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Abstract

To elucidate the mechanism of a biological process, structural information of the
molecules involved is often necessary. An important method for the determination
of a molecule’s three dimensional structure is X-ray Crystallography. In order to ob-
tain the most accurate atomic coordinates, structural refinement is an essential part
of a crystal structure determination. The refinement of crystal structures is com-
monly based on least-squares methods. However, these procedures are not optimal,
since conditions necessary for the application of a least-squares target are not satis-
fied. Therefore, a more general maximum likelihood analysis is considered and three
maximum likelihood targets have been implemented in the refinement packages CNS.
TNT and X-PLOR. Preliminary tests with protein structures give dramatic results.
Compared to least-squares refinement, maximum likelihood refinement can achieve
more than twice the improvement in average phase error. With the inclusion of ex-
perimental phase information, a maximum likelihood strategy can further improve a

model over least-squares.
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Chapter 1

Introduction

Understanding biological phenomena often requires knowledge of processes at a molec-
ular level. To fully elucidate a molecule’s function in a process frequently demands
its three dimensional structure. For instance, developing a drug to bind and in-
hibit a molecule requires precise information about the target’s binding pocket. A
predominant way of determining the three dimensional fold of a molecule is X-ray
Crystallography. Below, a brief overview of X-ray Crystallography is given. For a
more detailed discussion, please see (Blundell & Johnson, 1976) and (Drenth, 1994).

1.1 An Overview of X-ray Crystallography

X-ray Crystallography involves growing crystals of the molecule of interest, and expos-
ing this crystal to X-ray radiation. The interaction of X-ray waves with a molecule’s
electrons causes diffraction of these waves. The resulting diffraction pattern produced
contains information that allows for the reconstruction of the molecule’s electron den-

The interaction of an X-ray wave with electrons causes scattering of the X-rays in

all directions. Since a crystal is a regular repeating array of a molecule, the diffraction
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of a wave by a crystal leads to both constructive and destructive interference of waves.
In other words, some of the diffracted waves are constructively amplified, while some
are cancelled through destructive interactions with other waves. The diffraction of
waves by molecules in a crystal can be represented by an expression known as the

structure factor F'(h,k,l).
1 plopl
F(h,k,l) = / / / p(z,y, z) exp(2mih - x)dzdydz (1.1)
0o Jo Jo

p(z,y. z) represents the electron density distribution in a crystalline unit cell and
h = (h,k,!) index the space of the diffraction pattern, also referred to as recipro-
cal space. The indices h,k,! are referred to as Miller indices. As mentioned above,
diffraction from a crystal leads to constructive interference of certain waves. Con-
structive interference, and thus a spot on a diffraction pattern is observed only for
integer Miller indices. Bragg has shown that the process of diffraction from a crys-
tal can also be explained by reflection from a set of parallel planes (James, 1962).
Therefore, the diffraction spots are sometimes referred to as reflections.

Although F is in general a complex number, if the density p is centrosymmet-
ric the imaginary part vanishes and F reduces to a real number. However, even
for crystallized asymmetric objects, there can exist a class of reflections that gives
information only about a centrosymmetric projection of a crystal. In this class of
reflections, known as the centric reflections, the phase choice of F is restricted to two
possible values separated by 180 degrees. A reflection that is not centric is referred to
as an acentric reflection. Acentric reflections make up the bulk of the data collected
from a protein crystal.

Mathematically, a crystal is modelled by dividing three dimensional space into a
regular repeating array of cells. Each “unit cell” contains some, all, or multiple copies

of the molecule of interest. The molecule is characterized by its electron density
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p- Since no substance has been found to focus X-ray beams, a molecule’s electron
density can not be directly observed from the X-ray diffraction experiment. However,
the density p can be recovered from the structure factors via the inverse Fourier

transform.

o(z,9,2) = %Zhjzkal:?(h k, 1) exp(~2rih - x) (1.2)

As mentioned above, each structure factor F is a complex number. However, from
the diffraction experiment, only the modulus |F| can be estimated and no direct
measurement of the phase is possible. Since both phases and amplitudes are needed.
Fourier inversion is not possible. This hindrance is known as the phase problem of
crystallography. Furthermore, the measurements of the amplitudes |F'| are subject to

random error.

1.2 Initial Phase Estimates

To build an initial model for a crystal structure, estimates for the phases are needed.
‘Two ways for obtaining initial estimates of phases are Molecular Replacement (MR)
and Multiple Isomorphous Replacement (MIR).

Often, protein structures exhibit similar folds to other proteins that can be pre-
dicted by the sequence similarity of the proteins. The Molecular Replacement method
exploits this property of proteins by obtaining initial phases for a molecule of unknown
structure from a related molecule of known structure.

The method of Multiple Isomorphous Replacement involves adding a “heavy
atom” or an atom with a high atomic number to the crystal in order to perturb
the diffraction pattern of the crystal. If the addition of the heavy atom does not

disrupt the protein structure or the crystal packing, then phase information can be
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Figure 1.1: Phase ambiguity in an SIR experiment

The thin curve represents a circle centered at the origin of radius |Fp| and the thick
curve is a circle of radius |Fpg| centered at —Fj.

obtained. The crystal containing the protein structure and the heavy atom is called a
derivative. To determine the phase of a structure factor, the original or native (|Fp|)
and the derivative (|Fpg|) structure factor amplitudes must be measured. Further-
more, the coordinates of the heavy atom and its corresponding structure factor (Fj)
must be determined. The native structure factor amplitude restricts the structure
factor, Fp, to a circle in the complex plane. As well, an independent source for Fp
can be obtained from a circle centered at the end of the vector —F}y of radius |Fpg|,
since Fp = Fpg — Fy.

Figure 1.1 gives an example of phasing from a Single Isomorphous Replacement
(SIR) experiment. In this case, a circle of radius |Fp| centered at the origin intersects
twice with a circle of radius |Fpy| centered at —Fg. The two intersection points of
these curves correspond to the two possible phase values for Fp from this experiment.

This phase ambiguity can be resolved by measuring the amplitude of a different heavy
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(9]

atom derivative.

The inclusion of these initial phase estimates with the observed structure factor
amplitudes allows for the construction of an initial model. Because of the errors
associated with measuring structure factor amplitudes and the errors associated with
phasing a model, the initial model constructed often contains errors in its atomic
coordinates, missing atoms, or extra atoms. Therefore, to obtain the most accurate
model, refining the initial model against all of the available experimental data is

essential.

