National Libr:
.*' ofac'g?laéda an du Canada

Bibliothéque nationale

Canadian Theses Service Service des thdses canadiennes

Ottawa, Canada
K1A ON4

NOTICE

The quality of this microform is heavily dependent upon the
quality of the original thesis submitted for microfiiming.
Every etfort has been made to ensure the highest quality of
reproduction possible.

!/ pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed
by the Canadian Copyright Act, R.S.C. 1970, ¢. C-30, and
subsequent amendments.

NL-3% (1. 80/04) C

AVIS

La qualité de cette microforme dépend grandement de la
qualité de la thése soumise au microfilmage Nous avons
tout fait pour assurer une qualité supérieure de reproduc
tion.

Sl manque des pages, veuillez communiquer avec
l'université qui a contéré le grade.

La qualité d'impression de certaines pages peut laisser 4
désirer, surtout si les pages originales ont été dactylogra
phiées a l'aide d'un ruban usé ou si 'université nous afan
parvenir une photocopie de qualité inférieure.

La reproduction, méme partielle, de cette microforme est

soumise A la Loi canadienne sur le droit d'auteur, S12C
1970, c. C-30, et ses amendements subséquents

Canada

THE UNIVERSITY OF ALBERTA

Intelligent Backtracking in Prolog

Brian Wong

A thesis
submitted to the Faculty of Graduate Stuties and Research
in partial fulfillment of the requirements for the degree of
Master of Science

Department of Computing Science

Edmonton, Alberta
Spring, 1989

Permission has been granted
to the National Library of
Canada to microfilm this
thesis and to lend or sell
copies of the film.

The author (copyright owner)
has reserved other
publication rights, and
neither the thesis nor
extensive extracts from it
may be printed or otherwise
reproduced without his/her
written permission.

L'autorisation a été accordée
4 la Bibliothdque nationale
du Canada de nmicrotfilmer
cette thidse et de priter ou
de vendre des exemplaires du
film.

L'auteur (titulaire d4u droit
d'auteur) se réserve les
autres Aroits de publication:

ni la thése ni de 1longs
extraits de celle-ci ne
doivent &tre imprimés ou

autrement reproduits sans son
autorisation écrite.

ISBN 0-315-52792-7

THE UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR: Brian Wong

TITLE OF THESIS: Intelligent Backtracking in Prolog
DEGREE: Master of Science

YEAR THIS DEGREE GRANTED: 1989

Permission is hereby granted to THE UNIVERSITY OF ALBERTA
LIBRARY to reproduce single copies of this thesis and to lend or sell
such copies for private, scholarly or scientific research purposes only.

The author reserves other publication rights, and neither the thesis

nor extensive extracts from it may be printed or otherwise reproduced
without the author’s written permission.

Permanent Address:
27D, 6/F, Nassau St.,
Mei Foo Sun Chuen,
Hong Kong.

Date: Dec 24, 1988

THE UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the
Faculty of Graduate Studies and Research for acceptance, a thesis entitled Intelligent
Backtracking in Prolog submitted by Brian Wong in partial fulfillment of the require-
ments for the degree of Master of Science.

To my parents

v

Abstract

Prolog’s execution mechanism relies heavily on backtracking. When a
failure is encountered, the interpreter returns to the most recent choice point and
starts searching an untried alternative path from that point. This simple back-
tracking mechanism entails much futile computation and makes Prolog pro-
grams unduly expensive to run. In recent years, much research has been done
on intelligent backtracking: the interpreter siiould be able to avoid backtracking
to those choice points whose alternative solutions cannot possibly prevent the
repetition of the failures which caused backtracking. In this dissertation we will
describe the design and implementation of an intelligent backtracking
scheme, called context resolution, for the Waterloo Unix Prolog interpreter.
Another objective of this thesis is to study and compare some of the intelligent

backtracking scheme proposed recently.

Acknowledgements

I would like to express my sincere gratitude towards Dr. J. You, my supervisor, for
his guidance and support throughout this research. I would also like to thank my
core tee members: Dr. D. Szafron, Dr. R. Goebel and Dr. R.W. Toogood for
their careful reading and constructive criticisms. [also thank Miss B. Lee who has
contributed help in many ways, and Mr. CS. L. . ..~ any valuable discus-
sions. Finally, I should thank the Department of Compati.ig Science for the * o

lent facilities and financial support which make this research possible.

vi

Table of Contents

Chapter 1: Introduction
1.1 Motivation and ObJECUHVES ccoiviieiiiiiiiicieeie e e 1

1.2 Overview of Prolog ..ot e e e 2

1.3 Prolog Programsccccoviineiiiiniiin it 2
131 SYntax oottt e 2

1.3.2 Program Execution 4

1.3.2.1 UnificAtiON ..o 4

1.3.2.2 Interpreter Cycle ocoviiiiiiiiiiieeecre e, 7

1.3.3 Search Tree ... eenee 8

1.3.4 Non-Determinism ccocoveeiiiiiiiiniir e 9

1.4 Previous WOrK ..o et csnete e 11

1.5 Organization of the Thesisccccciiiiniiniii 13

Chapter 2: Context Resolution

2.1 INOdUCHION ..o e e e e s 14
2.2 Context ResOIUtion ccocoiiiiiiiinteetee et 16
2.2.1 Context Unificationc.cccciieiinieenieennnecinennneeneeennne 17

2.2.2 Context Resolution ooceiiiiiiiiiieniiniee et 22

2.3 The Intelligent Backtracking Mechanism with a B-list 22
2.4 Direct and Indirect Failures ..o 23
2.5 SUMMATY .ot et e e et s s b 26

Chapter 3: Design of the Implementation

3.1 Handling of Indirect Failure ..., 28

3.2 The Prover Algorithm ..., 31

3.3 Completeness of the Modified Scheme ... 36
3.4 Finding Subsequent Solutions ccocceiiiiniiininie 36
3.5 Triggering of Intelligent Backtrackingcccccoocnviiniiinninnn, 37
3.6 SUMMATY oottt et oseeabenee s saaeeenas 38
Chapter 4: Implementation of Context Resolution

4.1 Incorporate Context Resolution into WUP ... 4()
4.2 Overview of Prolog Implementation cccccoiiiivininnnnnn. 40
4.3 Overview of WUP i 44

4.3.1 S.orage Organizationcccccomiiiiicniiicninininnnins 44

4.3.2 Structure Representationcccccoeeeivciieninncinniinenn, 47

vii

43.3 The Interpreting Algorithm ..., 48

4.3.4 Table-Driven Unificationccccccvvves wevviinniiinininn, 49
4.3.5 1-Clause Lookaheadccccocovvviiiiniiniiinn ceieiiiennne, 51
4.6 Module CONCEPt cccooniiiininiiiiiiee e e 52
4.4 Datd SHUCIUIES ...ocooeeeieiiiiiinne it et se s s et ae s s e ssbesees 52
4.5 Control SIUCIUNE coiiiiiiiieiecieceer it cnne e 54
4.6 Handling of Special Constructs cccoiviiniiieninn 56
B.6.1 CUl oot et e et 57
4.6.2 Fail .o s 57
B86.3 PIOVE oo e 58
B.6.4 NOU oottt s e 58
4.6.5 Assertand Retractcccccciiiiiiiinniinnnin s 61
4.7 Summary of Intelligent Backtracking Mechanism ... 64
4.8 SUMMANY oottt crrete s oassreesanesaeenstesnes 66
Chapter 5: Related Work
5.1 Static Data Dependency Analysisccccovniiinniinnninnnienen, 67
5.2 Generator-Consumer Analysiscccccoeinmniiinnininennininniens 70
5.3 Deduction Analysis (Maximal Unifiable Subsets) 76
5.4 Deduction Analysis (Minimal Non-Unifiable Subsets) 80
5.5 Depth-First Intelligent Backtracking ccccocooiiniinnniiininnns 82
5.6 SUMMATY ..ottt st esrr e e eas s srae s sane s 83
Chapter 6: Performance Results and Evaluations
6.1 The Benchmark Programscccooiiniiininnininniee 84
6.2 Memory USaBe ...ccoooiiiiiiiiiiinin e 85
6.3 RuUn Time StatiStCS ...ooocoiiiiiiiiirie et e e ereaeeeaae 86
6.4 Analysis .o e s 90
6.5 SUMMATY .ot see e e e e eses e s s s s sae s saae s sasseans 91
Chapter 7: Conclusion
7.1 Summary of the Thesis coooiiiiiniiir e 92
7.2 Applications of Context Resolutionc.cococvenenicnniinnicenennn. 95
7.2.1 General Applicationsccccoceeviiinnicininiiniecneciienns 95
7.2.2 DeEDUBGINE ..ottt e 96
7.3 EXENSION oottt e e 97
7.4 Future Work ..o e e 97
REfEIENCES ..ottt en s e e bees 99
Appendix I: Program Listingscccooveorimernnne e, 102
Appendix II: Local B-lists ..o 108

List of Tables

4.1 Unificatdon Table

.. 50
4.2 Summary of Execution of Program 4.4 64
6.1 Comparison of Execution Statistics cccoooveernini . 88
6.2 Comparison With Related Research 89
A.1 Comparison of Execution Statistics (Local B-list) 111
A.2 Couparison With Related Research (Local B-list) 112

ix

List of Figures

1.1 The Ordinary Unification Algorithm ... Y
1.2 An Example of Unificaiion ..., 7
1.3 The Search Tree for Program 1.2 ... 11
21 Unificanon Algonthm 1 . USRS 18
2.2 Unification Algorithra 11 L. s i 21
2.3 A Partial Trace for Program 2.2 ... 25
2.4 The Search Tree for Program 2.2 ... e 26
3.1 A Modified Unification Algorithm ... 33
3.2 AProver Algorithm ... 34
3.3 An Execution Trace for Program 2.2 ... 35
4 1 Run Time Stack and Copy Stack ..o e 46
4.2 The declaration statements in C fora PC_WORD ... 47
4.3 Control NOdes ccoiiiiiiiiieii et s 48
4.4 Internal Representation of a Functor ... 53
4.5 Snapshots of the Run Time Stack ... 65
5.1 A Data Dependency Graph for Program 5.1 ccoveene. 69
5.2 Type-1 & Type-1l Backtrack Paths ... 70

List of Programs

1.1 An Example of a Prolog Program
1.2 Program 1.2 i 10
2.1 A Program to Illustrate the Problem with a Naive Interpreter ... 15

2.2 An Example to lllustrate Direct and Indirect Failures 23

3.1 Program 3.1 29
4.1 A Program to lllustrate Clause Lookahead 51
4.2 A Program with the Not Predicate ..o, 59
4.3 A Program with the Assert Predicate ... 61
4.4 Program d.d i e 63
5.1 A Map Coloring Prolog Programccooiivi 68
5.2 Program 5.2 ..ottt e 73
S.3 Program 5.3 o e eeeeas 74
5.4 Program 5.4 ... 78

xi

Chapter 1

Introdvction

1.). Motivation and Objectives

Prolog, an acronym for programming in logic, is a programming language based on
logic programming [Kowalski 74, Lloyd 84]. One of ‘he main advantages offered by
Prolog over conventional programming languages is its separation of program logic
from the control component, which allows a programmer to compose a program just by
describing the logical structures, rather than specitying explicitly how the computer is
to go about solving it. During the search of solution(s) to a problem, Prolog’s execution
mechanism relies heavily on backtracking. When a failure is encountered, the inter-
preter returns to the most recent choice point and starts searching an untried alternative
path from that point. This simple chronological backtracking mechanism entails much
futile computation and makes Prolog programs unduly expensive to run. In recent
years, much research has been done on intelligent backtracking: the interpreter should
be able to avoid backtracking to those choice points that will definitely not contribute to
the solution. However, the previously proposed schemes entail too much computational
overhead [Cox 84, Bruynooghe&Pereira 84] and most of them have ignored the non-
logical constructs, which are present in most real-life Prolog programs. These factors

make the scope of their practical application rather limited.
In [You&Wang 88], the authors proposed an intelligent backtracking scheme —
context resolution, which incorporates backtracking information into resolution in a

natural way. In this thesis, we will present an improved version of context resolution

2
and lock into the design and implementation of this scheme. Other well-known

schemes in this area will be studied and analyzed and their performance will be com-

pared with context resolution.

1.2. Overview of Prolog

Prolog is based on the procedural interpretation of Hom clause predicate logic formu-
lated by Kowalski [Kowalski 74). The inference system of Hom clauses is linear reso-
lution with selection function (SLD-resolution [Kowalski&Kuehner 71]) with
unification of Horn clauses [Robinson 65, Lloyd 84]. The language was developed and
first implemented by Roussel, Colmerauer et al. at the University of Aix-Marseille in
1972. Since then there has been a considerable proliferation of Prolog implementations,
ranging from machine coded interpreters, to compilers, to special-purpose Prolog
machines. The adoption of Prolog as the core language for the Japanese Fifth Genera-
tion Project in the fall of 1981 has further stimulated world-wide interest in Prolog and
logic programming. However, owing to its deviation from typical von Neumann
machine behavior, Prolog had the reputation of being difficult to be implemented
efficiently. Fortunately, over the past decade, many techniques have been devised to
improve the implementation of Prolog [Warren 77, Bruynooghe 82, Bruynooghe 82a,

Mellish 82]. These contributions make Prolog implementations better understood.
1.3. Prolog Programs

1.3.1. Syntax

A Prolog program comprises a set of procedure declarations known as clauses. A

clause is an implication of the form:

B—A &A & - & A (120)

where B and each A; (called predicates or atoms) is an expression of the form:
r(T,Ty ... T,) (n20)

where 7 is an n-adic relation called the predicate symbol and each argument T; is called

a term. A term is a variable or a structured term. A structured term is a construct of the

form:
f(C1.Cy s Cp) k20)

where f is called a k-ary function symbol and the C;’s are again terms. (Throughout
this thesis, we will use functor(T') to denote the function symbol of a term T and
arity(T) to denote the number of arguments in the term T. For example,
functor(f (C ;,C 3,....C})) = f and arity(f (C,.C3,....Cy)) = k.) B is called the head of

the clause and the A; ’s constitute the body of the clause.

A goal statement has the form:

?D,& D, & -+ & D,;, (m21)
and the D, s are called subgoals. Throughout this thesis, the syntactic conventions of
Waterloo Unix Prolog (WUP) [Cheng 84] will be followed. A function or predicate
symbol starts with a lower case letter. A variable starts with an upper c.. : letter. A list
is a structured tcrm which is constructed using the binary concatenate function ’con-
car’, for example, a list with three elements a, b and ¢ is represented as
concat (a ,concat(b,c)). A list is more commonly represented by the infix notation
[A 1B] where A is called the head of the list and B the body of the list, and they are
again terms. The empty list is represented by [} and the don’t care variable is denoted

by _. The list example above is also represented as [ai[bIc]]. In addition, constants are

4

considered 0-ary function symbols. A sample Prolog program is shown in Program 1.1.

father (john , tom);
father (tom , sam);

grandfather (X ,Z) « father (XY) & father (Y, Z);
? grandfather (john , Who);

Program 1.1: An Example of a Prolog Program

1.3.2. Program Execution

1.3.2.1. Unification

Unification in a Prolog program plays the role of parameter passing and assignments in
traditional languages. During the execution of a logic program, the unifiability of two
atoms, F and G, where F =P |(1,t5,...,1,), G =P 5(1 1,1 3,...,1,), is determined by the fol-
lowing steps, which are based on Robinson’s Unification Algorithm [Robinson 65].
Note that the variables in G are renamed before the unification so that they are different
from the variables in F .

1. If the predicate symbols are different (that is, P | = P,) or the number of arguments
in F is not equal to the number of arguments in G (that is, n # m), then the
unification of F and G fails.

2. If each argument in F is unifiable with each corresponding argument in G then the
algorithm succeeds, otherwise F and G are not unifiable.

In addition, the unifiability of two terms ¢ and [is conducted by the procedure
naive_unify (Figure 1.1), which is modified from a unification algorithm given in

[Roberts 77].

naive_unify(t, 1) {

dereference(?).
dereference(!);

occurs_check(t,!);

if (¢ is a variable) {
00u{t/l)
return(SUCCESS),
}
else if ({ is a variable) {
00U (l/t);
return(SUCCESS);
}
else {
if (functor(t) # functor(/) or arity(t) # arity(/))
return(FAILURE);

for iin 1to arity(s) do {
t; « i-th argument of t;
l; « i-th argument of /;
if (not naive_unify(t;, 1;))
retumn(FAILURE);
)

return(SUCCESS),
)
)

Figure 1.1: The Ordinary Unification Algorithm

The global variable 0 (called a substitution) is the set of all variable assignments
taken place during the unification of F and G such that no variable will be assigned
more than one term. O is initially set to the empty set before the unification routine is
entered. When a variable X is bound to a term ¢, written X /¢, this binding is recorded in
0. This record of the bindings is kept so that the bindings can be undone during back-

tracking. When O is applied to a predicate P, written P 9, all the variables in P are

6
replaced by the terms which 0 recorded. For example, when P = father (X.Y) and 6 =

{X/john,Y /tom}, P© = father (john ,tom).

The two terms are first dereferenced before unification is attempted. This means
that if a term is a bound variable, it is replaced by its value which is looked up in 6.
The routine occurs _check determines if ¢ occurs in [or vice versa to prevent self
referencing infinite structures. Like many existing Prolog systems, our interpreter will
not perform occurs check since this checking is expensive to perform. Thus this opera-

tion will be omitted from all subsequent algorithms in this thesis.

If one of the terms is an unbound variable, then the algorithm binds this free vari-
able to the other term. Otherwise both terms are structured terms. If they have different
function symbols or arities, the unification algorithm fails with no output. This means
that the two terms ¢ and / cannot be unified. In the for loop, the algorithm tries to unify
each argument in ¢t with the corresponding argument in /. If any one of these pairs of
arguments cannot be unified, then the unification of ¢ and [fails. If each pair of argu-
ments can be unified, SUCCESS is returned and 0 is the most general unifier |Lloyd 84|
of the two terms such that r 8 =/ 6. Otherwise, FAILURE is returned which indicates

that the two terms cannot be unified. An example of unification is shown in Figure 1.2.

The following definition is useful later in the thesis:

Definition: [Lloyd 84}
Let © = {u,/sy, U,/s,,) and G = (v /t}, .., v,/1,} be substitutions. Then the
composition 60 of 6 and o is the substitution obtained from the set
(uy/$16, ..., U /S G, VIt ...V, /1, } Dy deleting any binding u,/s;0 for which
u;=s; ¢ and deleting any binding v;/t; for which v; € {uy, ... 4, }. (I

It can be shown that for any predicate P and substitutions 6 and o, (P 8)c = P (8+0).

r: | 1IW]
[[XI[YIZ]]

0 = (X/1, W/[YIZ])

Figure 1.2: An Example of Unification

1.3.2.2. Interpreter Cycle
Consider a logic program with a goal statement G :

?A & A& - & A, (m2]).
During the k-th step of program execution, a subgoal A; (1<i <m) is selected for activa-
tion. Then from the set of available candidate clauses (that is, the set of clauses whose
heads have the same predicate symbol and arity as A;), a clause
Be«B,& B, & --- & B,; is selected. The most general unifier 6, is then deter-
mined for A; and B. The new goal statement (called a derived goal) in the k+1-th step
of execution becomes G*:

?A & A& - &A_&B & - &B, &AL & - & ALY,
which is the new state of the computauon. This cycle is repeated until we reach an
empty goal statement, that is, all the subgoals have been solved. The set of variable
assignments obtained by applying the composition 8,°0,¢ - - - 0, of all the most general
unifiers 6,, 05, - - -, 6, of this computation to the variables in G is the output of the

program. For example, the output of Program 1.1 is {Who /sam }.

