/1

THE UNIVERSIZY OF ALBERTA

ADAPTIVE PAGE FAULT CONTHOL:

USE OF THE VWORKING SET PARAMETER

by

LRIAN J. WELEY

&

A THESIS
4

SUBMITIED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH

IN PARTIAL FULFILMENT OF zﬂE REQUIREMENTS FOR THE DEGREE

" OF MASTER OF SCIENCE
DELPARTHENT of COMPUTING SCIENCE

EDMONTON, ALEERTA -

FALL, 1974

ABSTRACT

The properties of the Working Set Model of Program
Behavior are used to analyse the relationship between: page .
demand ;nd memory utilization on virtual, paged computets.
The study doiiﬁeb gossible operating systenm impleﬁgutatipné
of the working set parameter or "window‘size“'vfor‘ gpfposes
of ~page fault control. Topics aiscussed- are ‘adapfive
control- and size determiqation of the parameter plus

solutions to the problem of working set- recognition.

2 .
Addit ional possibilities for adaptive control of paging are

investigated by relating empirically derived program working
set Dbehavior to source languages and 'instfuction.types

executed. .

o

The working set concepts are extended to apply at the
page level. in investigation of working set page
characteriséics is used to determine the <feasibility‘ of
adaptive memory management based on inaividual page:

behavior.

iv R

ACKNOWLEDGEMENTS
4 .

I wish to thank Professor T. A. Marsland, my
supervisor, for .his advice, criticisﬁ, and guidance during
the research and érepaﬁation of the thesis., I would also
like to thank Mr. A. R. Davis of the University of Alberta
Computing Services for the information on MTS, and .21llow
' graduate student, MHNr. S; Sutphen, for his criticism and
assistance during ‘data accumulation and.analyéis.

A ' . |

. Thé finénciél assistahce received ffom the National
Research Council of Canada, in the form of a 'scholarship and
bdsary, and from the Department of Computing Science, in the

form - of a teaching assistantship, is gratefully

acknowledged.

'(\

"oF

/"\ .

\

TABLE OF CONTENTS

CHAPTER : PAGE
e e
I. . INTRODUCTION b+ eeveevacaoasasnscacacasossssssanaae 1
, . II. DEVELOPHMENT OF MEMORY UTILIZATION TECHNIQUES .. 5

III. STUDIES OF. PROGRAM BEHAVIOR IN A PAGTNG.
_gyKIRoﬁmauT Gt eeceeeteceteteeasraaaceararaaons s
Iv. THE WORKING SET MQbEL OF PROGRAM BEHAVIOR 22
V. THE WORKING SET WINDOW SIZE PR
VI. THE EMPIRICAL STUDY OF WORKING SETS +eveevasees 60
| Program Beha_wior R R
Page Behavior v.. @9
" VII. CONCLUSION SRS L P
ok % |
BIBLIOGRAPHY ..,....u.....;..;................ﬁ..w.;,.120
APPENDIX 1. PROPERTIES OF THE EXTENDED WORKING SET

i' MODEL OF PROGRAN BEHAVfOR‘:......._........12'7

APPENDIX 2. ALGORITHHS USED FOR CALCULATING THE n

- S WORKING SET CURVES ccecescsnccnacoasasssssl3l

ABPENDIX 3. THE WINDOW SIZE Of MIS eeeveeincaoancnasssal39

vi

Table

II1

III

Iv

VII

CVITI

IX

LIST OF TABLES

Description

Design Options for Implementing the

Working.$et Parameter, T
~ ‘ Al .

I.B.N. Secondary Storage Device Access
Times and the Corresponding Working Set

Parameter Suggested by Denning for 50%

Residency
Description of the 15 ProgramsRuns

N \.
Numerical Description of the 15 Progranm
rRuns) °

Wworking ' Set Characteristics of the 15
Program Runs :

"STEADY-SIATE" Working Set Character-
istics and the - Exponential Fit
Parameters A and 3 for the 15 Progran
Runs _ &

Averagé Exponential Fit Parameters of
the Missing Page Rates For Different
Program Types : :

Instruction Type Exeéution and I/0
Characteristics for the 15 Program Runs

Page Working Set Characteristics of
Programs 8, 9, and 11

Characteristics of Paging and Non-paging

Pages for Programs 8, 9, and 11

T4 . .

vii

Page

45

53 -

63
64

68

69

75
78
102

102

Figure

10.
11.

12.

L1ST OF FIGURES

Curve of the Average Working Set Size, §(T)
Curve of the Missing Page kate, H(T)

A Graphical Argument for a Figed Window Size
aphical Arqument for 'Variable Window

A Gr
S1lzes N

Local vs. Global Window Size Control

A Graphical Argument for Individual Page
Windows :

Denning's'Graph 0of .Page Residency
Prieve's Residency of an "Average'" Page

Program 1 : 3(T) and E(T) Curves

Program 2 : S(T) and M(T) Curves

Progranm 3 : §(T) and H(T) Curves

Program 4 : 5(?) and E(I) curves

Program 5 : E(T) and E(T) Curves

Program 6 : §(T) and H(T) curves

Program 7 : E(T) and H(T) Cutves T
Program 8 : §(T) and E(iL.Curves |

Program 9 : E(T) and H(T) Curves

Program 10 : §(T) and E(T) Curves

viii

Page

27

27

40

43

43

54
54
84

85
86
87
88
89

90
91
92

93

Fiqgure

19.
20.
21,
22.
23.

4.

29.

30.

. Program 11

~

LIST OF FIGURES (cont'd)

) and H(7) Curves

i
=

Curves

-
r
ni
—
+3
Qj
=
Q.
=
—
3

Program

) and M(T) Curves

971
—
+]

Program 13

) and M(T) Curves

wn|

+3

Program 14 :

(

(T) and M (T) Curves

7]

Program 15 :
E(Ty'Curves Iﬁdividual'Pages
E(T) Curves Individual Pages

Expected Residency .Time 1in the Workinyg Set
tor Non-paging Pages of Programs 8, 9, and 11
Relationship Between Window Size and Page
Fault Behavior for Non-paging Pages of
Programs 8, 9, and 11

Relationship Between Window Size and Page
Fault Behavior for the Three Different Page

“ypes of Programs 8, 9, and 11 S

Minimum wind$\ Size for No-Fault Page
Behavior Againék\izigyency of Reference/Page
for Progranms 8, 9, 11 :

Real Time Program Memory Allocation . for
working Set and Tradition tMemory Management

Schemes

1X

Page

98

100

101

108

100

110

111

I: Introducpion v,
: , W i

Because of the operational complexity of vigg@%} memory
computers, it is extremely difficult téﬁ%ﬁﬁ&éééf&nd how
paging ratesl/and storage utiliia£iou %ﬁéﬁpﬁih{éd« A major

PR A N

:1’ i tionship Dby

goal of the thesis is to investigatelyﬁh&

G

examining measurements made, of mﬂi{lgg\ﬂpage rates and

)) ’ \i\‘.) ',\"l‘, \‘.J
expected working .set sizés.-9f indiviMual programs, as
o \ T
N : :

e

described in Denning's ‘Working Set Model of Program
Behavior (D2]. Fifteen different program runs representing

six different kprogramming languages are analysed. Page

<Ez?erence strings were gathered by executing interpretively

-

value of t

one million' instructions per program. They provide the data

necessary to construct average wvorking set size and missing

page rate curves for each progranm.

The study also proposes extensions . to the original
working set concepts to include tﬂ% behavior of individual
pages. Three selected programs are eiamined to determine
empirically whether or.not a working set approach can be

applied at the page levgi.

.~

The working set rves provide information about the

individual " pregram for effibignt execution. This parameter
or "window siz<" is the length of process execution time

that determines whether or not a page is part of a program's

working set ,parameter, T, desired by an’

‘ 2
working set. 1In deneral, as the window size increases so
does the number of pages allocated to a program in main
memory; while the same program's average paging rate
decreases. The thesis not only investigates the size of the
paraﬁeter T,v‘but also discusses adaptive control of_the
window size and means of effecting such control. Current

implementations of working set concepts are used to

illustrate different adaptive procedures.

The working set curves are also used to gather
information on program characteris£ics. In particﬁlar, ah
QXpoheptial curve is fitted to each missing page rate curve
to determine quantitatively any differences or simila}ixies
betweén the various programs.‘ The resultant coefficients
obtained from the exponential fits arewcompared to fhoée

determined in a previous study [R4].

To provide a mnore detailed description of ~the content
: 5

of this study, a ~brief discussion on the subjects within

"each of the remaining chapters follows.

Thé_eatly OmE . ter environmgnts consisted of a single
user, operating i small primitivé device exeéuting a program
written - in machine'vcode. Today, a far different -situation
exiéts with the availability of diverse ‘high-level
languages, multipie users .havihg "simulﬁanepus" machine

N

access, and sophisticated operating systems controlling

i-f\

3
computer resources. Chapter II descrlbes some of the
improvements in memory utilization technlgues betueen these

two eras, including the development of virtual memory.

Chapter TIII presents the results of some previous and
current studies of progranm behévior én virtual, paged
'compqters.'Included in the description of each study are the
procedures used for gathering and analysing the progranm

data.

ChapteroIV, the Worklng Set Model, summarlzes'Dennlng:s
theoretical mbdel of program behav1or 1nclud1ng thé basic
properties of locality of reference and the characteristics
of the worklng set, W(t,T). The progran behavior studies dn
Chapter III are related to the propertles of the model. BY
the addition of several new propertles, the model is
extended so that 1ts ‘concepts. are applied at the page level.
‘The -chapter concludes with a discussion of the limitations

of the model.

Determining how the wvorking set parameter oL uindoﬁ
size is implemented on én‘opératihg system is thé subject of
Chaptef v. Should each prdé;am's working set be recognized
or is it sufficient to recognlze ~only "a "system“ ‘wofking
set? Should the chosen wlndou size be fixed or variable in
time? should the window size be the same for all prdgfams or

s

"should each program have 1its own 1nd1v1dual working -sét

- ‘ .) 4

parameter? The assumptions necessary. and the reason for edch

type of" abproach_are presented. Several implementationsfof'

adaptive winddwing are described. The feasibility of

extending window. size control to individual program pages is

i

discussed. "

.

5

Chapier VI ptesentq' the empirical resul€s oft‘the

)

research; the determination of the program and page behav1or'

curves., These results are 'related to the flndlngs of

\phapter V. Also included- is a dlSCUSSlOﬂ of prev1ously

pubﬁlshed emplrical worklng set results and 7 descrlptlon of

the’ 1nvest1gat1ve procedures used in thlS study.

The - final chapter presents. further conclusion$, a

3

summéry of all results, and ideas-for ﬁn:ther,research.

%

~

II: Development of Memory Utilization Techniques

Prior to 1956, computers were primitive by today's

'l

standards. Usually, main memory was less than 12K words

residing. on either a William's tube or mercury delay line.

‘. Computers .also existed which used a magnetic drum as the

main storage unit for the CPU. The #ery limited amount of
real memory necessitated the use of very- succinct

programming code. The structure of any program was also

" extremely important on drum memory computefs So that

instruction access time - could be minimized. Since
programming was done using. machine- code and absolute
addressing, programmers had to have® a very intimate

I -

knowledge of

the problem, their program, and théir_computer.

)
4 #

Despite the development of some simple, assemblers, .

essentially -no software system '~ support for computers was

- available until the appearance. of the " ffrst . operating "

systems i1 1926, They' consisted of a monitor, used for

-

control _urposes, plus = various, frequently used,

subtoutines. The operation of the system was batch-oriented.
* ’ NN o - N .

. Mamny programs would be placed on a single‘tépe which wds

then used as the input job stream. When the last job on the

fape had 'been executed, fhe system would call for a new

~ '

. .
o =

"batch" of prdgrjms~so that processﬁng could: continue. The

s : . .
system improved CPU and memory utilization by providing the

~— .

6 .
commonly used 19§he;s, compilers, I/0 routines, and reducing
. the thsicéliswitching time between the serially execdted
jobs. However, even this simple operating scheme would have
been impractical without the advent ®f magnetic core memory

which allowed greatly expanded, rapid, random access storage

v

for progranms.
c.
Durﬁng;>tﬂe period of 1956-58, the FORTRAN programming
. N)
languaq%/ﬁas developed. It and the many other languages
i . : . ' :
which Have followed have greatly sinplified programming.

Since they pré#ide the means of stating more easily the

algorithmic solution to a problem for machine application,

<«

even casual users can now have access t©o computing. But the
success. of computer .languages has alsd increased demand for

~ the use of computing resources, including memory. The desire

¢

for more computer power has prompted continued improvement

'in existing software and development of new hardware and

>

software capabilities.

Two .improvements developed 1in this period Wwere

relocatable code and the use of oveflays. Relocatable code
. _ o

for user's programs simplified the use of absolute *system
code.”“The technique also enabled the system to exercise more
control over where and when problenm Rtogramé'were loaded

into memory. overlayfng allowed a programmer to construct a

program that during execution could ové&iay parts of itself

7
with code from a‘second;;} storage device., By removing~\sii///
execution requireme. of an entirely resident progranm, |
machine storage capacity limitations could be circumvented.
During the period of 1959-61, transistorized circuit}y was
iﬁtrqdudéd which repldced vacuum tubes wused on earlier
productibn computers. Because of the ing;éége in electronic
switching speeds, nuch faster CPU operation was realized.
Equally important was the develbpment of thé asyﬁchronous

. I/0 channel. Essentially a sméll computer, it controls the
actual transfer of data between the external L/O devices and
the internal buffers of the CPU. When equipped to interrupt -
the main fraﬁe activity of the CPU, the channel provides the
ébmputervsystem>uith the ability to éerform fully overlapped
I/0. Instfuction execution and the input and optput of ;data
can proceed simultaheoUsly, not only improving the

utilization of mefory but also enhancing the pfocessor

capabilities.

During the middle 1960's the third geﬁeration of
computers was marketed. These machines, exemplified 'by the
iBM /3601tline, introduced the use of integrated circuitry
aﬁd increasinghamqunts of hardware protection for‘thé system
supervisory ?fogram. Because'of‘ the increasing number 6fu
casual programmers, thé deveiopﬁent - of programmable

‘irterrupting clocks, supervisory and user modes of computer

operation, and memory read/write protection was necessary to

guaréntee system integrity for all users.

Hu;tiprogramming, thé sharing of memory bgtveen a
number of tasks, each conEﬁrrently competing for systenm
resources was a ‘major software .develophent. Thefe aré
éeveral advantages in using this technique. Having muf?iple
jobs on ‘the system, the influence of I/0 wait time cag\be
reduced since another fask can be executedlif the currently
running program blocks for I/0. By using a‘system softw;ré
scheduler, the "turn-around" time for a job can be\\
controlled by manipulating - its execution priority. |
.Superviéory control éf program éxecution can be further
enhapced by allocating execution time to individual taéksjin
time slic€§\\Q£_ quanta. A more uniforﬁ approach to system

'design can be taken since all I/O prdcessors can be treated

as tasks in the multiprogramming environment.

v

‘Thé simplest multiprogramming<'systems are batch-
.oriented, with eacﬁ user prégram memory resident until /
completed: A modification to this approach is known as time- /

. : .
sharing.” The system employs the use of on-line terminals
developed under thelfollowing assumptions. It is desirable
thét programmers can interact with programs, that each
- interaction would require only small amounts of CPU time aﬁd

menory, that a program's space requirements can be swapped

éa§\§i.'in and -out of main memory, and that the time between

P

. machine must have a - hardware - mapping . device - which

9"
each user's interaction is relatively long. Thus by giving
each interactive wuser quite limited CPU time, and swapping
programs when required, even larger numbers of concurrent
users could be servicédﬁwitﬁbgt igordinate'exgenditures‘in
expanding computer memorY‘feEogéees.c |

Although ¢ime-sharing as described can .be implementeh
using a fixed memory allocation, it inherenfly advocates a
dynamic approach to memofy management. Thus, time-sharing is
often seen inbcontext witﬁ virtual memory, a concept which

v

depicts the wuser's address space as oge-level stotage
[D3,K4]. Eaph'prog:am appears to be running on a ‘computér
‘'with the same operating characteristics as the real one
except for a greatly expanded memory. In actuality, the real
aﬁtomatically translates, during execution, a 'progré;}s\\
virtualzgddress to the méchine's real address [I5]. Every
task's excess addresSable memory must reside on a secondary
storage medium. It is transférred to main memory by .the
sjstem when referenced bylthe task and removed whenever the
system requires. additional real meﬁéry. ‘This automatic
folding o%\the program is transparent to the user (s2].
The-t&pvbésic échemes used\fo translate virtual to real

memory 'addresses_ are segmentation and paging. Using a

2

segmented approach, a. program's virtual address space is

10
divided into .variable size, content-related blocks of
oontiguous code Callg%- segments [B1,B7;D7,R1;V3]. . Each
‘ virtual address consists df s+d bits, where the é bits
identify the partlcular seément. and the d bltsp the
displacement of the addressed location withip the/segment.
‘The maximum size of any segment 1is i to -the _power d
addressable locations. Since a segment~can‘have any length
less than the maximum, its size must be'known by the system

<

for memory allocation purposes. Tygfoally, reall_memory
consists ofvartive'segments interspe?sed with hholes" of
unallocated storage “space. Slnoea;these holes are not
‘executahle code, they contrlbute mfo{fthe system overhead.
When a segment\ls referenced and must be loaded into memory,
the storage allocation routine must’ determlne if there is a
hole available to fit the segment. 1f there lS, the 'segment
is transferred to memory producing another hole, smaller
than the original one. The proliferation of small holes
"which normally vlll not hold a segment is a form of storage
loss known aS'externall menory fragmentation [D4,R3]. When
memory becomes fragmented, transferring a new segment to
memOry may reqnirei”e1ther a re-grouping of the active
segments to create one large hole or removing some segments
accordlng to‘a segmgent replacement scheme (or perhaps both) .

The managing of'variable block sizes is both a «costly and

complex process and is the chief disadvantage of using a

segmented translation schepe. , .\

A secoﬁd aépréach, éaging; reduces 'memorfM allocation
difficulties by~‘diviaing a 'pfogram's virtual\mémory into
fixed sized blocks of code calléq pagés. Exteﬁnal memory
.frqgmentation becohes 'nil siﬁce all "holes" are available
for use. The onlf real waste of memory space occurs when the
code available fot loading does not completely fill a paée.
Such memory loss is called internal mémory
'fradmentafion [R3]. Normally, this situation occurs only in
the 1last ' page of a‘progfam unless the System loader pays
'particular attention to pdge-boundaries. For example, the
loader on the Michigan Terminal Systen (MTS) [A2,M5,M46]
system attempts to place a progranm module on a page boundary
wvhen -not enough Aspace remains in a previously('loaded
page [D1]. Under these circumstances intefhal fragmentation
'méy-bevmore'éronounced. Because of the inherent simplicity
of memory allocation using pagihg, the approach has.beco?e
widely adopted<i 2 in the - computer industry
[Aj,Aé,CB;IS,KG,OZ;W1]. ‘For this reason,:the renainder of

the thesis is restricted to memory management via paging.

A pe ‘g environment raises. two prominent questions
concerning > management of the memory resource. What
algorithm w. ;e used to fetch pages into memory and what

By

one will e :3ed for removing pages when more holes are

By o,

12

réquired? Nearly all systems currently in ‘use _employ
ndemand" paging for deciding which pages are to be brought
into memory. A page,.not in memory, isldemanded whenever it
is vrefqrenced by a program. A page fault is said to occur
and the system prepares fb fetch the demanded page. -Soﬁe
. form of pre-paging 1is nof used because there has been little
evidence.- of any advantége of Qsing this technique [D4].
However, there has‘been at.least one recent .inves;igation
into pre-paging which reports an overall improvemeht iﬁ.drum

utilization [G2].

o

Deciding uhith page .to remove from memory requires a
page feglacement algorithm. Many different algorithms have
been remployed or suggested fér*stotage'management purposes
[A1,B2,B3,C3,C4,D2,D4,12,15,K3,53,T1,T2]. R random page
-réplacement policy simply remo#eg a page at';andoﬁ. A first-
in, firét-dutiuifI}O) algorithnm removés the oldéét page in
memory when space 4isv required. Although both iof these
policies are easy to implement, they' do not accurately
'EEfIEE;'Efﬁgrah behavior. Programs do not usually®jreference
pagés At ‘randon, land the old?st page may not be the least -
likely page to be refefénced nexf} A far more. sdphisticated
" algorithm was implemented on thé Atlas Time Sharing system,
- but was also nof very successful [B3,K3]. This algorithm vas

based on the assumption that programs always -use looping

structures. A nore successful "algorithm is the least

13
recently used (LRU) replacement policy [C4]. Since it can
also be easily approximated by hardware, it has become the
most widely used approach. The LRU algorithm recognizes that
most programs are characterized by a locality of reférence
among the more recently used pages. All pagés not recently‘
referenced by a program will have Eheir hardware "use" bits
off. Tﬁe operafing system conéide§§f@hese pages as prime
candidate#®for femoyal. Uhfortunately: this policy can 1lead
to disastrous. system performance if applied without concern
to the relationship between memqry utilization and - progranm
pading - levels ([D3]. Denninj, in his Working Set Model of
Progranm Behavior, attempts to provide this relationship and
suggesis yet another pagé replacenen* algérithm [D2]. This

model is discussed in Chapter IV and provides the focal

point for this study.

