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Abstract— The Airspace Flow Program (AFP) ground delays 
flights in order to control their flow through capacity constrained 
airspace regions. It has been successful in controlling traffic with 
reasonable delays, but the procedures must be improved upon to 
handle future projected demands. This paper explores a future 
AFP where centrally-managed rerouting and user input is 
incorporated into the initial resource allocations. A modeling 
framework was developed to evaluate and compare allocation 
strategies, under differing assumptions about traffic managers’ 
knowledge about airline flight costs. It is used to quantify 
tradeoffs regarding the quality and timing of airlines’ input 
information. Three allocation strategies were developed; they 
differ with respect to the input requested of airlines, and the 
resource allocation philosophy. They are assessed based on the 
total cost impact of the AFP initiative on flight operators. To this 
end, a flight cost function was developed to represent the cost of 
delay specific to each flight; it consists of deterministic 
components to represent what traffic managers know about the 
airlines, and a stochastic component to represent that which they 
do not. A numerical example demonstrates the situations under 
which better information quality could be more desirable than 
timeliness, and vice versa. Identifying these types of tradeoff 
points is a key contribution of this research effort. 

Keywords- delay; air traffic flow management (ATFM); 
Airspace Flow Program (AFP); Collaborative Decision Making 
(CDM); user cost; strategic planning. 

I.  INTRODUCTION 
Adverse weather frequently and severely impacts flight 

operations in the National Airspace System (NAS). In addition, 
with the growth in demand projected over the next 20 years, 
weather and traffic-induced delays are also anticipated to 
increase under the current system. Air traffic flow management 
(ATFM) programs are used to reduce the scale and cost of 
disruptions to flight operators. One such initiative is the 
Airspace Flow Program (AFP), in which flights are held on the 
ground at departure airports in order to meter them through 
capacity constrained airspace regions. The AFP was first 
implemented in 2006 in the northeast region of the U.S., and 
has proven to be successful in controlling traffic with 
reasonable flight delays. However, as demands increase into 
the future, the benefits derived from the AFP process will 
become limited unless a procedure to better utilize airspace 
capacity is incorporated into the process. 

This research addresses the need for a more comprehensive, 
centrally-managed, and user-input based resource allocation 
program for AFPs. We develop a modeling framework through 
which we formulate, evaluate, and compare strategies that 
employ rerouting combined with ground delay to minimize the 
impacts of AFP initiatives on users of the NAS. The 
assignment strategies differ with respect to the inputs requested 
of users, and the rules by which resource allocation decisions 
are made. This paper presents three strategies based on 
combinations of two resource allocations schemes and two 
forms of user input. The main objective of this paper is to 
investigate how these strategies perform in comparison to one 
another under different assumptions about airline utility. The 
model framework through which we can identify the tradeoff 
points between strategies is a key contribution of this research. 

Throughout this paper, “operator” will be used to refer to 
NAS users such as commercial airlines and general aviation 
aircraft. “Traffic manager” will refer to traffic managers 
overseen by the Federal Aviation Administration (FAA). 
Section II describes the current system, and a literature review. 
Section III contains a problem overview while Section IV 
introduces the modeling framework and models. Section V 
presents an illustrative numerical example and Section VI 
concludes with a discussion and plans for future work. 

II. BACKGROUND 

A. Constrained Airspace Rerouting 
Flight rerouting due to severe en route weather and traffic 

congestion is performed in both strategic and tactical ATFM. It 
is manually intensive as it requires close coordination between 
several traffic management units. As a result, traffic managers 
select reroutes from a standard set compiled in the National 
Playbook, basically employing a “one size fits all” approach 
[1] without input from the operators. Airlines also have the 
option of rerouting their own flights before and after departure, 
subject to traffic managers' approvals. They often exercise this 
option to avoid assignment of undesirable routes and heavily 
delayed departure times. 

Air traffic flow management initiatives, including 
centralized rerouting, can be inefficient without input from 
users, because resource allocations are made without 
knowledge about the value of the assignment to users. As a 
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result, more collaborative approaches to rerouting have been 
proposed. Concepts that aim for more structured coordination 
between traffic managers and operators have existed since the 
early 2000s, but implementation has been difficult. 

B. Collaborative Decision Making (CDM) 
A significant improvement to NAS air traffic management 

began in the mid-1990s with the Collaborative Decision 
Making (CDM) program. CDM is a joint government and 
industry initiative that aims to improve both the technological 
and procedural aspects of air traffic management, through 
improved information exchange between government and 
industry. The first major application of CDM was to Ground 
Delay Programs (GDPs). When an airport has reduced arrival 
capacity due to severe weather either en route or near the 
airport, a GDP holds flights destined for that airport on the 
ground at their origin airports to meter demand. CDM 
information exchange between operators and the traffic 
manager drastically enhanced the effectiveness of GDPs in 
correcting demand/capacity imbalances and reducing delays, 
by ensuring that the traffic manager have up-to-date demand 
information and that “slots” vacated as a result of cancellations 
or other events could be used for other flights. GDPs are very 
effective in managing reduced arrival capacity when it is 
caused by inclement weather near the destination airport. 
However, GDPs can be inefficient, ineffective and inequitable 
in addressing en route constraints. As a result, the AFP was 
first implemented in 2006 to handle en route constraints. 

C. Airspace Flow Program (AFP) 
In an AFP, the constrained airspace region and the flights 

filed into this region during the time of reduced capacity are 
identified. The reduced capacity is then distributed by 
assigning delayed departure times to the impacted flights. 
Constrained airspace regions include those that are 
experiencing undesirable weather and/or heavy demands. Most 
AFPs begin after 2PM local time as airspace congestion and 
convective weather are more likely to occur after this time. 
They typically end after 10PM. 

