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Abstract

Cloud-based infrastructures enable applications to collect and analyze massive amounts

of data. NoSQL databases endowed with high availability and excellent scalability through

their easy deployment on cloud-computing platforms, become a more attractive data-storage

solution for these big-data applications. Unfortunately, to date, there is little methodological

support for software development on these platforms. In this work, we focus on applica-

tions that collect spatial data over time, since, due to the pervasiveness of mobile application

clients, this class of applications is among the most popular applications today. To support

the development and maintenance of these applications, this thesis develops a set of general

guidelines for the design of HBase storage, taking advantage of the special 3D structure

of HBase and a specific three-dimensional “schema” for geospatial applications. These

guidelines and schemas have been evaluated with multiple data sets as well as through the

migration of an existing geospatial application to the cloud.
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Chapter 1

Introduction

With the explosive increase of location-aware devices (GPS-enabled smart phones and ve-

hicles, RFIDs, tablets, etc) and the proliferation of sensor-based systems, location-based

services that contextualize the user experience, such as advertisement and recommenda-

tion, are growing. Benefiting from these location-aware services are millions of users, who

continuously register their location updates through their wireless providers. As a result,

massive amounts of time-stamped geo-spatial data are being generated through these ser-

vices, presenting a new challenge for database management systems. These new massive

data sets demand a new degree of scalability, while, at the same time, maintaining good

load balancing and high up-time. This task becomes even more challenging by the fact that

the most typical use of these data sets is their near real-time analysis over time and across

space.

Commercial relational database management systems (RDBMSs), such as Teradata

[11], Greenplum [4] and Netezza [8] are reported to be able to handle multiple peta-byte

data [9]. With their highly optimized performance, they can address the challenges men-

tioned above. However, although they perform well with respect to data size, they suffer

from several limitations [10]. First, their fault-tolerance mechanism cannot deal with fre-

quent failures in complex environments. Second, they are not “elastic”, i.e. they are not

flexibly configurable to respond to changing load requirements. Third, the relational data

model is not flexible to store unstructured or semi-structured data, which is often the type of

data collected by the above mentioned systems. Finally, they are commercial systems, and,

as such, they are not available to everyone. Unfortunately, open-source systems, such as

MySQL and PostgreSQL, are lagging far behind in terms of scalability. To obtain excellent

scalability in MySQL, mature development skills and extensive experience are required.

NoSQL (“Not Only SQL”) databases are non-relational distributed database systems,
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endowed with good availability, elasticity and scalability through their easy deployment

on cloud-computing platforms. Given these properties, they are becoming a more attrac-

tive solution for these applications. NoSQL databases can be categorized into four types:

key-value stores, column-family stores, document stores and graph databases[7]. HBase

belongs to the column-family store type and is the open-source counterpart of Google’s

Big Table[2] on top of Hadoop[12]. The basic data storage unit in HBase is a cell, which

is specified with the row id, the column-family name, the column name and the version

[3]. Successful utilization of HBase has been reported by many enterprises. For example,

Facebook presented how HBase infrastructure helps manage massive amount of data from

hundreds of applications[1].

Although the usefulness of NoSQL storage systems has already been demonstrated in

practice, a number of questions are still to be answered before they can be easily deployed

in the context of software systems. One among them is how to model the data in order to

optimize the performance of the queries issued. Even though some rough guidance about

schema design has been provided by the specific NoSQL database offerings, such as HBase

[3], there is still not such a method for guiding developers in systematically designing the

structure of the “NoSQL Big Tables” for their particular application. Therefore, a sys-

tematic method for NoSQL data-schema design for geospatial applications is a timely and

important problem in this area.

1.1 The Thesis Contributions

The objective of this work is to develop a set of guidelines for how to design an appropriate

data schema for a given geospatial data set in HBase. More specifically, this thesis makes

the following broad contributions.

• We have proposed a data model for time-series data in HBase, and evaluated it with

several frequently used temporal queries. This data model explores and demonstrates

the performance implication and improvement with the appropriate usage of version

dimension in HBase. This is explained in detail in Chapter 2.

• We have proposed a data model for location data in HBase and evaluated it with

several frequently used spatial queries. This data model is based on a hybrid index

structure HGrid, combining a quad-tree and a regular grid as primary and secondary

indices correspondingly. By comparing with two other data models based on quad-

tree and regular-grid indices, this data model demonstrates efficient performance for
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range and k-nearest neighbor queries. Through this study, we also formulate a set

of guidelines on how to organize data for geospatial applications in HBase which is

discussed in Chapter 3.

• We have proposed a method for transforming data schemas in RDBMSs to HBase.

In this method, we focused on the entity-relationship relational data model, and came

up with guidelines for developers to follow during migrating the data in RDBMSs to

HBase for an application. This method was applied in a practical case study which is

described in Chapter 4.

• We have conducted a case study with a real application migrating to a hierarchical

cloud, demonstrating (a) the use of existing tools to support the migration and (b) the

application of the above guidelines in the design, and verifying the aforementioned

data schema transition method. More detailed description can be found in Chapter 4.

1.2 Overview

This thesis consists of three main chapters. Chapter 2 compares a number of alternative data

schemas for time-series data sets in HBase and develops a set of guidelines for the organi-

zation of these data sets. Chapter 3 presents a new model for geospatial data sets in HBase,

and experimentally demonstrates its superiority to two alternatives. These two chapters are

expanded versions of earlier publications [5] and [6] correspondingly. Chapter 4 covers a

case study that utilizes the two data models proposed in the previous chapters to migrate

traditional applications onto a hierarchical cloud, thus extending their capacity to deal ef-

ficiently with big geospatial data. This chapter has also been developed as a manuscript to

be submitted for publication to a journal. Finally we present our conclusions and plans for

future work in Chapter 5.
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Chapter 2

A Three-Dimensional Data Model for
Time-Series Datasets 1

2.1 Introduction

Cloud Computing, is attracting business owners for the perceived benefits, such as the elas-

ticity of the fluctuating load, the access to large pools of data and computational resources,

and the reduced operational costs compared to running in enterprise data centres. Given the

advantages of the Cloud, some enterprises have been working on the cloud-based applica-

tion development and deployment [4]. The majority of applications deployed in the cloud

include some of the traditional and emerging cloud-based applications, such as social net-

working, online shopping, and real time instrumented data processing [8]. Low latency and

high availability of service, and excellent system scalability are required for such applica-

tions, as the data generated in these applications are growing monotonously over time [8].

Therefore, large-scale ad-hoc analytical processing of the time-series data collected from

those cloud-based applications is becoming increasingly valuable to improving the quality

and efficiency of existing services, and discovering the knowledge.

Moreover, the success of this movement necessitates a design of scalable database man-

agement system which can effectively and efficiently organize and manage the massive

amount of data[4]. Because of the open source relational DBMSs with the shortage of

cloud features, and a commercial solution which requires expensive cost, RDBMSs are

less attractive than the NoSQL database [4]. NoSQL databases, a non-relational distributed

database system, usually avoids join operations, typically scales horizontally, does not ex-

pose a SQL interface and may be open source [5]. It can be categorized into four types:
1A version of this chapter has been published. Dan Han and Eleni Stroulia, 2012 IEEE 6th International

Workshop on the Maintenance and Evolution of Service-Oriented and Cloud-Based Systems (MESOCA), pages
47-56.
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Key-value stores, Column Family stores, Document stores and Graphic databases[10]. In

comparison to relational databases, NoSQL databases

• enable the storage of big data, in the order of row key;

• scale horizontally across storage nodes relatively easily; and

• do not provide much data-organization and language support.

This last property is of particular interest to us in the work described in this chapter. Data in

Column Family stores, for example, is stored in an “unstructured” manner, based on a pri-

mary key and attributes organized in column families. There is no notion of “normalization”

and redundancy is allowed for the sake of convenience and efficiency. Given this new and

different storage model, the community has not yet formulated any systematic methods for

how to actually design the structure of the “BigTables”. However, the data organization has

a great impact on the performance of the queries implemented on these tables, and therefore,

an appropriate data-schema design is a critical part in software developments. Moreover,

as various data sets are generated from different applications in which data schemas can-

not be shared, researchers and practitioners have to devote lots of time to do experiments

with different data organization and management before they have confidence in deploying

them into a product line. Therefore, a systematic method for NoSQL database data-schema

design is a timely and important problem for researcher and practitioners.

HBase is a particular implementation of Column Family stores in the Hadoop project.

The basic data storage unit in HBase is a cell, which is specified with the row id, column-

family name, column name and the version [9]. This last element of the cell identifier

implies that each HBase cell can have multiple versions of a particular data item. This is

a particularly interesting property, with important implications for the task of managing

time-series data. In relational databases, the values of a data element over time would,

most likely, be stored in individual rows, with one of the columns dedicated to the element

identifier. Adopting a similar structure in HBase, as would be likely if a developer followed

their SQL schema-design knowledge and experience, would ignore this particular HBase

property.

In the experiments described in this chapter, we explore a three-dimensional data model

for data-organization in HBase, for managing large time-series datasets. This data model

exploits the version dimension in HBase. Instead of creating independent rows for each

data element in the time series, we associate the version element of the HBase cell identi-

fier with each subsequent data-element value in the series. In cases where the time-series
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data advances indefinitely, we define a period, as the maximum number of versions to be

“stacked” on the same cell. For example, given an hourly (daily, or monthly) period, all

versions of the same data element within an hour will be stacked on the same cell, sharing

the same identifier prefix but each one with its unique version identifier; a different row will

be created for each distinct hour that values of this data-element are collected.

We have empirically evaluated the performance implications of this data organization

with two time-series data sets: the Cosmology dataset [11], produced by a simulation,

and the Bixi dataset [1], reporting the availability of shareable bicycles across Montreal.

We found using this type of three-dimensional data schemas in HBase, as opposed to the

SQL-inspired two-dimensional data schemas, better query-execution performance can be

obtained.

This chapter makes two contributions. First, we proposed a three-dimensional data

model which uses the HBase cell-identifier “version” as the third dimension along which

to store time-series data. This model effectively increases the amount of data that is stored

in a single row, and as a result, the data becomes distributed well across the HBase regions

in the cluster. Second, through an empirical study, we investigated different ways of stor-

ing versioned data and their performance implications. The version dimension makes the

data organization like a slice which is composed by rows and columns. This type of data

organization is efficient in finding the similarity and dissimilarity between versions. The

experiments results suggest that the depth of the version dimension has close relations with

the types of queries and the software and hardware configurations.

The rest of the chapter is organized as follows. Section 2.2 reviews the background and

related work in this area. Section 2.3 introduces the data models for time-series data, which

is instantiated in the dataset domains in Section 2.4. Section 2.5 compares and evaluates

the ad-hoc queries performance under different data schemas for the particular datasets. We

discuss four extended issues and explicate how to apply the three-dimensional data model

into a given application in Section 2.6. We conclude our contributions and future work in

Section 2.7.

2.2 Background and Related Research

HBase uses the Hadoop File System (HDFS) as its underlying data storage platform. As

we have mentioned in Section 2.1, the basic data storage unit in HBase is a cell, which is

identified with the row id, column-family name, column name and the version [9]. Each

7



cell can have multiple versions of data. At the physical level, each column family is stored

contiguously on disk and the data is physically sorted by row id, column name and version.

It is important to note here that the version dimension is used by HBase for time-to-

live (TTL) calculations [9]. Column families may be associated with a TTL length, and

HBase will automatically delete rows once the expiration time is reached. This applies to

all versions of a row - even the current one [9]. The maximum and minimum number of

row versions can be configured per column family. Excess versions are removed during

major compactions. It is not recommended to set the maximum number of versions to an

extremely high level unless those old values are very important to you because this will

greatly increase the size of the stored files. This recommendation is relevant when the

version identifier is used to support concurrency control. However, it can also be used as

another dimension along which to store data, in the case of large data sets, when there are

seldom concurrent-operation conflicts. HBase distributes data according to row-key ranges;

as a result, each HBase region server is responsible for handling the requests for a specific

range of row keys. This storage principle implies that range queries are handled efficiently,

because neighboring keys are very likely stored on the same server [6].

The HBase Coprocessor framework, inspired by Googles BigTable coprocessors [7],

provides a library and run-time environment for executing user-level code within HBase

region servers [13]. It decreases the communication overheads involved with the transfer of

data from the region servers to the client, and enables dramatic performance improvement

by pushing the computation up to the server, where it can operate on the data directly. As a

data-centric programming model [12], it significantly improves the system performance by

enabling parallel query processing. To reap the benefits of this framework, an appropriate

partitioning of the data is necessary, which implies a well designed data schema. This is the

reason why, in our work, we have focused in investigating the impact of different HBase

table schemas on the performance of query execution using the Coprocessors framework.

The idea that organizing time-series data into “buckets” corresponding to periods has

already been subject of some research. OpenTSDB [3] is a distributed scalable time-series

database, written on top of HBase. OpenTSDB offers a data model designed to support data

locality and, thus, obtain good query-execution performance. A similar data organization

has been applied to Cassandra [2], where time-series data were stored as JSON objects,

organized into hourly, daily and monthly buckets. This data organization could give the

best query performance when each bucket contained no more than a few tens of data points.

The above studies examine the same problem as we do in this chapter; however the
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Table 2.1: Two-dimensional and Three-dimensional Data Models
Data Model Row Column Version

2D unique Id-timestamp varying properties current time
3D unique Id varying properties timestamps

data models they employed consist of two dimensions only. In our three-dimensional data

model, the evolution of the data over time is organized and stored in the version dimension,

instead of the column dimension which is used in OpenTSDB, and the special data model

in Cassandra. Benefiting from the third dimension, our data model enables the storage of

the data-element details in the table columns, instead of “wrapping” complex data into a

JSON object.

2.3 Three-dimensional Data Model

In this chapter, we use the term “data model” to denote an abstraction of the HBase table

design, and the term “data schema” as a specific case of the data model for a particular

data set. Typically, a relational data schema is described as a two-dimensional table of rows

and columns. In this setting, a value can be viewed as a data point in the two-dimensional

space. We call this a two-dimensional data model. By analogy, in our three-dimensional

data model, each value can be viewed as a point in a three-dimensional space, defined in

terms of rows, columns and versions.

Table 2.1 describes the differences between two-dimensional data model and three-

dimensional data model in HBase. The data point in two-dimensional data model can be

expressed by the row and the column. The version dimension is present but is only used

to indicate that the data is up-to-date. So the sequence id of a particular value in the time

series has to be stored as a part of row key. The data point in the three-dimensional data

model can be expressed by the row, column and version intuitively, with the version di-

mension representing the sequence id, which may be monotonically increasing timestamps

(for continuously recorded real-time data, for example) or “snapshot identifiers” for ad-hoc

sequence data. In this three-dimensional data model, the row key corresponds to a unique

identifier for each data element and each column should be used to store some of the data

propertie(s).

In general, there are a few basic guidelines for designing a data schema for storing a

particular data set on HBase.

• The row key should be as short as possible, because it is stored in every cell in that
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row [9]; a longer row key will effectively result in much wasted space.

• In order to fully utilize the potential of coprocessors, one has to aim for organizing the

data in a way that makes the processing of the most frequent queries “local”. And as

HBase sorts the row keys in lexicographic order, one should aim at constructing row

keys by combining those data-element properties that are usually used to “select”

elements of interest. Taking into account the need to keep row key short, one has

to balance the trade-off between the row-key length and the number of attributes it

combines.

• The various columns should be used to represent the data-element properties whose

values change over time. The column name should be kept as short as possible, for

the same reason as the row-key should be kept short. It is better to have few column

families and columns. In our experiments, we have limited the number of families to

one and, in general, no more than a few tens of columns are appropriate.

• Finally, we propose that the version dimension should be used to store the time di-

mension. It should be designed as a time bucket, but the length of the bucket cannot

be too long. It is determined by the size of the unit of the data and the hardware

resources where HBase runs on.

