n University of Alberta

a ;;'

A Comparison of XML Query Languages Based on W3C
Requirements

by

Stanley R. M. Oliveira
Davood Rafiei

Technical Report TR 02-11
June 2002

DEPARTMENT OF COMPUTING SCIENCE
University of Alberta
Edmonton, Alberta, Canada

A Comparison of XML Query Languages Based on W3C Requirements

Stanley R. M. Oliveiral? Davood Rafiei?

oliveira@cs.ualberta.ca drafiei@cs.ualberta.ca

"Embrapa Information Technology, Campinas, Sao Paulo, Brazil
2Department of Computing Science, University of Alberta, Canada

Abstract

Various query languages have been proposed for XML, some inspired by database query languages
(e.g. SQL and OQL) and others introduced by documents community. To fulfill its role of a standard-
ization body, W3C has identified a number of requirements for XML query languages. In this paper,
we examine three XML query languages and report how they conform to the query requirements set
by the World Wide Web Consortium (W3C).

1 Introduction

A large fraction of data today is in the form of semi-structured data and XML has emerged as a
standard to represent and exchange this data. Several query languages have been proposed for either
semistructured data (in general) or XML (in particular) including Lorel [2], XML-QL [12], XQL [22],
YATL [11], XML-GL [5], XSL [18], Quilt [9], and XQuery [8]. These languages are expected to
provide functionalities for data extraction, transformation and integration.

In this paper, we study three XML Query Languages and evaluate their conformance to the re-
quirements set by the W3C query working group [7]. For our study, we have selected Lorel, XML-QL,
and an implementation of Quilt, namely Kweelt [23]. Our selection was affected by (1) both the sim-
plicity and the generality of these languages and (2) the availability of free implementation prototypes.
The evaluation is conducted in three different categories: a) general requirements, b) XML query data
model, and ¢) XML query functionalities.

This article is organized as follows: related work is discussed in Section 2. An introduction to Lorel,
XML-QL, and Kweelt is presented in Section 3. In Section 4, we present an analysis of these XML
query languages based on the requirements of the W3C Query Working Group and report the results.
Section 5 contains the conclusions.

2 Related Work

Several query languages have been developed for XML. For instance, XML-GL is a graphical query
language, relying on a graphical representation of XML documents. YATL is a functional and declarative
language for XML and it is not maintained anymore. Quilt is an XML query language for heterogeneous
data source. Quilt borrowed features from several other query languages, such as XQL, XML-QL, SQL,
and OQL. It was designed to meet the requirements identified by the W3C XML Query Working Group.
XQuery [8], derived from Quilt, is the W3C working draft. Niagara [20] is a querying system providing
limited functionalities for retrieving XML data and monitoring them for some interesting changes.

There is work on comparing XML query languages. Ferndndez et al. [15] identifies essential features
of an XML query language by examining four existing query languages: XML-QL, YATL, Lorel, and
XQL. The first three languages come from the database community and possess striking similarities.
The fourth comes from the document community and lacks some key functionalities of the other three.
Bonifati & Ceri [3] have published a comparative analysis of five XML query languages. They investigate
common features among Lorel, XML-QL, XML-GL, XSL, and XQL.

Chamberlin et al. [6] specifies usage scenarios for the W3C XML query data model, query algebra,
and query language. The use cases are prepared to illustrate important applications for an XML query
language. The use cases along with the solutions are recently published for XQuery [8] and the W3C
XML Query Algebra [14].

Our work differs from related work in several aspects. First, we do not take into account use cases
because they are well defined and exploited by the W3C Query Working Group. In addition, some
use cases are investigated in [15, 6]. Second, we devote special attention to the analysis of 3 XML
query languages of general purpose: Lorel, XML-QL, and Kweelt. Our purpose is to investigate and
compare similarities and differences of these query languages based on the requirements of the W3C
Query Working Group. This approach has not been addressed in the literature.

3 A Glance at Lorel, XML-QL and Kweelt Languages

In this section, we present an introduction to Lorel, XML-QL and Kweelt. To illustrate the syntax, we
use the following example: “Selects all titles of books published by McGraw-Hill after 1995.”

The query is posed to a set of bibliography entries with DTD described in Figure 1. Instances of
this DTD can be found in www.bn.com/bib.xml.