If A fails to unify with the head of a candidate clause, the head of the next avail-

8
able clause is tried. This is called shallow backtracking. If A; fails to unify with all the
heads of the candidate clauses, then a deep backtracking occurs. This corresponds to
resetting a previous solved subgoal (the backtrack subgoal) and undoing all the variable
bindings since that subgoal is activated. Intelligent backtracking is the process of choos-

ing this backtrack subgoal when a deep backtracking occurs.

A subgoal selection rule is often called a computation rule. The standard computa-
tion rule always selects the leftmost unsolved subgoal in the current goal. The selection
of responding clause to the active subgoal is governed by the search rule. The standard
search rule sequentially chooses responding clause in the order of their appearance in
the program text. Like most conventional Prolog implementations, the standard compu-

tation rule and standard search rule are adopted in this thesis.

1.3.3. Search Tree

The execution of a logic program is best explained by an OR-tree, also known as a
search tree. The goal is at the root. At each node, a subgoal is selected for activation. A
downward branch is extended from that node for each responding clause to the active
subgoal. A node in the tree is deterministic if it has only one downward branch, while a
node with more than one branch is a non-deterministic node. A node with no branch is
called a leaf. There are three possible outcomes for the execution:

1. when an empty goal is reached, the computation is successful and a solution is
found. This is represented by a O at a leaf of the search tree. This leaf is called a
success leaf.

2. if a clause fail to unify with the active subgoal, the computation fails. A @ at the
leaf of a search tree is used to denote failure. This leaf is called a failure leaf.

3. when the computation is trapped into an infinite derivation, it is represented by an
infinite branch in the search tree.

1.3.4. Non-Determinism

The interpreter cycle presented in 1.3.2.2 is non-deterministic in two ways. The first
non-determinism results from the fact that any subgoal can be selected for activation
during a cycle. The second non-determinism arises since more than one clause will
respond to the currently activated subgoal. Each of these clauses leads to an alternative

branch in the search tree. Prolog relies on backtracking to explore all these branches.

The search tree is typically searched depth-first. That is, the current node is
derived until the interpreter reaches a success leaf or a failure leaf or is trapped into an
infinite computation. New computations are developed only when the current one ter-
minates, that is, when it reaches O or @. In this way, the whole computation space is
explored systematically. If a success leaf is reached, a solution is reported. If a failure
leaf is reached, the interpreter tries the next avaiiable candidate clause. If all the candi-
date clauses fail to unify with the current subgoal, the interpreter backtracks upward
through the path just developed to the most recent node with unexplored branch(es). If
no further unexplored branch exists then the execution fails. Otherwise the interpreter
searches the first alternative branch and explores in a depth-first fashion again. An

example of a search tree for Program 1.2 is shown in Figure 1.3.

10

pa),
pb);

q(m),
qW) e qW),

rb);
?pX)& q(Y)& r(X),

Program 1.2

The selection of a subgoal to be activated and the responding clause greatly deter-
mine the outcome and efficiency of a computation. Unless an intelligent scheduler is
devised or a parallel system is employed which explores all the available branches in
parallel, a user must decide upon the textual ordering of the declarations and the

subgoals to make sure that the computation of his program will terminate efficiently

(will not go into an infinite derivation),

11

P(X) & Y) & r(X)

‘x’/\
Q) & r(a) 4(Y) & r(b)
(Y/m \[Y/wuv/m)/\ Y/W)

AN / A\

@ q(W) & r(a) r(b) q(W; & r(b)
i (W/m /\W/wz } Wm /\W/W2)
'(3) infinite infinite

[z} O

Figure 1.3: The Scarch Tree for Program 1.2
(Active subgoal at each node is underlined.)

1.4. Previous Work

Most intelligent backtracking schemes can be broadly classified into two categories.
The backtracking schemes in the first category are based on unification failure analyses.
Cox [Cox 84, Cox 87] and Bruynooghe and Pereira [Bruynooghe&Pereira 84] use
deduction trees to analyze the possibility of unification of a subtree. Cox’s algorithm is
based on finding the maximal subtree such that unification is possible. Bruynooghe-
Pereira’s algorithm is based on finding the minimal subtree such that unification is
impossible. Once the subtree has been found, the nodes that belong to a non-unifiable

subtree should be avoided. The method based on ‘nndifying goals by Pereira and Porto

12
[Pereira& Porto 82] is another example of unification analysis. However, as indicated in
[Wolfram 86], the computation of all maximal unifiable subsets or minimal non-
unifiable subsets is intractable. Even Cox confessed that these methods can only be used
in some restricted applications because of the intensive computation involved. Based
on the method by [Bruynooghe&Percira 84], a more efficient intelligent backtracking
algorithm is presented in [Codognet,Codognet&Filé 88]. This scheme exhibits substan-

tia! speed up and can handle most system predicates intelligently.

The backtracking schemes in the second category are based on variable consump-
tion analysis. This approach analyzes the generator-consumer dependency relationship
of variables appearing in a clause either statically (during compilation)
[Chang&Despain 85] and/or dynamically (during program execution) [Kumar&Lin 88].
Using this approach, a better backtrack point can be discovered from variable sharing
information without performing a possibly intensive failure analysis. However,
generator-consumer analysis, which is based on the computations of graphs, can also be
expensive. In particular, when bindings introduced by unification include non-ground
terms, reconstruction of the dependency graphs is often needed [Lin,Kumar&Leung
86). The ground binding restriction was later eliminated in an improved scheme
[Kumar&Lin 88] by a technique called tagging. Their simulation results indicate that
this scheme entails a small amount of overhead among several kno;wn schemes for a
number of typical programs. However, a problem with the generator-consumer
approach is that it sometimes fails to locate the cause of failure directly, and is thus

sometimes less intelligent than desired.

13
1.5. Organization of the Thesis

In Chapter two, we will look at the resolution-based procedure — context resolution. In
Chapter three, we will examine some of the design problems encountered, and a
modified unification algorithm will be proposed. Then we will present the implementa-
tion details of the intelligent backtracking scheme in Chapter four. In Chapter five, our
scheme will be compared to some other well-known schemes. Some execution statistics
of our scheme, together with the performance results of the other schemes will be
presented in Chapter six. Finally, a summary of the thesis and some suggestions for

extensions and future work will be given in Chapter seven.

Chapter 2

Context Resolution

In this chapter, we will introduce context resolutinn, an intelligsnt backtiacking scheme
for Prolog programs. An example is first given to illustrate :he inefticiency of a naive
Prolog interpreter. After the definitions for context and context term are given, the
unification algorithms and resolution procedure which incorporate context information
are presented. Finally, the data structure which supports context resolution and the two

types of failed subgoals are discussed.

2.1. Introduction

In the traditional implementation of a Prolog interpreter, the backtracking scheme is
uninformed. When a derivation fails, the interpreter backtracks to the most recent
choice point in the search tree. Although the conventional scheme Fas little overhead
and greatly simplifies the needed run time structures [Bruynoogiie 82,. it can easily lead
to thrashing. The interpreter cannot detect that some earlier branche:, in the search tree
will never lead to solutions and those subtrees will be blindly searched. The same
failure will come up many times before the correct backtrack point which leads to a
solution is found. A number of intelligent backtracking schemes have been developed
to avoid this kind of redundant backtracking. While those schemes which are based on
unification failure analyses seem difficult to implement on a conventional Prolog sys-
tem, the other schemes which are based on variable sharing information have a lower
degree of intelligencet. Context resolution is a scheme which combines ease of imple-

mentation and a high degree of intelligence.

+ A backtracking scheme is said 10 be more intelligent if it can eliminate more irelevant backrack
14

15

p@),
pb);

q(m);
q(n);
q(o),
rih);
?pX)& q(Y)& r(X);

Program 2.1: A Program to Illustrate the Problem with a Naive Interpreter

Before we formally introduce context resolution, we look at the efficiency problem
with a naive interpreter. Consider Program 2.1 where the first time the interpreter needs
to backtrack is at the subgoal « r(a); since it cannot unify with r{b). The interpreter
will backtrack to g and get another binding for Y. The same failure wil! be encountered
again and this whole cycle will repeat. Eventually the interpreter exhausts all the
declarations for g, then it backtracks to p, which will give a binding that leads to a solu-
tion. This entails a lot of redundant computation. The situation is even worse when
there are many alternative clauses for g, or when there are a lot of subgoals between the
predicate where a term is introduced and the failed subgoal which contains that term.
Although a naive interpreter will eventually find the right backtrack point, it will, in the
mean time, search irrelevant parts of the search tree. An intelligent interpreter should
be capable of avoiding backtracking into those subgoals which definitely lead to failure

later in the derivation.

points. That is, it can compute a backtrack point which is further away from the failed subgoal.

16

2.2. Context Resolution

Context resolution is an intelligent backtracking method. To incorporate the informa-
tion required for intelligent backtracking, the intelligent interpreter keeps track of scme
extra information with each term. The idea is to include a context during the unification
process and resolution procedure. Every term introduced in the current subgoal is asso-
ciated with a context, which is a unique number indicating the current subgoal where
this term is introduced. This term, together with the context information, will be used
in the derivation of new subgoals and thus is propagated to the other parts of the search
tree. Later in the derivation. ¥ a unification failure is detected, the context which is
associated with the term involved in the failure is returned niece of information
can directly indicate the backtrack subgoal where the failu »ssibly cured. We
will use the following definitions throughout the rest of this the
Definition:

A context is a number #i associated with a term 7, which indicates the subgoal G, ¥

at which ¢ is introduced. (]
Definition:

If #i is a context, a context term is defined as follows:

e Anordinary term is a context term.

. If f is an n-ary function symbol and t,,¢t,, - -, 1, are context terms, then
f(ty,ty - ,t,)is acontext term.

. If ¢ is a context term, then [¢,#i] is a context term.

A context term is called a context variable if it is either a variable, or a variable
associated with a context, or inductively, a context variable associated with a con-
text.

A substitution is now defined as a mapping from context variables to context
terms, extended to an endomorphism of the set of context terms. []

1 The initial goal is G (. After k inference steps, the derived goal is G,.

17

Definition:
We use context(f) to denote the list of contexts associated with the function sym-
bol f. In a possibly nested context term of the form

[1f (st o tairy (), #), #ea), ..., #c,, |, we define:

list(f) = {#c,, #c,, ..., #c,,),

context(f) = list(f),

context(t;) = list(¢;) L list(f).
For an ordinary term ¢ (that is, ¢ has not been associated with any contexts),
context(t) = B. []

Intuitively, the contexts associated with a function symbol f are chosen without consid-
ering any contexts which are associated with the arguments of f. However, those con-
texts which are associated with the function symbols which take f as one of their argu-
ments have to be considered. The implication of a nested context term is that a symbol
therein has been "introduced” more than once, possibly along with some other symbols.

Each of the contexts indicates the subgoal where the symbol was introduced.

2.2.1. Context Unification

The unification mechanism which incorporates context information is called context
unification. Note that context information will not affect the outcome of a unification.
When a unification is successful and a context variable is bound to a context term, the
current context is introduced into the context term. When a subgoal fails to unify with
the head of a candidate clause, the largest context associated with the context term
which causes the unification failure is returned. The largest context is chosen since it
indicates the subgoal where the function symbol which causes the unification failure

was last introduced.

18

unify 1e, 1) {

dereference(t);
dereference(l);

if (¢ is a context variable) {
O «—0Ou (1/[l.#]);
retumn(SUCCESS);

else if (I is a context variable) {
O —0Ou(l/[tM]);
return(SUCCESS),
)
else {
if (functor(z) # functor(!) or arity(r) # arity(/)) {

if (context(t) » @ or context(/) # &)
failure_context «- max(context(r) L context(/));
else
failure_context « context associated with the context variable
which caused the disagreement;

return(FAILURE);
)
for iin 1 to arity(¢) do {
t; « i-th argument of ¢;
l; « i-th argument of /;
if (not unify_1(1;, ;)
return(FAILURE),

}
return(SUCCESS),

}
}

Figure 2.1: Unification Algorithm I

19

The context unification mechanism is represented by the procedure unify_I in Fig-
ure 2.1. The variable failure_context will store the largest of all the contexts associated
with a pair of function symbols which causes a failure during unification, or the largest
context associated with the context variable which causes a failure. Since occurs check
is omitted, disagreement of terms can only arise because of symbol disagreement.
failure context is imualized to L, where L is considered smaller than any other contexts
which it may encountered during the execution of a Prolog program. The procedure
max will return the maximum number from its argument, which is a list of contexts.
We assume two context terms, f in the current subgoal G; and ! in the head of a candi-
date clause, are to be unified, where / is a standard term without any context. It is
assumed that the variables in these two terms are renamed so that the two given terms

do not share common variables.

Note the similarity of the mechanism between context unification and the conven-
tional unification mechanism given in Section 1.3.2.1. Thus conte: ‘ormation can be
naturally incorporated into the conventional unification mechanisi.. ithout much over-
head. The main differences are the introduction of the current context in the unification

step and the retrieval of the failure context for backtracking purpose.

In the algorithm, when none of the conflicting function symbols are associated
with any context, the context associated with the context variable that caused the
disagreement is returned. As an example, suppose the current context is #5, and
p(X #1)X #1]) and p(a,b) are to be unified, the context associated with X (#1) is

returned since X caused the disagreement betweena and b.

Several examples on context unifications are now given. Assume that the current

goalis Gg:

20
1.t =p(f ((X,#2]).#4))

I =p(f(a))
SUCCESS is returned, © = ([X ,#2)/]a ,#5))

2.t =p(lf (b #2])#4])
I =p(f(a)

FAILURE is returned, failure _context = max(context(h) U context(d)) =
max({#2.#4) L D) =#4

3. t=p(X. #1][X #1])
l=p(a.b)
FAILURE is retured, failure_context = #1

You and Wang also presented a second context unification algorithm (unify_II)
which is shown in Figure 2.2. The first context unification algorithm (unify I) stops
when the first failure is encountered and a failure context is returned. In unify /1, the
unification routine will try to collect all the failure contexts which are associated with
different function symbols which cause unification failures, and from them the smallest
context is chosen for backtracking. It can be easily seen that, when compared to the ori-
ginal algorithm, this approach requires extra work should unification fail. The idea is to
backtrack further up the search tree whenever a unification failure occurs. As an exam-
ple, suppose we want to unify the subgoal p(ld.#i],[e.#/],[f.#k]) with p(a,b,c), where
p(a,b,c) is the only available candidate clause. The first algorithm, upon reaching the
first pair of terms which cannot be unified, (that is, a and [d,#i]) will report failure
immediately and return the failure context #i. In the second algorithm, the interpreter
will try to gather all the failure contexts, in this case, (#i, #j, #k}, and return the smal-
lest for backtracking. Now if context #k happens to be the smallest, the interpreter will
backtrack further up the search tree, bypassing the nodes pointed to by #i and #j. While

unify_II may sometimes give a better backtrack point, too much overhead is involved to

justify is usefulness. We have chosen Unify_I for our implementation.

unify (e, 1) {

dereference(t);
dereference(!);

if (¢ is a context variable) {
O—0Ou{t/|l.Hh]})
return(SUCCESS),

)

else if (I is a context variable) {
Q0O ull/[tH#H]),
return(SUCCESS);

)

else |
if (functor(t) # functor(/) or arity(s) # arity(/)) {

if (context(t) # @ or context(l) #)
max_context « max(context(t) U context(/));

else
max_context ¢« context associated with the context variable

which caused the disagreement;
failure_context « min(max_context, ‘iilure_context);

return{FAILURE);

}
flag « SUCCESS;

foriin 1 to arity(t) do {
1; « i-th argument of ¢;
l; « i-th argument of /;
if (not unify 11(1;, 1,))
flag «~ FAILURE;
)

return(flag);

}
Figure 2.2: Unification Algorithm II

2.2.2. Context Resolution

Context resolution is like standard resolution, except that it uses context unification and
the context information is carried along the derivations. The procedure resolve
described below, which is modified from the resolution procedure given in [Lloyd 84],
gives the actions to be performed in a resolving step. Note that the leftmost computa-
tion rule is used.

resolve(G;, ©)

G;isof the forme I, & - - & [, and © is the most gencral unifier obtained by

context unification for [/, and p, p being the head of a clause

peqg& - & q,. Since the terms in the clause p «~¢q, & - & g, are

also introduced in the current resolving step, they will be associated with the

current context #i. Let ¢';, 1 Sj <m, denotes the subgoal obtained from ¢, by

associating the terms in g; with the current context. The next goal derived is:
Ga«q¢,& - &q,&1,0& - & 1,0

As an example, the goal G; is derived from G, by resolving with
pUfX)b)er,c).
Gyrep(f(a,#1D),X) & q(X);

Gy er([la,#1),#2],[c,#2])) & q([b, #2]),

2.3. The Intelligent Backtracking Mechanism with a B-list

A global data structure called a B-list is maintained through program execution to keep
track of potential backtrack points. When a unification failure occurs and a f con-
text is returned, the interpreter will backtrack directly to the backtrack po

by the failure context if no more candidate clauses are available for the ct: -
If other candidate clauses are available, the current failure context is t "\

1.1to the B-list, and another clause is tried. After all the available clauses are :

23
unifiable clause is found, the largest context in the B-list is chosen for backtracking.
The operations required so far are insertion, retrieval and sorting. As we will see in the
next chapter, by using a good data structure for the B-list and making use of the run
time properties of a Prolog interpreter, the overhead of insertion and retrieval will be

greatly reduced and the sorting operation can be eliminated.