2.4 Case Study

2.4.1 The Datasets

The Cosmology Dataset [11] is produced by an N-Body simulation of the universe evo-

lution. In the simulation, the universe is represented by a set of particles. There are three

varieties of particles: dark matter, gas, and stars. All particles are points in a 3D space and

their evolution is simulated over a series of discrete timestamps. Every few timestamps, the

simulator generates a snapshot of the state of the simulated universe. Each snapshot records

all properties of all particles at the time of the snapshot [11]. We used the “cosmo50” data

set, which consists of 321,065,547 particles from 9 snapshots with a total size of around 14

GB in binary format.

The Bixi Dataset [1] is a public dataset collected by a bicycle-renting service in the city

of Montreal. Users subscribing to the service, can borrow a bike from a station and return

it to any other participating station, based on the availability of bikes and empty docks

respectively. The data is collected every minute by the sensors equipped in 404 stations
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Table 2.2: Examples of the three Data Schemas for the Cosmology Dataset
(a) Data Schema 1

sid-type-pid pp:px ... pp:vx ... pp:eps pp:mass
24-2-33554444 -0.434413 ... -0.349134 ... 4.0E-5 5.29952E-10

... ... ... ... ... ... ...
84-2-33554500 -0.142892 ... 0.0776743 ... 4.0E-5 5.29952E

(b) Data Schema 2
type-pid pp:px:v ... pp:vx:v ... pp:eps:v pp:mass:v

2-33554444 [-0.434413,...] [...] [-0.349134,...] [...] [4.0E-5,...] [5.29952E-10,...]
... [...] [...] [...] [...] [...] [...]

2-33554500 [-0.142892,...] [...] [0.0776743,...] [...] [4.0E-5,...] [5.29952E,...]

(c) Data Schema 3
type-reversedpid pp:px:v ... pp:vx:v ... pp:eps:v pp:mass:v

2-44445533 [-0.434413,...] [...] [-0.349134,...] [...] [4.0E-5,...] [5.2E-10,...]
... [...] [...] [...] [...] [...] [...]

2-00545533 [-0.142892,...] [...] [0.0776743,...] [...] [4.0E-5,...] [5.2E,...]

Table 2.3: Three Alternative Data Schemas for the Cosmology Dataset
Data Model Row Column Version

Schema1 sid-type-pid particle properties no meaning
Schema2 type-pid particle properties snapshot id
Schema3 type-reversedpid particle properties snapshot id

around the city and stored in the form of XML. In each XML file, there are station id, name,

geographical coordinates, docks’ status, and other station-related information. The dataset

we used was collected for a period of 70 days, from September 24, 2010 to December 1,

2010. It is a 12 GB dataset that contains 96,842 data-points for all the Montreal stations.

2.4.2 Three Alternative Data Schemas for the Cosmology Dataset

We have experimented with one two-dimensional data schema and two three-dimensional

data schemas for the cosmology dataset, depicted in Table 2.3.

The Data Schema1 is the most straightforward organization for this dataset. It is a sim-

ple mapping from the relational database model to this schema, a case of two-dimensional

data model. A concrete example for this data schema is shown in Table 2.2(a). The row

key is a combination of snapshot id, particle type and the particle index. Each column cor-

responds to a different attribute of the particles. The composite row key ensures that data

within the same snapshot and of the same type is stored together. Therefore queries that

focus on one snapshot should perform well in this schema since they will benefit from the

data locality. The disadvantage of this data schema is that each row has a small amount of
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data, i.e., a single particle in a snapshot. As a result, many rows will end up being stored

within a single region. Therefore, computations that focus on the data located in the region

will cause region hot-spotting and will not sufficiently benefit from the coprocessor-based

parallelism. In addition, when a query needs to examine particles across different simula-

tion snapshots or different types of particles, many irrelevant rows will have to be scanned,

which, we anticipate, to slow the performance greatly.

Data Schema2 is a three-dimensional data schema. The row key is composed of the

particle type and the particle index. The columns hold the values of the particle properties,

as the particles are changing over time. Table 2.2(b) demonstrates how the data is organized

in this schema with some specific data. Compared with Data Schema1, Data Schema2

makes use of the version dimension to store the snapshot information. This kind of data

grouping across snapshots leads to good data locality, for queries examining one particle

across snapshots. In addition, it improves the distribution of data across the regions. This

data schema still follows the same sequential row key as that in the Data Schema1. When it

comes to the computation which only focuses on a range of particles, the region hot-spotting

would still occur.

Data Schema3 is an improvement over Data Schema2, in terms of the potential region

hot-spotting issues. A case of Data Schema3 is presented in Table 2.2(c). The only dif-

ference between Data Schema3 and Data Schema2 is the row key, which is designed as

the reversed particle index in order to “disorder” the particles and to distribute particles of

the same type across the nodes of the cluster. It can avoid the hot-spotting issues by dis-

tributing the sequential particle across the cluster. It can be seen as mimicking hashing of

particulars, which is good at querying the scattered data but weak in range query. This data

schema gets round the problems existing in the previous data schema, while it loses the

data locality strengths in the two data schemas. It is competitive when it comes to dealing

with big data and huge computations. However, it cannot show its value in the case of puny

computations, which is the inherent shortcoming of hashing partition.

2.4.3 Three Alternative Data Schemas for Bixi dataset

Table 2.4 summarizes three alternative data schemas for the Bixi dataset. This data set is dif-

ferent from the cosmology data set in that, although the number of individual data elements

to be tracked over time is relatively small (404 bicycle states as opposed to 321,065,547

particles), there is a longer history of this data over time (100,800 snapshots as opposed to

9). Therefore, in designing the three Bixi data schemas, we focused on experimenting with
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Table 2.4: Three Alternative Data Schemas for the Bixi Dataset
Data Model Row Column Version

Schema1 hour-sid minutes current time
Schema2 hour-sid monitoring metrics minutes [0,59]
Schema3 day-sid monitoring metrics minutes [0,1439]

different numbers of values stacked on the version dimension, and the impact of this choice

on the performance of a single query.

The Data Schema1 belongs to the two-dimensional category of data models. In this

schema, the row key is constructed as a combination of hourly timestamp and the station

id. Each column is the offset of the minute in one hour. Each cell contains the values for all

station-specific metrics, as a comma-separated sequence. Accordingly, each row includes

metric values generated in one hour. A sample of Data Schema1 is shown in Table 2.5(a).

In Data Schema2, similar to Data Schema1, the row key consists of the hourly times-

tamp and station id. Data Schema 2 is a three-dimensional data schema, and it stores the

values recorded for a particular station every minute over the hour in the version dimen-

sion. Instead of having all station metrics in a single cell, named groupings of metric, i.e.,

“metrics1”, “metrics2”, etc, are stored in separate correspondingly named columns. In Data

Schema2, just like in Data Schema1, each row includes the metrics recorded for each station

in one hour. See detailed information about Data Schema2 in Table 2.5(b).

Data Schema3, another instance of a three-dimensional data schema, is very simi-

lar with Data Schema2. The only difference between these two data schemas is that, in

Data Schema3, the version dimension clusters the timestamps into hourly in Data Schema2,

while in Data Schema3 it is grouped into daily. Hence in Data Schema3, each row includes

metric values for one day. Table 2.5(c) shows a sample of Data Schema3.

2.5 Experimental Results

In this section, we discuss our experiments, including our experimental setup, the sample

queries we designed on the two datasets, and the performance results for each query with

different data schemas on both datasets.

2.5.1 Environment Setup

Our experiments were performed on a four-node cluster, running on four virtual machines.

The four virtual machines run on IBM System X x3500 M2, which has 8-core, 64 GB

RAM machine, 8 hard drivers in a RAID 5 configuration, and uses VMWare to host a set
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Table 2.5: Examples of Data Schemas for the Bixi Dataset
(a) Data Schema 1

timestamp-sid 0 1 ... 30 ... 59

2010010101-001 (2,3) (5,4) (...) (10,3) (...) (0,3)

... (...) (...) (...) (...) (...) (...)

2010010201-001 (1,4) (3,6) (...) (1,12) (...) (3,0)

(b) Data Schema 2
timestamp-sid metrics1:[m0-m59] metrics2: [m0-m59]

2010010101-001 [2,5,...,0] [3,4,...,0]

... [...] [...]

2010010201-001 [1,3,...,0] [4,6,...,0]

(c) Data Schema 3
timestamp-sid metrics1:[m0-m1439] metrics2: [m0-m1439]

20100101-001 [2,5,...,0] [3,4,...,0]

... [...] [...]

20100102-001 [1,3,...,0] [4,6,...,0]

of virtual machines. The virtual machines have 2 cores, 8GB of RAM, and a 50GB disk.

And they are running 32 bit Ubuntu 10.04. We used Hadoop version 0.20.2, and HBase

version 0.93, re-compiled from source to suit our requirements of using the coprocessor

framework. Hadoop and HBase are each given 1GB of memory in every running node.

HDFS is configured with a replication factor of 2. HBase is managing its own Zookeeper

instance running on the same machine as the HMaster. HBase and Hadoop are kept as the

default configuration except reconfiguring 5K caching size 2. For all test cases, we ran the

experiment 5 times and took the mean of the last three.

As we have already discussed, our experiment is designed to investigate the differ-

ences in performance of read-heavy queries when using different data schemas for the same

dataset. The experiment is based on a system which enables users to create a table in HBase,

store their data, and process the queries. There are three important components in our sys-

tem: the TestClient, the HBaseClient and the User-Level Coprocessor. We implemented the

user-level coprocessor for both datasets respectively, named as CosmoCoprocessor and Bix-

iCoprocessor. These two implemented coprocessors should first be deployed on the HBase

2 This is the property hbase.client.scanner.caching controls scanner caching. That means how many rows
will be fetched from the server in a single round trip in a scan if it is not served from (local, client) memory.
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Region Server, before the experiment and instantiated in run time during the experiment.

At run time, the TestClient generates the query loads for each dataset according to a

pre-defined configuration and sends each individual query to the HBaseClient. HBaseClient

handles the query requests according to the query identifier. The HBaseClient has two ob-

jects, a callable and callback pair, for each query. The callable object is used to envelope

method invocations to the server, using the coprocessor RPC framework. The callback ob-

ject is invoked when results for the above call become available from the coprocessor [13].

When it receives a query, the HBaseClient invokes the caller function which invokes a RPC

call to the region servers. The RPC calls are received by HBase regions and executed as a

batch process. The regions who should handle the RPC calls are determined by the match

between the queried range and the range for which each region is responsible. After the

coprocessor has completed the task, it returns the results to the client. The callback object

in HBaseClient performs the aggregation of results from the various region coprocessors.

It should be noted that the calls from client side are executed on the corresponding regions

in parallel.

2.5.2 Sample Queries

We designed three queries for the Cosmology dataset and one query for Bixi dataset. There

are two big challenges in analysing the Cosmology dataset with the existing strategies [11].

First, with the size of simulations growing fast, the data analysis cannot be efficiently per-

formed on shared-memory platforms, with the existing serial data analysis software. Sec-

ond, the simulation snapshots cannot be loaded into memory efficiently because of the

low I/O bandwidth of a single node. As a result, the queries that filter and correlate data

from different snapshots have very large memory requirements and become highly I/O con-

strained. We want to take advantage of HBase platform to explore potential performance

improvements to address these challenges.

The three queries we experimented with are inspired by the queries that astronomers

might be interested in, as they explore the changes in the constitution of particles over time.

Cosmology Query1: Given a type of particle, a snapshot, a property and an expression

for the property value, get all the particles of this type in the snapshot whose property

matches the expression. This query invokes a range scan in one snapshot

Cosmology Query2: Given a type of particle and two snapshots, s1 and s2, get all the

particles added or destroyed between s1 and s2. This query compares the data across two

snapshots.
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Cosmology Query3: Given a type of particle, a property, a set of particle ids and a

set of snapshots, get the values of the property of the particles with these IDs across the

selected snapshots. This third query retrieves the data from multiple snapshots.

We chose to also experiment with the Bixi dataset because of its densely increasing

timestamps. We designed a single query for this data set to examine the performance

implications of different lengths of data stacked on the version dimension, in the three-

dimensional data models.

Bixi Query: For a given list of stations and a time, get their average bike usage for

last 1, 2, 4, 8 and 16 days. Its boundary condition is to get such an average for all the 404

stations.

2.5.3 Experimental Analysis

For the Cosmology dataset, we performed experiments for all three queries as described in

Section 2.5.2 with three data schemas shown in Section 2.4.2. For the Bixi dataset, one

experiment was executed for the query described in Section 2.5.2 with three data schemas

presented in Section 2.4.3.

All queries are processed in parallel by user-level coprocessors running server side. The

execution times are affected by two parameters. First, range scan, as the basic operation,

is the most expensive computation during processing. Consequently, the execution time

becomes larger as the number of rows increases. Second, the coprocessor overhead be-

comes non-negligible when the range scan is not very large. Different row-key design in

data schemas determine different range scan, and different data schemas demonstrate the

different region server distribution with the same configuration of region size.

Analysis of Cosmology Dataset

Table 2.6(a) shows performance results for Query1, with five scenarios under three dif-

ferent data schemas. These five scenarios try to look up all particles in one snapshot

that match a set of conditions. For example, in the first row of the table the conditions,

“2;pp;tform;>0.01;84”, refers to returning all particles whose type is 2 and property tform

is above 0.01 at snapshot 84. pp in the condition, composes the column names along with

the properties of particles As the particle index is a part of row key in all three data schemas,

the execution time is almost entirely contingent upon the number of particles in the snap-

shot. Comparing with Data Schema2 and Data Schema3, Data Schema1 provides better

performance in all scenarios. As the particles within the same snapshot and of the same
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type are stored as neighbors, only a few number of regions need to be examined for this

query. Since Data Schema2 and Data Schema3 group all snapshots of one particle together,

particles with neighboring IDs are scattered across more regions, and consequently, more

regions must be involved in this query. As more regions are accessed, more overhead is

caused by the additional coprocessor instantiations. As a result, Data Schema1 performs

the best for this query.

The experiment for Query2 measures the performance when the queried data is spread

in two snapshots. The results are shown in Table 2.6(b). It should be noted that “NA” in

the following tables means the result could not be obtained because the queries were timed

out under the time-out configuration of 5 minutes. Nine query loads are designed to get

all particles destroyed between snapshot S1 and S2. For example, in the first row of the

table the conditions, “2;29;24”, represents all star particles existing in snapshot 29 but not

in snapshot 24. Here, “2” indicates the particle type is star. As the number of particles

that need to be compared across the two snapshots, the execution times of the query under

Data Schema2 and Data Schema3 increase but not substantially. On the other hand, the

last five scenarios fail under Data Schema1. It is also interesting to note that in the first

four scenarios, the query performance under Data Schema1 performs much better than that

under Data Schema2 and Data Schema3, which is due to the coprocessor overhead that the

two latter data schemas suffer. This overhead is however dominated by the cost of the last

five bigger queries. So we can conclude that Data Schema2 and Data Schema3 are suitable

for computations or queries on large scale datasets.

In table 2.6(c), we show the execution times for nine queries involving 10 to 1450

particles. For example, the first row of the table stands for a query that is to retrieve the

values of eps for 10 star particles whose indexes start from 33554444 over the snapshots

defined in the last vector.

Our hypothesis here was that Data Schema3 would perform better because it evenly

distributes the data across clusters, which is what the data of Table 2.6(c) reflect. There is

only one region involved under Data Schema1, while there are multiple regions involved

under Data Schema2 and Data Schema3. This means that under Data Schema3 the data

is better distributed, which results in the good computation distribution and load balancing

across the nodes. We can also observe that the limit of all three data schemas when serving

queries across all snapshots. As this query relates to all the rows, all regions are called

for this query along with a coprocessor instantiated. As many coprocessors are running

in one HBase Region server in parallel, more resources (including memory, CPU and I/O
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bandwidth) are required; limited resources lead to the delay of coprocessor which results

in HBase HRegion server crash and the time-out exception from Zookeeper. Intuitively,

this phenomenon points to the fact that, in addition to a well designed data schema, more

performance might be achieved with a bigger number of nodes in the cluster.

Analysis of Bixi Dataset

The Bixi query was evaluated with ten scenarios whose execution times are shown in Table

2.7 and Table 2.8. The distributions of working regions, i.e., regions on which the copro-

cessor instances run, for five of these scenarios are shown in Table 2.8. The distributions of

working regions are expressed in vectors in which each element means the number of work-

ing regions in the corresponding HBase region server. From the left to right, the host names

of HBase region server in this experiment are HBase2, HBase3,HBase4, and HBase7. The

scenarios are designed for getting change trend of 100/200 stations in a period of time.