It is “obvious that many of the early page replacenment
algorithms were based on misconceptions of progranm behavior.
The next chapter gives a brief review of empirical studies

of program characteristics in a paging environment.

14

IXI: Studies of

Program Behavior in a Paging Environment

The objective of Chapter III is to presenfha short

oy
review of several studies of program behavior in a paging
environment. Five separate investigations are described

covering a period of 1966 ‘to 1973. They are by Fine,

-

\ :
Jackson, and McIsaac ([F1); Coffman and Varian [C1];

Freibergs [F3]; Brawn and Gustavson [B5]; and 1lewis and
Shedler [L1]. Eacﬁ description briefly details the
investigative procedure used to gather the“program data, how
this data was manipulated; and the results produced. None of
these studies involve program working set behavior or

related concepts.
.

The study by Fine, Jackson, and McIsaac was one of the
first studies done oh pfogram behavidr under paging. Object
-programs were interpretively‘ ‘executed to obtain t.e
execu?ion and data %age addresses, plus' the current

instruction count. These page references were recorded for a

service interval, a period of time terminated either by a
oo .

call to the system or by the execution of 80,000

instructions. This number of instructions represents

approximately four hundred milliseconds of CPU time or the

time slice 1~u.-th for the (-32 Time Sharing SYSt?@H§§9FW.

ihich the report- ﬁas.fbfiginally done). One hundred and

ol

15

eighty-two of these intervals were studied. They represented

thirty-five requests for CPU service, having total
instruction lengths ranging from 7 to as many as 1,281,504
instructions. At the beginning of any service interval, the
instruction count was set to zero and all pages of - the
program were considered inactive (not in memory). During
simuiated execution, a page once referenced was considered
available for the remainder of that interval. The results
indicate that until.a program obtained a "sufficiency" of
pages, it demanded pageé at a very rapid rate. &his
"sufficiency" of pages was a considerable, fraction of a
program's total declared page requirements. Finally, a
program would not execute long between calls for a new - page
even after acquiring a sufficiency of pages. In summarizing
these results, the study was very pessimistic concerning the
benefits of a demand paging strategy on a time-sharing
system:
" the usual concept of a.high-speéd memory filled
with a page or two from each of many progranms
‘desiring, processing does not look as though it
will stand up subject to the page call rates
observed in this study. The page-fetching
mechanism seems likely to congest within a few
milliseconds; until some of the programs acquire
a sufficiency of pages there would be little
chance. of processing-fetching overlap; and a
sufficiency of pages for some programs means

that others must be squeezed out of core and
" deferred " (F1,p.227] ' :

The sfudy also .concluded that re-organizing programs as a

solution to th® apparent inefficiency.of demand paging- was

\

16
"unrealistic" since it meant attempting to fit the work to

the system instead of vice versa.

- Despite this grinm report, development and
investigations of paging systems continued. In 1968, the

next three studies to be described were published.

Coffran and Varian presented further experimental data
on programs in a paging environment. They also used
' interpretive execution of ¢ object programs to ‘obtain
/ execution and -data addresses. These addresées were mapped
%; into page éddreéses which were analysed to gathef paging

'statistics. These statistics were collected‘ during the

simulated executiqn of the program., The procedure was .to

Yaﬁy either the page size‘(the‘mapping imposed on t&e object
c?ﬁe) or the number of pages allowed- to be active (in
mghpfy) during_différent_ interpf%tive progrém executions.
Tyﬁitally, 125,000 instructions were executed per progfam. A
resulk, consistent with thelFine sfudy, Has.that program-
executing when VSubstantially less than memory resident
ifduced excessive page turning in- light of the existing
dégiﬁm of paging sx;?ems.‘The LRU page replacement strategy
Wis skudied indic;;ing an operational performance of -30-40%
of that of the optimél bage removal scheme [B3]. A 'fina}

result concerned prdgram behavior and page sizes. If program

execution was confined primarily to small areas within a

17

page, performance was improved more by increasing the number

of pages in memory rather than increasing page size [H1,H2].

Freioergs' stmdy of prograns’ wasr'more generalized.
Although object programs were interpreriVely executed, en
actual trace of exeoution amdlgaté addresses was }produced
which was then examined by am analyser program., Su ervisory
calls to the system were not exe‘uted interpretive‘y since
'they were thought to be too system dependent. The program
code was divided into pages of 1024 words or. less where each
functional part of the program began on a new page boundary.
Freibergs felt that simply dividing the IBM 70“4'5 (the
machine used in study) memory into 32 equal size pages wouio.
.result in an over-estimatiion of the number of page boundary
crossings during execution, He also felt that this structure
would more acccurately reflect the memory organrzation'of< a
paged computer system. A. total of 10.35 m11110n instructions

were traced from the execution of FORTRAN, strlng
N

processing, GPSS, FORTRAN compilation, and COBOL _pi grams.
e : of

The results of the study showed that most SVC's ar“;due to

T
; ey

I/0 requests. (An SVCjis ah instruction which when eiéogted
by rhe problem program initiates a superv1sory control@pd
' operatiom.v An example of one ‘such .operatlon_ is any
input/output on a '.large . computer system){ Assumlng
overlapped 1I/0 channel 0perat10n and a blocking féctor of

ten, the study determined that the number of 1nstruct10ns

.18
executed by a program would be 103}to 104 before halting for
‘an impuf/outpuf operation. This womld be trme about 50% of
the time. Finally, all_ the jobs executed 0ver.a_éu.hour

period at the ‘McGill University Computing - Centre were
analyseﬁ._ It was found thet .SC% of all programs stu@ied
required U4-6 pages of memory of. ;hich only 2-3 of these
pages were instruction code. The study conci%ded that any
scheduling policy should allocate each program at least six

pages of memory before any execution activity proceeds.

The final 1968 study is by Brawn and Gustavson. Unlike
t;e previous studies ofvpaginga the behaviorc measured ‘in
this work is that of the infiuence of cod{ng techniques on
program performance in a paglng system. This study mced' a
specially modified IBM 7044 which prov1ded each user (or
program) with a virtmal machine of 221 words of ‘10.
"microsecond memory. A selected progranm was re-mrltten using
a partlcular programmlng practlce. Hhen this program., ver51on
was executing on ¥the machine, a enon—dleruptlve hardware
monitor collected aara; A software-analyser then used this
data to groduce summdries of total execution time; idle
time; system execution;overhead; pagde fetches an&vmrlteS' as
well - as other adéitionql run data. Execution of both 51ngle
and multiple programs on the system was investigateda The
study cOnclmded that improming the programmer's coding.stYIe

, . . : : : 4
was advantageous to system performance regardless of what

, ' v o _ ' 19
‘page %eplacemﬁnt policy was being used. _fhe following
programming'ppgctiCeS‘were5suggested‘as a means of improving
program behavior in a bagihg environment, Arrays and
matrgces should be'acceSSéd_in the physical order i; which
they are stodored in mémoiy. Ldrge matriées should be reduced
to ;maller'sub-matrices”e;chviesiding on a single page. Data
bases should be ,maéb as small as pdssiple and ordered
.ac?ofding to time of use. Program subfoutines should be
ordered in‘memory in a contiguqus fashion according to tinme
df use. Efforts 'shouldfbe‘madeato eliminatecof reduce the
_exis{;;;e of global, réAdomly used, unordered variables. a1l
of theseApechniqpes define a type of program organization
benéficial: to perfogmance in a paging envi%onment. However,
they ali are ékampies of éttemp@ing\to fit the ;ork to the
system; The degfée of awareness fﬁét the average programmer
reéuires to use ap ‘operating system‘ effectively is not
iqtended £o‘be a topic of this study. But the subject-is of'

considerable merit and should be investigated. in Jreater

detail.

‘The. final study to be described is that by lewis and
Shedler. This work is basically a stafisticél',analysis of
programﬂ paging behavior as .i§" indicated-”by its title,
"Empirically Dgrived Mic:o;odels for Sequences of Page
Exceptions." The main' data for -the study ié a nine million

- .long reference string traced from the. execution of a 512

1) 2

20
page program. Fromn theAstudy of.transitions inlthe LRU stack
distagce strlngs (each reference to page K in the string is
replaced by the number-of distipct pages accessed since the
last reference to page K) the program's paging behavior can
be' interpreted as consisting. of ,two types. The progran
either._tends to stay in only one page and references a few
others br,tbe program references pages almost at random. The
rnterreference distribution of page exceptions is a convex
function, initially decreasing rapidl;, having a
discontinuity at the‘interreferenCe distance equal to. the
}page size, followed by a ~long exponentialv tail. The
distribution, plus ’correlatiop. coefficients between the
dlstances themselves has resulted in a two-state semifMarkov
model of the sequence of page exceptions for the prodranm. It
is actually a micromodel, since the parameters for the model
hold only ~ for the period‘ of time over which the page
exception process Was shoun to be sthtionary‘ (The page
exceptiop' process is statlonary 1f the stochastic mechanism
underlylng the exceptlon rate is independent of absdlute

time ’orgln) This work is Stlll contlnuln in an eifort to

obtain a more generalized model.

The orientation of the lewis and Shedler study .towards
building a behavioral “model of programs is significant.
Except for this work, nomne of the others have agtempted to

place their results within a framework. The Working Set

21
Model of Progran Behavior, discussed in the .following
: @
chapter, attempts to provide organization by definihg the
relationship between memory utiiization, procéss efficiency,

and progranm paging level.

~

22

IV: The Working Set Model of Program Behavior

The traditional multiprogramming operating system
[13,14] alloved a numper of programs to be executed togethef
by sharing the memory of the computer. Each progranm received
a fixed amount of contiguous storage} enough to make the
progfam's code entirely memory résident, «When the progiam

currently executing "blocked" for'I/O, an®ther program which

was - "ready", could be exeéuted immediately. In this manhér,
the central processing unit could be rumn in a- more

continuous fashion and.the I/0 operations of thé currently
executing programs could be "“overlapped" iﬁ “time., Unlike
- this traditiénal approach to memory sharing, paging systems
have the prqperty»éf allocating'nét' bnly CPU service ~ but
also memory to programs on the basis of deménd;vThis enables
these operating'*systems to accept and run “simqltaneohsly"(
programs which taken together would require more real memor;
than is totally available at any given moment. HoweVer; this
ch{iacteristic also mékes paging system pefformdnce subject
to the 1impact of“prdgram memofy reference behavior. Se#ére
éprformanqe degradation can occur as a | result 'of
' "th;ashing", a _ paging system phenomenon, hsuallx
characterized by high paging activity ‘aﬁd low CcPU’
utilization [D3]. The increased complexity of paging systems
in cdmpafagonA to the traditional multiprogramming approach

has promgﬁéd the need for relating program behavior and

; L

memory demand. One

the Working Set Model of Program Behavior

fp21.

The
__Joncept

recently

of progranm

derived both from the
tend to

into content-related blocks, as well as

oi program structure

model has its basis in the notion of
behavior
referenced pages are related to one another.
intuitive

code sequential and looping structures,

23

>

such attempt at answering this need is..-

p.J. Denning

by

"locality"{ a

indicating that the most

It is
feeling that programmers
group data . .

from actual studies

[B85,,C2,F1,F3,H1,H2;L1,P3,52].

Denning has summarized locality in the followlng statements.

M A progranm dlstrlbutes its references _non-
uniformly over its pages, some pages being
favoured over others...the density of references
to a . given page tends to change slowly 1in,
time...two Treference string segments are hlghly
correlated when the interval. between -them is -
small and tend to become uncorrelated as the
interval betueen them becomes large " [Du pPe 938]

In addition, the mqgel also makes = two basic assumptions

concerning the page reference

‘The first assumbt\on,

unending, allows the’ limit to
infinity,

with the assumption is

produCed by

N4

program

assumlng that the average 360767 machine

1.5

and simplifies the
"small

execution are very long.

strings of programs.

o

that the reference,strings are

be “"taken as time .tends to

notation. The error associated
since reference — strings
I ’
For example,

instruction takes

microseéonds [Ru] ‘and references 1. 5 pages (see results

24

Chaéter VI), then only'one second_of execution produées a

reference string 106 long.

The second assumption is that a reference string's
underlying stochastic mecﬁénism is stationary (indepéndent
of absolute time origin).lsince stationarity can be expected
only within substrings, an ana;ysiS‘applied over mény such
substrings (or "localities"), can déterhine only thé éverage
behavior of a program. The results may not indicate
meaninq?ully the behaviér of dny given locality. Hovever,.
the imp;rtance of ﬂthis restriction does depend on: - the
analysis and this. study agrees with Denning's statementf

"' Since our primary interest is understanding the
behavior of the working set nodel '‘as an adaptive
estimator for use in memory management, this
limitation is not severe " [Dg,p.131] ‘

A very brief desecription of the working set properties

follows. For further information concerning working set

concepts, refer to references [D2])-[D6].
. F) :) 3 &
. The behavior of a program can’be studied in machine-

» ' ' o .
~independent terms by analysing = its referente string

- ©

L L, e.eC -oel - Each T, represents a reference to a- page of
' | th .

172077t
the program. That is, if ry= i, then page i -is the t

reference where t. is measured in process time. and is

. . R N
discrete,

The working set, W(t,T), is i@eﬁ}ned as the set df

N : | , 25

_distinct ‘pages referenced by a process in the time interval
ith,t). The working set size, sS(t,T), is defined ds 4the
nnmber of pages in W(t,T): The avenage value ef S(t,T) over

the first K “eferences of a program:is given by

s (M =150 s¢,my - (1
K LK EER e : : .

If K is‘alibwed to ' tend to infinity, then the average
working set size of is defined. It is denoted as S(T) and is

indepefdent of time laccording to the two initial

B

assumptions.

.\5

”

The re—entfy .orf missing page rate repreésents the
average rate at which pages enter the'vorking set. Consider
the following definition:
AT = 1if ¢ is not in W(t,T) . (2)
t t+1 Co :
0 otherwise
where Ly, sT,reeesly are the elements of the reference string}

Then the average rate at which.pages enter W(t,T) over the

first K references is given by

. k-1 . ' : S
M (T) = 12 _ AT S o (3)
K K t=0 t , .

If the limit of (3) is taken as K tends to infinity, the re-

_entry or missing page rate is defined:

k=1 : e

H(T) = Lin 1> _ A(D) 4
' K-->® K t= - | |

0 t ~

Again, fnis value is independent of t because of the initial

A\

26

assumptions.

The properties of thé working set are illustrated in
Figure 1. The cuf?e‘qf 5(T) is bpunded by S(T)=T and N. The
first limit can be reached only if ZXQT) = 1.for all t; that
is, each successive reference is> to a page outside the
working set. The second limit repFesents,the total number of
pages in the program. |

Since no fewer pages can be referenced in longer
intervéls of time, S(t,T) is a monotonically ﬁon—decreasing
function of T. Then by aefinition'

W (t,2T) =.H(t,T) U W(t-T,T)- , ‘ (5)

‘But this implies

S(t;zT) < S(t,T) + s(t—T,T) X ' . (6)
and since S(t,T) behaves on the average like S(t-T,T) (under
the initial assumption; of the Working Set) , then

S(t,21) < 25(t,T) f - (7)
Thus, the chtve of S(t,T) is.nqn~positiveiy accelérated, .as
well as monotdnica;ly non—decreaSing..By the definition of
fhe average working set 'size, the cdrve of S(T) also has the

same characteristics and is shown in Figure 1.
' o . :)

By definition, the following holds

S(t+1,T+1) = S(t,T) + AS L (8

“islope M(T)

/—
T ,/S(T)=T
: /
o Np---mmmm AR P i
g ’ 5(7)
o / ,
O //
= / A(T)
/ 1
o / } |
S / I ' |
/ L
/ L
/ i
/ Pl
A
v' 1 :
T TH
WINDOW SIZE (fime)
Fig. 1 = curve of the Average WOrkiqg Set Si: =z,
PR ("
4 :
g 1
<
m .
D
O
o)
Q
I 1 : _ >
0= . T T+l

WINDOW SIZE (time)

Fig. 2 : 'Curve of the Missing Page Rate, M(T)

oy e

“ /T)

27

28

where (S represents the change in working set size.

Howéver, by taking the expected value of both sides of (8),
the‘folléwinéiis obtained |

S(T+1) = S(T) + AS - a (9)
But, the expected change‘in the working set size |is ‘the

missing pade rate, M(T) . Therefore, (9) can be re-written as

S(T+1) = S(T) + H(T) » (10)

where M(T) is monotonically non-increasing and non-

negatively accelerated as indicated in Figure 2.

'

The direct result of these properties is that the
lérger the value of T Qra"window size" for a working set,
the"greater the numbér of é;ogf&m pages that will be memory
rgsident' and - the iower the paging rate. The implied result
for the operation of any baging'sysfem is the working set
pfinéiple;. It states that a progranm may be active and
receive time slices on a processor only if its working set
is 1loaded into main memory. That is, if there are n actiYé."&
programs, the main memoty capacity is P pages, and the ith
working sét contains Si(t,T:; pages, then the relation

}4S (t,T)+ .. *#S5 (t,T) S p (11)

S (t,7T
: 2 2 n _n

1 1
nust be true with high probability at all times [D5]. The
problem of thrashing should cease to 'éccur in a paging

~environment, if the working set principle can be used to

29

ensure that main memory is not over-conmitted.

Two further results can be drawn from the propertles of

the vorklng set. Memory dl.patchlng algorithms should choose
replacement pages only from those progranm worklrg sets which
have been "de-activated". These are the programs which ‘have
blocked for I,/ 0 or have been denied CPU service for
scheduling or memory dlspatchlng purposes. .Secondly, 'the
.current .werking set size of a program can be used as an
estimate of'itsbfuture'memory demand. Job schedulers can use
this infbrmation to determine which tasks should be run and
vhen, Memory dispatching algorithnms cen -use 5predictedA

g progran page requirements to decide how many pages should be

freed for re-allocation.

In the prev1ous program: behav1or studles [C1 F13, the
excessive paging which characterizes the research results is
probably due to the violation .of the working set principle.

' Similarly, the study by . Freibergs, which advocates

e

allocating at least four rOISix pages per program before
execution, reflects the conclusions drawn from the vorking
set properties. All the techniques expressed in [B5] poinﬁ'

télghe necessity of making the working set of a program more

comfiact and less subject to a high missing page rate. In the
e study by Lewis and Shedler, one of the two types of progranm

= behavior was consistent with the notion of locality.
o _ _ . ‘ /

ke !
NI
-

N

30
However, the re%erencing of pages in an apparently random
mannér does no§ conform to basic formulation of the working
set. Perhaps,.tiese random sccesses represent transition
periods between localities and are felatively short with
respect to the entlre reference strlng. Oonly further study
of the rate bf change in S(t,T) can reveal the éractical

vélidity of §(f) as an estimator of a program's memory

demands.

Unfortuna&ely, the Working, Set Model neglects any
cdnsiderationﬁbf the internal behavior of the progranm. In
particular, _ﬁowA'do theiindividual ;éges coﬁtributs to the
working set behaV1or of the program as a whole. one of the
purposes gf this ‘study is to extend Denning's ;oncepts by
applylng them at the page level. A second purpose is to
study | emplrlcally the valldlty of these extensions to the
Wworking Set Model. The following discussion presents the
definitions for the extended model. The ‘definitions

themselves are close analogies to those 1in the original

model.

A page's working set, W(t,T,i), at time t i5 the set of

1
references to page ij

in the time interval (t-T,t). The
working size of a pageﬂ s(t,T,i) is defined as:
s(t,T,i) = 1 if W(t,T,i) is non-empty A (12)

¢ otherwise

C o 31
Therefocre, the averdée value of S(t,T,i) over the first K
references is given by
K_
S (T,i) = 1 2__ sS(t,T,1) ’ (13) -
K* K t=1 .

By letting K tend to infinity, s¢r,i), the averaqe working

size of page i is defined.

The missing page rate is a measure of the average rate
at which page i enters W(t,T,i). Define the following:
DN (T,i) =1 1if r = i and W(t,T,1) 1is empty
t t+1 _
0 otherwise v (14)
where ry,r,,...,r, are the elements of the reference string.

Then the average rate that page i enters W(t,T,1) over the

first K references is

(=

M (T,i) = 1~
K K

VIR

(T, 1) (15)
t) -

i
of

¢

The missing page rate for.page i is then defined:

- K=1
M(T,i) = Lim 1
K=-->® K

(T, 1) (16)
t _ ST

2__
t=0
Note, that for a compiete program the missing page rate

with T = 0 is equai to 1, since the working set 1is always

empty [D6]: °

.32

'~

K-1 : ’ -
M()‘/=12._A(0)=1 | (17)
K K t=0 ' t :

The definiti%?s for the worki%g set page' behavior are
consistent with (17) since the summation of the missing page
.rates over all pages of a program with T = 0 is also equal

to 1. The following shows this result for an n page program:

n : _h_ K=1 :
STM (0,i) = 2 {12 A(0,1)}
=1 ok iT1 . K €0t .