2.4. Direct and Indirect Failures

In | You&Wang 88}, two types of failed subgoals are discussed. A direct failed subgoal
is a subgoal which fails to unify with the head of any candidate clause. An indirect
failed subgoal is one which unifies with a candidate clause at least once, but finally
fails. The ideas are very similar to Type-I and Type-II failures in [Chang&Despain 85]

and [Kumar&Lin 88].

pla.a).
plab);

q(a);
qb);

r(ab),

r(a.c),

s(a,c);
shb);

t(a,d),
t(b,b);

?pXY)& q¥)& rX.2)& s(Y Z2) & t(Y ,Z);

Program 2.2: An Example to Illustrate Direct and Indirect Failures

24

When a subgoal fails directly, the failure context returned indicates the node to
which backtracking is done. If backtracking is done to an indirect failed subgoal, how-
ever, all the contexts in the failed subgoal are obtained and the largest one is chosen for
backtracking. This step is implemented as Ger_All_Contexts (g;) [You&Wang 88|
where g; is an indirect failed subgoal. In terms of a search tree, a direct failed subgoal
is a node whose children are all failure leaves, while an indirect failed subgoal is a node

in the tree with no success leaf and at least one child which is not a leaf,

Consider Program 2.2 and its partial execution trace in Figure 2.3. At step 4, when
s([a,#0].[b,#2]) fails to unify with all the candidate clauses, we have a direct failed
subgoal. The context returned is #2, thus backtracking is done to #2 in the next step. A
conventional Prolog interpreter will backtrack to #3 since it is the most recent choice
point with untried alternative clause. At step 7, t([a,#0},[c,#2]) fails to unify with the
available clauses and the context returned is #2. At step 8, backtracking is done to #2
and we run out of clauses for r. This is an indirect failed subgoal since r (|a,#0],Z) has
succeeded before. Now we get all the contexts in the subgoal 7 ([a,#0],Z) (in this case
the only context returned is #0), and we backtrack to the largest context (#0). Notice
that the backtrack point #1 is also skipped over. In the next step, the interpreter will try
to unify p(X,Y) with the next available clause for p, p(a,b). After a few more steps, the
interpreter will come up with the answer (X/a, Y/b, Z/b}. The complete search tree for
Program 2.2 is shown in Figure 2.4. For easy reference, the step numbers (the circled
number in the diagram) are put beside the variable bindings created at each step. The

indirect failed node r ([a #0),Z) & s({a ,#0],Z) & t([a .#0],Z) is surrounded by a rec-

tangle.

25

A Parual execution trace:

step: context:
1 .
2 #:
3 #2:
4 #3:
S #2:
6 #3:
7 #4:
8 w2:

P(X.Y) & q(Y) & (X Z) & s(Y.Z) & (Y Z),
{ ¥Na#0] , Y/(a.#0])

q((a,#0]) & r([a.#0].Z) & s([a.#0].Z) & ([a,#0].Z);

1((a.#0).2) & s({a,#0].Z) & u([a,#0],Z);
{Z/b,2])

s({a,#0],[b.#2) & 1/'a #0],[b.#2]);
direct failur: 2oto ¢

r((a,#0),Z) & s(|a.#0).Z) & y([a,#0],Z);
{Z/c#2))

s((a.#0].[c.#2]) & W([a,#0],[c.¥2]);

t([a,#0].[c.#2]);
direct failure, goto #2

r([a,#0},2} & s((a,#0].Z) & u(a,#0].Z);
indirect failure

Figure 2.3: A Partial Trace for Program 2.2

PX.Y) & oY) & ((X.2) & (Y Z) & (Y Z)

@ (XA1aH0], Y/12.40]) /le YABAO))
/

q([a.#0)) &
r((a#0]2) &
s([a,#0].Z) &
[a,#0].2)

N\

F(_[ia.ﬁl)& %)
s([a,#0]1.2) &
L'_'(_[i't(,)]'z,)_ -

©)) ®
(Z/b.#2]) / \znc.m)

s([a #0],(b.#2]) & s((a.#0}.[c#2])) &
t([a,#0].[b,#2]) 1([a,#0].[c.#2))

/\/\

 w(am0l.cH2)

s &

q(ib.#0) &
r(la#0].2) &
s([b,#0)2) &
1(|b,#0],Z)

S\

@ r((a#0],Z) &
s((b,#0].2) &
([b.#0}1.2)

{ Z/b#2)]/\ { Z/IcH2))
AN

s(IbMOLIb M2 & s(|bMO)lc.M2)) &
1({b,#0],[b,#2]) «{b.#0].[c.#2))

AN N
& wbaolpry F

\
g O

Figure 2.4: The Search Tree for Program 2.2

2.5. Summary

In this chapter, we have seen why naive backtracking can be very inefficient. Context

resolution is introduced which incorporates backtracking information (contexts) into the

unification and resolution procedures. When a context varable is bound to a context

term, the context which indicates the current subgoal where the context term is

27

introduced is inserted into the context term. In doing so, the context information is
embedded into the newly derived goal and will be propagated to further derived goals.
Now when a subgoal fails to unify with the head of a candidate clause, the largest con-
text associated with the context term which causes the unification failure is returned.
This context indicates the subgoal where the current failure can be possibly cured. In
addition to the modified resolution procedure, two context unification algorithms with
different intelligence and overhead are introduced. In addition, two kinds of failed

subgoals are presented which require different treatment from an inteliigent interpreter.

Chapter 3

Design of the Implementation

This chapter is concerned with the details of the design of the implementation of con-
text resolution. The problems in the handling of indirect failure are discussed. Then a
revised unification scheme is proposed, which is more intelligent and more efticient
than the original scheme. This new unification algorithm will be incorporated into a
Prover algorithm, which shows the major steps taken by an interpreter incorporated
with intelligent backtracking. Finally the methods for the triggering of intelligent back-

tracking will be presented.

3.1. Handling of Indirect Failure

When a subgoal fails indirectly, all the contexts in the arguments in the failed current
subgoal must be examined to extract the most recent context for backtracking. Examin-
ing just the outermost context is not adequate because the outer context may be smaller
than the inner context. This .an happen when a vanable is instantiated to a structured
term with an uninstantiated variable, which is later instantiated. For example, X is first

bound to [Y),#3] and Y is later bound to [a,#6]. Thus X is now bound to [f([a.#6]),#3].

In general, the largest context may be embedded deep inside a structured term.
Thus each of the contexts mu;t be examined to retrieve the largest one. This imposes
an efficiency problem in terms of execution time. The problem of indirect failure is
caused by introducing an irrelevant context during unification. This context will lead
the interpreter into backtracking to a place where there is no more alternative matching

clauses for the backtrack subgoal. The remedy to this problem is to adapt the context

28

29

unification algorithm in the following way: during a unification step, whenever : on-
text term 1 is assigned to a context variable X where the current cortext is #i, we have
the substitution {X/[t,#i]} when there is one or more alternative clauses for the current
subgoal. Otherwise the current unification is deterministic and the substitution is
{X/t,L]). The idea is not to include any context which corresponds to a deterministic
node during unification. Thus every context corresponds to a node in the searct 'ree
where there is one or more alternative clauses. In this way, the context #c vhich is
associated with the introduced symbol ¢ will not be blocked by an irrelevant context
which occurs later in the derivations and corresponds to an indirect-failed node with no
alternative clause. During a unification failure which involves ¢, the interpreter C:n

directly backtrack to #c, without going through the deterministic indirect-failed node.

p(a),
p(e),

q(b);
q(c)

rZ, Ye«Z =c;
r¢_.c)

PpX)& q(Y) & r(Y X);

Program 3.1

A serious problem arises when we eliminate the context which refers to a deter-
ministic node. Consider Program 3.1 where r(Y.X) is invoked with X bound to [a,#p]
and Y to [b.#q). (We use context #x to refer to the choice point created by the activation

of the subgoal with predicate name x.) The head of the corresponding clause H(Z,_)

30
unifies successfully with 7(Y,X) and Z is bound to [Y,#r], which is [[b,#q],#r]. The next
call is Z = ¢, which fails and a failure context #r is retumed. Thus backtracking is done
into the subgoal r(Y,X), and unification is attempted between r(Y.X) and r(_.c). The
unification fails because of the conflict between the value of X and c. The failure con-
text returned is the largest context associated with X (#p) and backtracking is done into
p where X will get another binding. It is obvious that the solution (X/a, Y/c} is missed

because the intelligent interpreter skips the backtrack point q.

During the execution of the call Z = ¢ where Z is bound to [[b,#q].#r]. The ilure
context returned is #r (since #r > #q) and #r is put into the B-list. The context #¢
should also be put into the B-list at this point since it is also a possible choice point
which may ’correct’ the current failure. The idea is to store all the failure contexts
associated with a conflict function symbol in the B-list so that when one of the choice
points (for example #r) does not help in resolving the failure, we can try the other back-

track points (for example #g) later.

The second modification to the unification algorithm is as follows: during a
unification failure, 2/l the contexts which are associated with the function symbol which
causes the conflict are put into the B-list. This operation is represented as Retrieve_All(f
) which returns a list of contexts which is associated with f, where f is the function sym-
bol which causes a unification failure. Retrieve All is very different from
Ger_All_Contexts although * »perations involve retrieving all the contexts associ-
ated with a term. Since Get All_Contexts is performed on all the arguments of an
indirect-failed subgoal and Retrieve_All is performed on a function symbol, which may
be an argument of a failed subgoal or a subter~ within an »~gument of the failed

subgoal, the set of contexts gathered by Ger_All_Contexts is a superset of the set of con-

31

texts gathered by Retrieve_All. Hence the backtrack point selected by the scheme with
Reitrieve All is at least as good as the backtrack point selected by the scheme with
Get_All Contexts. This makes the scheme with Retrieve_All more intelligent. In addi-
tion, in terms of execution time, Retrieve_All is more efficient since less contexts have

to be manipulated during a unification step.

We have proposed two modifications to the unification algorithm: that is, exclu-
sion of a context which refers to a deterministic node and the introduction of the
Retrieve All operation during a unification failure. The unification routine (new_unify)
which incorporates the two ideas is now presented in Figure 3.1. new_unify is very
similar to unify I except for the following:

1. When unification is successful, we introduce the current context (#i) in the context
term which is assigned to the context variable when there are other candidate
clauses available for the current subgoal. Otherwise, we introduce the context L in
the context term to denote that the current unification is deterministic.

2. During a unification failure, we return a list of contexts associated with the context
term(s) which cause(s) the conflict in the variable failure_contexts. This list will
be merged with the B-list.

3.2. The Prover Algorithm

The unification routine is incorporated into a revised version of a Prover algorithm (Fig-
ure 3.2), which is originally presented in [You&Wang 88]. This new version treats
direct-failed and indirect-failed subgoals uniformly and is invoked by Prover(G , pro-
gram) where G ; is the list of s'bgoals to be solved and program is the list of clauses
which is available for solving the subgoals. The algorihm uses the following func-
tions:

leftmost
returns the leftmost unsolved subgoal from a list of subgoals to be solved;

‘>
o

candidate clause

returns an untried candidate clause for the current subgoal;
headreturns the head of a clause;
new_unify

the modified unification algorithm presented in Figure 3.1;
resolve

the context resolution procedure presented in Section 2.2.2;

max takes a list as argument and retuns the maximum element in the list. NIL is
returned if the list is empty;

reset_subgoal

takes a backtrack point as argument and restores the subgoal at that backtrack
point. That is, undo all the variable bindings since that backtrack point is created.

The Prover algorithm works as follows: given a goal G; to be solved, we choose
the leftmost subgoal to resolve. If there still exists an untried candidate clause, we then
try to unify the head of the clause with the chosen subgoal. If unification succeeds, we
resolve the subgoals and invoke Prover recursively on the newly-derived goal. Other-
wise, we save the failure contexts in the B-list and try the next candidate clause. By the
time all candidate clauses have been exhausted, & ¢ contexts that are the sources
responsible for each unification failure have already been saved in the B-list. We thern
retrieve the most recent (largest) context in the B-list for backtracking. If the B-list is
empty, the interpreter does not benefit from intelligent backtracking and it aas to back-
track to the most recent backtrack point. If the most recent backtrack pointer is NIL, we
have exhausted all the possibilities and the Prover will return FAILURE, meaning that
the proof of G; is unsuccessful. Otherwise, the execution continues at the restored

subgoal pointed to by the selected backtrack point by invoking Prover on that subgoal

again.

3

new_unify(t, 1) {

dereference(?);
dereference(!);

if (¢ is a context variable) {
if (no more candidate clause for the current subgoal)
O—0u(r/ll1]);
else
O«0Ou{t/llH]);
retum(SUCCESS);

else if (/ is a context variable) (
if (no more candidate clause for the current subgoal)
O—0u{l/[tlL]l})
else
B« 0u(l/{rH]);
return(SUCCESS);
}
else {
if (functor(t) # functor(/) or arity(t) # arity(/)) {

if (context(z) # @ or context(l) # &)
failure_contexts «— Retrieve_All(z) W Retrieve_All(/);
else
failure_contexts « list of contexts associated with the context
variable which caused the disagreement;

return(FAILURE);
)

foriin 1 to arity(s) do |
t; « i-th argument of 1,
l; « i-th argument of [;
if (not new_unify(t;, 1;))
return(FAILURE);
)

return(SUCCESS);

}
)

Figure 3.1: A Modified Unification Algorithm

4

B-list « O;
/* the list is initially empty */
Prover(Gi. program) {

if (Gi =NIL)
return(SUCCESS);
/* an answer has been fourd */

current_subgoal « leftmost(G.);
/* use th~ leftmost computation rule */
try:
clause « candidate_clause(current_subgoal, program);
/* get an untried candidate clause */

if (clause # NIL) {
/* an untried candidate clause is found */
if (new_unify(current_subgoal, head(clause))) { /* unification succeeded */
Gi 1€ resolve(Gi, 0);
rctum(Provc:x‘(Gi 1 program));
}
else { /* unification failed */
B-list « B-list U failure_contexts;
/* save potential backtrack points */
goto try;
)
}

/* no more candidate clause */
backtrack_point ¢~ max(B-list);

if (backtrack_point = NIL)
backtrack_point « most recent backtrack point;
else
B-list « B-list - {backtrack_point};
/* update B-list */

if (backtrack_point = NIL)
retumn(FAILURE);

B-subgoal & reset_subgoal(backtrack_point),
/* restore the goal pointed to by backtrack_point */
return(Prover(B-subgoal, program)),
}

Figure 3.2: A Prover Algorithm

35

Partial execution trace:

siep: conlext:

#0:

¥1l:

#2:

#3:

#2:

#3:

#4:

pPX.Y) & q(Y) & (X.Z) & s(Y.Z) & (Y .Z),
{ X/la¥01, Y/{a,#0] }

q(la,#0]) & r((a,#0] Z) & s([a#0].Z) & 1({a#0].Z);

r((a,#0],Z) & s([a,#0].Z) & W[a,#0].Z);
(Z/[b#2])

s((a,#0],[b,#2]) & t([a,#0],[b,#2]);
direct failure, goto #2

r((a.#0).2) & s([a.#0].Z) & [a,#0).Z);
(Z/lc, 1]}

s(la,#0],[c,L]) & [a,#0),[c.1]);

t((a,#0)[c.L]);
direct failure, goto #0

PX.Y) & q(Y) & (X.Z) & s(Y.Z) & (Y Z);
(XMa.l], Y/(b.1])

Figure 3.3: An Execution Trace of Program 2.2,

A partial execution trace of Program 2.2 (page 23) using this algorithm is shown in

Figure 3.3. Notice that in step 5, when Z is unified with the constant c, the context #2 is

not included. This is due to the fact that after the second r clause is tried, r is no longer

a backtrack point. This piece of context information (#2) is irrelevant in the sense that

the interpreter will never backtrack into r anyway. Later in step 7 when t([a,#0],[(c,1])

36
fails to unify with all candidate clauses, the context returned is #0. Context #0) is now
not blocked by context #2 as before and the indirect failure node in step 5 is avoided.

After a few more steps, the interpreter comes up with the answer {X/a, Y/b, Z/b}.

3.3. Completeness of the Modified Scheme

The completeness of the modified scheme can be shown (informally) by considering the
following two cases. Recall that in our interpreter, occurs check has been ignored and a
unification failure can only be caused by a pair of conflicting tunction symbols.

1. In the original scheme, all the contexts being inserted into the B-list during dircct
failures are also in the B-list in the modified scheme.

2. In the original scheme, all the contexts associated with the function symbols being
inserted into the B-list during indirect failures can be divided into two groups. The
first group of contexts are those which are associated with the symbols which will
later fail directly. Thus the associated contexts will be inserted into the B-list. The
second group of contexts are those which are associated with function symbols
which will never fail in later derivations, and the backtrack points which

correspond to these associated contexts will never lead to solutions.

From these we can see that the B-list in the modified scheme is a subset of the B-
list in the original scheme and the outstanding contexts are those which correspond to
the introduced function symbols which will never fail in unifications. Since the com-
pleteness of the original scheme has been proven in { You&Wang 88], we conclude that
the modified scheme is complete. That is, all backtracking points being pruned will

lead to no solution.

3.4. Finding Subsequent Solutions

[You&Wang 88] does not consider intelligent backtracking for the purpose of gencrat-
ing multiple answers. Since subsequent solutions are often required in Prolog pro-

gramst, the interpreter should make use of intelligent backtracking to search the whole

+ Most Prolog implementations provide a predicate which returns all the answers 0 a query prov-

37

search tree, not just until a success leaf is reached. Since the last unification is success-
ful, no failure context is returned. To carry on with the search process, the interpreter
should backtrack to the most recent non-deterministic node. Then the search can resume

from that node with intelligent backtracking.

3.5. Triggering of Intelligent Backtracking

The triggering of the intelligent backtracking scheme is controlled by a pair of switches
implemented in terms of a pair of high-level Prolog predicates. This allows the user to
deactivate the mechanism totally, or trigger intelligent backtracking on a per-clause
basis. In this way, context resolution can be enabled during parts of the program where
the user knows that intelligent backtracking will speed up the execution. When a user
knows that a program will not benefit much from intelligent backtracking, (s)he can

turn off the scheme to reduce the amount of overhead incurred.

The operation of intelligent backtracking is composed of two related processes.
The first is an association process. The second is a manipulation process. Both
processes occur during unification. The association process takes place when a
unification is successful, and a context variable is bound to a context term. A context is
associated with that context term and is carried along in later derivations. The manipu-
lation process takes place when a unification failure occurs. The contexts associated
with the conflicting symbols are retrieved and put into the B-list. After all available

clauses are tried, the maximum context in the B-list is chosen for backtracking.

The triggering of intelligent backtracking is controlled by two switches, S,ssociation

and S,aniputasion » ONE for each process. The switches are implemented as two high-level

able from the program. This predicate is called all_of in WUP.

38
Prolog predicates, association(X) and manipulation(X). When X is on, the switch is
turned on. When X is off, the switch is turned off. When X is uninstantiated, X will be

bound to the current state of the switch, which is on or off.

Now when a user wants to ignore intelligent backtracking as a whole, (s)he will
turn off both S ¢cacizion aNd Spanipulasion - In this way, no overhead will entail. When a
user wants to enable intelligent backtracking on a per-clause basis, (s)he will always
tumn on S,goaciaion- 1N addition, the user will use a pair of S, npuiaion SWitches 10
enclose all the subgoals that should be solved with the intelligent interpreter. Note that
when S, puiaion i Off and backtracking is required, the interpreter backtracks to the

most recent backtrack point. For example, the goal statements:

? association (on) & manipulation (on),
? p1(...) & manipulation (off) & py(...) & manipulation(on) &
p3(...) & association (off Y & manipulation (off) & p 4(...).

make use of intelligent backtracking in solving the subgoal p,. Then the manipulation
switch is turned off, and p, is solved without intelligent backtracking. Later, intelligent
backtracking is enabled again in solving p3. Then the scheme is turned off totally in
solving p4. By default, both switches are turned on before execution. Thus a program
can run without modification on an intelligent interpreter. Note that once the association
switch is turned off, inteiligent backtracking cannot be enabled again since some con-

texts which may lead to solutions will be missing from the derivations.