In Table 2.7, Data Schema3 shows better performance than the other two, and Data

Schema2 shows better performance than Data Schema1 for large queries. Both three-

dimensional data schemas perform better than the two-dimensional data schema. In ad-

dition, Data Schema3, which localizes more values in the version dimension, obtains more

benefits from the locality of the data than Data Schema2. In Table 2.8, Data Schema3

has better performance than Data Schema2 in the first three scenarios. This is because the

working regions in Data Schema3 are better distributed in the cluster. From the last two

scenarios, we can see that the execution time increases rapidly when there are two regions

on one HBase region server in Data Schema3, although there is no significant difference

between these two data schemas. This phenomenon might be caused by the limited mem-

ory resources for coprocessors to execute and for the resulted data to be collected. This

indicates, not surprisingly, that cluster configuration is extremely important in terms of per-

formance. In addition to the data schema, better performance might be achieved with an

appropriate number of nodes and corresponding data volumes.

2.6 Discussion

In this section, we discuss broader issues related to the three-dimensional data model and

comment on the types of applications that can benefit from it, on HBase.

“Qualitative” versus “Quantitative” Suggestions The three-dimensional data model

only suggests how to organize the data at a high, “qualitative” level. It does not provide

specific suggestions to developers for making decisions on (a) how many columns and col-
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Table 2.6: Execution Times for the Cosmology Queries across the three Data Schemas
(a) Query 1

Query1 Schema1(s) Schema2(s) Schema3(s) Number of Number of
Particles Comparisons

2;pp;tform;>0.01;84 14.383 38.502 34.427 907,021 907,025
2;pp;tform;>0.08;128 17.722 42.751 42.243 604,567 2,743,966
2;pp;tform;>0.05;128 23.208 44.445 42.498 2,237,646 2,743,966
2;pp;tform;>0.08;216 38.496 54.290 54.322 4,257,556 6,396,955
2;pp;tform;>0.08;512 62.361 87.981 87.142 10,278,145 12,417,544

(b) Query 2
Query2 Schema1(s) Schema2(s) Schema3(s) Number of Number of

Particles Comparisons
2;29;24 0.197 27.434 28.464 4,277 5,568
2;60;24 3.342 32.550 30.481 257,928 67,268
2;84;24 6.446 38.128 34.551 905,734 907,025
2;128;24 14.797 44.611 45.000 2,742,675 2,743,966
2;216;128 NA 52.273 49.012 3,652,989 6,396,955
2;216;24 NA 53.325 55.783 6,395,664 6,396,955
2;512;216 NA 61.991 81.325 6,020,589 12,417,544
2;512;128 NA 66.709 80.449 9,673,578 12,417,544
2;512;24 NA 79.113 76.163 12,416,253 12,417,544

(c) Query 3
Query3 Schema1(s) Schema2(s) Schema3(s) Number of

Particles
2;pp;eps;[33554444,10];

44.096 42.515 30.435 10
[24]
2;pp;eps;[33554444,10];

50.406 45.986 33.559 20
[24,512]
2;pp;eps;[33554444,10];

64.306 46.061 33.192 40
[24,60,128,512]
2;pp;eps;[33554444,10];

97.370 48.634 33.757 60
[24,29,60,84,128,512]
2;pp;eps;[33554444,10];

177.889 50.636 35.527 80
[24,36,45,60,84,128,216,512]
2;pp;eps;[33554444,50];

NA 56.561 47.775 200
[24,29,84,512]
2;pp;eps;[33554444,50];

NA 110.301 59.602 450
[24,29,36,45,60,84,128,216,512]
2;pp;eps;[33554444,100];

NA 429.498 162.808 900
[24,29,36,45,60,84,128,216,512]
2;pp;eps;[33554444,150];

NA NA NA NA
[24,29,36,45,60,84,128,216,512]
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Table 2.7: Execution Time of the Bixi Query
Query1 Schema1(s) Schema2(s) Schema3(s)

1day-200stations 1.1 1.4 0.4
2day-200stations 1.9 3.6 0.6
4day-200stations 2.5 4.0 1.2
8day-200stations 12 4.8 4.2
16day-200stations 13.8 7.3 6.2

Table 2.8: Working Region Distributions for Schema2 and Schema3 for Bixi dataset

Query1
Schema2 Schema3

Execution Time(s) Working Regions Execution Time(s) Working Regions
Distribution Distribution

1day-100stations 1.258 (0,2,0,0) 0.47 (1,0,0,0)

2day-100stations 1.779 (0,2,0,0) 0.579 (1,0,0,1)

4day-100stations 2.566 (0,2,0,0) 1.161 (1,1,0,1)

8day-100stations 4.280 (0,2,1,0) 4.376 (1,1,0,2)

16day-100stations 5.839 (1,2,2,0) 5.401 (1,2,2,2)

umn families should be for their dataset, (b) how “deep” the version dimension should be

kept, or (c) how to design the composite row key. Actually, it is really hard to provide a

specific data organization plan as there are so many factors affecting the query performance

in HBase, including the dataset characteristics, the data-access patterns and the HBase clus-

ter configuration. However, our experiments and the performance results presented in this

chapter can, we hope, be used as a reference in data-schema design.

The Apache HBase is a relatively new project. The latest version of HBase is 0.94

which was just released in May, 2012. Many functions are not very stable, including the

functionalities around versioning. It cannot be avoided that there are some defects dur-

ing developing an application. Moreover, as HBase is still in the early stages of develop-

ment, some interfaces are not very convenient to use. But HBase community is striving

to meet users’ expectations. Ease-of-implementation and robustness concerns aside, this

three-dimensional data model in this study can broaden one’s views about how to organize

the data in HBase or other NoSQL databases.

Dynamic Data versus Static Data The three-dimensional data model is designed to

support dynamic data, over time. In the case of datasets that have both static and dynamic

data, we suggest that the static data should be stored separately. For example, in Bixi

dataset, we can store the static attributes of each station into a separate table[13].

Historical Dataset versus Real-Time Datasets This three-dimensional data model can

be used in historical time-series data analysis, or for “write-once read-many” applications,
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with rare updates. As the “version” dimension in HBase was intended to guarantee con-

currency and consistency, this data model cannot be directly used for on-line transaction

processing, or for write-intensive applications without any other synchronization mecha-

nism.

Supported versus Non-Supported Datasets In some applications, there are multiple

types of data objects; in this chapter, we discussed how this model may be used to organize

and store data sets with a single data-element type, i.e., particles and station observations.

In other words, complex data sets with multiple object types and relations among them are

outside the scope of this data model.

This data model can support in a straightforward manner several types of data sets.

First, it is ideal for monitoring metrics: the “version” dimension can be used to store the

stacked values of different metrics in time, each metric can be assigned a corresponding

column, and the row key will be associated with a period, such as week, month or year. A

typical example might be a health-monitoring system collecting metrics at regular intervals.

Another example is real-time sensor-based systems, where search is the primary required

functionality and updates (almost) never happen.

Complex objects, whose properties change over time, can also be stored with this data

model. The row key can be named as the object id, columns represent the object properties,

and the version dimension can represents the version index. For example, source-code

modules could be stored in this data model, with each file corresponding to an object, and

each new committed module version would constitute a new object stacked in the version

dimension. The various columns might be associated with meta-data and static-analysis

metrics of this file, owners, creators, related bugs, lines of code and so on.

2.7 Conclusion and Future Work

HBase, as a NoSQL database offering, is rapidly becoming the chosen solution for scalable

data processing. In this chapter we proposed a three-dimensional data model in HBase for

large time-series dataset analysis. This three-dimensional data model provides a new view

of data organization and management by using HBase version dimension in a different way.

We have experimented and evaluated the performance impact of this type of data mod-

els with two data sets, of different sizes and different time lengths. For each of these data

sets, we have compared the performance of several ad-hoc queries, implemented with co-

processors, across different data schemas, some of which (do not) use the third HBase
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dimension. The experiment results show improved performance with the data schemas that

use the third dimension of HBase. Our experiments also show that performance is highly

impacted by the distribution of the data across cluster nodes, which implies that the design

of the row-key is of significant importance. At last, we discussed the application scope for

the proposed data model.

There are still several problems to solve. Besides the performance impact, the three-

dimensional data model should be evaluated from scalability, elasticity and utilization as-

pects. Given the feature of the three-dimensional data model, how to extend its applicable

scope to on-line transaction processing system is valuable and challenging. In addition

to the time-series dataset, many other datasets such as spatial dataset and graphic dataset

should also be investigated to suggest the data management design in the future.
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Chapter 3

HGrid Data Model for Geopspatial
Datasets 1

3.1 Introduction

With the explosive increase of location-aware devices (GPS-enabled smartphones and ve-

hicles, RFIDs, tablets, etc) and the proliferation of sensor-based systems, location-based

services that contextualize the user experience are growing. A prominent example of this

phenomenon is location-aware advertisement and recommendation, where the user is pro-

vided with advice on real-service opportunities close to her. Taking advantage of these

location-aware services are millions of users, who continuously register their location up-

dates through their wireless providers. In addition to user-facing services, smart systems

embed sensors and activators in our environment for monitoring and management; these

systems also generate massive amounts of data updates and rely on analyzing this data over

time and across space.

The challenge with these applications is how to guarantee satisfactory performance

for real-time analysis, while at the same time, supporting millions of location updates per

minute. To address these requirements, database-management systems (DBMS) must scale

up while maintaining good load balancing and high up-time [14]. As most typical queries of

these applications involve the retrieval of multi-attribute values related with some proximity

function to a given geographic location, efficient multi-dimensional geospatial data access

is also an important requirement. Relational database-management systems (RDBMSs)

support efficient spatial queries with special-purpose index structures, such as K-d tree [1],

quad-tree [4] and R-tree [7]. However, RDBMSs are challenged by the scaling require-

ments of this new breed of applications, requiring complex hardware setup and configura-
1A version of this chapter has been published. Dan Han and Eleni Stroulia, 2013 IEEE 6th International

Conference on Cloud Computing (CLOUD), pages 910-917.
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tion. NoSQL (Not Only SQL) databases, endowed with availability, elasticity and scalabil-

ity through their easy deployment on cloud-computing platforms, become a more attractive

solution for these applications [2]. However, data in NoSQL databases is stored in an un-

structured manner, based on a primary key and attributes organized in column families.

Even though some rough guidances about schema design have been provided by the spe-

cific NoSQL database offerings, such as HBase [5], there is still no systematic method for

how to actually design the structure of the “NoSQL Big Tables” for a particular application.

The data organization has a great impact on the performance of the queries implemented on

these tables, and therefore, a systematic method for NoSQL data-schema design for geospa-

tial applications is a timely and important problem in this area.

This is exactly the problem we aim to address with our work on HBase, the open-source

implementation of BigTable [3]. To that end, we have developed the HGrid data model for

organizing geospatial data sets, a hybrid two-tier index structure, tailored to the HBase

three-dimensional storage mechanism. The primary index is a quad-tree that divides the

data space into rectangular tiles, and encodes each tile according to a Z-ordering traver-

sal [12]. Next, a regular-grid index structure is used to divide each quad-tree tile into a

sequence of contiguous rectangular cells. Each cell is assigned a unique identifier, con-

structed as the concatenation of the cell’s row index and column index in a grid. In this data

model, the row key of each data point is the concatenation of the z-value of the quad-tree tile

in which the data point belongs, and the row index of its regular-grid cell in the second-tier

regular-grid index. The column name is constructed by concatenating the column index of

its regular-grid cell and the object id. Finally, the various attributes of each object are stored

in the third dimension.

We empirically evaluated the performance of this data organization with two synthetic

data sets, with uniform and skewed data distribution correspondingly. Compared against

a pure quad-tree data model and a pure regular-grid data model, we found that HGrid can

be flexibly configured for a range of cell sizes, and although it exhibits slightly poorer

performance than the regular-grid data model, its index requires less space than the corre-

sponding quad-tree and regular-grid indices, which makes its deployment possible with less

resources. It is more scalable and suitable for homogeneously covered and discontinuous

spaces.

The rest of the chapter is organized as follows. Section 3.2 reviews the background

of this work on geospatial data, multi-dimensional index structures, linearization methods,

HBase and introduces related works of geospatial data studies. By comparing with quad-
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tree against the regular-grid data model, we describe the HGrid data model and evaluate it

with range query and k-nearest neighbor query in Section 3.3. Section 3.4 reports the exper-

iment result with different data distributions under different data models and summarizes

a set of suggestions about HBase schema design and query implementation. We conclude

our contributions and future work in Section 3.5.

3.2 Background and Related Work

The data points in geospatial data sets are typically multi-dimensional, including their coor-

dinates (latitude and longitude), a timestamp, and a description (identifier and attributes) for

the domain object at the data point [14]. Range queries (identifying the data points within a

radius from a given location) and k-nearest neighbor queries (identifying the k data points

closest to a given location) are the most common queries on these data sets.

3.2.1 Multi-Dimensional Indices

Spatial data are typically organized using “space-driven” or “data-driven” indices. In data-

driven structures, such as R-tree [7], the distribution of the objects to be stored determines

the partitioning of space. Since the most common queries in geospatial applications are

typically based on locations, in our work we focus on space-driven approaches to data orga-

nization. An example of “space-driven” organization is a grid where objects are associated

with a grid cell based on their position in the space, and an index of grid-cell identifiers

enables rapid access. In this organization, the grid-based spatial index is created first and

the data is added incrementally without causing any change to the index structure.

The regular grid is the simplest grid-based spatial index. It partitions a rectangular do-

main using rectangular cells of equal size [6]. An associated matrix, i.e., a two-dimensional

array, maps each grid cell to the array of data points located within the space covered by the

cell. The quad-tree recursively splits the space into subspaces organized in a search tree.

Two methods are commonly used to split the given space [14]: the trie-based approach

splits the space at the mid-point of a dimension, resulting in equal-size subspaces. The

point-based technique splits the space in subspaces with equal number of data points [1].

Quad-tree is commonly coupled with space-filling curves [10] to linearise the sub-spaces.

Z-ordering [12] is an easy-to-compute example of a space-filling curve. We used it in this

work because of its simplicity.
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3.2.2 HBase Storage Model Overview

HBase uses the Hadoop File System (HDFS) as its underlying data-storage platform. Un-

like the two-dimensional tables of traditional RDBMSs, HBase organizes data in a three-

dimensional cube. The basic data storage unit in HBase is a cell, which is identified with its

row key, column-family name, column name and version[5]. Cells with multiple versions

of data can be stacked in the third dimension. For example, the third dimension is used to

stack the contents of message IDs in the Facebook messaging system [13]. At the physical

level, each column family is stored contiguously on disk, and the data is physically sorted

by row key , column name and version.

The HBase Coprocessor framework, inspired by Google’s BigTable Coprocessor [3],

provides a library and run-time environment for executing user code on the HBase region

servers. Coprocessor implementations are executed remotely at the target region(s) hosted

by region servers, and their execution results are returned to the client. This design de-

creases the communication overhead involved in transferring data from the region servers

to the client, and enables dramatic performance improvement by pushing the computation

to the server, where it can operate on the data directly. To reap the benefits of this frame-

work, an appropriate partitioning of the data is necessary, which implies the need for a

well-designed data schema. This is the reason why, in our work, we have focused on inves-

tigating the impact of different HBase table schemas on the performance of query execution

using the Coprocessor framework.

To date, two proposals have been put forward for the organization of geospatial data in

HBase. S. Nishimura et. al[14] built a multi-dimensional index layer on top of HBase to

perform spatial queries. Ya-Ting Hsu et. al [9] presented a novel key-formulation schema,

based on R+-tree for spatial index in HBase. Both studies investigate how to efficiently

access the multi-dimensional data with spatial indices, which is part of the problem that we

are addressing in this chapter. Their methods demonstrate efficient performance with the

spatial indices. However, they only focus on the design of the HBase row key with no or

little discussion about the column and version design. To design an appropriate data model

for geospatial datasets, which can be easily and directly applied to geospatial applications,

in addition to the row key, one need also take into account the design of the column name and

the role of the third dimension. Furthermore, in our work, we implemented the queries with

HBase Coprocessor to harness the parallelism benefits, while the above studies processed

the queries with HBase Scan.
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3.3 The HGrid Data Model for HBase

In this section, we first review the two data models underlying the design of HGrid. Next,

we describe the HGrid data model and the index-construction process. Finally, we explain

the implementation of two queries commonly used in location based service under this data

model.