An AFP flight will receive a delayed departure time on its 
original filed route. It can either accept the assigned departure 
time, or reject and reroute around the constrained airspace 
(subject to traffic managers’ approval). Slots to fly through the 
constrained region are vacated as flights are canceled or routed 
out, and the schedule is compressed such that remaining flights 
are moved up in time. Currently, the distribution of delayed 
departure times combined with airline-initiated rerouting and 
cancellation has proven to be adequate for handling capacity 
constraints. However, with growing demand, greater utilization 
of other available airspace capacity will be required. One 
strategy is to incorporate reroutes into the initial resource 
allocation, such that delayed departure times are combined 
with new route assignments. Flying a longer alternative route 
with less ground delay might be a desirable alternative to 
accepting a long ground delay on the original route1. Also, if 
neighboring routes could be more optimally utilized, the total 
delay cost of the AFP could be reduced. In order to offer 

                                                           
1  This would be particularly true when there are critical downline 

flight and crew connections to be made. 

resource assignments that are desirable to operators, however, 
the FAA will require a significant level of user input.  

D. Literature Review 
There has been much work in developing optimization 

models to support ATFM decisions. The objective of many 
such models is to minimize the system-wide cost of delay.  
They consider ground holding, air holding and rerouting 
decisions. The Bertsimas and Stock-Patterson model provide 
for flight-specific air and ground hold cost ratios in their 
model, but do not provide any information about them [2]. 
Goodhart’s models provide a framework where ATFM 
decisions are made through information exchange between the 
FAA and operators [3]. 

Uncertainties in weather and capacity have been addressed 
in the single airport ground holding problem, which has been 
considered in deterministic and stochastic, static and dynamic 
formulations. The earliest work began with [4] and [5], and the 
problem was addressed in a collaborative context by [6]. 
Reference [7] formulated an algorithm to schedule, reroute and 
airhold flights flying into and around constrained airspace, 
imposing ordering schemes that align with CDM. 

Much literature exists about resource rationing and equity 
in ATFM, specifically within the context of GDPs. Reference 
[8] describes a framework for equitable allocation, illustrating 
their operational impacts and use in reducing systematic biases. 
Reference [9] compares the efficiency of airspace resource 
allocation schemes as alternatives to GDP allocation schemes. 

The assumption of continuously distributed VOT over 
flight populations has not been studied in the context of the 
ATFM problem. Value of time (VOT) was examined as a 
continuous distribution [10] over a vehicle population for a 
steady-state congestion pricing model. Comparing different 
methods of incorporating heterogeneous users’ preferences into 
ATFM models has also not been studied extensively. 

III. PROBLEM OVERVIEW 
The AFP facilitates resource allocation decisions when en 

route demand/capacity imbalances exist. In addition to system 
capacity constraints, under the CDM philosophy decisions are 
shaped by the allocation and equity principles chosen for 
implementation, as well as the user information provided to the 
process. By altering these inputs, the resulting allocation 
structure can potentially look very different from another. 

There are many resource allocation schemes that could be 
considered [11] and we list a few. Traffic managers may be 
instructed to meet system cost targets with or without certain 
equity constraints. Users could be allocated resources by order 
of information submission, the original schedule, or a random 
order. Airlines could also be assigned a proportion of the total 
available resources based on the number of flights they have 
scheduled. Priority may be given based on aircraft size. 

Performance assessments are based on system efficiency 
measures as well as user satisfaction and cost considerations, 
which are part of the users’ utility structure. The overall 
performance of an allocation scheme will improve when inputs 
that well represent users’ utility are incorporated. User inputs 
can come in many forms, and we introduce two in this paper. 



 

 

Figure 1.  Allocation Illustration 

Consider the simple example illustrated in Figure 1. Two 
flights (A and B) are planned to travel some nominal route with 
original departure times 0 and 5 minutes. The route is closed 
due to convective weather; to accommodate these flights, 
departure slots on two alternative routes are offered. Say that 
flights A and B offered their en route costs (in ground delay 
minutes) for each route, shown in the top left. The final cost is 
calculated based on the difference between the original 
departure time and the new slot time, plus the en route cost. If 
traffic managers are obliged to serve Flight A first (Allocation 
1), then Flight A would be given Route 1 slot 1 as it is the 
lowest cost option available to it. Flight B would be left with 
Route 1 slot 2 as its best available option. The total cost of this 
allocation is 250. If the goal is to minimize total cost 
(Allocation 2) they would assign Flight A to Route 2 slot 1 and 
Flight B to Route 1 slot 1. The cost of this allocation is 240. 
Clearly the allocation results could change if airlines submitted 
different cost values. 

In this paper we consider a functional form to represent the 
cost of an AFP reroute to flights. This cost function has both 
deterministic and random components, to represent what 
information the FAA does and does not have about the 
operators of these flights. We use this function to assess the 
performance of several different resource allocation/user input 
combination models. We build models based on two different 
user input types – the parametric model and the stated route 
preference model. The parametric model requires users to 
supply parameters of the cost function, which traffic managers 
use to calculate costs of various reroute and ground delay 
options. The stated route preference model requires operators 
to supply more detailed, complete cost information about the 
route and ground delay options available in each AFP. It is 
based on the delay thresholds concept developed as part of the 
Flow Constrained Area Rerouting (FCAR) Decision Support 
Tool by Metron Aviation [12], which is discussed in further 
detail in the following section. Both models allocate resources 
based on system-optimal cost minimizations where equity is 
not considered. However, we also consider another version of 
the stated route preference model where flights are assigned 
resources by the order they submit their input data. In the first-
submitted, first-assigned (FSFA) model, the earlier flights offer 
their input data, the more likely they are to receive a more 
desirable allocation. The FSFA allocation scheme is an easily 
understood and well-accepted rationale that has been adopted 
in various forms within CDM [9]. 