('ELEMBENT bib (book*))

('!ELEMENT book (title,(author+ | editor+),publisher,price))
(IATTLIST book year CDATA #REQUIRED)

('!ELEMENT author (last, first))

(!ELEMENT editor (last, first, affiliation))

('ELEMENT title (#PCDATA))
(
(
(
(
(

IELEMENT last (#PCDATA))
IELEMENT first (#PCDATA))
IELEMENT affiliation (#PCDATA))
'ELEMENT publisher (#PCDATA))
IELEMENT price (#PCDATA))

Figure 1. A DTD for XML documents

3.1 Lorel

General Idea: Lorel is designed for querying semistructured data and is extended to query XML
documents [2]. It is a user-friendly language in the SQL/OQL style for querying such data
effectively. For wide applicability, the simple object model underlying Lorel can be viewed as an
extension of the ODMG (Object Database Management Group) data model and the language as
an extension of OQL [4].

Main Characteristics: (a) extensive use of coercion to avoid the strict typing of OQL which is inap-
propriate for semistructured data [4, 1]; (b) support of powerful path expressions; (c) provision of
a declarative update language and a query optimizer [19].

Syntax Example:
select xml(bib:{
(select xml(book:{@year:y, title:t})
from bib.book b, b.title t, b.year y
where b.publisher = ”McGraw-Hill” and y) 1995)})

In a Lorel query, the constructor appears in the SELECT clause, patterns appear in the FROM
clause, and both patterns and filters appear in the WHERE clause. In this query, bib is used as the
entry point for the data in the XML document. The FROM clause binds variables to the element ids
of elements denoted by the given pattern, and the WHERE clause selects those elements that satisfy
the given filters.

3.2 XML-QL

General Idea: XML-QL is designed to express queries, which extract pieces of data from XML doc-
uments as well as transformations. For instance, it can map XML data between DTDs and can
integrate XML data from different sources. XML-QL is declarative, like SQL, and is relational
complete (e.g. it can express joins) [12].

Main Characteristics: (a) extracts data from large
XML documents and constructs new XML documents; (b) supports data extraction, transforma-
tion, and integration of multiple XML sources.

Syntax Example:
CONSTRUCT (bib) {
WHERE
(bib)
(book year=8$y)
(title)$t(/title)
(publisher)(name)McGraw-Hill(/name)(/publisher)
(/book)
(/bib) IN ?www.bn.com/bib.xml”, $y) 1995
CONSTRUCT (bookyear=8$y)(title)$t(/title)(/book)

} {/bib)

In an XML-QL query, patterns and filters appear in the WHERE clause, and the constructor appears
in the CONSTRUCT clause. The result of the inner WHERE clause is a relation that maps variables
to tuples of values that satisfy the clause. In this case, the result contains all pairs of year and title
values bound to (y,t) that satisfy the clause. The result of the complete query is one (bib) element,
constructed by the outer CONSTRUCT clause. It contains one (book) element for each book that
satisfies the WHERE clause of the inner query, i.e., one for each pair (y,t).

3.3 Kweelt

General Idea: Kweelt is an adaptation of the Quilt proposal. It does try to offer an intuitive, powerful
and extensible syntax to query (navigate, extract, compose, reconstruct) XML documents. Kweelt
has been designed as a reference platform to perform all sort of research experiments related to
XML: storage, query optimization, document output, etc [23].

Main Characteristics: (a) offers multiple XML back-ends; (b) offers an evaluation engine for the
Quilt XML query language; (c) It is able to run on any Java platform and has a small footprint;
(d) It is extensible, allowing one to create his/her own user-defined functions providing various
template classes to make the creation of such functions very easy. More information about Kweelt
can be found in [23].

Syntax Example:

(bib)
FOR $book IN
document(”bib.xml”)//book [Qyear) 1995 AND
publisher = ”McGraw-Hill” |
RETURN
(book year=$book/@year Y$book/title(/book)

(/bib)

In this example, the constructor appears in the FOR clause. The FOR clause binds variables to the
element ids of elements denoted by the given pattern and selects those elements that satisfy the given
filters. Only those tuples for which this condition is true are used to invoke the RETURN clause. In
other words, the RETURN-clause is executed once for each tuple of bindings that is generated by the
FOR clause and satisfies the given filters.

