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ABSTRACT

Long-range predictive control (LRPC) has been gaining acceptance in many
industrial applications because of its unique ability to implement multi-step optimiza-
tion. This thesis is concerned with the extension of the performance criteria to include
a terminal matching condition in both the control and identification strategies, and
the implementation of adaptive LRPC for the regulation of mean arterial pressure.

A weighting term on the square of prediction error at steady state was added
as a terminal condition in the LRPC performance criteria. The properties of this
new weighting term have been examined using the Generalized Predictive Control
(GPC) algorithm of Clarke et al. (1987), a widely used version of the class of LRPC.
Closed-loop analysis shows that the steady-state error weighting is not only compa-
rable to large prediction horizons, but also has additional «dvantages over ordinary
control weighting. Most interestingly, this weighting makes it possible to remove the
additional closed-loop order introduced by the integral control action and yet does
not result in any offset at steady state even in the presence of a gain mismatch.
Two strategies are suggested for adjusting such a weighting term as a primary tuning
parameter while other LRPC tuning parameters are kept constant.

The dual of the steady-state error weighting term in long-range predictive
identification (LRPI) was examined in the context of the L(g~!)-filtering algorithm
developed by Shook et al. (1991). For the prediction horizon n2 tending to infinity,
Shook’s algorithm causes the whole ARMAX modeling scheme to change from an

equation error scheme to an output error one. However, this convergence property is



not valid for the ARIMAX model because L(¢™') with ARIMAX does not converge
to a finite polynomial. Although an extension of Shook’s LRPI algerithm to include
a terminal matching condition is not feasible, analyzing the derivation of LRPI al-
gorithm does reveal the fact that the terminal cordition can be indirectly realized
by identification of the process gain. Thus, a simple algorithm similar to the non-
minimal model predictor (Lu and Fisher, 1990) is proposed for on-line estimation of a
process gain. As a result, an overall performance criterion for a multi-step, adaptive,
predictive contro! including the terminal condition is realized by the combination of
a long-range predictive control law such as GPC, the steady-state error weighting,
Shook’s (1991) LRPI algorithm, and an on-line gain estimation algorithm such as the
one proposed in this thesis. The performance using this overall performance criterion
was shown by simulation to be very effective and to yield results superior to classical
GPC. Even with a very small prediction horizon and large model-plant mismatch, an
accurate estimation of process gain combined with the steady-state error weighting
improves the overall robustness of the controller.

The combination of GPC, LRPI, and steady-state error weighting was also
tested experimentally on a pilot-scale continuously-stirred heating system and the
regulation of mean arterial pressure (MAP). Because of the latter application, this
thesis also describes the development of a closed-loop control system for automatic
drug delivery. This truly model-based adaptive control system, a combination of GPC
with steady-state error weighting and LRPI, accomplishes an overall performance ob-
jective function in which identification and control are mutually compatible. It was

developed in a real-time, multitasking software environment on a personal computer



so that on-line changes are possible. The infusion of sodium nitroprusside (SNP),
a clinically used vasodilator, is managed by a drug delivery pump controlled by the
personal computer. All in-house programs were coded in “C”-language. Several ex-
perimental studies of the regulation of MAP using SNP infusion were conducted in
an ethics-approved manner. The effectiveness of this control system was evaluated
by a series of disturbances induced by the infusion and injection of norepinephrine,
adenosine mono-phosphate, and SNP. It is concluded that the system performs favor-
ably even on a highly non-linear and time-varying process in a delicate environment

such as MAP regulation.
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Chapter 1

Introduction

Closed-loop proportional, integral, and derivative (PID) control has been a popular
control mechanism in chemical, mining, metallurgical and the pulp-and-paper indus-
tries. Early classical feedback control methods have been progressively supplemented
by other advanced predictive and adaptive techniques since the landmark papers by
Astrom and Wittenmark (1973), Clarke and Gawthrop (1975), etc. More recently,
the successful applications of Model Algorithmic Control (Richalet et al., 1978) and
Dynamic Matrix Control (Cutler and Ramaker, 1980) have been followed by several
unifying approaches such as Internal Model Control (Garcia and Morari, 1982) and
Generalized Predictive Control (GPC) (Clarke et al., 1987). As these advanced con-
trol techniques receive widespread acceptance among chemical industries (Seborg et
al., 1986; Lambert, 1987; M’Saad et al., 1987) , applications in other areas are also
being pursued.

One of the areas where closed-loop control has currently received much at-
tention is in the control of biomedical systems (Vozeh and Steimer, 1985; Linkens,
1984; Linkens and Hacisalihzade, 1990). The human body from a physiclogical point
of view can be thought of as being a chemical plant in which numerous chemical
reactions and mass transfer operations occur. The brain serves as the main control

center which requires the autonomic or central nervous system to provide voluntary



as well as involuntary feedback control signals. When the mini-“chemical plant”
fails to maintain one or more physiological variables within certain desirable Lim-
its, the administration of therapeutic drugs becomes necessary. If the control of the
physiological variable requires continuous drug intervention, a closed-loop monitoring
system with automated drug delivery will potentially improve the quality of control
as well as simplifying the labor-intensive drug administration procedure currently
practiced by experienced medical personnel. This incentive has brought a number
of investigations into automated drug delivery systems especially for mean arterial
pressure (MAP) regulation because most cardiac patients require intraoperative and

postoperative drug therapy for induced hypotension.
1.1 Scope and Objectives of Study

An early closed-loop control system designed for MAP regulation was based on the
classical proportional-integral-derivative (PID) feedback method (Sheppard et al.,
1975). The manipulated variable for induced hypotension was the infusion of sodium
nitroprusside (SNP), a commonly used vasodilator. Because a PID-based algorithm
was used, frequent tuning was necessary to maintain desired performance {(Sheppard,
1981). Since body sensitivity and the dynamic response of MAP to SNP infusion vary
from patient to patient or even during the course of infusion on the same patient,
advanced control techniques with some degree of adaptivity should be more beneficial
(Katona, 1982). Although several adaptive and predictive control strategies have
been investigated (see Chapter 5), their control objectives are all based on single-step
ahead, single-point optimization strategies that are highly sensitive to model-plant

mismatch and varying time delay.

Long-range predictive control (LRPC) which considers the minimization of the



sum of prediction errors over a certain time horizon appears to be a better alterna-
tive. One popular version of LRPC 1s commonly known as GPC. With the long-range
predictive identification (LRPI) algorithm developed by Shook et al. (1991), a com-
plete overall performance criterion is “optimized”. However, the long-range prediction
requirement necessarily makes the computation load of an adaptive controller very
heavy for each new contro! action to be calculated. On the other h:.nd, a relatively
short output prediction horizon may result in overly strong control action. The long-
range control algorithm would be less computationally-intensive if a shorter output
prediction horizon were used with a facility for retaining the long-range property by
considering the output prediction error at infinite time. Therefore, the scope of this
work is three-fold: first, to include a terminal matching condition in the LRPC for-
‘mulation; second, to develop the theoretical results in design procedure; and third,
to implement a robust adaptive closed-loop control system for MAP regulation. One
specific objective of this research is to develop a closed-loop biomedical controller
which makes use of LRPC algorithm to achieve high quality and robust closed-loop
control of arterial blood pressure.

In sumnmary, the objectives of this thesis are:

» explore the potential and properties of a terminal matching condition in the

context of LRPC,

* obtain a control-relevant identification strategy for LRPI controllers using the

terminal matching condition,
¢ develop a long-range, adaptive control system for automatic drug delivery,

e experimentally evaluate the performance of the controller in the regulation of

MAP.



1.2 Thesis Organization

The first part of this thesis from Chapters 2 to 4 concentrates on the development
of relevant theory. The second part (Chapter 5 onwards) deals with the literature
review, implementation, and evaluation of a closed-loop drug delivery system.

Chapter 2 describes the formulation and closed-loop analysis of the terminal
matching condition as an extension to the basic LRPC objective. The terminal con-
dition is formulated as a weighting on the output steady-state error. This chapter
also shows that the steady-state error weighting is beneficial under both parametric
and convolution modeling techniques.

Since this new weighting term becomes an additional tuning parameter, two
tuning strategies are proposed in Chapter 3. An evaluation of this new tuning pa-
rameter compared with other tuning parameters is also included in this chapter.

LRPI with the proposed terminal condition is discussed in Chapter 4. It is
found that a combination of the LRPI algorithm developed by Shook et al. (1991)
and an adaptive gain estimation algorithm results in a LRPC-relevant identification
strategy. A similar version of the non-minimal predictive control of Lu and Fisher
(1990) is suggested as a gain estimation algorithm .

Chapter 5 serves as a bridge between control theory and biomedical appli-
cation. It contains a critical and thorough review of the current development in
automated blood pressure regulation. Sheppard’s MAP controller (Slate et al., 1980)
and the IVAC Titrator (Cosgrove III et al., 1989) are surveyed first, followed by other
developments such as predictive control strategies and expert control systems.

The design and development of a long-range, adaptive, and predictive control
system for blood pressure regulation are described in Chapter 6. The system features

both constrained and unconstrained G¥ C, and has been tested in a preliminary study



(Kwok et al., 1991).

Chapter 7 systematically evaluates the final version of the control system which
has been implemented with the steady-state error weighting term and LRPI.

Bach chapter represents an individual effort and thus is furnished with a more
detailed introductory section. Since a majority of the chapters have been either
published or submitted for publication, the thesis is arranged in a paper format
acceptable to the Faculty of Graduate Studies and Research. Overall conclusions and

recommendations for future research are found in the final chapter of the thesis.
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Chapter 2

LRPC with a Terminal Matching
Condition: Theory

2.1 Introduction

The early methods for minimum variance (Astrém and Wittenmark, 1973) and gen-
eralized minimum variance control (Clarke and Gawthrop, 1975) were aimed at pro-
viding tight control of processes by minimizing the variance of the process output
predictions. A key factor in the successful use of these methods is correct prior se-
lections of the model order, n, and time delay, %, such that accurate k-step ahead
predictions are made. Poor selection of k or a varying time delay affects the control
performance or even leads to instability. Improper selections of model order may re-
sult in similar problems although over-specified model order may not be as sensitive as
the uncertainties in time-delay. Recent developments in long-range predictive control
(LRPC) which minimize the sum of prediction errors over a user-specified time hori-
zon provide an alternate solution to the above mentioned drawbacks (Richalet et al.,
1978; Cutler and Ramaker, 1980; Clarke and Mohtadi, 1989). Since the strength of
the LRPC algorithm lies in the long-range predictions of process outputs an<d control
actions, these two predictions which have a direct influence on stability and dynamic

response in any long-range predictive controller (Garcia and Morari, 1982) naturally



become the tuning parameters. The choices of prediction horizons are less influen-
tial than that of the time-delay or model order. However, the long-range predictive
nature necessarily makes the computation load of an adaptive controller very heavy
for each new control action to be calculated. On the other hand, a relatively short
output prediction horizon may resu'* in vigorous control actions or even unstable
control. Moreover, the long-range control algorithms such as MAC (Richalet et al.,
1978), DMC (Cutler and Ramaker, 1980), and MOCCA (Sripada and Fisher, 1985)
which employ a convolution model as the internal model (Garcia et al., 1989) to en-
compass most of the process dynamics require as many as 50 step or impulse response
coefficients, a size not economically sound for adaptive control. This paper propeses
a modified approach to the LRPC scheme which introduces an output terminal con-
dition in the minimization of a multi-step prediction cost function. The terminal
condition is applied in the form of weighting on the square of the error between the
predicted process steady-state value and the setpoint. This weighting combined with
a relatively short output prediction horizon is able to resolve the trade off between
economic computation and long-range robustness. The concept of steady-state error
weighting is depicted in fig. 2.1. An ordinary LRPC algorithm considers process out-
put predictions over a large horizon from nl to n2. The modified approach would
consider a relatively shorter horizon from nl to ns plus the term at steady-state so
as to ensure the terminal matching of process output to the setpoint.

Steady-state information has been very useful in many control applications.
For example, steady-state gains have been routinely used in steady-state optimization
of chemical processes (McFarlane and Bacon, 1989). In some cases, steady-state
models from non-linear modeling techniques were also used to determine the current

optimum and the directioa of movement of the manipulated variable (Bamberger and
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Isermann, 1978); then, the manipulated variable was moved in the direction of the
steepest descent to minimize the objective function (Garcia and Morari, 1981; Garcia
and Morari, 1984; Bhattacharya and Joseph, 1982). But never has the weighted
steady-state value been used as a tuning parameter. Papadoulis et al. (1987) have
developed a cautious self-tuning controller comprising a minimum variance part and
a cautious part. The cautious part was implemented by penalizing in the control
law the square of control deviation from a constant that approximates the control
action at the target steady state. However, the steady-state value was not estimated
on-line. In addition, it has little direct influence on dynamic response because the
contribution of the cautious part diminishes as identification improves.

~

The contributions of this study are:

1. The incorporation of a weighted steady-state term as a tuning parameter in
the performance criteria of LRPC using both transfer function and convolu-
tion models. The incorporation of such weighting in the optimization criterion
by itself does not reduce the computation load. In fact, the use of conven-
tional prediction techniques with steady-state weighing would still require just
as many iterations of the Diophantine identity or step-response coeflicients to
predict the future steady-state value of the output. Technical results presented
in Section 2.2 provide an alternative to this difficulty so that fewer iterations
are required because of using a smaller prediction horizon with transfer function
models. With a convolution model, a complete set of step response coefficients
is not required. Only a few dynamics response coefficients plus the steady-state
gain are required in deriving a long-range predictive controller. The latter idea
relies on exact representation of the high-frequency dynamics of the proces: by

the first few step-response coefficients and approximating the remainder terms
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(usually low frequency terms) by a first-order model.

2. Development of a closed-loop long-range predictive controller which DOssesses
a finite-time horizon with a weighting on the infinite-time horizon for terminal

matching.

3. Analysis of the steady-state error weighting (y-weighting) in the context of its

effect on closed-loop stability and performance.
2.2 Process Modeling

Most model predictive control techniques are based on the optimization of a quadratic
objective function involving the error between the setpoint and the predicted outputs.
The distinguishing feature among different techniques is the model type and structure
for making the predictions. The most commonly used model types are: discrete-time
transfer functions describing the input-output relationship, or discrete-time convolu-
tion models in the form of step or impulse response coefficients. The use of these

models for finite-horizon plus steady-state prediction is considered in the following

sections.

2.2.1 Transfer Function Model with d.c. Gain

A single-input, single-output system can be described by a time-series type auto-

regressive moving-average model with an exogenous input{ARMAX),
A(g)y(t) = ¢~ B(q ™ )ult) + d + C(g)e(t) (2.1)

where A(¢™), B(¢7*), and C(¢™") are polynomia:s in the backward shift operator g~

such that

¢y(t) =y(t-1)

12



£(t) is an uncorrelated random noise sequence with zero mean. k is the process time
delay. d represents the non-zero process output when the control is steady at zero.
The order of the system is defined by the degree of the polynomial A(g™1).

Since the parametric polynomials A(¢™') and B(g~?) for the true system are
unknown, their estimates from recursive identification are used for controller design
according to the certainty equivalence principle. The noise polynomial C{g~!) which
describes “colored” disturbances on the output is either estimated on-line by the Ex-
tended Least Squares identification method or replaced by an observer polynomial
T(q~'} chosen a priori. By replacing the polynomials in eqn. 2.1 with their esti-
mates, the process model is given as follows (“(g71)” is dropped from all polynomial

representations for brevity),

Ay(t) = ¢ *Bu(t) + d + TE(2) | (2.2)
where
A= 14ag +ag 2+ + g™
B = 14bg +bg 24 +byg™
T = 14tg "+t +-- +tneg™

Now consider the Diophantine identity:
T=EA+q7F (2.3)

which uniquely defines £} and F; when T, A and 7 are given. Multiplying eqn. 2.2 by

E! and substituting eqn. 2.3 into eqn. 2.2 gives the following j**-step ahead model,
Ty(t+3) = EjBult+j — k) + Fjy(t) + Ejd + E;TE(t + j) (24)
By applying the following identity to eqn. 2.4,
E{B=G/T+Hq7 (2-5)

13



where the degrees of G and H are j — 1 and max(nb ~ 1,nt — 1), past (known)
control actions are separated from the unknown current and future values so that the

optimal j**-step ahead predictor is given as follows,

J+7 ) =Gut+5-k)+ Hiug(t — k) + Fiys(t) +r (2.6)
where
u(t — k)
ut—k) = —=
w(t) = 4
r o= %%)d

The steady-state prediction term is obtained by applying the final v.lue the-

orem to eqn. 2.2,

ol B 4 .
dle 1) = ) + 5o 2.1

where s denotes a value at steady state. The expected values of the terms in TE(-)

B( d
A

are zeros. Eqn. 2.7 represents a local linearization of the steady-state value of the
process. This value is assumed to be valid in a local region around the current

operating condition and will be continually updated to adapt to changing conditions.
2.2.2 Transfer Function Model with Integrator

When the process model assumes the form of an auto-regressive integrated moving-

average (ARIMAX) with an exogenous input,

. . ¢

Ay(t) = ¢~ Bu{t) + T—g% (2.8)
where

A=1-gqg"
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a d.c. gain term is no long necessary as it is removed by the integrator A. Having
the integrator in the noise model also represents a class of non-stationary dynarnics
such as random steps at random times, ¢.¢. random-walk or Brownian motion type
disturbances.

To derive a j**-step ahead predictor from eqn. 2.8, another Diophantine iden-
tity is considered below,

T = E;AA + ¢ F; (2.9)

Multiplying eqn. 2.8 by AFE;¢’ gives:
E;AAy(t+7) = E;BAu(t + § — k) + E;TE(E + 7) (2.10)
Again substituting eqn. 2.9 into eqn. 2.10 results in the following j**-step ahead model,
Ty(t+j) = E;BAu(t + j — k) + Fyy(t) + E;TE(t + 7) (2.11)

Future control actions are separated from the known ones by substituting the following

identity into eqn. 2.11,

E;B=G;T+H;q™ (2.12)

where the elements of G; now corresponds to the first § — 1 open-loop step response

coeficients. The optimal j**-step ahead predictor becornes
gt +7 1) = GiAu(t + 5 — k) + H;Aus(t — k) + Fyys(t) (2.13)

where u; and y; are values filtered by 7.

One might be tempted to calculate the steady-state output prediction by ap-
plying the final value theorem to the predictive model stated in eqn. 2.13. However,
the presence of the integrator yields an indeterminate result. The following Lemmma

helps to explain why the steady-state prediction from an ARIMAX model is different
from that of an ARMAX model.
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Lemma 1

Given two polynomials T and A with degrees nt and na, for any integer value of 7,

polynomials E; and F} are uniquely defined by the following identity:
T=EA+q™ Fy

Let r;, 2 =1,2,---,1a, denote the distinct roots of polynomial A so that maultiplicity

na

of r; is s; and Z‘Sf = na. If the roots of A are all inside the unit circle, i.e. Ir: | <
i=1
1,Vi =110 na, polynomial E} converges to % and F} to zero as j tends to infinity.

Proof

% can be factored into the sum of 77a functions such that

2= @+ A0+ + falo)

where
ai
filg) = 0 gy
For each first-order factor, I_TIT, the Taylor series expansion around the point r;

has a remainder of zero in the limit as n — o0, i.e.
)= (L +rg™ + (rig ) o (g™ ) -2 )™

and this series converges al.solutely on the interval | r; | < 1. Since fi(q) is a mul-
tiplication of s; power series with the same interval of convergence, it also converges
absolutely. According to the Taylor series expansion of functions, a convergent series
can be added or subtracted to another convergent series to give yet another con-
vergent series. Therefore, the Taylor series expansion of % is given by E} and the

remainder F_;-'q“'j approaches zero as j tends to infinity.

ooa
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Remark 1

Recall the Diophantine identity for the ARIMAX model in eqn. 2.9,
T=FE;A+q7F; (2.14)

where

A=AA

The divisor polynomial, A, has one root on the unit circle. Therefore, the remainder

term g=7 F; does not vanish and E; does not approach -;1% as j increases to infinity.

oono

Remark 2

The term % in eqn. 2.14 is similar to having a step input to the transfer function
% because % is a step function. The coefficients in the non-convergent polynomial
E; are the step response model parameters that, for sufficiently large j, approach the
steady-state gain, %&%. Since the series E; converges to an infinite stationary series
(assuming all roots of A are inside the unit circle), the remainder polynomial, F;

which is of finite order, necessarily converges to a finite constant polynomial (defined

as F).

ooao

Remark 3

The polynomials G; and H; in eqn. 2.12 have a similar convergence to E; and F;.