The main objectives of this research are to determine how 
models with these different resource allocation schemes and 

user inputs perform against one another under changing 
assumptions about flight utility. Performance will be measured 
using the total generalized flight cost of each models’ optimal 
AFP resource allocation. The result is a framework through 
which user input and resource allocation combinations can be 
represented, evaluated, and compared. 

IV. MODEL FRAMEWORK 

A. Evaluation Scenario 
We introduce a simple model context in Figure 2. A 

nominal route (Route 1) connects two fixes in en route 
airspace. Flights enter Route 1 at entry fix “A” and leave at exit 
fix “B”. Route 1 has sufficient capacity to serve the scheduled 
demand 𝐷0(𝑡), until a capacity constraint develops at a fixed 
location along its path and lasts for duration 𝑇. The capacity of 
Route 1 is reduced, and an FCA is created. The total scheduled 
demand must be reassigned to observe this reduced capacity. 
All 𝑁 flights originally scheduled to use Route 1 are either 
given delayed departure times, rerouted to an alternative route, 
or both. Each alternate route 𝑟 is characterized by its travel 
time 𝑎𝑖𝑟𝑟  and capacity 𝑆𝑟(𝑡). We assume that fixes A and B are 
not bottlenecks, and for the purpose of this analysis they are 
considered the flights’ origin and destination. 

As mentioned previously, FAA traffic managers have 
limited access to the details of how airlines make flight cost 
calculations and subsequent routing decisions. This analysis is 
unconcerned with the airlines’ actual costs for the original 
scheduled flight plans, as it is assumed that these flight plans 
were those most preferred under ideal conditions. We are 
concerned with evaluating the additional cost of greater en 
route time and ground delay due to AFP. 

We can assume that 𝑐𝑛 ,𝑟 , the additional cost of the 𝑛th 
departing flight taking route 𝑟 due to an AFP, is a function of 
the increased air time (compared to the nominal route, and 
assuming that aircraft fly at fuel-efficient speeds) and time 
spent in ground delay. The additional en route time and ground 
delay account for many direct costs such as additional fuel, 
crew time, equipment maintenance, and indirect costs such as 
passenger satisfaction, gate time, flight coordination, and the 
airline’s satisfaction with their own particular objectives. We 
assume air holding is not necessary because we have perfect 
information about the capacity constraint duration 𝑇, scheduled 
demand 𝐷0(𝑡), and all route capacities 𝑆1 𝑡 , … , 𝑆𝑅(𝑡). As 
such, all anticipated delay is incurred on the ground.  

Figure 2.  Model Framework  



 

The generalized flight cost function is specified such that 
the air time, ground delay, and error components do not 
interact with one another. It is also a linear function of inputs, 
and is quantified in units of ground delay minutes. 

𝑐𝑛 ,𝑟 = 𝑐𝑛 ,𝑟
𝑎𝑖𝑟 + 𝑐𝑛 ,𝑟

𝑔𝑟𝑑𝑒𝑙𝑎𝑦
+ 𝜀𝑛 ,𝑟 ,   𝜀𝑛 ,𝑟 ∼ 𝑃 

Each cost component can be further identified as follows:  

𝑐𝑛 ,𝑟 = 𝛼𝑛 ⋅  𝑕𝑟 − 𝑕0 + 𝑑𝑛 ,𝑟 − 𝑠𝑛 + 𝜀𝑛 ,𝑟 , 𝜀𝑛 ,𝑟 ∼  𝑃 

where 𝛼𝑛  is a ratio for converting additional AFP-related en 
route time to ground delay minute units for flight 𝑛, 𝑕𝑟  is the 
newly assigned en route time for route 𝑟, 𝑕0 is the en route 
time for the original (scheduled) route, 𝑑𝑛 ,𝑟  is the new 
departure time for flight 𝑛 on route 𝑟 at fix A under the AFP, 
𝑠𝑛  is the original scheduled departure time for flight 𝑛 at fix A, 
and 𝜀𝑛 ,𝑟  is the random error term for the cost of the AFP, and 
follows distribution 𝑃. 

The quantity  𝑕𝑟 − 𝑕0  is non-negative because it is likely 
that the nominal route had the shortest flying time under an 
optimal speed, hence its status as the nominal route. Here we 
assume the effects of tactical control are insignificant 
compared to the delay cost of the AFP. Ground delay is non-
negative because aircraft cannot depart before their original 
scheduled time, such that  𝑑𝑛 ,𝑟 − 𝑠𝑛 ≥ 0. 