3.6. Summary

We have proposed a modified version of a unification scheme which is more powerful
than the previous schemes. The new scheme is based on the idea that we omit the piece
of context information when the derivation is deterministic so that some other embed-

ded contexts will not be blocked. In addition, we have introduced a Retrieve All

39

operation which is more efficient than a Ger All_Contexts operation. Under these
modifications, the direct-failed subgoals and indirect-failed subgoals are given uniform
treatment and the unification algorithm is simplified. Finally the ways in which the
intelligent backtracking scheme is triggered have been presented. This triggering
mechanism is versatile and allows the activation of intelligent backtracking on a per-

clause basis.

Chapter 4

Implementation of Context Resolution

In this chapter, we will discuss the implementation of context resolution on Waterloo
Unix Prolog (WUP). Detailed data and control structures of the implementation will be
given. The methods used for handling the impure constructs (for example, "cut’ and
‘not’) will also be presented. We will see how these constructs are handled without

turning off the intelligent backtracking scheme.

4.1. Incorporate Context Resolution into WUP

Since context resolution fits naturally into the unification mechanism of conventional
Prolog implementations, intelligent backtracking can be implemented on top of WUP
without changing much of the original code of the in:erpreter. The main problem is to
find suitable data and control structures that will show the feasibility of the scheme.
Every effort has been attempted to implement the scheme in a clear and concise way. It
is our belief that future implementations that fully utilize a particular machine’s archi-
tectural features and/or a particular language’s support will give an even better perfor-

mance in terms of execution time or memory consurniption statistics.

4.2. Overview of Prolog Implementation

This section is not intended as an in-depth analysis of Prolog implementation but rather
as a description of the general data structures and control mechanisms which will help
in the understanding of the rest of this chapter. Readers who are interested in the details

of Prolog implementation should refer to [Hogger 84], where a detailed description of

40

4]

the implementation of conventiona! Prolog interpreters and a complete execution con-

trol algorithm were given.

In conventional Prolog implementations, the memory is divided into two main
data areas. The first area is static in the sense that it will not change throughout program
execution. it is called the input heap and it stores the codified version of the input logic
program. The second area is called the execution stack (which consists of several
stackst, to be explained later) which is dynamic and represents the proof tree (also

known as the AND-tree) during program execution.

The input heap is created before program execution. All the clauses with the same
predicate name and arity are linked together corresponding to the textual order in the
original input program. They are compacted and codified in a suitable form. During pro-
gram execution, whenever a predicate with a certain name and arity is requested, the

interpreter will look into this heap and retrieve the next available clause in turn.

The execution stack represents both the execution path of a program and the
assignment of variables. This is usually implemented in terms of two stacks. The first
stack is called the Run Time Stack. Whenever a subgoal is unified with the head of a
clause, a node is created on this stack. Each node consists of the space allocated for
variable assignment and the space for all the control information needed for execution.
If other candidate clauses are available for unification with the current subgoal, a non-
deterministic node is created. Otherwise, a deterministic node is created. Another stack
called the Trail is used which keeps track of those variables whose instantiations havc

to be undone (reset to 'uninitialized’) during backt ... zing.

t In the following discussion, we assume that a stack grows upwards.

The pointers required for control are:

* A Return pointer which points to ' ext subgoal to be solved. When the
current subgoal is solved successfully, the interpreter will look into this
pointer to activate the next subgoal.

. A Parent pointer which points to the parentt subgoal of the current subgoal.
This maintains the structure of the proof tree. In addition, when the Return
pointer is NIL (the current subgoal is the last subgoal in the body of a clause),
the Parent pointer gives access to the parent of the current subgoal. The
Return pointer of the parent of the current subgoal gives tic next subgoal to
be activated.

In addition to the Return and Parent pointers, the following pointers are required

for non-deterministic nodes:

. If more than one cl: * can unify with the active subgosl, the next available
clause is indicated by - Next Clause pointer. This pointer essentially keeps
track of a list of "¢ clauses which have not been tried by the inter-
preter. Later if bacs.. ag is done to this subgoal, this pointer is consulted
to look for alternative clauses which will be used to unify with the subgoal.

. A global register MB is used to indicate the most recent backtrack point.
When a failure is encountered, all the nodes from the current one down to
that indicated by MB are discarded, and the Next Clause pointer in the node
indicated by MB indicates the next clause to be tried for unification. A Previ-
ous Back pointer is used to indicate the previous backtrack point. When a
non-deterministic node is created, the content of MB is copied to Previous
Back and MB points to the current non-deterministic node. When backtrack-
ing is done to a node N, the content of Previous Back in N is copied into MB
then all the nodes from the most recent one down to N are discarded. This
ensures that the execution path is properly preserved when backtracking
ocCCurs.

. Whenever the variable cells of the nodes under the most recent bucktrac«
point are assigned, these assignments are recorded in the Trail. On backtrack-

1+ A subgoal q is the parent of a subgoal p if p is an instance of a subgoal occurring in the body of
the clause whose head unifies with q.

43

ing, these assignments have to be undone so that the execution is returned to
the previous state. The Reser pointer indicates the segment of the Trail to be
popped. When the interpreter backtracks, all the variable assignments indi-
cated by the top of the Trail until Reset are reset.

The principal data structure 1n Prolog programs is a term, which can be a simple
constant, a variable or a complex nested structure. During program execution, when a
constant or a variable is assigned to a variable X by unification, a pointer to that con-
stantt or variable is placed in the variable cell of X. For variable-to-structured-term
assignments, the simplest scheme is to place a pointer to a block of memorv cells
representing the term n the variable’s cell. This scheme 1s <1l © s ‘opving
[Mellish 82]. Whenever a new structured term is created, a new copy 1s mu. . of the
oniginal code. Thus term construction is slow. However, the code for a terin is readily
available, thus accessing is fast.

Structure sharing is an altemative to structure copying in the constructicn of new
terms. In order that all the instances of a structured term share the code of that term (for
space efficiency reason), the concept of binding environment is introduced. Now a vari-
able is defined by two pointers: one to the code (or skeleton) of the structure, which
defines the general "shape" of the term, and another to the binding environment, which
is the context in which the skeleton is used. A variable is always accessed in the con-
text of a binding environment. For example, the assignments X / [UIV] where U/a and
V/b, and Y / [UIV] where U/c and V/d. are represented by storing the code for [U/IV] in
both X and Y's structure pointers. In addition, the bindings where U is bcund toa and V
is bound to b is stored in X’s binding environment and the binding environment where

U is bound to ¢ and V is bound to d is stored in Y’s binding environment. This scheme

1t Generally speaking, a small constant can be stored in the variable: il directly.

44
allows rapid construction of terms and great saving in space if a complex structure is
shaied by many variables. However, a long chain of dereferencing is necessary to
retrieve a variable thus accessing is slower. In addition, instead of using one pointer per

variable as in structure copying, structure sharing uses two.

4.3. Overview of WUP

WUP is written in the C language under the UNIXt operating system [Cheng 84]. It
provides an integrated environment in which a user can create, maintain and execute
Prolog programs. Its concept of modular programming and separate compilation,
together with a large library of built-in predicates, allow the development of Prolog pro-
grams of reasonable size. It employs the method of structure copying in the construc-
tion of new terms and it recognizes tail recursion optimization [Hogger 84]. Its main

teawuics are summarized in the following six subsections.

4.3.1. Storage Organization

It uses the usual 2-stack representation of run time structure. In addition, a third stack,
called the Copy Stack, is used for storing the constructed terms during execution. Two
kinds of nodes are stored on the Run Time Stack: control node and environment node.
A control node stores all the control information required for execution. It is created,
together with a possibly empty environment node, whenever the active subgoal unifies
successfully with the head of a clause. The size of a control node depends on whether
the current node is deterministic or non-deterministic. An environment node is the
storage allocated for the vanables. Its size depends on the number of unique vanables in

the matched clause. Each environment node is divided into a number of slots, one for

+ UNIX is a rademark of AT&T Bell Laboratorics.

45
each variable.

When a structured term is assigned to a variable, the term is constructed in the
Copy Stack. A pointer is oriented from the slot of that variable to the term in the Copy
Stack. When a short constant (for example, an integer, a real number or a character) is
assigned to a variable, no copying is made. The constant is assigned to the slot of the
variable directly. When two uninstantiated variables are unified, a pointer is oriented

from the slot of the first variable into the slot of the second one.

During backtracking, all the stack nodes already created down to the most recent
non-detenministic node will be discarded. We have to make sure that no pointers are
referring to variable slots in these nodes which have already been discarded. Otherwise
these pointers will become dangling. To avoid this problem, all the pointers in the Run
Time Stack are oriented downwards. This is enforced by the following rules:

+ The Copy Stack is placed under the Run Time Stack. When a structured term is
referred to by a variable, that pointer is downward.

. When two free variables are unified, a pointer is oriented from the slot of the vari-
able higher in the stack to the slot of the other variable.

Under this arrangement, a node to be discarded will never be referred to by any
nodes which are still in the Run Time Stack. The structures of the Run Time Stack and

Copy Stack are summarized in Figure 4.1.

46

g—————— limit of Run Time Stack

frce Run Time
growing
Stack space
T current top of
- o
lf.wnrwnmcnl Node 2 Run Time Stack
| “ware) Node 2
Environment Node }
Control Node 1
bottom of Run Time Stack
-——————
limit of Copy Stack
free Copy growing
Stack space T
«—— current top of Copy Stack
used Copy
Stack space
<—— bottom of Copy Stack

Figure 4.1: Run Time Stack and Copy Stack

47

typedef struct pc_word {
int tag;
union word {
int ival;
float fval;
struct pc_word *ptr;
char *sval;
)
} PC_WORD;

Figure 4.2: The declaration statements in C for a PC_WORD

4.3.2. Structure Representation

The basic building b.ock of the run time structures (clauses and stacks) is a PC_WORD,
which is a record consisting ot two fields. The first field specifies the type of this record
and the second field is an integer word which can be used to store any appropriate
object depending on the record’s type. For example, it can store an integer, a real
number, a character coustant, an address of another PC_WORD or the address of a
string of characters. The usage of this field depends on the context where ais record is
used. The declaration statements in C for a PC_WORD is given in Figure 4.2. As an
example, a non-deterministic control node is made up of 7 PC_WORDs and a deter-
ministic control node is made up of 3 PC_WORD:s. The structures of the control nodes
are shown in Figure 4.3. The function of each field has been described in Section 4.2,
except for the following:

Module A pointer to the module containing the matched clause of the current
subgoal.

Copy A pointer io the Copy Stack. It records the top of the Copy Stack at the

48

time of creation of the current node and it is used to indicate the segment of
the Copy Stack to be popped upon backtracking.

Non-Deterministic Deterministic

tag: Return lag: Return
p(.r————> pu- —_’
tag: Parent tag: Parent

pu- Pplr |
tag: Module tag: Module

pu | mr
tag: Copy

pu |

| tag: Previous Back

pur: —

tag: Next Clause

er |

tag: Reset

ptr —_—’

Figure 4.3: Control Nodes

4.3.3. The Interpreting Algorithm

The interpreting algorithm used in WUP is van Emden’s ABC Algorithm |van Emden
82]. It is a simple, non-recursive algorithm for depth-first, left-to-right traversal of a
tree. The algorithm assumes that the proof tree is implemented as a stack where the
sequence of nodes from the root up to the current node is kept, and the algorithm
specifies the list of actions to be performed on subgoal selection, candidate call selec-
tion and backtracking based on this assumption. The ABC algorithm is the first pub-

lished description of a complete interpretirg algorithm.

49

4.3.4. Table-Driven Unification

The unification routine is table-driven. The unification table is a two-dimensional array
which has as its dimensions all the possible arguments that can appear during the
unification process. The first dimension is the type of the caller, and the second dimen-
sion is the type of the object being called. The entries in the table are predefined con-
stants, which are the possible outcomes for the given arguments. This arrangement
allows a systematic treatment of various kinds of arguments to be unified and makes the
unification routine more manageable and extensible. The unification table is shown in

Table 4.1,
The entries in the unification table determine the actions taken during the course of
unification. In the point of view of programming, this table-¢' ven set-up elimiaates

deeply nested if-then-else constructs which are error-prone and ditticult to modify.

Table 4.1: Unification Table
calls — || Free | Void [Int. | Float | Atom | Char Enu_\z; Const. | Var. | Const. | Var rql .
! heads Var Var. | Const. | Const. | Const. | Const. | List List List | Funct. | Funet. | foan
Sl halin g o= e —— et St i Sy
Free cr| s [ac | ac | ac | ac | ac | 1c | pcl 1c | Pc | Fsp
Variable
Void
A S S A § S
Variable S S S S S S S S S
Integer an{ s { sc | IF F F F F F| F F F
Constant
Float an| s | | sc | F F F F Fl F F F
Constant
Atom atl s | F F | sc F F F Fl F F F
Constant
Char Al s | F F F 5C F F F | F I3 2
Constant
Empty an| s | F F F F $ F F| F F | Lsp
List
Costant | | s | F | F | F F | F |w |w|lFr | F |Lse
List i
- - —
Z,‘:“‘ble pu| s | F F F F F v | oLl F F | Lse
1
Constant |4y | s | F F F F F F Flu {ur | F
Functor
Varable ||, o | F F r F F F Flu | ur | F
Functor 1 j
Stream SPE| s | F F F F |se. |seL |seL| F F | sesp
F always fails s always succeeds
CF case free var AC head = call
All call = head UL unify lists
UF unify functors rc head = copy(call)
Pl call = copy(hcad) s simple comparison
Tit if test then call = head 1c if test then head = call
IF unify intcger and float Fl unify float and imeger
FSP frce and strcam pur SPF strcam pir and free
LsSP list and strcam pur srL stream ptr and list
St 5P strcam pur and strcam ptr

51

4.3.5. 1-Clause L.ookahead

Since a non-deterministic node takes up more space than a deterministic node, it is a
good idea to differentiate between the two kinds of nodes. One way to do this is by
Warren’s indexing scheme [Warren 77] which classifies parameters into different
groups. In WUP, the first argument in the head of the next available clause is checked
against the first argument in the current subgoal. If they do not match, then the clause
can be skipped and the next candidate clause is checked. Otherwise, a non-deterministic
backtrack node is established and the execution proceeds. Consider Program 4.1, the
clause append will append its second argument to the end of the first argument to form
the third argument. In WUP, no non-deterministic node will be set up because the first
argument in the first clause and the first argument in the second clause are mutually
exclusive. On a conventional implementation without lookahead, all the stack nodes are
non-deterministic (except the last onet) since there are always two matching clause

heads for append.

append (|X 1L1),L2,|X |L3]) « append (L 1,L2,L3),
append ({1, X, X),

2 append (| 1,21, 3,41, List);

Program 4.1: A Program to Illustrate Clause Lookahead

t During the last invocation of append, the first argument is an empty list, which fails 10 unify
with the lirst argument of the hcad of the first clause ([XIL7]). Thus the last stack node is deter-
ministic.

4.3.6. Module Concept

In a programming project, it is often desirable to break a large program into smaller,
more manageable parts. In WUP, a programmer can break his program into modules,
which can be distributed over different files in different directories. The programmer
can explicitly export a module, which makes it accessible to other modules. Otherwise,
the routines in a module are local to that module. This scheme provides an excellent
programming environment whereby large logic programming projects can be accom-
plished.

The modules are organized into a hierarchical tree-like structure, which 1s very
similar to the file system of UNIX. A predicate is searched for in the current module
first. If it is not found then all \he children of the current module are checked to see f
the predicate has been exported. If it is still not found then the parent of the current
module is searched. This process continues until we reach the root (the library of build-
in 'standard’ j dicates), where a failure will be reported if the required predicate 1s still

not found.

4.4. Data Structures

To incorporate context resolution into WUP, we need two main data structures. The first
data structure is used to hold the contexts which are associated with a term. This struc-
ture can be implemented using a list of records; each is called a context record, which
consists of two fields: the first field (Context) is the context associated with the term,
and the second field (Link) is a link to the next record. Two more fields are added to a
PC_WORD to accommodate this arrangement. The first field is a pointer to the list of
contexts, and the second field is a flag which indicates whether this PC_WORD is asso-

ciated with a list of contexts. For example, the internal representation of the context

53

term [f([|a,#0],#1],h),#2] is shown in Figure 4.4. Notice that by definition, context #2 is

associated with f,a and b, and contexts #0 and #1 are associated with a only.

ag: Funcu
(| tog Funcwor | |

pur —
B N
list:
L flag: YES
Y
Context: #2
Link: NIL

Context: #0

Link: ——~—| Context: #1

- == R
Link: NIL

Figure 4.4: Internal Representation of a Functor

In Figure 4.4, five PC_WORDs are used by WUP to represent the structured term.
However, only three of these PC_WORDs (as marked by ’*’) will ever be associated
with a list of contexts, and the space allocated for the context list pointer and the flag in
the other two PC_WORD:s is wasted. This suggest a possible optimization: instead of
storing the actual value of an atom or a pointer to a structured term, the pointer field of
a PC_WORD now stores an address of a record, which has the term’s value, a pointer to
the list of contexts and the flag as before. This arrangement allows a great saving in
memory since a large part of the execution stack is made up of PC_WORDs which will

never be associated with a list of contexts. However, one more dereferencing is required

54
to access the term or the associated contexts and this makes accessing slower.

The second main data structure is the B-list used in the Prover algorithm for stor-
ing the failure contexts. It is implemented as an array (the context array, or CA for
short), where each of its element is a context. In the implementation, the address ot the
Run Time Stack is used as a context for tagging. Therefore, a context is just a vvinter te

a PC_WORD, which makes up the stacks.

4.5. Control Structure

The mechanism of intelligent backtracking is composed of the association process,
manipulation process and backtracking step (Section 3.5). We will present the major
actions performed at each step. In the following, CA[i] represents the i-th element of the
context array.

Association Process
When a variable X is bound to a term ¢, one of the following cases applies:

1) tis a short constant
the tag and the value of the constant is copied directly into X’s PC_WORD;

2) tis a structured term
the structured term is constructed in the Copy Stack and a pointer to the
structure is put in the PC_WORD of X;

3) tis a free variable
a pointer is constructed from the PC_WORD of the variable higher in the
Run Time Stack (suppose it is X) to the PC_WORD which represents the
other variable.

Suppose the current stack node, with address addr, is non-deterministic. The intel-
ligent interpreter has to create a context record (with Context field initialized to
addr) and add this to the list of contexts already associated with X. If X is not
associated with any contexts (the flag is oft), the interpreter will turn the flag on.
Furthermore, if ¢ has already been associated with some contexts before
unification, that list of coi..cxts has to be shared by X. In general, a list of contexts

55

is shared by multiple variables in order to gain a higher efticiency in memory con-

sumption.