4 Analysis of Lorel, XML-QL and Kweelt Based on the W3C’s XML
Query Requirements

In this section, we analyze Lorel, XML-QL and Kweelt, taking into account the requirements that are
recommended by the W3C XML Query Working Group [7].

These requirements provide flexible query facilities for extracting data from real and virtual docu-
ments on the Web. They are related to the data model for XML documents, a set of query operators
on that data model, and a query language based on these query operators.

The XML Query Working Group assumes that queries operate on single documents or fixed collec-
tions of documents. Moreover, they can select whole documents or subtrees of documents that match
conditions defined in document content and structure, and can construct new documents based on what
is selected.

The requirements can be split into three different groups as follows: General Requirements, the XML
Query Data Model, and XML Query Functionality. The following key words are used in this Section to
specify the extent to which an item is a requirement for the work of the XML Query Working Group

Must: this word means that the item is an absolute requirement.

Should: this word means that there may exist valid reasons not to treat this item as a requirement,
but the full implications should be understood and the case carefully weighed before discarding
this item.

4.1 General Requirements

a) Query Language Syntaz: An XML Query Language may have more than one syntax binding. The
query language syntax must be understandable for humans and also be expressed in XML in a way
that reflects the underlying structure of the query. Lorel, XML-QL and Kweelt have their own syn-
tax. KWEELT has some added features, such as: in-lined, a way to embed some small XML pieces
inside a query itself, statements for external Java functions and dereference hist to be able to deref-
erence Ids with no need for any DTD/Schema information. For instance, @spouse — {Person@pid,
Student@sid}/@name. This is to be understood as follows: grab the Person elements for which at-
tribute pid is equal to the value of attribute spouse or the Student elements for which attribute sid is
equal to the value of attribute spouse. Examples of the syntax of these three languages are available in
Section 3.

b) Declarativity: The user specifies what needs to be done, rather than how it needs to be done. In
contrast to conventional programming languages and scripting languages, Lorel, XML-QL and Kweelt
are full declarative languages.

¢) Protocol Independence: XML Query Languages must be defined independently of any protocols
with which it is used, such as DOM, XSL, etc. Lorel, XML-QL and Kweelt are designed taking this
feature into account.

d) Error Conditions: An XML Query Language must define standard error conditions that can occur
during the execution of a query, such as processing errors within expressions, unavailability of external
functions to the query processor, or processing errors generated by external functions. Although Lorel,
XML-QL and Kweelt do not implement this feature, Kweelt can simulate error conditions with IF
THEN ELSE.

e) Updates: A query language for XML must allow the addition of update capabilities if they are
not supported yet. Though Lorel provides update capabilities, the other languages may be extended to
support update operations. In LOREL, it is possible to create and delete object names, and create a
new atomic or complex object.

f) Defined for Finite Instances: XML instances must validate XML documents (sequences of ele-
ments and datatypes) against a DTD/Schema for a finite number of finite instances. All three languages,
Lorel, XML-QL and Kweelt support finite instances.

The summary of the general requirements can be seen in Table 1.

Table 1: Summary of the General Requirements

Requirement W3C | Xmlql | Lorel | Kweelt
Language Syntax Must Yes Yes Yes
Declarativity Must Yes Yes Yes
Protoc. Independence | Must Yes Yes Yes
Error Conditions Must No No No
Updates Must No Yes No
Finite Instances Must Yes Yes Yes

4.2 XML Query Data Model

In XML-QL and Kweelt, an XML document is modeled by an XML graph where each node is associated
with an object identifier (OID); edges are labeled with element tag identifiers; intermediate nodes are
labeled with sets of attributes value pairs representing attributes; leaves are labeled with values (e.g.,
CDATA or PCDATA). Every graph has a distinguished node called root [12, 23].

