other chronologically; if one is to be 

given priority, it should be on the basis of the fundamentality or justificatory 

status of the axioms and theorems of that system. Since they are, in principle, 

interchangeable, there is no difference, from the aforementioned perspective, 

whether we use axioms or theorems of a system in metatheoretical proofs. 

Therefore, the axiom-hood or theorem-hood, per se, does not legitimize or 

illegitimize the use of an axiom or a theorem in metatheoretical proofs. 

Considering these points, and given our account of the status of MI, it follows that 

the use of MI in metatheoretical proofs has the same status whether we take it as a 

theorem or as an axiom
35

, and from this perspective the same judgement should 

be true of the alternative account of the status of MI, i.e. the MI2  MI1 account, 

or the U-MI account.  

                                                           
35

 Note that, as we have mentioned, there is always a trade-off between axioms and inference rules 

of a system too, and for the sake of brevity we do not always express it. 
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However, if an axiom and set of theorems derived from it are independent of the 

other axioms and theorems of a system, then there is no possibility of 

interchanging a member of the former with a member of the latter. Such 

independence shows the fundamentality of the former set, or at least the 

fundamentality of a member of the former set, which is taken as its representative 

(and as an axiom), and it shows its irreducibility to or unjustifiability by the 

axioms or theorems of the latter set.   

Therefore, in our account, since MI is a fundamental axiom or inference rule 

independent of other axioms and inference rules of classical logic due to its 

infinitary nature, it cannot be replaced by other axioms or inference rules of 

classical logic, although it can be replaced by one of its counterpart axioms or 

inference rules which are of an infinitary nature.  

On the other hand, since in metatheoretical proofs we need to prove the desired 

results for an infinite number of items or entities, we need MI in metatheoretical 

proofs, no matter which account of MI we accept or adopt. But due to the 

differences between the use of MI in an OL proof and its use in an ML proof, the 

problems of the U-MI account described in the context of an OL become more 

serious in the context of an ML.    

As we have explained, an advantage of our account of MI is that it is more 

general. It can be used in any realm of reasoning, with a recursively defined or 

constructed model, in contrast to the U-MI account, which requires, in each realm, 
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a specifically MI2-defined model, and this in turn might cause further problems. 

(For the sake of clarity I use boldface and larger fonts to show the use of   U-MI, 

MI2  MI1, MI2, or MI in metatheoretical proofs.)                                

Before elaborating on the aforementioned problems, it is important to point out 

the unique role that MI plays in a ML in comparison with the role of MI in an 

OL. Let us consider again the example of consistency proof. A formal system can 

imply a contradiction or absurdity, and if a system is inconsistent this can appear 

somewhere in a derivation or in an inference within the system. From the meta-

judgemental viewpoint, we want to have a formal system free of such 

contradictions, and hence we would like to make sure such contradictions do not 

happen anywhere in the derivations and inferences. When there are a finite 

number of steps in the inferences within an OL, in which axioms and inference 

rules of classical logic and MI (of OL level) are used, these axioms, inference 

rules and MI, by themselves (or in the worst via an exact copy of them in a ML, 

using a different notation) show (in a Wittgensteinian sense) the presence or 

absence of a contradiction or absurdity, although it might be tedious work to go 

through all of these derivations and inferences to make sure no contradiction 

appears. However, when the number of steps (each step of which might use 

axioms and inference rules of classical logic and MI) and hence the number of 

formulae that are produced is infinite, the OL inferences (or a copy of them in a 

ML) are unable to show, by themselves, that the presence or absence of a 

contradiction is guaranteed. Hence we require mathematical induction, MI, at the 
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metatheoretical level. However, this instance of mathematical induction does not 

replicate an MI of the OL level, since at the metatheoretical level, it ranges over 

totally different entities, namely formulae of the OL. That is, its basis clause is 

about all the axioms, inference rules and MI of an OL, and its inductive step is 

likewise concerned with these axioms, inference rules and MI of an OL. 

Therefore, MI (at the metatheoretical level) plays a unique and genuine 

metatheoretical role in ML that cannot be shown in an OL. Hence, in this sense 

the use of MI in metatheoretical proofs is different from the use of other axioms 

and rules of classical logic at the metatheoretical level. Nevertheless, we do not 

believe that this by itself makes the use of MI at the metatheoretical level 

problematic.    

