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What is the Function of First Eggs in Crested Penguins? 
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Crested penguins (genus Eudyptes) have attracted 
considerable attention for the small size of their first- 
laid eggs. Depending on the species, the first egg is 
15 to 45% smaller than the second (Warham 1975), 
the largest dimorphism known in birds (Slagsvold et 
al. 1984). Disadvantages accrued by smaller size are 
accentuated by reversed hatching asynchrony (first 
eggs hatch after second eggs), thereby defining an 
atypical system of brood reduction in which first 
eggs seldom survive to produce a fledgling. In other 
brood-reducing nonpasserines, egg size decreases 
with laying order, and first-laid eggs are more likely 
to survive (see Slagsvold et al. 1984, Williams 1994). 
These differences have prompted two unanswered 
questions concerning crested penguins (Johnson et 
al. 1987, Lamey 1990): why are first eggs smaller, and 
why are two eggs produced? 

Questions about the function of first eggs are en- 
couraged by the exceptional patterns of egg loss in 
three of the six species of Eudyptes. In Macaroni Pen- 
guins (E. chrysolophus; Gwynn 1953, Williams 1980, 
Williams 1989), Royal Penguins (E. schlegeli; Carrick 
1972, St. Clair et al. 1995), and Erect-crested Pen- 
guins (E. sclateri; Richdale 1941, Miskelly and Carey 
pers. comm.), first eggs typically disappear from 
nests soon after laying. Most of these losses occur 
immediately before second eggs are laid (Williams 
1989, St. Clair et al. 1995), and deliberate ejection by 
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female parents is the overwhelming cause of this 
mortality in Royal Penguins (St. Clair et al. 1995). 
Such early losses preclude most of the insurance or 
replacement function of first-laid eggs (sensu Mock 
and Parker 1986, Forbes 1991, Mock and Forbes 
1995), and the timing of losses suggests that what- 
ever function first eggs have is limited to the four- 
day laying interval between first and second eggs. 
Functions during this time may include limited in- 
surance against occasional failure to lay a second egg 
(Williams 1989, St. Clair and St. Clair 1996), or sec- 
ondarily derived functions that do not require the 
continued survival of first eggs. Because crested pen- 
guin eggs likely are inexpensive to produce (Wil- 
liams 1990), and much selective inertia would attend 
the evolution of a single-egg clutch (St. Clair et al. 
1995), even weak secondary functions during the 
laying interval may confer measurable benefits. 

Several secondary functions have been suggested, 
although none has yet been tested. For example, first 
eggs may: (1) provide a signal to conspecifics that the 
nest site is occupied (Johnson et al. 1987), thus re- 
ducing contests over nesting space prior to the laying 
of the second egg; (2) enhance laying synchrony 
(Johnson et al. 1987) by providing a visual stimulus 
that quickens laying by surrounding pairs; (3) en- 
hance mate attraction for young or first-time breed- 
ers by providing a visual indication of a female's pre- 
paredness to reproduce; and (4) provide an impor- 
tant tactile stimulation for formation of the brood 
patch (i.e. incubation patch), thereby enhancing the 
thermal environment of second eggs (St. Clair 1992). 
This secondary function could operate in both sexes 
but might be particularly important in males be- 
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cause they share the early incubation in all crested 
penguin species (Warham 1975) and presumably 
have few other cues about the reproductive stage of 
their mates. It is this last hypothesis that I test here. 

Anecdotal evidence that first eggs might provide 
an important stimulus for brood-patch formation 
was suggested during a cross-fostering event in 
1989, when I provided a nonbreeding pair of Fiord- 
land Crested Penguins (E. pachyrhynchus) with the 
abandoned first egg of a nearby nest (St. Clair 1990). 
The nonbreeding pair had been banded and had 
bred successfully in the previous year, but natural 
destruction of their nest site during the preceding 
winter likely inhibited their subsequent breeding. 
Following provisioning of the abandoned egg, the fe- 
male developed a full brood patch and incubated the 
egg continuously for 25 days. During this period, I 
twice recorded incubation temperatures for a 24-h 
period with a thermocouple inserted into a pre- 
served penguin egg (see St. Clair 1992). The non- 
breeding bird produced a full brood patch and pro- 
vided mean incubation temperatures that were with- 
in 3?C of those recorded for breeding birds (St. Clair 
1990). Because this nest site had been checked daily, 
and I was confident that the nonbreeding bird had 
laid no egg of her own, I concluded that it was the 
stimulus of the egg that had initiated brood-patch 
formation and effective incubation behavior. Tactile 
stimulation from the nest cup or eggs is assumed to 
enhance patch formation in other bird species 
through mediating the release of prolactin (see Jones 
1971, Goldsmith 1983, Williams et al. 1996). Thus, I 
predicted that crested penguins that were denied 
contact with their first eggs would exhibit retarded 
incubation capacity at the time their second eggs 
were laid and possibly later. Such an enhancement of 
brood-patch formation potentially would explain the 
retention of first eggs in species for which they are 
immediately ejected and have no other apparent 
function. 