Lorel’s original OEM model is modified for XML, allowing the representation of attributes and
order. An XML document in the new data model is a directed, labeled, ordered graph where nodes
represent data elements and edges describe both element-subelement and ID-IDREFF relationships. A
node is either atomic containing a string value or complex containing a tag and a list of attribute name
and atomic value pairs. There are two kinds of edges: subelement edges labeled with the tag of the
subelement and crosslink edges labeled with the attribute name of an IDREFF or IDREFFS [16].

a) Reliance on XML Information Set: The XML query data model relies on information provided
by XML processors and schema processors, such as datatypes, so that it does not require information
that is not made available by such processors. Kweelt does not assume the existence of schemas or
DTDs for the documents it processes. On the other hand, Lorel and XML-QL predate the XML Query
Requirements and XML Infoset so that these languages did not consider such standard issues. Therefore,
none of these languages support this feature.

b) Datatypes: The XML Query Data Model must represent both XML 1.0 character dataype indi-
cates that the contents of an element can be interpreted as both a string and also, more specifically,
as an object that can be interpreted more specifically as a number, date, etc. The datatype indicates

that the element’s contents can be parsed or interpreted to yield an object more specific than a string.
Lorel supports coercion, a feature with the ability of implicit data casting among different types, as
well as compare values represented with different type constructors, for instance scalars, singletons set,
and list with only one element. XML-QL datatype is based on XML Schema specification, that is, it
supports primitive types. Kweelt, on the other hand, makes use of XPath data types [10]. XPath
models an XML document as a tree of nodes. There are different types of nodes, including element
nodes, attribute nodes and text nodes. The primary syntactic construct in XPath is the expression.
An expression is evaluated to yield an object, which has one of the following four basic types: node-set
(an unordered collection of nodes without duplicates), boolean, number (a floating-point number), and
string.

c¢) Collections: One XML query language must represent collections of documents and collections
of simple and complex values. XML-QL and Lorel do not support this feature, whereas in Kweelt,
collections are based on node lists which are ordered Xpath nodesets. More details can be found in
[10].

d) References: This includes both references within an XML document and references from one
XML document to another. XML-QL, Lorel and Kweelt languages support references.

e) Schema Awvailability: Queries must be possible whe-ther or not a schema is available. If a schema
is present and applied to validate a document, the data model must represent any items that they define
for their instances, such as default attributes, entity expansions, or data types. These items will not
be present if a schema is not present [7]. The current version of these three XML languages do not
support Schema Availability.

f) Namespace Awareness: An XML namespace is a collection of names that can be used as element
or attribute names in an XML document with the purpose of qualifying element names uniquely on the
Web. Qualified names (QNames) which are element names with an understanding of the prefix-to-URI
mapping and the separation of the prefix from the local part of the element name. Processors can rely
on the URI for uniqueness, and ignore the prefix entirely, if appropriate to their needs. This schema
mechanism is able to validate a document using multiple such URIs with respect to the schemas for all
of the URIs, while DTDs cannot support this feature. XML-QL, Lorel and Kweelt are not Namespace
Aware.

The summary of the XML query data model requirements can be seen in Table 2.

Table 2: Summary of the Query Data Model Requirements

Requirement W3C | Xmlql | Lorel | Kweelt
Information Set Should No No No
Datatypes Must Yes Yes Yes
Collections Must No No Yes
References Must Yes Yes Yes
Schema availability | Must No No No
Namespace aware Must No No No

4.3 XML Query Functionality

In this section, we compare Lorel, XML-QL and Kweelt based on the third group of requirements
proposed by the W3C XML Query Working Group. More examples showing how these three languages
support query functionalities can be found in [15, 6].

a) Supported Operations: Asin SQL, an XML query language must support binary queries composed
of union, intersection, or difference of subqueries. XML-QL supports this feature partially. It means that

XML-QL only supports union and intersection, while Lorel supports union, difference and intersection.
Kweelt models an XML document as a tree of nodes. The nodes include element nodes, attribute nodes
and text nodes. So, nodeset operations support union, difference, before and after [9, 23].

b) Text and Element Boundaries: This feature expresses simple conditions on text and requests
essentially that element bouderies can be ignored in queries. A simple example of this feature is tags
and white spaces. All three languages support this feature.

c) Universal and Existential Quantifiers: In some queries it might be useful to check whether a
property holds for all elements of a collection. A universal predicate over a set of instances is satisfied
if all the instances satisfy the predicate. Lorel and Kweelt support universal quantifiers while XML-QL
does not. On the other hand, an existential predicate over a set of instances is satisfied if at least one
of the instances satisfies the predicate. The three languages support existential quantifiers.

d) Hierarchy and Sequence: Queries must support operations on hierarchy and sequence of document
structures. This feature is essential for every XML query language, and it is supported by these three
languages.