However, the U-MI account of mathematical induction in metatheoretical proofs 

is problematic. To explain the problem, let us again use the consistency proof as 

an example.  In a consistency proof at the metatheoretical level, to be able to use 

U-MI, or MI2  MI1 one should define a model using (or by) MI2 as 

definiens on the level of metatheory. We know that the entities for which U-MI 

should be used are formulae (theorems) of the OL, and the variable ranges over 

these formulae. That is, we would like to show that at any step of inferences and 

derivations in the OL, if there is no contradiction (that is, no absurdity), then there 

is no contradiction or absurdity in the next step either. As we know, the transition 

from one step of derivation in the OL to the next involves the use of axioms and 

inference rules of the OL (including U-MI itself in the OL). The problem is that 
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although the derivation of formulae or theorems of the OL can be recursively 

constructed, unlike what the defenders of the U-MI account are required to do in 

using U-MI in an OL, one cannot antecedently define the sequence of formulae or 

theorems using MI2 (as definiens) in the model of metatheory (in order to be able 

to use  U-MI, or MI2  MI1 in metatheory and eventually to prove that there is 

no contradiction or absurdity in any step of derivation in the OL, and hence no 

contradiction at all). For, just as we explained in the context of OL in previous 

sections, this is too strong an assumption, in providing a model at the 

metatheoretical level, to permit a proof to use MI2  MI1. That is, in this case, 

at the model-theoretic level of the metatheory, we have to presuppose what we are 

going to prove about sequences of derivations in the OL. In other words, in the 

model-theoretic level of the metatheory, we have to define a model consisting of 

linguistic entities that constitute the sequence of formulae in the OL such that they 

satisfy MI2. But this is what we want to prove, and we do not want to presuppose 

it as the defining condition – a case of petitio principia.  Note that the problem 

with the metatheoretical use of U-MI, in comparison to its OL use, is more 

serious due to the nature of the entities for which it is used. For although these 

entities are abstract (that is, they are linguistic entities), they are determinately 

defined by independent restrictions – in this case, the structure of the derivations 

of the formulae in the OL. This is, in a sense, unlike the case of arithmetic, in 

which one might argue in defence of the view that numbers can be defined based 

on the rules by which they are governed. (Even in that case – in which, in 

answering the impredicativity problem, the defender of the U-MI account presents 
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the independent specifiability or independent existence argument – s/he has to 

show how these independently specified or existed model can be re-specified or 

redefined using MI2 as definiens.)     

Since our account of MI does not suffer from such a problem, and only requires a 

set of recursively defined items – in this case linguistic entities which are 

sequence of formulae – it can unproblematicallly serve as MI in metatheoretical 

proofs. Therefore, from the metatheoretical viewpoint, our account does not face 

the problem that the U-MI account does.  

Furthermore, our account requires a minimal ontological commitment; at most, it 

requires the axiom of infinity for the items or entities that are recursively defined.  

The last part of this section addresses the question posed earlier in this section 

about possible conceptions of the consistency of a system. In so doing, it also  

re-examines the question of the legitimacy of using the axioms and inference rules 

of the system itself in evaluating and proving its consistency. (Likewise, similar 

analyses can be proposed for other metatheoretical properties of a system). 

If a system is inconsistent, there should be one or more axioms that cause such an 

inconsistency. Suppose we manage to prove, in a metatheoretical proof using MI 

and other axioms and rules of inference, that a formal system is consistent. Based 

on Gödel’s second incompleteness theorem, we know that if the formal system 

contains arithmetic, it cannot prove its own consistency, and it requires external 

resources. Let’s assume that we use the formal system’s own axioms and rules of 
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inference, including MI, and an external axiom to prove the consistency of the 

system. The question is this: is it possible that one of the axioms of the system, for 

example MI, is inconsistent with others, but that due to the use of this very axiom 

in proving consistency, its inconsistency is covered up?  

That is, given that without a consistency proof, we are not sure that all axioms of 

our OL are consistent, and supposing that they are not and we do not know which 

axiom is the source of inconsistency, how can we use one of these suspicious 

axioms, such as MI, in showing that they are consistent?   

It seems that a more robust and self-contained conception of consistency is that of 

internal consistency.  A consistency proof, in such a conception, uses the system’s 

own axioms and inference rules, or to put it differently, its own rules of the game, 

to show that there is no contradiction. In other words, at least one kind of 

legitimate conception of consistency is one in which a system with a set of axioms 

(and inference rules) is considered to be consistent based on using its own axioms 

and inference rules in the process of proving consistency, and not based on using 

external axioms and inference rules within that process. Gödel showed that for 

those formal systems expressive enough to model arithmetic, we need external 

resources to prove the consistency of the system. However, if such an internal 

consistency proof is not entirely possible (that is, in the case of those theories that 

meet the hypotheses/assumptions of Gödel's second incompleteness theorem), it is 

nonetheless not a disadvantage to use the system’s own axioms and inference 

rules in its consistency proof to the greatest extent possible.  Furthermore, we 
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know that there are many self-verifying first-order systems of arithmetic that are 

weaker than Peano arithmetic, and they are capable of proving their own 

consistency. That is, they are capable of expressing the provability but not of 

formalizing diagonalization.
36

  

One response to objections about internal consistency is that it has the advantage 

of being a self-contained and self-verifying attribute of a system. In seeking to 

prove such a consistency, one uses those axioms and inference rules that are being 

investigated. If some inappropriate set of axioms (that is, a set of axioms deemed 

inconsistent based on an external inference machinery, and inference rules) is 

proven to be consistent by using these inappropriate axioms themselves (which 

should be accompanied by an external axiom, when the required 

hypotheses/assumptions of Gödel’s second incompleteness theorem are met), then 

this inappropriateness is consistently held, and we do not necessarily need to 

reject such a system, since it has the virtue of self-contained or internal 

consistency. We might use another system to check the consistency, but still we 

can say that the system is consistent based on its own principles.  