(probability of referencing page i) = 1 (18)

Result (18) also defines-the value of E(T,i) - for T = $.
Since the probability of referencing page 1 is the same"as

Av)

~the expecte& frequency of reference to page i, the folloyihg'

can be stated:) "

M(0,i) = probability of referencing page i
= Lim 1 _
K-->c K t=C . t
= e(i) | (19)
vhere e(i) is the expecped frequency of reference to page 1i.

A more complete proof of the consistency of program.and"bége

! -

working set properties is given in Appendix 1.

A page's interreféﬁehce distribution is 4éfined as

2 -
4

fe

&,

I3

]

33

F(x,i) = Lim

e K==>c0

3

The variable x; is called an interreference interval for

page i. ‘A page has an interreference interval x;= ¢ when two

successive references to the page are at times t and t+qg.

- The interreference density function is then

f(x,i) = F(x,i) - F(x=1,i) ' ' (21)

A1l of these definitions can be used toygether to prove

the following properfies concerning the working set behavior

- of individual pages. The proofs of these properties are

given in Appendix 1. (The properties P1 through P9 are
developed'byIDenning in_fD6]'énd this labelling notation is

continued here) . - . ' ;
. ' _ i

P10 : e(i) = S(1,1) Se..<5(T,1i) <5 (T+1, 1)<

o i

. P11 : S(T+1,i) - 5(T,i) = H(T,i) . <
P12 : 0 < E(T+1,i)$§(?,i)S...Sﬁ(C,i) = e(i)

P13 : H(T,i) = e(i)-efi)F(T,i) = 2__ e(i)f(y, i)

. ' - y>T .
P14 : M(T+1,i)-M(T,i) = -e(i)f(T+1,1)
] =1 _ % 1=
P15 : S(T,i)= >._ H(z,i)= 2__ (e(i)-e(i)F(z,1))

z=0 ' z=0 1

34

: Tl N CN
Y 3 = % 2\1—/ e‘\(i) f(Yrii

P16 : S(T+1,i)+S(#-1,i)< S(T,1)

P17 : Lim S(T,i) = 1
: T-->00 '
P18 : Lim -~ M(T,i) =0
T-->00 :
‘ _n_ _ . ¢
P19 : Lim > s(T,i) = Lim S(T)
T-->00 i=1 T-->00

The preperties of the Extended wOfking» Set Model
indicate that the average working size curve of a page,

E(T,i),‘is monotonically non-decreasing and bounded above by

§]T,i) = 1. * The missing page curve for each page reflects
tge nslope"- of the S(T,i) curve, and therefore is
monotonically non-increasing in T and non-negatively

accelerated. The direct reSult of these properties is that

as T, the "windoQ-size", increases so does the probability
‘that a page is wi£hin W(t,T) and that its corresponding
missing page rate is 1lower. This result 1is not too
surprising since the propefties of the extended and original
model formul&iiéhs should be consistent 'with one another.
Property 19 ptoves the intuitive notion that ;he behavior of
the entire ?rogram is the same as the "summation" of the
behavior of the inaividual pages. The most important_ aspect

of the extended model is that individual page behavior can |

now be quantified and ‘analysed in termé of. working set
A~ » i

-

35

concepts. This 1is revealed in the results presented in

t

Chapter VI.

Thefe are several limitations on the Working Set Model,
both practical and the;fetical. The firs£ one &concerns the
assumption that +the stochastic mechanism underlying the
‘reference strings is stationary. In practice, this ‘ié not
the case since references to an§ page i tend not to be
uniformly distributed ovef the R refefences of the string as
-assumed by the model., Instead, references to a'page‘tend tb
exhibit a locality. The expected interreference distance of
page i tendslto be less than

i) = 1 B (22)

e (1) -
assqmed by the model (where e (i) is the wéxéectéd -frequéency
of reference to page i). If g(i) is the nunber of néfg;enges
to aée» i, then this locality has an;expeéted length of
u(i)g (i) éferences where - |

u(i) = 2__ xt(x,i) o (23)
- x20 ° _

is the actual'expéctéd.interreference distance for page 1i.
Theréfore, by the definition for the calculation of E(T,i),

. T—1

S(T,i)= Lim >__ >__ e(i)f(y,i)"
' T--> z=(" yXxz
>
-1
= e (i) Lim 2__ zf(z,1)

T-=>00 z=0

36

= e(i) u(i) , C (24)
the lack of stationarity implies that as T tends" to infinitj
the limit of §(Tjif { 1 for most i. Because of the‘prpcedure
for calculating s(T,i), £he contribution of a pége's
ihdividual”locality to the program wdrking set size is
averaged over the entire reference string. For example,
pages exhibiting a small locality and reference count
qontribute very little to a prégram's working set size,
despite haviﬁg.a full page mémory‘demand for sone partiéular
T énd t. To compensate for this'situétion, the calculation
of S(T,i) may be modified to

T-1 ' o

S(T,1)= §=—0 %3_2 a(l)f(y.,l)' \ (25)
where |
a(i)= - | | - (26)°
u (1) . '
(Note théi as G(ih ténds to ;(i), a(i) ténds to e(i),

u(i)g (1) tends to K, and the Stochastic mechanism +tends to
become more stationary) . What this mbdified calculation of
,EXT,i) éccomplishes is t§ force the limit vas T 4£ends to.
infinity "of S(T,i) = 1 as predicted by the model. Although,

this is strictly an a_posteriori «calculation, it fulfills

the dintuitive ~notion that as the window size T increases,
the residency of an"individualwpagé shod1d~;also increase.

The increase continues up to the critical T where the window .

37

~—

size becomes longer than the actual expected interreference
distance for the page. At this T, the page has an average

vorking size equal to one.

KE@ " A second limitation of the Working_Set Model is that
deséite the extensions, it does not fully represent the
internai processes of a érograh. In particular, the page-to-
page referénce'béha§ior within the working set islneglected
which eliminates 'thg Model és'_a thedgbtical basis for

studying pfqgram structure.

A final. shortcoming is that no consideration is given
to the I/0 characteristics of projfams. A more complete
model of program.ﬁehavior shouid.inplude this facet, which
has a very c:itical impact on any practiéal computer

application,

Althoughl the Workiﬁg Set MOde;, plhs extensions, does
not repreéent éomplete progran behavior, it does pfoviae a
good approximatién ;of the relationship between ﬁﬁkogram
memoryireQuirements'and p;ging demand. on a computer. The
next. chapter inveStigates: the application of working éet
concepts for thé?adapti#e contrﬁl of an operating system's

paging environment.

V: The Working Set Window Size

The most unifying characteristic of the,Hdrkimg Set
Model is that all the properties of program behavior are
‘based on one parameter, the window size,.T. Understandind
this parameter is 'V1tally important in any practical
application of working set concepts in a multlprogrammlng,
_paging‘environment. This.chapter con51ders the system - design

prbblems; ‘determining how to control the value of T, how

. .

to recognlze the working set, and how to determlne the size
of T;‘ Examples of actual lmplementatlons are glven to
1llustrate the various appllcatlons of the window size

[N

parameter within computer systems.

=N

The first problem that confromts the system.desigmer is.
uhether the vorking set is to be recognized at the "program"
or Usystem" level. Although the working set model relates to
individual program behavior, a Systeme approach ‘assumes that
the working sets of all programs executlng on the eomputer

.can comprise a 51ngle "system" working set. The advantage of
usiné this.,approach is that total memory_demand and paging
‘1eme1 can be controlled Hitm relative simplicity. Homever,
the: flekibility of detee}ing memory requirements andbpaging‘
act1v1ty of individual programs is removed. Thetknowledge of

such parameters can be very 51gn1f1cant to the operatlon of

job schedulers and memory dispatchlng algorithms. The second

Y .
30

problem concerns the actual working set parameter itself.

When controlling _the »HindOU'size, it must be decided

[y

whether T be fixed or variable. In other words, should the

operating system attempt to change the size of 'T to match

current program "demands" or are these demands such that a

fixed window size is suitable? 1If a variable T is used,
should control of 1ts value be applied ‘globally or locally
to th'e executing programs? That is, should T be the same for
all orograms or do programs.vary in their kehavior enough to

warrant their own "local" window size?

A fixed window size approach assumes that if T is large

enough, then at any given time " t, a mix of programs

executing on a computer will have relatively the same paging

raté. The approach further assumes that this ~window size -

will be small enough 'to' provide "acceptable" Amemory
, . ,

utilization. These assumptlons are graphlcally 1ndlcated .in
Figure 3. The curves, A and B, represent the average total
missing page rates of a mix of programs executing at two
Qifferent values of t on the sape eomputer. Note, that for
uindew size T, both curves indicate essentially thev sane

. paging rate. The greatest advantage of this method for

~controlling T is the simplicity of implementation.

e

f

4o

—
i

b e e e e a —— — ——— e —— . A —n —

MISSING PAGE RATE
(pages/time)

- WINDOW S‘_IZE (time)

Fig. 3 : A Graphical Argument for a Fixed Winddw Size

>

b e o — ———

'

MISSING PAGE RATE
(pages/time)

T T
WINDOW SIZE (time)

Fig. 4 : A Graphical Argument foerariable_Window Sizes

we,

41

The reason fon choosing a variable window size approach
is baSically‘that the_assumptions for using a fixed “% are
not valid. JInstead, the assumptions for using a yariable T
are iilustpated by Figure 4. Here, the curves C and D. again
represent the total average missing page rates of a mix of
jqbs executing at two different' timés t on the sanme
comther. However, note'that the curves do not converge as
the window size increases. Rather, .only for +two: - guite
different 'Galués of the window, for example T and T', are
the missing p&ge rateé the sanme foripaging loads C and D;
The primary advantagé‘of using this.approach is that better
control oftthé total-érogram pdéiﬁg.and hence memory demand
is possible.

Whether or not an operating;glgfgﬂxuses global »r logal

. . ‘ A

control of the variable window size depends firs: »>r Ow the

. ‘ . ’ .
working set 1is recognized. Since %'"syétem" working set by
definition does not differentiate befweed individual
programs, it is poSsible 'to exércise only global control
.Qvef the value ©f T. However, if program working sets. are
being’ recdgnized, the decision to use a.global.or local

procedure is based on how much control of individual program

T
o

behavior is desired. -

Local control has the expense of increased ~complexity,

but provides the operating system with the capability of

vl

NI DS
s

P

42
manipuiating,the execution of each job. This is shown
graphiéally by Figure 5. Curves X, Y, and % represent the
missing page rates of three programs running under similar
background load conditions. The example in this ﬁigure has
been constructed So that the total page rate for the) global

window T, is equal to the sum of applying local windows, T',

T1'; and T'''.

BT+ ()R (1) = B (D) 4R (TT)+H (T'0)

X Y z x 1 z
a!.‘.a'l{.al'" = bl+bll+5lll ' .
In addition, M (T') = M (T'') = N (T''') = b' = b'' = b''".
X Y g

Despite the inherent simplicity of a globél window, thé
loca1=app:bachvforces (in this exaﬁéle) all progfams to page
at the same rate regardless'of their different E}T) curves.,
Thus, these programs would be treated equally in terms of .
elapsed running ﬁimel Obviousiy, a pribfity scheﬁe could be
enployed tol=increase or dgcrease’ the individual program
windoﬁ size (hence the ﬁiSSing page rate) to respectively
increase o:'. decrease ‘a program's "turn-around" .time.
ZHo;éver, the use of local w;ndowvcoﬁtrol may not be iﬁ the
best interests of -total $ystem éfficiency. Ohe of the
advantages bf a globai window parameter is . that it
?

effectively rewards compact, well-structured prdgrams by

reducing their elapsed running time.

Y

" MISSING PAGE RATE
(pages/time)

: T T
"WINDOW SIZE (time)

Fig. 5 : Local vs. Global Window Size Control

(pages/time)

'MISSING PAGE RATE

T T
WINDOW SIZE (time)

Fig. 6 : A Graphical Argument for Individual Page Windows

uy

Executing such a program with a window size ' designed for

more page avid programs results in the compact progran

having relatively more of its working set resident and hence

a lower E(T). This is illustrated in §igure 5 by curves X
4

and - 2. since a' is less than a''', program X has

comparatively more of its working set in memory than program
| . .

!

Z.

Manlpulatlng the working set parameter, T, offers the
designer“ a wide choice of operating system characterlstlcs.
Assuming there is a ‘means of effectively implementing a
varlable window, the decision to use fixed or variable

windows can be decided by analysing the ba51c assumptlons of

each approach. This study suggests that further research be

1
~done to determine the variation in the actual paging rate of
o

job streams.’

The decision of local versus global windows is not
i » .
nearly so clear-cut since it appears to be a trade-off of

y ngzability against efficiency.

Whether- a systen designer .choses to use a system or
program approach for recogn1z1ng Horklng sets depends on the
"power" of the systen desired and the amount of software and
machine effort available xto construct a working system.

Aithoﬁgh the program approach is 'inherently more

complicated, it is not immediately obvious that it would be

kS

“5\'

45
less efficient. The systems approach 'appears fo lack in
sophisticatidn what it éains in simplicity. However, it is
one of the assets of the Working Set qModel that the
preceding discussion do;s allow a very concise Vdescription
of opfions available to the systenm des}gner. These are

indicated in Table I. ‘

TABLE I: Design Options for Implementihg the
Working Set Parameter, T

Window_Type Wwindow Control Working Set Implementations
Recognition \

Fixed - n/a Systenm none

Fixed - n/a . Program ~ Working Set

Dispatcher, TSOS -

‘variable Global : Systen none

variable Global Program MANIAC II

Variable Local ’ Program Balanced Core, -
' ‘ TENEX

The next section of this chapter investigé}es the
various -+ :ys in which T is implementéd'to recognizé the
wvorking set of a program. In the discussion, several

technical terms will be used and these are defined at this

time [RS5]. ‘Any Jjob. within the - running_set is actively .

. competing for the computer's resources -and has. already been

allocated some imbortant resources such as memory. Programs

in this set maintain their working set of pages, even‘during

u6

a Jbage fault. If a job is in the ready set, it is waiting-

for system resources to be freed for allocation. Althouyn
o

programs in this set could execute, they are currently
denied service for job scheduling or memory dispatching

reasons. When a job is a member of the' blocked set,'it

1.

neither is allocated nor demands memory or ¢PU ‘time.

Typically, a job will move from the ready to the runrimng set

when allocated memory and CPU time and enter the blocked set -

by incurring an I/0 wait (other than a page fault)fduring

a job vhen it enters the running set. .When a quantum

a551gned to a]Ob enplres, the process is demoted “from _the

runnlng set to the ready set, freelng resources for other

jobs. Each quantum is usually divided into a pumber of_equal

time units called time slicesv----' 7L oot
o 0 \.._ . A
’]

The author is not aware of an operating sysﬁem using a

system-oriented fixed vindow. Theo"systems"'approach assumes

that the total pages in- the working sets of the running set

programs would comprise & "system" wgrklng set. All other

pages Wwithin the computer would be con51dered avallable for
re-allocation. Such a systenm could be implemented by having
a timer associated with.each hardware page in the machihe.
ff a‘program's page is referenced, its associated timer 1is

reset . to =zero. Otherwise; the timer is inc:emented until a

«

47

. ' ~ "\
pre-determined count is reached. The time tak . to reach

this count would be the window size T for the system. Since

it is the systenm workihg set whichr‘is being determined,

these ‘timers would rTun in real time rather than in
individual = program process time. The <choice of T is

critica¥, for if it were too short, the page replacement
i N =~

process would/ become FIFO-like in‘its opération.

¢

¢

There are at least two different ways of’ implemeﬁting

an operating system using a ﬁixé& Hind3w_’applied to

programs. The most uncomplicated are fhose which u;e' the

quantum or time slice completidn -interrupt hardware to

assist in'the determinatibn of £he program'workingrse£s. The
"

TSOS software systemfﬂimplemented on the . RCA Spectra 70

series time-sharing computers, uses -a window size of the

form T=q where q is the quanttm size (W1]. Once a process

references a. page, that page ‘remains resident in memory
until Jthe QUantuﬁ expires oﬁ'tﬁezfob enters t?e blocked set.’
The working sei size is calculated at.“thé end of g to
determine ‘futqre- memory dispatching reqﬁirements:‘ The
Wofking Set Dispatcher {R51, is ano£her software
implementationrloﬁ this type, eXcept T=gq/k where k is'the
numbér of time slices in a quantum. Therefore, -only those

pages referenced by_theojob during its latest time slice are

ineligibhle for replacement. The Dispatcher calculates‘futufe

~ >

48’

;memory requirements at the end of each time slice. Both of

l .
these implementations measure T during individual progran

p:@cess time and use standard page réplacement algorithms..

The second approach to fixed-valued program-applied

_ . . e . ' 9 .
window sizes is the method originally suggested by Denning

fu

[D2]. It requires the use of a shift register associated
: \

with each hardware page. The window, T, is divided into 'k

bursts of CPU -~ time. Every time a page is referenced, the

left most bit of the register is turned "on"., At the end of
each burst of ' processing, the register is shifted right one
bit position.'The bit shifted off the right end is lost g%d_-

an "off-bit" is intifoduced into the left most position. When

~all kx bits of the shift- register are “off", its-gssociated

page is no longer considered within the working set of the

v program and is eli§ibie for replacement. Ideally, the window

size T 1is measured only . during the individual progranm

execution time.- ' v ' o

-~
-

The remaining discussion centers on iﬁélementafions of

T usiﬁé variable window sizes. This gpﬁroach appears ‘to have
greafer flekibiliéy; buﬁ with increased syster ~omplexity.

V | L -

'To‘ tpe;?best knbwledge of the author, there are no

imple~entations having variable window sizes, recognizing a
- . - \ .

49
system working set, and using global parameter control. It
‘can be ergued that LRU algorithms implemented . on current
pagin; computers are an example of such an approach. Those
pages Qith their "use" bit-on, can be considered as memnbers
of the system working set.‘Typlcally, as the load on such a
.syStem ‘increases,: so does the amount of paging. This
reflects the decrease in the length of tihe'a'page is within
the working set. Such a-fesuit can be desirable since it
indicates the system's attempt. to satisfy -all - users.‘
Howevef, ‘'since these same syséems make no explicit atfemptv
to control the working set, <continued reduttiop in the
impiicit window Size results in programs paging excessively.
When this occurs, the system is overloaded and th;ashes.’A
working set approach is de51gned to prevent deterioratiodn in
machine performance by_ maintaining acceptable bounds /on
program loading. The numper of users of the computer is notn
~necessarily lipited.-instead; totai throughput is maintained

at acceptable.values with ohly the\degradation' in ‘response

A

time indicating the heavy ~ demand fof- the computer's

resources. o ' . o ~:5§»

‘The next group of implementations considered are those
that -recognize program working sets ~and. use a variable

window size.) . «

: 50

One such implement&tion is the Maniac II computer
descr.ibed by Morris [M3]. It véfies the working~ set
parameter in a global manner and the approach is hardware-
oriented. "Each hardware page on the Maniag IT has an
associated counter ;hich is reset whenever that page is
referenced. Each -~ program in the -running set has‘ an
associated binary state.register haviné one bit for every
real "page in the ﬁéchine. The presence of an "on-bit"™ in
this register indicates that ghe correspohding hardware page

belongs to that program. When the program is executing, the

register is used to ''gate" timingApulses to the counters.

Since only those pages belonging tb. a particular ' program’
have their aséociated counters incremented, the working set
is measured'ih process time. ?hev number of timing pulses
required to increment a counter from reset valﬁe to when the
counter expires, is the value of T, the- working .set
paraméter.'Page% with ékpired'éounters are no longer memberé
of the working set and are eligible for 'replaCement;‘ The
falue of T <can be varied globa}}y by thevsystém software.
The criterion for changing T wash{not -identified, but 1is

probably similar to one of the following approéches.'

There are at least two different implementations ‘of
systems using program working sets and variable window sizes

controlled locally. Each uses a different decision process

- . 51
for mod{%ying T. The first is one described by Dénning
(p2,D6] and-takeé advantage‘of the property:

H()2 ... 2H(T)2M(T+N)2 ... 20

The property implies that as fhe window size. of a working
set 1increases, the, péging ratgﬁdecreases and vice versa.
This ﬁimplici£ﬁ windowing can be &ccomplished by monitoring
the paging réte'of a prodgram (or Rgghaps of an entire systen
as in Morrisﬂ caée). By defining a %;nge of padgding ra;es for
a ijob, the window sizes are also iwmplicitly defined. An
ekample of an actual implementation aging‘this approach is
the TENEX system [B6]. | o .

In thehTENExvsystem,'each prograﬁ is required to fault
at PAV, the defined average paging rate. When a fault occurs-
and a program i$ paging at a rate-less than PAV, some of its

pages are made eligible for removal. If a job is faulting at

a rate higher than PAV, then a page.fault results in :that
page Dbeing ‘added to the job's uorking\set. Page removal is

accomplished via a standard LRU page replacement algorithm.

. .
i [

The secéha';ﬁpleméntation of a variable window épproach
is'descfibéd by Doherty [DS]. The time slice or implicit
window size is varied under the éssumption”that a change in
working set size of a job indicatesfa'change in.the working

set. When the time slice is changed, it is varied inversely

52
in‘proportion to the prqcess‘ uorking set size. Larger
programs also feceive their shorter time slices at intervals.
longer than ‘for "normal® sized programs. This procedure is -

refered to as the "Principle ot Balanced Core . Time". Its -

basic intent is to reduce large program influence on syétem

'fmultiprogramming level, reward, the behav1or of compact

_worklng set programs; and reduce the dependenee‘ of

—

o

schedullng as a function of program running time.