1.3 Crystal Structure Refinement

To obtain the most accurate possible crystal structure, one typically refines the
atomic model to optimize its agreement with the observed diffraction data. The
standard macromolecular refinement programs, PROLSQ (Konnert & Hendrickson,
1980), TNT (Tronrud, Ten Eyck & Matthews, 1987), X-PLOR (Briinger, Kuriyan &
Karplus, 1987), and GROMOS (Fujinaga, Gros & van Gunsteren, 1989), minimize a
residual that is the weighted sum of squared deviations between the observed (|F,|)
structure factor amplitude and the structure factor amplitude calculated (|F;|) from
an atomic model of a protein using equation (1.1), including a relative scale factor &

and a weighting factor wy:
Y wa(F| — KIF)? (1.3)
h

The refinement programs differ primarily in their minimization methods. Conjugate
gradients is a common method for finding the local minima of a function and employs
an iterative cyclical procedure. The first cycle involves determining an optimal search

or step direction and the next cycles attempt to find the best step length in this
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Table 1.1: Observation to Parameter Ratio versus Resolution

Resolution (A) | Observations/parameter
3.5 0.5
3.0 0.8
2.5 14
2.0 2.8
1.5 6.2

direction. This process is repeated until the function’s gradient nears the zero vector.

The Cartesian coordinates (z,y, z) and a thermal motion parameter or B-value
are typically used to parameterize an atom for a given model. Thus, the calculated
structure factor F is a function of z, y, z and B for all the atoms in a model.

The quality and amount of diffraction data collected depends largely on the quality
of crystals obtained. High angle diffraction spots or high resolution data can be seen
for good crystals, whereas poorer quality crystals only diffract to low resolution. Table
1.1 shows the observation to parameter ratio as a function of resolution for a protein
crystal with a typical packing density and assuming four parameters z.y. z and B for
an atom.

Since most macromolecular refinements have an unfavourable parameter to ob-
servation ratio, geometrical restaints representing prior information of ideal molecule
geometry (ie. ideal bond angles and bond lengths) are added. Alternatively. one
can reduce the number of parameters using constrained models to improve the un-
favourable ratio.

Naturally, the quality of the model after refinement depends on the X-ray target
being used. Experience has shown that the above least-squares target works poorly
for very incomplete models and models with large coordinate errors. Furthermore,

the least-squares function does not account for the effect of the observed structure
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factor amplitude’s measurement error and can not justifiably be generalized to include
prior phase information. In order to overcome these shortcomings, a more general
maximum likelihood approach should be considered, as suggested by Read (1990) and
Bricogne (1991; 1993).

The principle of maximum likelihood formalizes the idea that the quality of a
model is judged by its consistency with the observations. To say that a model is
consistent with an observation means that, if the model were correct. there would
be a reasonably high probability of making an observation with that value. Taking
the relevant observations as a set, then, the probability of making the entire set of
observations is an excellent measure of the quality of the model. If we assume that the
observations are independent, the joint probability of making the set of observations
is the product of the probabilities of making each independent observation. This joint

probability is the likelihood function (L):

L =[] PUF}|F, ac). (14)

hkl

where P(|F,|;|Fe|, ac) is the conditional probability of the observation |F,| given the
calculated amplitude |F.| and phase a.. Since it is more convenient to work with
sums than products, one typically works with the logarithm of the likelihood function.
As well, the maximization problem can be turned into a minimization problem by

multiplying by negative one. Therefore, defining £ = —log(L) gives the following:

= - Y log(P(IF); IFel, ) (15)
174
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1.4 Least-Squares: A Special Case of Maximum
Likelihood

The least-squares refinement target could be considered to arise from the principle
of maximum likelihood, if the expected value of |F,| were k|F.|, and the probability
distribution of |F,| given |F,| were a Gaussian, and the standard deviation were
independent of the parameters of the atomic model.

As will be shown, none of the above assumptions are true. For this reason, we
should return to first principles and apply a maximum likelihood analysis to the
problem of crystal structure refinement.

In the case of crystallographic refinement, it is not strictly true that the diffraction
observations are independent; if they were, direct methods and density modification
would not work. There is doubtless much useful information to be gained by working
with higher order collections of structure factors (Bricogne, 1993). but useful results

are obtained even when independence is assumed, as will be shown.



Chapter 2
Applying Maximum Likelihood

To apply maximum likelihood, one must start from the probability of making a mea-~
surement, given the model, its errors, and the measurement errors. It has been shown
previously that various sources of random error in the model have equivalent effects
on the probability distribution for the true structure factor, whether the errors are in
atomic positions or temperature factors or whether there are missing or extra atoms;
in each case the distribution of the true structure factor is well approximated by a
Gaussian distribution centered on DF, (Read, 1990). The parameter D, a function of
the reciprocal space vector s, is the Fourier transform of the probability distribution
of the coordinate error (Az) (Luzzati, 1952); (Read, 1990) and intuitively represents
the fraction of the calculated structure factor that is correct. In the case of acentric
structure factors, which make up the bulk of data for macromolecular structures, the
distribution (P,(F; F.)) is a two-dimensional Gaussian in the complex plane, while

for centric structure factors, it is a one-dimensional Gaussian (P.(F; F.)):

_|F-DF?
P,(F;F, =1r;%e “a (2.1)

LA version of this chapter has been published. Pannu and Read (1996) Acta Cryst A52: 659-
668.