3.3.1 Preliminary Data Models

As we have already discussed, the HGrid data model for HBase is inspired by two simpler

data models: the quad-tree data model and the regular-grid data model.

The Quad-Tree Data Model

The quad-tree data model relies on a trie-based quad-tree index, where Z-ordering [12] is

applied to transform the two-dimensional spatial data into a one-dimensional array. In this

model, the row key, which should be kept as short as possible, is the Z-value in decimal

encoding, i.e., “0”,“1”,“2”,“3”. The column name is the object ID, and each cell stores one

data point in JSON format.

There are three performance concerns about this data model. First, as the quad-tree

becomes deeper, the data points end up being organized into more rows. As a result, queries

have to scan more grid cells in order to retrieve all data points within a range, or close to

a location; at the same time, the more rows are scanned, the more unrelated-to-the-query

data is accessed, causing performance deterioration. Moreover, the Z-ordering linearization

technique, although appealing because of its simple computation, does not maintain good

data locality, and subsequent grid cells are not necessarily close to each other in space.

As a result, scanning more contiguous rows is even more likely to inspect irrelevant rows

(i.e., rows corresponding to grid cells not sufficiently close to the query location), which

increases the amount of accessed data and causes performance to suffer further. The last

but not least issue is with the construction of the quad-tree. If the index is built in real time

for each query, the construction cost dominates in small queries. If the index is maintained

in memory, the granularity of the grid is limited by the amount of memory available, since

the memory needed to maintain the index increases as the depth of the tree increases and

the size of the grid cells becomes smaller.
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The Regular-Grid Data Model

In the regular-grid data model, the row key is the row index of the cell in the grid, the column

name is the column index of the cell, and each storage cell represents one object in JSON

format holding all other attributes and values. The third dimension holds a stack of data

points located in the same grid cell, and an index is maintained to keep the count of objects

in each cell stack in order to support updates.

This index structure maintains data locality: data points close in the y dimension are

likely to be in the same or neighboring rows and data points close in the x dimension are

likely to be in the same or neighboring columns. With this data model, the data point can

be determined efficiently by both of row and column and the unrelated data can be pruned

with the Bloom filter.2 However, in densely populated spaces, the number of objects in

columns in each row increases. Because the time to retrieve a row with n data points more

than doubles with n (when n is large) [9], the query performance will decrease. In addition,

as there is no mechanism to filter the objects located in one column in this data model,

more objects are retrieved in a query, which results in a higher number of false positives.

A finer-grained grid would reduce the false positives but it would imply a larger cell-stack

in-memory index, which may not be possible due to memory limitations. Given a certain

amount of memory, this data model reaches a bottleneck when it comes to a large space

with finer-grained grid cells.

Summarizing the relative advantages and disadvantages of the quad-tree and regular-

grid data models, we note that the quad-tree data model is not efficient when it comes

to large queries, as more irrelevant data must be scanned. The regular-grid data model

is preferable in that respect because it has better localization and can provide very good

pruning of the unrelated data. Query processing becomes inefficient in the regular-grid data

model when it comes to large high-density spaces, as the amount of objects grouped in one

row increases rapidly. Both the quad-tree data model and the regular grid data model are

constrained by the size of available memory, in terms of how fine-grained the grid cell may

become.

Considering the advantages and disadvantages of these two data models, we designed

the HGrid data model. Using a two-level index structure, the HGrid data model avoids

the regular-grid drawback by splitting large geographic spaces in tiles using a quad-tree

index, and takes advantage of the localization feature of the regular-grid data model in the
2The Bloom filter is a space-efficient probabilistic data structure to be used to check whether an element is

a member of a set [15]. It is supported in HBase to reduce the disk lookups for unrelated rows or columns.
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Figure 3.1: HGrid Data Model Figure 3.2: An example of HGrid Index

second-level index.

3.3.2 The HGrid Data Model Representation

Figure 3.1 diagrammatically depicts the HGrid data model. First, the space is divided into

equally sized rectangular tiles T, encoded with their Z-value. Next, the data points are

organized in a regular grid of continuous uniform fine-grained cells. In this model, each

data point is uniquely identified in terms of its row key and column name. The row key is

the concatenation of the quad-tree Z-value and the regular-grid row index. The column

name is the concatenation of the regular-grid column index and the object id of the data

point. The attributes of the data points are stored in the third dimension.

Figure 3.2 illustrates with an example how the HGrid index is constructed. Given a

specification of the overall space within which the geospatial data set is to be contained,

the minimum boundary rectangle (MBR) of the space, i.e., the smallest rectangle that com-

pletely contains the space, is computed. The depth of the quad-tree is determined by the

user-specified size of the tile. Each tile is associated with an index that corresponds to its

rank according to the Z-ordering linearization. Each quad-tree tile contains all the data

points whose coordinates belong in the space covered by the tile. Clearly, many data points

may belong in the same tile and share the same tile code; there also may be empty tiles,

with no data points at all. For the empty tiles, there are no relevant records stored in HBase.

Next, given the desired regular-grid resolution, the quad-tree tiles are decomposed into

equally sized rectangular cells. Each cell is coded with the row and column index of the

regular grid; this cell code becomes the secondary index for every data point in the cell.

There are two challenges in the configuration of this index-construction process: decid-

ing (a) the appropriate granularity for tessellating the original space in quad-tree tiles, and

(b) the appropriate granularity of the regular grid in the second stage. Based on our experi-

ence, we have found that the best resolution depends on the data distribution and the likely
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queries. The finer the quad-tree tile granularity, the more irrelevant rows will have to be

pruned from the return set of Scan queries due to poor locality of Z-ordering. Alternatively,

if direct Get access operations are used, more sub-queries will be required. Therefore, there

is a trade-off between the size of tiles in the first stage and the size of cells in the second

stage. Much experimentation with different levels of quad-tree and granularity of regular

grid is needed in order to optimize the performance for a specific data set.

3.3.3 Query Processing

There are two ways for processing queries in HBase. Using a Scan operation, a number of

rows corresponding to a range of row keys are retrieved and the response set is computed at

the client-side. Using Coprocessor, partial response sets are computed in each region and

are then aggregated at the client side.

Range queries are commonly used in location-based applications. Given the coordi-

nates of a location and a radius, a vector of data points, located within a distance less than

or equal to the radius from the input location, is returned. Relying on the HGrid data model

and using Coprocessor, answering this query involves the following steps.

(1) Given the query input location and the range, the minimum bounding square that

completely includes the implied circle around the input location is computed.

(2) Next, the quad-tree tiles that overlap with the computed bounding square are identi-

fied. The Z-codes of these tiles provide the primary index of the HBase rows of interest.

(3) Next, the overlap between the bounding square and each intersecting quad-tree tile

is computed to identify the regular-grid cells involved. Based on these cells, the secondary

index of the rows to be examined and the corresponding column indices become available.

(4) Having now computed the range of rows and columns involved in the query, a sub-

query is issued for each selected tile or the parent tile of selected continuous tiles of the

quad-tree and processed by user-level Coprocessor on the HBase regions; the results of the

sub-queries are accumulated at the client-side.

k-Nearest Neighbor (kNN) queries identify a number (k) of data points near to an input

location. The process for computing kNN queries on the HGrid data model, using a Scan-

based implementation, is as follows.

(1) First, we apply the density-based range estimation method introduced by Liu et.al

[11] to estimate the search range.

(2) Given the search-range estimate, the queried indices of rows and columns are com-

puted as described in steps 2 and 3 of Range Query above.
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(3) Next, a Scan query is issued to retrieve the relevant data points.

(4) If fewer than k data points are returned, the search-range estimation is expanded and

the above steps are repeated.

(5) Finally, a sorting step orders the return set in increasing distance from the input

location.

3.4 Experimental Results

Our experiments were performed on a four-node cluster, running on four virtual machines

on an Openstack Cloud. The virtual machines run 64bit Ubuntu 11.10 and have 2 cores,

4GB of RAM, and a 200 GB disk. We used Hadoop version 1.0.2, and HBase version 0.94.

Hadoop and HBase were each given 2GB of Heap size in every running node. HDFS was

configured with a replication factor of 2. HBase was managing its own Zookeeper instance

running on the same machine as the HMaster.

In the experiment, gzip compression was configured on the table to reduce the data-

transmission time. Next, the ROWCOL filter 3 was applied on each table for narrowing the

queried range. The scan cache size was set to 5000 and the block cache was set to true, for

the query processing. Finally, minor and major compaction were manually done to avoid

the large size of store files after the data uploading.

For all test cases, we ran the experiment 5 times and we report the mean of the last

three. We implemented the Range Query processing with the Coprocessor framework and

kNN Query with Scan, considering the relatively small queried range in kNN Query.

Table 3.1: Execution Time of Range Query with Various Sizes of Cell of Three Data Mod-
els(s)

Radius Target QT (km) RG (km) HG (km)
(km) Objects ≈0.1 ≈1 ≈10 0.1 1 10 50:0.1 ≈10:0.1 ≈1:0.1 ≈:10:0.01 ≈10:0.001

0.01 1 0.112 0.252 7.710 0.131 0.208 6.196 0.208 0.185 0.211 0.188 0.177
0.05 72 0.145 0.249 7.743 0.135 0.221 6.242 0.222 0.231 0.178 0.202 0.241
0.1 315 0.141 0.240 7.731 0.147 0.213 6.257 0.246 0.238 0.175 0.225 0.292
0.5 7,868 0.539 0.692 7.644 0.285 0.478 6.277 0.504 0.509 0.454 0.556 0.906
1 31,411 0.846 0.767 8.252 0.572 0.870 6.232 0.914 0.926 0.803 1.052 1.166
4 502,587 8.787 7.655 9.589 4.544 5.763 7.711 6.224 6.410 7.426 7.243 7.619
8 2,012,583 NA NA NA 10.693 16.782 34.468 83.920 42.372 40.542 51.637 51.918
12 4,524,996 NA NA NA 27.545 34.576 39.570 NA 85.014 93.343 105.635 110.967

3This is a type of Bloom Filter. When applied, the hash of the row key,column family, column family qualifier
is added to the bloom on each key insert. It can help prune the data from both row and columns sides.
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Table 3.2: False Positive in Range Query with Various Sizes of Cell of Three Data Models
(%)

Radius Target QT (km) RG (km) HG (km)
(km) Objects ≈0.1 ≈1 ≈10 0.1 1 10 50:0.1 ≈10:0.1 ≈1:0.1 ≈:10:0.01 ≈10:0.001

0.01 1 99.91 99.99 99.99 99.00 99.99 99.99 99.00 99.00 99.53 80.00 50.00
0.05 72 95.29 99.70 99.99 82.48 99.28 99.99 82.48 82.48 82.65 35.71 28.00
0.1 315 79.41 98.71 99.98 65.42 96.86 99.97 65.42 65.42 65.03 30.62 23.17
0.5 7,868 86.07 91.93 99.50 36.21 80.19 99.21 34.71 34.71 30.12 22.89 21.67
1 31,411 63.68 67.77 97.99 28.92 65.03 96.86 28.92 28.92 26.25 22.48 21.79
4 502,587 59.72 60.45 67.87 23.40 37.96 49.74 23.39 23.40 23.65 21.66 21.48
8 2,012,583 NA NA NA 22.43 30.43 77.65 22.43 22.43 22.19 21.56 21.47
12 4,524,996 NA NA NA 22.11 27.64 49.74 NA 22.13 22.37 21.54 21.48

3.4.1 The Data Set

For our experiments, we used two synthetic data sets because (a) we needed a “big” data

set, with a sufficiently large number of data points, and (b) we needed to control the data

distribution and its impact on the performance of the three different data organizations. The

synthetic data set was generated based on the Bixi data set [8], which includes minute-by-

minute readings from 404 bike stations around the city of Montreal. Each reading consists

of the following attributes: timestamp, station id, latitude, longitude, station name, terminal

name, number of docks, and number of bikes. With the same format of station object in Bixi

data set, the synthetic data set augments the number of stations from 404 to one hundred

million, locating them in random coordinates, following a uniform and Zipf distribution
4, using commons-math3-3.0.jar. The factor of Zipf distribution is 1.0, which represents

moderately skewed data. The simulated space area is 100km*100km. This data set basically

represents one hundred million objects at a certain timestamp. The size of data set is about

70GB.

3.4.2 Index Configuration

The granularity of the cells in terms of which the space is tessellated is a very important

variable that substantially affects the query-processing performance. This is why, before

we compare the three data models against each other, we have explored the “best” cell

configuration for each model. In this first round of experiment, we varied the size of the

cell to observe how different cell sizes affect the performance of each data model. We set

the size of the cell at 0.1km, 1km, and 10km. Consequently, in the regular-grid index, the

10,000km2 space is divided into 1, 000 ∗ 1, 000, 100 ∗ 100, and 10 ∗ 10; in the quad-tree

index, as the space is split at the mid-point of a dimension each time, the size of the cell is
4Skew distribution can follow common distributions, such as Zipf, Gaussian, and Poisson, but many studies

consider Zipf distribution to model skewed data.
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less or equal to the configured value above.

Table 3.3: Execution Time of Range Query with Three Data Models (s)
(a) Uniform Data

Radius (km) 0.01 0.05 0.1 0.5 1 4 8 12 16
QT:≈1 0.251 0.250 0.240 0.692 0.767 7.656 NA NA NA
RG:0.1 0.131 0.135 0.147 0.285 0.572 4.544 10.693 27.545 45.323

HG:≈10:0.1 0.185 0.231 0.238 0.509 0.926 6.410 42.372 85.014 141.308
(b) Skewed Data

Radius (km) 0.01 0.05 0.1 0.5 1 4 8 12 16
QT:≈1 0.398 0.359 0.375 1.172 1.274 30.240 NA NA NA
RG:0.1 0.120 0.132 0.142 0.424 1.140 12.349 NA NA NA

HG:≈10:0.1 0.260 0.314 0.317 0.868 2.015 16.843 NA NA NA

The Quad-Tree and Regular-Grid Data Models

For our uniform-distribution data set of 100 million data points, configuring the individual

cell to cover a 1km*1km space results in 100*100 square cells with an average number

of 10,000 data points in each cell. As a row corresponds to a cell in the quad-tree data

model, there are approximately 10,000 rows in total, and in each row, there are about 10,000

columns (one for each data point) with a depth of one. In the regular-grid data model, row

keys correspond to the indices of the grid rows and the column names correspond to the

column indices; as a result there are at most 100 rows and 100 columns. In each cell, there

may be a stack of about 10,000 data points. Given the same amount of data and the same

grid granularity, the quad-tree data model results in a wide, shallow, and long table, while

the regular-grid data model results in a narrow, deep, and short table. With a fixed cell size,

as the amount of data increases, the quad-tree data model expands in the column dimension

(i.e., the table becomes wider), and the regular-grid data model results in a deeper table as

more data points get stacked on top of each other in the third dimension.

Table 3.1 reports the response time for range queries issued to the data set organized

under the quad-tree and regular-grid data models. The label “≈0.1” in “QT” column refers

to an experiment where the configured size of each cell is 0.1km, and the actual cell size is

around 0.097km, with the quad-tree depth being 11. The grid is divided into 210∗210 square

cells. A range query is issued with the same reference location and a number of different

radiuses, ranging from 0.01km to 12km. The Target Objects column reports the number

of data points returned by that query. The column FP (i.e., False Positive) represents the

percentage of data points returned to the client without actually belonging to the query
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return set. The higher this percentage, the more undesirable the situation since it implies

that many irrelevant rows have been scanned, and have been transferred through the network

to the client and have to be inspected and rejected by the client in the post-processing phase.

