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Abstract

Many processes are Distributed Parameter Systems (DPS) in which states vary in 

both time and space (e.g., fixed-bed reactors, polymer extrusion, fibre spinlines, and 

sheet coating processes). Mathematical description of such systems, generally obtained 

by applying conservation laws, often takes the form of Partial Differential Equations 

(PDEs). The commonly used techniques of controlling DPS approximate the systems 

with a lumped parameter model and apply the available control techniques for Lumped 

Parameter Systems (EPS). It is generally recognized that such approximation approaches 

may lead to poor control performance. The research on the control methods that directly 

use the PDE models has been motivated with the expectation of improved performance, 

and a variety of feedback control laws have been proposed in the literature.

The objective of this thesis is to exploit the geometric properties of the PDEs used to 

model DPS and to develop geometric-based control methods to achieve high performance 

control with tractable computation. The thesis will focus mainly on hyperbolic models 

for DPS, and, as a result, extensive use will be made of the Method of Characteristics. 

The Method of Characteristics, a differential geometric approach of constructing integral
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surfaces for hyperbolic PDEs, is used in the formulation of characteristics-based control 

methods for DPS in this thesis. A feedback control method is developed such that 

the hyperbolic systems are driven towards the desired behavior along the characteristic 

direction. The resulting controller possesses a simple form and provides significantly 

improved performance. However, studies have shown that, for PDE models, feedback 

control performance is limited by the time-horizon that is considered within the control 

calculations. Model Predictive Control (MPC), which takes the long-term process 

behavior into consideration, is a natural candidate for overcoming the “shortsightedness” 

of the standard feedback control methods. An extensive effort is made to develop a 

characteristics-based MPC for various PDE systems. Simulation studies are conducted to 

illustrate the strength and weakness of the proposed predictive controller, and extensions 

to parabolic systems are investigated. The research from this thesis shows that the 

characteristic-based control is a promising novel approach for DPS because of its efficient 

computation and high performance.
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Chapter 1

Introduction

In the field of process control, processes are often classified into two categories: Lumped 

Parameter Systems (LPS) and Distributed Parameter Systems (DPS). Lumped parameter 

systems are processes in which any dependent variable can be assumed to be a function 

only of time and not of spatial position. When process variables are spatially uniform or 

only the spatial average of process variables is of interest, the processes can be considered 

to be LPS (e.g., a Continuous Stirred Tank Reactor (CSTR)). The majority of control 

research has focused on LPS and numerous techniques are available for these systems. 

In distributed parameter systems, on the other hand, process variables vary in space as 

well as in time. Since the value of distributed state variables at each spatial point is 

a function of only time, and there are an infinite number of spatial positions, DPS can 

also be considered to consist of an infinite number of LPS and therefore are termed as 

infinite dimensional systems. A large number of processes in chemical, petroleum and 

metallurgical industries are distributed in nature (Butkowskii, 1969; Ray, 1978). These 

processes include heating and cooling problems associated with steel-making, fluid heat 

exchangers, some chemical reactors, polymer processing operations, plasmas (Sen, 1974), 

nuclear reactors and so forth. Many mechanical, resource recovery, environmental, 

physiological and sociological systems can also be characterized as distributed parameter

1
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systems. Due to the wide existence of DPS, the study of DPS is important and high- 

performance control development for DPS has significant industrial and theoretical 

implications. In comparison to LPS, however, DPS usually have relatively complicated 

dynamics and the complexity of system dynamics has limited the research on these 

systems.

1.1 DPS Modelling Survey

A good understanding of the processes being controlled is advantageous, and sometimes 

even critical, for control design. The dynamics of DPS has distinct features from those of 

LPS, which will be discussed through examples in this section.

T(x,t) T(l,t)=u

0

Figure 1.1: Heat transfer in a slab

One of the simplest DPS is heat transfer in a slab (see Figure 1.1). The temperature 

profile of the slab is controlled by the boundary temperature at x = 1. When the boundary 

temperature changes, the temperature profile (i.e., the temperature at different locations), 

changes with time. For a temperature change at x  =  1, the temperature response at 

x ~  0 is relatively sluggish (i.e., it takes some time for the effect of manipulated variable 

change at x = 1 to reach x — 0). The model of the process can be obtained using 

conservation laws and takes the form of the following Partial Differential Equation (PDE)
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with boundary value problem (Laroche et al,  1998):

=  ® € [ 0 , i ]

(1.1)

T ( l , t )  =  u(t),

where T(x, t) is the temperature and u(t) is the control input. The partial differential 

equation along with two other equations, called boundary conditions, constitutes the 

model of heat transfer in the slab. Note that in this process, the effect of the manipulated 

variable enters via one of the boundary conditions. Such control problems are called 

boundary control problems.

A common chemical engineering process is a tubular reactor. In contrast to a CSTR, 

the concentrations of chemical reactants and products in a tubular reactor vary along the 

reactor and possibly radially, as well. Very often the values of the distributed variables at 

a certain spatial position are the variables to be controlled (e.g., outlet concentration), and 

the manipulated variables enter via the boundary conditions, such as inlet concentration 

or the variables related to the temperature control of the reactor. The behavior of tubular 

reactors is often discussed in terms of the relative importance of the diffusion, convection 

and reaction processes. When diffusion is unimportant and negligible, the reactors are 

idealized as Plug Flow Reactors (PFR). When diffusion dominates, the tubular reactor 

approaches the behavior of a CSTR. Consider the following chemical reaction in a tubular 

reactor:

where C\ is the reactant, C2 is the product and b > 0 is the stoichiometric coefficient of 

the reaction. The dynamics of a tubular reactor with axial dispersion can be represented 

as (Winkin et al., 2000):

Cx hC2 (1.2)

(1.3)

(1.4)

3
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with the boundary conditions:

D a ^ ( 0 , t )  -  V C l ( 0 , t )  =  - V C i n ( t ) ,

Da^ ( 0 , t ) - * c 2(0 ,t) =  0 1
dx  , (1.5)

Z > . £ ( L , t ) - 0 ,

D ^ ( L , t ) = 0 ,

where L, ci, C2, Qn, u, D a and r  are the reactor length, the concentrations of C± and 

(mold), the influent reactant concentration (mold), the fluid superficial velocity (m/s), the 

axial dispersion coefficient (m2/s) and the reaction rate (mold s), respectively. When the 

dispersion coefficient Da is zero, the plug-flow reactor model is derived.

C hem ica l reaction 
(m onom er birth)

O  Oo o o
o oG as A erosol

O O
o o ,

su sp en s io no O  1
o  o

mixture

Nucleation

Figure 1.2: Aerosol flow reactor

Two other examples of DPS are aerosol processes and fibre spinning. Aerosol 

processes are widely used in industry for the production of fine particles (e.g., pigments, 

carbon black, optical fibres, silicon and ceramic powers) and are characterized by 

coupled chemical reaction, nucleation, condensation and coagulation phenomenon. The 

distributed nature of this system becomes obvious by viewing the particle size along the 

aerosol flow reactor, as shown in Figure 1.2. A mathematical model describing the spatio-

4
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- Solid ification

Figure 1.3: Melt spinning

temporal evolution of the particle size distribution can be obtained using a population 

balance:

dn dn d(G(x,v,x)n) T. . . . .  . 1 cv 0/ _ _ .
+  Vx J r -  +  V V I   -  I(V*)5{V ~ V * )  =  ~  f Q 0 ( v  -  V , V ,  X )at ox ov 2 JU (1 .6 )

n(v — v, t)n(v, t)dv — n(v, t) J0°° (3(v, v, x)n(v, t)dv

where n(v, x, t) denotes the particle size distribution function, v is the particle volume, 

t is the time, x € [0, L) is the spatial variable, L is the length of the process, vx is the 

velocity of the fluid, G(x, v, x),I(v*), (3(v — v, v, x) are nonlinear scalar functions and 

8 is the standard Dirac function. Fiber spinning is a process in which an extruded liquid 

filament, usually a polymeric liquid, is continuously drawn and solidifies simultaneously 

to form a continuous fiber (Denn, 1987). Figure 1.3 displays the change of filament 

radius with axial distance, which is a distributed state variable. Other distributed 

variables in this system include temperature and stress along the axial direction. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



final physical properties of the solid filament appear to correlate with these distributed 

state variables during spinning. The model of the process can be obtained using mass 

balance, momentum balance, heat transfer and stress constitutive equations:

where R(x) is the filament radius which changes slowly with axial distance x, te is the 

tensile stress exerted on the control volume by the surrounding fluid, T  is the temperature, 

v is the average velocity, p is the density, pa is the air density of the air, Co is the 

aerodynamic drag coefficient, g is the gravitational acceleration, g is the shear viscosity 

and G is the shear modulus.

From the above examples, several features of DPS can be enumerated. Models 

describing the dynamics of DPS are different from those for LPS and often take the form 

of partial differential equations, while LPS are usually modelled by Ordinary Differential 

Equations (ODE). The dynamics of DPS are such that the inputs of the process affect the 

infinite-dimensional state variables; however, it may take some time for the influence of 

the input to be observed in the process output at a specific spatial location, a situation 

analogous to the effect of time-delay in finite dimensional systems. Boundary conditions 

play an important role in DPS control since the manipulated variables and/or the control 

variables are usually located at a process boundary. Further, distributed state variables 

can only be measured at some set of spatial points, which may include the boundaries.

Since PDE models are most often used to represent DPS, they provide a reasonable 

basis for the development of control methods for these systems. Unfortunately, exact 

solutions for the PDEs, which describe even a moderately complex distributed process, 

are rarely available. As a result, distributed parameter systems are often approximated 

by linear low-order plus dead time models (Shirvani et al, 1995), represented by simple 

transfer function models. Such simple approximations can then be used to design linear

=  -U p v —  +  - ^ (R 2TE) - p av2RCD +  R2pg,
dT dT

R2pCP—  =  —R 2pvCp—  -  2trhR(T -  Ta),
(1.7)

6
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model-based control strategies such as internal model control, model algorithmic control, 

Dynamic Matrix Control (DMC) and simplified model predictive control (Patwardhan 

et al, 1992). Other simplification of DPS comes from the direct approximation of 

PDE models. Finite difference methods or finite element methods have been used to 

reduce the original DPS to one with finite dimensions, but the resulting approximate 

lumped parameter systems may require very high dimensionality to ensure accuracy. The 

use of such models for the purpose of control may lead to unacceptable computational 

requirements.

Modal analysis techniques reduce the PDE model to an infinite set of first-order 

Ordinary Differential Equations (ODEs) based on the ability to represent the spatially 

vatying input and output of the system as the sum of infinite series of the system’s spatial 

eigenfunctions (eigenmodes) with time-dependent coefficients (Ray, 1981). The dynamic 

behavior of each coefficient is then obtained as the solution to one of the independent 

ODEs. Modal analysis has been employed extensively to provide both approximate 

solutions and theoretical results regarding the control of DPS described by linear parabolic 

PDEs. The successful application of this technique relies on both the existence and 

knowledge of the eigenvalues and the eigenfunctions for the linear operators that describe 

the distributed system. The determination of the eigenfunctions for a practical physical 

system is not a simple task (Brown, 2001). If the system is non-self-adjoint or the 

coefficients of the PDE have a strong spatial dependence, analytic determination of 

the eigenfunctions may be intractable. Karhunen-Loeve decomposition is a technique 

of obtaining empirical eigenfunctions from experimental or numerical data of a system 

and enables a stochastic field to be represented with a minimum number of empirical 

eigenfunctions (Park and Cho, 1996). This technique can treat a nonlinear DPS defined 

on irregular domains to yield lumped parameter systems with small dimensionality. 

However, the use of such eigenfunctions as basis functions for the systems can sacrifice 

the accuracy of representation.

An alternative approach uses singular values and singular functions as the basis of 

a truncated series expansion model in place of the conventional representation using

7
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eigenvalues and eigenfunctions (Gay and Ray, 1995). According to singular value theory 

(Cochran, 1972), these functions exist for all linear operators, which can be expressed 

in terms of a Fredholm integral equation of the first kind with a generally unsymmetric 

square integrable kernel. A general structure for an input/output model of linear DPS can 

be expressed in terms of an integral equation with a £ 2 kernel k(x, £,t — r) as:

The kernel k(x, f —r) of Equation (1.8) defines a linear time-invariant compact operator 

K, which maps a distributed input function u(x, t) to a distributed output function y(x, t) 

where both u(x, t) and y(x,t)  are £ 2 (square integrable) functions defined on the region 

{x ,t  : 0 < x < 1,t >  0}. Equation (1.8) can be more compactly expressed as 

y — JCu. In the case that the system equations, eigenfunctions, boundary conditions 

and parameters are unknown, such an integral equation representation provides a more 

useful and general model structure for the purpose of identification and control of DPS. 

The singular functions can be determined with a high accuracy if a representation for 

the kernel is known, or in the more practical case, can be identified approximately from 

data obtained through input/output testing. The identification of singular functions for 

unknown DPS can be explored by suitable design of dynamic experiments (Chakravarti 

and Ray, 1999).