CHAPTER 2. APPLYING MAXIMUM LIKELIHOOD 10

In Appendix A, the probability of the true structure factor amplitude (| F|), condi-
tional on the calculated amplitude (|F.|), is shown to be the following for the acentric

and centric case, respectively:

PP IF) = 20l ™y, AUFIDIE, 23)

A €0a

_IFR+D3F 2 FID|F.
oa cosh(l#
71'450A eol

P(|F;[Fel) =

) (2.4)

The probability distribution required to apply maximum likelihood. however, is the
probability of the observed diffraction measurement given the calculated diffraction
measurement, as the true value is not known. We have used two methods to approx-
imate this distribution, differing in the level of approximation and in the distribution
assumed for the observational error. In the first method (MLF1). the measurement
error is assumed to be Gaussian in structure factor amplitudes. and a Gaussian ap-
proximation is made for the resultant combined distribution. expressed in terms of
structure factor amplitudes. In the second method (MLF2), the measurement error is
assumed to be Gaussian in the intensities, and a series representation of the resultant

combined distribution is expressed in terms of structure factor amplitudes squared.
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2.1 MLF1l: An amplitude-based likelihood func-
tion

If the probability of the measurement error (P(|F,| —|F|)) is assumed to be Gaussian
in structure factor amplitudes with standard deviation o , then the required proba-

bility distribution P(|Fp|; |F¢|) is obtained by convoluting P(|F|; |F¢|) by P(|F,|—|F}).
P(|Fol; |1Fel) = P(IF|; |1Fe]) ® P(|Fo| - |F]) (2.3)

As far as we have been able to determine, there is no exact analytical solution to this
convolution for the important acentric case. However, a good Gaussian approximation
can be obtained using the first two central moments of the distribution. The expected

value for the acentric case is given by the following:

_ /el 1 D?|F,? 5
< IFOI >= 9 Q( 27 1: 60'_% ) ("'6)
For the centric case, the expected value is
2e03 11 D2F,?
— 12 _ 9

In these expressions, ®(a, b, z) is Kummer’s Confluent Hypergeometric Function (Luke,
1977), also denoted by ,F;(a,b,z). The variance for both the acentric and centric

distributions is given by the following:
O =€03 +0F + D*F P~ <|F| > (2.8)

As |F,| increases, o3, tends towards eo} + o7 in the centric case, or ieo3 + 02 in

the acentric case because, in the limit, only the component of model error parallel
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to F. contributes to the error in the amplitude. When these moments are used to

construct a Gaussian approximation, the negative log likelihood function (L) is

1
£=3" 2 log(2r) +log(owz) + 557 (1Fol= <|F|>)* (29)
hkl oML

Eliminating the constant term 3 log(2r) gives the function minimized in refinement.

1
D _log(oue) + gz~ (IFal~ <|Fy| >)? (2.10)
hkl OmL

2.2 MLF2: An intensity-based likelihood function.

The second method that we use to derive the required probability distribution works
in terms of structure factor amplitudes squared (J = |F|[?). Two advantages are
attained by working in J instead of F. First, measurement errors frequently lead
to a negative net intensity, which is reduced to negative J; when these legitimate
observations are transformed to |F|[, one has the choice of omitting them. replacing
them with zero, or replacing them with a non-zero Bayesian posterior value (French
& Wilson, 1978) . By working in terms of J, this problem is avoided. Furthermore,
a Gaussian measurement error is better justified in J, than in |F]. In principle,
maximum likelihood is insensitive to variable transformations such as from |F| to | F|2
(Edwards, 1992). If MLF2 did not differ from MLF1 in the distribution assumed for
the measurement error, the two likelihood functions would differ only in the precision
of the approximation.

The required probability distribution P(J,; J.) is derived by multiplying P(J; Jo)

with the Gaussian probability of the measurement error (P(J,;J)) with standard
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deviation o}, and integrating over the true structure factor amplitude squared (J).
o0
P(J,;J.) = / P(Jy; J) x P(J; J)dJ (2.11)
0

A series representation of P(J,;J;) can be computed. For acentric reflections the

distribution is the following:

_.12 _02.; oo 2 ) (o2 _Jo,,A)z 2 _ 2
Pl Jo) = oo T SN DRSya L Sty || (9 e
e\Jos Je \/211’60’_25 rd 620-.4A nl n-1 __60",2; 7
(2.12)

D_,_1(z) is a parabolic cylinder function. For centric reflections. the distribution is

given below.

12 ply; o (e2-2J5¢03 )2 2 _ o 2
P(J J) 1 2—:]!' ;:fz D CUJ 1 WD_ —-(UJ & on'A)
2 wajeoA prd 2«5204 (2n)!t" " 20 0;
(2.13)
After eliminating terms that are constant within a cycle of refinement, the negative
log likelihood (L) for the acentric case is the following:
(o? -JowA) 2
—11—4—,— 0?2 — J,eo’
L= Zlog(eaz D2J¢40’J 1 teoio? D—n—l(J_zo_—A))
(2.14)
and for centric reflections the negative log likelihood expression is given below.
Do, 1 GEA 52 9)ep2
L= 1 - c J 16203 o J o0=vA
2 2 og(ed) + lo (E( 2520"‘ (2n)" " Doyl 2e030; )

hkl
(2.15)
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Equations (2.14)-(2.17) are derived in Appendix B.

To optimize refinement targets, derivatives with respect to F, are commonly used.
Calculating the derivative of a least-squares target on amplitudes results in a division
by |Fe| that can result in a singularity (Schwarzenbach et al., 1989). Both MLF1 and

MLF2 functions eliminate this singularity.

2.3 Calibration of structure factor probabilities

The value of the likelihood function depends on the parameters of the atomic model.
It also depends on the resolution-dependent parameters D and 03, which characterize
the effect of model error on the structure factor probability distributions. (In fact D
and o3 are not independent and can each be computed from the single parameter
o4 (Read, 1990).) In principle, it would be best to optimize the likelihood function
by adjusting all parameters simultaneously, including coordinates, B-factors and o,
values. Unfortunately, a problem arises if the o, values are refined using the same
data against which the model is refined: the poor parameter to observation ratio
allows overfitting of the amplitudes. which results in an overestimation of o4 and
hence an underestimation of the errors in the calculated structure factors (Lunin &
Urzhumtsev, 1984; Read, 1986). This leads to a positive feedback cycle in which the
pressure to overfit becomes stronger. In our first attempt to implement maximum
likelihood refinement, this problem was ignored. As the quality of the likelihood func-
tion depends strongly on the accuracy of o4 estimates, the results were unimpressive.

The solution adopted is to use cross-validation data (a minority of data omitted
from the refinement target) in an active way to provide unbiased estimates of structure
factor accuracy. These data are normally used to compute Ry, 2n unbiased measure

of refinement progress (Briinger, 1992). The use of cross-validation data to estimate
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o4 is complicated, however, by the fact that stable estimates require 500 to 1000
reflections in each resolution shell, especially when the true value is low (Read, 1986).
To overcome the problem of instability, we exploit the fact that o4 varies smoothly
with resolution. A simple correction, in which a penalty is applied when a o4 value
lies far from the line connecting its two neighbours, is sufficient (Read, unpublished).