From Table 3.1 we can see that for the quad-tree data model, as the size of the cell de-

creases from 10km to 0.1km, the performance improves substantially for the small queries,

while for the large queries, the result cannot be returned before the timeout. This is because,

for smaller queries, only a small number of false positives rows is included in the data re-

turned to the client. On the other hand, for the larger queries, many irrelevant rows have to

be scanned, since the Z-value for cell ordering does not preserve a good locality (i.e., the

neighboring relation) among subspaces. Even though the HBase Coprocessor framework

parallelizes the query processing, at the core of the query processing lies a Scan operation;

therefore, better pruning of unrelated data and fewer false positives remain the key of per-

formance improvement. The same principle also applies to the regular-grid data model. The

“RG” with the size of cell of 0.1km configuration outperforms the other two configurations.

The reason is that the finer granularity of grid can enhance of the ability of pruning.

Finer-cell granularity results in improved performance for smaller queries in the quad-

tree data model and for all queries in the regular-grid data model. However, there is a limit to

how small the size of the cell can become. Smaller cell size implies that a greater number of

rows must be scanned to respond to the query. If the number of rows exceeds the scan cache

size, a higher number of Scan operations between server and client will be required, which

will cause the performance to deteriorate. The size of the scan cache is constrained by the

memory availability on both the client and server side. If a high-memory configuration is

available, then increasing the cache size may result in some of the failed cases to work, but

the performance trend remains fundamentally the same, because the number of irrelevant

rows scanned will continue to increase. For the quad-tree data model, as the index is built

and stored in the memory before the query-processing phase, smaller cell size and deeper

quad-tree imply increased memory allocation.

From Table 3.1, we can observe that, for the regular-grid data model, best performance

can be obtained with the cell size of 0.1km; while for quad-tree data model, the acceptable

cell size is approximately 1km, with the quad-tree depth of eight.

The HGrid Data Model

In the HGrid data model, there are two variables that affect the HGrid index: the size of the

tile (T) in the first tier and the size of the cell (t) within a tile. For our uniform-distribution
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data set of 100 million data points, if the individual cell is set as 1km2, the number of tiles

can range from 1 (where there is only one tile and 10,000 number of cells), to 10,000 (where

there is only one cell in each tile). Correspondingly, the number of rows are varying from

100 to 10,000, and the number of columns are from 1,000,000 to 10,000. Comparing these

dimensions to the 10,000 rows and 10,000 columns in the quad-tree data model, and the

100 rows and 100 columns with stacks about 10,000 deep in the regular-grid data model,

the HGrid table is neither as long as that of the quad-tree data model, nor as deep as that of

the regular-grid data model.

Tables 3.1 and 3.2 report the query response times and false positives for various tile

sizes, given a fixed cell size in the HGrid data model. Smaller-tile organizations exhibit bet-

ter performance because they support better pruning of irrelevant data. However, smaller

tiles also imply a bigger number of sub-queries for every query. The “HG:≈10:0.1” or-

ganization, referring to the configuration with a T≈10km quad-tree tile and a t=0.1km

regular-grid cell, involves fewer sub-queries and more false positives and outperforms the

HG:≈1:0.1 organization with more sub-queries and fewer false positives. This is an evi-

dence of the trade-off between the number of false positives and the number of sub-queries.

The number of rows involved in the query is also an important factor that influences

the performance, as evidenced by the fact that the performance of the HG:≈10:0.01 orga-

nization is worse than that of the HG:≈10:0.1 organization, as shown in Table 3.1. Thus,

we conclude that the HGrid data model with tile size of T≈10km and cell size of t=0.1km

approximates the best trade-off between the number of false positives and the number of

sub-queries.

Table 3.4: Execution Time of kNN Query with Three Data Models (s)
(a) Uniform Data

k 1 10 100 1,000 10,000
QT:≈1 1.766 7.689 7.432 7.759 7.231
RG:0.1 0.307 0.270 0.302 0.596 1.295

HG:≈10:0.1 0.320 0.357 0.373 0.807 2.003
(b) Skewed Data

k 1 10 100 1,000 10,000
QT:≈1 1.737 1.885 1.914 1.900 4.583
RG:0.1 0.147 0.139 0.151 0.480 1.592

HG:≈10:0.1 0.325 0.314 0.358 0.879 3.307
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3.4.3 Comparison of the Three Data Models

In this section, we compare the performance of the three data models, with range and kNN

queries. We used the appropriate configuration obtained in Section 3.4.2 for each data

model: QT:≈1, RG:0.1, and HG:≈10:0.1. In our experiments, we simply applied the same

configuration into both uniform data and skewed data.

For uniform data, we randomly select a data point as the query input and a systematic

variation of the radius. For skewed data, we selected three data points, each one with 20%,

50%, and 70% probability correspondingly in the Zipf distribution as the query input, and

systematically varied the query radius from 0.01km to 4km.

Range Query

We evaluated the range-query performance under three data models with both uniform and

Zipf distribution data. Table 3.3 shows the query response time of the three data models

for various ranges when the system contains 100 million objects. As the radius increases,

the size of irrelevant data vs. the return-set size ratio increases, and the running time also

increases because more data points are retrieved. The regular-grid data model outperforms

the others, because it supports better data locality and the percentage of irrelevant rows

scanned is low. The HGrid data model performs much better than the quad-tree data model

and slightly worse than the regular-grid data model. The same performance trends persist

with both uniform and skewed data. In addition, in Table 3.3, we can also see that for

skewed data, the queries with the radius of 8km, 12km, and 16km, cannot get result under

these three data models. The reason is that the data points in the result are so large that the

execution time exceeds the client socket timeout.

k-Nearest Neighbor Query

We also evaluated the performance for k Nearest Neighbor (kNN) queries using the same

data set, under the three data models. Table 3.4 shows the response time (in seconds) for

kNN queries, where k takes the values 1, 10, 100, 1,000, and 10,000. As the density-

based range estimation method is employed [11], there is only one Scan operation in the

query processing for uniform data, while for skewed data, more than one Scan iterations

are invoked to retrieve the data. That is why the performance with skewed data under all

data models is worse than that with the uniform data set. For both uniform and skewed

data, the regular-grid data model performs best, followed by the HGrid data model with

the quad-tree data model being the worst. The poor quad-tree locality contributes to the
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poor performance of the quad-tree data model, and also impacts the performance of HGrid,

albeit less strongly. For skewed data, with too many false positives, the query with the data

points having more than 70% probability cannot get the result below the timeout threshold

under all data models when k equals to 10,000. To improve performance, a finer granularity

is required to filter irrelevant data scanning.

In summary, the query performance of the HGrid data model is better than the quad-tree

data model and worse than the regular-grid data model. The HGrid data model benefits from

the good locality of the second-tier regular-grid index, but suffers from the poor locality of

the Z-ordering linearization at the first tier. Better performance can potentially be obtained

with alternative linearization techniques. In addition, the experiment result proved once

again that a new configuration of these three data models for skewed data should be set.

3.4.4 Best Practices

Based on our experimental results, we have two types of guidelines for the organization of

geospatial data in HBase. The first set guides the design of the data schema.

• The row key and column name should be short, since they are stored with every cell

in the row.

• The row key should be designed to support pruning of unrelated data easily.

• The amount of data in one row should be kept relatively small. The cost (in time) of

retrieving a row has n data increases more than twice with n (when n is large) [9].

• It is better to have one column family, only introducing more column families in the

case where data access is usually column scoped [5].

• The number of columns should be limited. A number in the hundreds is likely to lead

to good performance.

• When the third dimension is used for storing other information rather than time-to-

live values, it is preferable to keep it shallow, and be limited to containing up to no

more than hundreds of data points, as deep stacks lead to poor insertion performance.

• The Bloom Filter [5] should be configured as it can accelerate the performance by

pruning the data from both row and column sides.

• Compression can improve the performance by reducing the amount of data transmis-

sion.
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The second set of guidelines refers to the implementation of the query-processing mech-

anism.

• It is more efficient to Get one row with n data points than n rows with one data point

each [9].

• Scan operations are preferable to Get operations for retrieving discontinuous keys,

even though the Scan result is bound to also include data points that are not part of

the response data set.

• It is advisable to narrow the range of queried columns with the Filter mechanism.

• The number of rows to be scanned for a query should not exceed the scan cache size,

which depends on client and server memory. Otherwise, it is better to split the query

into several sub-queries.

• When there are too many unrelated rows within the defined scan range, splitting one

query into multiple sub-queries with multiple Scan operations is more efficient than

one query with Filter mechanism to retrieve rows one by one.

• The Scan operation is preferable for small queries, while Coprocessor for large queries.

3.5 Conclusions and Future Work

In this chapter we proposed the HGrid data model for HBase, based on a hybrid index

structure, combining a quad-tree and a regular grid as primary and secondary indices cor-

respondingly. We comparatively evaluated the performance of the HGrid with uniform and

skewed data, against the other two data models. Our results demonstrate that the HGrid or-

ganization scales well and supports efficient performance for range and k-nearest neighbor

queries. Benefiting from the hierarchical index, the HGrid data model can be flexibly con-

figured and extended. In the first tier, the quad-tree index can be replaced by the hash code

of each sub-space or the point-based quad-tree index method is employed. In addition, the

granularity in the second stage can be varied from sub-space to sub-space based on the

various densities. Therefore, HGrid is more scalable and suitable for both homogeneously

covered and discontinuous spaces.

In the future, we plan to experiment with alternative space-filling curves for the lin-

earization of the quad-tree first-tier index, such as Hilbert curve 5, and to evaluate the model
5It can eliminate discontinuities and improves the overall locality

39



with real data.
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Chapter 4

Migrating an Existing Geospatial
Application to a Hierarchical Cloud

4.1 Introduction

Large organizations, including business enterprises and national governments for example,

are typically organized as hierarchies or federations of departments. Frequently, the various

enterprise departments of government jurisdictions use their own installations of the same

software systems to manage their processes. These separate installations may sometimes

be dictated by governance rules (for example, health-care delivery may be a provincial and

not a federal service), but they are also motivated by several functional requirements. They

support location-aware services, a functionality which becomes much simpler and efficient

with location-specific deployments. Frequently they are accessible through mobile clients,

which impose short network-latency requirements, a fact which also motivates local deploy-

ment. However, even as the locality enhances the user-facing services, there is potentially

a lot of valuable insight and knowledge to be gained from the analysis of the complete data

set. In the age of “Big Data Analytics”, allowing this data to remain in geographical silos

and missing out on the opportunities that their analysis as a whole may afford is not an op-

tion. This is why an architectural solution is needed, to enable (a) the systematic migration

of the aggregate data of these systems to the cloud, and (b) their analysis from domain-

specific and geospatial perspectives. This is exactly the objective of the work described

in this chapter, using as an example a health-care application (named HCA-T), detailed in

[28].

Health-care aides (HCAs) are the backbone of the home care system and provide a range

of services to people who, for various reasons related to chronic conditions and ageing, are

not able to take care of themselves independently. HCAs and the organizations that man-
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age their interactions with clients face a number of challenges in their daily workflows and

software systems can address some of them. The HCA-T system, designed after an analysis

of the most important challenges in the current workflow, offers two major functionalities.

On one hand, it provides a scheduling service that flexibly takes into account a configurable

number of preferences, including HCA travel-time minimization, maximization of client-

HCA affinity, schedule load balancing, etc. This service addresses “efficiency” concerns,

enabling the best coverage of the clients’ needs with the available HCAs. On the other

hand, a mobile application enables HCAs to access and edit the client’s care plan, as well

as to provide textual information, images and videos to document the client’s state. Typ-

ically, HCAs only have access to paper-based client records “in the office” and recording

new information collected through the HCA visit takes time. As a result, available infor-

mation is out of date, and it even takes time to realize that an appointment may have been

missed. Real-time access to (and update of) the client record addresses many “quality of

care” concerns in the current process. Equally importantly, a path-planning service instructs

the HCAs about the location of their client and the possible path there and a corresponding

location-tracking functionality on the mobile application may optionally be used to keep

the office informed about the location of the HCAs at any point in time (motivated by the

HCAs’ safety concerns). The HCA-T system is structured in the typical three-layer archi-

tecture of most data-driven web applications. MySQL, a relational database system stores

persistent data constitutes the base layer. Tomcat, an application server contains most of the

application logic in the middle layer. In the middle-layer, there are also many functional

components providing instant and location-aware services, such as instant meeting service

and road and traffic condition service, which make the request of geographical deployment

and time sensitive requirement. Finally, a HTTP server handles requests that come from

application clients through the web is the top layer.

HCA-T was evaluated only through simulations; its actual deployment hinges upon

changes to the legislation governing the certification and privileges of HCAs. However,

if HCA-T was to be deployed in all Canada provinces, each one employing about 20,000

home-care workers every day, we estimate that up to 6GB of data would be collected, i.e.,

180GB every month, 1TB per year. There is no dispute that this data size imposes too strin-

gent scalability requirements onto the data-processing infrastructure. Moreover, if one de-

cided to analyze the data as a whole, in order to extract descriptive statistics over the whole

country or to compare provincial data against each other over interesting periods of time,

the current application architecture, relying on a relational database becomes completely in-
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effective. Compared to relational database management systems (RDBMSs), NoSQL (Not

Only SQL) databases, non-relational distributed database system, endowed with high avail-

ability, good elasticity and excellent scalability through their easy deployment on cloud

computing platforms, become a more attractive data storage solution for these applications.

Given the advantages of the cloud, it is attractive to migrate existing applications to this

new platform. On the other hand, the concerns about the cost of migration and the potential

risks regarding the impact of the move-to-the-cloud on the system’s performance make the

migration solution impractical. A new middle-of-the-road solution is necessary, with the

actual application remaining essentially the same while enabling cloud-based analytics of

the aggregate data.

Cloud computing has become increasingly prevalent, offering virtualized metered re-

sources in a pay-as-you-go way over the Internet [15]. Amazon’s Elastic Compute Cloud

(Amazon EC2), as a successful commercialized cloud, is widely used. As new extensions

of cloud technologies are emerging, the current cloud is called standard cloud computing

model, or conventional cloud computing model. A relatively new idea is that of “cloud of

clouds” (or multi-cloud) [2], which attempts to solve the issues existing in the conventional

cloud (such as the interoperation problem), and offer the benefits of diverse geographical

locations, better application resilience, and avoidance vendor lock-in [15]. Yet, no com-

mercial offerings are available now. Another extension to the conventional cloud is called

hierarchical (or multi-tier) cloud which is being explored by the Smart Applications on Vir-

tual Infrastructure (SAVI) national research project in Canada [26]. It is designed to include

multiple tiers, where the smart edges provide limited resources, are geographically near to

the user [21] [26], offering fast on-demand deployment to applications and low latency to

end-users, and the core provides powerful computation and storage resource.

Given the current technological background and the analytics requirements of the class

of applications exemplified by HCA-T, we propose a federated architecture for geospatial

applications on a hierarchical cloud [26] [21], addressing the above-mentioned require-

ments and challenges. In this federation-style architecture, the applications are fast and

easily deployed on the smart edges with a pattern-based deployment service [19], geo-

graphically close to their end users. In addition, a new data access and aggregation system

(DAAS) periodically and incrementally collects the data generated from these distinct ap-

plication deployments and supports the implementation of ad-hoc queries in near real time

for data analytics and business intelligence.

During this migration, the most important and challenging problem we met and dealt
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with is to transform the data schemas in RDBMSs to HBase. In RDBMSs, the data schemas

are normalized to save space and typically end up being organized in a star shape, with a

main table connected to many attached tables. As a result, the main table is often joined

with other attached tables to answer the various queries of interest to the client. Even

though HBase stores the data into a “BigTable” structure, it is conceptually very different

from the relational data model in RDBMSs. The data in a HBase table is partitioned by row

key and there is no secondary index support, which makes join operations computationally

expensive. Whenever there is a where-condition query over a column attribute, HBase has

to scan over the data associated with a given range of row keys and compare the attribute

values of the returned rows one by one against the condition to produce the result. In

RDBMSs, normalization is advised while in HBase a flat data schema is preferred. In

RDBMSs, the data schema is created with the table generation, while in HBase, data schema

is not completely defined in the beginning of the table generation, but through the data-

insertion procedure. Making this problem even more challenging is that, to date, there is no

method for guiding developers in systematically designing an appropriate data schema in

HBase for a given application. In this work, we proposed a systematic method about how

to transform the entity-relationship data model [4] in a RDBMS to a HBase repository, for

spatial and temporal data-intensive applications.