Given that DPS are industrially important, research has become increasingly active on 

the control of these systems and the control techniques have been developed based on 

specific types of process models. For some DPS, a complete understanding of the 

underlying physical phenomenon is lacking, and it is impossible to generate a highly 

accurate first principle model. An important group of such DPS is sheet and film 

processes, which include polymer film extrusion, paper making and coating, metal rolling, 

etc. Usually they are approximated with high-dimensional dynamics, a large time delay

1.2 Status of Control for DPS

8
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and a periodic measurement matrix. Process models, obtained mostly using data-based 

system identification techniques, are typically empirical in nature. Control strategies, 

such as model predictive control, have been developed using such empirical models and 

have incorporated techniques to deal with model plant mismatch, actuator limitation and 

obtain uniform profiles for desired product properties (Braatz et at, 1992; Campbell and 

Rawlings, 1998; VanAntwerp and Braatz, 2000).

For DPS with weak spatial variation, simplifying assumptions (e.g., perfect mixing in a 

stirred tank) can often be validated to justify the use of lumped parameter approximations 

and ordinary differential equation models to represent the dynamics of these processes. 

However, there are a significant number of industrial processes that display strong 

dependence on spatial position. Since such systems cannot be approximated by lumped 

parameter models, controller design requires the use of integral equation or partial 

differential equation models to capture the spatially varying properties of the DPS. The 

complexity of DPS has forced control engineers to resort to approximation methods. The 

most commonly used methods are lumping approaches.

Most conventional approaches for control of the distributed parameter systems use 

lumping techniques to discretize the underlying PDE model into a finite number of 

ordinary differential equations (ODE). This technique allows one to design controllers 

using the rich theory available for Lumped Parameter Systems (LPS). These approaches 

can be classified into two categories (Ray, 1981). The most straightforward approach 

is termed early lumping. In this approach, a distributed parameter model is discretized 

into an approximate model consisting of a set of ordinary differential equations in time. 

The design methods for lumped parameter systems are then applied directly to design 

controllers without recourse to distributed parameter system theories. The alternative 

approach, late lumping, takes full advantage of the available distributed parameter 

control theories and analyzes the PDE model for controllability, stabilizability, controller 

structure design, etc. It is only at the last stages, after the controllers have been designed, 

that the controller equations are lumped to ease implementation.

The widely used discretization techniques, such as finite difference, finite element
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and finite volume methods, discretize a PDE model into a set of ODEs or multi

dimensional difference equations and can be effective tools for dealing with the control of 

distributed parameter systems. Based on the approximate difference equations obtained 

from the discretizations, a pole placement controller was designed by applying a 2-D 

Laplace transform to allow pole assignment (Hernandez and Arkun, 1992). However, 

the dimension of the approximation used is often large and the resulting controllers are 

potentially complex.

Galerkin approximation procedures have been used to lump DPS for the control and 

estimation purposes. These methods can produce fewer ODEs in certain cases by finding 

an appropriate set of basis functions. For example, Sadek (1997) employed orthogonal 

polynomial expansion to solve a modal/state optimization problem and approximated 

the state estimation and/or control by finite-term series whose coefficient values were 

determined optimally (Sadek and Bokhari, 1998). In many cases, these Galerkin methods 

do not lead to acceptably low dimensional ODEs. In some control methods, model 

reduction is considered to be an important first step in controller design. Methods 

such as approximate Inertial Manifolds can be used to obtain the reduced model for 

the control of DPS (Shvartsman and Kevrekidis, 1998). Combining Galerkin methods 

with approximate Inertial Manifolds reduces the number of approximate ODEs needed 

in the approximate models. Armaou and Christofides (1998) designed a geometric 

control method for parabolic systems using this technique, but computation of the inertial 

manifolds is complex and not always practical. Singular value decomposition provides 

a natural framework for low-order modal feedback control system design. However, it 

is limited to a class of linear DPS described by parabolic PDE models (Chakravarti and 

Ray, 1999; Gay and Ray, 1995).

The disadvantages of these approximation techniques for distributed parameter 

systems have motivated the research into control approaches based on the underlying 

partial differential equation models. A combination of the Method of Characteristics and 

sliding mode techniques was proposed for processes modelled by first-order hyperbolic 

PDEs to synthesize a state feedback control (Hanczyc and Palazoglu, 1995; Sira-
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Ramirez, 1989). Hanczyc and Palazoglu (1995) proposed a method based on symmetry 

groups for the design of state feedback control for second-order parabolic systems. The 

main disadvantage of their techniques is that the selection of infinitesimal generators 

of the symmetry groups in a PDE system does not contain the effects of initial and 

boundary conditions. Moreover, these methods only provide the design of state feedback 

control. Christofides (1996) addressed the synthesis of a nonlinear distributed state 

feedback controller using geometric control methods and the design of a state observer 

for first-order hyperbolic DPS. Other PDE-based control approaches include control 

design for parabolic heat transfer systems using system “flatness”, which allows an 

explicit parameterization of the trajectories as a power series in the spatial variable with 

coefficients involving time derivatives of the “flat” output (Laroche et ai, 1998). A 

traditional PI controller for a class of nonlinear PDE processes with boundary control was 

shown to achieve closed-loop stability and output regulation (Alvarez-Ramirez, 2001).

In view of the above discussion, further research into the control of PDE-based 

distributed parameter systems is necessary to broaden the base of model forms such that 

their inherent complexity can be addressed. Many problems associated with controller 

performance, computational tractability and general technical methodology remain.

1.3 Thesis Scope and Objectives

The objective of this thesis is to develop control design techniques for DPS by exploring 

the geometric properties of the PDEs modelling DPS. The Method of Characteristics, 

a powerful solution method for hyperbolic systems, is used in the control development 

to provide a prediction of the process behavior. Standard feedback control, which does 

not explicitly include prediction horizon in control formulations, and Model Predictive 

Control (MPC) are the two control techniques considered in this work. High performance 

control and efficient computation are pursued to attain attractive control methods that can 

be implemented in industrial applications.

The focus of the thesis is control development for distributed parameter processes
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modelled by first order and second order linear, semilinear or quasilinear partial 

differential equations. These PDEs can model or approximately model many chemical 

engineering processes and constitute a wide range of PDE models encountered in practical 

application. Although this thesis presents results for PDE models with a single spatial 

direction, the methods are easily extendable to two and three dimensional PDEs. Using 

the Method of Characteristics, the control of hyperbolic and convection-dominated 

parabolic PDEs is investigated. The focus of the study is on the deterministic processes, 

and as a result, stochastic behavior is not considered.

The structure of the thesis is as follows. Mathematical preliminaries are provided 

in Chapter 2. Standard feedback control for first-order hyperbolic system is discussed 

in Chapter 3. Chapters 4, 5 and 6 focus on characteristic-based MPC for hyperbolic 

systems and convection-dominant parabolic systems, respectively. Chapter 7 provides 

the conclusions drawn from this study and suggests future research directions.
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Chapter 2

Mathematical Background

In this chapter, a comprehensive review of key mathematical concepts used throughout 

this thesis is presented. They include the classification of PDEs, the Method of 

Characteristics and Semigroup theory. The types of PDEs used to model DPS determine 

the approaches taken for control development. The Method of Characteristics provides 

the fundamental mathematical tool used in the control design approach proposed here. 

Semigroup theory allows one to cast the PDE system in an abstract space, which facilitates 

the design of observers for DPS.

2.1 Classification of Partial Differential Equations

Generally, a PDE model for a distributed parameter system is of the form:

•••) Xni u, vxi, ■■■vXn, vXlx15 vXlX2, ..., u) —0 , (2.1)

where x =  (xx, ..., xn) are independent variables such as time and position, v is a
dv

dependent variable of (xx, ..., xn) and u  is the manipulated variable, and vxi =

d2vvXxXo =  - —-—,.... and so on. The order of Equation (2.1) is the order of the highest
OX1UX2

derivative occurring in the equation. Moreover, the equation is considered linear if it
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depends linearly on the states v and its derivatives; if all derivatives of v occur linearly 

with coefficients depending only on x, then the equation is semilinear; and if the highest- 

order derivatives of v occur linearly with coefficients depending only on x, u, and lower- 

order derivatives of v, then the equation is quasilinear (McOwen, 1996). In this study, the 

primary focus will be on first-order and second-order quasilinear systems.

First-order and second-order PDEs can be classified into hyperbolic, parabolic and 

elliptic equations. All single first-order PDEs are hyperbolic. The general quasi-linear 

system of n  first-order partial differential equations in two independent variables has the 

form n £\ n O

aijJx~ + ^  = Ch i =  (2 -2 )
j = i  1 j=i 2

where a,j, 6^ and c* may depend on aq, x2, and v\, v2, ..., vn. If c* =  0 for i = 1,2,..., n, 

the system is called homogeneous. In terms of the n x n  matrices A  =  [a^] and B =  [6^] 

and the column vectors v =  [vi, v2, ..., vn]T and c — [ci, c2, ..., cn]T, the system of 

equations can be written as

A vXl +  B v ^  =  c. (2.3)

For a well-posed initial value condition problem (i.e., the initial conditions satisfy the 

partial differential equations), the matrix A  or B is nonsingular depending on the initial 

conditions at x x =  0 or x 2 = 0. Assuming that det(B) ^  0, the characteristic polynomial 

can be defined by

F(A) =  det(A -  AB). (2.4)

Since A and B are n  x n  matrices and det( B) ^  0, the polynomial F  is of degree n. If 

F( A) has n distinct real zeros, the system (2.2) is classified as hyperbolic. The system is 

also called hyperbolic if F(A) has n  non-distinct real zeros and the generalized eigenvalue 

problem (A — AB)x2 =  0 has n linearly independent eigenvectors. If F(A) has no real 

zeros, then the system (2.2) is called elhptic. If F( A) has n  non-distinct real zeros and 

(A — AB)x2 =  0  does not have n linearly independent solutions, the system may be

classified as parabolic. This classification is not possible when F(X) has both real and

complex zeros.
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A second-order PDE in which the derivatives of second-order all occur linearly can be 

represented as:

a(xi} %2)v3;lXl -f- b(xi, -{- c(xjj X2)vx^x2 dixi, X21 v, vXl, vX2 ), (2.5)

with certain initial and/or boundary conditions. Let 7  be a line parameterized in (x\, X2) 

space. Cauchy data along 7  can be defined as:

v\y =  V, =  Vu (2-6)

where v denotes a choice of unit normal vector along 7 . The Cauchy data can also be 

expressed as

a 7 )
provided the compatibility condition holds.

The classification of linear and semilinear second-order PDEs in Equation (2.5) can be 

associated with the characteristic equation:

dx2 b ±  y/b2 — 4ac
 = ----------------------- . (2*o)
dx 1 2a,

1. If b2—4ac > 0, there are two characteristics and Equation (2.5) is called hyperbolic. 

An example is the wave equation that describes vibrating membranes and sound and 

electromagnetic waves.

2. If b2 — 4ac =  0, there is only one characteristic and Equation (2.5) is called 

parabolic. An example is the heat equation.

3. If b2 — 4ac < 0, there are no characteristics and Equation (2.5) is called elliptic. 

An example is the Laplace equation that governs the time-independent behavior of 

solutions to the wave and heat equations, and electrostatic potential.

For quasilinear or fully nonlinear second-order equations, a similar classification 

can be made by linearization of the highest-order derivatives; but the resulting type 

(hyperbolic, parabolic, or elliptic) may depend upon the particular solution v being 

considered. Higher-order systems can be decomposed into one or a combination of the 

three.
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2.2 Method of Characteristics

The Method of Characteristics is a useful technique that is employed to compute integral 

surfaces of a certain class of DPS. For single first-order PDEs, the solutions can be 

generated by considering integral curves (or characteristics) of a specific vector field, 

called the characteristic vector field. By considering this vector field, the solution of a 

DPS can be readily transformed to the solution of a set of ODEs (Arnold, 1988; McOwen, 

1996). In this section, the Method of Characteristics is introduced for scalar first-order 

PDEs and systems of first-order PDEs.

2.2.1 Scalar First-Order PDEs

Consider the quasilinear equation for a function v ( t , x  i , . . . ,xn) on the manifold M  x R

o f R n+1
dv . . d v  ^
—  +  Oi(x, v, u )—  =  /(x , u), (2.9)

where t is the time, x  =  [xi, ■■■ , x n] is a point in the manifold M,  

Qx(x, v, u), • • * , an(x, v, u) and /(x , v, u) are continuous (C°) in x  and v, and u is the 

manipulated variable. Given v (t, x) as the solution of Equation (2.9), let us consider the 

graph z = v (t, x). This graph has a normal vector

r dv dv dv .. 1A.
a i 0 )

at the point (to,xQ,v  (f0,x 0)). Let z0 = v ( t 0,xo) and take u  as parameters. 