Manipulation Process
We assume that a global variable LC (largest context) is used to keep track of the
largest failure context encountered during unification. It is initially set to L. In
addition, all the elements of the cuntext array have been initialized to 1 before the
unification routine is entered. Whenever a term fails to unify with another term,
the interpreter performs the following steps on both terms:

for each context addr in the list of contexts associated with the term do:
1 « hash(addr);
CAli] « addr,;
if (CAli] > LO)
LC « CAli];

At the end of the Manipulation Process, the variable LC stores the largest context
in the context array, and all the contexts in the array are sorted in ascending order

of the array index.

Backtracking Step
If no more candidate clause is available for the current subgoal, the interpreter will
do the following:

if (LC=1)
backtrack to MB;
else {
i « hash|LC]J;
CAli] « 1,
Temp « LC;
LC « largest context in CA;
backtrack to Temp;
}

If the context array 1s empty, we backtrack to the point indicared by MB. Other-
wise we remove the largest context from the conteat array and update LC to the
next largest context in the array. This is done by scanni:.g the array scquentially
from the top until an element is found whose value is net -

56

This implementation adds a little overhead to the interpreter since only a few sim-
ple operations are necessary during «.ch unification and backtracking step. The most
time-consuming operation, the sorting of contexts, is eliminated by hashing each failure
context into the context array and the variable LC always holds the largest failure con-
text, which is immediately available for backtracking. The hashing step in the manipu-
lation process hashes an address into an index by first subtracting the address of the
beginning of the Run Time Stack from the stack address, then dividing the number
obtained by a constant to scale it down. The constant is chosen so that no two addresses
will collide into the same index. In the implementation, right shift operation is used to

replace the division operation for faster execution time.

Since the cize of a non-deterministic node is 7 PC_WORDs, the current non-
deterministic stack address is at least 7 PC_WORDs away from the previous non-
deterministic stack address. Thus we define:

hash(current) = (current — start) > 2
to get an index into the context array without collision, where current and start are the
address we want to hash and the address of the beginning of the Run Time Stack
expressed in number of PC_WORD:s respectively, and > is the right shift operator in
C. Note that when the binary representation of an integer is shifted n bits to the right,

the integer obtained is the same as when the original integer is divided by 2".

4.6. Handling of Special Constructs

In this section, the 1implementations of some of the predicates which need special treat-
ment are discussed. Although these are all extra-logical constructs, there is general
agreemcit as to the need of these constructs to make Prolog a more practical program-

ming language for efficiency and convenience reasons. Care should be exercised when

57

progi .ms with these impure constructs are executed on an intelligent inter-eter. We

will see how some of these constructs are handled without sacrificing intelligence.

4.6.1. Cut

The most controversial impure construct in Prolog is the "cut’ operator. When a 'cut’
operator is encountered, all the backtrack points set up by the subgoals in the same
clause to the left of the 'cut’, down to the backtrack point for the parent predicate whose
body contains the 'cut’, are discarded, and the global register MB will be updated
accordingly. Later when a unification failure occurs and a maximum failure context
from the context array is returned which indicates a node which has already been dis-
carded, the interpretive process may be wrecked. This problem can be handled with
negligible overhead in the following way: whenever a context #c is used for backtrack-
ing, we just compare it 10 MB. If #c is more recent than MB (#c > MB), we backtrack to
MB. Otherwise backtracking is done to #c. Context resolution has been proven correct
without considering any impure constructs. If now a 'cut’ indicates an earlier backtrack

point, the interpiater can simply backtrack to that point.

4.6.2. Fail

The *fail’ predicate always fails. It is mostly used in failure-driven loops. Since ’fail’
has no argument, its failure will give no failure context. Thus whenever a ’fail’ predi-
cate is encountered, backtracking is done to the most recent non-deterministic node
with untried alternatives (as indicated by the MB register). In general, we cannot just

backtrack to the largest context in the B-list whenever fail” is executed.

S
4.6.3. Prove

Prove(X) is a meta-predicate which succeeds if its argument X is provable. X is called a
meta-variable since it will bind to different pred’ = - dynamically. When prove(X, 1s
executed, the term X is proved as if it is an or.’ credicate. The prove’ predicate is
required since WUP differentiates between functors and predicates and they cannot be
used interchangeably. The clause:

and X, Y)eX &Y,
under minor syntactic change is prefectly acceptable to C-Prolog [Pereira 7] WUP,
however, will give a parsing error when the program is being read into the database.
The clause should be modii.~d as follows:

and(X,Y) « prove(X) & prove(Y);

The argument of the ‘prove’ predicate must be instantiated to a term, possibly with
arguments. The WUP interpreter will internally translate the argument of "prove’ from a
term representation to a predicate representation, which is then executed as usual. Bind-
ings are possibly created. No special treatment from the intelligent interpreter is neces-

sary.

4.6.4. Not

Negative information is often required in situations where Prolog is used to model a
real-world phenomenon. The most commonly used tactic is to insert the negative facts
in the database directly or to implement the negation as fuilure rule [Lloyd 84]. While
the first approach is a more straightforward solution, the natural relationshin between
the negative subgoal and its positive counterpart is lost. For example, how do you relate
the predicates is_tall(tom) and is_not_tall(tom)? In addition, it is redundant to represent

two closely related facts. Most Prolcg implementations employ the second approach

59

which uses the following interpretation to represent negation: if a system fails to prove

a predicate p(X), then it infers not(p(X)).

The 'not’ predicate can be handled when “cut’, ’fail’ and 'prove’ are handled prop-

erly since 'not’ in WUP is defined as:

not (X)) « prove (X) & cut & fail-
not(_);

When X is provable, not(X) will fail since "cut removes the choice point set up by "not’
and the predicate 'fail” always fails. If X is not provabie. backtracking will be done into
the second clause, which will always succe However, some vital information is lost

during this process. This is revealed by Program 4.2.

pla),
ph);

q(dy,

qg(e),

g

eq(Z.2),

2pX)& q(Y) & not(eq(X ,a));

Program 4.2: A Pregram with the No: - . edicate

After the subgoals p and ¢ are invoked, the variable bindings are X/|a,#p],
Y/ld #q). The next subgoal to be activated is not(eq([a.#p),a)) which unifies with the
first clause in the detinition of 'not’. When prove(eqg(la,#pl.a)) is executed, it will
succeed and give no failure context. Then the “cut’ predicate is executed, which elim-

inates the choice point set up by 'not’. Finally the 'fail’ predicate is excecuted and the

60
interpreter will backtrack to the most recent choice point q. The next clause of ¢ is tned
and this procedure is repeated. Clearly, the change in the bindings in Y has nothing to
do with the predicate not(eq(X,a)). The interpreter should be able to backtrack intelli-
gently to p for alternative bindings for X.

The problem is that *prove’ and ’fail’ are two independent predicates which can be
used separately. However, when they are used in conjunction as in the body of 'not’,
one of the contexts which appears in ihe two unifiable constants to be unified is in fact a
failure context. Without a lookahead mechanism for subgoalis. the interpreter does not
know whether the contexts should be inserted in the B-list when unification of the two
context terms is successful. In order to handle this case, we can modify the definition

for "not’ as follows:

not (X) « #push & prove (X) & #pop & cut & #fuil,
not(_) « #pop;,

Notice that the system predicates are preceded with a # to disiinguish them from user-
defined predicates. The interpreter will create a new empty context array by pushing all
the contexts and their respective indexes onto a stack whenever the #push predicate is
execu:-d. In addition, a Get_All_Contexts operation is performed on X, the argument of
‘not’, and the largest context is put in a variable V, whose value is also pushed onto the
stack. When X is being proved, intelligent backtracking can be employed as usual using
the new context array. When the proof succeeds, the interpreter will execute the #pop
predicate, which will restore the variable V' and all the contexts in the context array.
Then the "cut’ removes the backtracking point created by the 'not’ predicate and #tail is
executed. #fail is similar to fail’, except " at #fail will backtrack to V instead of MB.
When the proof of X fails, the interpreter backtracks into the second 'not’ clause. The

#pop predicate will be invoked and the next subgoal to be activated is the one following

61
the 'not’ subgoal.
Using the previous example, when eq([a.#p].a)) is executed and the execution

succeeds, the #pop predicate will update V' to #p, which is the correct choice point of p

to backtrack into later when the #fail predicate is executed.

4.6.5. Assert & Retract

These two constructs are used to change the database of the program. While ’assert’
creates program segments dynamically, ‘retract’ removes a clause from the database.
The arguments to ‘assert’ and ‘retract’ are also meta-variables which can bind to
different clauses dvnamically during the execution of the program. These two con-
structs pive Prolog program a self-modifying capability, which may mislead an intelli-

gent aterpreter. The problem is revealed using ‘rogram 4.3,

pa),
plc),

qgla.w),
qg(a,a),

r(b),
sX)Y)eepX)Y&k ¢qX\)Y) & assert(r(Y)) & r(X);
2 sX,Y)

Program 4.3: A Program with the Assert Predicate

After the execution of the subgoals p and g, the variables X and Y will be bound to
[a.#p) and |w.#q] respectively. After the "assert’ clause is executed, r(w) is added to the

database. Then the subzooul r(la.#p]) will fail to unify with the sole candidate clause and

62
the failure context #p is retumed. Backtracking is done into the clause p and tinally the
program will fail with no output. It can be easily seen that if backtracking is done into ¢

instead, the output of the program will be {X/a, Y/u}.

This solution is missed because when a bound variable fails to unify with all the
heads of the candidate clauses, the intelligent interpreter will backtrack into the most
recent subgoal where the failed variable gets the binding. In the example, when r(X)
where X/[a,#p] fails to unify with the head of the candidate clause, the interpreter back-
tracks into p, the subgoal where X gets bound, to get another value for X. The interpreter
oversees the fact that backtracking into ¢ may later add another clause to the database.
The new term in that clause may be able to unify with the value of X, without actually

changing the value of X.

The solution is to include the context information in the clause when that clause is
asserted. This context indicates the place where the terms in the avscerted clause are
introduced. Later when unification with any terms in the asserted clause fails, this con-
text will give backtracking information to the interpreter. As in the previous exanple,
r(lw,#q]) will get asserted instead of r(w). When t* subgoal r(ja.#p}) fails to unify
with r(b) and r({w,#q}), the largest failure context is #¢, which indicates the correct

backtrack point.

Note that this approach relies on the fact that an ’assert’ has been encountered
before a backtracking occurs. In this way, the occurrence of the ’assert’ can be recog-
nized by the intelligent interpreter. If this is not the case (for example, the "assert’ in the
example above is moved into the body of the second ¢ clause), the user has to turn ofi

the scheme for correct execution.

63

The ’retract’ predicate poses a less serious problem to an intelligent interpreter
than ‘assert’ since a previously failed subgoal is less likely to be successfully unified
with & clanse if some clauses are removed from the database. The handling of ’retract’
is simulu- *» the way we deal with "cut’. When the interpreter backtracks into a non-
deterministic node which now becomes deterministic after some clauses at that node are
removed by ‘retract’, the interpreter just tries the backtrack point indicated by the MB

register.

s(AB)—pA)& q(AB)& r(A);

pla);
ph);

q(a.h);
g(b.aj,

rh),
2 5(X,Y)

Program 4.4

Step Subgoal Candidate Unifier/State Figure
1 s(X,Y) S(A,B)é& (X/IALLY/IB.1]) 4.5b
2 p(X) p(a) (X/la.#10]) 4.5¢

3 q([a,#10},Y) q(a,b) {Y/Ib#17]) 4.5d

4 r((a,#10]) r(b) fails 4.5b

9 p(X) p(b) {(X/Ib, 1]} 4.5¢

¢ q(lb,11,Y) q(b,a) {Y/[a, L1} 4.5f

7 r({b,1]) r(b) succeeds

Table 4.2: Summarv of Execution of Program 4.4

4.7. Summary of Intelligent Backtracking Mechanism

To summarize the mechanism of intelligent backtracking in execution, an execution
trace for Program 4.4 is presented. Table 4.2 shows the subgoal, the candidate, the
unifier and the figure for reference for each step. Figure 4.5a to 4.5f are snapshots of the
Run Time Stack during each step. The following should be noted:

. Address Offset is used in the snapshots of the Run Time Stack. It is detined as:

Address Offset = (Real Address —A(.idre.*s of start of Run Tume Stack)
sizeof (PC_WORD)
Thus an Address Offset quantity refers to an address by the number of

PC_WORD:s. In the implementation, real address (that is, the address of the start
of the control node) is used for tagging.

. As shown in Figure 4.5a, the firsi conitrol node and environment node are created
before a goal is solved. In subsequent execution, a control node 1s created when-
ever a subgoal matched a unifying candidate. An environment node is created
immediate above the control node whenever there are variables appearing in the
candidate clause and the size of the environment is equal to the number of distinct
variables in the candidate clause. (For exar see Figure 4.5b where the environ-
ment node for s(X,Y) is created.)

s

4
3
Parcnt = NIL
Deterministic 0
Figure 4.5a
R4
Back = 10
Parent = §
Non-dcter. 17
Back = NIL
Parent = §
Non-deterministid
pu=4 9
pur=3 8
Parent = ()
Dcterminisuc
{b,#17] 4
{a,#10]) 3
Parcent = NIL
Deterministic 0
Figure 4.5d

65

W =4
ptr - 3
g
Parer =0
Dete inistic
—
Parcnt = NIL
Determinisuc
4.5b
Parent = §

Deterministc

W:i

pir="*

Parent = 0
Deterministic

b

Parent = NIL

Determinisuc

4.5¢

13

17
Back = NIL
Parent = §
Non-determinisug
pir=4 9
pr=J3 8
Parent =0
Deterministic
4
[a.#10) 3
Parent = NIL
Deterministic 0
4.5c¢
16
Parent= 5
Decterministic 13
Parent = 5
Deterministic
pu =4 9
pur=3 8
Parent =0
Deterministic
2 4
b
Paren, = NIL
Deteini:nistic 0

4.5f

66

. For simplicity, only the Parent pointer 1s shown in each control node In addinion,

whenever a node is non-deterministic, the Previous Back pointer is also shown.

. In step 4, when the interpreter fails to unify the context terms [a.#70] and b, the
failure context #10 is returned. Then the interpreter pops all the nodes from the
current node up to #10, resets the bindings of the variables X and Y and backtracks
to #10. An ordinary interpreter will backtrack to #17, which is the most recent
non-deterministic node.

. In steps 1, 5 and 6, the contexts L are used to attach to the terms since the
corresponding nodes are deterministic. The context L is not shiown in the
diagrams since this step actually corresponds to setting the flag ficld of a
PC_WORD to a predefined constant to indicate that the term is not associated with

any contexts.

. The final solution is {X/b, Y/a).

4.8. Summary

We have presented an overview of the conventional implementation of Prolog, some
special features of the WUP interpreter, and the implementation details of context reso-
lution in WUP. In addition, we have looked at the ways by which some of the impure
constructs are handled by the intelligent interpreter without turning off the scheme.
Detailed algorithms have been presented which show how the association process,
manipulation process and backtracking process are handled. The conciseness and sim-
plicity of the algorithms suggest that this implementation will add only very little over-
head to the interpreter. This observation will be justified in Chapter six, where some
performance results are given. The main result we draw from this implementation is
that context resolution can be easily incorporated into any existing conventional Prolog

systems.

Chapter S

Related Work

In this chapter, we will look at some of the well-known schemes for intelligent back-
tracking. A brief summary of the conceptual basis of each scheme will be presented
and comparisons are made between context resolution and some of the schemes. The
execution statistics for context resolution and several other schemes on a number of

programs will be provided in the next chapter.

5.1. Static Data Dependency Analysis (SDDA)

This scheme is proposed in [Chang&Despain 85]. It is based on the construction of a set
of data dependency graphs, which give the backtrack point for each subgoal at compile
time. When a subgoal fails, the backtrack point associated with the failed subgoal can
be used for backtracking. Since this piece of information is readily available before
execution, it has almost no run time overhead. However, SDDA can only backtrack
intelligently within a clause and it cannot react favorably to changing run time condi-
tions,

During SDDA, a data dependency graph (DDG) is generated for each clause in the
program. The user has to provide an activation pattern, in the form of a Prolog predi-
cate (called entry), which indicates the potential status of the arguments in the top-level
goal. Possible activations are 'i’ (independent), ‘g’ (grounded) or "¢’ (coupled)*. In the

graph, each subgoal in the body of a clause is represented by a node. A directed arc is
t A term s grounded it it does not contain any unbound variable. Two terms are coupled together

i they shared at Icast one common, unbound variable. A term is independent if it is ncither a
ground term nor a coupled term.,

67

68
drawn from the generatort of a variable to all the consumers of that variable and tinally
all duplicate arcs are removed. From this set of graphs, the backtrack point of each
subgoal is identified. Since the graphs are constructed before run time, the backtrack

subgoals are chosen in a worst-case manner to guarantee completeness during execu:

tion.

color(AB.C.,DE) &
next(A.B)& next(A,C)& next(AD)& next(B.C) &
next(C,D)& next(B.,E)& next(C.E) & next(D E);

next(X,Y) & neu 1(X,Y):
next (X .,Y) &« next 2(X.,Y):

next (green red);
next (green ,yellow),
next (green ,blue),
next (red ,blue),
next (red ,yellow);
next (blue ,yellow);

next2(X ,Y) « next I{(Y X),

Program 5.1: A Map Coloring Prolog Program

Two types of backtrack paths are distinguished. A ‘Type-1 backtrack path is
obtained when the end of a forward stite of an execution (that is, continuation of deduc-
tion steps) is reached. This occurs when a subgoal cannot unify with any available can-

didate clauses. The Type-I backtrack subgoal of a subuoal is just its closest predecessor

t The generator of a variable X in a predicate is the predicawe at which X gets bound to a term. Al
the other predicates which contain X and are not the gencrators of X arc called the consumers of X.

69

node in the DDG. A Type-II backtrack path is obtained during the backward execuiion
of a clause (that is, backtracking into a clause). An algorithm is given to determine the
Type-11 backtrack subgoals. The idea is that the Type-II backtrack subgoal of a subgoal
s is the closest subgoal which lies in any of the possible backtracking paths that go
through s. As an example, consider Program 5.1 from [Chang&Despain 85], when
backtracking is done into the subgoal next(B,E) from next(C,E) or next(D,E). In the
former case, the backtrack path is next(B,E) (generator of E) — next(A,C) (generator of
) > next(AB). In the latter case, the backtrack path is next(B,E) (generator of E) —
next(A,D) (generator of D) — next(A.B). For worst-case consideration, the Type-II
backtrack subgoal for next(B E) is next(A,D). Figure 5.1 i« the corresponding DDG and

Figure 5.2 shows the Type-1 and Type-1I backtrack paths.

next(A,B)

I
VA v ATAN

Figure 5.1: A Data Dependency Graph for Program 5.1

70

ncxt(A,B)

;
e

Type-1 Backtrack Path Type-1I Backtrack Path
Figure 5.2: Type-1 & Type-1I Backtrack Paths

;Q

/
s

ON
(D~
e

While context resolution allows backtracking to anywhere in the search tree and
requires no modification to the Prolog programs, SDDA can only handle intelligent
backtracking within the same clause, and it requires the programmer to provide the
necessary activaton pattern for the generation of DDG. The major advantage of SDDA
over all the other schemes is its low run time overhead and ease of implementation on a
conventional architecture. The authors have incorporated SDDA into a PLM Prolog
machine [Dobry,Patt&Despain 84]. They have also provided the number of PLM
instructions executed on a number ot benchmark programs. Their results are included in

the next chapter.