More specifically, the contributions of this study can be summarized as follows.

• A novel federation-style architecture for web-based location-aware legacy applica-

tions on hierarchical cloud is proposed. By taking advantage of the multi-tier cloud

infrastructure, typical data-driven systems are deployed geographically to minimize

wide-area network latency for application end users; at the same time, a data access

and aggregation system migrates the data of the different installations via intra-cloud

network to provide the integrated data analysis.

• A data access and aggregation system is provided for integration analysis of dispersed

data. It is loosely coupled with the original system and can easily be adopted to other

systems with some application-specific programming.

• A method is provided to guide the mapping of the relational data schema, originally

modelled according to the entity-relationship paradigm in the RDBMS, to HBase.

In this method, a set of guidelines is formulated for developers to consider and a

five-step transition process is proposed for them to follow during migration of their

application data.
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The rest of the chapter is organized as follows. Section 4.2 reviews background and

related work on data model transformation from RDBMSs to HBase and data integration.

Section 4.3 demonstrates the proposed architecture of cloud-enabled three-tier web-based

systems on a hierarchical cloud. In Section 4.4, we explicates how the data migration and

integration process are designed and implemented in the system. By taking HCA-T appli-

cation as a case study, we describe how HCA-T2 (the cloud-enhanced evolution version) is

built in Section 4.5 and evaluate its performance in Section 4.6. Finally, we discuss some

potential issues of the architecture in Section 4.7 and conclude with a statement of our

contributions and plans for future work in Section 4.8.

4.2 Background and Related Work

4.2.1 From RDBMSs to HBase

There has already been some research on how to transform a relational data schema in

RDBMS to HBase. In [23], the authors propose three guidelines for the transition, which

aim for denormalizing the original relations, including grouping the correlated data in a col-

umn family, adding the foreign key reference to the relationship and merging the attached

data tables to reduce foreign keys. In [25], the authors discusses a case study whose ob-

jective was to map the Twitter data schema from MySQL to Cassandra, where the schema

de-normalization was carried out in the first step of transition. In [16], the authors report

on a relational-data migration exercise to Hive. They denormalized the star schema into

universal relation first, then followed data collation method to reduce data storage require-

ments. The aforementioned work has already demonstrated the importance of schema de

normalization, which is also a critical step in our transition process. Besides, inspired by

the work presented in [16] where they transformed the data schema from RDBMSs to Hive

based on universal relation model, the transition method we presented in this work is based

on entity-relationship data model in RDBMSs. Furthermore, in our method, we differenti-

ate the data based on the velocity of increase and the types, and suggest applying different

data models according to the data types.

At the same time, there has been some research on how to design data schemas in

HBase. S. Nishimura et. al[24] built a multi-dimensional index layer on top of HBase to

perform spatial queries. Ya-Ting Hsu et. al [20] presented a novel key-formulation schema,

based on R+-tree for spatial index in HBase. In our own previous work[18], we proposed

the HGrid data model for large scale geospatial datasets, based on a previous work of a
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three-dimensional data model for time-series datasets [17]. To our best knowledge, there is

still not a systematic way for an application developers to follow during the data schemas

migration, which is the main problem we are addressing in this work.

4.2.2 Data Integration

The problem of data integration is very broad, and, in general, there are three ways to

address it: federated databases (FDBS), data warehousse, and data-integration systems.

Each of these approaches has its pros and cons. As discussed in [1], FDBS is not considered

to be a full-blown data-integration system in that it only supports query execution over

defined relations imported from existing RDBMSs. In comparison, data warehouses store

the data into a new database where analysis services can be implemented, reports generated,

etc. It makes the relation redefinition possible, but gives rise to other problems, such as data

synchronization between the data warehouse and the underlying data sources. Beyond the

functions provided by FDBS and data warehouse, data-integration systems offer a level

of data integration by performing on-the-fly at the attribute level. It does not require data

replication, but it is much more complicated in nature.

In addition to the substantial amount of work that has been dedicated to these three

approaches, recently, two experiences of data warehouses on NoSQL databases have also

been reported. Facebook introduced their data warehousing and analytics infrastructure

which is built on Hive [29]. Twitter published their unified logging infrastructure for data

analytics [22] built on top of Scribe. The two infrastructures rely on different technologies

to migrate the data, but they all aggregate the data together and store large scale dataset into

HDFS. In this work, we also implemented DAAS as a data warehouse and developed it on

top of HBase.

4.3 Architecture of Cloud-Enhanced Web Applications

In this section, we describe in detail the “cloud-enhanced architecture” we have developed

for web-based location-aware systems in a hierarchical cloud. We first describe how the

components are deployed in the cloud infrastructure, then we discuss the run-time data flow

among the system components.

4.3.1 The Federated Architecture

Figure 4.1 illustrates how applications are deployed in Federation Deployment mode on

the SAVI cloud. As shown in the Figure 4.1, instances of the original applications are
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Figure 4.1: Deployment Mode on SAVI cloud

deployed on the smart edges to meet the low-latency user requirement, and DAAS, as a data

warehouse, is deployed on the core to incrementally and periodically aggregate the data

from all the smart edges for data analysis. This design is based on the characteristics of

multiple tiers in a hierarchical cloud infrastructure. The SAVI cloud offers two different

tiers: nodes of the smart edge tier are geographically distributed and typically have fewer

resources, while the core node has substantial computation and storage resources and is

located at the conceptual (and possibly geographical) center of the cloud. Thus, applications

running on the smart edge exhibit low latency by taking advantage of being “local” to their

clients, while the core is an ideal place to centralize and manage the various application

installations on the smart edges and handle large amounts of data storage and intensive

computation. In addition, the intra-network connection between the smart edges and the

core enables the inter-access between tiers, avoiding the issues typically associated with

wide-area networks among different clouds. Thus, the performance of data migration from

the smart edges to the core should be better than that between two geographically distributed

data centres.

We have also considered two alternative data-storage configurations. Rather than de-

ploying a data repository on each smart edge, a single repository might be deployed on the

core, to be shared by all the application installations running on the smart edges. In this

design, a single multi-tenant database stores all the data. Even though this approach would

make the integrated analysis much easier, thousands of millions of data access workloads
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between the smart edges and the core will bring in heavy loads to the intra-network, result-

ing in load-balancing issues among the applications co-existing in the cloud. We could po-

tentially distinguish the application components either as data-intensive or as computation-

intensive, and deploy the former on the core and the latter on the smart edges. In this design,

the data-access workloads would be largely reduced, but the question of how to partition the

two breeds of components and how to design the protocols among them are quite challeng-

ing. Furthermore, this approach necessitates the re-architecting of the original applications.

Given our requirement of minimizing the changes to the original application, we decided to

follow the first approach which does not impact the original application.

On the core, DAAS is deployed to aggregate the various data sources, and to support ef-

ficient query processing and complex analytics. By aggregating data from disparate sources

and acting as a data warehouse, it provides a uniform interface for data-driven research and

also tools for developers to customize for their own applications. The data-warehouse de-

sign, as opposed to a federated-database or a data-integration design, affords the additional

functionality of tagging and modifying the collected data, outside its use by the original

application, and appropriately sharing (views of) the data with the public.

In this architecture, several open-source projects of the Apache Software Foundation

are adopted. HDFS [7], as the distributed file system, provides excellent scalability and

fault-tolerance mechanisms. The Hadoop map-reduce framework [7] enables the parallel

processing of the data-migration jobs. HBase [6], as a particular NoSQL database offering,

is a distributed, scalable, big-data store. It relies (a) on HDFS, for its distributed and repli-

cated storage, and (b) on coprocessors, for efficient parallel query processing. Sqoop [14] is

a tool for efficiently transferring bulk data between Hadoop and structured data stores, such

as relational databases; in our architecture, Sqoop is used to import the data from RDBMSs

to HBase. Oozie [12] is a workflow scheduler to manage Hadoop jobs, which include the

jobs out of the box (such as Java map-reduce, Streaming map-reduce, Pig, Hive, Sqoop and

Distcp), and system-specific jobs (such as Java programs and shell scripts). Three types of

jobs are supported in Oozie: workflow jobs, which are directed acyclical graphs (DAGs)

of actions; coordinator jobs, which are designed for recurrent workflow jobs triggered by

time (frequency) and data availability; and bundle jobs, aiming for easily managing batches

of coordinator jobs. In our architecture, the coordinator job is used to schedule the data-

migration workflows, which consist of a Sqoop action and a shell action.

The DataMigration component (in Figure 4.1) is responsible for all tasks required in

the migration process, including creating HBase tables, discovering data sources, and con-
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figuring Oozie jobs and submitting them to Oozie to start the process. The process can be

configured either one Oozie coordinator job which serves as the root and coordinates all the

child workflow jobs, or many coordinator jobs which can be bundled together and started

with a bundle job. In our case study, two coordinator jobs are used to concert data migration

process. The AnalyticsEngine provides RESTful services for users to query the centralized

data warehouse in JSON. It requires the query parameters in the form of a JSON object,

to be parsed by the REST service. It sends the queries to the corresponding coprocessors

preloaded on the HBase region servers for processing, and aggregates the returned result

in the end. In terms of AnalyticsVisualization, we opted for a loosely-coupled approach.

It is not our intention to design and implement a universal console covering the different

applications, rather, we leave it to the application developers or/and the end users to decide

how to visualize the data they want. With the JSON format returned from AnalyticsEngine,

the console can be flexibly developed to match the application domain and query needs.

With this deployment mode, the changes are transparent for end users of the original ap-

plication, and a uniform platform is available for administrators and researchers to explore

the data.

4.3.2 The Data Flow

Figure 4.2 illustrates how the data flows from the applications on the smart edges to the

DAAS on the core. Note that as some data may be sensitive, it is the data owner who

determines the access-control policies that are to be applied to their exposed data. The

access-control policies should be implemented and enforced by the original application.

Incrementally and periodically, the data is migrated from the legacy databases on the

smart edges to the HBase cluster through an Oozie coordinator job. The coordinator job is

initialized with the data-sources information and all workflow configurations. It is then trig-

gered based on the customized frequency or the input events in each interval. The frequency

can be set with the unit of minutes, hours, days and months. The input events specify the

input conditions that are required in order to execute a coordinator action. The coordinator

job includes many workflow jobs, and each of them is associated with a data source on some

smart edge. In each data-source workflow, many sub-workflows are responsible for the var-

ious tables involved. Each workflow responsible for a particular table starts with a Sqoop

action, which is to read the data from disparate RDBMS via JDBC and then write them into

the HBase. Next, the workflow continues with a shell action, which updates the start index

in each iteration to implement the incremental migration. Changes in data sources in the
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Figure 4.2: Data Flow Architecture

smart edges will be continuously fed into HBase in the core.

Finally, the integrated data can be accessed and queried through the RESTful service,

which is implemented in the AnalyticsEngine.

4.4 Data Migration and Integration

The process of data migration from the RDBMS of the original application to HBase gives

rise to two conceptual problems:

1. How should the data schema be transformed from the RDBMS to HBase?

2. What exactly is involved in the aggregation-and-migration process?

4.4.1 Data Schemas Transition from RDBMS to HBase

Many models have been proposed for how to organize data in RDBMSs [32], such as

object-oriented modelling technology [3], entity-relationship model [4], the universal re-

lation model [30], etc. The most prevalent among them is the entity-relationship model,

and more applications are being designed following its guidelines. Hence, we focus on the

entity-relationship [4] data model, and propose the following principles and steps for trans-
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forming the relational data from RDBMSs into HBase. We have also applied these rules to

a case study described in Section 4.5.

1. Classify relations into active and inactive The successful transition relies on a sound

understanding on the dataset and how the data is generated in the application. By looking

into the data-generation behaviour, one can observe whether the number of a particular en-

tity (or relationship) increases much over time. In some cases, the data is created (inserted

into the table) once and seldom updated, for example, the profile information about a per-

son. In other cases, new data instances are regularly updated with instances inserted every

minute, hour, day, or week. The former type of entities/relationships are inactive while the

latter are active.

In RDBMSs, it is not advisable to store active and inactive data together. This is avoided

by using foreign keys in the active data tables and ‘join’ operations to reduce data redun-

dancy and save space. However, as HBase does not support ’joins’, this is a rather ex-

pensive operation and designers tend to obtain good performance by taking advantage of

easily available cheap disk space. Even so, the resulting amount of repetitive inactive data

requires larger buffers, for these queries with large response sets. Without an efficient filter

mechanism, it is very easy to have the query performance deteriorate fast. Furthermore, it

is practically unavoidable that the inactive data will eventually change in the future. With

a huge number of replications, the update management would become a potential problem.

Therefore, we suggest that they be stored into separate tables.

2. De-normalize Relations The ER diagramming notation is a powerful tool for design-

ing the tables of an application in RDBMSs. In an entity-relationship model, both entities

and relationships are described by attributes [4]. Relationship tables are designed to nor-

malize the data by using foreign keys. Any queries on these tables should employ ‘join’

operations to obtain the complete information about the entities involved. To obtain the

entity information, regular entity relations are often joined with weak entity relations and

entity relations are usually joined with both regular relationship relations and weak relation-

ship relations. In order to avoid ‘join’ operations, data model de-normalization is used to

merge and reduce the number of relations. To de-normalize the data models, the following

guidelines may be followed.

a. For inactive data: Regular entity relations should be kept “as is”. Weak entity

relations should be merged into the main entity. Weak relationship relations should also be
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merged into the main entity. Regular relationship relations should be merged into the entity,

which can be queried more easily.

b. For active data: Regular entity relations should be kept “as is”. Entities referenced by

weak entity relations, if they are active and do not depend on other entities or relationships,

should be merged into these relations; otherwise, they should be kept “as is”. Entities

connected to a regular relationship relation should be merged to this relationship, if they

are also active relations and do not depend on other entities or relationships. Entities linked

to a weak relationship relation, if they are also active relations and they do not depend on

other entities or relationships, should be merged to this relationship.

3. Apply Appropriate Data models We believe that different data models are suitable for

different types of datasets. Therefore, it is important to classify the data into different types

and apply different data organizations for each data type. For each data model design, two

key points should be considered: (a) how to organize and store the data, in order to be able to

obtain more information with one scan operation, and (b) how to prune the query response

set, to improve caching efficiency. Clearly, these two qualities need to be balanced against

each other, and the trade-off depends on the data types and the query patterns involved.

Here, we only consider three kinds of data sets as examples, since they commonly exist in

geospatial applications.

a. Time-series Datasets

The key point in using time-series data model proposed in [17] is to group data within

a period, to speed up the period queries. In this data model, either the version, or the

column dimension, or both can be used to stack the values within a group. The choice

depends on the number of changing attributes of the represented object. If the number of

attributes is large, it is recommended to store the attributes as a dimension, leaving the other

dimension to store the offset of the period. If the number of attributes is small, usually

lower than 5, it is recommended to store all attributes in a JSON object, and to use both

column and version dimensions for storing the period of time and the offset of the period.

The question “How long of a time period should be stored in version dimension” highly

depends on the application characteristics and queries. Yet, based on the HBase storage

characteristics, as the performance is impacted by the number of versions and columns in

each row, the number of versions should be limited to the hundreds [18].

b. Spatial Datasets

The term “spatial datasets” refers to data associated with location information, repre-
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sented as a point with latitude and longitude coordinates. When such datasets are involved,

an indexing table should be added in HBase, modelled after the HGrid data model proposed

in [18]. The HGrid index structure involves two levels of detail; the first is a coarse-grained

tile and can potentially also be replaced with a conceptually meaningful geographical area,

and the second is a fine-grained cell which is determined by the spatial query requirements.