e) Combination: An XML Query Language must be able to combine related information from
different parts of a given document or from multiple documents. These languages support combination.
For instance, in Lorel, XML-QL and Kweelt, a user can combine information collected from different
portions of documents which are necessary to merge information from multiple data sources.

f) Aggregation: Aggregate functions compute summary information from a group of related docu-
ment elements. For instance, the classical aggregates functions supported by SQL are min, max, sum,
avg, and count. Lorel and Kweelt supports all aggregate functions. The aggregates functions are present
in the new version of XML-QL.

g) Sorting: This feature is very important when one has to present sorted query results. In XML-QL
this feature is specified but not implemented yet, whereas it is fully implemented in Lorel and Kweelt.
For instance, a good application of sorting is the example available in section 3: Selects all titles of
books published by McGraw-Hill after 1995, listed alphabetically.

h) Composition of Operations: This feature is able to support expressions in which operations can
be composed, including the use of queries as operands. All three XML query languages studied in this
work support composition of operations.

i) NULL Values: Every XML query language must support NULL values over all operators, including
logical operators. However, none of the three languages, Lorel, XML-QL and Kweelt, support it. On
the other hand, in some cases, this feature can be simulated by converting NULL values into empty
strings to avoid errors.

j) Structural Preservation: This feature consists of ordering the resulting elements in the same way
as the original document preserving the relative hierarchy and sequence of input document structures
in query results. Kweelt and XML-QL produce ordered XML documents and the order can be specified
to be the same as the source document. In Lorel, the retrieval documents are ordered in the same way
as the original document, and the new ones are placed at the end of the document with an unspecified
order among them.

1) Structural Transformation: As XML languages proliferate, translating XML documents between
the many different sources is a vital enabler for application integration and effectiveness. XML trans-
formation is the key to interoperability, both at enterprise and global market level. XML documents are
transformed using the W3C standard, XSLT [13]. This feature is able to transform XML structures and
must be able to create new structures. Lorel, XML-QL and Kweelt support structural transformation.

k) References: This feature is essential for every XML query language. Queries must be able to
traverse intra- and inter-document references. References are present in Lorel, Kweelt and XML-QL
and they are able to traverse document references in order to access element and attribute values.

m) Identity Preservation: Queries must be able to preserve the identity of items in the XML query
data model. Identity preservation simplifies the representation of XML reference values, for example,
IDREF, Xpointer, and URI values. Lorel, Kweelt and XML-QL support this feature.

n) Operations on Literal Data: An example of literal fragments of an XML document is:

(name) (first)Stanley (/first)(last) Oliveira(/last)(/name),

which may be used for comparison in a query. Such literals are regarded as convenient but not essential,
because such fragments may be expressed in different concrete syntaxes. Literals can be seen in the
sense of constants (of a simple type). Operations on literal data are basic and all three languages
support them.

0) Operations on Names: Queries must be able to perform simple operations on names, such as
tests for equality in element names, attribute names, and processing instruction targets, and to perform
simple operations on combinations of names and data. This feature is undefined in XML-QL but is
present in Lorel and Kweelt.

p) Operations on Schemas: Schemas are emerging standards for representation of metadata related
to XML documents. XML Schema improves upon DTDs in several ways, including the use of XML
syntax and support for datatyping and namespaces. For example, an XML Schema allows one to specify
an element as an integer, a float, a Boolean, a URL, and so on. None of the three languages support
operations on schemas.

q) Operations on Schema PSV Infoset: According to the W3C XML Query Working Group, queries
must be able to operate on information items provided by the post-schema-validation information set
defined by XML Schema. As discussed in the previous item, Lorel, XML-QL and Kweelt do not support
schemas. Hence, this feature is not present in these languages.

r) Extensibility: The basic idea of extensibility is the capacity to extend the language without
touching the implementation itself. This feature allows an XML query language to support the use
of externally defined functions on all datatypes of the XML query data model. The interface to such
functions should be defined by the query language, and should distinguish these functions from functions
defined in the query language. Neither Lorel nor XML-QL supports extensibility in this sense. On the
contrary, in Kweelt users can write their own Java code (functions) and call it from the query. Such
functions have to implement the right interface or extend some template (abstract) classes and must be
registered inside the query using the construct: import ... as ...;

s) Environment Information: Through this feature, an XML query language must provide access
to information derived from the environment in which the query is executed, such as the current date,
time, local, time zone, or user. Neither Lorel nor XML-QL supports environment information. However,
Kweelt does.

t) Closure: Both the input to a query and the output of a query must be defined purely in terms of
the XML query data model. Similarly, query results are defined purely in terms of the XML query data
model. In software systems these results may be instantiated in any convenient representation such as
DOM (Document Object Models) nodes, hyperlinks, XML text, or various data formats [7]. All three
languages were designed to support closure.