‘

Having presented the different approaches for

cqptrolling the working set parameter and several means of

vrecognizing,the wdrking,sets of programs, how is the size of

T chosen for a physical implementation? If T is to be fixed,

what value shéuld it be? If T'is to vary, within what - range

fef values should it be limited?

‘The original determination of the size of T was
suggeeted by Denning'[D2j. He felt that T should _be chosen
using the expected re51dency of a page. If X is the average

nterreference tlme for a page and Q' is the average tranefer
time between main and secondary memory, then a curve
representipg‘ page residency 1is ehown in Figure 7.‘If X is
less than T, then the page resides in memory 1CC% ef the
time. Howevef, if T<X<T+Q, .the' page "will be referenced

durlng the period it is being. ‘transfered to the secondary

/

L}
b

53
storage- medium., Oncé the page reaches this device, it would
immediately beéin'the refurn trip to main memory. ?Thev page
‘is then'residént in memory T/(T+2Q) % of the time. If T+Q<X,
thenT;he residency of a page is a decreasing function in X
of ‘the form T/ (X+Q) . The pagelreabpears in memory every X+Q-
seconds 9nd will be resident for T seconds before again
being sent to 'sécohdary storage. Dénningvreasoned that T
should be ét ieast 2Q to reduce the intial drop from 100%
Tesidency to that of 50%.. Assuming thag Denning's approéch
is realistic, Table IIbiﬁdicates the average access timgé of
iBM manufactufed discs and drums and thei; -approximate
working set parameter. 4 ' | :
TABLE II: TI.B.M. Seéondary Storagé~Device Access Times
and the_Corresponding.Wdtking Sét Parameter Suggested

by Denning for 50% Residency

DEVICE TYPE 2314 3330 2301 2305I 2305II
DATA RATE ['SECOND ‘ 312Kb 806Kb 1.2Mb 3.0Mb 1.5Mb
AVERAGE ACCESS_ TIME 60ms 3tms 18.6ms 2.5ms 5.0ms

ON-LINE CAPACITY/PACK 29.7Mb 1008b 4. 1Kb 5.4Hb 11.258b

ROTATIONAL PERIOD ‘ 25ms 16.7ns 17.1ms 10ns 19ms-

, SUGGESTED WINDOW_SIZE 120ns 60ms 17.2ms 5.0ms 1C.0ms

- Kb. = Kilobytes, Mb = Megabytes, ms = milliseconds

100%
p -
@)
Z _ 1T .+
L
9 T+2Q : ‘ :
172 .' |
L |
o I '
. I i
| |
1 o
r | I
| !
l, i
1 1 . : I»
- T ' T+Q .o X
INTERREFERENCE INTERVAL (time)
FPig. 7 :.Denning's Graph'of>PagevResidency
/
1 100% ‘
T+pn
! X+Qp
> E
> : | T+pn+wpQ
wi : I
O 50% |-———--~ e it Sk
) | I I
w ! i 1
(a4 ! - 1
* ! I I
| | I
a I I
| I |-
I | 1 .
B ! 1 >
T+pn t 2T+2pn+2wpQ-Qp X
T+p(n+Q)
Fig. 8

: Prieve's Residency of an "Aﬁeragg" Page

54

55

' 'Prieve [P4] has indicated several inaccuracies in thé
residency argumént fprAdetérmining T. Basically, Denning's
argument assumes that all expired pages are written fo the
secondary device, that freed pages are immediately
reassigned, and that Q is the same in process time‘as real
time. Since Prieve suggests- that these as;uﬁptions are
generally. not true,.he has presented;a more "complete" curve
of pége residéncy, as shown in.Figuré 8. The parameters in
the curve are defined as |

+

- p: the percentage of real time devoted to executing
the process ‘

w: the pércentage“of released pages which need to
be written

n: the number of seépnds after a page is available
g for reassignment that it 1is reassigned. The
value of n can be calqulated as ’

n = no. of pages_in freelist ‘
no., of pages requested/second

-

From Figure é, it can be seen that if all pages are written
td'the secondary device, the residency of a page will be
10C% for X<T+p(n+Q). The Kcurve of residency also becones
(T+p (n+Q))/ (X+Qp) » If'no.péges é:e written to the ’sécondary
device, the curve of resi&ency is Simply.(T+pn)/(X+pr.
Uﬁ}ike the conclusion reached by Denning concerning .T,~

Prieve states:

" _..to decrease the residenéy from 100% to 50%

takes almost the same ‘increase - in the
interreference interval as required to cause any
.decrease from 160 percent residency for

‘reasonable values of p, Q, n, and w. Therefore,

Unfort
reason

values

p:

We

Substi

the 50

we must conclude that the residency arguments do
not yield much information on.the selection of
T. " [P4, p.620)

56

unately, Prieve does not provide any examples of

able values of p,Q,n, Or V. Therefore, the following

for these variables have been determined:

3%, during the afternoon, the "MTS operating
system at the ‘University of Alberta usually
averages approximately 33 "simultaneous"™ users.
This value for p assumes that CPU use 1is
uniformly distributed over all users. \

10ms., the approximate access time - of ‘an IBHN
2301 drun. ' :

L

1.9 sec., the MTS operating system at the

University of Alberta attempts to provide 30
free . pages to satisfy the request for 30
pages/sec which is the typical paging-rate.

90%, [F3] indicates that one out of eieven pages
is not "changed". ‘

tuting into Prieve's expreséion, 2T¥2pn+2pr-pQ

% residency level, the result value for x is:

2T#2(.03) (1.0)#2(-9) (-03) (+01) - (.03).(-01)

o= 27
éince
~value

factor

"reside

+ .06024 seconds

Denning suggeéts only"T=2Q or .020 seconds

’ for

as the

X for a page to, be 50% resident, thére is at ‘least a

of five différence betvween "t“§ fwo mode

-

ncy. It can perhaps be seen .why Prieve 'reaghe

ls of

d his

conclusion. However, this new model of page residency may

not be entirely accurate either, since it may be t

essent
N

ially equals zero- in some systems. That is,

page is successfully written to the secondary storage

g

hat n
once a

‘unit,

S

Ry

57

it is immediately released by the system. Since the 2pm

e

contribytion is very significant in Prieve's expression, its
remnoval once agaln makes page residency a vital factor in

determining T. 1he expression for X becomes 21*2pr pQ. By

"substituting the previously determined values for the

variables W, P, and Q, the value of X 1is:
2742 (. 90) (.03) (.01) - (.03) (.01)

=27+.00024 seconds

[

1eve1”usiJ; «l ;e,expressiOn is approximately 4Q or 40

_.ms= s . Bt¥ing to note that PAV for the TENEX system

.

system).

Obv1ous;y‘ 1f ‘t'he 2pn is a4 significant factor, the page

“

-re51dency argument for determining T is invalid. For

example, assume that once a job enters the running - set, it

i remains there using a relatively high percentage of the real

CPU time (although its.average CPU use could be-the smaller
pmvalue as calculated in the original example). On. the; MTS
operating system, the runnlng set approx1mately averages 10
jobs. If-p is set egual to 10%, then the 50% residency level
occurs when X=éT+.2008 sec.vipomparing this value to the
original-one suggested by Denning (.020 seconds) at least an

order of magnitude of difference is foand. This result

/

20 as suggested by Denning, then the 50%

58

,
certainly justifies Prieve's conclusidﬁ (the 100% éage
residency 1level would occur with X= T+pn = T+.100 which is
greater than the largest window considered in the present
study!). Unfortunately, whiqﬁl repre§entation of p is thé
"correct" one (in fhe examplés given), is beyond the 'Scope

‘of the study. Perhaps both are correct, each indicating a

[

different loading‘situation on the computer. The 1larger

! .
value for p may indicate a lower. competition for the CPU

whereas a smaller p may be typical of a -heayily loaded
system. Further research will ha@e to be done to determine
more accﬁratgly hoﬁ the factors represented by 53 (and for
that matter n) influence the calculationléf pagé residency
based on ‘page }nterreference distances. ‘However, T must

still be _determihed so thét software schedulers and

¥

dispatchers can make. meaningful assignments for memory
. o

allocations

éhaptér VI will present'some reaéonablé values for T,
given.the considerations already preSentéd. The @eahs .for
deciding. the"values are empirical; by stuinng the.missiﬁg
page rate and working set size of programs,with réspect to
varying windoﬂ sizes. : ' m'>
. o

Chaptér VI also presents an investigation into whether

' pages can be divided into "paging" and - “"non-paging" types

.59
and whether the frequency of reference to a.pade relates to
its "page'" window size. These investigations will be used to
decidg whether adaptive window size control can be extended
to the individual page level and can this control be
exercised through a page's ﬁpeéuency of"feference. "In
par{iCular; if in Fiqure 6‘£he curves X and Y.repreéent the
missing page rates.oﬁ twod pages, thén,x could have.a window
T* which would bé just as effective és T, Then, if X does

leave the working set, memory is released T-T' seconds

-

sooner than if T were the window. The results of an’

examination of the situation depictéd‘in Figure, 6 are also .

‘presented in the chapter.

~

-

o

A

60

Chapter VI: The Empirical Study of Horking.Sets

Wwhat work has been done on _tﬁguempirical study of

program working set behav1or° As previously mentioned in

Chapter v, there - are -several papers dlscu551ng tﬂ@ﬁﬁ

/ . .
implementation of working set. concepts; yet, only the ‘work

by' J. Rodriguez-RoSell [R4,R5] gives,information‘on,actual

’

process worklng set characterlstlcs. One of the purposes of
his research :@was to determlne a fixed window srze (or time

slice length) and the number of thesé windows' ‘that. shouid
. ; :
form a quantum. pata was gathered on dynamic program

-

behavior by doing a fully interpretive simulation of the

execution of selected problen programs~0n an IBM 360/67. The

programs -used were IBM/§60 software; a FORTRAN‘compiler, a

_PL/T dompller and an assembler. The simulation procedure

Wy

"enabled\'most of the page references, to be,gathered. An

add1t10nal program was employed to exam1ne the 1/0 géhannel

programs for their page references. From the results of hlS

study, Rodriguez4R05ell has . indicated =@ 'value of_' 30

1

,mlll$seoonds for T and that 35 'such® windows compose a

-
7,

{guantum. USing these. values:7 his _obérating systen (a

modified version of cp-67) was stable with a mean

multiprogramming level of three [R4 J.

“

>

In this study, program’reference'strﬁggs are collected

v -

‘ A - 61
. | ' ' ~
using a _mgdifiedﬂ version of the *TALLY program [M4]

available on the‘MTS operating system. The program employs
an =instructioh-byJErStruction iaterpretive execution of
problen prograas to gather page reference'strings. ~The MTS
' &
'operating system. at the University of Albgrta loads all the

code for the user problem programs into v1rtual begm@nt five

ey

of the IBM 360/67 computer. Only the - page references to
segment fiveAzare‘ used in the results of this study. Other
virtual seg%%nts are used for re-entrant .system routines,

5ystem tables, and for program I/0 considerations. Since:
. . . to .) - i i ‘ . - i
system code is available to all prograns executing and I/0

. . i
processes vary from machine to v chine, these pages were not

included 1in a'probiem program's calculateéd average working

~

'set size .and missing page -ate cves. However,.in.order to.j & '~

oY

retain realistit system timing considerations, references £Q.

these pages are involved in the working set calculations.
-T ' R

T : . o o,
.)) RO

LD

”he refefence strlng ana;y51s was based on an 31gor1thm ‘

‘ Suggested by Dennlng '[D3]; ;ihé actual algorlfhmyused is

given in Appendix 2. Also in ‘that vappendix,”“is' another,

i

'algorifhm,f nodified accordingJ to the propertles of tne
.exten51ons to the Worklng Set Model to. produce the‘ average

worklng 51zes and missing page rates for: 1nd1v1dual pages.

y &
P &
~

S Qf . ‘Both algorithms ﬂusedjdifféf?from the_one suggested by

.

S "‘

and
)

)

.

! B 62
Denning. He set the time for the firstr reference to a given

..page equal te L+1, one more than the maximum window size
v ! Y

studied. Then, the working set calculation includes this
initial L+1 distance as part“gf a page's interreference

instruction behavior. Thus, the.firs(nccurence of any page

<

in the referenqe string effectively pr-oduces a page fault.

In théfpresent_stuayl the interreference distance for the
| S I - , . .
fi>\’rgféfencertp a page isr’et to one. That is,. the 1 irst

.‘Mé? ocg?renCe of a page-does not constltute a page . fault. The

; f; &algbrlthms are rnherently .51mllar,‘ but express different
A .\W\ ’ ’

R gapproaches to the problen- of a 'practical calculation
R . : . .
fulntended for unendlng reference strings. To illustrate the

u"difference, con51dér the followlng example. If a page isS
referenced onlty :bnce in a total of K program references,

o
!

Dennlng s algorlthm calculates the page's avegsge 'working
/

'size to be T/K. The algorlthms used - 1n Appendlx 2 caldulate

thlS samu page's average worﬁlng size to be A1/K. ‘3ince in
tgeory tiw 1limit of T/K is éero, this author feels -that the

1/K value is more représentative. However, to convert to
: ' . / .
. Denning's algorithm, " 51mply;add ‘n*(T/K) to any total progran

~working set size psoduced in_‘thls study (vhere n is the

wr

-numbey of dlfﬁerent pages referenced by the program)
N '

RS
- . -t v
& - . R : i

o N .
W ' Tﬁ&ﬁemplrlcal results gathefed here are divided into .

-

two. parts. The flrst part conce}ns the data gathered about

program behavior. The second section

63

presents the .results

obtained by applying working set céncepts to the behavior of

- individual pages within a program.

TABLE IIT- Desciiption of the 15 Program Runs

PROGRAN SOy "CF
NUMBER LAND)
1 ASSEMBLER
2 _ ~ LISP
3 SNOBOLY
T FORTRAN
5 ALGOLW
6 & pL3en
J L
/ _ - g
7 " KLGELR:
8 PL360 . ”
9 ASSEMBLER
10 ASSEMBLER
11 . 'ALBOLW
12 . ASSEMBLER
13 -¢ASSEMBLEW
"1 FORTRAN |
i

15 i FORTRAN |
:) I
‘]

PROBLEM PROBLEM
TYPE NAME
.Compiler *FORTG S
. L >3
String Interpreted
Processing :
string ELIZA Interpreted ..
Processing : : :
Simulation
Chess WITA 4 N
. . '
Compiler *ALGOLW Terminal 4
' ® I/0 Bound
Tl 9
Parser - férminal £
I/0 Bound :
Compiler - *ALGOLW .
Compiler *FORTG
'cdhp{fgr *PLI
‘Chess fEWWIfﬁi's;
o Do\
I'i hrary. . ,
Seaxch)
Compiler *PLI ")
Matrix . _
Processing R -
-Chess. COKO CPU Bound

TABLE IV:

‘PROGRAM

NUMBER

952,256

1,048,938

1,065,u08

1,049,004

1,060,399

1,064,466

972,048

1,054,456

1,055,094

1,059,717

1,059,949

1,013,678

1,059,101

1,049,828

1.052,u58.

REFERENCES

1,000,000

1,000,900

1,000,000

1,000,000

1,800,000

1,000,000 .

1,000,000

' 2
1,000,000

1,000,900

1,500,000

1,500,00b

1,500,06?“3

1,500,000

64

Numerical Description of the' 15 Program Runs

% _REFERENCES

96.3
97.5
95.9

97.3

98.9 .

- A-AAA.
B a

particular reference string. Six of these strinds -
L) o . ’ ’

65

Program Behavior

Fifteen different reference strings, each representing

the instruction-by-instruction simulation of approximately

~one wmillion instructions gorm’the basic data investigated.

\ N . v . . .
Eleven unique programs were used to produce these str%mgs.

They vary in problem type from compilers to chess-playing
progtams. Table IT1I provides a concise representation of
all the reference;,strings emp]oyed in this analy51s. The

\';.Q,i)
source 1anguage column 1nd1cates the language the problem

L

program was written in, while the problem type represents

its particular application. To distinguish programs having

the same application, the problem nane column identifies the

particular progran " used when gathering the data.v The

remarks column indicates any special comments concerning, the

f

originated from 1compilers. The source language‘for ali
these compilers_is 360/assembler except for qthe *ALGOLW
compiler ‘whichihis written in PL360, a macro language using
36b/assemblern Two different chess'programs were run; one
written in ALGdiﬁ and'the‘other in FORTRAN. ‘WITA; the Algol:

T

program, was run twice under different initial conditions;

but had very consistent working set characteris@ics. Both
the ;“string' - 'processing programs vere run using an
interpreter, since .the source language used by these

4
va,l ORI

66
interpreters 1is probably assembler, the characteristics of
languages, LISP and SNOBOL, may have been obscured.\ An
extension to this stndy would be to'gather and analyse data
using conplled‘LISP or SNOBOL code. The remaining “four

programs were provided by Computing Science students at the

University“of»hlberta.

The first two columns of Table IV indicate the total
number of instructions simulared for each progranm execufion
and the total number of references used. in the actual
working set analysis. . Eleven strings were analysed for one
million references while “the remaining - four were
investigated for T,SC0,0GO references. 4This deliberate
inccnsisrenCy ensures that there are no gross: discrepancies

in the analysis between strings of the two different

lengths.

~The flnal colnmn, percgntage of‘references =t theu user
region, is a measure of the number of references 1n the data
stnlng which actually occur- w1th1n the problen program (in
,segnent 5). When the’ data was collected, the entry point
address of the fprenlem program was subtracted from each
reference.A Thus,"only those references- which are non -
negative are ,attribu;ed to the problen prcgram beinﬁs

analysed. All other references are assumed to be within the

PR A

4L

\.'ﬁ.ﬂa

s
five is 21.9%. .In

67
operating system's service code and I/O buffers. often,
this procedure meant that the problem program-was link-

edited to ensure that all its routines were loaded beyond
0 @ :

“the entry point address. The non-prbgram page references

are included in the analysis so that interreference

distances between pages of the problem program_peflect'the
program's'—use of the servicé code. Genérélly,_ those
rout%heé most used by a problem'prograﬁ invoive input/output’
acti&ity. ",This is indicated by the COrrespondencé between
the low perceqtage of prpblem program' refefences and the
high teérminal ihput/output activity for programs 6 and 7
(see Table VIII). oOver a}d the programs studied, the
average perc9ntage of reférenées‘ to éagés not'in_segment

-, o
_}?e MTS operating systenm, all service
B A 2 . »

o fk [$t
code and 1I/0 buffers are pageable. - Because of the initial

b 4j-

limitation placed on this study, the contribution of these
pages to the paging rate of the system has not been

investigated. However, since an average of one out of five

references 1is to one of ‘these systenm or I/0 pages, a more .

complete study of program behavior should' determine the

. paging activity i%vblving this memory. Two other progfams,_

‘the, PL/1 compiier and the library search program, have lower

reference counts in the problen programu§egion. .Since both

programs have low terminal I/0 activity, the results suggest

.

that bbth_ progranms prdbably make extensive use of‘diéc

~ .
!

‘1-

operations during execution.

TABLE V: Working Set Characteristics of the 15 Program Runs

PROGRAN TOTAL PAGES MAXINUM MININUM =~ WINDOW_SIZE
NUMBER REFERENCED HWORKING _PAGING AI_HIN RATE
SET_SIZE "RATE

1 20 0.4 .62 100

2 23 1.8 .89 Y

3 - 858 47.8 . 6.80 " 100

4 .10 10.0 ° .086 60

5 s 30.3 1.20 16C

6 u . 12.7 .38 75
7 | 15 11.0 | | .uééﬂ 75

8 34 16.5 1.15 ' a5

s - 12 117 28 100

10 51 1.4 148 85
1oL 38 26.3 C 1,00 0 ce

12 12 C7.66 .00 ' 40

13 49 13.9 . 2,10 - . 1CC

{n 8 s5.21 . .35 65

5 4o 186 . 5.20 100°

Maximum working set size at 100,000 references
Minimum paging rate in 10-5S pagés / references
Wznd,ow size measured in 103 page references

b

L _ .

TABLE VI:
and the Exponential

PROGEAN WINDOW _SIZE
NUMBER AT_START OF
STEADY-STATE
BEHAVIOR
1 - 50
2 25
3 70
4 e
5 - 60
6 45
"7 e0
8 . 50
9 4 70
10 60
11 70
12 | 20
13 70 . N
18 65
15°* 4o \

. _ :) M
Paging rates measured in 10—S pages / references

"STEADY-STATE"Y

Wworkin
Fit Paramete
Program Runs

I e e e o v

THIS WINDOW

15.3

69
g Set Characteristics
rs A and B for the 15
PAGING RATE A B
FOR_THIS
WINDOW ’
¢ ‘ ’
.82 . .065 =-0.29
1.01 .020 -0N.
10.8 .860 =-0.28
.67 022 _0568
2-93 -70 "0.“6
b7 12 -C.uu
1.08 .f%\ -0.
1.45 .060 -0.20
-8“ .214 ‘O.l“l
1.98 -21 —0033
“
3.10 .66 -0.43
.43 L0271 -1,
2.53 19 0.26
.35 .031 -0.26
7.27 17 -0.14

-

Window size measured in 103 page references
Exponential parameter A measur
Exponential parameter,B.measured in 1C—* references

ed in 10-3 references

.