If the AFP capacity of each alternative route 𝑟 is 𝑆𝑟(𝑡), it 
then follows that the instantaneous minimum headway at time 𝑡 
is 𝑆𝑟

−1(𝑡). Now assume that 𝑆𝑟(𝑡) is constant over the duration 
of the AFP, and aircraft on route 𝑟 are scheduled with constant 
headways. We have established that the 𝑛𝑡𝑕  flight (out of a 
total AFP population of 𝑁) is scheduled to depart at 𝑑𝑛 ,𝑟 . If we 
instead tabulate flights by route, the departure time of flight 𝑖 
on route 𝑟 (of total flights 𝑋𝑟  assigned to 𝑟) can be expressed as 
a linear function of 𝑖 with slope 𝑔𝑟 =

1

𝑆𝑟 𝑡 
. We also assume 

that original scheduled demand 𝐷0 𝑡  is constant, and 𝑠𝑛  can 
be expressed as a linear function of 𝑛 with slope 𝑔0 =

1

𝐷0 𝑡 
. It 

then follows that the total estimated cost of an AFP (without 
accounting for unknown cost components) is expressed as: 

𝐶 =   𝛼𝑖𝜌𝑟 + 𝑔𝑟 𝑖 − 𝑔0,𝑖 ,𝑟

𝑋𝑟

𝑖=1

𝑅

𝑟=1

 

where 𝐶  is the total estimated cost of an AFP, 𝛼𝑖  is the cost 
ratio of additional AFP-related en route time for the 𝑖th flight on 
route 𝑟, 𝜌𝑟  is the additional en route time if a flight is 
reassigned to route 𝑟 (𝜌𝑟 = 𝑕𝑟 − 𝑕0), 𝑔𝑟  is the new AFP 
departure headway on route 𝑟, and 𝑔0,𝑖 ,𝑟  is the original (before 
AFP) scheduled departure time for flight 𝑖 on route 𝑟. Also, if 
𝑋𝑟  is the total number of flights assigned to route 𝑟, then 
 𝑋𝑟

𝑅
𝑟=1 = 𝑁. 

This paper focuses on the case where all flights were 
originally scheduled to depart at the same time (i.e. 𝑔0,𝑖 ,𝑟 = 0). 
However, this analysis has been extended to a case where 
flights are originally scheduled to depart at different times. 

B. Parametric Reroute Model 
1) Concept 

In the parametric reroute model, the FAA allocates AFP 
resources using the cost function shown previously (1-3) with 
parameters supplied by operators. If specified well, the model 
can provide a good reflection of operator utility, and the 
resource allocation can be very efficient. If specified poorly, 
resource allocations can be inefficient. We would like to 
ascertain how this approach performs in comparison to the 
stated route preference strategies under increasingly errant 
specifications.  

We envision that an FAA mandate would require airlines to 
provide cost parameters for their domestic flights to a central 
database. Airlines would be encouraged to update these 
parameters as desired. When an AFP is announced (typically 
several hours prior to the start time [12]), the parameters are 
used to determine route and ground delay assignments for the 
AFP-affected flights. We assume that airlines are implicitly 
incentivized to provide their most up-to-date cost parameters to 
maximize their likelihood of obtaining desirable flight plans in 
the AFP. This model does not employ means of providing 
additional incentives or equity in resource rationing. 

This model is formulated as a route assignment problem 
with a system optimal solution objective. The outcome of this 
model will be the number of flights, 𝑋𝑟 , to assign to each route, 
𝑟, to minimize the total cost of AFP to operators. It is assumed 
that AFP flights are in competition for the available resources 
of lowest cost. As the AFP departure time increases for each 
subsequent flight 𝑖 assigned to route 𝑟, and 𝑔0,𝑖 ,𝑟 = 0, the 
ground delay of flights on a route is monotonically increasing. 

2) Model Specification 
The 𝑁 total flights originally scheduled to fly nominal 

Route 1 (Figure 3) in 𝑇 are reassigned to one of 𝑅 routes with 
new departure times. We assume that the flight operators 
submit different en route cost parameter values to traffic 
managers, such that 𝛼1 ≠ 𝛼2 ≠ ⋯ ≠ 𝛼𝑁. We assume that cost 
parameters are distributed over the flight population according 
to a probability distribution, and the 𝑁 AFP flights are a 
representative population sample. Furthermore, if 𝑁 flights are 
ordered by increasing 𝛼, we define 𝛼 𝑛 = 𝛼𝑛  to be the en 
route cost parameter for the 𝑛th flight. The value of 𝛼𝑛  is 
determined as shown in the left graph of Figure 3. 

Figure 3.  PDF of En Route Cost Parameter 𝛼 across Flights 



 

Given a set of routes, flights with the highest 𝛼 values 
should be assigned to the routes with lowest en route times, and 
vice versa, if the unique minimum cost solution is to be 
obtained. The right graph of Figure 3 shows 𝛼 plotted over 𝑛 
(shown as a continuous variable). For instance, if there are two 
routes such that 𝜌1 > 𝜌2, flights with lower 𝛼 should be 
assigned to Route 1 such that those with higher 𝛼 can take 
Route 2. If there are more than two route options, we order 
them according to decreasing en route times 𝜌1 > 𝜌2 > ⋯ >
𝜌𝑅, and aircraft can be ordered and assigned by increasing 𝛼. 

We assume that 𝛼 is uniformly distributed in (𝛼min , 𝛼max ]. 
Then 𝛼 is a linearly increasing function of 𝑛 such that: 

𝛼 = 𝛼𝑚𝑖𝑛 +  
𝛼𝑚𝑎𝑥 − 𝛼𝑚𝑖𝑛  

𝑁
 ⋅ 𝑛 (4) 

The model is defined as follows: 

Decision variable: 𝑋𝑟  ∀𝑟 (total flights assigned to route 𝑟) 

Objective function (as per Equation (3), with 𝑔0 = 0): 

𝑚𝑖𝑛
𝑋1 ,…,𝑋𝑅

𝐶 =    𝜌𝑟 ⋅  𝛼𝑚𝑖𝑛 + 𝜃 ⋅   𝑋𝑗−1

𝑟

𝑗=1

+ 𝑖  + 𝑔𝑟 𝑖 

𝑋𝑟

𝑖=1

𝑅

𝑟=1

 (5)

where 𝜃 =
𝛼𝑚𝑎𝑥 −𝛼𝑚𝑖𝑛  

𝑁
. 