Then, Equation (2.9) implies that the vector £0 =  [1, ui(x0, zq,vl), • ■ • , an(x0, z0, u), 

/ ( x o, z0, u)] is perpendicular to the normal vector N 0, and hence, must lie in the tangent 

plane to the graph of Equation (2.9) at the point (t0, x0, z0). In other words,

^ (f,x ,u ,u ) =  [l,o i(x ,v ,u),--*  ,an(x ,v ,u ) , f (x ,v ,u )]  (2 .11)

defines a vector field in i?n+1, tangent to the solution graph at each point. This vector 

field is called the characteristic vector field of the quasilinear Equation (2.9). The integral
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i i.

Figure 2.1: Generation of the solution surface by characteristics

curves of the characteristic vector field are called the characteristics of the quasilinear 

equation. The ordinary differential equation defined by the vector field £(£, x, v, u) 

is called the characteristic equation and the characteristic equation of the quasilinear 

Equation (2.9) has the form:

i =  i,

x  =  a(x, v, u), (2.12)

v =  /(x , v, u).

If the graph v =  u(f,x, u) is a smooth surface S, which is a union of such 

characteristic curves, then at each point (t,x, v), the tangent plane contains the vector 

£(x, v, u); hence, S  must be an integral surface. In other words, a smooth union of 

characteristic curves is an integral surface of the characteristic vector field. If the given 

initial condition T is non-characteristic ( i.e., V is nowhere tangent to the vector field), a
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simple procedure for solving the first-order PDE problem is to flow out from each point

of r  along the characteristic curve through that point, thereby sweeping out an integral

surface (see Figure 2.1). This is the Method of Characteristics. It is trivial to show that 

the function so constructed satisfies the original differential equation. By differentiating 

along the characteristics, it can be obtained:

, d v . dv  . dv , . d v
* =  /  =  aF‘ +  £  a ? *  = a t  +  £  ° ‘(x' “ W  (2 ' 13)t= 1 t= 1

This result shows that along the characteristics, the partial derivative terms in Equation 

(2.9) reduce to a directional derivative of v  in that direction.

The characteristics are more complicated for a first-order nonlinear PDE system:

~  + ^ ( v , x , t , ~ , u )  = 0. (2.14)

Equation (2.14) can be interpreted as a hypersurface E 2n+2 in the manifold M 2n+3 =

J 1(Vr”+1,R) of 1-jets equipped with the standard contact structure. Let (x,t) be the
dv dv

local coordinates on Vn+1 and v be the coordinate in R, p  =  —  and q — — . Thedx  dt
corresponding local coordinates are denoted by (x, t, v, p, q) in the space of 1-jets. Then, 

the differential equation can be written in the form:

q + 4>(t>,x,i, p,u) =  0. (2.15)

By the Method of Characteristics, the characteristic equations of PDE (2.14) in the 

manifold M 2n+3 can be written as (Arnold, 1988):

t =  1,

q  =  - q $ v -

x =  % ,  (2-16)

v = p$p +  q.
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Substitution of Equation (2.15) can reduce the order of Equation (2.16) by 1:

i = 1 ,

± = $ p,
(2.17)

P =  ~$x - p $ v ,

V  —  p $ p — <&.

For distributed parameter systems, the current control action can affect the states at 

spatially distributed measurement points before it affects the output. From the spatially 

distributed measurements, the characteristics in Equation (2.12) allow the prediction of 

the future process output and the effect of current action on the future process output. The 

prediction is obtained by examining the orbital curve of the characteristic vector field £ 

(i.e., integration of the characteristic ODE).

2.2.2 System of First-Order PDEs

Systems of first-order equations that arise in physical problems are often of hyperbolic 

type. Therefore, the discussion of systems of first-order equations is confined to systems 

of hyperbolic PDEs (Duchateau and Zachmann, 1989).

A characteristic of a scalar first-order PDE is defined by the characteristic ordinary 

differential equations, for which there is no obvious generalization to higher dimensions. 

For scalar first-order PDEs, however, the partial derivatives are not uniquely defined on 

the curve that is the projection of a characteristic curve on Cauchy data, this idea can be 

generalized to determine the characteristics of higher dimensional PDE systems.

Consider a 2 x 2 system, for which a vector function with components v\ and v2 

satisfies

a ! t + b § 7 = c ’ (2-i8)ox at
where A and B are 2 x 2 matrices and c is a vector with two components, all of whose 

entries and components are functions of x, t, tq and v2. A characteristic of Equation
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(2.18) is a curve (x(s), t(s)) such that Equation (2.18) evaluated on the curve and the 

differential equations
+ , < * £ ,  (2.19)

dx at as
dx dt dv  dv

where x' =  — and t' = — , do not have unique solutions for —  and — . Therefore, the
ds ds dx dt

left-hand sides of these four equations are linearly dependent. This leads to the expression

det(Bx' -  At') = 0. (2.20)

Hence, (x(s),t(s)) is a characteristic if Equation (2.20) is satisfied. Unlike the situation 

in the scalar case, this expression may not yield characteristic directions at each point.

For the solution of Equation (2.18), Cauchy data can be imposed on t  = 0, so it is 

crucial that this is not a characteristic. A necessary and sufficient condition that t — 0 is 

not characteristic is that det(Bx' — A t 1) ^  0, or that B is nonsingular. By introducing

two new dependent variables into Equation (2.18), the inhomogeneous term B -1c can be

removed and a homogeneous problem results (Ockendon et al., 1999).

If the system of hyperbolic equations has constant coefficients and is homogeneous, the 

Method of Characteristics can be used to obtain a complete solution of the system subject 

to specified initial conditions for each of the unknowns (Duchateau and Zachmann, 1989).

A system of first-order n-dimensional homogeneous PDEs with constant coefficients, 

along with its initial conditions, can be written as:

Av-c +  B vt =  0, —oo < x < oo,t > 0, (2.21)

v(xj 0 ) =  f, —oo < x < oo. (2 .2 2 )

The difficulty presented by the system of equations (2.21) is the coupling of the unknowns 

Vj ( x ,  t) in the sense that, in general, each equation involves all unknowns. The solution 

method requires the formation of a linear combination of the components of the unknown 

vector v
n

A ^   ̂( j i ; j  ̂ I* 2 ,.., n, (2.23)
j'= i

or

z =  Qv, Q =  (qij), (2.24)
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where represent constants to be determined. A certain linear combination of the 

n equations is formed such that the groupings of equations and the groupings of the 

components of v, dictated by these linear combinations, decouples the unknowns yielding 

n first-order equation of the form

X‘J T  + W = 0 ’ i =  1 . 2, (2.25)ox at

Since each equation for each ẑ  is a constant-coefficient advection equation, the Method 

of Characteristics discussed in the last subsection can be used to determine Zi(x, t). The 

original unknowns can be recovered from v =  Q- 1z. Let P  =  (pij) be an invertible 

n x n matrix that satisfies the equation:

PA  =  APB, (2.26)

where A represents a diagonal matrix:

A =  diag(Ai). (2.27)

Multiplying each term of Equation (2.21) by the matrix P  gives PA vx +  P B v t =  0. 

Using Equation (5.4), the following is obtained: A PB vx +  P B v t =  0. To determine 

a linear combination of unknowns that leads to a decoupled system, define a matrix 

Q =  PB  and set z — Qv. Then, we have

A PB vx +  PB vt =  AQvx +  Qvt =  Azx +  zt , (2.28)

which implies that the components of the vector z satisfy the decoupled system

, dzi dzs „
Aii ; + s r = 0’ ( 2 -2 9 )

in which the ith equation involves differentiation only along the ith characteristic. The

system of equations asserts that Zi is constant along the characteristics dx/dt  =  A*. Thus, 

Zi, i =  1, 2 ,..., n, represent the groupings of the physical variables that remain constant 

along characteristics. Such groupings are called Riemann invariants.
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Having grouped the components of the unknown vector v  in Equation (2.21), the same 

groupings in the initial conditions for z can be formed:
n

z(x, 0) =  Qv(z, 0), or Zi(x, 0) =  ) =  Qi{x). (2.30)
i= i

Then, the solution to the initial-value problem for z is given by

Zj(a;,t) =  g i ( x  -  X tf) , i  =  l ,2 , . . . ,n . (2.31)

It can be seen that the entries in the matrix P  fix the linear combination of unknowns 

that leads to an decoupled system. Since B has been assumed to be invertible, the 

product Q =  PB  is invertible. Thus the original unknown v(x)  can be recovered from 

v =  Q - 1z. All that remains in the solution method for the initial-value problem is a 

means of determining the matrix P.

The calculation of the matrix P  can be obtained from the property PA  =  A PB , where 

A is diagonal. For the case n =  2 , the requirement can be written as:

611 bu 

&21 b‘22
(2.32)

P ll P l2 0-12 Ai 0 jPn Pi2

P21 P22 021 O22 0 A2 p 2l P22

The transpose of the product of square matrices is the product of the transposes in reverse 

order, (PA)T =  ATP T. Applying the transpose to both sides of the last matrix equation 

gives

O 1 1  C L 0 1  50n  b n  b o i  5 0 1 1

(2.33)

~ m “ “

O il 021 Pll
=  Aj

b n 2̂1 Pll

Oi2 022 Pl2 l 2̂2 Pl2

and “ ~ ~ *■

O il 021 P21
— a2

&11 &21 P21

O12 022 P22 bi2 b22 P22

(2.34)

To be able to obtain nonzero vectors p i — [pn,pi2]r  and p 2 =  \p2i,P22]T, the 

constants and A2 must be zeros of the characteristic polynomial:

F (A) =  det(A -  AB) =  det(AT -  ABT). (2.35)
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Since the matrix P  is invertible, both p i and P2 are nonzero. The entries of the ith row of 

the matrix P  can be determined such that they satisfy

A Tpi =  At-BTpi, i = 1,2. (2.36)

Therefore, the matrix P  for the case of a system of two equations ( i . e . ,  n  — 2) 

is constructed from the above equation. The case of general n  involves no new 

ideas. With the determination of the matrix P , the solution method for a constant- 

coefficient homogeneous hyperbolic system of first-order partial differential equations 

is straightforward. For a general hyperbolic system, the Method of Characteristics fails 

to provide an analytical solution. However, it remains possible to apply a numerical 

approach to the Method of Characteristics for such systems.

2.3 Semigroup Theory

The solution structures for many PDE systems can be expressed by semigroup operators. 

This can be illustrated by considering a PDE model for a metal bar of length one that is 

heated along its length:

dv . . d2v . . , .
~dVX' ’ =  +

v(x, 0) =  vo(x), (2.37)

£ « > • * ) - o = | m .

where v(x, t) represents the temperature at position x and time t ,  v q ( x ) the initial 

temperature profile, and u(x, t) the addition of heat along the bar. By choosing Z  = 

£ 2(0 , 1) as the state space and the trajectory segment t>(-, t )  — v(x, t ) ,  0 < x  < 1 as the
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state, defining the operators A and B  on Z  as:

A d2<£> .Aip =  -r-pr withdx2
dip

D(A) =

<p e  Z^(0 , 1)| <f, ~j— are absolutely(JLJu
*2

continuous, -r-r G LAO, 1) and 
dx2

(2.38)

B = I,

and regarding the input trajectory u(-,t) as the input and the function no(-) G L2(0,1) as 

the initial state, Equation (2.37) can be described through an abstract formulation as:

v(t) =  Av(t) +  Bu{t), t > 0, n(0) =  no, (2.39)

on a Hilbert space Z. This allows a unified treatment of the PDE systems and finite

dimensional systems.

Using the “separation of variables” approach, for sufficiently smooth function no 

that satisfies the boundary conditions and sufficiently smooth input function u(x, t), the 

solution of Equation (2.37) is given by

v (x , t )=  [  g(t,x,y)v0(y)dy + f  f  g(t ~  s,x,y)u(y,s)dyds 
Jo Jo Jo

where git, x, y) represents the Green’s function

OO

g(t ,x ,y ) =  1 +  E 2e n n tcos(mrx)cos(n%y).
n=l

For t  > 0, a semigroup operator T(t) G £(L2(0 , 1)) can be defined as

T(t)vo =  f  g{t,x,y)vQ(y)dy.
Jo

Then, the abstract formulation of the solution (2.40) on Z  becomes

v(t) — T(t)v0 +  /  T(t  — s)u(s)ds.Jo

(2.40)

(2.41)

(2.42)

(2.43)
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For a dynamic system without inputs (B — 0), T i t ) defined above satisfies the conditions 

for a strongly continuous semigroup.

A strongly continuous semigroup is an operator-valued function T(t ) from R + to £(Z)  

that satisfies the following properties (Curtain and Zwart, 1995):

Ti t  + s) = T(t)T(s) for t , s > 0;

T( 0) =  J; (2-44)

|!T(t)zo — zo|| —» 0 as t —> 0 +.

It can be abbreviated as the Co-semigroup. Using the Co-semigroup, the dynamics for a 

linear, time-invariant, and autonomous infinite-dimensional system can be expressed as:

v(t) =  T{t)v0. (2.45)

A C0—semigroup T(t) can be related to the solution of an abstract differential equation 

as Equation (2.39) through the infinitesimal generator A  of T(t), which is defined by

Av  =  lim - (T i t )  -  I)v, (2.46)
t—1-0+ t

whenever the limit exists.