The summary of the XML query functionality can be seen in Table 3.

Table 3: Summary of the XML Query Functionality

Requirement W3C | Xmlql | Lorel | Kweelt
Supported Operations Must Part Yes Yes
Element Boundaries Must Yes Yes Yes
Univ/Exist Quantifiers | Must Yes Yes Yes
Hierarchy & Sequence Must Yes Yes Yes
Combination Must Yes Yes Yes
Aggregation Must No Yes Yes
Sorting Must No Yes Yes
Compos. of Operations | Must Yes Yes Yes
NULL Values Must No No No
Structural Preservation | Must Yes Yes Yes
Struct. Transformation | Must Yes Yes Yes
References Must Yes Yes Yes
Identity Preservation Must Yes Yes Yes
Literal Operations Should Yes Yes Yes
Name Operations Must No Yes Yes
Schema Operations Should No No No
Schema PSV Infoset Must No No No
Extensibility Should No No Yes
Environment Info Must No No Yes
Closure Must Yes Yes Yes

5 Conclusions and Further Improvements

In this work we have analyzed three XML query languages, Lorel, XML-QL, and Kweelt, against the
requirements of the W3C XML Query Working Group. This study revealed that none of these languages
fully satisfies the requirements investigated. However, most of the requirements are available in these
languages.

Lorel was developed at the Stanford University and comes from traditional database query languages
(e.g. SQL and OQL). XML-QL was developed at AT&T Labs, and Kweelt was developed at the
University of Pennsylvania. Unlike Lorel, XML-QL and Kweelt were inspired by XML documents.

This work also showed that although these languages were developed independently by research
groups in different Universities/Centers, these three languages come from database community and
possess many common features. For instance, these languages provide an excellent integration of ex-
pressive power, simplicity and performance.

XML-QL is not only a good example of simplicity, but also of expressive power as it supports
querying, constructing, transforming, and integrating XML documents. Lorel provides expressive power
and performance. It is the only language, among these three, that has a query optimizer for XML which
provides a better performance for querying XML data efficiently. In addition, Lorel is the only language
which supports update. It may be because Lorel was developed on traditional database concept. Kweelt
is more complete than Lorel and XML-QL. In other words, Kweelt meets almost all the requirements
proposed by the W3C XML Query Working Group. Kweelt is open-source [21] and is made available
through the GNU General Public License [17].

We believe that Lorel, XML-QL and Kweelt may be applied in important domains, such as education,
database research, and Web integration. All these languages are offered to the database community as
an expressive contribution for those who are interested in data management on the Web area.

The similarities among Lorel, XML-QL and Kweelt are a result of a collaboration that is helpful for
influencing and designing powerful general purpose query and transformation mechanisms for XML.

There are some directions for further improvement as an extension of this work. For instance, we
particularly believe that it is worth comparing other languages such as Quilt, XQuery, and Niagara
based on the requirements of the W3C Query Working Group, because they are also able to query
XML documents from different sources, besides providing integration of expressive power, simplicity
and performance. In contrast, it investigates languages such as XQL, YATL, and XML-GL may be
not an expressive work because these languages do no meet many key requirements of the W3C Query
Working Group.

6 Acknowledgments

Stanley Oliveira was partially supported by CNPq of Ministry for Science and Technology of Brazil,
under Grant No. 200077/00-7. Davood Rafiei was partially supported by a Research Grant from
NSERC, Canada. Mary Fernidndez and Arnaud Sahuguet answered many of our questions on the
details of XML-QL and Kweelt and their conformance to the W3C query requirements. We would like
to thank both for their help.

References

[1] S. Abiteboul, R. Goldman, J. McHugh, V. Vassalos, and Y. Zhuge. Views for Semistructured Data.
In The Workshop on Management of Semistructured Data, Tucson, Arizona, May, pages 83-90,
1997.