Constraints:  𝑋𝑟 = 𝑁𝑅
𝑟=1 ; 𝑋𝑟 ≥ 0, ∀𝑟 

The first part of the objective function represents the cost of 
additional en route time for flight 𝑖 on route 𝑟, while the last 
term represents the ground delay for flight 𝑖 on route 𝑟. The 
terms within the square brackets represent the 𝛼 value for 𝑖 on 
𝑟. The choice of which flights to assign to which routes is 
based on the ordering described before Figure 3. The 𝑋1 flights 
with the highest 𝛼 values are assigned to route 1; the 𝑋2 flights 
with the next highest 𝛼 values are assigned to route 2; and so 
on. One can see that given the 𝑋𝑟  values, this will yield the 
lowest cost assignment. 

The first constraint ensures that all the flights caught in the 
AFP will be assigned to an available route and departure slot. 
The second constraint ensures that all route counts are non-
negative. The objective function was checked for convexity. 
𝑋𝑟  is an integer variable, but this was relaxed to find a solution. 
Even if solutions are not integer, rounding (to preserve 𝑁) will 
still produce acceptable results because the headways on each 
route should be designed include some buffer space [5]. Also, 
if by rounding up  𝑋𝑟  the route capacities were slightly 
exceeded occasionally, it would not be catastrophic. 

If 𝑋𝑛 < 0 or 𝑋𝑛 > 𝑁 ∀𝑛, then interior solutions to the 
objective function of (6) do not exist, and solutions lie at the 
boundaries. In these cases, 𝑋𝑛

∗ = 0 and 𝑋𝑛
∗ = 𝑁 respectively. 

Recall that the resulting resource allocation scheme is based 
on the estimated costs to operators. If 𝜀𝑖 ,𝑟  represents the 
unknown cost component for a flight, the “true” cost of the 
scheme is calculated by adding an error term to the total cost.  

𝐶 =   (𝛼 ⋅ 𝜌𝑟 + 𝑔𝑟 𝑖

𝑋𝑟

𝑖=1

𝑅

𝑟=1

+ 𝜀𝑖 ,𝑟)  = 𝐶 +   𝜀𝑖 ,𝑟

𝑋𝑟

𝑖=1

𝑅

𝑟=1

,    𝜀𝑖 ,𝑟 ∼ 𝑃 (6) 

If 𝜀𝑖 ,𝑟  are iid Gumbel with parameters  𝑎, 𝑏 , then 
according to the central limit theorem their sum 𝜀 is 
asymptotically distributed normal with mean 𝑎 − 0.5772𝑏 and 
standard deviation 

𝜋

 6
𝑏𝑁. We use 𝐸 𝜀 = 𝑎 − 0.5772𝑏 in the 

analytical solution. For simulated solutions we sample 𝜀𝑖 ,𝑟  𝑁 
times to find 𝐶. 

The Gumbel distribution has several important properties 
that make it analytically convenient to use in the specification 
of choice probabilities and expected cost [13], which we utilize 
for one of the stated route preference models that are discussed 
next. Also, the Gumbel distribution is reasonably similar to the 
normal distribution.   

C. Stated Route Preference Model 
1) Concept 

The stated route preference models utilize the FCAR delay 
threshold concept [12]. FCAR was developed in order to give 
operators flexibility in identifying the best reroute options for 
their AFP-impacted flights. 

In the FCAR process, operators of impacted flights are 
asked to submit route preference information to the traffic 
managers. For each route 𝑟, the operator of flight 𝑛 submits a 
delay threshold value, Δ𝑛 ,𝑟 , which is the cost at which flight 𝑛 
should be switched from route 𝑟 to another. The quantity Δ𝑛 ,𝑟  
contains the airlines’ complete cost information about route 𝑟, 
relative to the original flight plan, before ground delays are 
assigned. Δ𝑛 ,𝑟  is expressed in units of ground delay minutes 
such that airline costs are not explicitly revealed. Once the 
FAA receives the delay threshold values, they will rank flights 
route/departure time slot combinations based on some adopted 
resource rationing scheme [12]. For each sequential flight they 
choose a feasible departure time slot on each route, and based 
on the delay thresholds, determine the flight’s minimum cost 
route. 

An example is shown in the figure below. Suppose a flight 
𝑛 had three route options, and the flight operator submitted a 
delay threshold value for each route 𝑟 (Δ𝑛 ,𝑟). Once it is that 
flight’s turn for allocation, traffic managers check the slot 
availability on each route and determine the ground delay that 
flight 𝑛 must take on each route: 𝐺𝐷𝑛 ,1, 𝐺𝐷𝑛 ,2, or 𝐺𝐷𝑛 ,3. The 
route assigned to flight 𝑛 is 𝑚𝑖𝑛(Δ𝑛 ,1 + 𝐺𝐷𝑛 ,1, Δ𝑛 ,2 + 𝐺𝐷𝑛 ,2,
Δ𝑛 ,3 + 𝐺𝐷𝑛 ,3), which is route 3 according to the figure. 