Methods.-The study was conducted with Rock- 
hopper Penguins (E. chrysocome) on New Island, 
Falkland Islands, during November 1993. This spe- 
cies is intermediate within the genus Eudyptes, ex- 
hibiting egg dimorphism of about 25% and rates of 
first-egg mortality from 15 to 90% (77% in the year 
of this study; St. Clair and St. Clair 1996). Because I 
had previously found that it was more accurate and 
less disruptive to measure brood-patch formation in- 
directly by monitoring incubation temperatures (vs. 
directly by patch measurement; St. Clair 1992), I as- 
sessed incubation capacity through the temperatures 
of artificial eggs substituted in penguin nests. Arti- 
ficial eggs consisted of a plastic two-piece hobby egg, 
approximately the same size as first eggs of Rock- 
hopper Penguins, containing a Hobolf3' temperature 
data logger surrounded by a plaster casing. Plastic 
eggs were attached to a 5-cm lead of fishing line and 
anchored to the nest with a metal spike to deter care- 
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FIG. 1. Minimum, mean and maximum temper- 
atures (? 1 SE) recorded from nests where first eggs 
had been removed as they were laid or left in their 
nests during the four-day laying interval. Tempera- 
tures were recorded on the days second eggs were 
laid (week 1) or one week (1 day) later (week 2). 

less parents and egg-robbing Great Skuas (Catharacta 
skua). 

To measure the temperature effects of the presence 
of first eggs, I divided 26 nests into two treatment 
groups; on the day each first egg was laid, I either: 
(1) removed it, or (2) left it in place. I alternated as- 
signments to match treatments by laying date. Some 
removed eggs were used in egg-content analysis (St. 
Clair 1996), but most were later returned to the col- 
ony. Temperature trials were conducted twice at each 
nest, once on the day the second egg was laid and 
once more a week later. During trials of approxi- 
mately 12 or 24 h, I temporarily removed the natural 
egg(s) and replaced it with a temperature-logging 
egg. Egg temperatures were recorded each 4.8 min 
with the first hour after placement eliminated from 
the record to allow for equilibration of egg temper- 
ature. From each trial, I calculated the minimum, 
mean, and maximum temperatures and compared 
these between treatments to assess the importance of 
the first egg. Minimum and maximum ambient tem- 
peratures were recorded from a mercury thermom- 
eter during week 1 as part of another study. 

Results.-There were no detectable differences in 
mean incubation temperatures at nests where first 
eggs were left compared with those where first eggs 
were removed (independent t-tests with df = 23 
throughout; week 1, t = 0.41, P = 0.68; week 2, t = 
0.30, P = 0.77; Fig. 1). Similarly, there were no dif- 
ferences in minimum temperatures (week 1, t = 0.10, 
P = 0.92; week 2, t = -0.96, P = 0.92; week 2, t = 
0.96, P = 0.35), maximum temperatures (week 1, t = 
-0.34, P = 0.74; week 2, t = 0.81, P = 0.42), or with- 
in-trial temperature variance (week 1, t = 0.06, P = 
0.96; week 2, t = 0.76, P = 0.45) for the two treat- 
ments. 
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FIG. 2. Mean egg temperatures on the days sec- 
ond eggs were laid and one week later relative to the 
calendar date on which the temperature trial began. 
Regression statistics separated by weeks are given in 
the text. 

In contrast, mean incubation temperatures in- 
creased steadily with advancing laying date during 
both week 1 (adjusted r2 = 0.47, n = 26, P < 0.001; 
Fig. 2) and, to a lesser extent, during week 2 (ad- 
justed r2 = 0.30, n = 26, P = 0.002; Fig. 2). This re- 
lationship was not caused by seasonal increases in 
ambient temperatures, which did not contribute sig- 
nificantly in a stepwise multiple linear regression 
model (t = 0.62, P = 0.54). In an ANCOVA with lay- 
ing date as the covariate, treatment (left vs. removed) 
still had no effect on mean incubation temperatures 
during week 1 (F = 0.16, n = 26, P = 0.69) or week 
2 (F = 0.30, n = 26, P = 0.58), although laying date 
remained highly significant in these analyses (week 
1, F = 22.34, P < 0.001; week 2, F = 11.65, P = 0.002). 
Finally, failure to detect a biologically meaningful ef- 
fect of egg treatment was unlikely to have been 
caused by low statistical power; the sample size and 
variance of week 1 yielded a 90% chance of detecting 
an effect size -20% between treatment means. 