Substituting egn. 2.12 into egn. 2.9 gives

B _.(H; BF
A =Gt (?J + AA}) (2.15)
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Since F; converges to F, and G; corresponds to an infinite series of step response

model parameters in the limit as j approaches infinity, H; has to converge to a constant
polynomial also. Therefore, for sufficiently large j,

[ B H, BF,
o’ (‘E - G;) = "7',.,— + m“ (216)

Qoo

Remark 4

The term -£- in egn. £.16 is also similar to having a step input to the transfer function
-ﬁ—. The elements in polynomial G; correspond to the step response coefficients. There-

fore, the left-hand-side of eqn. 2.16, for sufficiently large j, can be further reduced to

%i such that

H,  BF,
T " AAT

(2.17)

b

aoa

Now applying the result in Lemma 1 to the j**-step ARMAX model in eqn. 2.4,
2

T - T T
Jm Ty(t+5) = = Bult+j ~ k) 74+t 7+ (2.18)

the optimal steady-state prediction at time ¢ is given as

lim ¢ +5) = i(s | ) = i}%u(t) ¥ % (2.19)
which yields the same result as eqn. 2.7.

However, in the ARIMAX model, the remainder term F; in eqn. 2.9 does
not diminish as j increases. The future prediction of §(t + ;) is always dependent
on the term F; ys(¢) in which the coefficients of F; change with time. Therefore,

the output steady-state prediction §(s) requires the converged polynomial F,. One
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could calculate the asymptotic steady-state prediction at the cost of a relatively heavy
computation by iterating the Diophantine identities in eqns. 2.9 and 2.12 continually
until §(z+ 7) in eqn. 2.13 becomes stationary. But an alternative approach at a much
lesser cost is available by using the results in Remarks 2 and 3. It allows the open-loop
steady-state value to be calculated by directly computing the polynomials F, and H,.

Now recall that polynomials F;;; and H;4; are defined as follows:

T = EjnuAA+q¢ 7 1F, (2.20)
EinB = GjuT+q 7 Hp (2.21)
Subtracting eqns. 2.9 and 2.12 from eqns. 2.20 and 2.21 respectively gives
e;AA = Fj— g 'Fi, (2.22)
e;B = ¢;T+q¢ " Hjp — H; (2.23)
where F' and H are of degree na and max(nb,nt) — 1 respectively, and e; and g; are

the last coefficients in E;; and G;41. For sufficiently large 7,
e;AA = e, AA =F,~ ¢ 'F, (2.24)
ejB =e,B =g T +¢1H, — H, (2.25)

where (from Remark 2)

gs = = (2.27)

Therefore,

P

F. = eA (2.28)
HA = gT ~eB (2.29)
Hy = hoothog™ '+ -+ hoppg™ (2.30)
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where

nh = max(nb-1,nt —1)
nb nt
hs,i = £ Z bJ e gs Z tJ
F=i41 =i+l

The optimal steady-state predicior based on an ARIMAX model is then given

§(slt) =g, ) Ault+j — k) + H,Auglt — k) + Fo; (1) (2.31)
—
where nu is the control horizon.
The first term in the right hand side of eqn. 2.31 is the current and future

forced response whereas the remaining terms correspond to the impact of past inputs

on the steady-state value of the process output.

2.2.3 Convolution Model

The convolution model structure is usually represented by a step response model:

[= ]
y(t) =D gq T Au(t+1— k) + a,, (2.32)

=1

where the step response coefficients, g;, tend to g, when i tends to infinity and a,, is
a reference value. It is readily turned into an impulse response model by differencing
the step response such that

h,’ = Ag;

In practice, the dynamic model is commonly assumed by a finite number of coeffi-

cients. i.e.

T
y(t) = > giq " Ault +1 — k) + a. + ay, (2.33)
=1

where

T is the model horizon

de. = Zg;q“iAu(t 41— k)
=T
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T is usually chosen so that the truncation error is less than 1 % of the step-input
steady-state gain. Depending on the sampling rate, the number of coefficients may
be as many as 50 to encompass 99 % of the step response dynamics. The process

model becomes

T
y(1) = ) gig " Aut +1—k) + ., (2.34)

i=1

Its advantage over a parametric model is the capability to model unusual dynamic
behavior which cannot be well represented by a reduced-order model. Moreover,
many chemical processes are inherently infinite order and therefore a simple first or
second order transfer function may introduce structural mismatch that is unfavorable
to predictive control (Shook et al., 1990). However, on-line identification of such a
large number of parameters is a difficult task.

The process model in eqn. 2.34 can be arranged into different predictive rep-
resentations such as recursive form or state-space formulation (Lim, 1988; Li et al.,
1989; Garcia and Morari, 1982). But all of them assume a linear superposition of
previous inputs-. to the total output such that (for unity time delay i.e. k = 1)

J T
GE+ilt) =D ghult+i—i)+ > gbult+j—i)+a,  (2.35)

i=1 =i+l

The output comprises three terms: future control effects, past control effects, and a
reference term. Eqn. 2.35 shows that even with steady-state weighting a complete step
response sequence of up to T intervals is required regardless of the choice of output
prediction, j. However, an approximation alternative, borrowed from Auslander et
al.(1978), can be used so that a finite number of initial step response coefficients plus
the steady-state gain are sufficient for long-range predictions. This approximation
recognizes that most process respouses are dominated by a single time constant at
least in the low frequency region, i.e. for overdamped systems, the low frequency

dynamics can be well approximated by a first-order model.
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Consider that a unit step response from a stable second or higher order pro-
cess is often characterized by an S-shaped curve, the low frequency portion can be
approximated by an exponential function from the n** point to the steady state. In

terms of impulse response, the approximation is written as

Gp = Mg ' Hhaq P+ hag T b B
hng™"

= hig 7l hog TP A b g 4 —
1 —pg

(2.36)

. where p, being the rate of exponential decay, is a discrete characterization of the
dominant time constant. If the steady-state gain of the process is known, for example,
from steady-state design equations (Chesna and Ydstie, 1986), p is determined so that

the model gain in eqn. 2.36 is equal to the process gain.

Gp(l) = g,
p = 1-— h:_l (2.37)
gs — th
=1
The model in eqn. 2.36 can be re-arranged into a transfer function form
Bg +0g -+ B
_ n 9.
Gy p—— (2.38)
where
b; = hl
b = hi—phi, for i=1 to n
A stable overdamped model is guaranteed as long as
9> b (2.39)

=1

It was shown that the modeling error stemmed from the exponential decay approxi-
mation can be made arbitrarily small by increasing the sampling period for a fixed n

coefficients or vice versa (Takahashi et al., 1975).
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By transforming a “limited” convolution model (a few step response coefhi-
clents and gain) into a transfer function form, the ARIMAX modeling procedure in
Section 2.2.2 can be applied to make future predictions. In so doing, the user-defined
polynomial T is selected to be A = (1 — pg~') such that the ARIMAX modeling
conforms to an output error prediction type which has been the case for algorithms

such as DMC and MOCCA using couvolution model type.

2.3 Control Algorithm

2.3.1 Derivation

The design of a long-range, model-predictive controller is based on the process pre-
dicted behavior over the prediction horizon. The control objective is to have the pre-
dicted values track a setpoint trajectory within the horizon. The following quadratic

function defines the performance index to be minimized to achieve the control objec-

tive.

J(nl,n2,nu,),y) = Evy gt +7) - wit+5)F +ZA ) [Au(t+5 ~ 1))

Jj=nl i=1
+Zv g(slt+j — 1) — w(s)? (2.40)
7=1
where
e ni is the minimum output prediction horizon,
o n2is the maximum output prediction horizon,
» nu is the control horizon such that Au(t + j) =0,V j > nu,
® ~,(J) is an output weighting sequence,

e A(j) is a control weighting sequence,
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e ¥(j) is a steady-state error weighting sequence,

¢ s denotes a value at steady state.

The first two terms on the right-hand side form the standard Generalized
Predictive Control (GPC) objective. The last term corresponds to the additional
terms penalizing the squares of errors at the predicted steady state. The summation
from 1 to nu is required because, at each control interval j where j = 1 to nu, the
steady-state prediction involves the sum of first j consecutive control actions. It has
been suggested that, for robust control, n2 should encompass the whole rise time of
a process which often requires as many as 50 terms. Now with steady-state error
weighting in place, n2 can be reduced to cover the initial high frequency dynamics.

The process predicted values are required in eqn. 2.40 from j = nl to n2 for
§(t +j) and 7 =1 to nu for §(s|t +j — 1). To derive a control law from eqn. 2.40,
the predictive equations for the ARIMAX model in eqns. 2.13 and 2.31 are used.
The ARIMAX model can be put into the following compact vector/matrix equation

(assuming unity delay):

Y=GQU+f | (2.41)
where
Y = [§(t+nl) §lt+nl+1) - §t+n2) ] (2.42)
g1 g 0 0 o 0
gn1 g g 0 .- 0
: - go
Ggn2-1 Gnz-2 - Gn2-ny
U = [Au(t+nl—1) Ault+nl) - Aut+n2-1)]" (2.44)
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f o= [flt+nl) flE+nl+1) - ft+n2)]" (2.45)

ft+35) = H; Bug(t—1) + F; y5(t) (2.46)
and
Ys = GsU + fs (2-47)
where
. . . T
Yo = [g(slt) g(sft+1) -+ g(slt+nu—1)] (2.48)
gs O 0
Gs (nuxnu) = 9s Gs "'_ E (2.49)
: 0
| 9s gs |
forux1) = [1 1 -« 1]7 (H. Auglt — k) + Foys(2))  (2.50)
The equivalent of eqn. 2.40 using vector/matrix notation is:
J=[Y ~ WITT,[Y ~ W]+ UTAU + [Ys — W] T[Ys — W] (2.51)
where

I, = disghy(nl) (nl+1) - (e2)

A = diag[M1) AM2) - A(nw)]

I' = diag[y(1) %(2) -+ v(nu)]

W = [w(t+nl) wit+nl+1) - wt+n2)]”
Wenuxl) = [11 -« 17 w(s)

After substituting eqns. 2.41 and 2.47 into eqn. 2.51, the cost function is

minimized by the following control equation:

U= [G'T,G+ A+ Gs"TGs] ™ [GTT, (W —f) + GTT(Ws — )] (2.52)
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where GTI‘yG and GIT G are both matrices of dimension nu x nu. The dynamic

matrix, G, contains all the step response coefficients arranged in a lower triangular

structure. The term GSTI‘GS is always of full rank. It guarantees a non-singular

inverse even if the matrix GTT,G is ill-conditioned due to large time delays or to®
too short an output prediction horizon. When T is set to zero, eqn. 2.52 reduces to

the basic GPC control law. Therefore, eqn. 2.52 is referred in short as “GPC with

v-weighting”. For simplicity, the output weighting is assumed to be unity; thus T,

reduces to an identity matrix in the sequel.

The control law in eqn. 2.52 is derived specifically with integral control action,
i.e. the ARIMAX model. However, similar control laws can be obtained for the other

two modeling methods described in Sections 2.2.1 and 2.2.3.
2.3.2 Control Law in Linzar Form

Although the control law in eqn. 2.52 calculates the future control action from ¢ = 1
to nu, only the current control action, i.e. Au(t), is implemented. At the next
sample, the entire long-range minimization is repeated once again to calculate the
next control action. This receding-horizon policy produces better control performance
as the control makes use of updated plant information. It has been shown that, in the
absence of disturbance or model change, the control sequence in successive times are
the same (Clarke and Mohtadi, 1989). Because of the receding-horizon policy, only
the first element in vector U of eqn. 2.52 is required. Therefore, writing the control
law in a linear difference equation form enables the analysis of this controller in the
closed-loop form (Lambert, 1987; McIntosh et al., 1991).

A general linear structure of a controller with a setpoint and measurement
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variable is represented by
RAu(t) = Vw(t) — Sy(t) (2.53)

where R, V, and S are polynomials in the backward shift operator.

Now define a vector

[ Qn1 Upiq4yl ' Cno ] (254)

which denotes the first row of the matrix [GTG + A + GSTTGS]"lGT, and a variable

os = Bu + Py +- 0+ Bu2 (2.55)

where f3; corresponds to the elements of the first row vector in the matrix
[GTG + A+ Gs'TGs] ™ GS'T

Then the current control action can be written as follows, (assuming all future set-

points are the same as the present one)

Au(t) = (2.56)
wt) —Fuyst) —Hadugt-1)

w(t) —Fas1 ys(t) —Hun Aug(t — 1)
[om1 @tnrgs o oz ]
w(t) —Frys(t) —HnAut-1)

w(t) —Foyt)  —H Auylt—1)

and in compact form,

n2 n2 n2
Au(t) = w(t) Z o; — yf(t) Z Fa; — /_\uf(t — 1) Z H;a;

i=nl f=nil i=nl

+ w(t) a5 — yp(t)Fas — Aug(t — 1) Hse, (2.57)
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By comparing the terms in eqn. 2.57 with eqn. 2.53, the polynomials in

eqn. 2.53 can be shown to be as follows,

n2
R = T+ q_1 (Z Hia; + Hsa,) (2.58)
i=nl
n2
V =T (Z a; + as) (2.59)
t=nl
n2
S = Y Fiuou+ Fa (2.60)
i=nl

where the degrees are 6 R = max(nb,nt), §V = nt, and 65 = na.

2.4 Closed-Loop Analysis of v-Weighting
2.4.1 Closed-Loop Transfer Function

A closed-loop system with a general linear controller represented by eqns. 2.58 to
2.60 combined with the ARIMAX model in eqn, 2.8 is depicted in fig. 2.2. The non-

stationary noise signal z(t) is represented by

_ £

where {(Z) is a white noise sequence and A is the difference operator.
Assuming T to be 1, th~ lesigned closed-loop transfer functions for y(t) and

u(¢) are given by

' -1
y(t) = BVyq Aw(t) + R:Aa:(t) (2.62)
RAA + ¢1BS

u(t) = AVw(t) — Sz(t) (2.63)
RAA +¢-1BS

When there is a model-plant mismatch, particularly if the gain of the model
is different from the actual gain of the plant due to inexact estimation of polynomials

A and B, the presence of the steady-state error weighting term does not cause any
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Figure 2.2: A general closed-loop control system
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offset in the closed-loop system, i.e. it ensures that the sign of the gain is correct.

This property can be seen by analyzing the closed-loop transfer function at steady

(2.64)

state.
At steady state (i.e. g = 1), the closed-loop transfer function in eqn. 2.62 is
reduced to
48))
) = ——wlt
where

n2
V(1) = Z a; + ag

i=nl

n2
S(1) = Y aFi(l) + e F(1)
1=nl
Recall fromeqn. 2.9 for T =1 that,

1= E;AA+ ¢ F;

At steady state, it becomes

Therefore,

i=nl
confirms that
y(t) = w(?)
at steady state, and for step-type inputs,
t
W) _,
z(t)

(2.65)

(2.66)

(2.67)

(2.68)

(2.69)



2.4.2 Minimum Variance Control with v-Weighting

For the special case when the following settings are used:

nl
n2
nu

A
Y

(2.70)

(1| I 1 I |
OO~ e

the control law from eqn. 2.57 can be written as
k k
Y gt Au(t) =) gir fw(t) — Fy(t) — HiAu(t —1)] (2.71)
fe=1 i=1
where g¢;’s are the step response coefficients. Since the first kK — 1 step response
coefficients are zero due to the k**-step time delay, eqn. 2.71 is reduced to

Au(t) — w(t) — Fk y(t)

PRy A (2.72)

Substituting eqn. 2.12 for j = k and T' = 1 into eqn. 2.72 turns the control law into
the following familiar form

_ w(t) — Fp y(?)

Au(t) 5 5
k

(2.73)

where

¢ B = B (2.74)

which, for w(t) = 0, is the well-known minimum-variance regulator (Astrém and

Wittenmark, 1973).

From the equation above, the closed-loop characteristic polynomial is obtained

Cymv = [gr-1+ ¢ Hil AA+ ¢ 'B F,

-

4 - B
= AAg1+AAq¢ |H, + —-F 2.75
k-1 q k AA k ( )
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Substituting eqn. 2.15 for j = k and T =1 into eqn. 2.75 gives

B -
AA gk—l] q

= B (2.76)

Cuv = AAgi,+AA

This confirms that the basic GPC algorithm with the settings in eqn. A.5 is reduced
to the minimum variance control which assigns all closed-loop poles to the positions
of open-loop zeros. In practice, this coﬁtroller is not usually acceptable in process
control application because of large and vigorous control actions as well as possible
cancellation of open-loop unstable zeros in the closed-loop transfer function.

For the special case with steady-state error weighting, i.e. with the following

settings:
nl = 1
n2 = k
nu = 1 (2.77)
A =0
0 < 7 < =
the closed-loop characteristic polynomial becomes
Cuvs=RAA+¢ 1B S (2.78)

where the polynomials other than the models are given from eqns. 2.58 and 2.60 as

1 9k—1Hy + g, H,y
R = 1+47" 2.79
(971 + 927) (279)
Gk Fe + g, Foy
S =1+ 2.80)
(62 + 927) (
After grouping the steady state terms together, eqn. 2.78 becomes
Cuvs = g [AA(gk—l +q7'Hy )+ q“fS’Fk]
+ g7 [flA(gs +¢H, )+ q“‘BF,] (2.81)
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Substituting eqn. 2.15 for j = k and T = 1 and eqn. 2.17 into eqn. 2.81, the charac-

teristic polynomial in its simplified form emerges as

'R

Cumvs = B +
Gk—1

~A (2.82)

Stability is determined by its roots which can be examined by using root-locus analysis
for various + values. Eqn. 2.82 is similar in structure to the characteristic equation of
an ordinary control weighted one-step ahead controller, implying that the role of 7-
weighting on the steady-state error is related to the A-weighting on control actions. To

find the relationship between the two, one can examine the «-weighting in eqn. 2.40.

Iy =7 S lilslt+5 — 1) = w(s)? (2.89)

i=1

Substituting eqn. 2.31 into eqn. 2.83 and expanding the quadratic term gives:

J(v) = 7gfi(zﬂu(t+i—1))

+ 2¢57 (f(s) — w(s)) Z (Z Au(t+1:— 1))
+ 7 (f(s) — w(s))* (2.84)

which shows that v penalizes not only the squares of incremental control action as A
nu
does, but also the Linear product of the total forced output g2 Z Z Au(t+i—1)
and the open-loop free response (f(s} — w(s)). The best possiljl;:el 1;1=i:1imum of J(v)
is to have the two terms opposite in sign. Therefore, the linear product term can be
interpreted as a weighting of 2vg,(f(s) —w(s)) in the direction of Au such that a pos-
itive gain process with a projected steady-state value larger than the setpoint would
favor a negative control increment to bring down the steady-state value. Thus, the
use of steady-state error weighting provides a gain-dependent control weighting com-

pared to ordinary control weighting which indiscriminately penalizes control moves.

Its advantage can also be substantiated by considering the comparisons to follow.
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Three closed-loop transfer functions using three different modeling schemes

and control laws for the same process are compared.

Case 1 ARIMAX model with weighted one-step ahead control

model:

Ay(t) = Bu(t — k) + f_(Ai)_

control law;

B =[y(t+ k) — w(t + B) + [g.Au(t)]

The resulting closed-loop transfer function is

y(t) = 21 B0 + [g1a EiB + gl]a(?)
g1 B + g:AA

Although it provides offset-free servo control, an extra order in the denominator
is incurred by the integrated mode causing a larger phase shift in frequency

domain which requires a lower gain and hence more sluggish response.

Case 2 ARMAX model with weighted one-step ahead control

model:

Ay(t) = Bu(t — k) + z(t)

control law:

Ty =yt + k) —w(t + k)]? + [g.u(t)]?

In the absence of the integrated mode, the modeling of the noise is assumed to
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be always stationary. The closed-loop transfer function is

_ g1 B~ w(t) + [ge-1 Ex B + ¢2)z(2)
g1 B+ g2A

y(t)

The characteristic polynomial does not have an extra order. However, this

approach is well known for having offset problem at steady state.

Case 3 ARIMAX model with one-step ahead control and steady-state er-
ror weighting
model:

Ay(t) = Bu(t - k) + fg—t)—

control law:
Js = [y(t + &) — w(t + &)+ [ys — wi]?

transfer function:

y(t) = (ge-1 +v95)g7' Bw(t) + [ge—1 ExB + 79,97 H, + g%)z(2)
g1 B +yg2A

The introduction of weighting on the steady-state error instead of on the control

increments eliminates both the extra order in Case 1 and the offset problem in

Case 2. (See Appendix A for a step-by-step derivation.)