Figure 4.  Delay Thresholds 



We consider two stated route preference model scenarios. 
In the first, an AFP has been announced, and FAA traffic 
managers request flight operators to submit their delay 
threshold inputs by a deadline. Resources are allocated only 
after this deadline, when traffic managers have presumably 
received most or all flights’ information. To represent this 
procedure we employ a model where the entire set of inputs is 
considered simultaneously in making allocations. We then 
consider a second system where flight operators are allocated 
their preferred resources on a first-submitted, first-assigned 
(FSFA) basis. It is envisioned that operators would be 
incentivized to submit their inputs as soon as they are able. 

In the stated route preference model we assume that each 
airline would calculate the additional cost of a reassignment 
option using (2). However, airlines do not know what slots the 
FAA has available for their flight(s) on each route, and 
therefore have no information about the amount of ground 
delay that will be assigned to their flights. As a result airlines 
submit delay thresholds (Δ𝑛 ,𝑟 ) that are calculated as follows. 
Traffic managers use these to compare the cost of route options 
combined with different ground delay slots. 

Δ𝑛 ,𝑟 = 𝛼𝑛𝜌𝑟 + 𝜀𝑛 ,𝑟 , 𝜀𝑛 ,𝑟 ∼ 𝑃 (7)

Our specification assumes that a delay threshold is the 
airline’s “true” and complete generalized cost for a flight 𝑛 to 
fly route 𝑟 before ground delay is known. Traffic managers 
will allot resources to each flight through a particular allocation 
scheme using these delay thresholds. The delay thresholds 
ensure that under any combination of ground delay slots that 
could be assigned to their flight, the airlines have informed the 
FAA about which resources are of maximum utility to them. 

2) Batch Model 
In the batch model it is assumed that traffic managers 

receive delay thresholds from all airlines with AFP-impacted 
flights, before allocating resources, such that there still is no 
reward for submitting delay thresholds earlier than others. 
Airlines do not optimize or choose any resource options by 
offering delay thresholds; they simply offer the requested 
information about each of their choices to the FAA for use in 
the optimization. As a result the model remains a route 
assignment problem with a system optimal solution. The batch 
model is formulated identically to the parametric models 
except that the error term is included in the objective function, 
to represent the fact that airlines submit complete information 
about their preferences through their delay thresholds. 

Again assume we have the situation of Figure 2 where 𝑁 
identical flights are to be reassigned to one of 𝑅 routes with 
departure slots 𝑑𝑛 ,𝑟 . We want to know how many flights should 
be assigned to each route to minimize total user cost. 

Decision variables: 𝑋𝑟 , ∀𝑟 

Objective function: 

𝑚𝑖𝑛
𝑋1 ,…,𝑋𝑅

𝐶 =   (𝛥𝑖 ,𝑟 + 𝑔𝑟 𝑖)

𝑋𝑟

𝑖=1

𝑅

𝑟=1

,     𝜀𝑖 ,𝑟 ∼ 𝑃 (8) 

where Δ𝑖 ,𝑟 = [𝛼𝑚𝑖𝑛 + 𝜃( 𝑋𝑗−1
𝑟
𝑗=2 + 𝑖)] ⋅ 𝜌𝑟 + 𝜀𝑖 ,𝑟 , and  

𝜃 =
𝛼𝑚𝑎𝑥 −𝛼𝑚𝑖𝑛  

𝑁
. 

Constraints:  𝑋𝑟 = 𝑁𝑅
𝑟=1 ; 𝑋𝑟 ≥ 0, ∀𝑟 

Condition: Order routes such that 𝜌1 > 𝜌2 > ⋯ > 𝜌𝑅; 
order flights by increasing 𝛼. 

Because this model contains random variables unique to 
each flight and route (i.e. the error term is contained in the 
objective function), Equation (8) cannot be solved analytically. 
However, we can treat each flight as an individual entity, 
where the decision variables are binary indicators of the route 
that each flight chooses. The model is formulated as binary 
integer quadratic program (BIQP) where the CPLEX solver is 
used to obtain a solution using the branch and bound algorithm. 
The results of this model tell us what route each individual 
flight is assigned to. Let’s say that  

𝑥𝑛 ,𝑟 =  
1 𝑖𝑓 𝑟𝑜𝑢𝑡𝑒 𝑟 𝑖𝑠 𝑐𝑕𝑜𝑠𝑒𝑛 𝑓𝑜𝑟 𝑓𝑙𝑖𝑔𝑕𝑡 𝑛
0 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

  

Decision variables: 𝑥𝑛 ,𝑟    ∀𝑛, 𝑟 

Objective function: 

min
𝑥𝑛 ,𝑟 ,∀𝑛 ,𝑟

𝐶 =    Δ𝑛 ,𝑟 + 𝑔𝑟 ⋅  𝑥𝑘 ,𝑟

𝑛

𝑘=1

 ⋅ 𝑥𝑛 ,𝑟

𝑅

𝑟=1

𝑁

𝑛=1

 (9) 

where  𝛥𝑛 ,𝑟  and 𝜃 are as defined previously. 

Constraints:  𝑥𝑛 ,𝑟  𝑖𝑛  0,1   ∀𝑛, 𝑟,  𝑥𝑛 ,𝑟 = 1𝑅
𝑟=1  ∀𝑛 

Constraint 1 restricts 𝑥𝑛 ,𝑟  to be binary; constraint 2 ensures 
that each flight has been assigned to one route. The matrix for 
𝜀𝑛 ,𝑟  was built from 𝑁𝑥𝑅 random draws of the Gumbel 
distribution. 