A better solution would be to refine the o4 values as parameters in the refinement,
but to make allowance for the fact that they are biased estimates. in using them in the
likelihood function. Lacking a theoretical basis for the correction for bias, however,
this solution cannot yet be applied. We are currently studying the effect of refinement
bias on the structure factor distributions, to lay the groundwork for such an improved

treatment.

2.4 Test refinements

The two maximum likelihood targets have been implemented in the programs CNS,
TNT (Tronrud, Ten Eyck & Matthews, 1987) and X-PLOR (Briinger. Kurivan &
Karplus, 1987). Results from runs of the modified X-PLOR on two test systems will
be discussed here. In each test, the suggested weighting factor (WA) for the diffraction
terms in the target, obtained by comparing the gradients from the diffraction and

energy terms (Briinger, Karplus & Petsko, 1989), was divided by two.

2.4.1 Streptomyces griseus trypsin

The crystal structure of Streptomyces griseus trypsin (Read & James, 1988) (SGT)
was solved originally by molecular replacement, using the structure of bovine trypsin
(Chambers & Stroud, 1979) (BT) as a search model. In order to compare the power

of the maximum likelihood and least-squares targets in a case where the phase errors
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Table 2.1: Refinement statistics for the SGT test case.

Start | Least-squares | MLF1 | MLF2
R-factor 0.515 0.403 0.416 | 0.422
Reree 0.542 0.511 0.525 | 0.528
Mean phase error 62.2 60.0 56.7 | 56.5
Mean cos(phase error) | 0.365 0.394 0.436 | 0.437

are known exactly, we used data calculated from SGT as error-free amplitudes |F,|,
and a superimposed model of BT as a starting structure. Since these two proteins
share about 33 % sequence identity, BT provides a relatively poor model that will
only be capable of refining into a local minimum.

Data from infinity to 2.8 A resolution (5732 reflections. of which 578 were flagged
as cross-validation data) were used for both refinements. (One often omits the low
resolution data for least-squares refinement because of the complications caused by
disordered solvent, but in this case there is no disordered solvent). In total, 420 cvcles
of energy minimization refinement in X-PLOR were carried out. Table 2.1 shows the
results obtained in the different refinements.

While none of the refinements could achieve an accurate model, owing to the
inadequacies of the starting model, the maximum likelihood targets gave more than
twice as large an improvement in the average phase error. Note that, owing probably
to the small number of reflections used in this case, Rgee provides a weak indication

of phase accuracy.
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2.4.2 Trypanosoma brucei glycosomal triosephosphate iso-
merase

At an intermediate stage in the refinement of the glycosomal triosephosphate iso-
merase (gTIM) from Trypanosoma brucei (Wierenga, Noble, Vriend, Nauche & Hol,
1991), data to a resolution of 1.83 A became available to replace the data to 2.4
A resolution that had been used to that point (Wierenga, Kalk & Hol, 1987). We
tested the three refinement targets on this intermediate model, using the observed
diffraction data (model and data kindly supplied by Dr. R.K. Wierenga). Of 38812
observed amplitudes, 1014 were flagged randomly as cross-validation data. Because
this is a real data set measured from a crystal with disordered solvent, data from
infinity to 8.0 A resolution were omitted in the least-squares refinement, while they
were used in both maximum likelihood refinements. In each case, 250 cycles of energy
minimisation (EM) refinement were run, followed by 30 cycles of B-factor refinement.

As shown in Figures 2.1 and 2.2, both maximum likelihood target functions
achieved a significantly greater improvement in the model, measured by both R
and phase differences with the final model.

As one might expect from the increased precision of the approximation, the MLF2
target gives significantly better results than MLF1. This improvement is achieved for
a modest computational cost. Compared to an equivalent refinement with the least-
squares target, the MLF1 target requires about 1% more computer time, while the

MLEF2 target requires about 10% more computer time.
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Figure 2.1: R-factors through the test refinements of gTI\.
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Figure 2.2: Phase accuracy after gTIM test refinements.
The phase accuracy is computed as the mean cosine of the phase error, which is
comparable to the mean figure of merit. Triangles correspond to the starting model,
squares to the least-squares model, diamonds to the MLF1 model, and circles to the
MLF2 model.
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Chapter 3

Incorporating Prior Phase

Information

In order to improve the parameter to observation ratio. inclusion of prior phase in-
formation in the refinement protocol has been previously proposed. A number of
methods have been derived to incorporate this additional source of information. One
method involves adding a square well potential around the centroid phase to the
least-squares target. The vector residual represents another target function used to

include prior phase information.

V;'esidual = Z(IFOI cos(acmtraid) - Acalc)2 + (lFol Sin(acentrm'd) - Bcalc:)2 (3’1)
hkl

where Ay and B, represent the real and imaginary components of the calculated
structure factor and @ entroid represents the expected value of the phase. Typically,
prior phase information for macromolecules is not very accurate, and since the above
two target functions do not consider the errors in the phase measurements, both are
not theoretically justified.

Although the previous chapter details initial results that are striking, the maxi-
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mum likelihood method allows for a rational incorporation of other sources of infor-
mation which should lead to further improvements. A likelihood function has been
derived that incorporates experimental phase information frequently determined in
a crystal structure determination. A likelihood function incorporating prior phase
information has also been proposed by Bricogne and Irwin (1996) and Murshudov,
Dodson, and Vagin (1996). The function, MLHL, or Maximum Likelihood function
using Hendrickson-Lattman coefficients (Hendrickson & Lattman, 1970) has been im-
plemented in the refinement programs CNS, TNT (Tronrud, Ten Eyck & Matthews,
1987), and X-PLOR (Briinger, Kuriyan & Karplus, 1987).

3.1 Deriving MLHL

Intuitively, the derivation of the MLHL target function follows similarly from the
derivation of a maximum likelihood function lacking prior phase information. In ei-
ther case P(|F,|; |F.|. a.) is derived from the joint probability of the true structure
factor and the calculated structure factor, denoted P(F, F,.). However, in the case of a
likelihood function lacking prior phase information, P(|F,|; |Fe|, a.) is obtained by in-
tegrating P(F, F.) uniformly over all possible phases. In the derivation of MLHL, the
distribution P(|F,|; |F.|,a.) is determined by an integration over all possible phases
of P(F, F.) weighted by an experimental prior phase probability distribution.