The reason why the characteristic equation for Case 3 is lower in order is
due to the weighting on the linear product term in eqn. 2.84. The minimization of
eqn. 2.84 with respect to Au gives a y-weighted linear Au term and a y-weighted linear
(f(s) — w(s)). Their combination in the closed-loop characteristic equation results in
7A which is free of the integrator. Without the linear product term, eqn. 2.84 would

be equivalent to an ordinary control weighting with AAA in the closed-loop.
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2.4.3 Mean-Level Property

For open-loop stable process, the controller with the same settings as in eqn. A.5

except for n2 — oo tends to be a mean-level controller, which has the control law of

the following form,
Au(t) = g7 [w(t) — f(t + oo)] (2.85)

where
¢ gs represents the process gain,

e f(t+ co) is the open-loop process free response at infinite time.

Obtaining this type of controller is not practical in digital control because it requires a
large number of iterations of the diophantine identity or unforced output predictions.
Analogous to n2 — oo is 7 — co in eqn. 2.40. Therefore, a large weighting on the
steady state error regardless of the size of output prediction horizon should be able
to approximate the mean-level control.

It is known that mean-level control assigns all closed-loop poles to the same
positions as the open-loop poles so that a single step change in control due to 4 step
in the setpoint will take the output to the setpoint as in an open-loop step change.
Now consider the elements in vector 2.54. For the case of no weighting on the control

increments, the elements are

o = — iz for : = nl to n2 (2.86)

> 5+

j=nl

0!5 — 7g8 (2-87)

n2
> gk + el

Jj=nl
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As the value of 7 increases, «; diminishes and «; approaches i—. Thereiore, substi-

tuting egns. 2.86 and 2.87 into eqns. 2.58 to 2.59 for sufficiently large - yields

n2
R =1+ Q‘ul (Z Hia; + Hso-’s)

i=nl

14 g1k (2.88)

5

&

n2
V = Za,-+as

{=nl
~ A (2.89)
gs
n2
S = Z F';CY{ + Fso-'s
i=nl
i (2.90)
s
The closed-loop characteristic equation becomes
C, = [RAA +¢'BS] (2.91)
= lg.+q 'H,)AA + ¢ 1 BF,
. BF.
= A|Ag +Aq | Ho+ == 2.92
gs + Aq ( i AH (2.92)
Substituting eqn. 2.17 with T = 1 into eqn. 2.92 for j — oo gives
C.=Ag, (2.93)

which confirms that v — co assigns all closed-loop poles to the positions of those for

open-loop. This stabilizing ability of + is formally stated in the following lemma.

Lemma 2
For any open-loop stable process, G,(¢™'), under long-range predictive control with
a steady-state weighting term, vy, and o stable model ép(g‘l), there is a finite value,

“Ym, Such that ¥ > vn > 0 guarantees a stable closed-loop system.
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Proof

The closed-loop characteristic equation from eqns. 2.58 and 2.60 and eqn. 2.91

without taking the limit is given as:

C. =

n2
14 q"l Z Hja_,- + Hsas)

j=nl

n2
/'JiA + q-hlB (Z F:,‘O!J' + Fsa's)

j=nl

11.2 ~ ~
s BF; BF,
= AA+AA{4L§:(HF+A£)0g+(Hf+E§)a4 (2.94)

i=nl

By using the results in Remarks 2 to 4, eqn. 2.94 becomes

nZ -
N n B ,
Q:AA+AA(ﬂ;:(EZ—GJ¢q+(%)%} (2.95)

=nl

Substituting eqns. 2.86 and 2.87 into eqn. 2.95 yields

C;=A+D (2.96)
where
&q_l n2
D = n2 : A Z (Q’j + gir1q” + - ) gi-1 + gty -1 (2.97)
ng_l +yg2 - M

i=nl
= G g
The coefficients ¢; diminishes as  increases. According to Liu and Gertler ( 1987),
there is a limiting value &, > 0 so that the closed-loop is guaranteed to be stable for

- |6i] < éz. Therefore, a limiting value 7, exists such that eqn. 2.94 is stable.
oca

Theoretically, the minimum variance controller in eqn. 2.73 attempts to rapidly
set the prediction to the setpoint in one step after a delay of k-steps. In practice this
controller is not commonly employed in process control applications because it is ex-

tremely sensitive to variations in model parameters and non-minimum phase process.

38



The resulting performance in many cases is oscillatory responses and unacceptably
vigorous control action, which requires further detuning strategies. On the other
hand, a mean-level controller is known to be robust for open-loop stable processes,
but slow in responses. Both controllers require only a unity control horizon which
is sufficient for most applications. Therefore, 7 becomes a weighting term to select
either mean level control by allowing ¥ to increase or minimum variance by setting
« = 0. A nominal value gives the flexibility of trading off the rapid minimum variance
with robust mean level control (i.e. trading off performance with robustness). The

guidelines for selection of y are described in the next chapter.

2.5 Conclusions

A long-range predictive control law with a terminal matching condition has been
developed by minimizing the prediction errors over a finite horizon and at steady-
state. In contrast to ordinary LRPC algorithms which require output predictions over
a large prediction horizon, this modified control law only looks at the future outputs
over a short prediction horizon as well as the infinite-time or steady-state prediction of
the output. It implies that less computation and knowledge is required without losing
the long range property. Both transfer function and convolution modeling approaches
can benefit from this approach of using steady-state error weighting. The convolution
modeling approach is also shown to be able to approximate a long-range predictive
controller by knowing only the first few step response coefficients and the process
gain instead of a set of up to 50 step response coefficients. The role of this weighting
has been investigated in closed-loop control. It is shown to be more advantageous
over ordinary control weighting because it not only causes zero offset at steady-state

even when a model gain is in error, but also eliminates the additional closed-loop pole
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induced by the integrator from the disturbance modeling term. It is similar to the

output prediction horizon, providing stabilizing effect for open-loop stable systems in

the presence of modeling error and non-minimum zeros.
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Chapter 3

Evaluation of LRPC with a
Terminal Matching Condition

3.1 Introduction

Multistep predictive controllers have been shown to be successful in many industrial
applications. Early control strategies based on long-range multistep minimization
methods usually required a known step or impulse response model for ma’ g future
predictions (Richalet ef al., 1978; Cutler and Ramaker, 1980). These model-based pre-
dictive control algorithms such as MAC and DMC can be analyzed and investigated
by considering the unifying theoretical framework of the IMC techniques (Garcia and
Morari, 1982) based on the utilization of a “generic” internal model to predict the
effect of manipulated variables on the output. Since on-line identification of large
number of dynamics response coefficients is not efficient, sume long-range predictive
controllers {Peterka, 1984; Mosca et al., 1984; de Keyser and van Cauwenberghe,
1985) make use of a low-order parametric models from which impulse or step re-
sponse models can be derived. Generalized Predictive Control (GPC) (Clarke et al.,
1987) is another member of the class of long-range predictive controllers and a natu-
ral extension of the Generalized Minimum Variance controller (Clarke and Gawthrop,

1979) from single-step to multistep minimization. Its predictive structure is based on
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auto-regressive integrated moving-average model with an exogenous term.

All of these long-range control schemes basically minimize the squares of the
errors between predicted process cutputs and setpoints over a future prediction hori-
zon. The extension of this approach to include a terminal matching condition has
been developed in the preceding chapter. It is achieved by combining a long-range
predictive control objective with a steady-state error weighting (vy-weighting) term so
that the process response both within the prediction horizon and at steady-state are
considered. As the controller becomes more sophisticated, deciding the best values
for the tuning parameters for a system with little a priori process information may be
difficult especially during the commissioning stage. The present work provides two
tuning strategies for implementation of such techniques for commissioning chemical
processes and evaluates the performance of y-weighting term as a tuning parameter.
Although various valuable guidelines have been suggested (Garcia and Morari, 1982;
Marchetti et al., 1983; Mohtadi and Clarke, 1986; Maurath ef al., 1988; Xi, 1989;
Sca{:tolini and Bittanti, 1990}, this work follows the tuning philosophy of McIntosh =t
al. (1991) by giving specific recommendations for selecting tuning parameters. Eval-
uation of v is performed by making comparisons between y-weighting and output
prediction horizon as well as ordinary control weighting. Experimental results ob-
tained from controlling the temperature of a continuously stirred heating system by

this new approach are also included in this study.

3.2 Control Algorithm Review

Steady-state error weighting (y-weighting) stems from the idea that a long-range
predictive controller can be realized by knowing the initial and terminal values of the

process response. Section 2.2 describes different modeling approaches. Among them
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is a “limited” convolution model which includes » initial impulse response coefficients,
ki, and a steady-state gain, g,. It can be transformed into a transfer function model
by assuming a S-shaped low-frequency dynamics, i.e.

-7

hn
Gp = hig '+ hag 2+ 4 hyyg™H + q

3.1
1~ pg™? (3.1)
/=1 ! -2 fo—n
— blq + bqu +—']'. ° + bﬂq (3-2)
1 —pq
where
b;_ = h]_
b, = hi—phiy fori=1+ton
hn
p = 1- n—1
gs — th
=1
Then predictor based on an ARIMAX model,
- 2 i
Ay(t) = ¢ Bu(t) + 78I (3.3)
is expanded to make future predictions for a short prediction horizon,
. ) ) Ault -k t
gt +7 1Y) =Gidult+j— k) + H; u(T 4 Fiyéﬂ) (3.4)
and at steady state,
. - : Auft — k t
y(slt):gSZAu(t+]—-k)+Hs U(T ) +Fsy:(r) (3.5)
—
where G, F' and H are derived from the following diophantine identities:
T = EAA+q'F (3.6)
EB = GT+H;q™ (3.7)

and “s” in eqn. 3.5 denotes a value at steady state.
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The performance index is an extension of GPC to include a steady-state error

weighting:
Jo= Y W+ —wt+ N+ 3 AG) [Bu(t +5 - 1)
+ 27Dl +7 = 1) = w(s) (38)

The control law minimizing J is found to be

U=[GTG+A+GTGs)” [GT(W —f) + GTT(W; — £)] (3.9)

where
U = [Au{t+nl—1) Aut+nl) - Au(t+n2—1) ]T
gni-a -+ g O 0 --. 0
gn1 ¢ g 0 .- 0
G =
Jo
Gn2—1 gn2—2 e On2—nu
f = [flt+nl) flt+nl+1) - ft+n2) ]
) . Au(t—1) y(t
fe+g) = g 22y p vl
gs 0 .- 0
Gs (nu x nu) = gs G
-gs Y ... gS_
R P e

A = diag[A(1) AM2) -+ A(nu)]
I = diag[y(1) v(2) -+~ ~(nu)]
W = [w(it+n2l) wit+nl+1) - w(t+n2))
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Ws(nuxl) = {11 .- 1J7- w(s)

For adaptive control with a receding horizon policy (Ydstie, 1984), only the
first element of U is implemented. A new U is calculated at the next sampling

period.

3.3 Performance Tuning of y-Weighting
The fundamental tuning parameters for GPC with steady-state error weighting are

listed below:

¢ minimum output horizon nl
¢ maximum output horizon n?2
e control horizon nu

o steady-state error weighting +

Since GPC without +-weighting can be reduced to many of the well-known control
methods by different selections of the first three tuning parameters, two new tuning
strategies are recommended by incorporating v as an “active” parameter into two
common control methods: deadbeat and mean-level control. While keeping the other
tuning pararaeters constant, + is adjusted to obtain the desired response. Depending
on the performance required, the first of the following approaches can be used for fast

response whereas the second one for robust operation.
3.3.1 Strategy #1: Deadbeat Approach

Clarke and Mohtadi have shown that the equivalent of a stable deadbeat controller for

an observable and controllable linear system is obtained by the following selections:

nu=N, nl=N, n2>2N~11=0 (3.10)
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where NN is the order of a state space model (Mohtadi, 1987). When an input/output
model is considered, the configuration of a deadbeat controller requires the following

parameter settings:
nu=na+1l, nl=nb+1, n2=nu+nl-1 (3.11)

The settings specified above are, therefore, fixed at the commissioning stage. Then ~
is adjusted to tailor the speed of response.

In principle, the value of  can vary from zero to infinity. A very large value of
v only makes the controller behave more like a mean-level controller. H the magnitude
of the matrix inverse is approximated by the trace of GTG as in McIntosh’s tuning

strategy (1991), -y can be selected according to the following “formula”.

2-m - tr[GTG]
(nu+1) nu.g?

v = (3.12)

where m is the degree of detuning from deadbeat to mean-level. The control incre-
ments are roughly the sum of deadbeat output response weighted by - plus the
mean-level response weighted by 47+ The initial value of ¥ can be chosen by setting
m = 1 so that the control performance is about the average of the two responses for
commissioning.

Because the formulation of y-weighting already has g? as a factor in the inverse
portion of eqn. 3.9, the closed-loop performance is independent of any gain changes.
This is an advantage of y over the use of A-weighting which often has to be adjusted
relative to g2 by scaling. Another advantage is that the slowest control response

resulting from a large value of + is limited to that of mean-level control whereas

increasing A can indefinitely decreases the response.
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3.3.2 Strategy #2: Mean-Level Approach

For typical industrial plant models, a large value of n2 and a value of nu of 1 are
usually sufficient to produce satisfactory control performance for open-loop stable

plants. The control law without any weighting on control movements can be written

simply as:
n2
S gi (= f(t+4)
Au= =0 (3.13)
291?-1
i=nl
1t is obvious from the equation that inverse model effect should be avoided by choosing

n2
a large n2 such that Z gi-1 is strictly positive. Although a default output horizon

window of n2 — nl +iTi 10 has been found to produce robust response, a larger n2
corresponding to a 90 % rise-time of the process is more desirable especially when
commissioning a new controller. Depending on the sampling time, the size of n2
capturing the rise-time can vary from 20 to 50, adding a lot of computational load to
the controller.

When y-weighting is used in conjunction with n2, it becomes the choice for
performance tuning. Then the value of n2 can be reduced considerably to capture only
~the high frequency dynamics which usually appear during the first “time constant”
period. This is similar to the guideline suggested by Maurath et al.(1985) recom-
mending n2 equivalent to the number of sampling periods required for the process
open-loop step response to reach 50 % of its final value. Therefore, the configuration

for commissioning a process is proposed to be

ns

nl = k, n2=T1+k, nu=1, 3 g4y >0 (3.14)
s i=nl

where

e 7 is the dominant or overall time constant of the process
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e 7, is the sampling time

For example, if the sampling period is chosen by taking one-fifth of a time constant,
n2 will be 5 + k where k is the units of time delay. Starting with a large value of
7, the process response can be adjusted by gradually decreasing v until satisfactory
results are observed. The control law for this approach is given below:

ns

> gica (wlt +3) = f(t+14)) + goy (w(s) — f(s))

Ay = =r2 — (3.15)
ng_l + g2y

i=nl

where ns denotes the reduced output prediction horizon in order to distinguish it
from n2 in eqn. 3.13.

One can obtain a feel for the range of admissible v values by equating eqns. 3.13
and 3.15 and finding the values of 4 corresponding to different n2’s. Without any
loss of generality, the set point in both equations are assumed zero. After some

re-arrangement, the resulting relationship between v and n2 is given as:

ns n? n2 ns
Yogaft+i) Y ghi= Y gaflt+i)) ¢,

i=nl t=ns+1 i=ns+l1 i=nl

Y= n2 n2 (3'16)
B giaft+i)—kf > o8y
1=nl i=nl

It should be noted that the value of v in eqn. 3.16 is dependent neither on the process
gain nor the process time constant (7}, but only on the choice of nl, n2, ns, and the
ratio .

In order to show that v is independent of the process gain, the gain term is

factored ont from all step response coefficients, i.e.

gi = 959}

where the prime denotes a quantity corresponding to the case where the gain is unity.

With this substitution, 2]l gain terms in eqn. 3.16 will be canceled out. What remains
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is a relation between 7 and a combination of the model response coefficients with a

standardized unity gain.

n2

Z g:—lf t + ?' Z gl—-l)2 Z gz—]f Z( —1)2
' :—nl 1—ns+1 i=ns+1 i=nl a1~
— (3.17)
Z g St +8) = £ (di,)
i=nl i=nl

It should be noted again that the choice of « is dependent on the discretization
factor, +, but not on 7. The reason is that when two equal-gain and equal-order

processes are discretized by the same factor of the individual time constants, i.e. 2L =

Tl,

;7—2%, the resulting step response models are exactly equal. Therefore, an approximate
value of v and ns which will provide an effect similar to a larger n2 value (with
7 = 0) can be computed from eqn. 3.17 when n1 and + are given. Fig. 3.1 shows
the trajectories of v corresponding to different n2 and ns. For this particular plet,
nl is one and the sampling time is taken as one-tenth of the time constant which is

considered to be an appropriate discretization interval for most industrial processes.
3.4 Demonstration of v-Weighting

The performance using y-weighting is compared with A and n2 in this section. Ta-
ble 3.1 shows the details of three open-loop stable transfer functions with their poles
and zeros. Process A is a second-order underdamped system with a damping fac-
tor of 0.5. Process B which has been used by McIntosh (1988) is a non-minimum
phase system. Simulations for model-plant-mismatch is achieved by approximating
the third-order Rohrs’ model with a reduced-order model. Experimental results are

obtained by controlling the effluent temperature of 2 continuous-stirred tank heater

(CSTH).

P 11
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Figure 3.1: Trajectories of -y for different values of n2 for the special case of nu =1
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[ Process | Continuous Time[ Discrete Time | Poles | Zero?]

=T = -~ —
A EEw e, Tlatnirae= | -1811% [ —.9194
Ts = .5 41072
~2s+1 —.0864z~* 4 468:—7
B (55+1)s(2s+1) 1-1.453:71+4.5134z 2 6065 | 1.699
Te =1 .83465
9048 | —.1164
2(229) 03714 07T17:=24.00785:—3 - .
C (H1)(2+3057220) | 1-1.342=~11 43553 045c=3 | -2127+ | —1.822
Ts = .1 04434

Table 3.1: Process models for computer simulations

3.4.1 GPC with v-Weighting

Process A

It has been shown in Section 2.4.2 that both y-weighting and A-weighting penalize the
incremental control actions when an ARIMAX model is assumed. However, unlike
A which brings an integrator into the closed-loop, GPC with + and without ) does
not have the additional integrating pole in the closed-loop model. The characteristic
polynomial with v-weighting is similar to that when no integrator is present (i.e.
ARMAX modeling). This property is illustrated by comparing the root loci of the
following two closed-loop characteristic polynomials:

ARIMAX model with weighted one-step ahead control:

Ci= g1 B + MAA (3.18)
ARIMAX model with one-step ahead control and steady-state error weighting

C2 = gi-1B + vg%A (3.19)

where ¢r_; is the first non-zero element in B.
Root loci of eqns. 3.18 and 3.19 for process model A are plotted in figs. 3.2

and 3.3 as a function of A and v respectively. Since one-step ahead control with
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Figure 3.2: Closed-loop root locus of process A using minimum variance control with
A-weighting
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Imaginary

Real

Figure 3.3: Closed-loop root locus of process A using minimum variance control with
v-weighting



A = 0 is the same as having a minimum variance controller, the root locus starts
at the open-loop zeros (represented by O in the figure) and migrates to the open-
loop poles (represented by o). In fig. 3.2, two roots move into the unstable region
before converging to the open-loop poles while the additional root introduced by the
integrator migrates outwards along the real axis to the unit circle as A increases.
The unstable model is due to the combination of detuned control and the inherent
oscillatory nature of process A. Fig. 3.3 shows the effect of using v-weighting. As v
increases, neither an unstable nor an additional order is observed. The advantage of
no additional order when using ~-weighting is also true for any choice of nl and n2
with nu = 1.

According to the tuning Strategy #1, process A is best controlled by a dead-
beat controller while using v as the “active” detuning parameter. Dead-beat control
is achieved by setting (nl,n2,nu) = (3,5, 3).The closed-loop root loci at increasing
7 is depicted in fig. 3.4. It is interesting to note that one pole always stays at the
origin while the other two approach the open-loop poles. The overall closed-loop is
indeed second order when v > 0; therefore, (nl,n2,nu) = (2,4,2) with vy-weighting
is sufficient for controlling process A. The output performance is shown in fig. 3.5.
The value of v is calculated from the scaling formula 3.12 by setting m = 0,.33,1,3
for each upward set-point change. As m increases, the controller changes from dead-
beat-dominant to mean-level-dominant. Therefore, the oscillatory response in fig. 3.5

(inherent in the underdamped open-loop model) becomes more apparent when m = 3.