3) First-submitted, First-assigned (FSFA) Model 
In the first-submitted, first assigned (FSFA) model, FAA 

traffic managers receive delay thresholds from operators in a 
sequence unknown beforehand. Each time an operator submits 
their delay thresholds for a flight, they are allocated the best 
possible resources available at the time, without considering 
future requests. This is identical to each flight choosing the 
minimum cost route and slot combination available. As a 
result, the FSFA process can be represented using the log-sums 
concept of the logit discrete choice model [13]. When the 
unknown portions of the utilities are assumed to be iid Gumbel 
with location parameter 𝑎 and scale parameter 𝑏, the expected 
minimum cost and choice probabilities associated with a set of 
alternatives can be found. According to [14] and [15], the 
probability of agent 𝑛 choosing an alternative 𝑟 is: 

𝑃 𝑉𝑛 ,𝑟 =
exp  

1
𝑏
⋅ 𝑉𝑛 ,𝑟 

 exp  
1
𝑏
⋅ 𝑉𝑛 ,𝑗  

𝑅
𝑗=1

 (10) 

where 𝑉𝑛 ,𝑟  is the deterministic utility of 𝑟 to agent 𝑛. In 
choice modeling we are typically concerned with the cost 
difference between two alternatives. If 𝐸 𝑊𝑛   is the expected 
cost of an alternative to 𝑛 and 𝐸 𝑐𝑛

0  is that of another, then the 
difference between the two is: 



𝐸 𝑐𝑛  = 𝐸 𝑊𝑛  − 𝐸 𝑐𝑛
0 

=
1

𝛾𝑛
 𝑏 ⋅ 𝑙𝑛   𝑒𝑥𝑝  

𝑉𝑛 ,𝑟

𝑏
+ 𝑎 

𝑅

𝑟=1

  – 𝑏 ⋅ 𝑙𝑛  𝑒𝑥𝑝  
𝑉𝑛

0

𝑏
+ 𝑎   

(11) 

where 𝑊𝑛  is the cost to operator 𝑛, 𝛾𝑛  is the (constant) 
marginal utility of income, and 𝑎 and 𝑏 are the Gumbel 
distributional parameters. 

In the context of the AFP assignment, 𝐸 𝑐𝑛   represents the 
additional expected cost for flight 𝑛 due to the AFP. We 
represent the deterministic utility using the cost function for a 
flight in the AFP such that  

𝑉𝑛 ,𝑟 = −(𝛼𝑛 ⋅ 𝜌𝑟 + 𝑑𝑛 ,𝑟), 𝑉𝑛
0 = 0, ∀𝑛, 𝑟 (12) 

Recall that 𝑑𝑛 ,𝑟  is the departure time (and ground delay, 
since scheduled departure times are 𝑡 ≈ 0 for the formulations 
introduced in this paper) for flight 𝑛 assigned to 𝑟. Since the 
utility function 𝑉𝑛 ,𝑟  is represented directly by the cost equation, 
𝛾𝑛 = 1. We rewrite Equation (11): 

𝐸 𝑐𝑛  = 𝑏 ⋅ 𝑙𝑛   𝑒𝑥𝑝  −
𝛼𝑛 ⋅ 𝜌𝑟 + 𝑑𝑛 ,𝑟

𝑏
 

𝑅

𝑟=1

  (13) 

The location parameter 𝑎 cancels out of the equation due to 
its inclusion in the AFP cost and in the original cost. We now 
describe the recursive procedure by which the expected 
minimum cost is calculated for each flight. 

1) Assign 𝛼𝑛  value to each flight 𝑛. Randomly order the 
flights to simulate their unknown submission order. 

2) For flight 𝑛 = 1, we calculate 𝑉1,𝑟 , 𝑃1(𝑟), and 𝐸 𝑐1  
using (12), (10), and (13) respectively, for all 𝑟. 

3) For 𝑛 = 2, 3, … , 𝑁: 

a. Determine the expected ground delay 𝐸 𝑑𝑛 ,𝑟  on 
each route 𝑟 for flight 𝑛. 𝐸 𝑑𝑛 ,𝑟  is calculated 
based on the conditional probability that the 
previous flight (𝑛 − 1) took 𝑟. Event “(𝑛 − 1) 
took route 𝑟” is represented by 𝐵; event “(𝑛 − 1) 
did not take route 𝑟” is represented by (1 − 𝐵). 
𝐸 𝑑𝑛 ,𝑟  then becomes: 

𝐸 𝑑𝑛 ,𝑟 

= 𝐸 𝑑𝑛 ,𝑟  𝐵 ⋅ 𝑃 𝐵  + 𝐸 𝑑𝑛 ,𝑟  (1 − 𝐵) ⋅ (1 − 𝑃 𝐵 )

=  (𝐸 𝑑𝑛−1,𝑟 + 𝑔𝑟) ⋅ 𝑃 𝐵 + 𝐸 𝑑𝑛−1,𝑟 ⋅ (1 − 𝑃 𝐵 )  

(14) 

𝑃 𝐵  is the probability of agent 𝑛 − 1 taking 
route 𝑟, and was calculated in step 2 using (10). 

b. Find the expected utility of each alternative route 
for 𝑛, expressed as 𝐸 𝑉𝑛 ,𝑟 = 𝛼𝑛𝜌𝑟 + 𝐸[𝑑𝑛 ,𝑟]. 

c. Calculate the expected cost 𝐸[cn ] using (13), 
using 𝐸[𝑉𝑛 ,𝑟] calculated in (b). 

d. Find the route choice probabilities 𝑃 𝑉𝑛 ,𝑟  as in 
(10), using 𝐸[𝑉𝑛 ,𝑟]. 

e. Repeat (a) through (d) until 𝑛 = 𝑁.  