11

38

60

.] , s
“ | - 70
Tables V and VI present the results determined by
applying a workingwset analysis to the reference strings.
The.first’data column of Table V indicates tﬁe‘ number of

different pages | referenced by the individual Aproblem

program. A total of 421 pages is referenced over the

fifteen program fxecutions. This represents an average of
28 pages per programf The second column shows the maximum
average working eet size of the programs. The value is
max1mum since it is calculated at the largest window: size
used in the study (100,CCO references) The average working
set size of a program will increase 'with window size as long
aéllthe average paging rate is not zero. Only program 12
reached its max1mum average worklng set size with a window:
.of lees than 100,000 references. The average value of the
maximum‘average wcrking set size for all programs “is 16.4
_pages. Thus, the werking set 51ze calculatlons lndlcate
that these programs on the average require. only 58 5% of
their referenced pages to be resident at any glven time.
.The next two columns of Table V indicate the minimum missing
1page rate of afggégram and the window size at which this
rate occurred ;given, that the maximum u1ndow size was
.100,000 references The average minimum missing page rate
forh all programs was 1.u6x10‘5>pages per reference. This
dinimam rate eccurred at an average window size of ‘83,00%

references. If it 35 assumed that the mean time to execute

/

[

A

O o

a 360/67 machi(ewcode ing

this missing page rate is approximately 10 pages per second.

ion is 1.5 microseconds, - then
If it 1is further assumed that every page is written to a
'secondary device when its window size expires, then the
total average paging rate is 20. pages per second per

program. <However, this-is a 'maximum paging rate. Since

_expired pages of a program can be referenced again, they can

be "re-claimed" before being removed from memory. It shodld
be emphasized that these <calculations are ﬁ?séd on the

average program for this study. The results may or may not

"be representative of the typical program executing on any

given computer at any given moment in time.

-

geasure the

The first three data colean: of Table VI
charaﬁgeristics of an apparent "steady-statd¥ avior for
each pfogram. First, inspect Figures 9 to 23) the average

working set curves. An outstanding characteristic of almost

all S(T) curves is the occurrence of ‘a "knee"; and of the

HiT) curves an "elipv"-@ This knee"(or- elbow) separates

windew sizes where the ¢hange 'in missing page rate is rapid
. _ =)

from those windovs where the rate appéars to be praCtically
constant;'{);though‘this flattening éf the miSsing:pagé rate
is vis&;iﬂy striking, the maénitude ofvfhe'actual Cpange in
rate *in this region can vafy cbnsiderably between prograEs;

Thus, the window size <chosen to indicate the onset of

F

. concomitant. memory saving.

, . - -Bt

72
steady-stdte behavior was visually determined and indicated
‘in column one. Column.two gives the average working set‘
size of the problem progran at this window elze and the next
column indicates the corresponding missing page rate. The
average window size for the start efh this behavior was
determined as 53,000 references. The correséonding average
smissing page rate was 2.39x10-5 pages per reference with an
average value of the awverage working set size of 15 7 pages.
In, comparison ro results shbwn in Takle V, the average
paging rate has,lincreasedb approximately 65% whereas the

memory utilization has been reduced by le=s than 5%. This

implies that a program's average working set size 1is ~quite

invariant ‘in the window size 'r=" e of sc ,0CC to 120 COO
references. Yet, higher paging rates can be the result for

smaller window sizes within this range withéut any

The columns rarked A and B represent';the coefficients
found whén an exponential' fit was applled to the missing
page rate curves. - The least—sguare method was used to
obtain a _straight line through the log- transformed mlssrng
page rate data p01nts. The “the "m1551ng page rate"

intercept gave the value of 1ln. A and B was simply the slope

of the line. This fit has the form :

Ae.

4

73

@
where A 1is expressed in units of 10-3 references a ‘B in
units of 10—+ references. The.coef£1c1ent A te%ds to be ‘an
indicator of the magnltude of the paging characterizing a

xa

program whereas B indicates the compactness of a program's
working set. A relatively large value of B indicates a
steeper "slope" oe the fitted expuneivial curve. The
steeper this s;ope, the more 1likel; the interreference -
distance between pages of its work:.g set is sﬂorter,‘ than
for ‘a, progranm having a_smaller B coefficient. 'In general,
as bothvthe 'vaiue of A increaSes and Ithe value ofr B .
decreases, the 'mere likely gye‘brogram'is tQ~ha}e a higher
missing page rate. Havf;g eitpef one, of the above true, is

not by itself, a completely valid indicator of a program's

relative paging rate.

The fit of the exponential curve to the data was quite

good for wirdow sizes greater than 2Q,0CC references. This

is graphically shown by ‘the Figures 9 to 23. However, for
wlndow sizes less than 20,000 references, the actual m1351ng'
page rate tended to rise far more steeply than that of the
fiﬁted exponential curve. Perhaps a better fit 'for the

entire data curve may be obtained by considering the missing

page rate curves to be conic.

B BT T

o

)

Exponential fits were applied .to these cqtvé%'f@o\

1 s\
v

compare the results of this study to that of: Rodriguéz-

B 4 . 1 4 } .
Rosell. The average .values obtained tfor A and B in‘that5

g -

investiga{ion was .45x10-3 instructions and ~.40%x10~*
instructions, ’respectively. From the results indicated in

Table VIII, the average number of references pér igst ¢« .on

: %
is 1.58. Therefore, converting . Rodriguez-Roscll's

coefficients to the same units used in this study gives a
value of A of .2Bx10-3 references and B equal to -—.25x10-%

referencesN The average value of A and B determined over

the fifteen program runs is .23x10-3 references. and .

-.31x10-4* references, respectively. The ayreement between"

the two sets of values is gquite closé. Since Rodriguez-
Rosell considered the pages a program Xsed for 1I1/0,
including channel programs, at-léast some of the discrepancy

between the coefficient values can be eXxplained. The
' ! .‘. v
parameter, A, which tends. to indicate '‘paging maghitude,

. N . ' " ’A
would be larger,_ in his study. Rodriguez-Rosell may have

Al a .

included the influence of channel program execution time on

the interreference distance. If so, his B co&fficient would
tend to be larger than that determine’ °: the bhesis. It is

A s ~ e

fedognized that some of the discrepancx#betwaéh-the two sets
G N ' t, . PN A .

ofcoefficients may be due simply” to./diffefences in the
i ’ : e . .- .. . :
source data progranms and-algor;;$gswusﬁﬁktd calculate the

vorking set curves.

/ ,

6

*

¢
N

: ’ A . o . i
TABLE VII. Average Expontial Fit Parameters of the Expected
M1551ng Page Rates For Different Program Types '

_PBQELEQ.EBQEBA!_IXEE | A!EBAQE_A ' A!EBAQE_E
)"’ -
‘Non-Student R ¢ .28 0,31 - L
- . . . o ; o - SN »,3-’;‘~ i ‘ “& ,
-Student ' ST L09 P T S S
Chess .Playing | Loy .. -0.33F
String‘Processing o 43 ﬂ\'. ;;"70.2T
' : N A LMy S
FORTRAN = ' : S W e -0022
ASSEMBLER -~ . .13 o -0,32
-, Compiler. B S -C.31
. ST | o - ’
ALL PROGRAMS : R .23 . =031
g -t "
. Exponentlal parameter A m- sur ! oin 1C-3 references
Exponentia} patameter B .m- " .imv10—?¥refereﬁﬁes

.

S

/s . .

. : L PO 2 5 N
C B .

e . > . . .

t;,Table VII 1ndlcates the qyeragelf . M‘ and:-B':

T determlned ,.qver the 0ar10us proble
- Y : R K / LT e _V, [- e ;A.'A
language grouplngs of .the programf The group 6ﬁ student'
. \‘-; . ;'0 N

and source-.

'”he smallest ‘value of A and the largest value:;,
of B.. Thlsésgrees w1th the 1ntu1t1ve belmef gthat 'most

Zprograms

stqdent programs dre relatlvely.small in comparlson to non-'"

;'studentvprbgrams. Desplte the fact that the chess programs

have‘ the.'highest |average A value, the 51ze of B was only
R kS .>~s'1

sllghtly larger than average.- These programs tend to access

.- \]
more_vpages outslge ‘the establlshed wbrking , set; but

-

' accessing - patterns Hithlp. a, worklng set are more: compact

~

v

,j Gzzirogram paglng act1v1ty is offset hy the uorklng set tending -

‘f'gfactica&ly the .sapeﬁ;:v

. oo Y uf{ﬁ:{.‘{v .

-, . u»!, o
@ o - 8 7%

than the average program. The same working set behavior\/n

3 : . 2
cannot be said of the string proce551ng programs since their

interreferefice dlstances tended to be a 11ttle longer than

33

" the averagé program. Coupled wlth a larger than 'average A

£$C1ents,, the result is a hlghly paged pLoqram. The
‘* - .
programs have a low value for A but, also the 1owest

EN

'valug B. The lnltlal lndlcatlon of. relatlvely low

o be much less omp@ct than the average program.‘ mhe

assembleq,and comaller programs have almost 1den¢1cal value%

. J . , "ﬂ%) .
for A and B.. Slnce s&xgof the“
LR L am

even @ssembler programs
v, W i

}_tu\d’led are. also compllers, t& resiugqt 14 not surprlsmg. Kt

........... By

Koa (]

An - average value of -A ndlcatesggmaéw%hese program \end to‘

-

‘have lower paglng act1V1ty thgn average.- ‘ - . §
. . -ﬂ.ﬂ »q}j, ’ N ‘._:‘:‘ . ¢»q’,.\ 61 5 i

. v
- W o

3«33'2 . . i ; .
Rodrlguez Roséll‘ fouhd ‘that {%e».vaer of B was

'a‘l\programs;jkﬂe also determlned

LN

_-;"

that »the *A values - o
A [

(gonverted to~un1ts of; this study) wefb Q8x?0 3 references“

.\'U

and .19x10 3 \ references, reSpe £tively. - The . results:

a

presented by Xhe °study have 1nd1cdted a varlety of values

for B, but Lhaw is- e‘ssentlally tﬂe \same for both assembler

J

‘and FOR”RAN programs (apprQX1mate1y 135x1C 3 ¢references) .

¢ > . ‘,-w

1nd1vfﬁual programs of a _partlcglar type have"a greater

' '4' A 'JAS‘.

»

P

(assembler-“and FORTRBN programs_;

i ._;:‘.,'.&q"

fBoth these results .seem: ‘to 1%ply that ﬁlfferences betueen §4

od

l;"

5 o ‘h”.. ’ | 77
1nfLue£ce on b and 3 than the_unifying‘characteristicéwef
isiW1fq; source code Because of the small sample size,dfthe
SAN b N
success }‘of applylng worﬁlng set concepts te claselfyff‘

BN

N < ‘Qr'ot

programs “according to functional- ctaracteristics (compilers, i

strlng Brocessing programs, student. proqramsf~.cannot be

_completely aqcertalned from ‘the’ result resented here.
Only further emplrlcal research wlll reveal whether programs*

/ &
© can ‘be functlonglly dlfferentlated by their worklng .set.

5
u‘-r

Gharacteflstlcs. Reé%rdless of the differencee betuee%

programs,‘ uorklng

fﬁig Cbnc§$ o - ufbvidev a’ uay %gf

%% °;§uautiﬁvihg §the AN B procrama‘ Tt may be p0551b1e to
: i - - : TN e ‘
*,bbﬁérﬁia %%stributionvgf 1pfbgrams runnlu%w on ~§f§computert
-ﬂgécordln;'to A s %@d Bl 's. Thls‘pﬁgsente a. reasoneuly 51mple“
Lo -
W d; @nd meanlngful approach to’ ?esqyltlng anulnput job stream. .
If an ogeratlngA%yetem utlf?;eshg‘:orklngéiet approéch, such |
?ﬁﬁ% s a prqgram Ioad descr1pt10n° would prouldev 1nformatlon for

.
’ .—v, 5
& a . N

C\

o tunlng the computer for more eff1c1entboperatlo%§§?
?

o,
k4

. | o o) s B

e -

denalledvaccount of the 1nstructlom,'

2 - Wablg VIII glvesu.
: pes whlch were executed durlng each of the flfteen progq9m1
6 .. '5>'..\ u «
" datalruns.w The flrSt four data columns olndlcate for- each‘
. ® :

,progiam the pefcentage of‘type G, P, B, and“B 1nsttuction§

which were execﬁted;/ The G type Instructions are’ those
. requiring a memory fetch, the P type are those requiring a

“.' -) ’ — e . . L. . -, N s B .
\meuory store, the\LéB//'type. .are register-to-register
(A, ‘ o~ _

V.

‘s, . ~ .
o . b

- I : . 78
éperatians, while the iast type ‘indiggte dggnching ,
fiﬁstructiong. The fifth coiumnﬂindicateS';A;1pércentage of
inst:uctions_whicg;ref%rence'memdry‘(sum of P Andlg types) .

3

-.Type Executl,] 1/0 .
. the 15 ProgragaRugg

TABLE VIII: ILmgth
Characterlstlc‘~f

JROGRAM %INSTRUCTION TYP§§l | RATIO DATA/ "SVC's TERMiNéL
NUMBER . %G %P %R RB - INSTR_WORDS | 1/0's R
1 739.23 Ju;u7 16.12 306.12 53.70 . 65 C
2 ¢ 32.35 10.61 21.53 35.51 42.96 33 . - .
3 . 46:65_ 16.01 .11.28‘:26.06 62.66 164 19 ; |
4 60.61. 8;7$ 9.52 2(.89 69.36 w5 o
.§§v u6.34 1§,u79'19.52;51 67 ‘f62.81 ' 56 f?¢i7 o
lé , .39;68- 13:55 J6?7§?%§Q;ﬂ%; 52.72 180@9 246 e
R Jo;Tg 13f29‘;13.§§? éﬁ'é5uuy$4ﬁ98' ;519 250 .
8, 39,81 ';C;Buqfha.zs 31,10 50165 105 0
o Pya.u3 10.12 29.10° 18.35 "52.554 2 g ‘
10 . uf.89 T11.63 14.40 32:08£w;53;52ftA 639 -
D11 . u6.2§ 16.73 19.97 17.05 " 62.98 o 3
12 = 38.68 10.13 21.57« 29.62 48.81 - 352 ~ @
13 40.93 14.23 12.23 32,61 55.16 531 - 9 ‘
14 ;23,37..‘@ 93 10.21 *16.43. 73:30 13 s ‘
15 . 55.88 14. 39- 12.27 16.46 /71 27 . o0 0
. ; E;VJ jgz.‘; - B . . | . . -
'is ;theré;;iahy : elatlbnéglp betdeepﬂ\the'ltype _of |

instructions a program executes and its',’worklng ,jﬁem“'4'

3 L
“ .
R -

vquestlons!iof instruqtlon‘ type execution and

TF.

‘pfopertles. However,§5t¢;east,at:tﬁis ;evél of:

- 1nstruct10n executlon ‘types for adaptlve control purposes.,

hd N . - . . - . . . [

79:

PR “'L, o .
LT 4 I : .
; v - u

~bEHaw ior? There appears to be little relationship between -a

[]

progran having a lower percentage of menmory access

instructions and having a highér B coefficient. Those

programs having a higher perceﬁtage of R type instrhctioﬂs
B K ! L . .
do appear to have a higher B'value, yet the ~conver§8“ does

‘ot necessarily hold. The characteristic of a 1lower

percentage of B type instructions again :tends to indicate a

)

‘be any relationship betwgen instructidn types and the ;actual

minimum, missing},page rate determined for a"progrgw. It

should be nqted-tha?ithese conclusions are not drawn from

rigid statistical calculations _but rather from observation
. ; . e

should be applled " in - f®is area to sé%tlé completely
e ‘ ' ‘

ﬁ Q’«s v b

»~

& . : ' ? I

“‘J

e /) -~ . . LT
" appears that there .1is llttle _to be' galned from using .

-

.) | ¢) ’Q . "v /
¥ (N , .) .) .
As- indicated éﬁ%lier, the working set'model‘ofv program

-

_behavior does mnot include gny.input/outputHcongidegationsf

Howewer, 'in any practical investigation of program beéhavior,

' 1 " .
this aspect nadst be ag//ﬁeast ;cohfideredt « Would it Dbe

sensible to -suggest a’window size, T, for a paging system

when the average time betwgen ~I,/0 .operations causing a -

Car 2P e ' S T

' .

?4highet B coeffigient‘valﬁé7 Hoyevet,fthere does not seen ﬁp,

" of ~the"qollected data. Further rigorous investigation1

v . X

80 ..
program to block 1is T', where T' ‘is much less than T? To
1nvestlgate thls questlon, two types of: information ‘were

gathered in this stuody. The first type of 1nformat10w

.

. collected is indicated by the.column marked SVC's in Table
: ' _

-

VIII.‘ The final column in ./ that table, the number of

terminal 1nput?éutput operationsy 1s the second type of I/O
. . P ;
‘1nformat10n‘accumulated. yﬂdkr %
\ _

P

2.

T

R

v

' RS & ¢

An . SVC 1s an 1nstructlon whlch when‘executed 1n1t1atescb

3

a Supervisory. controlled operaﬁlon. At the time of,.thls

study, it 'typically &}oohf tuo‘ SVC s to 1plt1ate an I/%&

o

~§tgperatlzhn (a start I/O .anad a“#afﬁv for © IVO comp&etlon)
b T -

. Unfortunately, SVC‘ .could - Yalso be executed for non-l/qn
.) . R s

.
N

“

functioms. ;Infaddltlon, not~all I/O SVC's executed ﬁouldg
% T e

fram to block. BecauSe of system 1nternal&;/o

‘canse tqﬂ ‘
2

bufferlng, control may q’w‘éﬁurned to ‘the program w1thout

1ts» executlon being 1nterrupted.f These factors all tend .to

- o sy
!

make the average blocking dlstance between I/O' operatlonsA

longer ..in processv_tlme than 1nd1cated by the SVC count.

‘

'What is requ1red taJ_s a4 more complete analy51s ofr .the

suggested that elther ‘an a Eriorl dLstr1butlon of SVC ‘types

heY

:.relatlonshlp between I/O act1v1ty and SVC" executlon. It is.

. executed be. determ;ned, or,: that during reference string. -

';‘accumulatlon the type of SVC's executed be gathered asAwell.y

¥

UJIn elther case, the impact . of I/O bwfferlngron SVC e%ecutlon

5"_.

must also be obtained. It would have to be determinedtdﬂ

whether : or.’ not . this information could be gathered during
program simulatibn. {Dependlng on the operatlng systenm, real
t1me I/O buffer beha@lor of the ‘problen program may or may

Qe

\ not be pos51ble under software monltorlng.
' S“ : ! :

’ :f. X) ’ :"~ . . o - ‘ o

“ftfhe “count of the1numberfoffterminal-1/0 operations was-

also gathered»toﬁbﬁtiiu '1nformat10n on the frequency at .

2 ‘which program; 'block for I/O. -&If a request is. made for
3,.terminal LAnpuk, the program normally enters a wait ‘state.
% . j ' i l,.? -

?5e1ther released meedlatély fpr SYStém use or are gri’hally

-‘.‘,9-". weld o . ‘.. i Dy

‘
5
- LI

"Qf released accotdlng ,":t;Q the standard aglng algorlthm» (as 1n<

;MTS)“; rT‘erln-m:nal Qutput may or- may not result in the .program

,‘.x . EN

'bLocklng., If output bufférlng r; done to the termlnaf& then
thls‘;count of ~term1nal /O’roperatlon w1ll not reflect
2 M v))
accurately-the program's blocking behavior. The«accuraqy.of

‘..

this count 1s further reduced by programs which do- dlSC I/0.
naddltlonu to that at the termlnal Agaln, from the data
ng collectedb it 1s not - @p0551ble‘ to .. deteruine 'accurately a

prqgram's I/b blocklng behav1or. Only further study, as

e THERINTA

previously suggested, Hlll provide- more rellable results on

»prograuﬁinput/output characterlstlcs; '

3

fDependlng on the operatlag §$stem,}the program S pages are

C g Ehls act1v;ty«may~cause blocf%hg of program,texecutlon' in

,con51dered in thes,ﬂ

® . ’ . u':’}‘ 82

: .
What conclus1onsl‘can be drawvwn from the- collected 1I/0
[

Y

K

" data glven the llmfiatlons presented’ If it is assumed that

all SvCt's %nltlate an I/O operation, then ghe aveﬁgge number

of I/0's p@k, program is approx1mately 350 wlth one occurrlng
every 3005, instructions. Hogever; if only terminal
input)output's Aare considersd»thefnumber of 1I/0 operations
drops to an average of 37 petﬁgﬁjlion ‘program~ references.