In order to derive the MLHL function mathematically, the distribution
P(|F|, Aa; |F.|, &) is needed. Appendix A gives this distribution for acentric and

centric reflections, respectively.

Fl —|F|? — D?|F[* + 2|F|D|F,| cos(Aa)
€

PuIF), 805 P, ) = 2o exp = ) 62)



CHAPTER 3. INCORPORATING PRIOR PHASE INFORMATION 21

1 —|F|? — D*F,]? + 2|F|D|F.| cos(Aa)

———ex
V2mead p( 2e03

In the above equations, Aa is the phase difference between the true phase and the

P(|F|, Aq; |Fe), ) = ) (3.3)

calculated phase. Hendrickson and Lattman (1970) have shown that the prior prob-

ability distribution of a phase («) can be represented in the following form:
P(a) = N exp{An cos(a) + By sin(a) + Ch cos(2a) + Dy sin(2a)} (3.4)

where Auy, By, Cn and Dy, are Hendrickson-Lattman coefficients and N is a normal-
ization constant.

In the acentric case, multiplication of the distribution P,(|F|, Aa; | F|, a.) with the
prior probability distribution P(a) gives the joint probability distribution
FP,(|F|. Aa, a: |Fe|, a.). Integrating the true phase out of this joint probability distri-

bution gives the required distribution.

27
P(|F|;|Fe|. ac) = Py(|F|. Ac; |F|. ac) P(a)da
0

Yy

= | Fu|F|,a~ ac: |F|, ac) P(a)da
0

_MF|__ —IFI? - D?Ff
"~ meod exp( €03 )
27
exp{ (An + 2|F IDIFLLCOS(%)
€0}
, 2FIDIFsin(a)
€od

) cos(a) +

(Bn

) sin(a) + Chi cos(2a:) + Dy sin(2a) }da

(3.3)

A surface plot of equation 3.5 is shown in Figure 3.1. Taking the minus logarithm

of equation 3.5, removing all terms that are constant, and summing over all reflections
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Figure 3.1: Plots of probability distributions for TnC test case reflection 1 1 6

3.1(a) Phase probability curve indicating the two most probable phase choices.

3.1(b) Surface plot of P(|F,]; |Fe|, a.) lacking prior phase information versus the real
and imaginary part of F,. This distribution is radially symmetric, thus the extremum
chosen will be in the direction of the model phase.

3.1(c) Surface plot of P(|F,|;|F.|,.) incorporating prior phase information versus
the real and imaginary part of F.. This distribution reinforces both phase choices
seen in the SIR experiment as peaks in the function.
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gives the desired target function.

2 2 2
poy [FR+DURP

2
hkl €0a

27
2|F|D|Fclcos(ac) ) cos(a) + (3.6)

log( A exp{(An +

2|F|D|F|sin(a)
+ 2
€03

(Bnt ) sin(a) + Chy cos(2ar) + Dy sin(2a) }da)

A series representation for the integral in equation 3.6 exists and is given in Ap-
pendix C. Unfortunately this series exhibits numerical instabilities for particular ar-
guments, so the above integral is evaluated numerically in the general case of non-zero
Ant, B, Chi, and Dp; Hendrickson-Lattman coefficients. However, in the special case

when C}; and D, are both zero, an analytical form exists:

2 2 2
Loy P+ DURE

2

. (3.7)
log {Io( \/( Ayt 2IFIDI§‘;I§ cos(ee), (g 4 2iF|D|f;lﬁ Sm(ac))z)}

Equation number 3.7 demonstrates an important property of the MLHL function. In
the case of no phase information, when all the Hendrickson-Lattman coefficients are
zero, the MLHL target reduces to the minus logarithm of the Rice distribution: a
maximum likelihood target function lacking prior phase information shown in Ap-
pendix A and equation 2.3.

For centric reflections, the required distribution is obtained by multiplication of the

density Fe(|F|, Aa; | Fe], o) with the prior probability distribution P(a) and summing
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over the two possible phase values.

P(|F|;|Fl, ) = Y P(IF], Acs |F), a) P(c)

= ZP(IFI,Q — a.; |Fel, a.)P(a)

= [2 ~|FfP = DYFPY (3.8)
~ \ e eXP 2e03
cosh {A,,, cos(ac) + Busin(ac) + |F lelef;J}
a

The sums in equation 3.8 are over the two values of & : o, and @, + 7. The minus log

of equation 3.8 is the following:

£y PRt DR
- €0A
hkl (3'9)

log(cosh {A,,l cos(a.) + Busin(ac) + |F 52'&' })
A

The above derivation of the MLHL function neglects the effect of measurement errors
on the structure factor probability distribution. Appendix D considers the effect of

measurement error in deriving the MLHL function.

3.2 Test refinements

The maximum likelihood target MLHL has been implemented in the programs CNS,
TNT (Tronrud, Ten Eyck & Matthews, 1987) and X-PLOR (Briinger, Kurivan &
Karplus, 1987). Results from runs of the modified X-PLOR on one test system will be
discussed here. In each test, the suggested weighting factor (WA) for the diffraction
terms in the target, obtained by comparing the gradients from the diffraction and

energy terms (Briinger, Karplus & Petsko, 1989), was divided by two.
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Table 3.1: Refinement statistics for the TnC test case.

Start | Least-squares | MLF1 | MLF2 [ Vector | MLHL
R-factor 0.571 0.416 0.428 | 0.403 | 0.468 | 0.359
Rree 0.539 0.532 0.490 | 0.482 | 0.481 | 0.399
Mean phase error 73.7 66.0 32.0 | 49.7 | 49.5 33.4
Mean cos(phase error) | 0.21 0.31 049 | 0.52 | 0.52 0.72
Mean map correlation | 0.369 0.502 0.665 | 0.704 | 0.692 | 0.860

3.2.1 Troponin-C

In this test, we refined a “scrambled” starting model using only poor SIR phases to
supplement the likelihood function. The test protein was troponin-C (TnC) which
was originally solved at 2.8 A resolution using MIR phases from eleven derivatives
(Herzberg & James, 1985). (MIR data kindly supplied by Osnat Herzberg, with
assistance from Marie Fraser.) Of these eleven derivatives, a single derivative (TmCls)
was chosen. The originally determined heavy atom parameters for this derivative were
further refined by MLPHARE (Otwinowski, 1991) which subsequently generated the
Hendrickson-Lattman coefficients used by MLHL, and the “best” phase and figure of
merit used by the vector residual. TmCl; phases were relatively poor, as MLPHARE
reported a mean figure of merit of 0.39, while the mean cosine of the phase difference
with the phases computed from the final published structure was 0.29.