[2] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L. Wiener. The LOREL Query Language
for Semistructured Data. Int. Journal on Digital Libraries, 1(1):68-88, 1997.

[3] A. Bonifati and S. Ceri. Comparative Analysis of Five XML Query Languages. SIGMOD Record,
29(1):68-79, 2000.

[4] R.G.G. Cattell and D. K. Barry (eds.). The Object database standard: ODMG 2.0. In Morgan
Kaufmann, San Francisco, California, USA, 1997.

[5] S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi, and L. Tanca. XML-GL: a Graphical
Language for Querying and Restructuring WWW data. In Proc. of 8th Int. World Wide Web
Conference, WWWS, Toronto, ON, May, 1999.

[6] D. D. Chamberlin, P. Fankhauser, M. Marchiori, and J. Robie (eds.). XML Query Use Cases. W3C
Working Draft 08 June, 2001. http://www.w3.org/TR/xmlquery-use-cases.

[7] D. D. Chamberlin, P. Fankhauser, M. Marchiori, and J. Robie. XML Query Requirements. W3C
Working Draft 15 February, 2001. http://www.w3.org/TR/xmlquery-req.

[8] D. D. Chamberlin, J. Clark D. Florescu, J. Robie, J. Siméon, and M. Stefanescu. XQuery 1.0: An
XML Query Language. W3C Working Draft 07 June, 2001. http://www.w3.org/TR/xquery/.

[9] D. D. Chamberlin, J. Robie, and D. Florescu. Quilt: An XML Query Language for Heterogeneous
Data Sources. WebDB (Informal Proceedings), pages 53—62, 2000.

[10] J. Clark and S. DeRose (eds.). XML Path Language (XPath) Version 1.0. W3C Recommendation
16 November, 1999. http://www.w3.org/TR/xpath.

10

[11]

[12]

[13]

[14]

[15]

[16]

S. Cluet and J. Siméon. YATL: a functional and declarative language for XML. Draft March 2000.
http://citeseer.nj.nec.com/cluet00yatl.html.

A. Deutsch, M. Ferndndez, D. Florescu, A. Levy, and D. Suciu. XML-QL: a query language for
XML. In Proc. of 8th Int. World Wide Web Conference, WWWS, Toronto, ON, May, 1999.

J. Clark (editor). XSL Transformations (XSLT) version 1.0. W3C Recommendation 16 November,
1999. http://www.w3.org/ TR /xslt.

P. Fankhauser, M. Ferniandez, A. Malhotra, M. Rys, J. Simoén, and P. Wadler. The XML Query
Algebra. W3C Working Draft 07 June, 2001. http://www.w3.org/TR/query-algebra/.

M. Ferniandez, J. Siméon, and P. Wadler (eds.). XML Query Languages: Experiences and Exem-
plars. Draft manuscript, September. http://citeseer.nj.nec.com/254041.html, 1999.

R. Goldman, J. McHugh, and J. Widom. From Semistructured Data to XML: Migrating the Lore
Data Model and Query Language. In Workshop on the Web and Databases, pages 25-30, June
1999.

The General Public License (GPL). Version 2, June, 1991. Available at.
www.opensource.org/licenses/gpl-license.html.

W3C XSL Working Group. The Query Language Position Paper of the XSL Working Group. In
Proc. of the Query Languages Workshop, Cambridge, Mass. December, 1998.

J. McHugh and J. Widom. Query Optimization for XML. In The 25th Int. Conference on VLDB,
Edinburgh, Sept., pages 315-326, 1999.

J. Naughton, D. DeWitt, and D. Maier. The Niagara Internet Query System. Submitted for pub-
lication in 2000. Available at. http://www.cs.wisc.edu/niagara/papers/ NIJAGRAVLDBO00.v4.pdf.

Open Source Initiative (OSI). Copyright 2001 by the Open Source Initiative. Last updated 8 May,
2001. http://www.opensource.org/.

J. Robie. The design of XQL, 1999. Available at. www.texcel.no/whitepapers/xql-design.html.

A. Sahuguet. KWEELT, the Making-of: Mistakes Made and Lessons Learned. Technical report,
Dept. of Computer and Information Science, University of Pennsylvania, USA, November 2000.

11