5.2. Generator-Consumer Analysis (GCA)

This scheme is proposed in [Kumar&Lin 88]. Itis based on run time variable consump-

71
tion analysis. An algorithm is presented which will determine the backtrack subgoal
when a subgoal fails. Since this analysis is done during program execution, it can better
respond to changing run time situations. A local data structure called a B-list is created
for each subgoal P,. B-list(P;) is used to store all the potential bac* .«k points when P;
fanls.

The basic idea of GCA is similar to the idea of context resolution. Both are based
en tagging. That is, whenever a subgoal P; is unitied with the head of a clause, which
results in assignment of a value (which can be a simple constant, a structured term or
another variable) to a variabie V, a tag is attached to V. There is a set of subgoals,
gen(V), which contains all the subgo.:s which are responsible for the current value of V.
If now £, fails to unify with any clauses, then clearly the current valie of one or more
of the variables in P, is not satisfactory. Let n be the number of distinct variables in P;
and X,. ! <) <n, be the variables. The binding of X; will not change unless we back-
trach into at least one of the subgoals in modifying (P,) = {parent of P} U {gen(X;) 11
<j - .. To guarantee comp.eteness, the most recent subgoal in modifying(P;) is
chosen for backtracking.

The complete algorithm is summarized as follows:

. When a subgoal P, is tirst invoked, B-list(P,) « {the parentof P, }.

. Whenever P, fails in a derivation, the algorithm performs the foliowing
S(Cl)&f
1. Temp & B-lisuP) U {gen(X,) 1 1 €j <n) where X, s are the variables

that occur in the arguments of P .

19

P .. € most recent choice pointin Temp.
0 B-IsuP L) & B-LisuP) v Temp = (2)

4. Backtracksto P .

72

Consider Program 5.1 again, the Type-1 backtrack subgoal is the same as that
obtained by SDDA. The Type-II backtr.ck subgoal for next(B.E) (called this P) is
next(A,C) (better than SDDA) when backtracking is done into P from next(C.E), other-
wise backtracking is done into P from next(D,E) and the backtrack subgoal is next(A.D)

(same as SDDA).

Another advantage of GCA over SDDA s its ability for across-the-clause back-

tracking. Suppose we have the clause (from [Kumard- Ui sy

]

sX)Y)evX) & w(Y),
and the goal statement:

?sXY)& (V)& u(X);
When the subgoal u(X) fails, clause-level data-dependeicy-based backtracking schemes
(for example, SDDA) will backtrack to w, whercas GCA is able to backtrack intelli-
gently to v. The authors mention that their scheme “performed backtracking at the proof
wree level”, meaning that their scheme can backtrack tc any subgoals in the same

derived goal.

73

pla),
pb),

g(X)erX),
rih),
"pX)& qiX

Program 5.2

In contrast, context resolution cun do ever better. When a subgoal fails, context
resolution is sometimes able to give a backtrack point which is less recent than the
parent of the failed subgoal. Consider Program 5.2, when r([a.#p]) fails, the context
returned (#p) ind . ates a backtrack point which is less recent than the parent of r (that
is, ¢), whereas GCA can only backtrack to ¢ since their algorithm always includes the
parent of P whenever a subgoal P is invoked. This is also the reason why they have to
keep the choice point for P around even if there is only one applicable clause available
for P because their interpreter will sometimes backtrack into a deterministic subgoal. In
maoditied context resolution, the interpreter will never backtrack into a deterministic
nade thus the choice point for a deterministic node is not required. This saves space
Gllocated for the choice point) as well as time (required for the manipulation of the

extra control intorimation in the deterministic r.ode) during execution.

74

p(a);
p(b);

q(d);
q(e);

r(w),

r{dy,
s(b);
?pX)& qV)& r(Y)& s(X),

Program §.3

Sometimes a lo. - © stcan give better run time performance than a global B-list.
Program 3.2 is an exampie showing that using a local B-list can be more intelligent than
using a global one. When r(Y) fails to unify with r(w) with X bound to ".2.4p| and ¥
bound to [d,#q), #q is inserted into the global B-list. Later when s(X) fails and #p 1s
inserted into B-list (which already contains #¢), the interpreter will baciirack into #¢
since #q > #p. This is undesirable as the interpreter should be able to backtrack into #p
directly. If alocal B-list is used. and again when r(Y) fails to unity with r(w), #q 1s put
into the local B-list associated with r(Y). Later when s(X) fails and #p 1s inserted into
the B-list associated with s(X), there is no more available candidate clause tor the
suby 14l s and the interpreter will backtrack into #p.

We can incorporate local B-list in context resolution as given by the following
algorithm:

¢ When a subgoal P; is first invoked, B-list(f’) «~ ©.

75

« Whenever P, fails to unify with the head of a candidate clause and a list of
contexts which is associated with the function symbol which caused the
failure is returned in failure _contexts,

B-list(P,) ¢ B-list(P;) U failure_contexts.

. Whenever P, fails in a derivation, the algorithm performs the follcwing

steps:

1. P & max(B-list(P;)).

o

B-lisu(P) & B-lisuP) W B-list(P;) = {P ..}

max

3. Backtracks to P,

While the local B-list approach has higher intelligence for some Prolog programs,

the sorting and merging operations are essential u...ess a large amount of memory ‘the

ial size of the context array) is set aside for each subgoul or a complex scheme is dev-
ised which wil differerriote all the conteats in a global context array. We sacrifice he
intelligence gained for algorit: :n clarity and impiementation simplicity+.

The main weakness in GCA is that it somet » es fails to backtrack directly to a
subgoal which causes the failure. During the :eneraticn of a B-1'st, whenever a predi-
cate P fails, they will consider the ~enerators of all the variubles that occur in the argu-
ment of P and backtrack to the most recent one. This backrrack point may not be the
one that caused the uni‘ication failure. Thus P will fail again. Although they have also
considered the handling of "cut’ in their scheme, it cannot handle the case when "cut’ is
used for non-monotonic reasoning. Furthermore, they have omitted the discussion of
the imple:nentaton of many other constructs which are indispensable in - 'most every
real-life Proloz program, for example, “prove’, 'not’, "assert’ and ‘retract’ in theorem

provers, expert systems and database programs.

i

PSee Appendin T o the discussions on focal B-lists.

76

The tagging processes in GC\ and context resolution are very similar since both
schemes keep track of binding of variables at the function symbol level. Thus almost
the same amount of work is done in each unification step. During a shallow backtrack
ing, an intel:'gent interpreter incorporated with context resolution has to insert in the
B-list all the contexts associated with the function symb . which causes the failure,
while nothing has to be done ir GCA. However, when a deep backtracking occurs, con
text resolution requires no o urther analysis while 1n the scheme of [Kumar&Lin 8X],
some analysis has to be pert.rmed to reveal the next bac-ruck < . Thus context
resolution, when compared to the GCA, enables a o © . v o~ of the cause of

failure, v hile it requires similar amount of extra work d. .« . Coatiunoon,

5.3. Deduction Analysis - 11 Unifiable Subscts)

This scheme is presented by | ox an [Cox 84, Cox 87]. It 1s based on run time
unification failure analysis. It 1s more intelligent than SDDA or GCA in the sense that
this scheme el ninates the largest amount of search space in theory, However, the
scheme is not practical in itself because of the lurge computational overhead involved.
During the execution of a Prolog progrum, a dernivation failuie occurs when a
subgoal cannot urity with any of the candidate clauses. All the deriy tions performed
so far are represented by a set of constraints. Each constraint ¢, is an ordered pair (5,
C;) wrere S, s the subgoal to be executed and €, 1s the candidate wiich as used o
solve S,. A unification tailure corresponds to the situation where all the constraints
cannot be satisfied simultancously. A naive interpreter backtracks by removing the most
recent deduction perfor: «d (one of the constraints) <o that umifications can be carried
on. However ‘nis car easilv lead to thrashing since the most recent backtrack point

chosen by the interpreter may not be the one that will introduce new bindings in the

77
subgoal that fails, thus the subgoal will fail again. Cox’s scheme tries to analyze the
cause of the unification failure and determines the maximal unifiable subsets, subsets of

- set of unifiable constraints but not proper!y contained in any other unifiable subsets.
The toasamal subset is chosen so that the maximum amount of work done can be saved
by removing as few constraints as possible. Note that the maximal unifiable sub<.ts
will not provide enough backtrack formation for an intelligent interpreter. The back-
Vs point to be chosen (that is, the orresponding constraint 1o be removed) depends
on the structure of the proof tree and e availability of alternative candidate clauses for

that particular constraint,

Th - is a close relationship between Cox’s o epe of maximal unitiable subser
and context resolution. We will tirst transform all “enivations to construints by the fol-
lowing scheme. i ¢ class of a constraint ¢; = (S, () is uetfined to be i where §; is the
leftmost subgoal at the go ' statement G, and , the head of the cand.date clause uscd
to solve §, . Note that by this scheme. the parent of a subgoal and’ ibgoal itself will
apecar i ditferent classes in thie set of constraints. As an exam, nsider eXxecu-

non of Program 5.4

78

a(a),
pb);

q(T) & 1T
q(\);

u(a);

rV.,Vy.

t(h.o);
PpX)& g & (Y Z)& s(WH& tX Ly
Program 5.4

The execut .y - the derivation where #(X,7) is the lefunost subgoal corresponds o

the con-

cyo (pX), pla)y,

o (gY), q(Ty,

Ca: (T, uta)),

e (Y2, r(VV)),

cq (stW), (),

Cq (1X.Z), 1(h.o)).

The three maximal unifiable subsets computed by applying Cox’s algorithm are
{Co 1 Co 03 Caly Loy, Cso g) and {ey. 03, ¢4, ¢} Notice that the first subser
corresponds to shallow backtracking That is, look for alternative candidate ¢lause that

i< unifiable with the mos: recent subgoal 1(X,Z) The second subset cortesponds o the

situation where bacatracking is done into p () and u (c,), and the third subset

79
corresponds to backtrackiag into p (cy) and g (cy).

A naive Prolog interpreter will try all the possibilities for .. and the same failure in
1(X.Z) will occur. While Cox’s scheme has essentially eliminated any irrelevant back-
track porr s, his algorithm docs not specify how the next backtrack point is chosen. In
addition, for the purpose of intelligent backtracking, only cne maximal unifiable subsct
i~ needed

Suppo the erpraece cooountered @ denvation failuie and backtracking s
required. Lot 7= (.. ..., «, | be the set of all constraints corresponding .o the
derisaton and D = i#j, %y, #),) be the set of contexts returned during the

derivation W 0,

here 0 <t < nand #, (0 <4 <1y refers to the derivation at G, (that
i, the ¢rn1 cuiat ¢,). Note that all the constraints trom ¢ 10 ¢,y can be satisfied. Itis
casy to sce caat the set £ = C - {c,} is a maximal unifiable subset of € since the func-
ticn sytabol which involved in the unification failure when the constraint ¢, 1s being
vatved s tiestantrodeced at G0 The symbol is introduced again during the goals
(i, ..., Gy, Whone of these hinks is broken, the function symbol which causes the
unttication fatur: at G, 1s not able to reach G, and hence will not cause the same
farlure agana. Thus ¢, is now satisficd and hence E is a maximal unifiable subset of C.
Ii the above discussion, we have considered unification failure ¢, \ one
tunction symbol onlv. It as straightforward 1o apply siimilar argument to multiple
conthicts in general. When ¢, fails, each function symbol f; which causes unitication
tailure will be associated with a list of contexts D, where 1 <i <m and m is the
number of function symbols which causes the failure at G,. The set £ = C -

{v 1 X ox,,) where x; € D, can be shown to be a maximal unifiable subset of .

80

Although Cox’s scheme can hand.c the occurs check, and s suitable for parallel
execution and theorem proving in general. even the author admits that the algorithm is
not applicable in practice owing to the extensive computation involved during e ana-
lyses of graphs. In fact, the problem of finding all maximal unifiable subsets 1s shown to
be NP ard [Wol{ram %6]. However, Cox’s algorithm and analysis provide a good foun-
aation for research in intell’gent backtracking, that is, they can be used as a theorencal
“asis for the development of approximate or heuristic algorithms wlhich are moic
etticient, tor example [Codog. '.Codognet&Filé 8X]. In addition, we have shown that
the maximual unifiable subsets alone do not provide enough information for backtrack:
ing and that context resolution is just an implementation-onented realization of Cox’s
scheme applied 1o the execution of Prolog programs in the sense that our scheme shows
how the relevant maximal unifiable subset and the backtrack point are “comnuted”

without undue overhead.

5.4. Deduction Analysis (Minimal Non-Unifiable Subsets)
This scheme, which is presented in [Bruynooghe&Pereira 84), i complementary to
Cox’s scheme. Their approach of analyzing a failure is based on finding the nunimal

non-unifiable subtree.

The idea of this scheme is to associate a deduction tree with each term invoived in
the unitication. For a subgoal, they associate the nodes necessary for the existence of
that cail, that is, the subgoals where a variable gets a binding. With the head of the can-
didate clausc. they associate the empiy deduction tree. The following algorithm
specifies the actions taken during unification, where ¢ =T denotes a term 1 with associ-

ated deduction tree T :

81

1. maching =T, with =T ,: generate tae e substitution with deduction
tree Ty 0T,

2. matching f(ty, .., 1,)-T, with g(t,, .,)T, generate "failure’ with T, ©
T, as an inconsistent deduction tree.

3. matcting f 1y, ... 0,)-T, with f(r|, ...r,)-Ty match each ,-T; with
r.~T,.

4. matching X |-T, with 1,-T, where ¢, is not a free variable and a substitution
X/t -T exists: match t-1 OT | with 1,-T .

S matching X (=T, with ¢,-T, with X a free vanable: generate the substitution

The deduction tree used in their unification algorithm is very sumilar to a tag in
GC A or g context in conteat resolution. A unification failure results in a non-unifiable
deduction tree. Waoen a deep backtracking is required, the cet of all non-uniiable sub-
trees are analyzed to give the minimal subtrec ich will give an intelligent backtrack
point.

Although they provide a more complets description of the imple.nentation details,
this scherme sufters o the same shortcoming as in Cox’s scheme, that i, large run
tme overhead. This makes 1t only advantageous in some specialized applications.
Since the overhead of their full theory is too large for the sequential execution of most
Prolog programs, they have incorporated a simplified version of the theory *n a Prolog
interpreter. Their run time statistics will be presented and analyzed in the next chapter.

There iy a close relationship between maximal unifiable subset and minimal non-
unifiable subset since one can be readily computed from the other by a simple algorithm
presented 1n [Chen,Lassez&Port 86]. In addition, the authors mention that both

approaches complemen her and are not funamentally different.

5.5. Depth-First Intelligent Backtracking

This scheme is presented in [Codognet,Codognet&File 88]. It 1y based on the construe
tion of dynamic conflicts graphs which represent the substitutions computed. This
method differs from the method by [Bruynooghe&Pereira 84] mainly in the notions
usec in describing the backtracking scheme. The authors think that their notions are
more precise and they formally prove the correctness about the method. In addition,
they implement a simplified version of their scheme i1 order to reduce the overhead of
the original method. The exceution statistics are provided in the next chapter for com-
parison.

Algorithms are provided to construct a dynamic conflicts graph fronmv a set of con-
stuaints C. The construction of this graph corresponds to the unification process. o
addition to representing the most yeneral unifier of C when C is solvable, the graph
contains information about which constraint is responsible for each binding. When a
clash (function symbols conflict) is detected, the constraints that caused it «.n be
identified by the DIB algorithm, which is essentially a moditied Prolog interpreting
algorithm. An intinite term during derivation corresponds to a circular dynamic con-
straint graph. In this case, the DIB aigorithm simply reports failure and stops.

While DIB has a high intelligence, it is not clear as to how their scheme can be
incorporated into standard unification and resolution procedures. Thus an implementa-
tion of their scheme is non-trivial. In addition, their method is based on graph computi-
tion, which can be expensive. The most notable feature in DIB is the notion they
choose to present the scheme, which make it possible to formally prove its correctness.
In additior. the ability to handle the 'cut’ and many system predicates ineclligentty

makes DIB a practical real-life Prolog system.

83

5.6. Summary

In <his chapter, we have looked at some of the well-known inte’igent backtracking
schemes. Among all the schemes, static data dependency analysis has the lowcst over-
head. However, it is not able to cope with changing run time conditions thus its intell.
gence is lowest. Generator-consumer analysis entails much less overhead, but it soine
times fails to backtrack directly to the subgoal which caused the failure While Ce
and Bruyvnooghe and Pereira’s schemes which are based on unification failure ana
remove the largest amount of search space in theory, the intensive computational over
head limts their practical use. The ntractability results by Wolfram for computing all
maximal unifiable subsets (and correspondingly all minimal non-unifiavle subsets)
seem o tother question the applicability of these methods without resorting to heuris-
tics. Dopth lfirst intelligent backtracking is a practical implementation of Cox’s and
Bruynooghe and Pereira’s schemes. However, it is not trivial to incorporate this scheme
into standard Prolog systems. We have also shown that context resolution is a
rosolution based cpproach o fetermine the maximal unifiable subset and the intelhi;

backtrack puint.

Chapter 6

Performance Results & Evalnations

After context resolution was incorporated into WUP, the moditied interpreter was tested
on a variety of problems. The same set of problems is used in the evaluation of the
backtracking schemes of [Bruynooghe&Peoreira 84], [Chang&Despain - RS,
Kumar&l 88| and [Codognet,Codognet&Fileé 88] so that a comparison can be made.
In the first section, we will discuss the benchmark programs used in the evaluation. The
amount of extra memory used in the implementation is presented in section two and the
exee ton time statistics are presented in section three. Finally, an analysis of the per-

tormance is presented.

6.1. The Benchmark Programs

The benchmark consists of the following Prolog programs, whose sources are provided
in Appendix 1.

Database Query
This program poses a cc..iplex query to a small database which describes the
courses taken by students, the courses taught by professors and the date and
place of lectures. Only simple constants are involved in the program.

Naive N-Queen Problem
This program solves the N non-sttacking queens problem by the generate-and-
test approach. Lists and functors are used.

Clever N-Queen Problem
This program solves the same N-queen problem in a clever way. The predi-
cates 'cut’ and 'fail’ are used extensively.

Tree Insertion Problem

This program inserts a list of numbers into an ordered binary tree. The program

84

8S

is almost deterministic because backtracking is always done to the most recent
backtrack point.