A starting model was generated by “scrambling” (Rice & Briinger, 1994) or per-
forming a molecular dynamics run using a target function without reference to X-ray
information. The starting model generated had a root mean squared deviation of
2.28 A with the published structure. Of the 3868 observed native reflections, 496
were flagged as cross-validation data for o4 estimation (Read, 1997) and R-free cal-
culation (Briinger, 1992). The test refinement involved 420 cycles of conjugate gra-
dient refinement in X-PLOR using MLHL, the vector residual, MLF2, MLF1, and
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Figure 3.2: Map correlations after the TnC test refinements.
Stars correspond to the starting model, triangles to the least-squares model, circles to
the MLF2 model, squares to the Vector-Residual model, and diamonds to the MLHL

model.

least-squares.

Results from this test are shown in Table 3.1 and Figure 3.2. As indicated by the

map correlation with the final model. MLHL clearly performed better than any other

target function. As well, MLHL gave the lowest R-free value.

Figures 3.3, 3.4 and 3.5 show combined phase SIGMAA electron densitv maps

(Read, 1997) for a region of TnC of the starting, vector residual. and MLHL models

and SIR phases used in refinement.
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Figure 3.3: Combined phase SIGMAA map of the starting model.
The final model of TnC is shown in black for Figures 3.3, 3.4 and 3.5. Due to the
poor quality of the starting model and the SIR phases, this map does not show many
features of the final model. This Figure and Figures 3.4 and 3.5 were drawn using
the program O (Jones, Zou, Cowan & Kjeldgaard, 1991).
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Figure 3.4: Combined phase SIGMAA map of the vector residual model
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Chapter 4

Conclusions

The application of the MLF1, MLF2, and MLHL target functions to the test cases
described above has yielded promising results. In the case where no prior phase
information is available, the MLF1 and MLF?2 targets outperform the least-squares
function. As well, in the TnC test case, MLHL performed significantly better than
any other target function as indicated by clearer electron density and improved phase
quality. Furthermore, the difference between the working and free R factors is small
in MLHL because of the inclusion of prior phase information as observations in re-
finement.

Although all of the test cases mentioned involved a conjugate gradients mini-
mization scheme, the maximum likelihood target functions are in no way limited to
local minimization methods. Tests have shown that the combination of a maximum
likelihood target function lacking prior phase information and simulated annealing
optimization parameterized in torsion angle space (Rice & Briinger, 1994) further
enhances refinement (Adams, Pannu, Read & Briinger, 1997) and allows for the re-
finement of structures not possible by least-squares, or either method by itself. As

well, recent tests have shown that the combination of torsion angle molecular dynam-
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ics with the MLHL function further pushes the limits of refinement (Adams. Pannu,

Read & Briinger, in preparation).

4.1 Future Developments

While the current implementations of maximum likelihood refinement already pro-
vide significant benefits, a number of improvements can be envisioned. First, the
algorithm for the estimation of g4 does not take into account measurement errors.
The likelihood functions MLF1 or MLF2 can be used to compute o4 values that take
into account measurement errors. Furthermore, the likelihood function MLHL can
compute o4 values that consider prior phase information. These modified likelihood
functions will be implemented in the SIGMAA algorithm in the future. As is clear
from the variance term in the Gaussian approximation MLF1, observational error has
little influence on the likelihood function unless the model is quite accurate. Nonethe-
less, it will become significant at the end of refinement and a proper treatment will
be important to obtain an optimal final model.

Arbitrary relative weights between diffraction and geometry terms should not
be required, in principle, if each is introduced to maximum likelihood through the
appropriate probability distributions. However, some overweighting of the diffraction
terms, relative to the theoretical value, is needed to achieve convergence. This may
be necessary in part because the inevitable overfitting of the diffraction amplitudes
alters the distribution P(F; F.). In various tests, the comparison of gradients has led
to weights that are increased by factors between 4 and 50, with higher weights being
required for less refined models at lower resolution. Further tests will be required to
decide whether these relative weights are optimal.

The maximum likelihood approach allows one to include, in a sensible way, any
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combination of information (Bricogne, 1993). Considerable scope for improvement
exists in the simultaneous refinement of structures, for instance, native with liganded,
or native with heavy atom derivatives. In such a refinement, all observations would
be fit simultaneously, using models that are restrained to resemble one another to a

degree required by the relationships among the measured sets of structure factors.
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Appendix A

Deriving P(|F|; |F|)

The nature of the observations made in X-ray crvstallography makes it reasonable to
model the four-dimensional vector (F, F,) = (A, B, A., B.) as a random vector where

(4, A.) and (B, B.) are independent bivariate Gaussians with covariance matrix
el ™ (A.1)

The factor D, a function of the recriprocal space vector s, is the Fourier transform of
the probability distribution of the coordinate error (Ax), and intuitively represents
the fraction of the calculated structure factor that is correct. As well, X is the sum
of squares of the scattering factors for all N atoms in a crystal and Ip is the same
for all P atoms in a model.

The distributions necessary for a maximum likelihood analysis of crystal structure
refinement can be obtained from the joint distribution of the true structure factor F
and the calculated structure factor F,. Read (1990) has shown that the conditional
distribution of F' given F,, P(F;F,) is well modelled by a two dimensional Gaussian
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for acentric reflections.

1 -lE=DK 2
P(FiF) = —ze i (A.2)

Multiplying the above with the Wilson (1949) distribution P(F,). we re-write the

joint distribution of (F, F¢) in the following form

P(F,F,) = P(F; F;) x P(F,)
1 -8R 1 e

= e A x e <p
TeoR TeLp (A.3)
iF=DFei? IF§!2
= ——1—e- €A T P
2203 p

where 63 = Zy — D?Zp. The joint distribution of |F|.a.|F,| and a. can be obtained

from expression (A.3) via a variable transformation.