The concept of a semigroup plays an important role in the design of an infinite

dimensional state observer for feedback control in this thesis. Among the semigroups, 

a contraction semigroup is of special interest (T(t) is a contraction semigroup if it is a 

Co-semigroup that satisfies ||T(f)j| <  1 for all t > 0).
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Chapter 3

Feedback Control for First-order PDE 

Systems

In the control of distributed parameter systems, researchers have focussed on the design 

of state feedback or output feedback control for specific classes of PDE models. For 

processes represented by parabolic PDEs, a finite number of modes may capture the 

dominant dynamics of the system (Curtain and Zwart, 1995) and modal decomposition 

techniques can then be used to transform the PDE model into an approximate ODE model, 

which is subsequently used for controller design. For hyperbolic PDEs, however, all 

of the eigenmodes of the spatial differential operator contain the same, or nearly the 

same, amount of energy, and thus an infinite number of modes are required to accurately 

describe their dynamic behavior (Christofides and Daoutidis, 1998). This prohibits the 

application of modal decomposition techniques to derive reduced-order ODE models. As 

a result, the treatment of hyperbolic PDEs requires the analysis of the infinite dimensional 

nature of the systems.

A control approach based on a combination of the Method of Characteristics and 

sliding mode techniques was proposed for processes modelled by a first-order, quasi-
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linear hyperbolic PDE (Sira-Ramirez, 1989). This method was further developed to 

synthesize a state feedback controller for a nonlinear hyperbolic PDE model with 

continuous control action (Hanczyc and Palazoglu, 1995). A nonlinear distributed output 

feedback controller was also proposed for a quasilinear hyperbolic PDE system using 

geometric control methods (Christofides and Daoutidis, 1996). However, these methods 

have focused on either the design of state feedback controllers or specific PDE models. 

Thus, an output feedback control method that is general for all first-order hyperbolic PDEs 

is unavailable.

This chapter proposes a PDE-based feedback control for DPS using the Method of 

Characteristics. An output feedback controller is derived for processes represented by 

a first-order hyperbolic PDE. The resulting control law guarantees asymptotic output 

tracking. The proposed approach is applicable to processes modelled by a single linear, 

quasilinear or nonlinear first-order hyperbolic PDE, and a system of hyperbolic PDEs 

with a single characteristic. In addition, the resulting control laws efficiently reject 

disturbances and can deal with some forms of plant-model mismatch. The proposed 

approach yields a comparatively simple controller design technique and produces control 

laws that are easy to implement.

3.1 State Feedback Control

Any first-order PDE-based process model can be expressed as

dv dv .
,u) =  0,

dx  dt (3 .1)

y = h(v, x, t),

where t is time coordinate, x  is the vector of local spatial coordinates (Xi) defining points 

on an open set in Rn,v  e  £ 2(0 ,1) is the distributed state variable which changes in both 

time and space, u € R is the manipulated variable and y € R is a scalar-valued output. 

For each smooth solution v of the system in Equation (3.1), <£ and h are locally smooth 

functions of their arguments.
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Under fixed initial and boundary conditions, Equation (3.1) can be visualized as a 

surface in JRn+2 with (v, x, t) being coordinates and u being a parameter. This surface is 

dependent on u. The control objective is to have the output function y track a specific 

trajectory by manipulating u. Without loss of generality, assume the desired output 

trajectory is y =  0 , which locally defines an isolated smooth manifold v =  t) such 

that:

h((t>(x,t),x,t) ~  0. (3.2)

The graph of v  is assumed to be a smooth time-varying surface on which the system has 

the desired behavior. In this section, a state feedback control will be formulated such that 

the surface determined by Equation (3.1) coincides with the surface specified by Equation 

(3.2) asymptotically for quasilinear first-order systems and nonlinear first-order systems, 

separately.

3.1.1 Quasilinear Systems

Consider a dynamic system described by the first-order quasilinear PDE:

dv dv
•^7 +  L i= i =  b(v,Xjt,u),
at oX{ (3 .3 )

y ~  h(v,s.,t),

where ni,n2) •••, an and b are continuous functions. The coefficients in Equation (3.3) 

constitute a vector field £ =  [1, ax, ■ ■ • ,an, b]T =  [1, a, b]T. As discussed in Chapter 2, 

this vector field defines a time-varying control-parameterized vector field and is called 

the characteristic vector field. Surfaces that are tangent at each point to the characteristic 

vector field are called integral surfaces of the vector field (McOwen, 1996). The controller 

design problem is to formulate the controller u such that it satisfies a given control 

objective. The control objective in this section is assumed to be output tracking.

By the Method of Characteristics, the quasilinear PDE system in Equation (3.3) can
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be transformed into a nonlinear ODE system:

f =  1

& — a(v,x, t, u),
(3.4)

v =  6(v, x, t, u),

V = h(v,x, t).

To simplify the notation, introduce the vector z =  [f, x, u]T. For control development, the 

following assumptions are needed.

Assumption 3.1 The characteristic ODE described by Equation (3.4) can be represented 

in an affine form:

z =  f  +  g • u. (3.5)

This is a common form assumed often in the nonlinear control literature (Isidori, 1995).

For clarity of discussion, some notation from differential geometry (Doolin, 1990; 

Bryant et al., 1991) is useful and will be introduced here. The Lie derivative of a scalar 

function h(x) with respect to a vector function f (x)  is defined as

L , M x )  =  0 .6 )

Since the Lie derivative of a scalar function is also a scalar function, a high order Lie 

derivative can be defined recursively as:

L°fh(x) = h(x),

« r * ) , n  (3 -7)Lfh{x) =  — ----- f{x).

With the definition of a Lie derivative, the relative degree can be defined as the number

of times the output must be differentiated so that the input appears explicitly. For a linear

system in transfer function form, the relative degree is the difference between the orders 

of the denominator and numerator polynomials.
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Assumption 3.2 There exists an integer 7  such that the Lie derivatives of the output 

function satisfy

L M ~ 2h =  0 ,
(3.8)

LsL}~lh f  0,

V x, t, v. This assumption is required for most nonlinear feedback control methods and is 

not always explicitly stated.

When Assumption 3.1 and Assumption 3.2 are satisfied, the output function y =  

h(v, x, t) has relative degree of 7 . Most single PDE systems have relative degree of one 

and systems of PDEs have relative degree greater than one. When the system modelled by 

Equation (3.3) has relative degree of one, the Lie derivative of the output function along 

the characteristic vector field is

LiV =  Lfh +  Lsh - u. (3.9)

With these definitions and assumptions, a distributed state feedback control law that 

ensures offset-free setpoint tracking can be formulated.

Theorem 3.1.1 Consider the system modelled by the quasi-linear first-order PDE of  

Equation (3.3). There always exist k > 0 and 17 >  0 such that the distributed state 

feedback control law:
—k(h + — f* hdr) -  Lf h 

u = ---------- T- t ~ - ---------------, (3.10)
Lgh

guarantees closed-loop asymptotic stability.

Proof:

Substituting Equation (3.10) into Equation (3.9) yields:

L^y =  —k(y + — f  ydr). (3.11)
Tr Jo

The closed-loop stability can be analyzed by further applying Lie derivative to the above 

equation:

LfL^y +  kL^y +  —y =  0. (3.12)
Tr
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Along the characteristic vector field £, Equation (3.12) can be written in ODE form as:

t =  1

x  =  a(v0, x), 

k
y +  ky +  —y =  0.

(3.13)

Therefore, from each point of the current state variable profile Vq, the closed-loop 

dynamics of the output can be expressed along the characteristic vector field £ as: 

y +  ky +  ~ y  — 0. Since the time coordinate may not be able to go to infinity along the 

characteristic line before the spatial coordinate hits the boundary, the asymptotic stability 

of the closed-loop system cannot be analyzed using Equation (3.13) due to the time scale 

limitation.

Assume that there exists a residence time tR(v0, xq) (abbreviated as tR), which 

indicates the time for the current state variable v0 at x0 moving along the characteristic 

line until it hits the boundary, and assume that tR satisfies

where M  is a positive number. Hence, along the characteristic vector field £, t  G [0, tR). 

Define a new time scale variable r  as:

It can be seen that for t  e  [0, f#], r  6  [0, oo). When tR —* oo, r  = t  and the asymptotic 

stability of the closed-loop system becomes obvious. Otherwise, it is possible to analyze 

the closed-loop asymptotic stability in the new time scale r  along the characteristic lines. 

From Equation (3.15), the following can be obtained:

tR > M, (3.14)

tRt (3.15)
t R - t

di  = ( ^ r /tRy,
(3.16)
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Substituting Equation (3.16) into Equation (3.13), the closed-loop dynamics of the output 

can be expressed in the new time scale r  along a characteristic line, as:

(1 + T/tR)*±Z + — (1 -f r/ tft )3 + k( 1 +  r / t j j ) 2 
tR

^  —2/ =  0. (3.17)
dr T]

Since the new time scale r  can go to infinity along the characteristic line, it is convenient 

to analyze the closed-loop asymptotic stability of the PDE system from this equation. 

Define

2/i = 2/,
dy

2/2

and

(3-18)

b =  ? - ( i  +  T / t R )3 +  k ( i + T / t R y .  ( 3 . i 9 )
tR

Then, from Equation (3.17) and (3.18), the following can be obtained:

dyi

dy2   b _______k
dr (1 + T / tRy V2 r / ( l  + T/tRy Vl'

(3.20)

Define a function:

V = ± r f + ( 1 ± I ^ > 0 .  for k, T[ >  0. (3.21)
2r j 2

The derivative of V  in terms of t  can be obtained as:

^  = - k (  1 + r/(E)2»I < < 0. (3.22)
dr

It can be seen that = 0 only when y2 — ~r- ~  0. From Equation (3.17), =  0
d r  J d r  d r

implies y = 0. From LaSalle’s Invariance principle, the largest invariant subspace of

E  = =  0 is the point y ~  0. It can be said that < 0 for y ^  0 and —  =  0 for
d r  d r  d r

y — 0. The function V  is a Lyapunov function. Therefore, as r  —>• 0, y —> 0. This implies 

that, as t tR, y —> 0, for the original system. This proves the asymptotic stability of 

the closed-loop system. ■
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The controller in Equation (3.10) is a function of current state variables and output 

variables. It does not contain derivatives of the state variables as do some of the other 

existing feedback control methods for quasilinear PDE systems. This simplifies the state 

observer design problem and makes the proposed feedback control easy to implement.

The proposed controller for quasilinear first-order PDE systems has the form similar 

to a PI control with a term analogous to dead-time compensation. Since its compensation 

term is obtained directly from the PDE model, the controller exhibits improved 

performance, and is capable of dealing with operation variable changes.

3.1.2 Nonlinear Systems

The Method of Characteristics is more involved for first-order nonlinear PDEs than for 

quasilinear PDEs. The complexity of the state feedback control development using the 

Method of Characteristics increases correspondingly for a nonlinear system.

Consider a first-order nonlinear PDE control system:

 ̂ dv \—- +  $ (v ,x , t, — ,m) =  0 ,
dt dx  (3.23)
y =  h(y,x, t) .

Equation (3.23) can be interpreted as a hyper-surface E 2n+2 in the manifold M 2n+3 —

J l (Vn+l, R) of 1-jets equipped with the standard contact structure. Let (x, t) be local
Qxj dxj

coordinates on V n+1 and v  be the coordinate in R, p =  —  and q = — . Thedx  dt
corresponding local coordinates are denoted by (x, t, v, p, q) in the space of 1-jets. Then, 

the differential equation can be written locally in the form

q + $ (v ,x , t ,p ,u )  =  0. (3.24)

By the Method of Characteristics described in Chapter 2, the characteristic equations of

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



system (3.23) in the manifold M 2n+3 can be written as (Arnold, 1988):

t = 1 ,

q =  - q $ v -  $ t,

(3.25)

v -  p $ p +  q,

where the subscript denotes a partial derivative (e.g., $ ). In contrast to a

quasilinear system, a nonlinear PDE system requires its state variables as well as their 

first-order derivatives as new variables to describe its characteristics, which complicates 

the control and state observer design problems.

Based on the characteristic ODEs (3.25) and the underlying PDE (3.24), the 

characteristics of the nonlinear PDE can be described by the variables t, x, v and p. 

Denote vector z' =  [t,x, v, p, q], z =  [f,x, u,p] and vector field ('  — [l,<&p,p4>p -f 

q, - $ x -  p$„, - q $ v -  $ t], C  =  [1, % ,  P $ p -  - $ x -  p$«]. The characteristic ODE

can be written in a more compact form:

The following assumptions are required for the controller development.