Process B

A minimum of 5 output predictions from the non-minimum phase process B is required

to bring all poles into the unit circle (see fig. 3.6) when nu = 1. The mean-level
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Figure 3.4: Closed-loop root locus of process A using dead-beat control with ~-
weighting
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Figure 3.5: Closed-loop performance for process A using dead-beat control with ~-
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Figure 3.6: Closed-loop poles of process B using standard GPC
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property of vy-weighting is compared to the infinite A-weighting through their root
loci shown in figs. 3.7 and 3.8. (nl,n2,nu) is fixed at (1,5,1). It is remarkable
that by increasing v the closed-loop poles are always real whereas coraplex roots are

obtained by increasing A. In fact, X traverses three different regions listed in table 3.2.

l Region Detuning performance |
0 < A < .00315 | ineffective

00315 <€ 4 < 2.9 slow output response,

but oscillatory with overshoot

A > 2.9 | very slow response

Table 3.2: Effect of A-weighting on Process B

The reason why « behaves differently is due to its weighting on the steady-state
prediction value such that the slowest output response is at most a mean-level result.
Figs. 3.9 and 3.10 are used to illustrate the difference between the two weightings.
In both figures, v and X are selected to be 0, 0.3, 1, and 3 covering all of the regions
while (nl,n2,nu) = (1,5,1). It is apparent that increasing + results in mean-level
control. However, first increasing A to 1 causes small oscillation and overshoot; when
A = 3, the output is too siow to reach the setpoint within the time allowed.

It should be emphasized that process B can also be stabilized by increasing ~
even if n2 is less than 5. However, a large value of A will not necessarily stabilize a

non-minimum phase system {Garcia and Morari, 1982).

Process C

Model-plant structural mismatch is introduced by using the “limited”-knowledge con-
volution model approach to describe process C. Recall from Section 3.2 that this

approach requires only a small model horizon, n (i.e. the first n step response co-
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Figure 3.7: Closed-loop root locus of process B using GPC with vy-weighting
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Figure 3.8: Closed-loop root locus of process B using GPC with A-weighting
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Figure 3.9: Closed-loop performance for process B using GPC with +-weighting
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Figure 3.10: Closed-loop performance for process B using GrC with A-weighting
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efficients), and a known steady-state gain to approximate the process. Fig. 3.11
compares the step response arajectories from using different n with the true process
step response model. When n is above 3, the trajectories almost coincide with the
true one.

Fig. 3.12 shows the output performance of using n = 3 and gain of 2 (the true
process gain) to approximate the true process. Because the initial high frequency
dynamics is captured by the model, the controller performs favorably with v-weighting
even though n2 is only 5. The choices of ¥ shown in the figure are obtained from

fig. 3.1, approximating a longer n2 of 10, 13, and 20, respectively.
3.4.2 Adaptive GPC with y-Weighting

Process C

GPC with v-weighting is made adaptive by estimating model parameters on-line by a
recursive least squares algorithm (RLS) implemented with a variable forgetting factor.
Process C is approximated by a first-order model which causes a considerable model-
plant mismatch. Since Rohrs’ model is predominantly first-order at low frequency
with a high frequency second order dynamics, parametsr estimation using ordinary
RLS requires good filtering techniques (Shook et al., 1991). Otherwise, performance
would deteriorate or even become unstable due to inadequate modeling. Mclntosh

found that the parameters estimated by using a high pass filter '('i'?-oéTq:ﬁ area; = —.94
and 8o = 0.033 which gives a gain of 0.55 (McIntosh, 1988). The model gain obtained
by RLS during dynamic simulation varied between 0.17 and 104. Because ¥-weighting
strongly depends on the model gain for steady-state predictions, a fixed model gain
which assumes an error of 10 % below the true gain is provided for the controller.

There are other methods to deal with the modeling problem; however, they are beyond
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Figure 3.11: Step response trajectories of modeling process C using various modeling
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Figure 3.12: Closed-loop performance for process C using GPC with -weighting
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the scope of this study and will not be discussed further.

Fig. 3.13 demonstrates the robustness of using v-weighting. The simulation
is initialized by a pseudo-random binary sequence (not shown in the graph) followed
by four set-point changes. According to the tuning Strategy #2, v is selected to be
2 to enhance robustness initially. Then it is decreased to tailor the process response.
Although a 10 % offset between the model and process gain is present, the controller
with v-weighting and a short output prediction horizon (n2 = 5) manages to provide

stable and satisfactory response.

Continuous Stirred-Tank Heater

Experimental démonstra,tions were carried out on a pilot-scale continuous-stirred tank
in the Department of Chemical Engineering at the University of Alberta. Fig. 3.14
shows the schematic diagram of the equipment. It comsists of a glass tank 50 c¢m
high with an inside diameter of 14.5 cm. Cold water enters the tank from the top
through a 1.5 cm-diameter pipe. After being heated by a steam coil, the process
water leaves the tank and passes through a copper pipe which contains four ther-
mocouples (located at different distances downstream of the tank to provide true
delays) to measure the effluent temperature. For this demonstration, thermocouple
#1 was chosen, introducing a delay of about one-fifth of a time constant. The water
temperature was manipulated by a steam control valve and disturbed by increasing
the amount of cold water entering the tank. A proportional DP-cell controller was
used to maintain the water level constant. An opto-22 multiplexer provides A/D and
D/A conversions, sending information to an IBM PS/2 Model 70 computer operat-
ng under the QNX operating system®. The computer provides an operator-program

interface called Multicon (Qiu et al., 1988) which performs real-time scheduling and

1QNX, Quantum Software Systems Ltd., 1988
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multi-tasking operations. All calculations and on-line changes of tuning parameters
were done within Multicon.

Inlet water flow rate was set at .57 m/s. During the disturbance period,
it was increased to .78 m/s. The sampling time was 5 seconds. The overall time
constant 1s about one minute. Model parameters were estimated by using a RLS
algorithm with a variable forgetting factor. Since the disturbance (when “activated™)
added a substantial throughput to the system, three ’s for varying time-delay and
one a were identified on-line. The system was excited by a 16-sample PRBS before
the temperature was brought to the nominal operating range of 35°C. Three sets of
results using three different tuning configurations were obtained in a single run. The

configurations corresponding to the figure number are tabulated below:

|Figure[nl'n2|nu|7|

35 1 1[5 ] 16
316 | 1[5 ] 1]0
317 |1 |10 110

Table 3.3: Tuning parameter configurations

In each figure, outlet temperature and setpoint (dotted line) are plotted in the upper
portion, steam and cold water (dashed line) flow rates are in the lower portion. Since
all three sets of results were obtained in one single run and model parameters might
drift during different transient responses, the initial setpoint change in each figure is
regarded as an excitation for each new set of tuning configuration.

It is apparent from table 3.3 that fig. 3.15 compares the response with ~-
weighting to fig. 3.16 which is without y-weighting. Fig. 3.17 provides a reference for
fig. 3.15. Fig. 3.16 has a prediction horizon of only 5, its response is necessarily faster

than the other two but the control action is significantly large. Fig. 3.15 shows that
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a shorter prediction horizon with 4-weighting provides an effect comparable to the

larger prediction horizon in fig. 3.17 both in regulatory and servo control.
3.5 Conclusions

Two tuning strategies are proposed for adjusting the output perfor.nance by the
steady-state error weighting term while keeping other tuning parameters constant.
The first strategy corresponds to a basic dead-beat controller detuned by y-weighted
mean-level controller. The second strategy recommends a large initial value of ¥ and a
short prediction horizon fixed by the rule of discretization. Root-locus results confirm
that, in contrast to A-weighting, +-weighting does not generate an additional pole in
the closed-loop. It also stabilizes open-loop stable non-minimum phase systems. Its
equivalence to the output prediction horizon is also shown by both simulations and

real experimental evaluations on a continuous-stirred heating system.
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Chapter 4

LRPI with a Terminal Matching
Condition!

4.1 Introduction

There are two basic ingredients in all long-range predictive control (LRPC) strategies,
a specific model structure for finite-horizon output prediction and the minimization
of a sumnmation of squared error between multi-step predictions and future setpoints.
The major feature distinguishing different strategies lies in the differences in the model
structure. The commonly used model structures are either in the form of transfer
functions describing the input/output relationships or a model represented by a finite
polynomial describing a truncated impulse or step response model. For example,
DMC (Cutler and Ramaker, 1980) and MOCCA (Sripada and Fisher, 1985) utilize
the step response model whereas MAC (Richalet et al., 1978) employs an impulse
response model to formulate the final control law. The difficulty in applying these
long-range control laws in adaptive control is that a large number of parameters
Is usually required to reduce the effect of truncation. Using a standard recursive

least squares algorithm for this purpose also implies that a sizable covariance matrix

1A version of this chapter was presented at the 1991 American Control Conference: Long-range
predictive control and identification with steady-state error weighting, Kwok, K.Y. and S.L. Shah,
Proc. American Control Conference, pp. 2806-2811, 1991.
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computation is unavoidable.

The success of Generalized Predictive Control (GPC) algorithm (Clarke et
al., 1987) in adaptive control stems from the fact that a transfer function model
containing significantly fewer parameters is used for future predictions. However, the
output predictions based on the diophantine identity in the GPC model structu:<
have a larger variance that grows as the prediction horizon increases (Lu and Fisher,
1990a). The variance makes the long-range projection of the process output less
accurate than with other model structures. The inaccuracy is even more severe when
a structural mismatch between the model and actual process is present, due to the fact
that the least squares approach only aims to provide a minimum variance one-step
ahead prediction, i.e. .

Jus = Y _[§(tlt — k) —y()P (4.1)

=1

Therefore, Shook et al. {1991) proposed an adaptive filtering approach to implement
a control-relevant long-range predictive identification (LRPI) algorithm based on the
dual of the control objective function. Another approach for long-range identification
given by Lu and Fisher (1990b) makes use of a non-minimal model structure. How-
ever, both approaches are computationally expensive expecially when a large output
prediction horizon is utilized.

Since an alternative control objective which reduces the computational load by
considering a shorter future projection and the terminal condition has been developed
in the preceding chapters, this chapter examines the idea of “dualizing” LRPC with
a terminal matching condition to LRPI plus a terminal matching conditioﬁ. Thus, a
“short” output prediction horizon can be used in the mutually-compatible control and
identification strategies of LRPC and LRPI so that the resulting adaptive controller

is relieved of heavy computations.
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4.2 Overall Adaptive Control Objective

4.2.1 Finite Horizon Predictive Control

The overall predictive control objective is to maintain the process output at the
desired value by varying a manipulated variable, not only at the current time, but

also over a finite-time control horizon. The overall control objective function to be

minimized is given as

7= [ ) - vl (42)
The equivalence to eqn. 4.2 in discrete time is a finite horizon predictive control
function, )
Jrupe = Y [y(t +5) = ysplt + )P (4.3)
j=n1

which aims to keep the future output values at the desired set-point over the time

interval from (f 4+ nl) to (¢ + n2). Eqn. 4.3 can be further decomposed into the

following two different objectives plus a cross-product term,

Jrupe = Jo+ Jip + Jx (4.4)

where

n2

D W+ 7) = ysplt + )P (4.5)

j=nl

Jeo

n2
Jip = Y [y(t+7) =t + )P (4.6)

j=nl
and Jx is the appropriate cross-product term.
Several long-range predictive control laws mentioned in the introduction are
successful in meeting part of the objective defined by eqn. 4.4 because they all con-

sider a trajectory of future process outputs rather than just a single or k-step ahead

minimum variance control.
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To minimize the identification part of the overall objective (equn. 4.6 for adap-
tive control, Shook et al. (1991) proposed that an appropriate control-relevant identi-
fication strategy should provide a model not only for one-step ahead prediction, but
over the entire prediction horizon that the control law is required to minimize in the

objective function, z.e.

T—n2 n2

Turpr= e S |23 ()~ 9+ )" (@)

=1 Jj=nl

where np is the number of predictions in the horizon and T is the current sam-
pling time. Since optimization based on eqn. 4.7 is non-linear, its implementation in
adaptive control application is not practical. Instead, Shook et al. (1991) provide a
solution for eqn. 4.7 via adaptive filtering, in which a L-filter is used to replace the
non-linear optimization. The filter is found through the solution of a spectral factor-
ization technique by equating the power spectrum of eqn. 4.7 to that of the following
least squares function,
1z

Jors = Z L(q7) (e +3) = gt + )" (48)
Then the GPC control objective in eqn. 4.5 combined with eqn. 4.8 is able to achieve
the overall objective function in eqn. 4.4. However, applying both GPC and LRPI
by filtering is computationally expensive for large prediction horizons. On the other
hand, a small prediction horizon reduces the computation at the cost of less ro-
bustness. In GPC, the process predictions require n2 iterations of the diophantine
identity. The L-filter is a result of a spectral factorization of a 2-(n2—1) polynomial.
Large prediction horizons suffer from poor convergence of the spectral factorization
computation for the L-filter. Too short a prediction horizon results in a less robust

controller and an identification of a wrong-gain model.
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4.2.2 Finite Horizon Predictive Control with a Terminal
Matching Condifion

An alternative to the overall control objective defined by eqn. 4.3 is to minimize over
a relatively shorter prediction horizon and, yet at the same time, ensure robustness by

introducing an infinite-time term, which is the squared error between the steady-state

process output and steady-state setpoint, i.e.

Jrnpes = )Wt +5) — Ysp(t + 3) + [y(t + 00) — op(t + 00)]? (4.9)

j=nl

Expanding eqn. 4.9 into different objective functions gives the following expressions,

Jrapcs =Jdoc+Jip+ Jos+ Jips + J% (4.10)
where
Jo = asineqn. 4.5
Jip = asineqn. 4.6
-JTC,S = (ﬁs - ys,sp)2 (411)
Jips = (ys — §s)? (4.12)
J% = sum of cross-product terms

Minimization of J¢ and J¢,s has been achieved by GPC plus steady-state error weight-
- ing as described in Chapter 2. Jyp is achieved by the non-linear least squares opti-
mization as defined by Jpgp;. Heuristically, once the four quadratic terms, Jg, Jip,
Je,s, and Jip s, are minimized, eqn. 4.10 is also minimized. Therefore, the overall
finite horizon predictive control with terminal matching condition criterion can be

approximated by:

Jrupcs = Jepc,s + Jorpr + JiD s (4.13)
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where

n2 nu
Jepcs = 3 [HE+5) =yl + 7D [ — el (4.14)
j:'n.l J=1
JLrpr = asin eqn. 4.7
T
Jins = Y [ys— glt]” (4.15)

=1
The development of this criterion as presented above is not mathematically rigorous.
The cross-product terms are omitted because the problem is otherwise mathematically
intractable. (Lu and Fisher (1990) provide justification for the omission of these
terms.) Nevertheless, the breakdown in eqn. 4.13 shows that the overall control

objective can be achieved by:

e a long-range predictive control law which includes a steady-state error weighting

term (eqn. 4.14},

o an identification method which provides a model valid over the entire prediction

horizon (eqn. 4.7),

e an additional identification method which supplements the model validity for

steady-state value prediction (eqn. 4.15).

Eqn. 4.14 has been explained in detail in Chapters 2 and 3. Shook (1991) has exten-

sively examined eqn. 4.7. The feasibility of realizing eqn. 4.15 is tackled ir the next

section.

84



4.3 LRPI with a Terminal Matching Condition
4.3.1 LRPI Algorithm

To derive the L-filter through Parseval’s theorem, the process model in eqn. 2.8 is

first written in the following j**-step ahead prediction form:

. . F: E.B
gt + jlt) = =Ly(t) +

J y -
7 T Au(t+ — k) (4.16)

Eqn 4.7 is, then, written in terms of eqn. 4.16:

T—n2 n2 2
JLRPI = __n,) |: Z ( f-}-J‘)“"— (t)—-ET;B-Au(t"F]—-L)) } (4.17)

J—nl
In order to facilitate the analysis of Jigpy, the dependent variable, y(-), is written

in terms of the independent variatle, u(-} by applying two additional equations to

Jirpr as follows.

First, the Diophantine identity from eqn. 2.9 is rearranged as:

. F; _ E;AA
¢ -7 =05 (4.18)

Second, the true process model for the deterministic case is assumed to be of the form

y(t) = %;u(t — k) (4.19)

The resulting Jygpr in terms of the independent variable, u(-), becomes

T=n2 n2 - 2
E;AA\ {B* B .
JLrPI = n2 § : — ;1 ( ) ( T A) u(t+j — k)] (4.20)

Applying the above procedure to eqn. 4.8 gives

LAA B B i

Both Jrrp; and Jrps are now rearranged in terms of »(-). Since u(-) can be regarded

T

Jirs = Z

as a signal or time series, the square of this signal in the identification functions is
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related to the mean power in the signal. Then the power spectrum of eqn. 4.20 is

identical to that of eqn. 4.21 as long as the following condition holds:

1 n2
L@ = — 1B
P j=nl
or (using spectral factorization)
1 n2
Lg™Llg) = > EBi(g7")Es(q) (4.22)
F=nl

Therefore, a standard recursive least squares algorithm combined with the
data pre-filter L obtained from eqn. 4.22 is able to accomplish the result as long-
range identification (eqn. 4.7). Since the identification of the steady state as shown
in eqn. 4.12 is a natural extension from eqn. 4.7, it would be instructive to examine
first the properties of L-filter for the purpose of accomplishing the minimization in
eqn. 4.12. By examining eqn. 4.22 for n2 going to infinity and any arbitrary value of
nl which is less than n2, the following properties have been observed.

Proposition 1

For all open-loop stable ARMAX models, i.e.
A£0,V|q >1
and
nl=1 or nl=n2

the model tends from an equation error scheme to an output error one as n2 — oo,
Proof

According to Lemma 1 in Chapter 2, polynomial £} converges to % as j tends
to infinity. When nl = 1 and n2 tends to infinity, L becomes an average of all

E}. Therefore, the measurement data are filtered by £ (A is absent because of the
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ARMAX modeling) and so the combined filter is

~ L 1
—— —_— -k —— R
A=y(t) q I:?Tu(t)—l- T

WO = FZu) + 1d+ 60

d+ £(t)

aono

Proposition 2

For all open-loop stable ARIMAX models and nl = 1 or nl = n2, the model does
not tend from an equation error scheme to an output error one as n2 — oo. Instead,
L tends to E; which becomes an infinite stationary polynomial as n2 tends to infinity.

Proof

The proof of this proposition is straight forward from Remark 1 in Chapter 2.
oon

It is inferred from the output error scheme in Proposition 1 that an indirect
solution to eqn. 4.12 for the ARMAX model is by having accurate values of % and
d. Although Proposition 2 does not render any conclusive remedy to achieve identifi-

cation at steady state for the ARIMAX model, a comparison between eqns. 4.12 and

4.21 leads to the idea of ensuring the integrity of the process gain, i.e.
T ~ 2
1 B°(1) B(1)
ID,s = 77 ; [(AO(l) A ( )

Thus an accurate estimation of the process gain is an indirect but sufficient method

for achieving the identification objective in eqn. 4.12. The next section outlines a

simple method for gain estimation in combination with the use of LRPI.
4.3.2 Identification of Process Gain

For on-line estimation of a process gain, any simple stable model can be used because

process dynamics are not of major concern. Consider a first order ARMA model as
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follows,

~

Ay(t) = bBu(t — 1) (4.23)
where A and B are identified on-line, and b is a scaling factor such that

B(1)
A

20
A(1)

o

1]

(1)

Dividing B(g™") by A(q™?) generates an impulse response and a residual term,

B . ~IF
<= (Ro+ kg™t + oo+ Bj_ig M) + 5—;1— (4.24)

Substituting eqn. 4.24 into eqn. 4.23 for j = n2 gives

y(t) = bl(hou(t — 1)+ hyu(t —2) +---

= bu* — ay(t — n2) (4.25)

where u* is the summation of the impulse response coefficients from 0 to n2 — 1
multiplied by the corresponding control action. Eqn. 4.25 is still in itself a first order
representation. A simple recursive least squares algorithm is able to provide the
necessary parameters b and a for the overall process gain estimation. The formulation
in eqn. 4.25 also coincides with the reduced-order, non-minimal model predictor of
Lu and Fisher (1990) in which the impulse response coefficients are user-defined or
from previous process identification.

Since the first n2 steps of the process are being identified by the LRPI ap-

proach, the impulse response coefficients required in the gain estimation model are

obtained from the LRPI model.

4.4 Synopsis of an Overall Adaptive Controller

The proposed adaptive controller is a combination of the following three ideas:
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* LRPI1s accomplished by utilizing the LRPI algorithm by Shook et al.(1991),

* the terminal matching condition in identification is indirectly implemented by

a gain identification algorithm such as the one outlined in Section 4.3.2,

¢ LRPC with a terminal matching condition is achieved by GPC with steady-state

error weighting developed in Chapter 2.