This implies that the average number of instructions

executed between an input-or output has increased. to 27,000:

. . - - PR ‘).)
instructions ,or‘sapgroxrmately 43,000 references. If‘oniy

i . _
those programs “having a -relatively small percentage of

itstructions- executed within service routines are

considered, the average number of ‘terminal TI/0 'operations

drops to on&fﬁ six. This gives 'an 'average ofd167 000
. . ' . 6;-“

instruction'-' ,000 references between I/0 §0peratlons.

g -

However, for

v e

;references out51de the segment five code, the aVQrage number

. _‘;I' f

of I/O operatlons at the termlnal 1ncreases to 126 g1v1ng Tan

%

average of- 8, OOO 1nstruct10ns or 13, 000 references between

1nput/output's. 'It should be repeated that the 1nfluence of

dlsc I/0 and output buff%flng to the termlnal have. not been

1

calcul%tlons. They should be sllght' on

- P -

"non I/O" programs. Assumlng no output buffering to the

:&n :
r:l e

terminal and that each 1,/0 act1v1ty‘ results in a programo

Y
entering the wait state, the "I/O bound" program has an I/0

83

. “
blocking distance much smaller than any window size that

would be suggested for an operating system.’ This is so,
even neglectlng the inflpence of‘disc input/output. "Before
output buffering would be a meaningful 1nfluence'in reducing
the degree of_prpgram blocking Hlth respect to wlndow 51zes, .
it would hame to' quadruple the number of 1nstructlons
executed between I1/0_ ts. Thls would then nmove the‘;g\?
;\Q :

instruction dlstance tween I/0 blocking into the ‘window

size region, found in the present study, -for they start of

steady state or stable program paging behavlor;.;ég

4The answer to the original question islihat'a window
size T for an npegatlng system should be chosen on the basis -
of program paglng demands. Tt isv found that‘ "I/O bound"

programs appear to have an inter-I/0 distance, T¢v, which is

B

much smaller than T. If a system is running in batch mode,
the degree of 1nput and output buffering may be enough tOw
: o

- . : , : -
‘increase T' to a value chparable to T. Unfortunately, a

strlctly terminal oriented system may not be buffered‘enough

“to accompllsh a comparable increase 1n TL Hogever, T is
an ‘.average. Ehus;fjthere w;ll be ext(nded periods of

’ . . v L _ _‘: ‘-h
uninterrupted prdcessing - where the lony T window 31ze¢'

-advantage will apply'even for I/O-dependent-programs.&_ ,‘ -

[N

PAOGRAM | GSSEMBLEH

[ERY TR

$394d
[LW 3}

as's

EXPECTED WORKING SET SIZE S (I
3;::!4 : ' aqﬁ, '

B.

® 1000 200. 00 300. 00 ' S Tato0e 70000 00.00 300,00 (000.00 -,
TIHE (REFEHENCES) (X102) - * .

84 ¢

L :] - v -
(A
X - T T T

,EXPEETED MIS?ING PQGE RQTE ML) ——

- .

L FIT AET - <o
1 G/ B = —O [‘TUP 24

: 7 g

E ‘ *é .

—el - ’

~R .

=]

57 t.

m°

2l

bt N

oot

o ' ’ L al &'
2] ‘e ;?
St J Q \) Qﬁl . T) :
: — - . . . T ‘Z

PJ-W . 100, 00 200, 00 300, 00 00. 00 700, 00 800,00 - E 000 Q0
- TIHE (HEFEHENCES) (XY.Uz) ' :

T

< F;GURE,9;@ E§Uw_gNDngI] CURVES

1

-

‘ o

-~ PROGRAM 2

ISP

85

e

— : PR

q | v = "
el v EXPECTED WORKANG SET SIZE S (T)

300. 90 uga. oo cea. o0 s30.00 . Tea. Q8
TIME (REFEBENCES) Ouar),
b4 o

K. L
T

««w...»'

| EXF"?NENTIQL‘
A= O UUO@E

e
+ +

w'e
—

&
C w010 3WIL 7 %944
ne : in'a

s
........
-

“ EXPECTED MISSING P%BE RQTE M (T —

m.nAr &.n ., s0q. 00 -
o TIME U‘EFEH;NCEST x10t)

 FIGURE10: . S(T) AND

CURVES

LR
3,

- PROGRAM 3.

EXPECTED WORKING SE

21’0 3

80
+ +

1201 MIL / S304d
1%¢]

21 | S K

I ; |

g ‘:;”"M o0 TIME m;r;ﬂ?_?f;m ey S T’mm'"

EXPECTED MISSING PﬁcE RHTE M)
- EXPUNENTIQL%FIT ﬂﬁ“"” aeE
IR 0. 00086 B -0. ooooaa

- > gy A

7FIGUREIi}_'

A ‘, .
Y

PROGRAM 4 FORTAAN

87

EXPECTED WORKING SET SIZE S(D)

g 0L

s?ﬁ%"" L

apo, 00 200, 00

100, 00 zoo.rﬁo 300, oo 800. 00

%00, 00 ’ 700. 60
: . TINE lnEFEﬂENCES) X10t) -

" . 1000,70

R

sq w

EXF’EETED MISSING PHGE BHTE Ml

EXP@NENTIQL F}T'QEM ,a,‘
»ﬁg 0. 080068

on'e

.0.00022 B =

fﬁwd u'ni... .'A

.

v . le-D1N IHIL-/
2 1]

> o

'il"-

R

300, 00 600. 00
- TIHE (ﬂEFEHCNCE!) IXIU' 1

5 "o

Ffﬁ@ﬁf[ié%j‘S&TI,QNDiMIIL

c. : i - K . .
1 oy “ - Q o . oL CoNd .)
4 ¢ N . . B

88

PROGRAM 5 . ALGOL

[

L4

EXPECTED WORKING SET SI-ZE ST

MLYE

539bd
08 0

T_80°S2 *

W0

'E@%ECTED MISSING%PQGERQTE;Mm#}--
L

E&PDNENTIQL Fit oRES - £om

A= 0.00070 By= 0. oooous -

wu
8

.§ -
8
§
8

i !

oy
[DA
+ -

[N]
+ .

(e-01X) INIL / SITHd
. 'l’il

o't

e 4

. o2

e . R . " g —— . mm oo -
. .00, 8.0 #00.00 / 1000, 00, .

300, 00
] TmE mﬂcrsneuctm @'ﬁ AR G . S
&

&;5ETGU3E gg: S[Tl QND M T EURVES

Wo-
8
8
8
8
8

.)) 'VQ’ & *
| . . - . R S Aoﬁp

89

PROGRAM 6 PL3GO

EXPECTED WOBKING SET STZE S (1)
o \ : o

. " e

;.m 10,00 200.00 s&a.uo» TIH?’%EFERE?&%) (Xlsgg.u;: 100.00 a&q.m‘ 500,00 1000.00
EXPECTED MISSING PRGE RQTE MI(T) ——

;. EXPONENTIAL FIT AE® -

b A = 0.00012 B = -0. ooouuu

a1

ooy

";v.oo n;n.oo 200.00 300.00 Hn‘ﬁm'gf:sag%é?s: (XIB‘(T‘?;T?Y 700,00 §00.00 $00.00 ~ 1000.00

FIGURE 14%: S (T QND",M—[T] CURVES

\
90

PRAGRAM 7 - ALGOL ‘

 EXPECTED WORKING SET SIZE S(T)

o
2]
¥ ’/
W . ’
851
g3
=]
]
3!
g
- . N . . N - . — —_— N .
.00 100,00 200.00 300. 00 %00 00 00. 00 600,00 700.00 200, 00 900,00 *1000.00
TIME (REFERENCES) (X102)

- . \

EXPECTED MISSING PAGE RATE M(T) —

i . EXPONENTIAL FIT ‘RE®™ -
- A = 0.00011 B = -0.000038

&
2 4
3
™m
Lded
~2
= -
y
™
Q:
e
e
el
8
- w o (
& N N N N . - i e 'v' e e —")
'g.m 100.00 200.00 300. 08 300, 00 $00, 00 400. 00 700,00 800,00 900, 00 1000.00
A TIME (REFERENCES) (X102)

FIGURE 15: S(T) AND M(T) CURVES

91

-r

PROGRAM 8 PL3GB0

EXPECTED WORKING SET SIZE S (T)

5

N
: .
.
L /
L

00l 100,00 £00. 00

Mu'n

00,00 wo.00 _ t0.W w0.00 700.00 20000 %00~ 1000, 00
TIME (REFERENCES) (X102)

gt

~ EXPECTED MISSING PAGE RATE M(T) —
LR EXPONENTIAL FIT AE® .

t] n
R = 0.00006 B = -C.000020

3 :

w | '

3

s

~3

-

=&

£l
St
0 B A N Y
I R e o T A R A y-amr S
- ' TIME EBEFEBENCESJ X10%)

 FIGURE 16: 'S(T) AND M(T) CURVES

Pl

PRGGRF]M' QSSEMBI E_R

92 -

EXPECTE WOR/ING SE[S ZE S (T

. . o
- - A
.
. e
.) : |

- R ! .
3at : :
Mg . . S .
v . - L

<) - . .

hY
H

F

' b ‘ . . L - .
'3 ~ N — + + + 00 e +~
.00 100,00 200,00 300,00 400,00 500,00 600.00 0.00 h00.00 w00 100000
P TIME (REFERENCES) (X102)

EXPECTED MISSING PABE RATE M (T) —

g EYPONENTIAL FIT AE® = = -
A = 0.00024 B = -C. ouaouq

VA

Le-0O1X) IHIL / S3945d N
210 o

- g

Rl

1 i . X
\;.w 100,00 200,00 300.00 ~ %00.00 §00.00 $00.00 700.00 %0000 100,00 1000, 00
- -TIME (REFERENCES) (X102)} -

' FIGURE 17: S(TJ AND F(I) CUAVES

4

'PROGRAM 10 ASSEMBLER

EXPECTED WARKING SET SIZE ST .

$3944
)

" g) - 3 3 .
ED.UU 100, po 200,00 300,00 $00.00 100.00 ‘800,00 400,00 1000, 00
T IHE (HEF EﬂENCESl X102) . “\

-
EXPECTED MISSING PAGE RATE F(T) —

EXPGNENTIQL FIT QEB‘ - :
A = 0.00021 B =-U. UUJOB3

oo

20
>

&

n'o

1c-01X) 3HIL / §3984
1M

w'o

ga';* Tim.00 - 200.00 300,00 $00.00 70000 - 800.00 900,00 1000,00
: '”ﬂE (‘BEFEHENCES) fXIQ) .

(FIGURE 18+ ST AND 7 (1) CURVES

93

PROGRAM 11 - ALGOL

94

EXPECTED WORKING.SET SIZE ST

00t
—

53984

sz

R P00 100,00 200.00 300,00 _ %0000 %0000 00,00 100,00 %00, 00 ¥00.00 -

s " TIME (REFERENCES) (X108). =~
\ ’ - !

e
. - \

£,
LYy

«EXPECTﬁD MLSSING PﬂGE RATE M[T]

TIME (REFERENCES) (X108) *

g . EXPONENTIAL FIT-AE® .
1 A~= .0.00066 B = -U. 000043
gu.m 100,00 - o 0.0 W0) - 0.0 - 700,00 En.w- p;;nlA—tjgtl-l;:'m

FIGURE 19:

S(TL.AND F(T) CURVES

PadoRAM 12 ASSEMBLER

95

" EXPECTED WORKING SET- SIZE S(T) ..
et

EXPECTED MISSING PHGE HQTE MT) — /}
s EYPONENTIAL FIT,AE®™ = -

_ A= 0.00002 B = -O. 000159

s;.
.‘;.w xw.g’ ZW.W- 300, 00 I]"?‘(gsfﬁﬂé:é?s) (Xl.d-i'“[i ‘ 100,00 IW.W.T 00, 00 000,00 ®

Fﬂlﬁ%22;§*STT] AND F(T) cuavgng

" PROGRAM 13 OSSEMBLER

e e ey

EXPECTED WORKING SEI SIZE S (7;

,(7 .
8
b ~
P e
'g S "’.» ' |
. .

53984
"
v

70000 800. 00 $00.00 1000. 00

- t fe M | TR0l i
N ..
v

300,00 00.00 __ 00.00 _ 809.00
TIME (REFERENCES)-(X10?)

EXPECTED MISSING PAGE RATE M (T} —

¥ EXPONENTIAL FIT AE® - -~
A =0.00019 B = -0.000026

®°0
L

LB

‘(501X WIL / S398d

go o /Tn) 00,00 300.00 400 00 $00.00 600,00 700.00 $00.00 w0.00 1000
TIME (REFERENCES) (X182)

 FIGURE 21t 5(T) AND M(T) CURVES

97

PROGRAM 14 -FORTAAN

EXPECTED WORKING SEF SIZE SUT)

n_
]
" .
a
D=
75
w
’-
.
3
hs _
g
@00 100,00 00. 00 360,00 0000 o000 800.00 100.00 - 000,00 900.00 1000.00
TIME (REFERENCES) (X102) .

EXPECTED MISSING PAGE RATE_F(7) —
i NEXPONENTIAL FIT. AE"

» L
A .00003 B-= -0.000J26

31

<2
-
ol
=8
£

‘ﬁ . o

._-S" v

. ¥ .
ga.au 100. 00 A;Ju.ou 300,00 400, 00 $00,00 I;W 700.00 800,00 400,00 _:oua.ou)
) TIHE (REFERENCES) (X102)

_FIGURE 22: S (T) AND MI{T) CURVES

.

PRGGRQM 15 r@RTRQN

“"EXPECT&D MISSING PQGE RHTE M (1) —

EXPONtNTIQL c1T e .

2]
A 0. 00017 \B = ~0.000014
2 | ' . '
; \
ta
<4
=]
’-:“ .
22l
<
R T e
. lo0 oo m.00 00,00 PN XN .00 — T w0000 0o 1000.00
- TIME (REFERENCES) (X102)

CIGURE 23: SI(T) AND M(T) .CURVES

&

Page Behavior

Working set concepts were applied to refe;bnﬁé strings
of .indi§idual pages to obtain.infbrmation‘cbncerning the
internal behavio; of a program. The page analysis vas dqne
on programs 8, 9, éqd 11, Together, they represént three
ﬁillipn referencesnto a total .of 81 'pages. "The results
listed in Table IX presenf the géneral char;éteristics-oé.
‘£he pages of the three progranms. Daﬁa'column 6ne.gives -the
number> of pades accessed by the individual prod:ams; "The
maximum average yo:king size of a.program's page is giveh in E
column two (given thaf‘the lérgesy.ﬁindov. size is 100,&90
references long) . ‘The averagelvorking size oﬁer all pagég\
is .67 pages. The final column .oﬁg this téblé ‘gives .the
percentage of pages. ﬁﬂicﬁ .éauséd 'page faults when the
.program'reachéd its minimum missing pagé‘ratef The ,average
perbentdge of thesé’"pagiﬁg" pages per program was 18.5% of
tﬁe'total péges referencéd:; ﬁxample. graphicai plots of
individual -pdgés' missin; page rate and working'siZe curves’

are illustratéd in Figures 2u‘and 25, respectively.

?

100

" PROCRAM G TYPE = ASSEMBLER

SAGE 5 .o—o PAGE. 6 —
PAGE § e PAGE T0 >
PAGE 23 s—s¢ .. R&&E .24 =

%o

U010 MIL /7 83944
52°s N °

u's 1230

e ’

0a, 00 b0, 00 0. 00
R TIME (REFERENCES) (X10% 1 -

F1G.24¢ M (1) CURVES INDIVIDUAL PAGES

o -
r~

101

PROGRAM 9 TYPE = ASSEMBLER -

© PAGE 5« PAGE 6 =
" PAGE 9 == PAGE 10 >3

 PAGE 21 w— PAGE 22 s
PAGE 23 &—s PAGE 24 == .

-
=
-]
(
B . — i - ST S
9.0 00.00 200.00 0g,00 e00.00 800.80 1000.20

300,20 Y 400,00 To0.00 800,00 '
TIME (REFERENCES) X102) -
. 3

F1G. 25t S(1) CURVES INDIVIDUAL PAGES. .-

:/ vy ::),'
- / A

\
!

102

\ . ‘ |
TABLE IX: Page Working Set Characteristics of Progranms 8,9,
- and 11
&
PROGRAM " TOTAL_PAGES MAX. AVERAGE 5_9§_§A§§§_ggg;§§
: NUMBER REFERENCED PAGE WORKING AT _MINIMUM PAGING
| | SIZE RATE
'8 34 ./ty'as- 20.6
9 12 . 974 25.¢C
. 11 35 . 752 14.-3
) 1
" TABLE X: Characteristics of Paging and Non-paging Pages for
Programs 8,9, and 11
PROGRAM. AVERAGE ADJUSTED AVERAGE PAGING “ PAGING =~ NON-
NUHBER REF'S_TO AVERAGE REF'S_TO PAGE PAGE PAGING
PAGING REF'S TO NON- AVERAGE ADJUSTEQ PAGE
. PAGE PAGING = PAGING WORKING ~ AVERAGE AVERAGE
PAGE PAGE SIZE = WORKING WORKING
' SIZE SIZE
8 32,85¢C 16,355 25,750 . 344 . 156 .528
9 107,370 53,685 75,32°¢ 947 477 .973
11 ‘25f350" 14,600 26,600 .855 .322 - . 720
\ _ S
All the pages of the three programs are separated into

two | groups;

are those which did not have a zero missing page rate

the largest wlndou 51ze studied.

~Y"paging" and "non- paglng" pages.

this zero paglng rate under the same circumstances.

<2

Paging pages

given

Non-paging pages did reach

Table X

103

presents a more detailed description of the characteristics
"of the two page »typé%. The first three data qelumns
indicate average references reéeived by a page type. The
c v :
final three columns indicate average working sizes of the
different page types. Over the three million feferenées, an
average of 44,900 references/page'uas madevto paging pages
whereas this n?mber was 32,900 for non-paging pages. C(The
average working 51ze for paging and non-paging pages was .63
and .74 pages, respectively. However, the calculations for
paging pages are misleading since they are based on ‘pége
residency over the entiré-reference string. From the data
collected in the- study, each paglng page was found to re-
enter ‘memory an average of 1.8 tlmes after belng 1nlt1ally

accessed and then removed} The working size, which is a

. measure of the total locality of a page, can be adijusted to

reflect the ﬁultiple residencies of “a ‘paging page. This is
done by simﬁly dividing a giveﬂ paéing page'f nember of
fotél references or working sizé by the numbef of timés vthe-
page entered memory. The adjustment lowers the average
working size ofta paging page to .28 paées wit? an average

. o)
number of references of 20,900 per residency. This result

also lovwers the average vorking size of a page 1in these
4prdgrams to approximately .60 pages. Given that a page is

resident, the frequenéy of. reference to ncn-paging and

paging pages is 6,550 and 7,450 references per 10C, 000

104

. 4

From these results, the differences distinguishing

program references, respectively.

. paging and non—paging pages appear to be in the window size
required for complete residency and the average numberP of
references ‘to the two page types. The locality or working
)
size of both groups of pades are nearly the same over the
whole -reference string. However, the analysis indicates
that both groups sbf pages have essentially the same
reference frequency over iO0,000 program references. That’
is, although paging pages.have_a larger average number of
references per page than non-paging pages, this distinction

disappears when the rate of reference over the individual

page residencies is considered.