Assumption 3.3 The characteristic vector field (  for the nonlinear system is affine in the 

control variable:

z ' =  C(t ,x ,v ,p ,q ,u) . (3.26)

Substituting Equation (3.24) into Equation (3.26) yields

Z =  C(t ,X,V,p,U). (3.27)

2 =  Ci(*,x, v, p) +  C2O,x, v, p) • u. (3.28)
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Assumption 3.4 There exists an integer 7  such that the Lie derivatives of the output 

function satisfy:

LC2q ~ 2h =  0 ,
4 Cl (3.29)

L ^ L p h  *  0 ,

V x,v , t .

When Assumption 3.3 and Assumption 3.4 are satisfied, the output function y = 

h(v,yi, t) has relative degree of 7 . When the system has a relative degree of 1, the Lie

derivative of the output function along the characteristic vector field ( is

L^y = L ^h  + L ^ h  ■ u, (3.30)

where L^h  ^  0 by assumption. Then, a distributed state feedback controller for the 

nonlinear system can be formulated in the same way as that for the quasilinear system:

- k ( h  + — f* hdr) - L ^ h
(3-31)

K h
The closed-loop stability of the controller can be analyzed by examining the dynamics 

of the output along the characteristics, which can be obtained by substituting Equation 

(3.31) into Equation (3.30):

1
L<a) — —k(h 3 I hdr), (3.32)

Ti Jo

or equivalently,

LtLty  +  kLcy +  —y = 0. (3.33)
ti

Assume that there exists a residence time tn(v0, xo) (abbreviated as £r) such that, along 

a characteristic vector field (,

tR > M  and t  € [0, tR], (3.34)

where M  is a positive number. More complicated than the quasilinear case, the parameter 

£r may not have a clear physical interpretation in the nonlinear PDE systems. Defining a
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time transformation:
t R t

T + +. <3-35> tR — t
the closed-loop dynamics of the output in the new time scale can be obtained from 

Equation (3.33), along a characteristic (, as:

( l  +  T / t R ) ^  + ~ 0 -  +  r / t R ) 3 +  k {  1 +  r / t R ) 2 ^  +  ^  =  0 . (3.36)
d r  T i

The asymptotic stability of the system in Equation (3.36) has been proved in Section 

3.1.1. Therefore, the proposed controller in Equation (3.31) has closed-loop asymptotic 

stability.

The controller (3.31) for the nonlinear system is a function of the state variables and 

their first-order spatial derivatives. It requires that a state observer estimates both the state 

variables and their first-order spatial derivatives for its implementation.

3.2 Output Feedback Control

In the previous section, a state feedback controller that enforces output setpoint tracking 

was formulated. However, such a technique requires the full measurement of infinite 

dimensional states. Since only a finite set of measurements can be obtained in practice, 

a state observer is needed to reconstruct the infinite-dimensional state profiles from the 

finite measurements. This section proposes a state observer structure for quasilinear and 

nonlinear systems based on Semigroup theory.
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3.2.1 Quasilinear Systems

A ssu m in g that a finite number of measurements of the state variables are available for 

control purposes, the quasilinear PDE system can be expressed as:

dv dv , , x , /  , x
~dt +  d x ^ ’X’ ’U' =  (V’X’ ’

(3.37)
V =  h(v,x, t), 

w =  Qv, 

v(x0) =  Vo,

where w € f?m is the set of measurements of m  elements, Q is an operator: L2(0 , 1) — > 

Rm, and v(x0) =  vq is the boundary condition.

It is always possible to split the term b(v, x, t, u) into bi(v, x, t, u) +  62(x, £, u). Then, 

the PDE in Equation (3.37) can be expressed in the form:

dv dv . , . , . , .
—  =  a(v, x, t, u) +  (v, x, t, u)

+&2(x, t, u).

(3.38)

Choose Z =  L2(0 ,1) as the state space. Assume that a nonlinear differentiable operator 

A  can be defined on Z  such that

dip
Aip = x, t, u) +  hiip, x, t, u),

ax

if e  L2(0 , 1)1 y?, ^  are absolutely 
ax

(3.39)

D (A )

dip , , ,continuous, — —a(<,p, x, t, u) 
ax

+&i(p,x,t,u) G L2(0,1),

V?(xo) =  v0

Equation (3.38) can be reformulated as a differential operator equation on a Hilbert space 

Z:
dv
dt

=  Av  +  b2(x, t,u). (3.40)
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Using Equation (3.40), a state observer can also be designed on the Hilbert space Z  in the 

form:

where r\ is an estimate of the state v  and C is an operator: Rm —>■ Z. If the operator C  can 

be designed such that the composite operator (A — CQ) is an infinitesimal generator of a 

contraction semigroup, the state observer in Equation (3.41) guarantees that the estimated 

state converges to the true state, asymptotically. This can be seen through checking the 

error between the true process state v and the estimated state 77:

where e G L2[0,1]. Based on Equation (3.37) and (3.41), the equation for e is obtained as 

follows:

If the operator (A — CQ) is an infinitesimal generator of a contraction semigroup, denote 

the contraction semigroup by Te(t) : L2[0,1] —> L2[0,1]. The error e at any time can be 

expressed by the semigroup Te(t) as

— =  Ar] +  b2(x, t, u) +  C (w -  Qrj) 
at

(3.41)

e = v — Tj, (3.42)

e =  (A -  CQ)e. (3.43)

eit) =  Te(t)e( 0). (3.44)

A key property of a contraction semigroup is

\ T M \  < 1- (3.45)

From the definition of the module for a semigroup, we have

(3.46)

Hence, it holds that

< WTeih-tQWMtQ (3.47)
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for any t2 > t x. Therefore, e —► 0 as t —»■ oo. The state observer in Equation (3.41) 

guarantees that the estimated state converges to the true state asymptotically.

With the proposed structure of the state observer in Equation (3.41), the task of 

estimating the state variables lies in the design of the operator C. There is no general 

design method for a general PDE problem and it is not the purpose of this thesis to 

develop general methods for observer design. In the examples, the operator C designed 

using Lagrange polynomials is found to be adequate.

If the operator A  defined by Equation (3.39) is an infinitesimal generator of a 

contraction semigroup, the simplest observer can be obtained by choosing C — 0. The 

addition of the term C(w — Qrf) in the state observer can accelerate the convergence of 

the estimation to the true state.

By combining the developed state feedback controller in Equation (3.10) and the 

state observer in Equation (3.41), an output feedback controller for quasilinear system 

in Equation (3.37) is obtained:

^  +  | | a ( ? 7, x, t, u) = b(rj, x, t, u) +  C(w -  Qrj),

—k(h(r), x ,f) +  ^- /o h(r], x, r)d r ) 
w(Xj t) = --------------- J i    (3-48)

Lgh(r),'x,t)
Lfh(r),x,t)
Ls% , x , f ) ’

where rj is the estimated state.

3.2.2 Nonlinear Systems

The implementation of the state feedback control in Equation (3.31) for a nonlinear 

system requires the estimation of both the infinite state variables and their spatial 

derivatives of the state variables, which are also infinite dimensional. Assuming the the 

state variables in the DPS can be measured at a finite number of points, the nonlinear PDE
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system can be expressed as:

dv ,  , dv  v

(3.49)
y = h (v ,x ,t) ,  

w =  Qv, 

u ( x 0) =  Vo,

where w  is the set of measurements of m  elements, Q is an operator L2(0 ,1) — * R m, 

and v (xq) =  v0 is the boundary condition.

Splitting $  in Equation (3.49) into a term containing the state variable v and a term 

independent of the state variable v, the state equation for the nonlinear system can be 

expressed in the form:

dv ^ . dv  . ^ , .
—  =  $i(v, x, t, u) +  $ 2(x, t, u). (3.50)

Choose Z — L2(0,1) as the state space. An operator A  on Z  can be defined such that

Aip = (3.51)

dtp

D{A) =

<p € L2(0 , 1)| —  ,u)

is continuous,

e l/2(0 , l)

9?(xo) =  Vo

The state observer for the nonlinear PDE system in Equation (3.50) can be constructed in 

the same way as that for a quasilinear PDE, and has the form:

dr]

d t
Ar] +  $ 2  (a:, t, u) +  C(w  -  Qrj), (3-52)

where r] is the estimation for state variable v and C: R™ —> Z. If the operator C  can 

be designed such that the composite operator (A — CQ) is an infinitesimal generator 

of a contraction semigroup, the state observer (3.52) guarantees that the estimated state

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



converges to the true state asymptotically. The estimated state variables can then be used 

to estimate the spatial derivatives of the state variables, which is required for nonlinear 

control implementation. Since the operator A  has a more complicated form for nonlinear 

systems than for quasilinear systems, the design of the operator C  is more difficult.

By combining the developed state feedback controller (3.31) and state observer (3.52), 

an output feedback controller for the nonlinear system in Equation (3.49) is obtained:

^  +  $(v, x, t, u) =  C (w -  Qt]),

—k(h(r), x, t )  + — £  h(r), x, r)d r)
u(x  t ) = _____________ Zi— ___________ (3.53)

( ’ j L<2h(r),x,t)
LClh(r],ic, t)
L(2 h(r], x, t) ’

where r) is the estimate of the state v .

3.3 Examples

In this section, the proposed feedback controller is illustrated through two examples, 

and the closed-loop performance is investigated. The two example processes are a heat 

exchanger modelled by a single PDE and a plug-flow reactor modelled by a system of 

first-order PDEs.

3.3.1 Heat Exchanger

Consider a forced-flow steam-jacketed tabular heat exchanger. The fluid within the tube is 

heated using steam without condensation. The dynamic model of the process in deviation 

form can be expressed as (Hanczyc and Palazoglu, 1995):

f t  + * C T - 2 } ) = 0 ,  (3.54)

where T(x, t) denotes the temperature of the heat exchanger within the tube, x  €  [0 , 1], 

Tj denotes the jacket temperature, u, the manipulated variable, is the fluid velocity in
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the exchanger, and H  is a positive constant. For simplicity, the steam temperature is 

considered to be spatially uniform. Temperature T  at the exit is the variable to be 

controlled. Note that the model given in Equation (3.54) is quasilinear.

State Feedback Control

The characteristic vector field for Equation (3.54) is £ — [1, u, —H (T  — 7})]. The output 

function is defined as:

y = T ~ T sp{x), (3.55)

where Tsp denotes the setpoint temperature profile. The control objective is y =  0. The 

Lie derivative of the output is:

L ( y = - H ( T - T s ) -
ST.sp

dx
u. (3.56)

A state feedback control for the heat exchanger can be obtained by applying the control 

law (3.10) and can be formulated as:

ku(x ,t) (:T(x , t) -  Tsp(x)) +  -  f  (T(x, r )  -  Tsp(x))dr (3.57) 
Ti JodT sp(x ) 

d x

~ ( T ( x , t ) - T s )

where — is the spatial derivative of the setpoint temperature profile, which is 

specified. To avoid the singularity, — ^  0 has to hold and setpoint profiles must not 

be constant. Although this is a spatially distributed controller, the manipulated variable u 

is spatially uniform throughout the heat exchanger due to the assumption of well-mixed 

heating gas. Since the control objective is to have the exit temperature of the exchanger 

reach its setpoint, a modification can be made by simply replacing the spatially distributed 

variables by their values at x — 1. The resulting spatially uniform controller can be 

written as

u = K (T( 1, t) -  Tsp) +  -  [ \ t (1, t ) -  Tap)dr (3.58)
Ti Jo
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X 0 0 t

Figure 3.1: Setpoint tracking performance in the heat exchanger using state feedback

where K  = U=i- Note that the control law in Equation (3.58) is a PI form plus a 

term to correct for disturbances in jacket temperature and heat coefficient.

A simulation was performed to evaluate the performance of the state feedback 

controller of Equation (3.58). The parameters used for simulation were: H  =  1, Tj — 10. 

The tuning parameters were chosen to be A  =  2,77  =  0.2. The initial temperature profile

is T(x, 0) =  2x and the boundary condition were T(0, t) — 0. The specification of the
dTs

exit temperature and its spatial derivative was taken as Tsp = 3 and ——  — 3. For 

simulation purposes, the finite difference method was used to derive a finite-dimensional 

approximation of the original PDE equation, with a choice of 10 discretization points. 

Simulation results are shown in Figure 3.1. It is observed that the exit temperature, (i.e., 

T  at x  =  1), tracks the setpoint well and the temperature profile at other points is stabilized 

and reaches its steady state quickly.

The performance of the proposed state feedback control was compared with that of the 

traditional PI control. The same tuning parameters, K  — 2 and 77 =  0.2, were taken in 

both control methods. These tuning parameters are consistent with the tuning formula for 

PI controllers based on the open loop step test (Smith and Corripio, 1985). Figure 3.2
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Figure 3.2: Comparison of the proposed state feedback vs. the conventional PI control

compares the output response to a setpoint change using these two control methods. It 

is observed that, in comparison to the traditional PI control, the proposed state feedback 

control yields smooth convergence to the setpoint with little overshoot and oscillation. 

The improved performance of the proposed state feedback control over the traditional PI 

control results from the dead-time compensation term ^ ( T ( l , t )  — Tj) in the controller, 

which prevents the output from having large overshoot.