Fig. 4.1 illustrates the structure of this adaptive controller. The long-range identifi-
cation portion generates a model for the immediate “long-range” predictions which
are used in the gain identification algorithm to estimate the process gain. The control

law receives the model and gain estimates, and both are applied to calculate the new

corrective action.
4.5 Simulation Studies

In this section, the performance of the controller using the alternative control objective
function in eqn. 4.13 (i.e. minimizing a shorter output horizon window plus the
steady-state error) is illustrated by simulations, and compared with its counterpart
in eqn. 4.4 (i.e. minimizing a large output horizon window). Rohrs’ (1984) third
order transfer func—tion,

2x229

Gls) = (s + 1)(s? + 305 + 229)

(4.26)

is used to describe the true process. In all simulations, the process is sampled at 10

Hz and estimated by a first order ARMA model.
4.5.1 Open-Loop Identification

In order to evaluate the open-loop identification using LRPI (L-filtering) plus gain

estimation approach, a white noise signal with N(0,1) is used to excite the process
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Figure 4.1: Schematic diagram of an adaptive controller using LRPI/LRPC with
terminal matching conditions

90



for 500 samples. Three different prediction horizons for LRPI are used, 2, 5, and 10.
This results in three L-filters separately filtering the input/output data to produce
three different first order models. The results are shown in the form of step response
trajectories in fig. 4.2. Although n2 = 2 produces the closest estimation of process
gain (gain=2.11), the poor modeling in the initial step responses disqualifies n2 = 2
in closed-loop control (also see next section). The dotted line for n2 = 5 gives
the greatest deviation (gain=3.84) from the actual process gain of 2, although the
initial step response is close to the actual process. When n2 = 10 is used, the first
order model gives an overall gain of 2.78. As predicted, better identification of a
process at low frequencies when significant model-plant mismatch is present in the
high frequency region requires a larger n2 value which is computationally heavy both
in identification and control.

The method outlined in Section 4.3.2 is more successful in estimating the
overall gain of the process. Two impulse response polynomials of degree 5 and 10 are

used in conjunction with LRPI for n2 = 5. These lead to the following structures

used in the gain estimation:

y(t) = bs[(hou(t - 1)+ hu(t ~2) +--- + hqu(t — 5)] + asy{t — 5) (4.27)

bs(ho + - + hy4)

ks = 1— as . (428)

y(t) = bio[(hou(t — 1) + hau(t —2) + - - - 4 hgu(t — 10)] + aroy(t — 10) (4.29)
bio(ho + - + hg)

l—am

(4.30)

As described previously, both [bs,as] and [bio, 10 are obtained from least squares.
The average gains obtained from both eqns. 4.28 and 4.30 are denoted by O (averaged

gain = 1.68) and + (averaged gain = 1.84) respectively in fig. 4.2. As a result,
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Figure 4.2: Comparison of step response trajectories between Rohrs’ model and three
LRPI models
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the combination of a low-order L-fiiter and gain estimation will allow a long-range
predictive controller to accurately calculate future control moves based on the first

few (n2) step-responses and the final steady-state value.

4.5.2 Closed-Loop Control

Initial excitation for closed-loop simulations is facilitated by a pseudo-random binary
sequence with a magnitude of 1 for 100 samples. When closed-loop control is in effect,
the set-point is alternated between 1 and 2 at 50-sample intervals.

Figs. 4.3 and 4.4 respectively show the results of using only GPC and LRPI
for the prediction horizons of 2, 5, and 10. In fig. 4.3, poor identification of the first
order model and a small prediction horizon for control render the whole controller
unstable. When the prediction horizon is changed to 5, the controller stops oscillating.
However, overshoot is still present at each set-point change. Better performance is
observed in fig. 4.4 when n2 is change to 10.

The closed-loop performance obtained using GPC with steady-state error
weighting and LRPI with gain estimation is shown in figs. 4.5 and 4.6.  With
the steady-state error weighting in place, the controller has no difficulty even with
a prediction horizon as low as n2 = 2. Although oscillations still exist during the
initial stage, subsequent control performance is satisfactory. The process response is
dampened as 7 increases, a trend very similar to that produced by an increase in the
prediction horizon.

Fig. 4.6 shows a similar result. Smaller steady-state error weightings are used
as the prediction horizon of 5 is set.

The success of the GPC plus steady-state error weﬁghting control in fig. 4.5
requires good estimation of the process gain. The trajectories of gain estimates cor-

responding to the runs in figs. 4.3 and 4.5 are plotted in figs. 4.7 and 4.8 respectively.
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Figure 4.3: Closed-loop response using GPC and LRPI, n2 = 2 for t = 1 to 250,
n2 = 5 for t = 251 to 450
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The fast convergence of the estimated gain to the process gain in fig. 4.8 indicates
the superior ability of the gain estimation scheme described in Section 4.3.2. The
oscillatory gain trajectory shown in fig. 4.7 explains the reason why the control per-
formance in fig. 4.3 is poor. These results lead to the conclusion that accurate gain

estimation is critical for any long-range predictive control strategy.
4.6 Conclusions

The overall performance criterion of an adaptive controller is to ensure that the pro-
cess output tracks the setpoint at all times or at least asymptotically. Minimization
of a discrete quadratic cost function over a large finite prediction horizon is computa-
tionally “heavy”. Conversely, a small prediction horizon reduces the computational
load considerably, but results in less robustness. Therefore, an alternative overall
performance criterion was proposed to maintain the process output at the setpoint
over a relatively shorter prediction horizon and at steady state. The resulting control
law is GPC with weighting on the square of steady-state error. The addition of this
steady-state error weighting term allows the prediction horizon (n2) to be reduced
and yet retains robustness as if a lafge prediction horizon were used. The dual of this
control law in identification is a combination of a long-range predictive identification
criterion with identification of the steady-state output. An examination of the LRPI
algorithm by Shook et al. (1991) found that extending the identification horizon to
infinity indirectly turns the ARMAX representation of the process from an equation
error scheme to an output error scheme. Extension of the identification horizon for
an ARIMAX model leads to the idea that identification of the process gain is an
indirect method of achieving identification of the steady-state output. Therefore, a

simple algorithm for inexpensive on-line gain estimation was developed. The result-
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ing adaptive controller is a combination of LRPC (e.g. GPC) with steady-state error
weighting, the LRPI algorithm of Shook ef al. (1991), and the ;:rocess gain estimation
algorithm. The performance of this new controller is demonstrated by simulations.
The results show that accurate estimation of process gain, combined with steady-
state error weighting, improve the overall robustness of the controller even with a

very small prediction horizon and large model-plant mismatch.
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Chapter 5

Automated Blood Pressure
Regulation: A Survey

5.1 Introduction

Stable, steady operation of a chemical process is often a non-trivial task. Many
times, the process operation is upset by unmeasurable disturbance and interactions
from other processes. Varying time-delays and process non-linearities also contribute
to the complexity of chemical processes. Early efforts to achieve stable and satisfac-
tory control in the presence of these problems were hindered by the lack of theory
and equipment. However, the continuing evolution of computer technology and de-
velopments in control theory have made possible the implementation of sophisticated
control strategies that can deal with many of these problems.

Since a human body is a dynamic process with many similarities to a chemical
process, the concept of using closed-loop control in medicine is not new. Previous
practice in performing closed-loop control on physiological variables of a patient was
in the form of loose-loop control where medical personnel acted as controllers between
tiie patient (process) and the dosage of an appropriate drug (manipulated variable)
(Vozeh and Steimer, 1985). The problems in chemical processes mentioned above also

exist in human systems because the human body is subject to numerous deterministic
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as well as stochastic disturbances. Therefore, manual administration of drugs in
intraoperative and postoperative situations to keep important physiological variables
within desired limits is difficult and time-consuming. With the progress in automation
technology, continuous automated control systems for drug delivery are beginning to
appear in clinical medicine. These systems include the control of blood glucose, depth
of anesthesia, respiratory variables, intravascular fluids for burn patients, and blood
pressure control (Katona, 1982). Since the sensitivity to drug infusion can differ
widely for different patients or even changes in the same patient during the course of
infusion, an adaptive or self-tuning capability in a control system is beneficial. As a
resuit, many studies in the literature have used advanced adaptive control techniques
rather than simple (9xed-parameter) feedback control.

This chapter reviews current developments in the control of blood pressure.
Since Sheppard et al. (1975) conducted most of the pioneering work in this research
area, his work, along with similar developments by others, is described first in the
next section. It is followed by a description of the IVAC Titrator! which is the first
government approved system for automatic nitroprusside delivery. Other contribu-
tions are subdivided into different units according to the predictive nature of different

control strategies. A survey of Sheppard’s work has also appeared in a publication

by Linkens (1984).
5.2 Sheppard’s System

Sheppard conducted most of the pioneering work in the control of mean arterial
pressure using automatic infusion of sodium nitroprusside (SNP). In 1975, a digital
system was applied to blood pressure control on thousands of patients (Skeppard et

al., 1975). The infusion rate increment was calculated from the proportional and

1IVAC Corporation, San Diego, California
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derivative terms of the blood pressure error, modified by a gain scheduling algorithm,
incremental limits and decremental terms. All nonlinearities were functions of the
error magnitude and sign. They were designed to be aggressive in reducing the
infusion rate so as to avoid serious hypotension. However, manual adjustments of
the controller gain were often required to improve performance or ensure controller
stability (Slate, 1980).

The original system was modified later, based on several modeling studies in
the physiological response to SNP infusion. Sheppard and Sayers (1977) assumed a
first-order model with a time delay of about one circulation time (20 to 45 seconds).
The information was used in the design of a PID controller with a decision table
(Sheppard et al., 1979). The clinical evalnation of such a non-linear PID controller
showed that further tuning was necessary (Sheppard, 1¢31). Later modeling inves-

tigations (Slate et al., 1979) revealed dynamic properties that could be described as

follows:
AP(s)__Ke”W(l + ae™m*) (5.1)
I(s) (1+7s) )

where

* AP corresponds to the drop of MAP in mmHg induced by SNP infusion rate /

in ml hr?,
e K is the sensitivity of the patient to SNP infusion (25 to 9 mmHg ml~'hr-1),
* 7 is the transport delay (20 to 60 seconds),

® 7 represents the time delay due to recirculation time (30 to 75 seconds),

® o i1s the recirculation fraction (0 to 0.4),

7 is the overall time constant (30 to 60 seconds).
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Because of the large range of parameter variations, sirnulation results using the
clinically-used nonlinear PID controller indicated the need for substantial modifi-
cation and adaptive control (Slate et al.,, 1980). The design of an improved infusion
system including multi-rate filtering of the mean arterial pressure and multi-mode
control selection in which parameter adaptation was present was described by Slate
and Sheppard (1982a,b). Fig. 5.1 shows the schematic diagram of the system con-
figuration. In this multi-mode control approach, either a linear regulator, nonlinear
transient controller, or proportional transient controller was selected to calculate the
incremental change every 10 seconds according to the magnitudes of blood pressure
deviations and their derivatives. The nonlinear transient controller was a combina-
tion of a relay-type controller with a gain scheduler and a Smith-predictor for time
delay compensation. The linear regulator was a PD-based controller. The propor-
tional transient controller was used to rapidly turn the controller off if the MAP was
far below the desired level. The adaptive feature which is a recursive least squares
algorithm modified the gain terms in the nonlinear transient controller and the linear
regulator. The gain adaptation routine was executed usually after the initial 15 min-
utes of control during which other physiological signals were assumed stationary. This
controller has been tested on dogs as well as 33 postoperative patients. Besides in-
accurate drug gain estimation on several patients due to human operating errors and
inadequate initial excitation, this system has shown improved performance compared
to the previous design.

The basic control structure of Sheppard’s system still belongs to the classical
PID feedback concept which requires fine-tuning to achieve desired performance. An
example of such a system for MAP regulation is described by Rosenfeldt et al. (1986).

Their device is a PI based control unit which can be tuned by adjusting three knobs.
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Figure 5.1: The schematic diagram of a control system by Slate and Sheppard (1982)
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An overview of PID feedback strategy and some tuning methods for implementation
in microcomputer based medical devices is given by Westenskow (1986).

de Asla et al. (1985) have implemented Sheppard and Slate’s control algorithm
in a portable unit consisting of a HP-85 microcomputer and an IMED 929 infusion
pump. Comparative studies of 49 patients with this system and 37 with experienced
intensive-care-unit nurses concluded once again that the computerized drug infusion
system is superior to manual control. Reid acd Kenny (1987) also applied a different
version of Sheppard and Slate’s system to control systolic arterial pressure instead
of MAP. They found that all patients with computer control had their pressure con-
trolled within 4+ 10 mmHg of the desired systolic pressure 90 % of the time. Another
similar dual-pump control system was applied to deliver SNP and glyceryl trinitrate
(Colvin and Kenny, 1989a,b). Because of possible toxic effect of prolonged SNP
infusion, trinitrate was used as a primary vasodilator to regulate MAP.

A survey of nurse attitudes towards automatic blood pressure regulation con-
cluded that using computer control allowed more time for nurses to provide other
aspects of patient care. However, nurses were critical of the slow response of such
a control system and lack of instruction on system operation (Murchie and Kenny,
1988). These results reflect the fact that PID-tuning is necessary and difficult. Es-
pecially in the presence of varying time delay and changing dynamics, PID-based
controllers must be over-detuned to accommodate uncertainties and incfea,se robust-
ness. This limitation in PID controllers has prompted other attempts in using more

advanced control strategies which are described in the sequel.
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5.3 IVAC Titrator

A number of investigations have been made in applying predictive and/or adaptive
control strategies in the area of biomedical engineering, because the predictive nature
is believed to produce faster response and the adaptive nature makes the controller
more flexible. Among these investigations, the IVAC Titrator is the first automatic
closed-loop MAP control device for SNP delivery which has received approval from
the Food and Drug Administration of the United States for postoperative hypotensive
therapy. Therefore, it is described in considerable detail.

The project was initiated by the Cleveland Clinic Foundation in Ohio in 1979.
The first system was designed to deliver SNP at a rate that was determined by a set
of pre-specified range determinations. Details of the range determination were not
available. The system was tested on 57 postoperative cardiac patients (Petre et al.,
1983). Since the issues of varying time d.lay and individual patient response were
not considered in the controller design, the performance, as indicated by a typical
trajectory of MAP, showed large deviations from the desired range. Subsequent de-
velopment of the system by a joint effort with IVAC Corporation (Meline et al., 1985)
added an adaptive minimum variance control strategy (Clarke, 1981). The purpose
of this strategy was to find the optimal SNP infusion which minimized the variance

of the error between a predicted MAP response and the setpoint:
Iav =[Gt +k+1) —w(t + &+ D) + A [Au@)]? (5.2)

The relationship between MAP and SNP was represented by a time series model in

the following form:

y(t) = ay(t—-1)+ay(t—2)+---+ @nay(t — na) + bppru(t — k — 1)
+bppou(t—k~2) 4. 4 brqnpu(t — k — nbd) + £(t) (5.3)

109



where y(t — ¢) and u(t — 7) were MAP response and SNP infusion at time ¢ — 1,
respectively. £(t) was a noise term. Predictions of MAP response was made by shifting
the time elements in eqn. 5.3 k-units ahead. Adaptation was done by estimating the
parameters a; and b; using a recursive least squares method.

A comparative study of the performance of the minimum variance control
and a particular version of PID control was conducted experimentally (Meline et
al., 1986). After the two control strategies were tested with a series of challenges,
no significant difference was found between the two on an average basis. However,
the minimum variance controller was more aggressive than PID, and its oscillations

due to time-delay mismatch were not desirable. Another comparative study between

the same PID controller and 10 anesthesiologists was-cbnducted atr the University
of Utah (Westenskow et al., 1987). A series of chzailenges by means of other drug
infusions to homeostasis was introduced to 10 dogs during induced hypotension by
either an anesthesiologist or the antomatic controller. The conclusion was that the
results using computer control ﬁere as good as those obtained by an anesthesiologist
who devoted his full attention to blood pressure control. These two comparative
studies substantiated the idea that computer control was capable of achieving MAP
regulation; and a well-tuned PID was comparable to minimum variance control which
was sensitive to modeling error.

The final version of the system was known as IVAC Titrator model 10K which
contained two separate control algorithms: the first was a transient control mode,
designed to lower MAP to a desired level; the second was a regulatory mode for
maintaining MAP at the desired level using the previously-tested PID algorithm.
Although details of the transient control mode were proprietary and not available,

the control algorithm is believed to be a modified version of the minimum variance
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control law. A group of 90 postoperative cardiac surgical patients were tested using
this system and the results were compared with those from another group of patients.
The statistical results showed that about 85 % of MAP regulatory responses with
computer control and 61 % of that with manual control were within +10 % of the
desired level (Cosgrove III et al., 1989).

Although this unit has been granted approval for use in postoperative patients,
there exists room for improvement such as reducing the variance of MAP during
regulatory control, increasing the system’s robustness for application in intraoperative
patients, or even applyin, the same MAP control system in other biomedical practices.
These incentives have resulted in a lot of efforts in searching for a better MAP control

system which is summarized in next section.

5.4 Other Ventures

5.4.1 Single-Step Predictive Optimization

Minimum Variance Based Algorithm

One of the most widely investigated modern control techniques is the minimum vari-
ance control strategy (Astram and Wittenmark, 1973; Clarke and Gawthrop, 1975).
This type of control strategy, as mentioned in Section 5.3, requires a mathematical
model of the effect of SNP on MAP and a quadratic input-output performance index.
Its adaptive nature usually appears in the modeling procedure in which the model
parameters are frequently adjusted so that optimal performance can be maintained
in spite of changes in the process or environment. Because of its predictive nature
and simple implementation for adaptation, different versions of the generalized min-
imum variance control (Clarke and Gawthrop, 1979) applied to MAP control have

appeared in the literature. The scope of these studies includes simulations using a
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blood pressure model {Stern et al, 1981; Mclnnis and Deng, 1985; Behbehani and
Cross, 1991), experiments on dogs (Koivo et al., 1980; Stern et al., 1981; Koivo et
al., 1981; Walker et al., 1982; Arnsparger et al,, 1983; Meline et al., 1985; Peng et
al., 1988}, and clinical trials on postoperative patients (Foss et al, 1990) as well as
intraoperative patients (Millard et al.,, 1987; Millard et al., 1988).

A common phenomenon found in most of these results is that SNP infusion
appeared to be ringing (or oscillating) and a large MAP variance was observed. This
is due to the fact that control performance of any model-based one-step ahead pre-
dictive control law is very sensitive to the choice of time delay, £, and model order.
na, as in eqn. 5.3. In general, & varies from patient to patient and the true na is
infinite. Applying minimum variance control requires a priori determination of &£ and
a reduced-order model to approximate physiological dynamics. Poor selections of
these values deteriorates control performance and can even lead to instability. There-
fore, different configurations of the generalized minimum variance control strategy
have been investigated in order to increase stability. The controller by Millard et al.
(1987) resorted to heavy filtering of both input and output signals. Stern et al. (1985)
implemented a time-delay estimation algorithm (Kurz and Goedecke, 1981) to iden-
tify & on-line, but their study in comparing human performance and the minimum
variance control did not show major improvement in using computer control. The
control advance moving average controller (CAMAC) which belongs to the class of
extended horizon control was implemented to deal with varying and unknown time
delay (Voss et al., 1987; Voss et al., 1988). This scheme minimized a similar minimum
variance cost function at a specific time advance. The time advance was selected to
be either larger than or equal to the actual time delay. However, proper tuning of the

time advance was essential, but difficult, especially in the presence of disturbances.
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Attempting to obtain a better reduced-order model, Walker et al. (1982) compared
least squares estifnation with extended least squares (ELS) and maximum likelihood
(ML) approaches. Aithough both ELS and ML were capable of identifying the noise
model in simulation (Walker et al., 1982), their slow parameter convergence made
them undesirable in experimental settings.

The minimum variance type control law is indeed well-known in control engi-
neering. However, its application in a highly non-linear and varying time-delay phys-
10logical processes such as MAP control is not appropriate. Because of this rationale,
a number of other control techniques have been considered for improved robustness.
These include the pole-placement algorithm, multiple-mode] adaptive control, model

reference adaptive control, and long-range predictive control which are described in

the followings.