Figurei 26 presents 'a graph of the accumulated
percentage of non-paging pages as a function of their
working size or locality over the entire reference string

studied. The ‘most striking aspect of thls graph is that the

non-paging pages appear to" group around-a given locality.
program 9 has 100% of its non- paging pages at 100% memory
residency. ‘Prdgram 11 has 25% of its pages at less than 10%
residency, uhereas the rest are’ close to 100% re51dency.
The remainlng progranm, number é, has grohplngs of pages

having residencies 300,000; 700,000, and one ' million

105

references. This study did notTinvestigate‘whether or not
| those pages grouped tegethef in locality. also formed a
temporal grouping during execution. The . graph also
indicates that non-paging‘pages tan be " further \sub-divided
'into groups; "resident" and "non-resident" non°pag¥ng-pages.
It is these non-resident pages which do not page Epat wili
be futher investigated as te whether or not aﬁéptive
techniques - can be applied to reduce their ‘ﬁemory
utilization. '

\
e . k4 \\
. \

The éraph in Figure 27 presents the percentage of non-
’paging pages which fault a; a function of yindow size.\
These‘lines‘indicate that, except for 10% . of progranm 11's
non-paging pages, page faulting ceaseé for windew sizes
larger tﬁan 70,000 references. Thus,lit may be possible to
adaptively adjust wiﬁdou sizes for non-pagihg pages so that
they are smaller than those for paging pages. However, tﬁe
gfaph gives<the results for all non-paging pages. Figure 26
indicates that ~many of these pages are essentially memory
reeident and so no advantage can be gained by adjusting
atheir kindo;‘ size. ﬁhat_ is necessary is to give the
accumulateigpereentage of pages fhat fault as a function of
window size for all three defined page groupings. Figure éé
presents this _result for' all pages of -the three p:ograms

studied. Paging pages have been depicted on the graph by

106
considerin91 the minimum paging levéi'a paée at{éins as the
zero paging level. This allows the "paging: pééés’ to be
treated in the same nmanner as the noh-péging Péges. The
plot of the Iines for .the éaging pages realiy shows that
these pages are biased towards larger window sizes. The
plot for the resident noﬂ-paging pages indicates that this
group 6f pages is composed almoSf equally of pages requiring
smaller window sizes and larger window sizes to be entirely
resident. Only the pon;reéident non-paging pages show a-
distipct bias towaras a smaller 'window size. This is a good
result for adaptive control purposes, since‘ohly these pages
offer any advénfage for using a smaller window. ' Hovwever,
how much of an asset is this\reduciion in window éize in
terys of memory saving? Assumel that these‘pages can bei
detected adaptiveiy'with 1Q0%4 accuracg.' The non;géSident
nén-paging pages represent'a tot;l oﬁ‘29 6ut_of.81 pages dfx*
36%. From'déta coliected,'their évérage ‘working size was
calculafed to be .35 pages. SuppASe also that the window
size for the sysfem ﬁéte set at 100,000 references. The
total mqmory‘ utilization’ fdr'the average program would be
28x.67 pagesi = 18.8 pages pér . second of execution.
Appkoximately ten pages of this averaée program would be
nonJFesidént non-paging. If fhey are \alljfgiven' a windéwd
sizeixof 60,000 references and all\removed from memory after

5

one second of execution a_fotal memory saving of .04 pages

S o 107

per second for each ‘page ulll accrue, This.represents'a
total maximum saving of;.q pages’ perL second or 1ess than a
ction 1in memory requlrements over u51ng the sane

'1ndOWK:}\e for aIl pages. The saving hardly recommends any

adaptlve procedure even assuming 1t is 100% effectlve. K

’
3

-
'

However, Flgure 28 does lndlcate the great uariety of
wiudqw sizes ° that _can be- de51red by a page to g1ve it no-
'ffaulr"Characteristics.\\ In, .order to’ llmprove memory
utiiizafion, it. may be p0551ble to adaptlvely assign each
pageya uindow size.‘HOne such means of ‘accompllshlng thls
purpose may be by monltorlng the frequency of reference to a
glven page. Unfortunately,’the graph of Figure. 2° 1nd1cates
little substantiation for such -an approach. Thls graph is a
scatter diagranm showimg'the uindow'size ut which non-paging
occurs as a’function‘of the arerage,number of references ‘a
'-pagex receives _per 10G,0CC _program references. .A visual

jnvestigation of the graph shows that the frequency .of’

reference does not relate in any consistent manner with

Wwindow sizes.

1C8

~— PROGRAM 8
+—+ PROGRAM - 9
- x> PROGRAM 11 .
S | " L
Sy B
g+ I
(6]
s
a-]
O
=53
Bca"ﬂ
G:(D
T
& 1
P Z '
Dg:’i
o~
W T
>D .
—8
a5+t
—J
)
=
27 ' o
=N — r. |
S5.00 - 20.00 40.00 60.00 80.00 100.00
HESIDENCY IN NUFQNG SET (REFERENCES), (X104)

F1G. /_"'7 . EXPECTED RESIDENCY TIME IN THE
WORr "NG* SET F3R NON-PAGING PAGES OF
| PRICRAMS 8. 3, AND 11 -

109

——— e e -

r-——

—

: ~— PROGRAM 8 .
v +—+ PROGRAM 9
‘ —x PROGRAM 11

100.00

80.00

—
1

60.00

4.
L4

-
T

7 OF PAGES FAULTING
N 4g0.00

20.00

R v

’ CD.OO éB.OO 4&8.00 60.00 88.00 — -100.00
'WINDOW SIZE (REFERENCES) (X103) -

00

FIG. 27 : RELATIONSHIP BETWEEN WINDOW
. S1ZE AND PAGE FAULT BEHAVIOR FOR
NON-PAGING PRGES OF PROGRAMS 8,9, AND 11

|
!

o |)
. > NON-RESIDENT NON-PAGING PAbL:
+— RESIDENT NON-PAGING PAGES
< PAGING PAGES OVER ONE LOCALITY

B

-

1100.00

80.00p

. 60.00

% OF PAGES FAULTING
29.00 . 40.00

o

—
]

7

.00 20.00 ua.oo, 60.00 . aé.oo T 100.00
WINODOW SIZE (REFERENCES) (XlOS"]

.00

~ FI1G. 28 : RELATIONSHIP BETWEEN WINDOW
~ SIZE AND PAGE FAULT BEHAVIOR FOR THE
" THREE PAGE TYPES OF PROGRAMS 8,9, AND 11

& NON-BESTOENT NON-PAG NG PAGES
+ RESTUENT NON-PAGING POGES
X% PRGING PAGES OVER ONE LOCALITT
(?;T X X X
o i ‘ * % X +
Egg; x x
<gt
>
w) o + + + ++ + x
D : .
ﬁg' » ++ + +
oo+ A +
LLJ('O
e 4
L)) '
o + o+ s A ,
..ug? X + Xa a & jam +~A_§AH ™ /
?_f\%”* ® + N. ' A . ’
vhl + +
g‘) + + &
2 T .
Zs -, s
- &
X227 a
e + o+ +
D ~
a + . A
a. : .
o xX an AL A4a + X +
T R S Y ER T RN R
o 2 3 kse708 2 3 Wsoles 2 3 4usses 2 3 456 .2 3 ksu?ua"
10} ‘102 103 10 108 Tk
REFERENCE FREQ/PAGE/100K PGM REFERENCES

FIG. 29

MINIMUM WINOOW SIZE FOR N

0-FAULT PAGE

BEMAVIOR-AGAINST FREQUENCY OF REFERENCE/PAGE f 03
PROGRAMS 8, 9, AND L.

112
.VII:‘Qonclusion

The assumptions and mroeedures' for -controliimg the
wimddw size parameter when‘recognizimg a vworking set were
desctibed; Included mas .a description of actual and
postuiated implementations of' the parameter for computer
operating'systems. Two models of\page re51dency which may
be used to determlne wlndov 51zes were also dlscussed.

S : o .

The study of program behavior indicated that the
minimum average missing page rate 'occurred ,at 83,000
references . (given that thg,lafgest window size studied was
100,0CC references). A more "stable" worﬁing:’set progranm
behavior‘ appeared for wimdou sizes ' gmeater than 55,000
references. An exponeptiallfit was applied to the missing
page rates ,of all the prograns. The amerage'malue of the
coefficients A and-B:kas detemined as .23x10;3 references;t
aad -.31x10-4 references, respectively. ‘Distributibnsiof'
these same parameters could p0551b1y be used to quantatlvely

c1a551fy input job streams.

Differemces between programs appeared-‘té be greater
than any worklng set 51m11ar1t1es induced by 51m11ar source
code. The executlon of dlfferent instruction types was not

significantly related to the working set characteristids of

113
programs. The study' indicéted that neither source. nor’
execution code Jappeared_'suitable for adaptire window size
,oontrol purposes. - |

/

-

The concepts of the wOrklng Set Hodel were extended to
include the behaV1or of 1nd1v1dua1 pages.' The average value‘
of- the average vorking size of "a page for the programs
stqdied‘was>.6f pages.4 Pages were initially divided intoAf
tvo types, "paging" and "non-paging". Given"that tne peging
pages were ?in;and-outﬁ of memory an everage of 2.8 times"®
per 106 references, there was little diStinction between the'
two_page types accordlng to their average rate of refere&ce.
The Inon4paging pages wére- further differentlated into
“re51dent" and "non- residént" types. The non- re51dent types
entered memory only once‘ and tended to cluster 1n flxed
localities of reference size. The savings in memory use by
taking - advantage of. this cheracteristic ;proved to be
insignificant; _ Aithough‘ all ‘three page‘. types showed
distinct charaoteristics in the -window size desired for
oomplete memory residency,’vthere leppeered to be 1little
relationship between page type, reference éctivity, and
vindow size desired. Therefore, adaptlve wlndowlng at the

pagef " level appeared to be either 1mpract1cal or not

‘possible.

4 . . * . -~

. L - 114

£

There were several ideas suggested in this study for

o

further research They were divided into two groups, those

' relating ‘to computer paging systems in general and those

o ©,

questions relating to the working Set Model. The initial

group of - suggestions vill be addressed f1rst.
|

o

Hov.much awareness of the system should the;pameragef“

programmer. have. Given the intricacies of paging systems,

‘efforts spgnt in 1mprOV1ng program teChniques for providing
better - memory utilization may prove benefic1al .Should

- energies be spent in this,Adirection or',should memqiy/

. \

inefficiencies be "written—off" as part of the cost of a”

paging inStallation? ObV1ously, these questions cannot be
: , v o
-answered .with. a simple yes or n0; ‘ deserye more

investigation, "both. from the systen design as wvell as

software production point of view. .

.)) .- 4") \
Two theoretical reseamck . problenms need /furtheru

v

consideration.'/iimodel for progranm behavior_is needéd which

is also faithful to re%l progran internal structure and I/0

Y characteristics. Secondly, a more rigorous 1nvestigation of
- program properties and their relationship to the types of
}nstructions executed is required. /

M

Two practical research problems involving = paging

-

\1‘.'!5' .

{

computers. deserve further atténtion. There is 4 need for |

additional empirical study of the factors influencing the’ p.

and. n ‘'variables in Prieve's model of phge residency.

Secondly many;computer installations use pageable re-entrant

" system code available for use by all .executing 'programs.

What 1is the contribution of these pages to the total

comp§fer <fging loagd? o .

~

A number of research ideas are suggested for the study
of the Hbrking Set properties. How rapidly does the working
.set size S(t,T) actually change? An empirical study of this

type will indicate the validity of S(T) as an egtimator of

‘program memory dehands. How much variation is there in - the

')

~total paging demand on a multiprogranming system? A study

in this area will determine the theoretical valggity of

dsing either the fixed or variable window size.® Does a-

Al

change in the working set size indicate a change in the

. , B -)
working set?¥ Further research should be done to determine

if this technique can be used for controlling the size of T.

Exponential fits were applied to programﬂ missing page
. ‘ ~ :

curves, Would conic fits prove to ‘be more "correct"?

Attempf%f are made . in this study to «classify programs
according = to ‘their working set characteristics. More

researchhshould be done to determine if this-'classigication

approach is vaiid. ‘Finally, the study of page_working sets

. . =~ . _— 116
indicated that non-paging pages tend to grohp" in fixed

localities of referénce.. Do those pages having the same

N

locality also tend to group témpérally during-execution?

[

‘The detefmination qf the value of T for a working set

implementation ' -is important nét oniy for . practical
considg:ation but .also for its implications to the model
itsgifi The modé}‘ appears tb suggest ‘F?at paging is a
resulf " of pages 'gptering and leaving a 4"continuou$ly"
runging program's working set. However, paging on current

systems often appears to bé a result of the °stop—start
. ‘ : .

nature of program execution in this type of environment.

That is, the "loading" and "un-loading"™ of entire working
sets are what primarily constitute a system paging rate,
‘ X i

rather than paging from programs running continuously. How

can this contradiction be explained?

‘uFigure “30- 1is Jan';ggg;;ggg graph of real time against

the average total pagéS’allocated'to a brogram. The ' upper

line represents ~a program under a working set
“implementation. The lower line - represents the - same
program's - page requirements under . a traditional LRO |

environment. The program begins execution at times tC and

. t2, and.completes its time slice at t1 and t3.

[

117.

y WORKING SET

PROGRAM PAGES
RESIDENT IN MEMORY

PROGRAM PAGES

S(T)
N
. 1 7
‘ 7
1 ' / /1 | 4
t0 t S t2 t3
REAL TIME
&- 1 TRADITIONAL
O
=
(BN
=
Z
-
< 5(T)
o
(7o)
(B8]
vcz

| 2
REAL: TIME

" Fig. 30 : Real Time Program Memory Allocation for Working

Set and Traditional Memory Managemént Schemes

e

118

If the system uses a uorking set approach, the minimum
number of pages a prbgrém will retain between executions is
§(T). The humps in the dpper curve indicate those pages not
currently in S(T) but méy.be‘re—claimed. This is basically
the sanme situation_fd} the standgrd memory allocation’schemé
except that a program may have all its pages removed between
. egecutiqns. -Hence, the 1ower'1ine indicatés the- stop-Startw
phenomenon‘where eaéh program execution result§ in an entire
vorking set to be first loaded and then unloa@éd. Although
the working set approach uses the additidnal’ memnory
indiéated by the shadoued regiéns,'itzdoes nog require the
2%5S(T) extra pages to be moved for eacﬁ'prqgragb execution.
The reserving of a program's S(T) working set between time
slice executioﬁs is thé working set principle. Since the
amount . of real memdry is restricted, the .multiprogramming
level of a working éet éomputef will theréforg be dependent
and indeed controlled by the size of f. The explanation of
the contradicﬁion eﬁphasizes the basic difference between
paging using- a working set approach and when using

traditional schemes for memory “management.

Unfortunately, threevaSPects of system operation tend
‘to interfere with the working set principle. When a program
exhausts . its quantum, it 1is usually deroted to,théjready°

set, its pages being released for system use. When ‘again

119

N

promoted to the - running set, its entire working set nmust
again be loaded. Hovwever, this can be a relatively '"rare"
~event [R5], unless one or both of the following tio aspects

are prevalent.

. If the systen is heavilyvioaded, it may be necessary ﬁo
deactivate tasks before their quantum has expired. This may
be domne in an‘ attemét to maiqtain response tinme. The
proceﬁure eventually become self-defeating sinée the
1nfluence of the. worklng set _principle is d1551pated and the
initial memory galns made through deactivation becone offset
by the time consumed: in increased ptogram page "Joads" and

"anloads".

Finaliy, I,/0 blocking usually resdltg‘in jobs being
removed frqm‘the runniné_set} Althohgh I/Ofinfluence mnay be.
reduced by puffering, the vinduéed 'vstbp-Start progranm .-
behavior cannot be othervise controiléd. Hence, é wofking
set dpp:oach to mehéry managemeng is not . neafly as
successful in an I/O bound environment as it would be in a

_more "balanced" system.

[A1]
[A2]

(23]

{B1]
(B2]
[B3]
{(B4]

(B5]

"[B6]

(877

(¢l

120

. BIBLIOGRAPY

Aho, A.V., Denning, P.J., Ullman, J.D., nppinciples
of Optimal Page Replacement", Journal of the ACH,
vol. 18, no. 1, 1971, pp. 80-92.

Alexander, M.T., Time_ Shdring Supervisor Programs,
The University of Michigan Computing Center, Hay
1969. - o -

ey

Arden, B.W., Galler, B.A., O'Brien, T.C.,

Westervelt, F.H., "Program and Addressing Structure
in a Time Sharing Enviromment", Journal of the ACH,
vol. 13, no. 1, 1966, pp. 1-16. ' ’

Batsen, A., Ju, S., Wood, D., "Measurements. of
Segment Size", Second Symposium_on Operating Systems
Principles, Oct. 1969, pp. 25-29. - T

7

Belady, L.A., "A Study of Replacement Algofithﬁg_for'
a Virtual Storage Computer", 1BH Systems_Journal,
vol. 5, no. 2, 1966, pp. 78-101. .. 7

' Belady; L.A., Kuehner, C.J., "Dynémic Spacé Sharing

in Computer Systems", Communications_of the ACH,

vol. 12, no. 5, 1969, pp. 282-288.

.
Bovet,‘D.P., "Memory Allocation in Computer
Systems", Clearinghouse For Federal Scientific and
Technical Information, AD 670499, June 1968.-

Brawn, B.S., Gustavson, F.G.,'"Program,Béhavior in a
Paging Environment", Proceedings_of the AFIPS 1968

&gggg, vol. 33, pp. 1019-1032.

Tomlinson, R.S., "Tenex, a Paged Time Sharing Systen
for the PDP-10", mmunications_of the ACM, vol. 15,
no. 3, 1972, pp. 135-143. ' -

Bobrow, D.G., Burq%fiel, J.D., Murphy, D.L.,
C

TBurroughs Corporation, "HaSEer Control Program for

the B5500".

Coffman E.G., Variam, L.C., "Further Experimental
Data on the Behavior of Programs in a Paging
Environment", Communications_of_the ACM, vol. 11,
no. 7, 1968, pp. 471-474. , 3

[c2]

[c3]
[Cb]

(1]

{D2]
(D3]

[D4]

[D5.]
[D6]
[D7]
(D8]

(F1]

121

Comeau, L.W. "A Study of the Effects of User‘
Program Optimization in a Paging System", First
Symposium on Operatlng System Principles, Oct.
1967,

Corbato, F.Jd., Vysébtsky, V.A., YIntroduction and
Overview of the MULTICS System", Proceedings of the
AFIPS 1965 FJCC, vol. 27, 1963, pp. 185-196.

Corbato} Fed., "A Paging Experiment with the Multics
System", Rep. _MAC-HN-384, MIT Project MAC,
Cambridge, Mass., 1968, AD 687552‘\

Davis, A,R., Personal communications, Nov. 1973-
Feb. 1974. o '

Denning, P.J., "The Working Set Model for Program
Behavior", Communications of the ACM, vol. 11,
no. 5, 1968, pp. 323-333.

'Denning, P.Jd., "Thrashing, Its Causes and

Prevention", Proceedings of the APIPS_ 1968 FJCC,
vol. 33, pp. 915—922.

Denning, P.J.,-"Vlrtual Mémory", Computing Surveys,
VOl- 2' N0 3, 1970, (Ppc 153"‘189-

Denning, P.J., "On Modeling Program Behavior",
Proceedinds of the AFIPS_ 1972 SJCC, vol. u4C, 1972,
pPp. 937-943.

Denning, P.J., Schwartz, S.C., "Properties of the
Working-Set Model', Communications_of_ the_ AcCH,

+vol. 15, no. 3, 1972, pp. 191-198.

Dennis, J.B., "Segmentation and the Design of

"Multiprogrammed Computer Systems", Journal of the

ACM, vol. 12, no. 4, 1965, pp. 589-602.

Doherty, W. J., "Scheduling TSS/360’for
Responsiveness", Proceedings of .the AFIPS 1970 Facc,
vol. 37, 1970, pp. 97-111.

Fine, G.H., Jackson, C.¥., McIsaac, P.V., "Dynamic
Program Behavior under Paging", Proceedings_21st

National Conferences of the ACM, 1966, pp. 223-228.

'

(F2]

" [F3]

Lo

[62]

[H1]

[H2]

f82]

[(11]

(I2]

[13)

[I4]

122

Fotheringhanm, J., "pynamic Storage Allocation in the
Atlas Computer" Communications_of the ACN, vol. u,
no. 10, 1961, pp. 435-436. o :

Freibergs, I.F., "The Dynamic Behavior of Programs",
Proceedings _of the AFIPS 1968 FJCC, vol. 33, 1968,
pp. 1163-1167. ‘

Gary, M.R., Graham, R.L., Ullman, J.D., "Worst Case
Analysis of Memory Allocation Algorithms", '
Proceedinds of the 4th Annual Symposium_on the/

Theory of Computing, May 1972,pp. 143-150.

Greenberg, M.L., "An Algorithm for Drum Management
in Time—-Sharing Systems," Third Symposium_on
Operating System Principles, Oct. 1971,

pp. 141-148.

Hatfield D:J., Gerald, J., "Program Restructuring
Techniques for Virtual Memory", IBH Systems Journal,
vol. 10, no. 3, 1971, pp. 168-192. :

Hatfield, D.J., "Experiments on Page Size, Program

Access .Patter and Virtual Memory Performance", IBM.
Journal of Regsarch and Development, vol. 16, no. 1,
1972, pp. 58-66. :

Hatfield D.J., Gerald, J., "Program Restructuring

. Techniques for Virtual Memory", IBM_Systens Journal,

vol. 10, no. 3, 1971, pp. 168-192.

Iliffe, .J.K., Basic_Machipe Pr1nc1glg§, ‘American
Elsevien Publishing Co. 1Inc., N.Y., 1968, .
pp. 22-25. - ' .

Iliffe, J.K., Jodeit, J.G., "A Dynamlc Storage
Allocation Scheme', Computer Journal, .vol. 5.,

PP- 200 209. R . -

"IBM System/360 Operatlng System MFT Guide

GC 27-6939—10.

IBH*System/BGO OéeratingVSystem MVT Ghide‘
GC 28-6720-4, _

)

[15]

[K1]

[K2]

123

IBM System/360 Model 67 Functional Ch@récteristics
GA 27-2719-3. :

Kernighan, B.W., "Optimal Segmentation Points for
Programs", Second Symposium_on Operating_Systems
Principle, Oct. 1968, pp. 47-53. ‘

|

Kilburn, T., Payne, R.B., Howarth, D.J., "The Atlas
Supervisor", Proceedings of the_ 19€1_Eastern Joint

.- Computer conference, pp. 279-294.

(k3]
[K3]

[K7]

(K61

[i1]

[L21

{L3]

[H1]

vol. 13, no. 1, 1970, pp. 3-6. :

Kilburn T., Edwards, D.B., Lanigan, H.J.,,Sumﬂér,
F.H., "One Level Storage System", IRE_Transactions,
EC-11, April 1962, pp. 223-235. ,

Knuth, D.E., The_ Art of Cbmputer'Proqramming,

‘'vol. 1, Addison Wesley, Reading, Hass., 1968,

pp. 435-455.) . ,;é'

Knuth, Di:E., "An Empirical Study of FORTRAN
Programs", Software Practice and Experience, vol. 1,
no. 2' 1971’ pp. 105“13“. . . .