P(|F|. a, |F|, ac) = |F||Fe| x P{F(|F|,a), F.(|Fe]. o)}
|F||F.| -lECeblisc=201F ) Fciconarac 1502 (A4)

= ws e=-p
n2€203Xp

In the above expression |F||F,| is the Jacobian of the transformation.
For all the likelihood functions derived here, the distribution P(|F|, Aa; |Fy|, a.)

is needed, where Aa is the difference between the true and calculated phase.
P(|F|, Ac, |Fe|, o)
P(|F|, Aa; |Fy|, ae) =
(Fh Acs1Eel 00 = = PR, 0
= P{|F|,a(Aq,a,), |Fel. ac}
P(|F|, ac)
[ F[ —!512—02[F£]2+2EF|D|F‘1m(Aa)
= —7e

({3 A
Teo}

For the likelihood functions lacking phase information, the unknown phase error is

S
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integrated out.

27
P(|F};|Fe), ) = : P(|F|, Aa; |F.|,ac)dAc

A6
_ 2| eget oFIDIE, (2.8)
eaA e}

The distribution obtained for P(|F|;|F.|, a.) is known as the Rice Distribution or a
Non-Central x? Distribution. Since this distribution does not depend on the calcu-
lated phase (a), the distribution is commonly denoted P(|F|; |F|).

Similar equations can be derived for the centric case, and these expressions are

given below.

1 ={F|?=D?|F|2+2| FID|Fs| cos(Aa)

e 2eaq A7

V2meo? il
9 _',F:"‘;l:’tf;l’ IFIDIFCI

P(|F|;|F]) = ‘/ — e 3 cosh(—?) (A.8)

P('FI~ Aa;chl,ac) =




Appendix B

Implementation of MLF2

The distribution P(J,; J.) is attained by multiplying P(J; J.) with a Gaussian prob-
ability of measurement errors (P(J,; J)) with standard deviation o, and integrating
over the true structure factor amplitude squared, J. The distribution P(J: J.) is ob-
tained via a variable transformation of the distribution P(|F,|:|F.|) for acentric and

centric reflections respectively.

o’.r
PuldiJ) = —pe ook (22T (B.1)
€0} €0}
_J+D21 /'_
P.(J;J.) 2oy cosh( JJ) (B.2)
aAJ eol

The joint probability P(J,J,; J.) is the product of the probability of the observation
error and the probability of the true intensity given the calculated intensity. The

desired distribution, P(J,; J;) is the integral over J of the joint probability.

P(Jyi J2) = /:’ P(J, Jo; J.)dJ = /0 CPUsd)x PU:J)dT (B3)

40
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For acentric reflections,

oc _WU=J0)® s+D2,
PUs = [ o = R B ey
o V2mojec? e}
;’ér D24, o _22_ g -Joeod
_ 1 o % e e ", ";r;r)IO(QD\/JJ (B.5)
\/271’0’,60’_,_\ 0 egi

Z12n

Expanding the modified Bessel function into a power series (Io(z) = Y o, (—(g?;), and

interchanging integration and summation gives the following:

72 2 oc 22 02-.!0(925
Dl -2
1 e Z(D Jeyn L / e M UEF g (B6)

~ V2rosedd 210 €03 6204 (n!)?

There exists an antiderivative for this expression (Gradshtevn & Ryzhik. 1980).

J2 p?;. o (o2 -JoccA) 2 2
- 1 2—:2 e A! D JCO’J 1 ufaA: P2 D a] - Joea-l B.7
- 2 J ( 2 4 —n—l( 2 ) ( { )
V2reok = €0y €040

The function D_,_;(z) is a parabolic cylinder function. Now, for centric reflections

L[> 1 454yt DVIL
P.(J,; 1) = m \/7 a 7 cosh( 60‘3\ ydJ (B.8)
2 ats
L i / R Jr:;-“?écosh(D ‘/77 (B.9)
27r\/Ea'Aa,- 0 \/j )
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Expanding the Cosine hyperbolic function into a power series (cosh(z) =3, é;';! )+
and interchanging summation and integration gives
1 _ 72 Dzj [-~] iz!‘ J”-%wf\.
= 20¢ "A n -% T2% 2:0% or
27r\/EoAa’, ’ 2( €20d ) (2n)! / Ji7re » dJ - (B10)
The analytic solution for this expression is
72 Dz, oo (03 —2Jp¢oA) o
_ 1 ;:; 20} Z(D JcUJ 1 WD 1( ] 2J 60;)
2,/T5;€0n /wajeaA . 26204 (2n)1l Tt 2e030;
(B.11)

The elimination of constant terms from the above two expressions leads to the func-

tions implemented in CNS, TNT and X-PLOR.

D?

L= Z log(ed3) + -
hkl . 1 s  Jeo? (B.12)
CUJ -k!cz as J A
log(Z( ol A% —n—l(—w?jr—))
n=0
for acentric reflections, and for centric reflections,
L= Z 5 -
o2 =2Jp¢c (B.13)
D%g;., 1 ‘—;ﬁ%—ﬁ’— 02 - 2J,603
log(Z( 620'4 ) (277- a%h D-n—%( 260'.,250’] ))

The numerical algorithm employed to evaluate the parabolic cylinder functions can be
divided into two different possibilities: one case is when the argument of the parabolic
cylinder function is non-positive, and the other is when it is positive. In both cases,
the algorithm developed relies on evaluating the function D_.(z) for two particular

values of v, and using recursion relations to calculate the special function for the
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other values of v necessary for the series to converge.

In the first case, when the argument of the parabolic cylinder function is non-
positive, the special function becomes large as £ — —oo. Thus to ensure convergence
of the series, e"'iz‘D_,,(a:) is evaluated, and then % is added to the likelihood function.
The algorithm utilises the relationship with the complement of the error function

(erfc(x)) in the acentric case:

_m(=1)" __zz dr 122 ,
D_p-i(z) = T ( erfe( \/_ ) (B.14)
where the complementary error function is defined as
erfe(z) = 2 f " ey (B.13)
VRl Y ‘
=1 - erf(z) (B.16)
Thus, for n = 0,1 equation (A.14) implies
2 T T -
- =4/= —_— B.1
D) = [Fere( ) (B.17)
e‘%z'D_g(:z:) = e‘% - z‘/-g-erfc(%) (B.18)

The code for the numerical evaluation of erfc(z) in MLF2 was written by Cody (1969).