Clever Map Coloring Problem
This program colors a 13-region map with four different colors so that no two
adjacent regions have the same color. The subgoals are arranged in such ~ way
that the same variables are situated in adj. ~ent subgoals, if possible. That is,
the consumer of a variable s placed as close to its generator as possible.
Simple Map Coloring Problem
This program solves the same map coloring problem. The subgoals are
arranged without paying any attention to the ordering of the variables. In this
way, unification failure of a variable may be discovered much later in the exe-
cution than in the previous program.

Move Checking

This program checks whether a move generated by a predicate is legal with
respect to some given constraints. The subgoals in the goal statement are
ordered in two different ways. [Kumar&Lin 88] uses this example to show that
there are programs for which intelligent backtracking improves the perfor-
mance irrespective of the ordering of the subgoals.

6.2. Memory Usage

In the current implementation, the Copy Stack, Run Time Stack and Trail each used
2000 PC_WORDs. A 1000-word context list is used for the associated contexts and a
500-word context array is used for the failure contexts.t Together with the nuscellane-
ous variables used, this give an increase in memory usage of approximately 30%. All
the benchmark programs can be executed using this arrangement without memory
overflow. Since memory usage is not the primary concern of this implementation, no

memory reclamation routine besides that supplied by the system is used.

+ Since the hashing function divides an address (in number of PC_WORD:s) by 4, when we use a
N-word Run Time Stack, we nced o allocate an N/4-word context array.

6.3. Run Time Statistics

The results are presented in two tables. Tauic 6.1 is a summary of the comparison of the
execution statistics of each program. The parameters to be tested are:

« The number of inference steps performed (# inferences) during the ex:cution of
the goal.
e The number of unifications attempted (# unifications) during the execution.

» The number of deep backtrackings occurred (# backtracking) during the execution.

e The runtime of a program.

The run tune of a program ic obtained by measuring the amount of time spent on
unification alone. That is, all the time spent on parsing, generation of clause structures
and 1/O are ignored. This is done by calling the UNIX times command which returns
the CPU time used while executing instructions in the user space of the program. times
is called just before entering the unification routine and it is called again just after leav-

ing it. Thus the amount of time spent in the routine can be determined.

The results are obtained by running the programs on an idle Sun-3/75 work sta-
tion. All the programs have very short running times, except the simple map coloring
program. Thus to obtain a more reliable timing measurement, they are queried several
times and the total time spent is recorded. Then the same programs are run on an
unmoditied interpreter and the two sets of times are compared to give the results. In
Table 6.1, the second column contains the statistics when the programs are run on an
unmoditied interpreter. The third column contains the statistics when the programs are
run on a modified interpreter with intelligent backtracking enabled. In the fourth
column, the percentages changed in performance of the intelligent scheme with respect
to the naive scheme are entered. As an example, the first entry is calculated as:

#inferenceiyeigens — # inference,,,,

- * 100%. Thus a negative percentage means a
inference, ;.

R7
speed up and a positive figure means a slow down. The row time in ms (¥) gives the
execution time in milliseconds and the number of times a program is queried to give

that figure.

Table 6.2 is a comparison of the speed up (with respect to the execution times)
with some other schemes presented in Chapter five. In each column, CPU refers to the
CPU time speed up, # cycles refers to the speed up in terms of the number of PLM
raachine cyclzs and # instrs refers to the speed up in terms of the number of PLM
instructions executed. When an entry is marked with N/A, this means that the program
is not tested on a particular scheme. The speed up of Kumar and Lin’s scheme in terms
of both CFU and machine cycles are reported in the table as the authors mentioned that
the CPU time taken by their simulator may not be accurate and that only the number of

machine cycles can give an accurate picture.

¥8

Table 6.1: Comparison of Execution Statistics

Problem Naive WUP Intelligent WUP % Change
database query nE

inferences 83 42 -49.%%
unifications 152 66 -56.6%
backtrackings 44 13 -70.5%
time in ms (#) 10416(100) 2500(100) -76.0%
6-queen simple

inferences 7651 2402 -68.6%
unifications 9959 2628 -73.6%
backtrackings 1430 55 -96.2%
time inms (#) 6283(1) 1350(1) -78.5%
6-queen clever

inferences 3831 3831 0.0%
unifications 5784 5784 0.0%
backtrackings 806 80¢ 0.0%
time in ms (#) 2033(1) 2300(1) +13.1%
7-queen simple

inferences 6296 803 -87.2%
1 nifications 8425 861 -89.8%
backtrackings 1340 11 -99.2%
time in ms (#) 4866(1) 383(1) -92.1%
7-queen clever

inferences 1044 1044 0.0%
unifications 1578 1578 0.0%
backtrackings 210 210 0.0%
time in ms (#) 516(1) 55001, +6.6%
tree insertion

inferences 217 217 0.0%
unifications 308 308 0.0%
backtrackings 30 30 0.0%
time in ms (#) 1266(10) 1400(10) +10.6%
map color clever

inferences 44 44 0.0%
unifications 92 87 -5.4%
backtrackings 12 9 -25.0%
time in ms (#) 2950(100) 3183(100) +7.9%

gY

Table 6.1: Continue
Problem Naive WUP Intelligent WUP % Change
map color simple
inferences 89250 17526 -80.4%
unifications 270644 36096 -86.7%
backtrackings 57897 2810 -95.2%
time in ms (#) 80066(1) 10383(1) -87.0%
move ordering 1
inferences 409 154 -62.3%
unifications 464 168 -63.8%
backtrackings 55 14 -74.5%
time in ms (#) 2166(10) 700(10) -67.7%
move ordering 2]
inferences 295 145 -50.8%
unifications 331 159 -52.0%
backtrackings 36 14 -61.1%
time in ms (#) 1466(10) 650(10) -55.7%
Table 6.2: Comparison With Related Research
Problem DTA GCA GCA SDDA DIB CR
(CPU) (# cycles) (CPU) (# instrs) (CPV) (CPU)
databasc qucry -19.4% -48.9% -55.4% -16.0% -52.4% “76.0%
6-qucen simple -34.9% +162.8% +16.6% N/A -61.5% -718.5%
6-quecen clever +99.3% +90.6% +8.6% N/A +10.0% +13.1%
7-queen simple -82.7% N/A N/A N/A -89.2°% -92.1%
7-queen clever +103.9% N/A N/A N/A +20.0% +6.6%
tree insertion +43.8% +9.0% 0.0% N/A +30.0% +10.6%
mapcolor clever +63.5% +7.8% -3.9% +0.7% N/A +7.9%
mapcolor simple -99.7% -99.9% -99.9% -99.9% N/A -87.0%
move ordering 1 N/A -54.1% N/A N/A N/A -67.7%
move ordering 2. N/A -33.9% N/A N/A N/A -55.7%
Legends:
DTA Deduction Tree Analysis GCA Generator-Consumer Analysis

SDDA Static Data Dependency Analysis

DIB Depth-First Intclligent Backtracking

CR Context Resolution

90
6.4. Analysis

According to Table 6.2, our scheme clearly gives better speed up compared to GCA (#
cycles) except for the tree insertion program where context resolution gives a slightly
larger overhead, and the simple map coloring problem where context resolution gives a
less dramatic speed up. While DIB and context resolution have similar intelligence in
theory, context resolution gives better performance results over DIB except for the
clever 6-queen program. This is possibly due to the fact that DIB is based on graph
computation and thus the overhead can sometimes grow quite fast. For example, con-
sider the tree insertion program where the overhead is +30%. While DTA has similar
intelligence as context resolution, its large run time overhead often overshadows the
reduction in the number of deductions performed. In terms of the number of inferences,
however, the two schemes should be very close. SDDA has the lowest overhead in the
clever map coloring problem. However, the fact that it is not able to deal with changing
run time condit.ons can be revealed by considering the database query where SDDA
gives the worst performance. This is due to the worst-case analysis performed by

SDDA.

Our implementation performs exceptionally well over any other schemes in the
first two problems. This is mainly due to the presence of the ’cut’, *fail’ and 'not’ con-
structs in these programs which can all be handled intelligently by our system. In addi-
tion, the implementation gives an almost uniform overhead (under 14%) for programs
which do not benetit much from intelligent backtracking. (That is, programs which are
deterministic or where backtrackings are done to the nearest non-deterministic node.
For example, the tree insertion and the clever N-queen programs.) Compared to the

maximum overhead of +103.9% in DTA, +162.8% in GCA (# cycles) and +30.0% in

91

DIB, context resolution is a more stable scheme.

6.5. Summary

According to the performance results, DTA involves too much computational overhead
and deterministic or almost deterministic programs which exhibit very iittle backtrack-
ings will give an intolerable amount of overhead. The superior performance on the first
two programs for context resolution over GCA, DTA and SDDA indicates the latter
schemes’ inability to haadle the cut’ and "not’ constructs intelligently. Context resolu

tion almost always performs better than GCA due to the latter scheme’s failure to back-
track directly to the relevant subgoal which causcd the unification failure In terms of
the number of machine cycles executed, which the authors claim is more accurate, the
speed up is even more dramatic. For non-deterministic programs, DIB gives a similar
performance results as context resolution. However, the overhead of DIB is still non-

trivial for some deterministic or clever programs.

Chapter 7
Conclusion

In this chapter, a summary of the thesis i¢ given, then several importam application
arcas of context resolution are discussed. Finally, we look at one of the ~xtensions that

can be done, and propose a list of future research topics.

7.1. Summary of the Thesis

Prolog is a programming language based on the resolution , : e >f mechanical
theorem-proving. One of the major attractions of Prolog is ease of programming.
Instead of providing the computer with a sequence of instructions to be executed, a Pro-
log programmer aceds to describe only the logical component of a task. This separation
of logic and control components allows a programmer to write concise and readable
programs quickly. However, it is generally agreed that Prolog is an inefficient language
in terms of run time and memory requirements. One of the major causes of inefficiency
is Prolog’s exaggerated anticipation of backtracking which makes it less usable than
most machine-oriented languages now in popular use, for example, Fortran and C.

In a conventional implementation of Prolog, the interpreter will exhaustively
scarch a proof tree in a depth-first, left-to-right manner. When a failure leaf is encoun-
tered, the interpreter will back up to the most recent node with untried alternative
clause(s) and start the scarching process again on the next branch. Most often, a
unification failure is due to the bindings created much earlier in the proof tree and thus
the "same” unification failure may be repeated several times before a solution is found.

This behavior of Prolog motivates the study of methods for improving the efficiency of

92

the backtracking mechanism of this language.

Previous works on intelligent backtracking can be divided into two categories,
based on the tools used in the analysis. [Cox 84] and [Bruynooghe&Pereira 84] use
deduction trees 10 analyze the possibility of unification of a subree. These analyses
and the corresponding algorithms essentially laid the foundations for intelligent back-
tracking. However, the resulting algorithms are not practical [Cox 84] and can be used
only as the basis for the development of more efficient algorithms. A more efticient
implementation of Bruynooghe and Pereira’s scheme s presented in
[Codognet,Codognet&File 88]. Their scheme is also based on graph computations and
thus requires a possibly intensive modification to the existing Prolog system. Further-

more, the overheads of the scheme on some programs are still quite high.

In the second category, [Chang&Despain 85) and [Kumar&Lin 88| use a datd
dependency gruph which indicates the backtrack points by the generator-consumer
approach. While the static scheme of [Chang&Despain 85] cannot respond favorably to
run time conditions, the scheme of [Kumar&Lin 88] sometimes fails to locate the cause
of failure directly. Our analytical discussion in Chapter five and the performance results
in Chapter six both shiow that data dependency analysis is less intelligent than

unification analysis.

This thesis describes an intelligent backtracking method called context resolution,
discusses its implementation in Waterloo Unix Prolog, and presents some performance
results. The main features of this improved Prolog system are:

high degree of intelligence
Referring to the execution statistics in Chapter six, context resolution compares
very favorably with many other schemes when the interpreter is executing some
generate-and-test problems which rely heavily on backtracking. From the analysis

94

in Chapter five, we have shown that context resolution is as intelligent as those
schemes which are based on unification failure analyses. In addition, owing to the
resolution-based property of context resolution, intelligent backtracking can be
incorporated into any standard Prolcg systems without any expensive graph com-
putations.
low and stable overhead

According to the execution statistics, even when the interpreter is executing deter-
minist'¢ Prolog programs, or when backtrackings are always done to the most
recent choice point with alternative(s), the run time overhead is consistently under
14% . While another scheme may exhibit exceptionally low overhead on some par-
ticular grograms, the overhead of the same scheme on other programs may be
prohibitively high. (For example, the overhead for GCA ranges from +7.8% to

+162.8%.) In contrast, context resolution gives more stable performance.

complete implementation
Most of the other schemes have ignored the handlings of the impure constructs of
Prolog, which many programmers use to improve the language’s usability. This
implementation can handle almost all commonly-used impure constructs. The
especially outstanding performance for this scheme on the database query and the
simple N-queen problem suggests that programs which are written without paying
much attention to the control component, possibly with some impure constructs,
are particularly suitable to be run on this intelligent interpreter.

transparency and flexibility
This implementation is transparent to a user since no modification on a source pro-
gram is required before it is executed by the intelligent interpreter. To obtain the
most efficient execution time, the interpreter provides a pair of switches, which
activates or deactivates the association process and the manipulation process
respectively. When a user knows that a program will not benefit much from intel-
ligent backtracking, (s)he can deactivatz the mechanism by turning off both
switches and no overhead will entail. If only the association process is enabled, a
user can activate intelligent backtracking within a specified sequence of subgoals.

We have shown that context resolution correctly captures the minimal amount of
information required for intelligent backtracking. (Examples are parent/offspring rela-

tionship, deterministic/non-deterministic activations of subgoals and failure-originating

9s
bindings of variables.) This scheme has been incorporated into slightly moditied resolu-
tion and unification algorithms. Our implementation shows that intelligent backtrack-
ing can be implemented on top of a conventional Prolog system without undue over-
head. Different implementations are, of course, possible and the efliciency can be
further improved by recognizing the properties of a particular system. The performance
results show that context resolution achieve a tremendous speed up over a conventional
interpreter with naive backtracking for most non-deterministic problems. Even for com-
pletely deterministic programs, the overhead is only around 14%. Although the resolts
are highly problem-dependent, there is strong evidence that context resolution will per-
form well for any arbitrary programs. We believe that context resolution can be umple-
mented on any conventional Prolog systems, which is a major step towards making Pro-

log a more practical programming language for everyday applications.

7.2. Applications of Context Resolution

The extensive utilization of Prolog in solving a wide range of problems calls for an
efficient backtracking scheme. In this respect, context resolution provides an efticient
resolution-based procedure which can be incorporated into many systems easily. We
will look at some of the application areas of context resolution. In particular, one of the

applications is in Prolog program debugging.

7.2.1. General Applications

Prolog has been used successfully in applications such as theorem proving, symbolic
integration, plan formation, CAD, compiler constructions and expert systems. Context
resolution allows these programs to be executed several times faster with little or no

modification to the source programs. While some new logic programming systems, for

96

example, constraint logic programming [Van Hentenryck 87] (CLP) may give better
performance on some problemst, it is often necessary for us to partially rewrite a pro-
gram written for Prolog so t..." it can be run on a particular system efficiently and vice
versa. Quite often, these modifications are non-trivial. In addition, to incorporate these
new schemes in an existing Prolog system, we need to rewrite a considerable portion of
the system. Thus context resolution requires minimal work from the programmers or

implementors while giving very promising results

7.2.2. Debugging

One highly useful application of context resolution is in Prolog program debugging.
Since a context represents an address in the proof tree where a term instantiation takes
place, we are keeping track of the history of the execution in an explicit way. Given a
context term £, we can easily identify all the subgoals which are executed to instantiate
the terms in ¢ bty considering the contexts associated with ¢ (This idea is similar to that
of [Mannila&Ukkonen 86}.) Whenever a unification failure occurs and a list of contexts
is returned, this list reveals the places where a clause is wrongly declared or where a
missing clause should be added. Contexi vesolution is a far more superior scheme than
conventional tracing procedure which gives all kinds of irrelevant informations. Note
that when context resolution is used in program debugging, we can no longer omit con-
texts which correspond to deterministic nodes, since now every context corresponds to a
node in the proof tree. A failure context which corresponds to a deterministic node may

indicate the place where a clause should be added to correct the failure.

+ A CLP program . an solve the S-queen puzzle without any backtrackings.

97
7.3. Extension

The main weakness in the scheme is its inability to intelligently handle some programs
when the ’assert’ subgoal appears after a deep backtracking. We suggest that a pre-
processor which scans a program for any "assert” predicates betore execution will cure
this problem. This pre-processor can give backtracking information to the intelligent
interpreter when a deep backtracking occurs and choose the next backtrack point by tak-

ing the "assert’ predicate into account.

7.4. Future Work

Intelligent Debuggers
This is a major research topic which has much to be done. One of the most well-
known work in this area is [Shapiro 83]. We have seen why context resolution is
particularly suitable for Prolog program debugging. We suggest that context reso-
lution can be incorporated into an interactive debugger to give a powerful high-

level debugger which can detect, locate and possibly correct program bugs.

Intelligent Compilers or Prolog Machines
Numerous Prolog compilers or Prolog machines still employ the naive backtrack-
ing mechanism. It is an interesting research topic to investigate the possibility of
integration of context resolution into them. The 14% slow down for some deter-
ministic programs is a small price compared to the tremendous speed up for most
programs which are non-deterministic. Even dedicated Prolog machines are not
able to compete with this scheme once a program becomes difticult (like most Al
problems). We hope that various concepts addressed in this thesis can be applied

to Prolog compilers and Prolog machines as well.

Purallel Execution Schemes
Intelligent backtracking is required even in a parallel execution environment. We
believe that context resolution can be useful in administrating backtracking in

AND-parallelism.

References

[Bruynooghe 82]
M. Bruynooghe, The Memory Management of Prolog Implementation, in Logic

Programming, AP.IC. Studies in Data Processing 16, K. L. Clark and 5.-K.
Tarnlund (eds.), Academic Press, London, pp. 83-98, 1982.

[Bruynooghe 82a]
M. Bruynooghe, A Note on Garbage Collection in Prolog Interpreters, Proceedings
of the First International Logic Programming Conference, Marseille, France, pp.
52-55, 1982.

[Bruynooghe&Pereira 82]
M. Bruynooghe and L. M. Pereira, Deduction Revision by Intclligent Backtrack-

ing, Implementations of Prolog, J. A. Campbell (ed.), Ellis Horwood, pp. 194-215,
1984.

[Chang&Despain 85]
J.-H. Chang and A. M. Despain, Semi-Intelligent Backtracking of Prolog Based on
Static Data Dependency Analysis, Proceeding of IEEE Symposium on Logic Pro-
gramming, pp. 10-21, 198S.

[Chen,Lassez&Port 86}
T. Y. Chen, J.-L. Lassez and G. S. Port, Maximal Unifiable Subsets and Minimal

Non-unifiable Svosets, New Generation Computing, vol. 4, no. 2, pp. 133-152,
1986.