It should be noted again here that the HGrid data model only focuses on the static loca-

tion, such as the bicycle station location and the home address. When mobile entities are

involved, with changing locations, some modifications should be applied, for example, stor-

ing timestamps into the third dimension rather than object attributes.

c. Descriptive Dataset

A common practice in RDBMSs is to maintain an incremental counter as the unique

key of entities. This practice is not appropriate for HBase however. The row keys in HBase

are used for deciding which data to scan and how to prune it. Artificially constructed row

keys cannot play this role; the row keys have to be designed based on actual data attributes,

namely these attributes that are likely to be used as part of the queries issued to the repos-

itory. As we discussed before, how much unrelated data is included in a query response

set substantially impacts the query performance. Therefore, narrowing down the queried

data is very important in data modelling. This explains the importance of designing the row

keys and column names, and the necessity of row and column filters in HBase. In general,

the row key in HBase should be defined and composited by the attributes which are most

queried. The answer to the question on “how many attributes should be selected to be a

part of row key” highly relies on the query pattern and the effectiveness of the encoding

techniques applied on the row key. The more information contained in the row key, the

more types of queries can be handled, and the longer the row key will be. In principle, the

row key should not be too long, therefore row-key compression techniques and encoding

are required.

4. Adjust and Optimize Last but not least, adjustments may have to be made to the

HBase schema, based on the anticipated query patterns and HBase storage characteristics.

These adjustments include the following.

• An effort should be made to shorten column names, column family names, and row

keys as much as possible. Encoding techniques should also be applied for the same

purpose, such as string compression, or an additional mapping file.

• The schema should be revisited to examine whether it effectively supports the query
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Figure 4.3: Data Migration Work Flow

patterns. In particular, one should examine whether there is any additional informa-

tion to be added into the tables. For example, if the data is from different sources, the

unique indicator to differentiate different sources should be added into the row key

as prefix.

4.4.2 The Data-Migration Process

The migration process is implemented through a workflow, as follows. First, the HBase

tables are created with a predefined configuration, including the column family name, num-

ber of version, the compression technique, the size of block and the filter mechanism. Next,

the data sources are identified either with a static configuration file or discovered by a web

service. Finally, the data is migrated incrementally and periodically within a conditional

loop.

Figure 4.3 illustrates the migration workflow we designed for our case study. The data-

aggregation process is implemented with an Oozie coordinator job. The job is triggered

periodically based on the configured frequency. This coordinator job includes many work-

flow jobs, each corresponding to a particular data source on a smart edge. In each workflow
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job, there are many sub-workflow jobs which are responsible for the various tables in the

data source. These sub-workflow jobs are also workflow jobs, constructed by a Sqoop ac-

tion to move the data from the RDBMS to HBase, and a shell action that keeps track of the

next starting migration index and the size of the migrated data. The Sqoop jobs read the

bulk of data from the relational database via JDBC, and then insert them into the HBase in

a form of a customized data model. This migration process is done with map-reduce jobs.

As the data moves from the smart edges to the core, the network might become a bottle-

neck; this is why the data should be compressed for this step. The shell action updates the

where-condition of the “query” in a Sqoop job by string replacement to tell which chunk of

data will be migrated in the next iteration. When the time for the next step arrives or the

input data is ready, the coordinator job is invoked, and all sub-workflow jobs for each data

source start to run.

Unlike with RDBMSs, table-schema creation in HBase cannot be done at the table-

creation time; it is implicitly defined through the process of data insertion. As Sqoop only

supports simple insertion, with a direct mapping from columns to columns and rows to

rows, we extended the Sqoop insertion interface, with the TimeSeriesPutformat class to

support the time-series data model [17] and the GeospatialPutformat class for the HGrid

data model [18] 1.

In addition, to support the flexible table schema configuration, we redefined the hbase-

row-key and column-family parameters in Sqoop. The hbase-row-key was extended to be a

JSON object (shown below) instead of a simple string.

{

‘‘region":‘‘bc",

‘‘combined’’:‘‘pid,hid",

‘‘timestamp":{

‘‘field":‘‘sweek",

‘‘format":‘‘yyyy-MM-dd",

‘‘version":{

‘‘field":"block",

‘‘interval’’:‘‘1’’,

‘‘unit":‘‘min’’}

}

}
1These two classes are implemented by extending the existing Sqoop interface.
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The region element indicates the data-source name and it should be part of the row key.

The combined element denotes the values of the columns in the original table that will be

part of the row key, in the order they will be concatenated in the composite row key. The

timestamp element, defined as a nested JSON object, contains multiple keys. The filed

element indicates the column in the original table, based on which the timestamp will be

calculated. The format element defines the time-value format of the field, which tells the

transformation process how to process the timestamp. The version element advises the

transformation process about which column in the original table should be mapped to the

version dimension in HBase.

If there is a spatial indexing requirement, the spatial JSON object should be nested in

the object as follows. The fileds element indicates the column name representing latitude

and longitude. The schema element is required to create the spatial index. The space

element defines the whole area of interest to the application, as a rectangle defined by its

top left point, width, and height. The indexing element indicates which indexing method

should be applied: quadtree, regular grid or HGrid. The encoding element defines how the

value of the index should be encoded. The tile and subspace elements are specific to the

two-level index structure, and indicate how the space is split in the first and second levels.

‘‘spatial’’:{

‘‘fields’’:‘‘lattd,longtd’’,

‘‘schema’’:{

‘‘space’’:‘‘-138.95,41.77,60,19’’,

‘‘indexing’’:‘‘2’’,

‘‘encoding’’:‘‘1’’,

‘‘tile’’:‘‘-1’’,

‘‘subspace’’:‘‘0.001’’}

}

The column family is also extended to support many column families and renaming through

a configured JSON object. Taking the following JSON object as an example, family sets the

column family name in the HBase table. The columns element defines the column names,

where field indicates which column’s values in the relational data schema will become

columns in HBase, and the column name in HBase will be prefixed by the strings defined

in prefix.

{

"family":"d",
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"columns’’: [{

"field":"wday",

"prefix":"w"}]

}

With the configuration and the extended data model support, the Sqoop job flexibly maps

each row and column data in RDBMSs to the corresponding column and row in HBase.

Finally, three other Sqoop parameters should be discussed. The parameter query sup-

porting customized SQL queries on RDBMS data sources, provides the flexibility of migrat-

ing the necessary data. Second, the number of mapper jobs, defined with the parameter m,

should also be configured based on the amount of the datasets involved in the migration. It

helps to speed up the migration process via parallel map jobs. Another important parameter

is compression. The compressed data can reduce the traffic between core and smart edges,

and mitigate the bottleneck incurred by the network because of bulk data transmission.

At run time, data is being generated continuously by the various application installa-

tions; this data needs to be migrated incrementally and periodically. Therefore, controlling

the incremental process is another problem addressed in this architecture. In principle, there

are two alternative solutions: one is to migrate a fixed data chunk each time, with a counter

for keeping the next starting index; the other is to migrate newly inserted data by maintain-

ing an index to the last migrated data item. Both approaches have their pros and cons. In

the first case, a control mechanism is required to recognize when there is enough new data

for a complete data chunk to be moved next. In the second case, the transferred amount of

data varies and the frequency of the migration events fluctuates, but new data is migrated

in a timely fashion. In our case study, we chose the first approach for its simplicity, by

calculating the next migration index with a start index and a configurable chunk size.

4.5 Case Study: Migrating HCA-T to SAVI

The HCA-T (Home-Care Aides - Technology) application, described in Section 4.1, is a

data-driven web application that includes a scheduling service to assign home-care aides to

visit home-care clients and carry out their care plans. Through a mobile client, it enables

HCAs to share audio/images/video notes with the back end. A navigation component ad-

vises HCAs about the location of their clients and how to get there. At real time, it also

informs them about their own location and that of the other HCAs in their organization.

This application is an example of the class of applications that most benefit from a two-tier
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cloud: different primary-care networks (PCNs) would need access to their information (at

their smart edges) but only infrequently would they require access to the data from another

PCN. Accountants and epidemiologists would need different types of access to the whole

data (at the core).

Let us now discuss the relational data model of the HCA-T application. Patient, HCA

and Service information should be stored into database in the very beginning. With the

system running, this data is updated and appended gradually. The service requirements

of each patient are input into the system by nurses. Based on that, the schedule and the

appointment data are fed by the scheduling system every month. These appointments are

followed by HCAs to visit patients. During the appointments, HCAs update the service

and upload supplemental information via their mobile devices. The updated information is

inserted into ServiceRecord and MediaMessage tables.

The HCA-T application was developed independently of this work and we simulated its

use in order to evaluate the performance of the migrated variant. There are about 100,000

clients (patients) and 22,000 HCAs in a single province (Alberta) in Canada. Each day, typ-

ically four visits must be scheduled per client within morning, noon, afternoon and evening

time slots, four-hours long each. During each scheduled visit, there are typically around 10

services, required by the client’s care plan, and, therefore, up to 10 pieces of information

uploaded to the system, including pictures, notes, video and audio. Based on these esti-

mates, around 20 GB record data (excluding the media files themselves) will be generated

each month for one province. With ten provinces in Canada in one month, 200GB data will

be generated, which will be more than 2 TB data in a year.

In this case study, we deployed the HCA-T application with the cloud-enhanced archi-

tecture proposed in Section 4.3 on the SAVI cloud. We deployed the original application on

two smart edges, the ON Edge and BC Edge, and the DAAS in the core. We will refer to

the new cloud-enhanced HCA-T system as HCA-T2. In HCA-T2, the users in Ontario and

British Columbia province are served by different HCA-T servers based on their locations.

The HCA-T Server in each smart edge stores and manages the data in MySQL database.

And the daily data is replicated and migrated to DAAS at mid-night periodically. With

this cloud-enhanced architecture, the application developers do not require any additional

programming, and end users are unaware of the deployment changes.
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4.5.1 Sample Queries

We considered three types of queries for HCA-T2: a window query, a range query, and a

time-series statistical query. These queries are inspired by research questions of interest to

health-care providers. Administrators want to know the distribution of the patients in each

region, which can be found with a query such as: “Which area (East/West/North/South) has

most/least patients per region in 2012/2011” (i.e., a window query). Responding to the need

of grouping patients with the same conditions together for group exercise, we designed a

query for finding the neighbours of a given client, based on his/her home location and a

given distance (i.e., a range query). Finally, descriptive-statistics analyses are typically of

interest as key performance indicators for managers, executives and administrators. There-

fore, we provide the queries like “ Get the total number of appointments/services/uploaded

images per week/month in British Columbia/Ontario in 2012/2011”. With these queries, the

researchers and administrators can perform their statistical analysis easily and effectively.

We decided to use the Coprocessor framework for the query-processing implemen-

tation, because Coprocessor results in better performance than map-reduce for statistical

analyses. With the Coprocessor framework, for each query, there should be a callable +

callback pair. The callable object is used to envelope method invocations to the server,

using the coprocessor RPC framework. The callback object is invoked when results for

the above call become available from the coprocessor. When it receives a query, the called

function invokes a RPC call to the HBase region servers. The RPC calls are received by

the HBase regions and executed as batch processes. The regions who should handle the

RPC calls are determined by the match of the query range against the ranges for which each

region is responsible. After the coprocessor has completed the task, it returns the results to

the client. The callback object aggregates the results from the various region coprocessors.

It should be noted that the calls from client side are executed on the corresponding regions

in parallel. However, there is a shortcoming of this implementation that is HBase server

should be restarted every time for loading user-level Coprocessor.

4.5.2 Transforming HCA-T Data Schema

This section describes how we transformed the table schemas from MySQL to HBase for

the HCA-T application following the steps and rules described in section 4.4.1. Specifically,

there are five steps to make the transition:

1. restore the ER-diagram;
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Figure 4.4: HCA-T Entity-Relationship Diagram

2. classify the active and inactive relations;

3. de-normalize relations in RDBMS;

4. apply the existing data models to different datasets; and

5. adjust and optimize the schemas.

In order to restore the entity-relationship model, we must have a complete understand-

ing of how the HCA-T application works to understand the entities and relationships. As

per the description of the application in Section 4.5, we drew up the ER-diagram for HCA-T

application in Figure 4.4.

Next, we identified and categorized the entities and relationships into active and inactive

relations. HCA, (which describes the information of HCAs), Patient (which describes Pa-

tient information), PatientAddress ( which describes the location information), and Service

( which describes Service provided in the home-care system), were categorized as inactive

entity relations. ServiceRequirement (which represents the services required by patients)

was categorized as an inactive relationship relation. The active entity relations included

Schedule (which describes the weekly schedule), Appointment (which includes all appoint-

ments of Patient and HCAs), ServiceRecord (which stores the service update records gen-

erated during the appointment) and MediaMessage (which keeps the media data uploaded
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in a appointment, such as pictures, text, audio, video and notes).

To de-normalize the relations, we followed the rules described in Section 4.4.1. The in-

active relations, Patient, HCA, and Service, as the regular entity relation, remain as they are.

PatientAddress, as the weak entity relation, was merged into Patient. ServiceRequirement is

a regular relationship relation, and was merged into Patient based on the queries. The active

relation Appointment, which is represented by the entities of HCA, Patient and Schedule,

is a weak entity. In this entity, Schedule is an active data independent of others, hence, we

merged Schedule into Appointment. ServiceRecord, which is represented by appointment

id, service id, and timestamp, is a weak relationship. Service is an inactive data type, and

Appointment remains as is, because MediaMessage depends on it. MediaMessage, which

is represented by appointment id, and timestamps, is a weak entity. As ServiceRecord de-

pends on Appointment, so Appointment should stay as it is. After this step, the relations

become Patient, HCA, Service, Appointment, ServiceRecord and MediaMessage.

The next step is to apply the existing data model based on the data type. The Appoint-

ment, ServiceRecord and MediaMessage Appointmentincrease rapidly over time; they are

effectively time-series data. For Appointment data, the period of time is week (the coarse-

granularity time), and block (the fine-granularity time), and only one attribute exists in an

appointment object, so we decided to model the column to store the index of the week day,

the version stores the index of block in each day, and the Monday date of each week be-

comes a part of row key. For the ServiceRecord relation, the time period is defined in terms

of a block (the coarse-grained time) and the offset of period details to minute (the fine-

grained time), along with the index of required services as the attributes for each record.

Therefore, we designed the column as the services, and the version as the number of minute

in a block. Similarly for MediaMessage data, the version as the offset of minutes in a block,

while the column represents the media types. The cell stores the attributes of each media

object into a JSON object. Patient, HCA, and Service are descriptive and inactive data. Pa-

tient has the location information; therefore, it should be organized under a spatial index.

To apply HGrid data model into the location on Patient, the row key is the composition of

quad-tree index id and regular grid row index, the column is the composition of column id

and patient id. The shortcoming here is that as the patient information is stored into cells,

the query about patients based on other attributes, such as first name and last name, can

only be processed by scanning all the data in the table. Taking this into account, we created

a new indexing table, by keeping the Patient relation as it is. For Patient and HCA, as the

descriptive entity relations, we designed the row key as the composite key of the first three
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letters of first name and the first letter of last name. For Service, we just kept the incremental

counter as the row key, as it is referenced by ServiceRecord as columns.

The last step is the final adjustment and optimization. We added the smart edges id into

row keys in each table, as it can uniquely represent a data source. As the smart edge id

can represent a province which represents a conceptually meaningful geographical area, we

adjusted the HGrid data model by employing edge id as the first index rather than quadtree

index. We shortened and redefined all column names into two letters. Finally, we got our

data schemas in HBase as shown in table 4.1.

Table 4.1: HCA-T Transformed Data Schemas in HBase
Table Data Schema

Row Key CF Columns Version Cell
Patient edgeid-encoded(firstname-lastname) d encoded attribute names timestamp attribute value
HCA edgeid-encoded(firstname-lastname) d encoded attribute names timestamp attribute value

Service edgeid-incremental counter d encoded attribute names timestamp attribute value
Appointment edgeid-encoded(period)-pid-hid d week day [0,1..6] block [0,1,2,3] JSON object

Patient-Spatial edgeid-hgrid row index d HGrid column index attribute index attribute value
Record edgeid-encoded(period)-pid-hid d service index [s1,s2...sn] encoded(offset of period) JSON Object
Media edgeid-encoded(period)-pid-hid d media type id [m1,m2..m5] encoded(offset of period) JSON Object

4.5.3 Migrating HCA-T Data

In HCA-T2, we designed two Oozie coordinator jobs for data migration. One is for the

inactive data (HCA, Patient and Service), the other is for active data (Appointment, Ser-

viceRecord and MediaMessage). For each smart edge where HCA-T2 is installed, there is a

workflow corresponding to the data source and including sub-workflows for each table. We

configured the job to be executed every day at midnight, and configured the migration chunk

size based on the estimated generated data in HCA-T application. For example, the chunk

size for appointments is configured as 88,000 rows, as there are 4 work slots in each day for

22,000 HCAs in a province. As a result, there are 5MB data of appointments, 56MB data

of service records, and around 50MB data of media messages (excluding the media files

themselves) generated in one province to be migrated in an iteration. In terms of number

of mappers for each table migration, by considering the cluster resources and the size of

migrated data, we configured 1 mapper for Appointment, 3 mappers for ServiceRecord, and

3 mappers for MediaMessage.