It appears that this conception of consistency is also plausible; in proving it, one 

uses the axioms and inference rules of a system itself, and uses as few external 

resources as possible.  Such an apparent circularity is considered to be part of the 

concept of consistency itself (in contrast to, for example, the concept of truth 

simpliciter).  

                                                           
36

 See Willard, D. (2001) 
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In other words, to adopt a system in which the axioms and principles are  

non-contradictory is to adopt these axioms and principles themselves as judging 

axioms and principles that are used in the evaluation of their own consistency 

(given, of course, that the axiomatic system can provide such principles and 

evaluation tools). That is, in proving this type of consistency, not only is the use 

of the axioms and theorems of the system not illegitimate, but it provides more 

evidence for the internal or absolute consistency of the system. This is due to the 

fact that if one always follows the axioms and inference rules of the system – even 

in a metatheoretical consistency proof – the system still proves to be consistent 

based on its own axioms and inference rules. This is in accordance with the way 

we use the rules and principles of the ordinary language, when using that 

language metalinguistically to make assertions about the language itself.  

We can reformulate this problem as follows.  This conception or definition of 

consistency, and in particular its corresponding consistency proof, is 

impredicative, in the sense that the evaluating axioms and inference rules invoke 

(or are identical to) axioms or inference rules that are evaluated (analogous to 

impredicative definitions in which the definiens invokes or appeals to the 

definiendum itself or an entity of higher type that contains the definiendum). 

However, this type of impredicativity, in contrast to others, can be considered as a 

virtue, an advantage, and a desirable feature of a system of axioms and inference 

rules. This is because a full-fledged understanding of consistency views it as a 

self-contained property that does not need an external reference point or criteria.  

It presents a mutual-referential (analogous to self-referential) relation among a set 



64 
                                                                                                                                                                                                                                            

of axioms and inference rules that should not contradict each other according to 

these same axioms and inference rules as evaluating tools.      

The impossibility of such a project in those cases in which the Gödel’s second 

incompleteness theorem is valid (namely its required hypotheses/assumptions are 

satisfied) does not make the project undesirable, and we know that if the required 

assumptions are not satisfied, it is not impossible, as noted earlier.   

As an example, if we have an axiomatic system in three-valued logic, we might 

prefer to prove its consistency based on its own axioms and rules of inference. 

That is, for those people (or for a reasoning machine) who have such an axiomatic 

system, it might be preferable to have a consistency proof based on their (or its) 

own axiomatic system, and if such a proof can be provided, then the system is 

consistent based on its own axioms and inference rule. (An analogy might be 

Neurath’s example of the situation in which one is in a boat on the sea, and does 

not have any choice to repair the boat except to do so while one is using it on the 

sea.) 

If we prove the consistency of a system using the axioms and inference rules of 

another system at the ML level, it shows that the latter system, which we use to 

argue about the former system (or sub-system) under evaluation, is preferable. 

Therefore, we might defend the view that this is a matter of preference (or 

application). 
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To evaluate a system’s consistency based solely on the axioms and rules of 

inference of another system is a kind of consistency proof that does not 

necessarily validate the use of the system’s internal rules in judging itself. In this 

sense, it is an external or relative consistency proof, which is in fact relative to a 

more authentic or reliable system. The impossibility of absolute internal 

consistency proof for those theories that meet the hypotheses/assumptions of 

Gödel's second incompleteness theorem shows that at least for such theories a 

kind of self-referentiality does not allow for this sort of absolute self-consistency 

proof.  

A separate investigation may be required to determine in which situations a 

metalanguage might have more, or alternatively fewer, axioms and inference rules 

in comparison with the object language for which it is to be used in 

metatheoretical proofs.  

In general, depending on the claims we need to prove in the metalanguage, we 

need to add to or remove axioms from an object language in the metatheoretical 

proofs. However, MI is one of those axioms that are always needed for proofs 

about an infinite number of terms or items.  

These observations show that there is no problem in principle in using an axiom 

or theorem of a formal system in its own consistency proof. In fact, the necessity  
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of the use of a type of MI principle in such a proof shows its importance.
37

 The 

other uses of MI in metatheoretical proofs, such as proofs related to the 

construction of the syntax or semantics of a language, also show the 

fundamentality of MI, even in the construction of a system of which it is going to 

be a part. 

However, the metatheoretical use of MI reveals an advantage of our account of 

MI in comparison to rival accounts, due to the particular use of MI in the specific 

domain of entities (which are determined by independent restrictions), in 

metatheoretical proofs. 

 

 

 

 

 

 

 

                                                           
37

 It is worth noting that in metatheoretical proofs, and in particular in the consistency proof of 

those theories that meet the hypotheses/assumptions of satisfy Gödel’s incompleteness theorems, 

we need to deal with a larger infinity, of higher type ordinals; that is, we need higher-level 

induction or transfinite MI. 
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