[Cheng 84]
M. H. M. Cheng, Design and Implementation of the WUP Environment, Master of
Mathematics (Computer Science) Thesis, University of Waterloo, Canada, 1984.

[Codognet,Codognet&Filé 88]
C. Codognet, P. Codognet and G. Filé, Yet Another Intelligent Backtracking
Method, Proceedings of the Fifth International Conference and Symposium, R. A.
Kowalski and K. A. Bowen (eds.), 1988.

[Cox 84]
P. T. Cox, Finding Backtrack Points for Intelligent Backtracking, Implementations
of Prolog, J. A. Campbell {ed.), Ellis Horwood, pp. 216-233, 1984.

[Cox 87]

P. T. Cox, On Determining the Causes of Non-unifiability, Journal of Logic Pro-
gramming, vol. 4, no. 1, pp. 33-58, 1987.

100

[Dobry,Patt&Despain 84]
T. Dobry, Y. Patt and A. Despain, Design Decisions Influencing ¢ Microarchitec-
ture for a Prolog Machine, MICRO 17 proceedings, Oct. 1984.

[Dobry,Despain&Patt 85]
T. Dobry, A. Despain and Y. Patt, Performance Studies of a Prolog Machine
Architecture, Proceedings of IEEE Symposium on Computer Architecture, pp.
180-190, Aug. 1985.

[Hogger 84]
C. J. Hogger, Introduction to Logic Programming, Academic Press Inc. (London)
Lid., 1984.

[Kowalski 74]
R. A. Kowalski, Predicate Logic as a Programming Language 'vIP 74, pp. 569-
574, 1974.

[Kowalski& Kuehner 71]
R. A. Kowalski and D. Kuehner, Linear Resolution with Selection Function,
Artificial Intelligence 2, pp. 227-260, 1971.

[Kumar&Lin 88}
V. Kumar and Y.-J. Lin, A Data-Dependency-Based Intelligent Backtracking
Scheme for Prolog, Journal of Logic Programming, vol. 5, no. 2, pp. 165-181,
1988.

[Lin,Kumar&Leung 86}
Y.-J. Lin, V. Kumar and C. Leung, An intelligent backtracking algorithm for
Parallel Execution of Logic Programs, The Third International Conference on
Logic Programming, pp. 55-68, London, 1986.

[Lloyd 84}
J. W. Lloyd, Foundations of Logic Programming, Springer-Verlay, New York,
1984,

[Mannila&Ukkonen 86]
H. Mannila and E. Ukkonen, Timestamped T '~n Representation for Representing
Prolog, IEEE Symposium on Logic Programm:ag, 1986.

[Matsumoto 85]
H. Matsumoto, A Static Analysis of Prolog Programs, SIGPLAN Notices, vol. 20,
no. 10, 198S.

[Mellish 82]
C. S. Mellish, An Alternative to Structure Sharing in the Implementation of a Pro-
log Interpreter, in Logic Programming, A.P.1.C. Studies in Data Processing 16, K.
L. Clark and S.-A. Timlund (eds.), Academic Press, London, pp. 99-106, 1982.

101

[Pereira 87]
F. Pereira , C-Prolog User’s Manual Version 1.3, SRI International, 1987.

[Pereira&Porto 82]
L. M. Pereira and A. Porto, Selective Backtracking, in Logic Programming,
AP.IC. Studies in Data Processing 16, K. L. Clark and S.-A. Tamlund (eds.),
Academic Press, London, pp. 107-114, 1982.

[Roberts 77]
G. M. Roberts, An Implementation of Prolog, M.Sc. Thesis, University of Water-
loo, Canada, 1977.

[Robinson 65]

J. A. Robinson, A Machine-oriented Logic based on the Resolution Principle,
Journal of the ACM, vol. 12, no. 1, pp. 23-41, 1965.

[Shapiro 83]
E. Y. Shapiro, Algorithmic Program Debugging, MIT Press, Cambridge, 1983.

[van Emden 82]

M. H. van Emden, An algorithm for Interpreting Prolog Programs, Proceedings of
the First International Logic Programming Conference, The University of Mar-
seille, 1982,

[Van Hentenryck 87]
P. Van Hentenryck, A Consistency Techniques in Logic Programming, Ph.D.
Thesis, University of Namur(Belgium), 1987.

[Warren 77]
D. H. D. Warren, Implementing Prolog: Compiling Predicate Logic Programs,
D.A L Research Report Nos. 39 and 40, University of Edinburgh, Scotland, 1977.

[Wolfram 86]
D. A. Wolfram, Intractable Unifiability Problems and Backtracking, Third Interna-
tional Conference on Logic Programming, 1986.

[You&Wang 88]
J-H. You and Y. Wang, Context Resolution: A Computational Mechanism for

Intelligent Backtracking, Proc. of the 7th Biennial Conference of the CSCSI, pp.
234-241, Edmonton, Alberta, 1988.

[You&Wong 89]
J.-H. You and B. Wong, Intelligent Backtracking Made Practical, to be submitted.

Appendix I

Program Listings

%
% database query
%

student(robert,prolog),
student(john,music);
student(john,prolog);
student(john,surf);
student(mary,science);
student(mary,art);
student(mary,physics);

professor(luis,prolog);
professor(luis,surf);
professor(maurice,prolog);
professor(eureka,music);
professor(eureka,art),
professor(eurcka,science);
professor(eureka,physics);

course(prolog,monday,room1);

course(prolog,friday,room1);
course(surf,sunday,beach);
course(math,tuesday,room1);
course(math,friday,roomz2);

course(science,thursday,room1);

course(science,friday,room2);
course(art,tuesday,room1);

course(physics,thursday,room3);
course(physics,saturday,room2);

ask(Student,Course 1,Course2,Prof) «
student(Student,Coursel) &
course(Coursel,_,Room) &
professor(Prof,Coursel) &
student(Student,Course2) &
course(Course2, ,Room) &
professor(Prof ,Course?) &

not eq(Course1,Course2);

102

? ask(Student.Course 1,Course2,Prof);

% -
% naive 6-queen problem
%o

queens(L,Config) «
perm(L,P) &
pair(L,P,Config) &
safe([],Config);

perm([1,[1);

perm([XIY],[UIV]) «
delete(U,[XIY],W) &
perm(W,V);

delete(X,[XIY],Y);
delete(U,[XIY],[XIV])) « delete(U,Y,V);

pair([],{].{]);
pair([XIY L,IUIV][p(X,U)IW]) « pair(Y,V,W),;

safe(,[Ds

safe(Left,[QIR]) «
test(Left,Q) &
safe([QlILeft],R);

test((],);
test([RIS],Q) «

test(S,Q) &
notOnDiagonal(R,Q);

notOnDiagonal(p(C1,R1),p(C2,R2)) «
CisCl-C2&
RisR1-R2&
not eq(C,R) &
NRisR2-R1 &
not eq(C,NR);

? queens([1,2,3,4,5,6),Config);
% use ’? queens([1,2,3,4,5,6,7],Config);’ for naive 7-queen problem

%
% clever 6-queen problem
%

queens(Config) « solution(c(0,[]),Config);

solution(c(6,Config),Config) - cut;

103

% replace the above by “solution(c(7,Config),Config) « cut;’

% tor clever 7-queen problem

solution(¢(M,Config),Conf) «
expand(c(M,Config),c(M1,Confl)) &
solution(c(M1,Conf1),Conf);,

expand(¢(M,Q),c(M1,[p(M1,K)IQ)])) &«
MlisM+1&
column(K) &
noAttack(p(M1,K).Q);

column(1);
column(2);
column(3);
column(4);
column(5);
column(6);
% add ’column(7);’ for clever 7-queen problem

noAttack(_,[]);

noAttack(P,[QIL]) «
noAttack(P,L.) &
ok(P.Q);

ok(p(_,0),p(_L,O)) « cut & fail;
ok(p(R1,K1),p(R2,K2)) «
Difris R2-R1 &
abs(Difr,Abs) &
Difc is K2 - K1 &
abs(Difc,Abs) &
cut&
fail;
ok(_,)

abs{iN.N) &« N> 0 & cut;
abs{NM) e Mis(0-N;

? queens(Contiy);

[g/ ——

/0 SESSZnE==I===E=

% binary tree insertion
% J—

tree([], Tree, Tree);

tree(|EIRest], Tree,NewTree) «
insert(E,Tree,Temp) &
tree(Rest,Temp,NewTree);

insert(E[LI{LE.D) « cut;

104

insert(E,t(L,N,R),t(NewL,N,R)) «

E<N &

cut &

insert(E,L.,NewL);
insert(E,t(L,N,R),t(L,N,NewR)) « insert(E,R,NewR);

7 ree([46,11,48,46,47,6,£,9,7,5,14,17,14,22,1,32,61,14,56,11,78],[. Tree);

Co1 co2 co3

C0s Co6

c0O7 Co4
C10 Cl11

Cco8 C09 C12

c13

%
% clever map coloring
%

next(blue,yellow);
next(blue,red);
next(blue,green);
next(yellow,blue);
next(yellow,red);
next(yellow,green);
next(red,blue);
next(red,yellow);
next(red,green);
next(green,blue);
next(green,yellow);
next(green,red);

good(C01,C02,C03,C04,C05,C06,C07,C08,C09,C10,C11,C12,C13)

next(C01,C13) & nexi(CO1,C02) & next(CO2,C13) & next(C02,C04) &
next(C04,C10) & nex:/C06,C10) & next(CO8,C13) & next(C06,C13) &
next(C02,C03) & next(C03,C04) & next(CO3,C13) & next(C0O3,C05) &
next(C05,C06) & next(C05,C13) & next(C04,C05) & next(C05,C10) &
next(C01,C07) & next(C07,C13) & next(C02,C07) & next(C04,C07) &
next(C07,C08) & next(C04,C09) & next(C09,C10) & next(CO8,C09) &
next(C09,C13) & next(C06,C11) & next(C10,C11) & next(C11,C13) &
next(C09,C12) & nexi(C11,C12) & next(C12,C13);

? good(C01,C02,C03,C04,C05,C06,C07,C08,C09,C10,C11,C12,C13);

108

106

bad(CO1,C02,C03,C04,C05,C06,C07,C08,C09,C10,C11,C12,C13) «

next(C01,C02) & next(C02,C03) & next(C03,C04) & next(C04,C05) &
next(C05,C06) & next(C06,C11) & next(C11,C12) & next(C12,C13) &
next(C09,C13) & next(C09,C10) & next(C04,C10) & next(C04,C07) &
next(C07,C08) & next(C02,C07) & next(C06,C10) & next(C02,C13) &
next(C06,C13) & next(C02,C04) & next(CO8,C13) & next(C04,C09) &
next(C03,C05) & next(CO8,C09) & next(C01,C13) & next(C03,C13) &
next(C05,C!3) & next(C0O7,C13) & next(C11,C13) & next(CO9,C12) &
next(COS5,C10) & next(C10,C11) & next{C01,C07);

7 bad(CO1,C02,C03,C04,C05,C06,C07,C08,C09,CHO,CHI,CI12,C13);
Oy ===========
Op ===========

legal(X,Y,N) <-
legal(X.Y) &
legal2(X,Y.N);

legal1(X,Y) <-
ZisY+3&
X>=12Z,

legal2(X,Y, 1) <
ZisY+5&
X>Z

legal2(X,Y,N) <-
check(X,Y,1,K) &
NisK+ [;

check(X,Y,N,N) <-
XisY+Y &
cut;

check(X,Y,N,K) <-
N<10&
XlisX+1&
YlisY+1&
NlisN+1&
check(X1,Y1,NI,K);

move(3,1, 7); move(3,3,9); move(15,3, 5); move(11,5, 4); move(l,3, 9);
move(20,7, 8); move(30,9,6); move(12,6, 2); move(5,4,10); move(8,2, 3);
move(2,8,18); move(12,4,4); move(5,7,15); move(8,4,10); move(3,9,19);

ordering1(A,B,(,X)Y) <-
move(A.B C) &
legal(A,B,X) &
legal(C,B,Y) &
X>Y,;

ordering2(A,B,C,X,Y) <-
move(A,B,C) &
legal(C,B,Y) &
legal(A,B,X) &
X>Y;

? ordering1(A,B,C,X,Y);
? ordering2(A,B,C.X.Y),

107

108

Appendix 11

Local B-lists

In this section, we will look at the implementation of the local B-lists on context resolu-
tion and present some results based on this implementation. Since this work is done
after the completion of the thesis, we include a brief summary in this appendix. Further
details can be found in {You&Wong 89].

Motivation
As shown in Chapter six, the speed up for the simple map coloring problem is

-87.0% in context resolution, compared to -99.9% in many other schemes. These

1

figures correspond to a reduction of the speed up from 1000 times (—1—_—9—%) to

7.7 times (), a difference by a factor of approximately 130 times

1
1-87.0%
(—179(;2)! One reason for this discrepancy is due to the lookahead mechanism in

WUP. In the previous implementation, whenever there is a unification failure in
the lookahead clause and a context is returned, the context is put in the global B-
list and the next clause is checked. This context can make the execution less
efficient. When a context #c from a lookahead clause is larger than the contexts
returned from a derivation failure for a subgoal P, #c will be chosen during a deep
backtracking. However, P will fail again since #c is more recent than any con-
texts which are associated with the failed terms in P which ciused backtracking.
By turning off the lookahead, the speed up becomes -91.5% (i ..8 times). But there
is still a difference by a factor of 85 times. Now we turn our attention to the issue
of the local B-list, which is the other main reason for this large discrepancy.
Analysis

In the previous implementation, the contexts which are returned during shallow
backtrackings are kept in the global B-list, and they will cause the same problem
as mentioned above. When a local B-list is used, the contexts are local to a

109

subgoal and every context considered during a deep backtracking is responsible
for the failure of the subgoal which caused backtracking. We expect that there
will be a general reduction in the number of inferences, unifications and backtrack-
ings. However, the run time depends on the overhead of our implementation,
which will be described next.

Implementation
Instead of associating a local B-list with every subgoal, we introduce one more
field in the context array. This field tags the subgoal which introduced the context
in the context array. Thus for cach context, the comresponding subgoal can be
identified. The following algorithm summarizes the operations for the insertion
and retrieval of contexts. We assume that the context field in the context array is
represented by CAli].cnt while the tag field is accessed by CAli].tag.

Insertion:
Whenever a termo 1n the subgoal P fails to unify with another term in the head
of a clause, the interpreter performs the following steps on both terms:

for each context #c in the list of contexts associated with the term do:
1 « hash(#c);
CAli].cnt « #c;
CA[i].tag « address of P;

Retrieval:
Whenever a subgoal P fails in a derivation:

i « highest index in CA where there is a context;
start:if (CAli).tag = address of P) {

backtrack_point « CAli].cnt;
CAli]l.cnt « 1,
CAli).tag « 1;

)

else {
ie1-1;
if(i=0)

backtrack_point « MB;

else

goto start;
}
The retrieval operation requires some explanations. First we get the largest index
(i) in the array. Then we search the array from i sequentially downward until we
find a tag which matches the failed subgoal or we reach the bottom of the array

110

(index 0). When we have a maich, the context field of that element is our back-
track point (recall that the elements in the array are sorted and the first element
encountered is the largest). Otherwise we backtrack to the point indicated by MB.

Results and Conclusion

The results are shown in Tables A.1 and A.2. Besides having achieved a speed up
of -99.9% on the simple map coloring problem, the modified implementation gives
an overall better performance on all the other programs (when compared to the
global B-list implementation). This is mainly due to the increased degree of intelli-
gence of the local B-list approach and the low overhead for the implementation.
From these results, we can again clearly establish the claim that intelligent back-
tracking based on context resolution can be considered as a standard implementa-
tion technique for stack-based sequential Prolog.

111

Table A.1: Comparison of Execution Statistics

—— ey

Problem t[Naive WUP Intelligent WUP % Change
database query

inferences 83 27 -67.5%
unifications 152 38 -75.0%
backtrackings 44 3 88.6%
time in ms (#) 10416(100) 14(((100) -86.6%
6-queen simple

inferences 7651 2402 -6¢.6%
unifications 9959 2628 73.6%
backtrackings 1430 SS 96.2%
time in ms (#) 635((1) 1283(1) -719.8%
6-queen clever

inferences 3831 3831 0.0%
unifications 5784 5784 0.0%
backtrackings 806 806 0.0%
time in ms (#) 2050(1) 225((1) +9.8%
7-queen simple

inferences 6296 803 -87.2%
unifications 8425 861 -89 8%
backtrackings 1340 11 -99.2%
time in ms (#) 4950(1) 400(1) -91.9%
7-queen clever

inferences 1044 1044 0.0%
unifications 1578 1578 0.0%
backtrackings 210 210 0.0%
time in ms (#) S16(1) 550(1) +6.6%
tree insertion

inferences 217 217 0.0%
unifications 308 308 0.0%
backtrackings 30 30 0.0%
time in ms (#) 1266(10) 1350(10) +6.6%
map color clever

inferences 4 44 0.0%
unifications 92 87 -54%
backtrackings 12 9 -25.0%
time in ms (#) 2966(100) 3083(100) +39% |

112

r
Table A.1: Continue
Problem Naive WUP Intelligent WUP % Change
map color simplc
inferences 89250 133 -99.9%
unifications 270644 236 -99.9%
backtrackings 57897 10 -99.9%
time in ms (#) 80066(1) 750(10) -99.9%
move ordering 1
inferences 409 154 -62.3%
unifications 464 168 -63.8%
backtrackings 55 14 -74.5%
time in ms (#) 2150(10) 650(10) -69.8%
move ordering 2
inferences 295 145 -50.8%
unifications 331 159 -52.0%
backtrackings 36 14 -61.1%
time in ms (#) 1466(10) 633(10) -58.0%
Table A.2: Comparison With Related Research
Problem DTA GCA GCA SDDA DIB CR
(crL) (# cycles) (CPL) (#instrs) (CPL) (CPU)
databasc query -19.4% -48.9% -55.4% -16.0% -52.4% -86.6%
6-queen simple -34.9% +162.8% +16.6% N/A -61.5% -79.8 %
6-queen clever +99.3% +90.6% +8.6% N/A +10.0% +9.8%
7-quecn simple -82.7% N/A N/A N/A -89.2% -91.9¢.
7-queen clever +103.9% N/A N/A N/A +20.0% +6.6%
tree insertion +43.8% +9.0% 0.0% N/A +30.0% +6.6%
mapcolor clever +63.5% +7.8% -3.9% +0.7% N/A +3.9%
mapcolor simple -99.7% -99.9% -99.9% -99.9% N/A -99.9%
move ordering 1 N/A -54.1% N/A N/A N/A -69.8%
movc ordering2 ;i N/A -33.9% N/A N/A N/A -58.0%
Legends:
DTA Deduction Tree Analysis GCA Generator-Consumer Analysis
SDDA Static Data Dependency Analysis CR Context Res. (local B-list)
DIB Depth-First Intelligent Backtracking