4) Find  𝐸 𝑐𝑛  
𝑁
𝑛=1 . 

We can perform the above calculations for different values 
of the Gumbel scale parameter 𝑏, where increasing 𝑏 increases 
the variance of the Gumbel-distributed error term 𝜀𝑛 ,𝑟 . 

V. NUMERICAL EXAMPLE 
When the FAA has perfect information (𝜀𝑛 ,𝑟 = 0 ∀𝑛, 𝑟), the 

parametric (P1) and batch stated route preference (SP1) models 
are identical and hence yield identical resource allocations and 
total costs. As the traffic managers’ uncertainty about the 
airlines increases, the P1 cost result should remain the same, as 
resource allocations do not take the (changing value of) error 
into account. The SP1 model uses complete information to do a 
system-optimal resource allocation; as such, it will always 
yield the minimum total cost solution under any error variance. 
For this reason the SP1 solution is the baseline result. Under a 
zero error assumption, the FSFA stated preference model (SP2) 
solution will be equal or inferior to the other models because it 
does not offer a system-optimal solution. With greater 
uncertainty we might expect the total cost of the SP2 solutions 
to decrease like that of SP1. 

To obtain insight into the performance of the three models 
under increasing uncertainty, which we model using increasing 
error variance, we present a numerical example. Suppose 
𝑁 = 200 flights must be reassigned routes and departure times 
as part of the AFP. The nominal route remains open but with 
reduced capacity. There are a total of 5 routes to which flights 
can be reassigned; the details are contained in Table 1. We 
consider the scenario where air cost ratios 𝛼 are evenly 
distributed between (1,25] across the 𝑁 flights. 

As the interest is in relative rather than absolute 
performance, Figure 5 shows the cost differences of P1 and 
SP2 against the cost of SP1. SP1 requires simulation of the 
error term, and the results shown below are for 10 iterations. 

There are three important conclusions to make from Figure 
5. Firstly, as the FAA knows less and less about the airlines, 
the parametric (P1) model solutions degrade in comparison to 
those of SP1 and SP2. Secondly, the cost difference between 
the SP1 and SP2 results is consistent over increasing error 
variance. This is due to the fact that the error is known in both 
the SP1 and SP2 decision making processes. Finally, one can 
observe that the P1 solution is superior to the SP2 solution 
when the traffic managers know more about the operators (i.e. 
at small variance levels). However, after a certain error level (a 
standard deviation of about 10% of the zero error cost solution) 
the SP2 solution is more cost efficient. This result is intuitive; 
when traffic managers have plentiful and accurate information 

TABLE I.   SCENARIO FOR NUMERICAL EXAMPLE 

Route Capacity       
(aircraft per 

hour) 

Departure 
Headway, 
𝒈𝒓 (min)* 

En Route 
Time, 𝒉𝒓 

(min) 

𝝆𝒓 
(min) 

1 30 2 125 25 
2 12 5 120 20 
3 7.5 8 110 10 
4 6 10 107 7 

5 (nominal) 4 15** 100 0 
* This is the arrival (and departure) headway at Fix A. 

** Headways after capacity is reduced due to AFP. 
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Figure 5.  Total Cost, Numerical Example 

about the airlines, the system optimal resource allocation will 
be superior to the FSFA allocation using complete information. 
However, when traffic managers have less information about 
the airlines, it becomes better to do a FSFA allocation with 
complete information rather than a system optimal allocation 
with incomplete information. Identifying these types of trade-
off points is the core of this research. 

Numerical checks demonstrated that the parameter values 
(𝛼, 𝛼𝑛 , 𝑔𝑛 , 𝜌𝑟 ) have little effect on the solutions’ relative 
positions to one another. Formal sensitivity tests will be 
performed as part of future work. 

VI. DISCUSSION & FUTURE WORK 
In this paper we propose a modeling framework through 

which we can investigate the many issues involved with 
incorporating user inputs in allocating constrained airspace 
capacity. We develop, evaluate and compare three user input 
and resource allocation schemes, under differing assumptions 
about how much traffic managers know about airline flight 
costs. The numerical example demonstrated the situations 
under which better information quality could be more desirable 
than timeliness, and vice versa. Building a model framework 
through which we can identify these types of tradeoff points is 
a key contribution of this research effort. 

There are several important questions that are, and will 
continue to be, addressed. How much are flight operators 
willing to sacrifice input quality in order to submit their inputs 
faster? How does the timing of traffic managers’ decisions 
affect the quality of their decisions to the operators? Also, 
airlines update their information constantly in the GDP and 
AFP databases. Given that their objectives and goals change so 
continually and rapidly, how will this affect decision-making 
when the goal is to maximize their utility? Addressing these 
questions is central to this research effort. As a result, it is 
important to continue discussions with practitioners, in order to 
better understand and represent airline behavior within the 
modeling framework of this research. 

As part of on-going work, we are developing an additional 
stated route preference model, consisting of a hybrid between 
the system-optimal and FSFA resource allocation schemes. The 
advantage of this model is that it preserves the FSFA reward 
structure but potentially offers greater cost efficiency. We 
would like to develop a performance assessment procedure that 
combines user cost metrics with traditional operational 
performance metrics and emissions metrics. We would also 
like to improve the user cost specification by including missed 
connections, to account for downstream effects of flight delay. 

This research investigates the interaction and information 
exchange between flight operators and the FAA. The ultimate 
goal is to provide insight into the potential mechanisms of 
collaborative resource allocation within the context of the AFP, 
in order to guide future AFP policy decisions. 
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