The performance of the proposed control method for disturbances in process 

parameters or operating variables were investigated. Figure 3.3 and 3.4 compare the 

process performance of the traditional PI control and the proposed state feedback control 

when the jacket temperature increases from 10 to 15, and decreases from 10 to 8 at time 

t =  1, respectively. It is observed that the proposed feedback control responds to the 

disturbances in operating variables quickly.

The performance of both control methods to the disturbances in process variables 

was also studied. Figure 3.5 and 3.6 compare the control performance of the proposed 

feedback control and PI control if the process parameter H  increases 20% and decreases 

20% at time t  = 1, respectively. The proposed feedback control displays quick rejection
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Figure 3.3: Comparison of the proposed state feedback control and the traditional PI 
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Figure 3.4: Comparison of the proposed state feedback control vs. the conventional PI 
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to the disturbances in the process variable and returns to normal operation in a very 

short time. Simulation results show that the proposed state feedback control provides 

remarkable advantages over the traditional PI control when there are disturbances in 

process parameters or operating variables.

Output Feedback Control

An output feedback control law can be obtained by combining the developed state 

feedback control with the design of a state observer. Assume that temperature in the 

heat exchanger can be measured at 5 points x =  0,0.2,0.4,0.6,0.8. The state observer 

for system (3.54) can be designed as

where Tm is the temperature measurement vector in R 5, T' is the estimated temperature 

profile in the heat exchanger. Operator Q maps the estimated temperature profile into

where parameter c is adjusted to reach the desired convergence rate.

For the simulation, it is assumed that the true initial temperature profile is To — l —e~5x 

and the estimated initial temperature profile is Tq = 5x.

Figure 3.7 shows that the estimated temperature profile converges to the true 

temperature profile for any negative value of the parameter c. The more negative value 

of c, the faster the convergence; however, large absolute values of c can cause a strong 

oscillation in the temperature estimate and is deemed undesirable. So a trade-off has to 

be considered between fast convergence and oscillation in the temperature estimate.

An output feedback controller is obtained by combining the state feedback control 

(3.58) with the state observer (3.59). A simulation is run using c =  —10, k = 5 and 

t — 2. Figure (3.8) shows that the output feedback control produces more oscillation 

than the state feedback control but tracks the setpoint well.

JT' 8T'
W  = &T ” H ( T  -  Ts) ~  C(Tm ~  QT )'

(3.59)

temperature at 5 points. Design an operator C  : R 5 — > Z  as

(3.60)
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3.3.2 Plug-flow Reactor

In contrast to the continuous stirred tank reactor (CSTR), a plug flow reactor (PFR) is 

such that reactants pass through a reactor with little mixing (Aris, 1969). In the ideal 

case, each element of the reaction mixture would have a reaction time precisely equal to 

the residence time of the reactor. In this section, the proposed feedback control will be 

applied on a plug-flow reactor with uniform heating in the jacket.

Consider the non-isothermal plug-flow reactor where two first-order reactions in series 

take place:

A  — >B — >C,

where A  is the reactant species, B  is the desired product and C is an undesired product. 

The reaction rates follow an Arrhenius expression:

n  =  - ki0e-El/RTrCA, 

r 2 =  —k 2oe~~E2/ RTrC B ,

where fc10, k2o, £a, E2 are Arrhenius constants and the activation energies of the reactions. 

The reactions are assume to be endothermic. The reactor is heated with a jacket.

Under the assumptions of no radial concentration gradients in the reactor, constant 

volume of the liquid in the reactor, constant density and heat capacity of the reactants, and 

negligible diffusion and dispersion, the following model can be obtained using material 

and energy balance:

OCa  OCa  j /RTr^i
~ W  = ~ Vl~djT ~  106 Ca'

I F  =  + k™e~E' /BTrC* -
dTr dTr (—AHri) F/Tlr~  = ~ v i ~  + ±------- r- ^ k 1Qe-EEKTrCA
i j t  t / X  p m  Cpm

• {~ AHn) kne-to/KT'CB +  — ^  (T, -  Tr),

(3.61)

PmCpm P m fipm V r

subject to the boundary conditions:

CA(0, t) = Cao, CB(0 ,t)=  0 , Tr (0 , t) =  Tr0, (3.62)
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where CA and Cg are the concentrations of the species A  and B  in the reactor, Tr is 

the temperature of the reactor, AHn  and AH r2 are enthalpies of the two reactions, pm 

and Cpm is the density and heat capacity of the fluid in the reactor, Vr is the volume of the 

reactor, Uw is the heat-transfer coefficient, Caq and Taq are concentration and temperature 

of the inlet stream in the reactor, Tj is the spatially uniform temperature in the jacket and 

manipulated to control the concentrations, x  is the spacial coordinate along the reactor 

and x  € [0 , 1].
d dDefine the vector field =  —+vt—  in the space of (f, x), and the system in Equation
at ox

(3.61) can be described by ODEs along the vector field

i = l,

X  =  Vi ,

CA = —ki0e~El/RTrCA,
(3.63)

CB =  kW( r El/RTrCA -  kwe -EA ^ r C]h 

Tr = kwe-E^ c A+
PmGpm

k A M hxe-&/*rrCs + -  Tr),
PmCpm P m C p m 'r

and the corresponding vector field in the space of (t, x , CA, Cb i Tt ) is denoted as £. 

Define an output function as:

y = CB ~ CrB(x), (3.64)

where CrB(x) is the desired concentration trajectory of species B. Then the first-order and
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second-order Lie derivatives of the output function along the vector field £ are:

L ( y  =  k w e - B^ C A -  k v e - W B T 'C *  -  ^ v u

L^L(.y = - k l 0e~~2El/RTrCA +  k\Qe~2E>1,KTrCB -  ki0k2Q€^El+E2^ RTrCA

MqEiCa E, /RTr _  k20E2CB Er> 1RTr- 
1 J2T2 i?Tr2 j

t .̂ j A kwe-Ei/irrrCA + L M n l k20e-E2/RTrCB +  - -  Tr)
Pm,Cpm Pm Cpm  Pm fipm  * r

(3.65)

The input appears in the second-order Lie derivative of the output function, and thus, the 

system can be said to have relative degree 2. The task is to design a controller such that 

the output response along the vector field £ is

1 R
L^L^y + L(.y +  h ( y  + — /  ydr) =  0, (3.66)

Ti Jo

where k\, k2 and rj are parameters to be selected. The three parameters in Equation (3.66) 

complicate the tuning process. For the convenience of tuning, it is assumed that k\ — k2. 

Let

_  ki0E1CA E,/RTr _  k2pE2CB E2/rt 
1 “  1 RT? 6 RT? h K }

W2 — W\ ( ~ A " r i h 10e - E‘/1H’- g A  +  L ^ g a l t a o e - a / B T r ^
P m c prn PmPprn

If K7i 7  ̂0, a state feedback controller can be designed using the proposed characteristic- 

based feedback control method. The formulation for 7} can be obtained from Equation

(3.65) and (3.66):

T  =  T  _  P ^ Y l  +  k2k10e -E^ RTrCA ~  k2b20e ' E2/RTrCB (3.68) 
Uww  i

1 /*̂
V +  ~ l  yir)\ .

Since the concentration of B  at the exit is to be controlled, the jacket temperature can 

be computed based on the above equation using the values at x = 1 for the distributed 

variables.
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Table 3.1: Model parameters for a PFR

Vl =  1 m/min R = 1.987 kcal/(min o K)

L =  1.0 m Pm = 0.09 kg/1

Vr =  10.0 1 Uw = 0 .20 kcal/(min o K)

Ei =  20000 .0 kcal/kmol Cprn = 0.231 kcal/(kgoK)

e 2 =  50000.0 kcal/kmol Cm) = 4 mol/1

kio =  5.0 x 1012 min~ 1 Cbo = 0 mol/1

to o =  5.0 x 102 min-1 Tr0 = 320 K

Hn =  0.5480 kcal/kmol Hr2 = 0.9860 kcal/kmol

In simulation, the model parameters used are listed in Table (3.1). The setpoint 

tracking performance of the proposed controller was examined with the control 

parameters ki — 2 , k2 = 2 and rj =  1 and the initial state variable profiles are 

shown in Figure 3.9. Figure 3.10 shows the response of the state variable profiles and 

the manipulated variable when the outlet concentration setpoint of product B increases 

from 0.8 mol/1 to 1 mol/1. It can be seen that the state variable profiles respond quickly 

to setpoint changes with a smooth evolution. Further, the process is stable under the 

proposed feedback control in the simulation. The output response for setpoint change is 

further illustrated in Figure 3.11 with different setpoint changes. The proposed feedback 

control yields offset-free output response. The output converges to the setpoint quickly 

and smoothly with some overshoot.

The performance of the proposed feedback control in the presence of the measured 

disturbances was also investigated. Figure 3.12 shows the output response and the control
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Figure 3.9: Initial process variable profiles in PFR

action when flow rate V[ changes from 1 m/min to 1.2 m/min at time t =  1 min and 

from 1.2 m/min to 0.8 at time t = 7 m/min. Note that the process output returns to the 

setpoint after a short period of time. The behavior of the proposed feedback control to 

the unmeasured process variable disturbances is shown in Figure 3.13. When the process 

variable Uw changes from 0.2 kcal/(min.K) to 0.22 kcal/(min.K) at time t = I min and 

from 0.22 kcal/(min.K) to 0.18 kcal/(min.K), the proposed feedback control rejects these 

disturbances well. Overall, the proposed feedback control is shown to provide satisfactory 

performance and reject measured or unmeasured process disturbances.

In the control of the reactor, concentrations cannot be measured along the reactor
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Figure 3.11: Output response to setpoint changes in PFR

while temperature can be easily measured at many points along the reactor. So output 

feedback control can be implemented based on the estimated concentration. Take the 

true initial conditions as: (^(O, x) =  4 mol/1, Cb (0, x )  = 0 mol/1, Tr(0,x) =  330 K 

and the estimated initial concentration profiles as: Ca(0, x )  — 3 mol/l, Cb (0,x) — 1

mol/1. The control parameters are taken as: ki =  20, &2 =  20, 7j  =  1. The setpoint
dCris CrB(x — 1) =  1 , —r^-{x — 1) =  r. Figure 3.14 shows that output feedback control
dx

converges to the state feedback control and the concentration of B  at the exit tracks the 

setpoint well, with only a slight degradation in performance.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



iao
s
inO
v
■a
3
0

10 126 82 40
t, min

(a) operation variable changes (b) output

Figure 3.12: Output response to flow changes in PFR

0O
0.76

3
0

0.72

10 126 80 42
t,min

(a) unmeasured process variable changes (b) output

Figure 3.13: Output response to heat transfer coefficient changes in PFR
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3.4 Discussions

In this chapter, feedback control methods for systems described by a single first-order 

hyperbolic PDE were developed. The central idea of this control approach is the 

combination of the Method of Characteristics and geometric control. The Method of 

Characteristics is employed for a general first-order PDE system to derive a nonlinear 

ODE control system. Based on the characteristic ODEs, nonlinear output tracking control 

schemes are used to drive the system towards the desired behavior. The proposed state 

feedback control and output feedback control are shown, via simulation, to provide good 

performance. In comparison to other available methods, the proposed controller has a 

simple form and is easy to implement. The proposed feedback control can respond to 

disturbances quickly while maintaining normal process operation well. The calculation 

of control action does not require high order spatial derivatives of the state variable, which 

reduces sensor system requirements.

In spite of the advantages of the proposed control method, in comparison to the existing 

feedback control methods and traditional PI control, some inherent problems exist for this 

method. The idea of feedback control development using the Method of Characteristics is 

to formulate the controller such that the process output moves towards the desired setpoint 

along the characteristic direction. Unlike similar methods in lumped parameter systems, 

this movement pattern cannot be kept as time goes on due to the boundary limitation and 

will be broken at the boundary. This causes offset in process response. Thus, adding 

an integral term is necessary to eliminate offset in this method. The dynamics of DPS 

are such that the inputs of the process affect the infinite-dimensional state variables; 

however, it may take some time for the influence of the input to be observed in the 

process output, a situation analogous to the effect of time-delay in finite dimensional 

systems. The feedback control methods compute control actions based on the current 

process output value and ignore the long-term effect of the control action on process 

output, and thus lead to a short-sighted controller. The shortsightedness also makes 

the proposed feedback control difficult to apply to boundary control problems and the 

conservative tuning required for stability, etc., results in sluggish process response to
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boundary condition changes.

Output feedback control is obtained by combining the state feedback control and an 

infinite-dimensional state observer. The development of an infinite-dimensional state 

observer is a very challenging issue in the control of DPS. Even though it has been 

explored for first-order PDE systems in this work, some specific algorithms remain 

unsolved.

The above disadvantages of the proposed feedback control may limit its applications. 

An alternative control method, which overcomes these disadvantages, is required to 

achieve good control performance in the DPS.