Pole-Placement Algorithm

A pole-placement algorithm functions as a self-configured controller so that the over-
all closed-loop poles which characterize process dynamics are always placed at pre-
specified locations. Two versions of this controller have been designed by Mansour and
Linkens (1989a,b) using the Slate and Sheppard model. In one development, a Smith
predictor was used to eliminate the time delay and reduce model-plant mismatch
(Mansour and Linkens, 1989a). Another study made use of an expanded B(g~!)
polynomial to accommodate varying time delay (Mansour and Linkens, 1989b). The
mode] parameters were estimated by a RLS algorithm. Although pole-placement
is a more robust control technique than minimum variance control, numerical ill-
conditioning due to cancellation of near common factors in an overparameterized

model may jeopardize the whole controller performance. Significant model-plant mis-
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match due to errant estimates of model parameters especially when an expanded
B(g™") is identified can also render the closed-loop control unstable. Therefore, the
authors correctly acknowledged that special care should be taken with respect to

parameter “jacketing” when using a self-tuning pole-placement controller.

Multiple-Model Adaptive Control

A multiple-model adaptive controller was designed by He et al. (1986) to ensure
model integrity. This approach assumed that the plant could be represented by a
finite number of models. In He’s work, eight models were used to represent MAP
response to SNP infusion. The gains of the models were selected to cover the range
of MAP sensitivities to SNP infusions given by Slate and Sheppard (1979), whereas
all dynamic model parameters were set to their nominal values. A pole-placement
based controller associated with each model was designed to satisfy an undershoot
less than 10 mmHg and a settling time less than 300 seconds. The resulting closed-
loop Eontroller was also subject to a set of non-linear constraints that would limit the
dosage being infused into the patient. The final control action was calculated as the
weighted sum of all eight outputs from the controllers. 1;\_5 reported by the authors,
the largest undershoot and longest settling time in simulation results were about
12 mmHg and 390 seconds, respectively, which violated the authors’ own specifications
on controller design. When the time delay was underestimated, large deviations from
the setpoint were observed.

Martin et al. (1987) followed up this design by including a Smith predictor,
a low-pass filter, and some minor modifications in their multiple model adaptive
controller. Thé time delay was estimated at every setpoint change (> 20 mmHg)

by fitting an exponential curve to sequential pressure measurements as the pressure
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drops by 3 to 10 mmHg. Seven models were assumed instead of eight. The control
law was still designed via pole-placement and state-variable feedback. As a result of
the time delay estimation, the severe undershoots previously observed in simulation
were eliminated. The desired performance characteristics were met in simulation.
However, the time-delay estimation function used during setpoint changes could not
identify time-delay variations during regulatory control which was considered more
common than servo control in MAP regulation.

Although adaptation around a number of fixed models may facilitate the initial
identification, the fixed models only account for a limited variation in physiological
changes. Moreover, this modeling technique rarely provides an optimal and precise
model. The most significant drawback is that multiple-model adaptive controllers are

not transferable to control other physiological signals.

Model Reference Adaptive Control

Rather than specifying the performance of a closed-loop controller by placing its
poles at certain locations, one could make the performance specification by means
of a desired model. This model reference adaptive control has also been considered
for MAP control. A state-space model corresponding to a first-order rodel with
a unity gain, time-delay of 30 seconds and 40-second time constant was used as a
reference by Sobel et al (1982) and Kaufman et al. (1984). The adaptation comes
in the controller gain term which would be adjusted at every sampling interval. A
Dahlin algorithm was briefly evaluated on dogs by Zhang et al. (1988). Pajunen et
al. (1990) also studied another version of a model reference adaptive controller. The
reference model was made adaptive by ox-line identification using an ELS algorithm

with covariance resetting. The time delay was estimated a priori by exciting the
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process with a pseudo-random binary sequence (PRBS) prior to closed-loop control
(Steinmetz, 1987). Their simulation results show that the excitation using PRBS
took at least 10 minutes to complete. This long period of probing strategy is usually
not practical in clinical situations.

Model reference adaptive control possesses drawbacks similar to pole place-
ment control and falls into the category of single-step predictive control. Also, model
reference schemes generally require excessive phase leads which cause difficulties in
the presence of noisy signals. This explains why the previous studies mentioned above

required such a long period of excitation.
5.4.2 Multi-Step Predictive Optimization

Muiti-step predictive optimization strategy inherits the benefit of one-step predictive
contro] and yet is deemed more robust because of its long-range predictive nature.
The performance objective considers a trajectory of predicted responses rather than a
) single point in the future. A generalized optimization index for this class of long-range

predictive control is given by the following equation:

Jie =3 (t+5) ~wlt+ P+ A0 a5 - OF (54

where n1 and n2 represents a horizon of MAP predictions, nu is the number of future
SNP infusion changes. A version of this control algorithm is known as generalized
~ predictive control (GPC) (Clarke et al., 1987). With different configurations of the
three horizon terms, GPC reduces to many well-known controllers. More importantly,
the three simple terms can be tuned to overcome many of the limitations of pole-
placement or minimum variance control (McIntosh, 1988). Both Kwok et al. {1990,
1991, and see Chapter 6) and Yu et al. (1991) applied GPC in the regulation of MAP.

The difference between their controller designs was in the model identification. Yu et
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al. included GPC in their multiple-model adaptive controller for control of MAP and
CO. In contrast, the present study (Chapter 6) considered a truly adaptive model-
based predictive MAP controller. An advanced control-relevant identification method
for long-range predictive control (Shook et al., 1991) was also incorporated by Kwok

et al. in a later study which is discussed in detail in Chapter 7.
5.4.3 Multiple Drug Infusion

The MAP is only an indication of the vascular resistance. The main control objective
is to provide and maintain the blood flow required by different parts of the body
after undergoing cardiac surgery. Therefore, several attempts were initiated to simul-
taneously control the MAP and other important physiological parameters. Of most
interest is the control of cardiac output (CO) because combining MAP and CO gives
rise to a quantitative value of the systemic vascular resistance. This problem was well
explained from the perspective of an anesthesiologist and a control engineer by Roy
(1982).

Cardiac output measures the overall blood flow in the circulatory system,
which is the amount of blood pumped by each ventricle of the heart in a unit period
of time. The current clinical method of measuring CO is by means of thermodilu-
tion performed intermittently. Because of a lack of continuous CO measurement,
Serna et al. (1983) first investigated this control problem by treating MAP/SNP and
CO/dopamine (DOP) as two SISO control loops. Since then, several advanced control
strategies have been considered for a true multivariable drug infusion system. These
include: adaptive pole-placement, model reference adaptive control and Richalet’s
model algorithmic controller (1978) in a comparative study via simulation (Lau et
al., 1984), as well as multivariable generalized minimum variance control on an elec-

trical analog model of the circulatory system (Mclnnis and Deng, 1985). However,
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the results were not conclusive for two reasons. First, the performance of different
control strategies largely depends on how the strategy is tuned. Second, the multi-
variable model used for the simulation study was too simple to reflect the complex
drug dynamics. Voss et al. (1986) also presented a multivariable version of CAMAC
and briefly applied it to animal studies. But their controller required 13 to 30 minutes
for initial identification and a sampling time of 40 or 60 seconds {Voss ef al., 1988),
both of which were inappropriate for clinical applications.

Recently Mansour and Linkens (1990) considered two nonpulsatile models of
the cardiovascular systems for the design of a twb-input, two-output, multivariable,
self-tuning controller. Two pole-placement algorithms, an explicit pole-placement
algorithm by Prager and Wellstead (1981) and a pole-zero placement algorithm by
Sirisena and Teng (1986), were tested for the control of systemic resistance and cardiac
output by manipulating SNP and DOP infusions. The interacting dynamics between
the drug infusions (i.e. SNP and DOP) and the physiolog,iéal outputs (i.e. systemic
resistance and cardiac output) were represented by the ca.rciiovascular models given
by Moller et al. (1983) and Wesseling et al. (1982). In their closed-loop simulation
studies, application of a multivariable self-tuning controller was demonstrated to be
feasible in a complex human cardiovascular system. However, as the authors have
stated, their studies “have used fixed parameters representing a typical subject”.
The controller, therefore, needs to be evaluated under interpatient and intrapatient
parameter uncertainty.

Without any breakthrough in reliable frequent CO measurement, the studies
in a multivariable MAP and CO controller tend to focus more on the demonstration
of the control algorithm rather than the actual design of a clinically acceptable device.

Since CO is available at a much slower rate than MAP, inferential control may be able
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to handle this multi-rate control problem. In this case, MAP and another CO-related

physiological signals are treated as primary variables for control purpose. GO is then

‘measured at a slower rate and used to correct any modeling error.
5.4.4 Expert and Fuzzy Control System

Expert control offers a new direction in solving process control engineering problems
which normally rely on numerical computations. Based on the fuzzy set theory, the
concept of an expert system is to turn human experience and knowledge into a group
of fuzzy control rules. These rules form a knowledge base and are applied to the input
signals for making a new decision. Therefore, the input signals must first be fuzzified
before being processed by the knowledge base. The decision is, then, defuzzified into
a value which is usually an incremental change of the manipulated variable. A simple
example of fuzzy rules for MAP control was a look-up table in which the infusion
rate incremental steps were determined by what range the MAP deviation fell into
(Sheppard, 1980; Packer et al., 1987). Other full scale fuzzy controllers were described
by Ying et al. (1988) and Yamashita et al. (1988). An intelligent alarm knowledge
base was also developed by Fukui and Masuzawa (1989) to differentiate false MAP
readings from true ones.

Expert control systems have been widely considered in clinical practices be-
cause they tend to match the judgment of medical personnel (Linkens and Hacisali-
hzade, 1990). However, their performance may not outperform that of the advanced
control strategies described in Section 5.4. On the other hand, many advanced con-
trollers require a supervisory system to make decisions on model identification and
minor adjustments in tuning parameters especially for adaptive type systems. It
would be appealing to combine the strong points of both expert systems and ad-

vanced control strategies together so that the former deals with the overall control
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system and lets the latter perform tight regulation.

5.5 Conclusions

Multi-disciplinary efforts based on control engineering and physiology have been
merged to generate a number of successful applications in the practice of medicine.
Mean arterial pressure control is one of the active areas which has received much at-
tention both from the academia and practitioners. Since Sheppard’s pioneering work
in modeling the dynamic response of mean arterial pressure to vasoactive drug infu-
sions, several versions of blood pressure controllers based on PID control have been
reported and applied in postoperative hypoj,ensive therapy. One of these systems,
known as the TVAC Titrator, eventually received approval from the U.S. Food and
Drug Administration for postoperative therapy. However, proper tuning of PID con-
trollers especially in the presence of varying drug response time and changing body
dynamics is still a hindrance to broader application in clinical settings. Often tirﬁcs,
PID contrellers are over-detuned to accommodate uncertainties and increase robust-
ness. As a result, other advanced control strategies have been considered for mean
arterial control.

Because of complex physiological dynamics, a lot of research activity has fo-
cused on adaptive and predictive control strategies. However, single point predictive
controllers with an adaptive mechanism using recursive least squares para.metef esti-
mation often resulted in oscillatory responses. Move suppression techniques such as
heavy filtering and control weighting were necessary to reduce overly vigorous control
action. An alternative to these single point predictive control strategies is muiti-step
predictive control and identification schemes. Since multi-step optimization considers

a trajectory of mean arterial pressure predictions, the resulting controller performance
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is more rc;bust for time-varying dynamic systems including varying time-delays.

Multiple drug infusion is indeed a logical step towards full automation of drug
therapy. But existing limitations in bio-sensors such as measuring continuous cardiac
output have hindered further implementation of a lot of valuable research results from
the control area.

Knowledge-based fuzzy controllers represent a new approach to many control
areas where parametric models are not available for calculating the manipulated vari-
able. In blood pressure control, an expert system could look after the initial control
period while identification is underway, supervise the overall controller when arti-
facts are detected, and perform minor tuning or override control when extraordinary
dynamics are encountered. Therefore, using an advanced control strategy such as
multi-step predictive control to provide tight control while the overall system is su-

pervised by an expert system is very desirable not only in biomedical control but also

in other industrial applications.
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Chapter 6

Development of LRPC System for
Mean Arterial Pressure
Regulation!

6.1 Introduction

Methods for the automated control of mean arterial pressure (MAP) in postoperative
patients have been investigated by many researchers. Some control systems based
on feedback control theory including constraints werealso put into trials or routine
clinical practice (Sheppard et al., 1979; Rosenfeldt et al., 1986; McNally et al., 1977).
However, improvements in the robustness of the closed-loop control algorithm and
the system’s adaptivity to a wi_de variety of patients of differing sensitivities are
required. These changes are necessary because patients’ response to commonly used
vasodilators, e.g. sodium nitroprusside (SNP), are different and the response may
even change within the same patient during the course of continuous drug infusion.
Therefore systems having the ability of adapting to changes on-line are more desirable

for arterial pressure control.

Many closed-loop adaptive control systems have been developed and tested.

1A version of this chapter has been published in the Infernational Journal of Adaptive Conirol
and Signal Processing: Constrained long-range adaptive predictive control of arterial blood pressure,
Kwok, K.Y., R.K. Mutha, S.L. Shah, A.S. Clanachan, and B. Finegan, 5(6):363-374, 1991.
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A number of them are of the self-tuning type. A (non-adaptive) minimum variance
controller was implemented by Koivo et al. (1981a,b). Meline et al. (1985) describe
the use of a self-tuning controller with a minimum variance control law. In order
to combat the varying and unknown time delay problem, a pole-placement-based
self-tuning method was attempted in a multiple-drug infusion system by Sérna, et al.
(1983). Similar systems in the form of the Generalized Minimum Variance controller
were tested by Arnsparger et al. (1983), Stern et al. (1985), Peng et al. (1988), and
Millard et al. (1987,1988). A one-step ahead predictive controller for multiple-drug
infusion was presented by McInnis and Deng (1985). The performance of an adaptive
Dahlin algorithm approach was reported by Zhang et al. (1988). Recently, Voss et
al. (1988) resolved the non-minimum phase problemn in the multi-input/multi-output
control of cardiac output and blood pressure control by using the Control Advance
Moving Average Controller, a member of the class of extended horizon control tech-
nique proposed by Ydstie et al. (1985). Multiple-model adaptive control employing a
weighted-average of the control actions from a bank of models was considered by He
et al. (1986) and Martin et al. (1987).

The methods examined so far are one- or k-step ahead single point predictive
controllers. This chapter describes a closed-loop adaptive control system based on
the long range prediction strategy known as Generalized Predictive Control (GPC).
The system was previously tested in the control of MAP on anesthetized dogs (Kwok
et al., 1990). The philosophy of this GPC approach is that rather than computing
a control action based solely on the prediction of a single point in the future, a
series of contro] actions in the future are considered by having a controlled output
follow an entire trajectory of desired blood pressure. As a result, the whole control

scheme is more robust than many other single-point prediction control algorithms
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reported in the literature. The algorithm with finite horizons was shown to produce
stabilizing controllers (Clarke and Mohtadi, 1989). Also, because of the long-range
output prediction, processes with non-minimum phase characteristics and varying
time delay can also be easily accommodated. The detailed theoretical framework
plus demonstrations of the above mentioned properties are given in Clarke et al.
(1987a,b), Mohtadi (1987, 1988), McIntosh (1938), and MclIntosh et al. (1988).
Recently, Yu et al. (1991) also included the GPC algorithm into their studies
in the control of MAP and cardiac output. Their control strategy used a multi-
ple model adaptive controller with a GPC controller for each model. However, the
present work describes a true model-adaptive controller rather than a controller with
a limited number of fixed models to be switched between. This work also includes

results of both constrained and unconstrained control obtained from experiments on

anesthetized dogs.

6.2 Controller Design

6.2.1 Model-Based Predictive Control

Slate et al. (1980) developed a model relating MAP to SNP infusion based on patient
data together with the knowledge of physiological concepts plus pharmacological ac-

tion of the drug. The model is a first-order transfer function with two time delay

terms,
AP(s)  Ke=n5(1 4 ae)
O (6.1)

where AP corresponds to the drop of MAP induced by SNP infusion rate I, K is
the sensitivity of the patient to the drug, 7 and 7, represent the time delays due to

transport lag and recirculation time, a is the recirculation fraction, and 7 is the time

constant.
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Their studies also showed a large range of variations in the model parameters
from patient to patient or even for the same patient during the course of continuous
infusion. The studies contained in this chapter assume that the process which rep-
resents MAP response to SNP infusion is described by an autoregressive, integrated

moving average model with an auxiliary input (ARIMAX),

Alg™)(0) = Blg™ult — 1) + Tl ) 5 (6.2)

where A, B, and T are polynomials in the backward shift operator ¢! which is
dropped in the sequel for brevity. y(¢) is the MAP. u(t — 1) represents the drug
infusion rate with a zeroth-order hold. £(¢) is an uncorrelated random sequence with
zero mean and A is the difference operator 1 — ¢~1.

By making use of the Diophantine identity,
T=F;AA+ ¢ F; (6.3)

which uniquely defines E; and Fj;, a future process output response model is obtained

as follows,

§E+71t) =GjAu(t+5 - 1)+ f{t+7 1) (6.4)
where G; = EJB with its coefficients corresponding to step-response model coeli’cients
and f(t+ 7 | t) is the future “unforced” process output prediction term. Both
polynomials A and B are obtained from an on-line identifier. The observer polynomial
T is usually a user-defined noise model.

In the GPC strategy, the control objective is to keep a trajectory of predicted
future process output as close to the setpoint as possible by generating a future contro}

irajectory. The objective is defined by the cost function,
n2

Tot,n2,m) = 3 e+ 7 1) —w(t + AP + 3 M)A+ -0 (65)

where

134



nl is the minimum output prediction horizon,

n2 is the maximum output prediction horizon,

nu is the control action horizon, such that Au(t + i) = 0,2 > nu,

e \(7) is a weighting sequence.

The following control law minimizes eqn. 6.5:

U= (GTG+A)GT(W-F) (6.6)
where
[ Gn1-1 . Go 0 0 PN 0 |
g+ g g G --- O
G = (6.7)
o
gn2-1 Gro-2 - Gn2—nu
a1 0 0 |
A= 0 A2) 0 (6.8)
0 e 0 At |
W = [w(it+nl|t) wit+nl+1]t) - w(t+n2H)]T (6.9)
F = [ fit+nl|t) ft+nl+1]t) -~ ft+n2(8)]"  (6.10)

Since the algorithm is functioning in a receding horizon manner, only the first element
of eqn. 6.6 is implemented and a new vec.iur U is calculated at the next sample interval.
Details of the GPC derivation, its variations and properties are documented elsewhere
(Clarke et al., 1987a,b; Clarke and Mohtadi, 1989; Mohtadi, 1988; McIntosh et al.,
1988; McIntosh, 1988).
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6.2.2 Constrained Optimization

The control action implemented on a physical system has limitations due to saturation
of control elements; for example, any valve can only open between the range of 0 %
and 100 % or the flow rate of a heating fluid cannot go negative. In the control
of MAP, additional physical and physiological constraints as follows also need to be

observed,

¢ Drug infusion limit: a maximum infusion of SNP is to be fixed to prevent high

SNP concentration in the body.

o Incremental change of arterial blood pressure: the rate of change of arte-
rial blood pressure should be limited to avoid complications caused by sudden

changes in blood pressure.

¢ Bounds on the range of arterial blood pressure: arterial blood pressure should

not drop or rise beyond acceptable limits.

Because of the predictive ability of the GPC algorithm, an optimal solution
that minimizes eqn. 6.5 subject to the above constraints can be found. Since all
constraints on arterial blood pressure car always be mapped into constraints on

drug infusion via the prediction model, only the following two constraints will be
considered in the minimization of eqn. 6.5,

the rate constraint:
—oy, S Au< oy (6.11)
and the amplitude constraint:
M Su<p (6.12)

Constraint 6.11 corresponds to the maximum allowable change of infusion at each in-

terval in either direction. Constraint 6.12 corresponds to the minimum and maximum
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dose rate for a particular patient. p; is usually zero, corresponding to the minimum
possible infusion rate. It is considered important in constrained optimization because
no negative infusion rate can be implemented in practice. p; is a variable depen-
dent on the subject’s weight and the total duration of SNP administration. For the

application of SNP on patients, the maximal dose should not exceed S00 pg min~!

(Goodman and Gilman, 1975).

6.2.3 Process Identification

The coeficients in polynomials A and B are estimated on-line using a recursive least
square algorithm with a variable forgetting factor. Since this algorithm has been used

extensively, the reader is referred to Seborg et al. (1986) for details.
6.2.4 Implementation

A second order ARIMAX model was assumed to represent the response of MAP
to SNP infusion. The varying time-delay was accommodated by using an extended
B (¢7') polynomial. A total of seven parameters were identified by the recursive least
squares algorithm incorporated with UD factorization and variable forgetting. The
sample time was selected to be 10 seconds. High-frequency noise was filtered by the

observer polynomial,

T=1-0.8¢"" (6.13)

before the data were sampled by the identification routine.