4.6 Evaluation

In this section, we report on our empirical evaluation of this work by measuring the mi-

gration time and the query execution time of HCA-T2. Because of sensitivity of the data
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in HCA-T system, in this experiment, we simulated the time-series data with the software

spawner [27] and the location data with a Java application. We simulated one year of data

for two provinces, resulting in about 400 GB of data. For all test cases, we ran the experi-

ment 5 times and took the mean of the last three.

4.6.1 Environment Setup

Our experiments were performed on an eight-node HBase/Hadoop cluster, running on eight

virtual machines in the core in SAVI cloud. The virtual machines run 64bit Ubuntu 12.04

and have 2 cores, 4GB of RAM, and a 100 GB disk. In the ON and BC smart edge, one

MySQL instance in HCA-T application is installed in a single virtual machine (2cores, 4GB

of RAM and 200GB disk), respectively.

We used Hadoop version 1.0.2, HBase version 0.94, Sqoop version 1.4.3, and Oozie

version 3.3.2. Hadoop and HBase were each given 2GB of Heap size in every running

node. HDFS was configured with a replication factor of 3. The maximum number of

mapper jobs is 2 in each node, which is consistent with the number of CPU cores. In

terms of the HBase client configuration, gzip compression was configured on the table to

reduce the data-transmission time. Next, the ROWCOL filter was applied on each table for

narrowing the queried range. The scan cache size was set to 5000 and the block cache was

set to true, for the query processing.

We did some performance tuning for the Hadoop and HBase cluster according to sug-

gestions from Apache website [8] [9]. To make this cluster performance available for com-

parison and the experiment results understandable, we evaluated the cluster with the stan-

dard benchmark first. In terms of the performance of map-reduce, we used MRBench [31],

with the configuration of 10 number of runs, and for each run there are 1,000,000 input

lines, and 10 maps and 8 reduces. The average execution time is 36.14 seconds. In terms of

HBase write/read performance, we used the PerformanceEvaluation benchmark 2 provided

in HBase source code package. With the configuration of 5 clients to write 5GB data in

total into HBase randomly, the total execution time is 7m11.588s and the write throughput

is 11.87 MB per second, while the read throughput of HBase in this cluster is 786 KB per

second.
2Each client is inserting 1 million rows with 10 mappers, about 1GB size (1000 bytes per row) in default

[10].
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4.6.2 Performance Evaluation

With the excellent scalability and fault tolerance mechanism obtained from HBase, migra-

tion and query performance become the biggest concerns in DAAS. We first studied the

impact of the number of involved smart edges on the migration execution time. Given the

limited resource of Hadoop cluster, we mainly focus on the continuously generated active

data. To evaluate the migration performance, in the experiment, we also deployed one more

HCA-T system in ON Edge to emulate the workload with a third edge. Figure 4.5 demon-

strates the effect on performance of the number of smart edges involved. In this experiment,

the Oozie coordination jobs, in charge of migrating the three tables from one to three smart

edges to the core, are configured to iterate every day at midnight. As shown in Figure 4.5,

the execution time increases rapidly when the number of smart edges increases to three.

From the result, we can also see even though AB edge deployed in Toronto which is near

to the core, the migration time is still high. By looking into each table migration in the case

of three migrated smart edges, we found that the Sqoop job execution time increases sub-

stantially. As the Sqoop job consumes much memory and computation when it executes the

SQL queries via JDBC, more memory and computing power are required with more smart

edges. Therefore, a larger Hadoop cluster would be helpful to improve the performance. In

addition, we can also observe that the migration for bc-edge is a little slower than the other

two, which is caused by the different locations: bc-edge is physically deployed in Victoria,

while on-edge, and ab-edge is launched in Toronto.

The second set of experiments examine the spatial query performance in HBase. Figure

4.6 shows the performance of the range query (described in Section 4.5) with the various

distances. In this experiment, we randomly selected five location points from BC smart

edge, and got their neighbours with the distances from 0.2 km to 6 km. As shown in

Figure 4.6, within 2 seconds, around 40,000 neighbours within the distance of 6 km, can be

obtained.

We then evaluated the time serial query performance by comparing against MySQL.

The query is to find out how many appointments in two provinces in a given period from 1

week to 3 months. We optimized MySQL with the following settings:

{

key buffer size:1G,

sort buffer size: 16M,

tmp table size:1G,
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Figure 4.5: Migration Execution Time with Various Edges

Figure 4.6: Execution Time of Range Queries with Various Distances
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Figure 4.7: Comparison of Statistical Queries on HBase and MySQL

max heap table size: 1G,

read buffer size: 512K,

read rnd buffer size: 512K,

myisam sort buffer size: 1G

}

Besides MySQL CLI, we also developed the same query with JDBC. It should be noted

that the execution times shown in Figure 4.7 with CLI and JDBC are for the query on the

data from only one smart edge, while in HBase, it is a federated query on the data from

both smart edges. It is obvious that performance in HBase is better than that in MySQL.

By breaking down the query execution time in HBase, we can see that the execution time

of Coprocessor only accounts for 50% of the total query time show in Figure 4.7. The

other half is mostly consumed by network communication and data transmission. Much

performance improvement can be obtained by improved network performance in the cloud.

Of course, one might argue that with rich experience on MySQL like in Flickr [5], MySQL

can also demonstrate improved performance. Although we agree in principle, we argue that

such experience is very hard and takes a long time to obtain. What is more, the elasticity

and excellent fault-tolerance mechanism offered by HBase makes MySQL less attractive

and hang behind already.
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4.7 Discussion

DAAS in the cloud-enhanced architecture is designed to migrate data from various data for-

mats and various data sources and support multiple applications. The case study mentioned

above only demonstrates one type of data source, namely relational databases. However,

with the support of Sqoop and Oozie, it can support many data sources by adding the rele-

vant extensions. For example, besides RDBMSs, Sqoop[14] also supports delimited text or

SequenceFiles, which can become another kinds of migrated data sources. Oozie[12] not

only supports Sqoop actions, but also other actions such as email actions, shell actions, and

custom actions. With customized executors, DAAS can be easily extended.

Another important part of the architecture is the method for transforming the RDBMS

data schema to HBase. The rules we presented in this chapter have been applied into the

prototype implementation in this work. In general, they can be applied to similar geospatial

applications, but do not cover all applications of interest. Given the variety of web-based

data-driven applications, these rules are unlikely to cover all applications. A more extensive

(and more complete) set of such guidelines and a systematic and uniform way are part of

our future work.

4.8 Conclusion and Future Work

In this chapter, we presented a cloud-enabled architecture which can support developers

deploy web-based applications on a hierarchical cloud, with little change. In addition, this

architecture offers a data access and aggregation system for enabling researchers and admin-

istrators to perform integrated analytics on the complete data set collected by all application

instances, to obtain domain-specific business insights. To enable this migration, we came

up with a method for transforming the data, originally modelled according to the entity-

relationship paradigm in the RDBMS, to HBase. Taking both the migration performance

and cost, and the additional large data processing ability into account, we can safely con-

clude that the cloud-enhanced architecture we proposed in this work can be easily applied

by many typical web-based applications.

Without a doubt, there is still a substantial amount of work to do in the future. First, sys-

tematic ways to transform data originally modelled in other styles (such as object-oriented

modelling) to HBase are required. Second, the data access and aggregation system in the

cloud-enhanced architecture should be extended to be more general for various applications

and provide more flexible APIs for application developers. In the future, it should be gen-
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eral enough to embrace a variety of applications. Finally, the AnalyticsEngine should be

enhanced by more complicated map-reduce jobs and other tools (such as Pig [13], Mahout

[11]) to provide more powerful access and analytics ability.
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Chapter 5

Conclusion and Future Works

“Big Data” is being continuously generated from various sources in high volumes, high ve-

locity, and high variety [4]. A typical cause of the high volume is the frequent data updates

collected by sensor-based monitoring equipment and mobile devices over time and/or space

[3]. Real-time monitoring systems collect thousands of hundreds of metrics, from hundreds

of machines every minute. Retailers log billions of transactions for millions of customers in

thousands of stores in a year. Social-network systems handle and record requests from mil-

lions of on-line users every day. Scientific simulations and health-care equipments record-

ing medical and biological observations collect numerous high-resolution images and thou-

sands of samples every day. Spatial-data repositories have also been exploding as the num-

ber of location-aware applications, which contextualize users’ experience based on their

frequently updated locations, increases daily. Recommendation and advertisement systems

are receiving millions of devices registering their location updates continuously for the ser-

vice. Bicycle-service system responds to thousands of users’ requests according to their

current locations and logs each request for business analysis.

Needless to say, such a rapid growth brings about a challenging scalability requirement

on the data management system. Compared to relational database management systems

(RDBMSs), NoSQL (Not Only SQL) databases, non-relational distributed database system,

endowed with high availability, good elasticity and excellent scalability through their easy

deployment on cloud computing platforms, become a more attractive data-storage solution

for these big-data applications. Given the advantages of the cloud, it is attractive to migrate

existing applications to this new platform. However, the little available development sup-

port and steep learning curve around this technology seriously impede its adoption. Clearly

more development support is needed to advance the adoption of these systems.

In this study, we developed a set of general guidelines for the design of HBase storage,

72



and a specific three-dimensional HBase “schema” for geospatial applications. In addition,

we proposed a method of transforming the data schemas in typical RDBMSs to HBase.

These guidelines have been evaluated with the migration of an existing geospatial applica-

tion to the cloud.

5.1 Contributions

More specifically, this thesis makes the following contributions.

• We have proposed a data model for time-series data in HBase, and evaluated it with

several frequently used temporal queries. This data model takes advantage of the

version dimension of HBase to improve the performance of many typical temporal

queries, such as the statistical queries on a period of time. The experiment results also

provide the evidence that an appropriate schema for a given dataset highly depends

on the query pattern.

• We have proposed a data model for spatial data in HBase and evaluated it with sev-

eral frequently used spatial queries, such as range queries and k-nearest neighbours

queries. This data model is based on a hybrid index structure HGrid, that combines

a quad-tree and a regular grid as primary and secondary indices correspondingly.

Comparing HGrid against two other data models based on quad-tree and regular-

grid indices, we have demonstrated that HGrid supports efficient performance with

less stringent resource requirements. Through this study, we also formulated a set of

guidelines on how to organize data for geospatial applications in HBase.

• We have designed an architecture for extending data-driven web-based applications

with an HBase-based analytics component, and a systematic method for migrating

existing applications to this architecture.

• We have proposed a method for transforming data schemas in RDBMSs to HBase,

and applied it to a practical case study. Inspired by the work in [1] where they trans-

formed the relational data schema to Hive based on a universal relation data model,

we focused on the entity-relationship relational data model. In this method, a set of

guidelines is formulated for developers to consider and a five-step transition process

to follow during the migration of their application data in RDBMSs to HBase.

• We have performed a practical case study with a real application migrating to a hi-

erarchical cloud, demonstrating (a) the use of existing tools to support the migration
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and (b) the application of the above guidelines in the design, and verifying the afore-

mentioned data schema transition method.

5.2 Summarized Configurations

The query performance in HBase is impacted by a lot of aspects from underlying infrastruc-

ture at the bottom up to the configuration of HBase on the top. In this work, by setting up

a certain configuration in HBase, Hadoop and its underlying environment, we focused on

the performance implication from different data organizations. To make it more clear about

how to use the results and reproduce the experiments in this work, more detailed configura-

tions from three levels including application data models, HBase and Hadoop are described

in this section.

5.2.1 Application Data Models

To get better query performance, the data feature and the query pattern should be the first

aspect to examine. In the real world, the data in applications is usually very complex and not

as clear as what we used in experiments like Cosmology dataset and Bixi dataset. Therefore,

it is very important to classify the data into different categories.

In terms of time-series data, two questions such as “What is the velocity of increase?”

and “How many attributes in an object?” can help to feature the data. With huge number

of objects in a timestamp, like Cosmology dataset, it is better to disperse the sequential

data across the cluster with the special design of row key, for example, reversed id. With a

small number of objects involved in a large number of timestamps, like Bixi dataset, more

localized data by taking advantage of the third dimension is a suggested solution. Query

patterns should also be considered to answer the question like “Which attributes should be

put in the row key, column and version?”.

In terms of spatial data, questions such as “What is the data-set space?”, “What is the

query distance in spatial queries?”’ and “What is the density of the spatial data?” can

help to choose the index structure. The key configuration of the spatial indexing is the

granularity of the cell. There is no such an exact value which can be applied to all cases.

For each case, the configuration of the cell should be experimented and tuned based on the

query requirement and the data-set space. During experiments, the first configuration can

be determined by the distance frequently used in queries, then decreased or increased with

a large step, until a turning point appears where the performance goes down.
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5.2.2 HBase and Hadoop Configuration

Scan Caching Size This is the property hbase.client.scanner.caching controls scanner

caching. It indicates how many rows will be fetched from the server in a single round

trip in a scan if the data is not served in memory. Setting this value to 5000, for example,

means there will be 5000 rows transferred at a time to be processed. With Coprocessor

framework, a larger value of this property will cost more memory in HBase RegionServer,

hence, with a limited memory resource or a lower data processing, a smaller caching size

is suggested. Our observation in the previous experiments tells that, when the scanned data

in a query is more than the caching size, the execution time increases rapidly. Therefore, in

this work, the configuration is calculated based on the size of each row and the memory al-

located in coprocessors. Speaking of this point, as the sizes of each row across the different

data organizations are different, more performance for each data model might be obtained

with a fine tuning on this parameter.

Block Cache This property should be set as true for the frequently accessed row. It can

be set via setCacheBlocks method for the Scan instance.

Bloom Filters It can be enabled per column family. There are three types including

None, ROW and ROWCOL. If ROW is set, the hash of the row will be added to the bloom

on each insert. If ROWCOL is set, the hash which is calculated based on row, column

family, and column name will be added to the bloom on each key insert. In this work, we

suggest to use ROWCOL filter, which can help prune the data even though more memory

are required to store bloom data.

Compression There are many compression techniques available, such as LZO, GZIP,

SNAPPY. To use LZO and SNAPPY, additional installations are required. To make it sim-

ple, in this work, we used java code-based gzip compression.

There are some more configurations which we did not examine but might have impact

on the performance, such as the region size of HBase and the replication factor in Hadoop.

For each configuration, lots of experiments are required in order to give more detailed

suggestion. Given the limited time and resource, our work just took the first step to explore

the problem in this area.

5.2.3 Query Processing

Besides the configurations, the query processing implementation is also a very important

factor. Guidelines about how to implement efficient query processing based on HBase

characteristics, has been summarized in Chapter 3.
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5.3 Future Work

In this thesis, we have made some initial progress on modelling data in HBase for geospatial

applications. However, given the end goal of re-architecting various legacy applications

and migrating them on the cloud, substantial research is still needed. To this end, we have

identified the following three avenues for extending our work.

First, we plan to investigate data beyond the geo-spatial domain. Of particular interest

are the data collected by social-networking applications, such as text, images and videos.

These new types of data are bound to require different organization models to support the

types of queries that administrators and scholars typically issue on them. We propose to

follow a similar methodology as the one we have followed in Chapter 2 and Chapter 3 to

study these new data types.

Second, we plan to investigate other NoSQL tools, beyond HBase. Considering four

general categories of NoSQL databases: key-value stores, column-family stores, document

stores and graph databases[2], how to model the data to fit in other types of databases should

be investigated as well.

Finally, a more general method for transforming data schemas from RDBMSs to HBase

is needed.
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