Model Predictive Control takes into consideration the long term effect of 

control actions on process outputs in the controller design, thus can overcome the 

shortsightedness of the feedback control. The Method of Characteristics provides a 

geometric way of viewing the solution structure of PDE systems, and it can help to build 

an insight into how the process output evolves in the future. Therefore, it may be an 

effective tool in developing Model Predictive Control algorithms for some DPS. Use of 

the Method of Characteristics in Model Predictive Control should be able to deliver better 

performance.

The focus of this chapter, to this point, has been limited to the first-order PDE systems 

with a single characteristic. Next, the method is extended to more complex systems such 

as first-order PDE systems with multiple characteristics and certain higher-order systems.

3.4.1 Extensions to More Complex PDE Systems

The convenience of developing feedback control methods for first-order PDE systems 

with a single characteristic lies in that the Cauchy characteristic exists and the PDE 

models can be exactly transformed into a system of ODEs along one characteristic 

direction. However, many distributed parameter systems are modelled by a system of first- 

order PDEs in which Cauchy characteristics do not exist. The possibility of extending 

the proposed feedback control to these complex systems and the potential problems are
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explored in this section.

First-order PDE Systems with Multiple Characteristics

Distributed parameter systems modelled by a system of PDEs usually cannot be 

transformed into a set of ODEs along one characteristic direction. They have to be 

described by more than one characteristic. These systems include counter-flow heat 

exchangers, counter-flow reactors and chemical absorbers, etc. Research on model-based 

feedback control of these systems has been very limited.

Consider a quasi-linear PDE model with two infinite-dimensional state variables:

where t  is time, x  =  {x ±, x2, ..., xn} is spatial coordinates, a n , ..., ai„, a21,..., a2n, and 

bi, b2 are continuous functions. Assume that condition y — 0 defines a smooth surface, 

which serves as the desired process setpoint.

Since au a2i, i = 1,2, ...,n holds almost everywhere, Equation (3.69) cannot 

be described by a set of ODEs along a certain direction. However, the two PDEs 

in (3.69) can be described by ODEs along two different characteristic directions, 

separately. Vector =  [1, an , • • • , aXn, &i]T =  [ l ,a i ,6i]r  hi space [t,x ,v i] and 

6  =  [1, 021,* •• ,a,2n,b2]T = [1 , a2, thY  in space [t,x,v2\ define two time-varying 

control-parameterized vector fields and are called characteristic vector fields. These two 

vector fields can be expressed in t — x  space as:

The Lie derivatives of state variables v\ and v2 along the vector fields and £2 can be

(3.69)

c d d
1 d t ^ &1d x ’ 
. d d

S2 ~  'XT T a 2T—• at ox

(3.70)
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expressed as:

L^Vi — bi,

= h  + (ai -  a2) ^ ,  (3 7J)

— 2̂,

^ 2^1 =  / i  +  (a2 -  a i ) “j^r- 

With the above equations, the Lie derivative of the output along the two vector fields £1 

and £2 are:
dh dh . dv2 dh

L ^ y  =  -x—b\ -f —— (/2  +  (a! — a2 j-r—) +  Tr~a i> 
q dvi dv2 ax  ax  (3.72)

r <9/i, dh . . . 1 .
t 6 y  “  ^  +  a ^ ( h  + (“ 2 _  a i) a T * +  a S 32'

If ai — a2> Equation (3.72) is greatly simplified and becomes an algebraic equation 

without derivative terms. For PDE models with multiple characteristics, oq ^  a2 and the 

Lie derivative of the output along each of the two characteristic vector fields cannot be

simplified. When the output function contains only one infinite-dimensional state variable
dh dh(i.e., either - — =  0 or —— =  0), one of Lt.y  and Lt.y  has a simple formula. Assume
ov2 dv  1

that the control objective is to regulate variables associated with v\ only. Then, L ^ y  can 

be written as :

a 7 3 )

The first-order Lie derivatives only partially display the process information. There 

exists four different second-order Lie derivatives of the output corresponding to the 

two characteristics of the systems. The term L ^ L ^ y  is the one that contains the most 

information of the systems and also has the simplest form. It is calculated as:

r r t dh dh dh dhLb L(ly -  Lb ^ - b , +  <3-74>

The controller can be formulated such that:

1
L&L^y  +  h L ^ y  +  k0(y +  — /  ydr) = 0. (3.75)

Tf J o

61

permission of the copyright owner. Further reproduction prohibited without permission.



The method can be illustrated by applying it to a counter-flow double pipe heat 

exchanger modelled by

9Ti . 9Ti . .__+  u i - r -  +  hi(Ti -  T2) -  0,

^  W < 3-76>

y = T2(x,t) ~ T 2sp(x),

where Ti and T2 represent the temperature profiles inside and outside of the tube, u\, the 

flow rate of the fluid inside the tube, is manipulated to control the temperature T2. The 

first-order and second-order Lie derivatives of the output along the two characteristics can 

be expressed as:

L&y ~  h2(T\ — T2) +  u2 ~~2s?,
dx (3.77)

ffT B T
L&L&y =  —h2(hi +  h2)(Ti — T2) — h2{u\ +  ti2)~q^  +  u2ui '

Assuming x  € [0,1], the controller can be formulated based on Equation (3.75) and 

(3.77):

ui = { - h 2(ht + h2 + k1h2)E(T1 - T 2) - h 2u2T2\lzl 

+kiu2T2sp\*zl +  koE(T2 — T2sp)

+  ^  f  E(T2 -  T2tp)d t \  /  | f t 2T2 |E> -  K J I } . (3-78)

where “  T2(x =  1) -  T,(x  =  0) and T2,p|*3  =  T2,r{x =  1) -  T2,r(x = 0).

This complex control formula does not have as clear geometric meaning as the one for

a single characteristic case. It involves complicated computations. In simulation, it is 

hard to tune to get satisfactory process performance. Hanczyc and Palazoglu (1995a) 

proposed a nonlinear state feedback control for a double-pipe heat exchanger using 

the Method of Characteristics by extending the sliding feedback control algorithm in 

single characteristic case to multiple characteristics. At the current time, the effort 

of extending the feedback control technique by using the Method of Characteristics to 

multiple characteristic cases does not appear to be promising. Further research is required 

to address this complex problem.
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Second and Higher Order Systems

Most second-order or higher-order PDE systems cannot be described by a single 

characteristic, but there are some special cases. Consider a second-order quasi-linear 

parabolic system:

a2(t, x, u)vtt +  2a(t, x, u)b(t, x, u)vtx +  b2(t, x, u)vxx

+c(t, x, u)vt +  d(t, x, u)vx =  f(x ,  u), (3.79)

y =  h(v,x),

where a(t, x, u) ^  0 , b(t, x, u) and c(t, x, u) are C°°-continuous functions of their
d . . d

arguments. Define a vector field in the space of (t, x) as £ =  a ( t ,x ,u ) ~  + b { t ,x ,u ) ~ .  

Then, Equation (3.79) can be written as:

r r . d a  ,da .dv  , db , db .sdv .. , omL(Lev +  ( a -  +  6—  +  c ) -  + ( a -  + +  d ) ~  -  f (x ,  u). (3.80)

If
da da

a7ti + b7 h +C «
db db b ’

a~Ki +  b— 1- a dt ox

(3.81)

Equation (3.79) becomes

L^Lty +  e(x, y, u)Lgv — f(x ,u ) ,  (3.82)

. . da b da c adb db e _  . . „where e{x, y,u) = -  + - —  + -  = Then, the system m Equation
dt a dx a b dt dx b

(3.79) can be exactly described by one characteristic:

t =  1 ,

. bx  =  —,
a (3.83)

v — u,

f ( x ,u )
u> — e(x , y, u)ui +

a
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The first-order Lie derivative of the output y along the vector field £ can be calculated 

from Equation (3.83):
dh dhbI  y _  u  +  — . (3.84)
av ox a

dhWith the assumption that —  is constant, the second-order Lie derivative of output can be
ov

obtained:
r r dhLi h y  =

' l \ . f (x ,u )e(x, y , u ) lo + a
Normally, the second-order Lie derivative includes all information of the original systems 

and calculation of the higher-order Lie derivatives is not necessary. A controller can be 

designed such that

1 r*
L^Lg) +  kxL^y +  k0(y -I /  ydr) =  0. (3.86)

ri Jo

The controller has a clearer geometric interpretention than the one for first-order systems 

with multiple characteristics, but the disadvantage of this controller is that it contains a 

new variable u>, which requires a complicated state observer. In addition, this method is 

only applicable when the condition in Equation (3.81) holds. Obviously, this is a very 

restrictive limitation and may not be satisfied in many practical applications.

Similarly, for nth order system, if we can define a vector field £ in the space of (t, x) 

such that the system can be described as:

L^L^...L^v +  an^iL^...L^v + ... +  a\L^v =  f (x,  u), (3.87)

the n-th order PDE systems can be controlled using the feedback control strategy based 

on the Method of Characteristics. As above, the controller requires an additional ( n -  1) 

variables that must be estimated. Such a controller is highly restrictive and potentially 

complex.

Given these limitations on the use of the proposed feedback controller, an alternative 

approach is required to extend the class of processes that can be considered. As previously 

discussed, the MPC paradigm can address some of the key characteristics of DPS. Thus,
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in the next chapter, Model Predictive Control is developed for different PDE systems 

using the Method of Characteristics.
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Chapter 4 

CBMPC for Hyperbolic Systems - 

Single Characteristic

A significant number of practical processes can be modelled by first-order hyperbolic 

PDEs with single characteristics (e.g., heat-exchangers, continuum models of traffic flow, 

evolution of an age-structured population, flow in a porous media, etc). As discussed in 

the last chapter, the Method of Characteristics has been used in the development of state 

feedback control or output feedback control for these systems (Godasi et al., 1999; Shang 

et al, 2000). The resulting controllers have comparatively good setpoint tracking 

behavior and robust performance; however, implementation of the control law requires 

the estimation of the infinite-dimensional state despite the fact that only a portion of the 

information is used in the final control action. Thus, the available information is not fully 

exploited in the control strategies.

This chapter proposes a Characteristics-B ased Model Predictive Control (CBMPC) for 

hyperbolic PDE systems with single characteristics. It uses the Method of Characteristics 

to predict the future process outputs from the current state variable profiles and formulates 

the controller such that this prediction is as close as possible to the desired process
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response. The transformation of PDEs to nonlinear ODEs is exploited in the proposed 

approach to facilitate the computation of the control actions using a nonlinear quadratic 

MPC algorithm. The main advantage of the approach is the increased computational 

efficiency and improved prediction accuracy compared with the conventional finite- 

difference approach. The CBMPC approach takes into account the long-term effect of 

the current control action on the process output in the controller formulation, and thus, 

can overcome the shortsightedness of simple feedback control methods.

The chapter is structured as follows. In section 4.1, a brief review of MPC is presented. 

In section 4.2, the CBMPC algorithm is developed in details for linear and quasilinear 

systems. Section 4.3 discusses the stability issue of this control method. A simulation 

study is presented in section 4.4. The chapter concludes with a brief discussion of the 

result in section 4.5.

4.1 MPC Background

Model Predictive Control (MPC) refers to a control scheme in which a sequence 

of manipulated variable adjustments is determined by optimizing some open-loop 

performance objective on a time interval extending from the current time through some 

specified prediction horizon. The computed settings for the manipulated variables are 

implemented until plant measurements become available, usually at the next control 

interval. Feedback is incorporated by using the measurements to update the disturbance 

estimate in the optimization problem for the next time step. The defining features of 

MPC include the direct use of a process model for optimizing the open-loop process 

performance objective over a finite horizon (Eaton and Rawlings, 1992; Garcia and 

Morshedi, 1986). The explicit use of a prediction horizon in the control law formulation 

distinguishes MPC from standard feedback control.

The MPC control law can be most easily described by referring to Figure 4.1. For 

the single-input-single-output case, the control calculation consists of the following
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Figure 4.1: Introduction of model predictive control

optimization problem:

mm
A u ( k ) , . . . , A u ( k + m c —l )

t n c

X ^  (ysp(k + i) - y { k  +  i ) f  +  XKi) (Au(k +  j  - 1)y
i = i

(4.1)

where ysp is the setpoint, y is the model prediction, q(i) and r(j) are weighting factors, 

p is the prediction horizon and m c is the control horizon or the number of future 

moves to be computed, Au is the change in manipulated variables, which is defined as 

Au(k) =  u(k) — u(k — 1). In general, mc <  p and therefore u(k+ m c — 1) =  u(k+ m c) =  

... =  u(k + p ~  1). The model prediction y can be written as:

5
y(k +  j )  =  y0(k +  j )  + X  SmiAu(k + j ~  1) +  w(k +  j), (4.2)

i—1

where yo(k+j) is the contribution to the future values due to past input moves (up to time 

k — 1), Smi are the step response coefficients for the manipulated variables and w(k + j ) 

captures all unmodelled effects. To predict the output value using Equation (4.2), the 

disturbance w(k +  j )  must be estimated, which is carried out as follows:

w(k + j ) =  w(k) = ym(k) -  y0(k), j  1,2,..., p , (4-3)

where ym{k) is the current measurement. The control problem as presented in Problem
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(4.1) using Equation (4.2) through (4.3) is the well known Quadratic Dynamic Matrix 

Control (QDMC) form (Garcia and Morshedi, 1986).