The following recursion relation is used to calculate higher order parabolic cylinder



APPENDIX B. IMPLEMENTATION OF MLF?2 44

functions.

Dosei(2) = ~(Dogs(s) - 2D_a(z)) (B.19)

Note that both sides of the equation can be multiplied by e‘%z' to give a recursion
relation involving e‘éD_n_l(x).

In the centric case, when the argument of the parabolic cylinder function is non-
positive, the first two terms (n = 0,1) are evaluated via the relationship with the

confluent hypergeometric function ®(a, b, z):

N NG 1 1 n1l1 gz
e *D_,;(z) —2%+.%(I‘(§+ %)fb(z —yy )
B.20
TE+3) 4 272 2

The algorithm for the numerical evaluation of ®(a,b, —z) was adopted from Slater
(1965), Luke (1977), and Baker (1992). A recursion relation similar to equation (A.19)
can be used to attain higher order terms in the centric case.

In the case where the argument of the parabolic cylinder function is positive. both
acentric and centric likelihood functions can be calculated using the relationship of
the parabolic cylinder function with the confluent hypergeometric function ¥(a, b, z).
also denoted by U(a,b,z). Since ¥(a,b,z) remains bounded as r becomes large,

22 .
eTD_,(z) is evaluated.

?) (B.21)

22 1 _vi1
etD_,(z) = -2—%\1’(5, 3
If the first two terms (n = 0, 1) are evaluated using equation (A.33), and higher order
terms are evaluated using equation (A.21), catastrophic cancellation occurs during

the determination of higher order terms. Therefore, first D_,(z) is evaluated using



APPENDIX B. IMPLEMENTATION OF MLF2 45

equation (A.23) for —v = A + 1, ), where ) is large enough to ensure convergence.
Then the terms —v = A—1, A-2, ..., 0 are evaluated using a rearrangement of equation

(41):
D_,(z) =vD_,_;(z) + zD_,-a(z) (B.22)

The numerical evaluation of ¥(a, b, z) in MLF2 was adopted from Temme (1983).
Note that as (2‘%‘5‘1) increases, the infinite summations in expressions (A.12) and
(A.13) need more terms to converge, and it is possible that the numerical values exceed
machine precision before convergence occurs. We have recently derived an asvmptotic
equation valid for large values of (%%,fi) for acentric reflections. Such asymptotic
expressions will compute the likelihood function more efficiently for large parameters
and avoid potential overflow. In the two test cases discussed. however. overflow was
not a problem. Nonetheless, in order to compute the likelihood function more effi-
ciently for large parameters and avoid potential overflow, the equation derived will be
implemented. In the centric case, if overflow occurs, either the MLF1 target for cen-
tric reflections can be used, or an exact probability density for the observed structure
factor amplitude given the calculated amplitude (assuming a Gaussian observational

error in structure factor amplitudes) that we have derived can be implemented and

used.



Appendix C

Series representation of MLHL

A series representation for the MLHL function can be found by following the same
derivation outlined by Hendrickson and Lattman (1970). In deriving an analytical
solution for the determination of the best phases, Hendrickson and Lattman obtained

a solution to the following integral:

2%

exp {Ap cos(a) + By sin(a) + Cpr cos(2a) + Dy sin(2a)} da =

o (C.1)
2% {IQ(S)IO(T) +2 Z Ion (S)Ia(T) cos(n(20 — T))}

n=0

[ S = \/ A,u +B’ll
[ J T = \/ Chl + D;‘:[
e tan(o) = —gﬂ-

e tan(r) = --g;“f-

46
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The required integral for the MLHL function can be written in the above form, giving

the following solution:

2N —|F|? - D¥F.]?
P(Fls |l a0) =2y exp( =L — 2L
a3 A
ad (C.2)
{Io(sl)lo(T) +2 Z Ion (S")Ia(T) cos(n(20’ — -r))}
n=0
where
o §'=/A2+B?
® tan(a’) = —g:

° ‘40 — .4'“ + 2!FID|$A!COS(Q¢)
° Bo - Bhl + 2|F|D"F¢A|8inscc!

The series has a cosine term, and consequently can take both positive and negative
values. Because of rounding off errors, for particular arguments of the function,
the series representation can result with an undefined negative probability. Thus,
we have chosen to evaluate the function numerically in the general case of non-zero

Hendrickson-Lattman coefficients.



Appendix D

Phased likelihood with

measurement errors

In order to derive a likelihood function incorporating prior phase information that
include the effect of measurement error of the native structure factor amplitude, the
joint probability distribution, P(|F|, Aa, a; |F¢|, o) must be multiplied by a proba-
bility distribution of the observed structure factor amplitude given the true structure
factor amplitude, P(|F,|;|F]). The resulting expression is the joint probability distri-
bution P(|F,], |F|, Aa,a;|F|, o). The required distribution is obtained by integrat-

ing out the true structure factor amplitude and phase:
2T poc
P(|Fol;|Fels o) = /o /0 P(|F|, Aa, a; |Fe]) x P(|F,|; |Fl)d|F|do (D.1)

In this derivation, a Gaussian probability distribution of the observed structure factor
amplitude given the true structure factor amplitude will be assumed. As well, only

acentric reflections will be considered here, but similar equations can be derived for

48
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the centric case. The required integral for the acentric case is the following.

1 2% o0
P(|F,|; |Fe|, o =——-—/ P f F|x
(1Fol; | Fel, axe) \/2?0?60_3 A (@) A |F|

1 1 F, 2D|F,|cos(Ac
exp { PPy + or) + FI(Ep + 22U cs(0)

A

)} d|Flda

(D.2)

The true structure factor amplitude can be integrated out of this expression (Grad-

shteyn & Ryzhik, 1980), leaving only a numerical integration of the true phase.

OF |Fol® Dz[Fclz)
P(|Fo; |Fel, 0c) =——=—=————exp | — -
0812 = s oy (g ~ et 03)
2 .

i P(a) {1+ vv/Texp(v?)erfe(—v) } da
0

__ |Folea? +2D|Fe| cos(a—ac)o? [eod +202.
where v = o Sect
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