All control actions were penalized by a control weight of A = 0.001 mmainly to
ensure that the matrix inversion in eqn. 6.6 was non-singular. The initial values for
minimum output horizon (nl), maximum output horizon (r2) and control horizon

(nu) were selected to be 2, 10, and 1 respectively, as these were suggested default

values at commissioning stage.
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An analytical solution to the consirained GPC problem was developed for some
simple SISO (nu < 2) (Tsang and Clarke, 1988) and MIMO (nu = 1) cases (Mutha,
1991). Experimental evaluation of such analytically solved constrained GPC problems
was documented by Mutha (1991). For the purpose of devising and evaluating a
constrained GPC controller for a general class of rate and amplitude constraints on the
inputs and outputs, the constrained algorithm is implemented using the optimization
package QPSOL from Stanford University which searches for an optimal solution in
the quadratic space iteratively. Mixed-language programming is necessary because
the QPSOL package is in FORTRAN whereas all in-house routines are written in
C. The performance of the controller in the presence of constraints was tested on a
pilot-scale continuous stirred-tank heater and found to have satisfactory disturbance
rejection as compared to the unconstrained GPC controller (Mutha, 1991).

To avoid the possibility of over-dosing the subject in the event of a sudden drop
in MAP, the program has a safety-check routine which validates the control signal
before sending the signal to the infusion pump. Should the MAP fall below a cer-
tain critical user-specified limit, the routine would disregard the negative incremental

constraint on Au and reduce SNP infusion in an aggressive manner.

6.3 System Description

6.3.1 Equipment

A schematic di#gram of the experimental setup is shown in fig. 6.1. An HP 78200
series monitoring system was used to measure the physiological parameters. The
arterial pressure wave was measured via a carotid using a pressure transducer. The
signal was amplified and the systolic as well as the diastolic pressure detected. The

MAP was calculated and made available both on a digital display board and as a 0
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to 3 V analog signal {corresponding to 0 to 300 mmHg). The blood pressure signal
was sampled by an Optomux system every 10 seconds, and converted from an analog
signal to a 12-bit digital signal. An IBM Model-70 PS/2 personal computer running
under the QNX operating system was employed for the control calculations and data
acquisition. It receives the 12-bit blood pressure digital signal from the Optomux
system via an RS$-232 interface. After an appropriate control action is calculated,
the signal is sent to an IMED? 929 computer-enabled drug infusion pump which has
a capacity from 0 to 1599 ml hr~!. The infusion rate is updated at every sample
time. Two drugs were used in the closed-loop control experiment, namely SNP,
a vasodilator, and norepinephrine, a vasoconstrictor. The former was used as the
manipulated variable to decrease the blood pressure and the latter as a disturbance
to increase blood pressure. Both were delivered via a triple-lumen catheter positioned

in the fernoral vein.
6.3.2 Software

In an ideal automatic control environment, continuous monitoring and control in real
time should be maintained with minimal interruption from other operations such as
changing setpoint or countrol parameters. The contiruity is also essential in adaptive
blood pressure control because blood pressure as well as the adaptive property of the
controller cannot afford frequent interruption or intermittent termination. Therefore,
a real-{ime, multi-tasking environment, in which the computer can respond to the
operator’s requests while maintaining control was considered essential in our devel-
opment of the blood pressure controller. In order to achieve this environment with
a flexible and fast program-operator communication interface, all software programs

were written In the C language under the QNX operating system, which is a UNIX-

*IMED Corporation, San Diego, California
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based real-time, multi-tasking operating system. A MULTI-purpose CONtrol system
package (MULTICON) has been developed at the Department of Chemical Engineer-
ing at the University of Alberta. It provides a flexible euvironment for control system
management under which the timing, sampling via the Optomux system, scheduling
of tasks, and real-time graphic display of data are performed in 2 multi-tasking and
real-time manner. A schematic of the software system is shcwn in fig. 6.2. Three user
tasks are supervised by MULTICON: a recursive least squares identification routine,
the GPC control routine, and the pump driver routine. Because of a relatively large
computational load and large memory requirements, the GPC routine was executed
with the dynamic allocation of computer memory space. Since MULTICON is multi-
tasking, the operator can then change the setpoint and control parameters on-line

without disturbing closed-loop control.

6.4 Experimental Studies
6.4.1 Methods

Following ethics approval, experiments were performed on anesthetized dogs (20-
25 ky) in the laboratory of the Department of Anaesthesia/Pharmacology at the
University of Alberta. Anesthesia was induced by 30 mg kg™! sodium pentobarbital
and maintained by a continuous infusion of pentobarbital (3 mg kg~*hr™?), fentanyl
(20 pg kg~'hr™') and pancuronium (100 pg kg~'hr~!). SNP at a concentration of
200 pg ml™? was used as the manipulated variable.

The commissioning period of blood pressure control consists of two steps: an
open-loop pseudo-random binary sequence (PRBS) with an amplitude decided by
medical personnel and a closed-loop setpoint change. The PRBS serves as an initial

probing signal for the control system and initialization of model parameters. The
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subsequent setpoint change was to lower the blood pressure from a hypertensive state
to a lower level. The performance of the controller was then evaluated upon a series
of unpredictable disturbances introduced artificially by infusion of other vasoactive
drugs. Norepinephrine (NE) which causes vasoconstriction was used to induce hyper-
tension. Adenosine mono-phosphate (AMP) which has a similar effect as SNP was

applied to lower blood pressure. Both drugs were separately introduced in continuous

infusion as well as in bolus.
6.4.2 Results

The procedure for evaluating the controller on dogs included administering distur-
bance drugs during an open-loop (OL) control run, a closed-loop constrained control
run and a closed-loop unconstrained control run. The purpose of the open-loop con-
trolled run was to illustrate the severity of the effect causcd by disturbance drugs
on the subject while the disturbance was not being compensated by any corrective
actions. During the period of this OL control run, SNP was continuously infused at a
fixed rate to the subject so as to generate a hypotensive state close to the one during
a closed-loop control run. The two closed-loop control runs were separated by the OL
control run. Replicate experiments were done on five dogs which were anesthetized
during the experiment. A typical set of results is included in this chapter to illustrate
the performance of both constrained and unconstrained GPC.

Before all these runs were performed on the same subject, open-loop step
responses of the MAP in response to SNP infusions were first recorded and a typical
sample is plotted in fig. 6.3. SNP infusions were increased from 2.67 ug kg~ 'min~! to
20 pg kg™'min~! in 6-minute intervals. Fig. 6.4 shows the unconstrained control of

MAP. A PRBS with a period of 15 samples started the initialization of parameters.

Following a small drop in blood pressure, a setpoint change was made from the current
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Time(min.} | Event
0 Setpoint change from 170 to 140 mmHg
15 Adenosine monophosphate at 200 pg kg™ !min™!
18 Adenosine monophosphate at 400 gg kg~'min™?
21 Adenosine monophosphate infusion off
33.3 Norepinephrine at 0.25 pg kg™ min™?
43.3 Norepinephrine at 0.5 pg kg™ 'min™?
53.3 Norepinephrine infusion off
63.3 Norepinephrine injection, 1 pg kg™?
76 Adenosine monophosphate injection, 800 ug kg™*

Table 6.1: Challenge procedure during closed-loop control

MAP to 140 mmHg. Continucus infusion of AMP at 200 ug kg 'min™! started at
t=15 min and was doubled after 3 minutes. After AMP stopped and the MAP
returned to the setpoint, continuous infusion of NE started at t=33.3 min at a rate of
0.25 pg kg~ 'min~1. Because the effect of NE was more drastic than that of AMP, NE
infusion lasted 10 minutes before it was doubled to 0.5 ug kg~ min~". The subsequent
disturbances were NE and AMP ipjections in bolus consecutively. Table 6.1 lays out
the details of the challenge procedure in sequence.

The OL control run is showed in fig. 6.5. It should be noted that the MAP
was lowered to 140 mmHg, the same hypotensive level as in the previous run. Manual
adjustment of SNP infusion was required from time to time in order to keep the MAP
at around the setpoint, while no disturbance drug was introduced.

The constrained control run in fig. 6.6 allows a comparison with the incon-
strained one in fig. 6.4. The schedule of disturbances for both runs were similar in
sequence and the same in drug concentrations (see table 6.1). However, the level of
sensitivity of the subject to SNP changed after the subject had been infused with SNP
on and off for several hours. The starting baseline pressure in fig. 6.6 was already

lower than that in fig. 6.4.
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6.5 Discussion

Non-linear dynamics in chemical processes are a great challenge to satisfactory con-
trol. This challenge is no exception in biological processes. The step responses
in fig. 6.3 clearly present the degree of non-linearity in controlling blood pres-
sure. The sensitivity of the subject (i.e. the negative gain of the process) changes
from -11.25 mmHg pg™'kg™ min~! at the initial infusion of 2.67 xg kg~'min~! to
-1.05 mmHg pg™'kg " min~". The amount of SNP required was 10 times more to
cause only a 10 mmHg drop at a lower blood pressure level than that at a high blood
pressure level. This increase in SNP infusion was obviously due to the fact that the
subject had built up a certain tolerance to the effect of SNP and other reflexes of
the body started to counteract the sudden drop in blood pressure. The é,symmetric
behavior of blood pressure was observed when the SNP infusion ceased and the MAP
did not return to the baseline. It demonstrated in fig. 6.3 that process dynamics was
changing during closed-loop control; therefore an adaptive mechanism would play an
important role in achieving the control objective.

The artificial disturbances introduced by other drug interventions were de-
signed to cause heavy hypertension and mild hypotension. If excessive hypotension
was induced by AMP to a level which no longer requires SNP therapy, the controller
would simply set itself to 0 infusion rate during AMP infusion, and its response to
hypotension could not be observed completely. Therefore, a strong dosage of NE
was used to cause about 40 mmHg rise and a mild dosage of AMP to cause about
20 mmHg drop (see fig. 6.5).

Consider the unconstrained GPC control in fig. 6.4. The introduction of con-
tinuous AMP infusion caused a gradual decrease in SNP infusion. When comparing

the AMP effect between closed-loop control and the open-loop run (fig. 6.5), one will
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discover the similar shape between the SNP drop and MAP drop in figures 6.4 and
6.5 respectively. The effect of NE on blood pressure was counteracted by the sharp
increase in SNP infusion. However, a non-minimum phase behavior from the con-
troller was observed at t=35.8 min, caused by a right-hand-plane zero in the process
model.

The NE injection at t=63.3 min ir fig. 6.4 induced a jump of 39 mmHgin MAP.
In response to this initial jump, the controller took an aggressive action in bringing
down the MAP. Since the NE effect was quick in wearing off, the subject was over-
dosed by SNP causing 2 15 mmHg overshoot. Another overshoot was observed after
the AMP injection at t=76 min. The overdose did not appear to be a sericus problem
in the case of constrained GPC control (see fig. 6.6). The reason is obviously due to
the constraints which limit the aggressive infusion of SNP.

The results shown in fig. 6.6 were obtained during the last stage of the exper-
iment when the subject had built up a stronger tolerance to SNP. The baseline in
this figure is lower than that in fig. 6.4. Because more SNP was required to decrease
MAP at a lower hypotensive state (which is in agreement with the result in fig. 6.3),
the controller encountered the amplitude constraint {at t=10.3 min} which was subse-
quently relaxed to 60 ug kg™'min~!. The same dosage of NE used in the constrained
GPC case appears to be less effective when applied to the unconstrained case. This
observation is indicated by the momentaril mild increase in SNP during the period
between t=31 min and t=>52 min. On the other hand, AMP caused a larger change
in MAP. Nevertheless, the controller managed to maintain satisfactory control during

the whole run.
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6.6 Conclusions

A multi-step adaptive predictive controller has been experimentally evaluated for
control of blood pressure. The purpose of this controller is to control the mean arterial
pressure under hypertensive conditions using sodium nitroprusside to maintain the
pressure at a desired lower level. The development of the controller makes use of a
real-time, multi-tasking software environment which allows operators to make changes
on-line.

Norepinephrine and adenosine mono-phosphate were employed as disturbance
drugs to induce hypertension and hypotension respectively. The disturbances were de-
signed to simulate extreme scenarios which a post-operative patient might encounter.
During the whole course of the experiment on the same subject, both unconstrained
and constrained Generalized Predictive Control performed satisfactorily in keeping
the mean arterial pressure close to the setpoint. This controller design using Gen-
eralized Predictive Control is believed to surpass single-point predictive control al-

gorithms by providing more robustness in an environment in which unpredictable

disturbances abound.
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Chapter 7

Evaluation of LRPC System for
Mean Arterial Pressure
Regulationl

7.1 Introduction

A number of closed-loop control systems have been investigated and developed for
the regulation of physiological variables by automatic administration of therapeutic
agents, especially in the control of postoperative mean arterial pressure (MAP). It is
concluded from several surveys of these developments that control strategies ranging
from simple proportional-integral-derivative (PID) based feedback control to model-
based adaptive predictive control have been applied (Katona, 1982; Linkens, 1984;
Linkens and Hacisalihzade, 1990). The main driving force behind the use of more
advanced control strategies was the recognition of the variability of patients’ sensitiv-
ities to drug administration which necessitate the adaptation and self-tuning control
ability of an automated physiological controller.

Sheppard et al. (1975) conducted most of the pioneering work in the control of

MAP by the infusion of sodium nitroprusside (SNP), a commonly used vasodilator.

1A version of this chapter is to be presented as an invited paper at the IFAC International Sym-
posium on Adaptive Control and Signal Processing: Evaluation of a long-range adaptive predictive
controller for computerized drug delivery systems, Kwok, K.Y., 5.L. Shah, A.S. Clanachan, and
B.A. Finegan, 1992.
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His subsequr:it work and modification of the original PID controller have led to the
postulation of a well-known MAP model responding to SNP infusion (Slate et al.,
1980; Slate and Sheppard, 1982b) and routine clinical practice of such a controller
on postoperative patients (Slate and Sheppard, 1982a). Other PID-based MAP con-
trollers were evaluated in different scenarios (de Asla et al., 1985; Meline et al., 1986:
Westenskow et al., 1987; Reid and Kenny, 1987; Cosgrove III et al., 1989: Colvin and
Kenny, 1989).

Because of the varying nature of patients sensitivities to JNP, more advanced
control strategies with predictive ability and a certain degree of adaptivity have been
used. Those strategies with extensive evaluations include model reference adaptive
control (Kaufman et ol., 1984), minimum variance and generalized minimum vari-
ance control (Stern et al., 1985; Meline et al., 1985: Millard et al., 1987; Millard
et al., 1988), as well as control advance moving average control (Voss et al., 1988).
Their control objectives are 2ll based on single-step ahead prediction, requiring proper
tuning in order to avoid oscillations and instability. Recently, a class of long-range
predictive controllers that prv.ide excellent robustness have been investigated for
possible application in the control of various physiological parameters (Linkens et al.,
1991). A study by Yu et ol (1991) utilized the generalized predictive control (GPC)
algorithm (Clarke ef al., 1987) in their multiple model adaptive controller. However,
the adaptation is limited to switching hetween a bank of pre-specified models which
are applicable only for MAP control.

The present work evaluates a computerized drug delivery system which is truly
model-adaptive. The control strategy combines GPC with a terminal matching con-
dition so that the control objective involves a trajectory of future output predictions

and the steady-state response (see Chapters 2 and 3). The estimation algorithm
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is based on a control-relevant long-range identification strategy which is compatit’a
with the overall control objective (Shook et al, 1991). This study compares the
model-adaptive system’s performance in the regulation of MAP with no computer
control. A challenge protocol was designed to provide a fair comparison between
computer-controlled and uncontrolled performance by obtaining the results at the

same hypotensive state.

7.2 Process Control Strategy

7.2.1 Control Scheme

The control algorithm is a member of the class of long-range predictive control meth-
ods. It is based on the generalized predictive control (GPC) law (Clarke et al., 1987)
with the incorporation of a terminal matching condition, namely steady-state error
weighting. Details of the control law derivation can be found in Chapter 2 and sum-
marized in the following discussion:

The idea of applying GPC with steady-state error weighting to MAP control
is to maintain the MAP at the desired target over a finite future horizon and also
at steady state. Let a discrete physiological model ( %E:%i%) relating the effect of past

SNP infusion (u(-}) to MAP (y(-)) be represented by the following time series model:

A = Bt - 1)+ ()L (7.1)

where T(q");%%? is the noise model and % is the time delay. Then a2 trajectory of
future MAP changes can be related to a trajectory of future SNP infusions by shifting
the time index in eqn. 7.1. The optimal future SNP infusion is found by minimizing

the squares of prediction error of MAP over the future horizon and at steady state.
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The control objective is given as follows:

n2

Jirpe = 3 W+ 1) —wlt+ P+ YDl +i - D - w@F  (72)

where nl is the minimum output prediction horizon, n2 is the maximum output
prediction horizon, nu is the control horizon, 4(j ) is a steady-state error weighting
sequence, and s denotes a value at steady-state.

The method of obtaining such model is discussed in the next section. The
incorporation of the steady-state weighting term allows the controller to “look” not
only at the next few prediction instances, but also further ahead to the steady state.
It is similar to a cautious driver who is prepared for difficult driving conditions in the

immediate vicinity but can also clearly look as far away as the final destination.

7.2.2 Identification

The control system is made adaptive by on-line estimation the coefficients in polyno-
mials A(g7!) and B(g™!). In all previous attempts of predictive and adaptive blood

pressure control, the model coefficients were basically obtained by a least squares{ LS)

approach:

T
Tis = 7 3l - gt — B (7.3)

t=1

which minimizes the total variance of past prediction errors. When a fixed time delay
k is given, the LS approach produces a model describing the relationship between the
MAP outputs and k**-unit-delayed SNP infusions. The drawback in this approach lies
in the fact that the model only provides an optimal k*-step ahead prediction value
in the least squares sense. Any further predictions beyond the k*-step value would
contain propagated prediction errors which might result in poor performance in 2 long-
range predictive controller. Therefore, the following control-relevant identification

strategy for long-range predictions was used to provide the best match for a trajectory
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of MAP responses:
1 T n2
JLrPr = 75 > Z [y (t) — g(tlt — ) (7.4)
t=1 j=nl

The implementation of an estimator which satisfies eqn. 7.4 requires non-linear op-
timization. However, an elegant technique developed by Shook et al. (1991) as an
alternative to the objective in 7.4 was used in this study to identify a MAP response
model. It equates the power spectral density of eqn. 7.3 with a data prefilter L(q™?)
to that of eqn. 7.4. The prefilter is found on-line by using a spectral factorization rou-
tine. Then a LS-based estimator coupled with the L{g™!) data prefilter is equivalent

to the long-range predictive identification objective.

7.3 System Description

7.3.1 Equipment

The closed-loop control system used in this 'study is similar to the one described
earlier in Chapter 6. The major equipment includes a Grass (Model 7D) monitoring
system, an IMED? 929 computer-enabled drug infusion pumlp, and an IBM Model-70
PS/2 personal computer. Blood pressure was measured by a transducer and processed
by the monitoring system which provides an analog MAP signal. The multitasking
computer system acted as an operator station responsible for data acquisition and
control calculation, as well as information display and front-panel command server.
SNP as a manipulating variable was delivered by the IMED pump while other drugs

for induced disturbances were infused by a Harvard® Model 975 pumping unit.

2IMED Corporation, San Diego, California
3Harvard Infusion Pump, South Natick, MA

160



7.3.2 Control Program

The overali control program was written in “C”-language and executed under QNX
which is a realtime, multitasking operating system. The program consists of a number
of tasks managed by a multi-purpose control system package (MULTICON ) (Qiu et
al., 1988). The major tasks include a database manager, a timing scheduler, drug
infusion pump driver, MAP signal receiver, an identification task, and a control task.
The results from both identification and control tasks were processed by two validation
modules. A set of first order models with different time delays were being regressed
simultaneously in the identification task. The integrity of the models was analyzed
to obtain the best model in the model validation module according to the following

criteria:
e overall model gain is negative,
e overall model gain is within acceptable limits,
* model is stable,
o model produces the least prediction error.

Similarly the control signal validation module checks for any violation of infusion
constraints and possible overdose. Should the MAP fzll below a certain critical user-

specified limit, the routine would reduce SNP infusion in an aggressive manner.

7.4 Experimental Studies
7.4.1 Methods

This study was approved by the Health Sciences Animal Care Committee of the

University of Alberta. Experiments were performed on six healthy mongrel dogs of
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either gender weighing between 16 to 18 kg. Fig. 7.1 shows the schematic diagram of

the whole experimental setup.