Discussion.-I found no evidence that the first egg 
functioned to stimulate brood-patch formation or oth- 
erwise affected the incubation capacity of nesting 
Rockhopper Penguins. I suggest two interpretations 
of these negative results. First, incubation tempera- 
tures may not have responded to egg treatment be- 
cause other stimuli were responsible for eliciting 
brood-patch development. Although it is generally ac- 
cepted that incubation capacity is effected through in- 
creases in circulating levels of prolactin (Jones 1971, 
Goldsmith et al. 1984, March et al. 1994), the role of 
the nest and eggs in stimulating this change (sensu 
Jones 1969) is less certain. Anaesthetizing the brood 

patch in domestic ducks (Anas platyrhynchos) caused 
significant drops in plasma prolactin (Hall and Gold- 
smith 1983), indicating that tactile stimulation of the 
brood patch was important in maintaining prolactin 
levels. However, such stimulation may be provided by 
the nest itself because several species exhibit drops in 
prolactin when they are deprived of their nests, 
whether or not the nests contain eggs (El Halawani et 
al. 1980, Goldsmith 1991, LeBoucher et al. 1993). In al- 
batrosses (Diomedea spp.), neither the nest nor the egg 
seems to provide a necessary stimulus to maintain 
prolactin levels (Hector and Goldsmith 1985). 

Thus, a second explanation for my negative results 
is that brood-patch formation and incubation capac- 
ity are mediated through alternative pathways in 
penguins: tactile stimulation may not play a role in 
brood-patch development and/ or prolactin may not 
be responsible for initiating incubation behavior. In 
Macaroni Penguins and Gentoo Penguins (Pygoscelis 
papua), circulating level of prolactin peak much later 
in the incubation period than is typical of other 
birds, and surges of the gonadal steroids estradiol 
and progesterone actually may be more important in 
prompting the onset of incubation behavior (Wil- 
liams 1992, Williams and Sharp 1993). Similar peaks 
in these hormones have been found in Ringed Turtle- 
Doves (Streptopelia risoria; Lea 1987) and King Pen- 
guins (Aptenodytes patagonicus; Cherel et al. 1994), the 
only other species known to exhibit retarded increas- 
es in prolactin levels (Goldsmith 1991). Clearly, more 
work is needed to determine which factors are re- 
sponsible for the initiation and maintenance of both 
brood-patch development and incubation behavior 
in penguins and the potential differences in these 
mechanisms among species. 

If a different mechanism of incubation initiation 
exists in penguins, it also may be responsible for the 
strong relationship I found between incubation tem- 
peratures and laying date. Similar increases in early 
incubation temperatures have been recorded in other 
crested penguins (Burger and Williams 1979, Brown 
1988, St. Clair 1992) and Yellow-eyed Penguins (Me- 
gadyptes antipodes; Farner 1958). In these studies, it is 
difficult to separate the effects of embryo age and 
calendar date, but a reanalysis of data from Fiord- 
land Crested Penguins (St. Clair 1992) revealed that 
temperature increases during the first week of in- 
cubation were due partly to laying date (multiple lin- 
ear regression, adjusted r2 = 0.87, df = 2 and 7, t = 
3.06, P = 0.018; embryo age, t = 4.41, P = 0.003). This 
correlation occurs over a remarkably short period of 
time (eight days in this study), suggesting that a 
strong exogenous signal is involved. The most ob- 
vious of these, a corresponding increase in ambient 
temperature, was not responsible for the increases in 
incubation temperature, but two other factors poten- 
tially are involved. 

First, incubation temperatures may increase with 
laying date in response to photoperiod (Haywood 
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1993). Prolactin secretion is directly affected by pho- 
toperiod in nestling and juvenile starlings (Williams 
et al. 1987), and this relationship may be fairly uni- 
versal in birds (Meijer et al. 1990). However, photo- 
period effects usually are measured over weeks or 
even months. In colonial, synchronous species like 
penguins, the role of photoperiod may be superseded 
by a second factor, the social stimuli from conspecif- 
ics. Waas (1995) used playbacks of courtship calls and 
other colony sounds to decrease the amount of time 
required for egg formation and increase the laying 
synchrony of Little Blue Penguins (Eudyptula minor) 
and Royal Penguins, indicating that these birds are 
highly responsive to social stimuli. I propose that a 
similar mechanism is responsible for the higher in- 
cubation temperatures of later nesters in this study: 
Later-nesting birds benefit from the cumulative stim- 
uli provided by conspecifics, and they begin incuba- 
tion at a relatively more developed stage. 

A causal link between social stimuli and incuba- 
tion capacity has important evolutionary implica- 
tions for crested penguins. If earlier-laid eggs expe- 
rience lower incubation temperatures, then an indi- 
vidual penguin necessarily discriminates against its 
own first-laid egg because incubation effectiveness 
always will be greater when its second egg is laid. 
The temperature advantage accrued in a few days 
appears to be substantial, because the higher incu- 
bation temperatures exhibited by later-nesting birds 
in this study presumably also account for the shorter 
incubation period of later-laid eggs in Rockhopper 
Penguins (St. Clair 1996). Thus, socially facilitated 
increases in incubation temperature may contribute 
to the reversal in both hatching asynchrony and, sec- 
ondarily, egg dimorphism that are unique to crested 
penguins. More work will be needed to determine 
what function, if any, first eggs serve during the brief 
interval for which they typically are retained in all 
species of crested penguins. 
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