Kuehner, C., Ramdell, B., vDemand Pagihg in
Perspective", Proceedings of the AFIPS 1968 FJCC,
vol. 33, pp. 1011-1018. ‘ .

Levis, P.A.W., Shedler, G.S.., "Emperically Derived

Micromodels for Sequénces of Page Exceptions™, IBM
Journal of Research and_Development, vol. 17, no. 2,
1973, pp. 86-100. [

Lowe, T.C., "Analysis of Boolean Models for

‘Tune—Shared Paged Environments", Communications gg'

Lowe, T.C., "Automatic Segmentation of Cyclic
Program Structures Based on Connectivity and
Procesion Timing",‘Communigggiggg_gi_ghe-Agg,

t

_Mattson, R.Ll., Gecsei, Jd., Slutz; D.R., Traiger,
"I.L., , "Evaluation Techniqueées for Storage -

Hierarchies", IBM_Systems Jourpal, vol. 9, no. 2,
1970, pp. 78-117. e »

(n2]

‘[H3]

[u4]

tﬂ5]

(ué]

fo1il]

{031

[o2]

fP1]

[p21

(P3]

[P4]

124

McKellar, A.C., Coffman, E.G., "Organizing Matrices
and Matrix Operations for Paged, Memory Systems",
Communication of the ACM, vol. 12, no.. 3, 1969,

pp- 153-165.

Morris, J.B., "Demand Paging Through utilization of
Working Sets on Maniac II," Communications of the
ég' VOl. \15' no: 10' 1972' ppo 867“872.

i
"xPALLY", Michigapn_Terminal System: Public File

Descriptions, vol. 2, Jan. 1972, pp. 331.

Michigén‘Terminal System : MTS and Computing
Services, The University of Alberta Computing
Services Dept., Edmonton, Alta., vol. 1, Nov. 1971.

Michigan Terminal System : Public f .e Descriptions,

The University of Alberta Computing Ser ices Dept.,
Equnton, Alta., vol. 2, Jan..1972. * ’

O'Neill, R.W., "Experiences Using a Tinesharing
Multiprogramming Systen with Dynamic Address

_ Relocation Hardware", Proceedings_of the AFIES_ 1967

sJdcc,’ vel. 30, pp. 611-621.

oppenheimer, G., Weizer, N., "Resource Managemert
for a Medium Scale Time Sharing Operating Systenm",
Communications of the ACM, vol. 11, no. 5, 1968,

) pp. 313-322.

organick, E.I.,.The Multics_System, The MIT Press,
Cambridge, Mass., 1972. B

Pankhurst, R.J., "Program Overlay Techniques",

‘Ccommunications of the ACM, vol. 11, no. 2, 1968,
pp. 119-125. : SR

Parmelee, R.P., Petgerson, T.I., Tillman, C.C.,
Hatfield, D.J.,"Virtual Storage and Machine
Concepts", IBM_Systenms Journal, vol. 11, no. 2,
1972, pp. 99-130. :

Peters,:C.B., "Experiments in RAutomatic Paging",

vol. 1, Informatics Inc., Nov. 1971, AD 734253.

Prieve,, B.G., "Using Page Residency To Select the
Working Set Parameter," Communications of the ACH,
vol. 16, no. 10, pp. 619-620.

4

125

[R1] Ramaﬁobrthy, CoeVe, "The Analytic Design of a Dynamic
Look Ahead and Program Segmenting System for
Multiprogrammed Computers", Proceedings of the 21st

National Conference of the ACM, 1966, ppP- 229-239.

[RrR2] _Randell; B.F.Kuehner,'C.J;, "Dynamic‘Stbrage
Allocation Schemes", Communications of the_ ACH,
Vol. 11, no. 5, 1968, pp. 2977305.

(R3] = Randell, B., "A Note on Storage Fragmentation and
Program Segmentation", communications_of the ACH,
vol. 12, no. 7, 1969, pp. 365-369.

(R4] Rodriguez-Rosell, J., "Experimental Data on How
Program Behavior Affects the Choice of Scheduler
parameters", Third Symposium_on_Operating System
Principles, Oct. 1971, pp. 156—-163.

-

[R5] Rodriguez—Rosell, J., "The Design, Implementation,
and Evaluation of a Working Set Dispatcher™y,
Communications_of the ACM, vol. 16, no. 4, 1973,
pp. 247-253. - . o

[R6] Rosen, S., Programming Svstems and Lanquages, .
McGraw—Hill Book Co., 1967.

tRG] Rosen; S., "Electronic Computers: A Historical
Survey", Computing surveys, vol. 1, no. 1, March
1969, pp. 7-36. '

[(R6] Rosin, R.F., "Supervisory and Monitor Systems", .
‘ Computing Surveys, vol. 1, no. 1, March 1969,
pp- 37-54.

[s1] salton, G.; Automatic Information Oorganization_and
Retrieval, McGraw-Hill Book Co., 1968, pp. 135-139.

" [s52] Say;e{ D., "IS'Automaticb'FQlding! of Programs’

: Efficient Enough to Displace Manualz",
Communications of the ACHM, vol. 12, no. 12, 1969,
pp. 656—660. T . .

[s3] ~ Shemer, J.E., Gupta, C., "On the Design of. Bayesian’
- Storage Allocation Algorithms for Paging and _
Segmentation", IEEE Transactions on_Computers, July
1969, pp. 644-651. . ' '

(1]

(12]

[v2]

(v3]

[w1]

[w2] .

126

Thorlngton, J.M., Irw1n, J.D., "Adaptlve Réplacement
Algorithms for Use in Paged Memory Computer
Systems", Project Themis: Information Processing,:
Technical Report AV-T-18, July 1971.

Thorington, J.M., Irvin, J.D., "An Adaptive
Replacement Algorithm for Paged Merory Computer
Systems", IEEE_Transactions_on_Computers, vol. C 21,
no. 10, 1972, pp. 1053—1061.

varian, L.C., Coffman, E.G., "An Emplrlcal Study of
the Behav1or of Programs in a Paging Environment",

: Flrst Symp051um on Operating sttem Pr1n01gles, Oct.

1967.

Ver Hoéf, E., "Automatic program segmentation based
on Boolean connectivity", Proceedings of the AFIPS
1971_sJcC, vol. 39, pp. 491-495,

Weizer, N., Oppenhelmer, G., "Virtual Memory -
Management in a Paging Environment," Communication
the ACM, vol. 11, no. 5, May 1968, pp. 313-322.

Winder, R.O., "A Data Base for Computer Performance
Evaluation", Computer, Mar. 1973, pp. 25-29.-

127

APPENDIX 1: PROPERTIES OF THE.EXTENDED WORKING SET MODEL OF

PROGRAM BEHAVIOR

_All of these proofs are analogous to those given 'by

Denning in "Properties of the Working Set Model" [DG];

!

1. P10: e(i) = S(1,i)...<S(T,i)<S(T+1,i) £ 1
Property P10, states that the average working size

for page i is non-decreasing and bounded above and

-

below. It follows from:

“
> 4 a) W(t,T,i) is a subset < W(t,T+1,1)

¢

. b) S(t,T+1,i) <1

/ .

c) the definition of §(T)

2. P11: S(T+#1,i) - S(T,i) = M(T,i)
‘Property P11 states that the "slope" ofug(T,i) is the
‘missing-page rate for page i, as indicated by the

following:

"

W(t,r,1) + {r }
t+1

W(t+1,T+1,1)

S(t+1,T+1,i) = S(£,T,i) + A(T,i)

t' »
) - _K_ _K_ _
. N Lim® 1 >__ S(t+1,T+#1,i) = Lim 1 >__ S(t,Tqi)
‘ - K-->®© K t=1 : " K== K t=1
K_
- + Lim® 1 > AN(T,1)

K==->00 K t=1 t

Therefore, S(T+1,i) = S(T,i) + B (T,i)

which is the same as P11.

' 128

P12: 0...< M(T#1,i) < H(T,i)..-< M(0,i) = e(i)
The upber and lover bounds are estéﬁlishéd by’ the'

definition of E(T,i).'It remains to be ‘shown that
O(TH1,1) S AN(T,1) 6 R
t ot : S

If (1) is true, then both sides can be summed t=C to

k-1, and divided by K. If the limit of K - tending to,

infinity is taken, then the result by definition is

M(T+1,i) < M(T,i) for all T.

-

Therefore, when A\ (T+1,i) = 0, ‘then (1) is true.
. t L] .

t+l
W(t,T,i) < W(t,T+1,i), ‘therefore gxéT,i)'= 1, as.

When A'(T+#1,i) = 1, r, . =i is not in W(t,T+1,i). But
+t ’ . .

well. Thus, 434T+1,i) < ggér,i) implying- by

definition that H(T+1,i) < M(T,i).

p13: M(T,i) = e(i) - e(i)F(T,i) = > _ e(@) f(y,i) -~
' y>T .

"Property P13 states that E(T,i) can bef'regarded'és

the probability that the interreference distance

x; >T, the window size. Because of the definition of

°.

[;JT,i) the sum o R

o,
r A
k=1 o

1 012 _ AN(T7i) | - 1}

‘K [t=0 t |
v : 4

can be thought of as the fractional -number of

~

129

occurrences of the event xi>T for page i (The -1 term

\\Sepresents the removal of the first reference to page

g.

i since it does not really represent an

inter:eferénce gap). Since, by definition

e

£(y,i) = P(y,i) - F(y-1,i) o
then ‘
e(i)-e (i)F(T,i) = > _ e(i)f(y,i) which represents
' y>T

the fractional number of occurrences of the event

y>T. Thus letting K tend to infinity, we have

- ol . b |
_— _ | "K=1 !
> _ e(i)f(y,i) = Lim 102 _ AT,
y>T) K-=>00 K | t=0 t |

. [J
r |
I K1 {
= Lim A2 AT
K-->00 K | t=0 t o
L 4
V- ' = M(T,i) by definition

VA

‘This 1mp11es that M(T,i) édﬂ“ be thought of as the

-probablllty that page i w111 ‘have*® an interreference

distance greater than T.

e 4

pl4: HM(T#1,i) - M(T,i) = -e (i) £(T+1,1)

"The n1551ng page rate for page 1i.at time = T for

window ‘size has\&~"slope" for its ourve equal to the

negat1ve"of the ' interreference density” for time =

T+1. o ‘

130

H(T+1,i) - B(T,i) = > e(i) £y, i) - >__ e(i) £(y,i)
Y>T+1 YT .

= —e (i) £(T+1,1i)

- -1 _ I-1
P15: S(T,i) = >__ M(z,i) = >__ (a(i) - e(i)F(z,1i))
z=C ~z=0 : '
=1~ __
= 2__2__ e(i)f(y,1)
2=0 y>z

'This'property shows how to calculate §(T,i).

From P13 and the following result

" ’E(I,i) = H(T-1,i) + S(-1,i)

the calculation of 5(T,i) is as follows:

5(T,i) = >__ H(z,i)

‘ - g - -
P16: S(T+1,i) + S(T-1,i) < S(T,1)
' 2

. : -« - .
This property shows thdt the S(T,1) curve is

monotonically non-decreasing and non-positively

accelerated. By P12, M(T+1,i) < M(T,i). Therefore,

using this result and P11 gives: o

+

131

-

AN

S(T,i) < S(T,i) - S(T-1,i).

]

S (T+1,1)

iﬁich proves P16.

]
-

P17: Lim S(T,i)
T-->00

This property shows that the working'size,of a page
is bounded above by 1, if the page i is reeurrent. As

T tends to infinity, a recurrent page of a prégram is

. any page tefefenced more than once. Consider the

following;
- : =1
S(T,i) = 2__ 2 _ e(i)f(y,i)
z=0 y>z .

-

‘Since e (i) is independent of summation, then

S(T,i) = e(i) >__ 2__ £(y,1) -
z=0 y>z - /
- I=1
= e(i).>__ zf(z,i)
B z=0
T . =1
Lim S(T,i) = e(i) Lim > _ zf(z,1)
T-=->00 : T-=->c0 z=0
-1 - '
But Lim 2__ zf(z,i) = x5 .

T-->0 2z=0

where ;i is the expected interreference distance for

o

ipage i (assuming s;ationarity). Therefore, the

following holds

132

Lim S(T,i) = e(i)x
T-">w . c

But e(i) = 1
‘ X

Lim S(T,i) =1

T-->00
"9, p18: Lim. MK (T,i) = 0
T-->00
By property P13, H(T,i) = e(i) - e(®)F(T,i). By

definition, as T tends to infinity, then F(T,i)‘tends
to 1. Therefore, P18 is true.

10. P19: Lim >__ S(T,i) = Linm 5(T)
T-->00i=1 - T-->00

This property states that the llmlt as T tends_ to
infinity of the sum ~of the 1nd1v1dua1 average wofklng
set sizes of the pages equals the blmlt of the .

wquing,set size of the entire process.

3

- o =1 ___
Lim S(T) = Lim > > _ f(y)
T-->® T-=-> 2=0 YOz
. . - ’ —E_ 14
By definition, &£(y) = 2__ e(1)f(y 1) ‘
- i=1

‘ T=1 ___ _g_ |
—~TENN > > (2 e(l)f(y.l)) o {

T-->e 2=0 y>z 1i=1 : \

133

n_ - I-1
= Lim > (2 > e(i)f(y,i))
T-->00'i=1 z=0 y>z .

. _h_
Lim . >__ S(T,1i)
T-->00 i=1

‘Therefore, P19 is proveh.l

B

<134

APPENDIX 2: ALGORITHMS USED FOR CALCULATING THE WORKING SET

<

CURVES

4

v _ '

'I. calculating the Working Set Curves for a Program

befine

the followinggsinteger vectors with the indicated

dimensions:

1.

C(L+1), wherefL_is the length, in references, of the
largest window considered. Initially, all elements of -

C equal G.

Time(n), where n is the number of-different'recurring

~pages in the referenge[string. For every i, Time (i)

" A ’
will contain the time of the, most recent reference to

page i. Initially, Time (i) equals -K for all i, so

that. the first reference to each page may. be'

‘pefine

recognized.

the f01lo§ing additional variables:

S, represents the value of §(Tf. . '
’ . - “ Ry 4

M, represents the value of E(T). o L e

£ ,r T , e+« T , be the elements of the reference
172 3 K 1

string of length K.
v, is a fractional value representing the ratio of

the total number " of references Wwithin the actual

'problem 3®rogram code, to K, the _total'number of

references in the reference strihg. The ialue of V

. ,) 135
will equﬁl 1.0 only if ;ll the references in the -
;string'are within fhe problem\\§ode.- This procedure
"allows the algorithm to calculate curves for only the

problem pgpgram pages, yet retains the timing
influence of rgf%rences\to ﬁsystem" code.
7. G ﬁiilAcpnfain the count of the number of references

td‘pfobieh program pages. Initially, G = 0.
TheNalgorithm to calculate S(T) and.ﬁ(T) for window sizes

1 <7T < L for an entire program of n page follows:

~

begin t <-- t +
i <-=- r 3
i t
' Cif (1 = proble-m program reference) gb‘_gg.
| | begin 6 <-- G + i '
j <-- t-Time (i) ;
if (3 > K) then § <= 1i
if (3 > L) thep j <-- L‘+1;
C(j) <== C(I + 15
Time (1) <-- t;
.end; P
end; |
Vv <-- G/K;
M. <-- V;
s <-- 0;
T <-- 13
while T<L
begin S -<-- S + H;
Ho<-- M- (C(M/K)
o= T+ 13

13

136

137

IT. Calculaﬁing the Working Set Curves fér an Individual

| 'gage |
The definition of the vectors and variables are'the same as
for I. above‘except for the following: '

1. Time ”is now a single variable which yill contain tgi
time of thé most recent reference to:tpe page .being
considered. ~Initially, Time equals -K, so t;?t*the
first réference to page i- can be recognized. '

2. S, represents the value of §(T;i)

3. M, népresents the value of M(T,i)

4. D, will contain the count of the‘number»of references

wT to the pagé being-considéred.,Initially, D eqﬁals 0.
.5. E, will replace 1§he Qériable V. E ' takeé, the
, fract10na1 value representlng the ratio of D:K. .
The algorlthm for calculating gie S(T i) and H(T i) values ‘
- _
for ;:gaou sizes 1 £ T < L for a-page p folloys:‘_ ’

I » . .

I3

138

r ;
t
P) then
begin D <-- D + 13
j- <--- t - Time;

if (j > K) then j <-- 13

if (3> 1) then § < 1+

S + M3~
M- (C(T)/K)

T + 1;

139

APPENDIX 3: THE WINDOW SIZE OF MTS

The operating system used on the Universiﬁy of
Alperta;s IBM 360/67 computer 1is called the Michigan
Terminal System or MTS. Thc multiprogramming supervicor.used
in the operating system is known as UMMPS. The qperatfng
system' uses the concept of virtual memory for the problem
program and non—recideht systen address'space. The virtuai
memory 'is .organized into. 1C24 word blocks called'pages.
Hithip the machine, there are 256 page frgmeé of real memory"

of which approximately 150 are used for paging purposes. A

e

typical load on the system is from thirty to forty terminal
jobs, three batch tasks, plds épproximately fourteen'non—MTS
jobs (of which cnly four-are virtual and contribute very few
pages to the totgl virtual meﬁpry). The total virtuai‘memory
runs typically between 1200-1400 ﬁages.

‘Data was gétheredvcn the characteristics of prograas
executing$cn the MTS system on tdeOCCésions; November 9/73,
'10:44-14:22, and ' November 16/73, 13:36-17:06. The two rans
indicated an average of 1209 énd 1688 virtual pages on the
systen, respectivély. For the remainder of thélappendix,
each result detérmiﬁed from the data runs will be givén as

two values; the.first for Nov. 9, and the second value, for

140
Nov. 16. The data runs revealéﬁ an aQéfage of 31 and 37
"active" érograms on the systém. The virtual memory
4associ;téd.with these "active" programs "is typically 80CC
pages, but. for the data runs this amount averéged qaj andj
927 pages. Although there are 150 real pageé for paging use,
the.number of real pages allocated to .tﬁe active prograﬁs
usually averages 110 pages. . Qver the two data runs, this
amount had an average value of 107 and 109 pages.

In comparison to programs exeéﬁﬁed' under . MTS, .hou.
typical are the fifteen ' progran executions used 1in thié
study? The average prograﬁ size determiﬁed from'the MTS .data
is appfoximately 32 and 25 pages. However, this iétudy is .
concerned only with those pages which were in the user
segment (#5) . Thus, the xmemory contributgd. by the I/O
handlers and dévice support roufines shouidr Tot be
considered:kttithe time of the data runs, MTS had a.total oﬁ
356 virtual pages associated with the terminal device
~support routines. Also, the émount of memory'allocated.td
veach jdb for I/O‘purposes (buffers & handlers) is typically
four pages. since_ pageable system support bodé 'is q?t.
included in the total virtuél memory count, tﬁe average size
of a pfogram.executing under MTS can bé determined by the

following: . .

141

Total virtual memory = 1209. 1088

- DSR code - . = -356 - 356
* - IA0 code buffers = -4%31 = -124_ -4%*37 = -148
= Total user virtual memory = 729 pages 584 pages
Therefore, average ‘user virtual memory pervprogram = 23.5

and 15.8 pages, respectively.

- It is noted thatvbbth average prbgram sizes are less
. than 28; the averaée numbér of pagés used per‘program‘in the
Stﬁdy\‘ﬂouever, Friebergs [F3] féund-thaf‘so% of all jobs in
‘one university computing environment used less thah Six
pages; 1f, for pprpéses of fhis»study, the fifteen prégiam
runs are weighted to indicate this balance of vsméll
programs,'then‘the average number of ‘pages accessed per
program cén be reauced to approximately the respective
average MTS program sizes. This balancipg is.accompiiShed by
consiﬁering that 30% ana 65% of the total programs executed
dgring the MTS data runs are the same as program number 14
-and those feﬁaining are typical of thel othér fourteen
:'p:ogfams studied. Then. using the éxponentiai .burve
iep:ésentingkthe average missind page raté of each . progranm,
“and the 'same weighting, an average piséing page rate curve

Al

isv produced “for the MTS system. The value - of the

12
B ‘ .
coefficients for the curve for the two MIS data runs are A =

.178x10-3 and .104x70-3 and B = —.311x16-* ,and —.302x10-+.
MTS typically pages at a rate of. 70-9C~ pages per- second.
Because of a design characteristi¢ of MTS operation, 2/3 of

this'paging consists of writes to the ,paging drum. This

indicates an average missing page rate of 23-30 pages per !

second. The two data runs have also revealed that 8 and 5,
Vrespectiyely, are the average number of tasks on the
operating system CPU_gueue,that are ready for service. ’If
thé quede length is défined as the mqltiprogramming level,
" then the average paging rate pef program has a rangé of 23-
50/(CPU queue .lengtﬁ) pages/second. ﬁsing this: average
paging rate ran;e and the exponential curves for thé average

missing page rate just determined, t is found - to have a

range of 124,000-133,000 and 94,500-103,250 references to

-

.provide the average-paging results per program. Since t is

the window size, then MTS has an effective window size rangé
\ ’ , . : .

of .C95 to .133 seconds (assuming one reference takes an

O

average of one microsecond).

-