Surgical Preparation

Anesthesia was induced with sodium pentobarbital (30 mg kg™!) and body temper-
ature was maintained between 37°C and 38°C by a heating pad. Ventilation with
an oxygen (O,) enriched air mixture to maintain arterial O, tension greater than
120 mmHg was provided by a respirator (Harvard Apparatus, South Natick, MA)
following intubation with a cuffed endotracheal tube. Anesthesia was maintained by
a constant infusion (4 ml kg™ hr~!) of pentobarbital (3 mg kg™* hr™!) in 0.9 %
NaCl. The right external jugular vein was cannulated for fluid loading (10 ml kg™!
of 6 % Dextran 70 in 0.9 % NaCl) and anesthetic infusion. A triple lumen catheter
was inserted in the left femoral vein for infusion of vasoactive drugs. A catheter was
placed in the aortic arch via the left femoral artery to measure aortic pressure and
allow blood sampling at regular intervals for determination of blood gases, pH and
electrolytes. Normal carbon dioxide tension was maintained by continuous monitor-
ing of end-tidal CO, (LB2 analyzer?). Acidosis and hypokalaemia were corrected,
when required, with sodium bicarbonate and potassium chloride, respectively. ECG
tracings, heart rate derived from R-R intervals, systolic, diastolic and AMAP were

continuously recorded on a Grass (Model 7D) polygraph recorder.

Challenge Protocol

Fach study began with a controller initialization sequence which consisted of the
infusion of SNP (7 to 15 ug kg 'min™1) to produce a small hypotensive response.

This also constituted the initial probing sequence for the on-line estimation scheme.

4Beckmann Instruments, Fullerton, CA
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Figure 7.1: Schematic diagram of the experimental setup
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Thereafter, the performance of the controller was evaluated for setpoint changes by
requesting a computer controlled setpoint changes of -30 mmHg from the original
baseline. Controller performance was also tested during a series of unpredictable
disturbances produced by the administration of vasocactive drugs (see below). Two
maintained disturbances were made consecutively, one in the absence and the other in
the presence of closed-loop computer control. Deviations from baseline MAP under
these two conditions were compared. In order to ensure that the disturbeaces in MAP
were made from equivalent baseline pressures, MAP was lowered to similar levels by
either a constant infusion of SNP (absence of closed-loop control) or by the controller
(presence of closed-loop control). Transient disturbances were also introduced by

vasoactive drug injections.

Vasoactive Drug Administration

SNP was administered by the computer-controlled delivery system to reduce MAP.
Concentrations of 200 g ml~! or 400 ug ml~! were infused depending on the ini-
tial sensitivity oi each animal. Maintained and transient disturbances in MAP were
induced by either 10 min continuous intravenous infusions (Harvard Infusion Pump,
Model 975, South Natick, MA) or by bolus doses, respectively, of vasoactive drugs.
Hypertensive disturbances were elicited by either an intravenous infusion (0.5 to 4
¢g kg~ min~!) or bolus administration (2.5 to 5.5 ug kg™!) of norepinephrine (NE).
Hypotensive disturbances were produced by either an intravenous infusion (6 to 32
#g kg™! min~") or bolus administration (9 to 32 ug kg™!) of SNP. NE infusion rates
were chosen to cause approximately a 30 mmHg deviation in MAP, whereas SNP in-
fusion rates were selected to be 75 % of the constant SNP infusion ratel in the absence

of computer control. Bolus doses of NE and SNP were chosen to produce transient
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changes in MAP of 30 and 10 mmHg, respectively. Recovery perieds of at least 10

min were allowed between maintained and transient disturbances.

7.4.2 Results

Five sets of performance response are plotted in figs. 7.2 to 7.6, corresponding respec-
tively to setpoint tracking after initialization, NE infusion, SNP infusion, NE bolus,
and SNP bolus. Each figure shows the average deviation of MAP from the target
with an error bar of one standard deviation. The average value was calculated by
taking the mean of MAP measurements from the same runs on different subjects at
30-second intervals for fig. 7.2 and one-minute intervals for the rest of the figures.
A typical trajectory of SNP infusions (dashed line) is also plotted along with the
average trajectory (solid line) in fig. 7.2. The uncontrolled results are plotted above
the computer-controlled ones for comparison in figs. 7.3 and 7.4. The average time
for the probing signal is 2.88 £0.54 min (mean + standard mean error). The average
time for MAP to fall into the acceptable region (+ 5 mmHg of the target) after the
probing signal is 2.44 £0.31 min. No overshoot beyond 5 mmHg is observed during
all setpoint changes.

During the time of NE infusion with no corrective control actions (i.e. in-
fusion of SNP was kept constant), MAP increased to an average deviation of
43.88 £ 4.00 mmHg after ten minutes of infusion. The recovery period shown in
fig. 7.3 clearly took more than ten minutes. The response with the control system
shows a drastic improvement in which average MAP deviation climbed to only 8.69
:I: 1.21 mmHg. The average time outside the acceptable region is reduced to only
2.13 &£ 0.60 min.

In fig. 7.4, the average deviation of MAP is not as large as that caused by NE,

the reason being that the disturbance SNP infusion was calculated as a percentage of
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the computer-controlled SNP infusion. Larger doses of disturbance SNP could have
been used, but would have caused so much hypotension that no computer-controlled
SNP infusion was required. Without computer control but at a constant infusion
of disturbance SNP, average MAP deviates from the setpoint by 5.93 £ 0.36 mmHg.
With computer control, the MAP was maintained within the acceptable region during
the whole disvurbance SNP infusion challenge.

In response to NE bolus (see fig. 7.5), the average MAP under computer control
made a deviation of 14.70 £+ 1.57 mmHg and was outside the acceptable region for
1.75 £+ 0.14 min. An average maximum overshoot of 5.44 4 1.11 mmHg was recorded
at t=7 min. In fig. 7.6, SNP bolus made an average deviations of 12.61 = 1.74 mmHg
for computer-controlled responses. The control system brought the MAP within the
region in 2.67 + 0.16 min. after the injection with an overshoot of 4.86 = 1.45 mmHg.

The control system maintained stability throughout all challenges.
7.5 Discussion

The first task of the MAP controller was to induce hypotension in an efficient and
robust manner. During the time of induction in fig. 7.2, MAP was brought to the
setpoint without overshoot. The average trajectory of SNP infusion shows no sign of
ringing or oscillation which were present in most of the one-step ahead control results
by others. The error bars measuring one standard deviation also indicate that the
variations of MAP were well within the acceptable region. Only 12 out of 312 MAP
samples collected in a six-minute interval after four minutes of setpoint change were
beyond +£5 mmHg from the target. It means that over 96 % of MAP regulation is

within the target region.

'The method for assessing the performance of this controller in the presence
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of disturbances is significantly different from other previous studies described in the
introductory section. The challenge protocol which asked for two disturbances of the
same dose to be introduced consecutively with and without computer control was
designed to ensure that unpredictable disturbances indeed produced a noticeable ef-
fect on the subject before the controller responded. It should be noted that without
computer control, the autonomic mechanism of blood pressure regulation was still in
operation in addition to external drug infusions. Therefore, “uncontrolled” or open-
loop MAP r-esponses implies autonomic body regulation only. The continuous infusion
of NE and SNP as disturbances simulated a slow change in the subject’s sensitivity to
drug therapy. Infusion of SNP as a disturbance to lower MAP simulated an increase
in sensitivity of the subject to the computer-controlled SNP infusion, whereas infus-
ing NE implied a decrease in sensitivity. In fig. 7.3, NE infusion had an enormous
impact on raising the MAP from the target while no corrective response was taken
by the controller. It simulates the situation where a patient’s autonomic regulatory
systemn fails to maintain the blood pressure at a normal level especially after cardiac
surgery. When the same NE disturbance was introduced, the controller responded
by increasing computer-controlled SNP infusion to keep the MAP close to the target.
After NE infusion was stopped, MAP started to drop to 5.66 = 0.78 because of the
fading NE effect and high SNP infusion. In fig. 7.4, the 75 % selectior approach for
constant SNP infusion did not produce as large and drastic a drop as thaﬂ; i)y NE,
but it allowed the transient performance of the controller to be demonstrated. Mak-
ing a large MAP drop tb challenge the controller of course would be more desirable.
However, the controller in most of the cases would turn off computer-controlied SNP
infusion and wait for the MAP to rise. In such a case, the rate of returning MAP to

target does not depend on the controller, but on the sub;act’s metabolic rate.

172



Injections of SNP and NE in high dosage were used to test the controller for
its ability to cope with sudden changes in MAP. Unlike chemical processes where
some kinds of disturbances are measurable and hence feedforward control is possi-
ble, physiological disturbance or upsets are usu="ly unforeseeable. In this situation,
corrective action cannot be taken until after the disturbance appears in the blood
pressure signal. It implies that the large and abrupt deviations of MAP shown in
both figs. 7.5 and 7.6 were unavoidable because the control system did not “know”
of the disturbance drug injection until the MAP started to change. Nevertheless,
the control system managed to return MAP to the target by rapidly changing SNP
infusions. Since the disturbance effect by injection did not last as long as that by
infusion, the fast return of MAP shown in both figures was followed by overshoot. It
should be noted that the control system or even an anesthesiologist would not be able
to know 4 priori the duration of the disturbance effect, and hence such overshoots as

shown in figs. 7.5 and 7.6 were indeed inevitable.
7.6 Conclusions

A long-range predictive adaptive control system for computerized drug delivery has
been evaluated for the control of mean arterial pressure on six mongrel dogs. This
truly model-based adaptive control system is a combination of generalized predictive
control with steady-state error weighting and long-range predictive identification. It
has_ been tested for setpoint tracking and in the presence of a set of unpredictable
infusions an4 injections of nitroprusside and norepinephrine. It is found that an
average of 2.44 % 0.31 min after probing was required to reach the hypotension
target. No overshoot nor ringing was followed after setpoint change. 96.2 % of the

MAP regulation was within + 5 mmHg of the target. In spite of unpredictable
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infusion disturbances which would have caused a maximum average of 43.88 mmHg
deviation, the control system brought the mean arterial pressure to the target in
about two minutes. The system also responded favorably during sudden upsets of

pressure when, in fact, the magnitude of the upsets were unavoidable.
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Chapter 8

Conclusions

8.1 General Discussions and Conclusions

This thesis has dealt with two related areas of research; first, the incorporation of
a terminal matching condition in both LRPC and LRPI formmulation; second, the
development of both software and hardware for a closed-loop drug delivery system,
and the evaluation of such a system for the regulation of mean arterial pressure. A

synopsis of all conclusjons and contributions is given as follows:
1. Terminal Condition in LRPC

The terminal matching condition was first introduced into LRPC as a weighting on the
steady-state error. The LRPC control law in this newly modified form minimizes the
squaies of prediction errors over a future prediction horizon and at steady-state. The
incorporation of such weighting in the controi law naturally requires the prediction
of the steady-state output. For the ARIMAX model, a direct method for calculating
such a prediction was proposed so that further iterations of the Diophantine identity
were not necessary. With a convolution model, a complete set of dynamic response
coefficients was no longer required. Only a few step response coefficients plus the
steady-state gain were used to approximate the major dynamics of a process. These

modeling results pave the way for the derivation of an adaptive long-range predictive
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controller with reduced numerical computational requirements.

Closed-loop analyses of the steady-state error weighting with Generalized Pre-
dictive Control (GPC) (Clarke et al., 1987), a popular version of LRPC, show that
the combination of a relatively short prediction horizon and proper selection of the
steady-state error weighting was comparable to using a large prediction horizon. This
weighting term is also shown to be more advantagecus than ordinary control weight-
ing. Most interestingly, the steady-state error weighting not only causes zero offset at
steady-state even when a model gain was in error, but also results in a characteristic
equation with one less order, i.e. it eliminated the pole introduced by the integrator
from the disturbance modeling term.

The robustness introduced by the steady-state error weighting was demon-
strated by the fact that it provided a stabilizing effect for open-loop stable systems
even in the presence of modeling error and non-mirimum zeros. T'wo strategies were
also included to serve as guidelines for selecting such a weighting with other primary

LRPC tuning parameters at the commissioning stage.
2. Terminal Condition in LRPI

Shook et al. (1991) proposed a new, control-relevant identification algorithm for
LRPC via spectral factorization of a large (2-(n2 — 1)) polynomial where n2 was the
output prediction horizon. This algorithm produced a data pre-filter L(¢™!) which
was of order n2 — 1. The resulting model could give the best predictions of the first
n2 dynamic responses in the least squares sense (Shook, 1991). For a prediction hori-
zon n2 approaching infinity, Shook’s algorithm was theoretically shown in Chapter 4
to change the ARMAX model scheme from an equation error scheme to an output
error one. However, this convergence property was not valid for the ARIMAX model

because L(¢~!) with ARIMAX did not converge to a finite polynomial. Practically
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speaking, for a large prediction horizon, the algorithm suffers from heavy computation
and poor convergence. This disadvantage implies that a relatively short prediction
horizon is beneficial to both LRPC and LRPI because of further reduction in the
computational load of adaptive controllers.

Although a terminal matching conditior: in the form of Shook’s LRPI algorithm
was not feasible, analyzing the derivation of the LRPI algorithm revealed the fact
that the condition could be indirectly realized by identification of the process gain. A
simple algorithm similar to the non-minimal model predictor of Lu and Fisher (1990)
was, thus, proposed for on-line estimation of a process gain. As a result, a multi-step,
adaptive, predictive controller including the terminal condition was synthesized from
the combination of a long-range predictive control law such as GPC, the steady-state
error weighting in Chapters 2 and 3, Shook’s LRPI algorithm, and an on-line gain
estimation algorithm such as the one in Section 4.3.2. The performance of using
this controller in simulation studies show that accurate estimation of process gain
combined with steady-state error weighting improve the overall robustness of the

controller even with a very small prediction horizon and large model-plant mismatch.
3. Development of a LRPC System for MAP Regulation

The survey in Chapter 5 shows many examples of applying modern control engineer-
ing to mean arterial pressure (MAP) regulation. The milestones marked by Sheppard
and Slate’s pioneering work (Sheppard et al., 1975; Sheppard and Sayers, 1977; Slate
and Sheppard, 1982) and the IVAC! Titrator (Cosgrove 111 et al., 1989) have encour-
aged further research into closed-loop control drug delivery systems based on more
advanced control strategies among which GPC, a widely used version of LRPC, has

been claimed to possess the best features of many earlier algorithms (Mohtadi, 1987).

'IVAC Corporation, San Diego, California
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Software was developed for implementing adaptive GPC in a personal com-
puter running under QNX, a realtime operating system® with multitasking and net-
working capabilities. It provided on-line identification of models using recursive least
squares, on-line changes of the output prediction horizon {nl and n2), control horizon
(nu), setpoint pre-filter(R(g™")), and output filter (P(g™)). All software programs
were written in the “C”-language.

A closed-loop LRPC system for MAP regulation was developed by interfac-
ing the computer with a computerized drug infusion pump and a analog-to-digital
converter receiving the MAP signal from a patient monitoring device. A prelim-
inary test shows the effectiveness of both unconstrained and constrained GPC on
MAP regulation. Problems caused by model-plant mismatch, varying time delays
and non-linearity were all handled satisfactorily by the system (See Chapter 6). The

constrained GPC version was developed by Mutha (1991).
4. Evaluation of the System for MAP regulation

GPC with steady-state error weighting and Shook’s (1991) LRPI algorithm was im-
plemented in the final version of the control system. The performance of the system
was evaluated for setpoint tracking and in the presence of a set of infusions and injec-
tions of nitroprusside and norepinephrine. The results once again demonstrated the
excellent control and the effectiveness as well as the robustness of the system for MAP
regulation. Although this system was applied to blood pressure regulation, control
of other physiological parameters was expected to be effective as long as frequent

sampling of the physiological signal was possible.

2QNX, Quantum Software Systems, Ltd., 1988
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8.2 Recommendations

1. Accurate identification of process gain is imperative for improving robustness.

Further research in other on-line gain estimation techniques is desirable.

2. Expert system approach has been considered for many control areas where
parametric models are not necessary or cannot be realized. In blood pressure
control, a supervisory knowledge-based expert system could look after the initial

control period, detect artifacts and, and perform minor tuning.

3. Once a supervisory MAP control is available, performance evaluation should

proceed to clinical trials in an ethics-approved manner.

4. Several attempts have been initiated to simultaneously control more than one
physiological parameters such as MAP plus cardiac output. However, the lack of
a clinically acceptable method of measuring cardiac output remains a hindrance
to further study of multiple drug infusion control systems. A possible approach
for accessing the parameters is by means of a “software sensor” which infers
the primary parameters from other readily available physiological signals such

as pulse rate and the blood pressure wave (i.e. an inferential control system).
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Appendix A

Example: Simultaneous Offset
Removal and Integrator-Pole
Elimination by Steady-State Error
Weighting

Without any loss of generality, a simple open-loop stable process is represented by

the following time series model:

Ay(t) = Bu(t — 1) + % (A1)

The general vector form of control law from GPC with steady-state error weighting

is given as follows:
U= [GTG+ A+ G TGs] ™ [GT(W —f) + GTT(W; — )] (A.2)

The dynamic matrix coefficients in G are equivalent to the step response coefficients

obtained via polynomial division,

B
A =9 +01q7 g4 (A.3)

The steady-state gain of the process is defined as g, such that

Ao =g (A4)
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A one-step ahead control with steady-state error weighting is configured by

choosing the following settings:

nl = 1

n2 = 1

nu = 1 (A.5)
A= 0

T = 7

The peculiar setting of v will make the sequel more readable. With this configuration,

the matrices in eqn. A.2 are reduced to scalar quantities:
G = Go
Gs = gs

Then the contro] law can be expressed as an algebraic equation:

Ault) = P jg"zm, [w(t) — Fuy(t) — HyAu(t — 1)]
}E% [w(t) — Fay(t) — H;Au(t - 1)] (A.6)

After certain re-arrangement, eqn. A.6 is written below in a linear form:

RAu(t) = Vw(t) — Sy(t) (A7)
where
R = go+q"Hi+g,7(g: + ¢ H,) (A.8)
V = 1+g7 (A.9)
S = Fi+g.+F, (A.10)

Before proceeding with the closed-loop transfer function derivation, one needs
to examine the Diophantine identities which are essential for model prediction from
eqn. A.1

1 = AAE; +¢77F; (A.11)
BE;, = G;+q¢77H; (A.12)
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Since polynomials A are E; moric, for j = 1,

1

B

= AA+¢'R (A.13)

go+q¢1H (A.14)

The two identities in A.11 and A.12 can be combined into one identity as follows:

B .F;B
—_— = : —1.2
1A BE; + 4 AA
B F;B
B F;BY} _.
[AA G’] - {Hj T AJ/—\] v -
For sufficiently large j,
B -3 ~j=1 —j-2
H_Gj R gsq T+ gqT7 T FggTT T+
. ng - (A.16)
In the limit as 7 — oo,
F:B s
5+ 5] =% (b1

So far, the equations necessary for closed-loop transfer function derivation

have been examined. Now consider the general form of a closed-loop transfer function

derived from the model in eqn. A.1 and the linear control law in eqn. A.7:

y(t) =

_ BVg'w(t) + RAz(t)

RAA 4+ ¢ 1BS (A-18)

Substituting equs. A.8 and A.10 into the characteristic polynomial gives

-

C = (go + ¢ 'H))AA +9,Y' (g + ¢ ' H,)AA + ¢~ BF, +q ‘g7 BF,
— o N s’

1

(A.19)

2

After substituting eqns. A.14 and A.13 into terms 1 and 2 respectively, the summation

of the two terms becomes B,

C =

B+ g.y'(gs + ¢ H,)AA + ¢ g7 BF,

(A.20)
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BF,
= B+g¢s7 |9 AA+ g AA (Hs + (A.21)
AA
Ner—iann,
3

Eqn. A.17 shows that term 3 can be further reduced as follows:

C = B+gs [gsAA + q_lAgs]

= B+g¢4'A (A.22)

This result indicates that the additional order due to integral action is removed.
The offset-free property is shown by examining the closed-loop transfer function in

eqn. A.18 at steady state. Substituting eqns. A.22 and A.9 into the transfer function

yields

y(t) = B(1+ gs'rgq;l‘;’(;h-}— RAz(t) (A.23)

At steady state,

_ B)(1+ gv)wl(t)
YO = B0y A
%U+mfhﬂ)
gs + g2
= w(t)

The above shows how simultaneous offset removal and order reduction are
accomplished by steady-state error weighting. These properties are also true for n2
and nu greater than one. Although no rigorous and generalized proof is available
(mainly because R, V, and S are too complicated to analyze for n2,nu > 1), similar

derivations as above can be obtained for n2 and nu larger than one.
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