MPC began with an attempt to improve the control of processes that are constrained, 

multi-variable and uncertain (Chen and Allgower, 1998). The use of MPC in the 

chemical engineering field started in the process industries in the 1970s (Culter and 

Ramaker, 1979; Richalet et al, 1976) and in the past three decades, MPC has found wide 

acceptance in industrial practice. MPC, using a linear model, has been the technology 

of choice in the petrochemical and chemical industry since the advent of the technique. 

A number of approaches now exist including: linear time-domain, input/output, step 

response or impulse response modelling approaches and Generalized Predictive Control 

(GPC) (Clarke et al, 1987a; Clarke et al, 1987b; Garcia, 1984; Richalet et al, 1994). 

Recent developments have seen the emerging use of state-space formulations of the 

MPC approach (Rawlings, 2000). An account of current trends in linear MPC are 

discussed in a number of survey papers (Badgewell, 1997; Mayne et al, 2000; Rani and 

Unbehauen, 1997; Rao and Rawlings, 2000).

Since the essence of MPC is to optimize forecasts of process behavior based on a 

process model over values for the manipulated input variables, the model is a critical 

element of a MPC controller (Rawlings, 2000). Typically, linear models are used for 

this task, despite the fact that essentially all industrial processes exhibit some degree of 

nonlinear behavior. The use of nonlinear models in process control is motivated by the 

possibility of performance enhancement through improved quality of forecasting. Active 

research on Nonlinear Model Predictive Control (NLMPC) has resulted in a number of 

algorithms (Chen and Allgower, 1998; Henson, 1998; Mayne et al, 2000; Scokaert et 

al, 1999; Sistu and Bequette, 1996). Some of these algorithms attempt to deal with 

nonlinear systems by modifying the linear algorithm, in particular the prediction equation, 

while retaining the advantage of Linear Model Predictive Control (LMPC). Nonlinear 

quadratic dynamic matrix control is proposed for the control of nonlinear processes and 

uses a nonlinear model to compute the manipulated variable values and achieves optimal 

quadratic performance (Garcia, 1984). A NLMPC algorithm based on a reinterpretation

69

permission of the copyright owner. Further reproduction prohibited without permission.



of the process output prediction equation as a Taylor series expansion for non-affine, 

nonlinear systems showed improved computational efficiency and performance (Mutha 

et al, 1997). Other NLMPC approaches have included the use of second-order Volterra 

model series and other nonlinear models such as Wiener models and Hammerstein models 

(Maner et al, 1996; Norquay et al, 1998). These MPC techniques focus on lumped 

parameter models and limited results are available for MPC methods based on distributed 

parameter models.

Traditionally, distributed parameter systems have been approximated by linear models 

that can be used to design linear model based control strategies (Patwardhan et al, 1992). 

Satisfactory control can be achieved using these low-order linear models when the 

process nonlinearity and spatial variation of the state variable are mild. When the 

processes have large spatial variation, the use of partial differential equation models in 

model based control for DPS may provide tighter control of the process and improved 

constraint handling. Unfortunately, model predictive control techniques for distributed 

parameter systems are relatively scarce due, in part, to the mathematical complexity 

arising from the partial differential equation models. Some researchers have addressed 

the design of model predictive control for distributed parameter systems (Bhattacharyya 

et al, 1996; VanAntwerp and Braatz, 2000); however, most of these strategies use 

an approximate ordinary differential equation (ODE) model or a discretization of the 

underlying partial differential equations into a system of ODEs, in order to apply 

nonlinear MPC techniques to the resulting high-dimensional lumped parameter systems. 

These methods can produce a control performance that is superior to traditional lumped 

parameter controller for some distributed parameter systems; however, discretization of 

partial differential equations usually leads to a large number of ODEs, which drastically 

increases the complexity of the calculations. The computational cost associated with 

this lumping approach can be prohibitive for some processes and may not provide an 

improvement in performance that warrants the additional computational cost.

The MPC scheme presented in this chapter addresses processes modelled by first-order 

hyperbolic PDEs with single characteristics. The MPC scheme for processes modelled
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by hyperbolic PDEs with multiple characteristics and parabolic PDEs are presented 

in chapters 5 and 6 , respectively. The Method of Characteristics is the fundamental 

basis for future output prediction. This prediction approach is then reformulated into 

the framework of existing nonlinear model predictive control and a control action is 

calculated using available nonlinear model predictive control algorithms.

4.2 CBMPC Development

For processes modelled by a scalar PDE or some specific systems of PDEs, Cauchy 

characteristics exist and the PDE models can be described by their characteristic ODEs 

along single characteristic curves. This provides a convenient and efficient way to predict 

the future output from current state variable profiles. This geometric solution method is 

used in this section, to develop a characteristic-based MPC scheme.

4.2.1 Linear Systems

Consider a system modelled by a linear first-order scalar PDE:

dv dv__ +  a~  = hv + cu, 
dt dx

v(x — 0 ) =  vb, (4 -4)

y = v{xcmUt),

where t  is time, x is a normalized spatial coordinate and x  G [0,1], a, b, c are constants, u 

is a spatially uniform input, v  is the distributed state variable, vb is the value of the state 

variable v at boundary x = 0 and the output y is the state variable v at position xOUf
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The PDE in Equation (4.4) has a system of linear characteristic ODEs:

i = i,

x =  a, (4.5)

v = bv + cu.

Equation (4.5) represents a set of orbital curves, which are in the solution surface of the

PDE model. With the initial condition t (0) =  t0, a;(0) =  x0, u(0) =  vq, the above system

of ODEs can be integrated analytically:

t  ~  to T At,

x — xq + aAt, (4.6)

v — (vo + -u)e — -  u. 
b b

This equation indicates that the state variable v evolves along each characteristic curve. 

The variation of v is determined by the initial condition on the same characteristic curve 

and not affected by other characteristic curves.

Slope 1/a

Figure 4.2: Projection of characteristic curves for scalar PDEs
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Equation (4.6) allows prediction of the sampled future output in high accuracy. It is 

possible to predict the future output in a continuous time, but it involves more complex 

computation and can be impossible as the model complexity increases. Therefore, the 

MPC methods in this thesis optimize the sampled future outputs predicted based on the 

continuous PDE model. The prediction of a sampled future output can be obtained from 

the value of current state variable profile v0 at some discrete spatial points, as shown 

in Figure 4.2. From Equation (4.6) and given a sampling time t3, the output at sample 

instants: t0+ its, i — 1 , 2 , • • •, can be determined from the initial value of the current state 

variable at spatial points: xoi — xout—ats, xq2 — xout~2ats, • • •. On the other hand, if the 

current state variable vQ is estimated or measured at discrete points x \ , ...,xm, the output
x out ~  x m  x out ~~ X 1 o -can be determined at future sample instants t0 H---------------,..., £0 ~I-------------• Mnce timea a

and spatial coordinates are correlated along characteristic curves, either sampling time or 

spatial discretization grid of the initial state variable profile can be freely specified, but 

not both. In this chapter, the spatial discretization points of the initial state variable profile 

are specified and sampling time is determined and can be adjusted through discretization 

grids. The control approach, however, applies to the case with specified sampling time. 

The selection of sampling time in CBMPC follows the same rules as MPC in LPS and is 

not discussed in this thesis.

Assuming that the value of the current state variable at spatial points x\ — 0 ,x2, ..., xm, 

is known, the next m  sample instants 10 +  A t i , 10 +  A t2,...,t0 + A tm, at which the output 

can be predicted, are
» ,  x out x m  «  j. x out x m — 1  a  ,  x out X 1 , AAti = ------------ , A t2 = ---------------- ,..., A tm = ------------. (4.7)

a a a
Since the current control actions affect the output only until time t0 +  A tm for systems 

modelled by Equation (4.4), the prediction horizon is chosen to be equal to A tm. When 

the space is uniformly discretized with a spacing Ax, the prediction sampling time 

becomes

t s = — , (4.8)a
and the sampling times are: A =  ts, Af2 =  2ts, ..., Atm =  m ts. It is easy to see that 

the discretization spacing can be used to adjust the sampling times.
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Assuming that the control actions in the next m c sample instants are u0, Ui, ..., umc- i  

and umc—i = umc = ... = um_i, the output y =  v{xout) at the future sample instants can 

be formulated from Equation (4.6) as:

y(t0 +  Ati) =  ebAtlv0(xm) +  (e6A<1 -  l)^u 0,

y(t0 + A t2) =  ebAt2Vo(xm^i) +  (ebAt2 — e^ At2_Atl))^M0

+  ( e b ( A t 2- A t l ) _  l ) ~ u i ,

y(t0 + A tmc) = ebAtmcv0(xm- mc+i) + (ebAtm° -  e6(Atmc Atl]) % 0 (4-9)b

y(tQ + A tm) =  ebAtmv0(xi) + (ebAtm — eb̂Atm Ail))^u0

+... +  (e6(Atm" Atmc-i) _  1) V  j.
b

From this equation, the future output values can be calculated using current and some of 

the future control actions, as well as the current state variable profiles.

By defining the vectors

y  =  [yto+At! ) yt0+At2) yt0+Atm] 3 (4.10)

y0 =  [ebAtlv0(xm),ebAt2vo(xm- 1),...,ebAtmvQ(x1)]T , (4.11)

u  =  [u0,Ui,...,umc-i]T , (4.12)
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and a matrix

ebMl -  1 0 0

g 6 A t2   g 6 (A t2 —A t i ) e6(Ata-Ati) _ 0

g b A tmc   g6(AtTOc—Ati) g&(Atmc Atj)  ^6(Aimc At2) ^ m c ~ i)  — j_

Equation (4.9) can be expressed in a compact form:

y  =  y0 +  Su. (4.14)

This equation gives an exact prediction of future output modelled by Equation (4.4). The 

dimension of the equation is determined by the spatial discretization of the initial state 

variable profile, which only affects the sampling time. Using other numerical methods 

such as the finite difference method on Equation (4.4) may also yield a linear matrix 

prediction equation similar to Equation (4.14), but a much higher dimension would be 

required to get an acceptable prediction accuracy. Equation (4.19) has the form of typical 

linear models, and therefore, it is straightforward to construct the control formula for the 

unconstrained MPC.

Given the specified sampling time and current state variable profiles at some 

discretized spatial points, y0 and S can be determined in Equation (4.19). The future 

control sequence u is calculated to make y as close as possible to output setpoint y r. An 

optimization problem with an objective function can be set up:

With m  > m c, the control moves can be computed using the least-square solution:

min ||y -  y rU (4.15)
=  min ||y0 +  Su -  y rU

u =  (STS)_1ST(yr — y0). (4-16)
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Then, the first element of u  is implemented.

To be consistent with the CBMPC for more complex PDE systems discussed in the rest 

of the thesis, the control increments from the past control action can also be calculated. 

Denote the immediate past control action as u-i. Define

yo =  yo +  S[u_i,u_i, • • • ,u_ i]T, (4.17)

and

Au =  [tt0 -  u - i ,u i  -  u-i,  ...,umc_i -  u_i] , (4.18)

where indicates the past control action at t_x. Equation (4.14) can then be written as:

y =  yo +  SAu. (4.19)

Note that Au is defined as the control increment from the past control action u_i, different 

from the definition as in DMC. Therefore, Equation (4.19) is not an integral equation. The 

control increments from u-\  is obtained as:

Au =  (STS)_1ST(yr — y0). (4.20)

In the control law described by Equation (4.16) or (4.20), S can be calculated off-line 

and y 0 needs to be updated based on the available new measurement, using Equation 

(4.11). Therefore, the control calculation is easy and the control law has the simple form 

of an analytical off-line control law. An example of heat exchangers in Section 4.4 will 

illustrate the design technique and performance of this proposed control method.

4.2.2 Quasilinear Systems

In a first-order quasilinear PDE model, the partial derivatives of the dependent variables

occur linearly in the equations, with coefficients and non-homogeneous terms being

functions of independent variables and dependent variables, which can be nonlinear.
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Processes described by such models can be represented as:

dv  . . d v  ,,—  +  a(x ,v ,u)—  =  f (x ,v ,u) ,  

v{x — 0) = Vb, (4.21)

y t ) ,

where a(x, v, u) and f(x,  v, u) are smooth functions.

In the space with coordinates (t, x, v ), the PDE model in Equation (4.21) possesses a 

characteristic vector field £ — [1 ,a(x, v,  u), f(x,  v, u)], which defines the characteristic

In contrast to linear systems discussed in the last subsection, the characteristic ODEs 

for quasilinear systems are nonlinear and cannot be integrated analytically. Numerical 

integration methods are required to obtain a sampled future output from the value of the 

current state variable at discrete spatial points. Assuming that the value of the current state 

variable at spatial coordinate value x0 is vq(xo), the output at a future time instant can be 

obtained by simultaneously integrating Equation (4.22) with initial conditions t(0) =  to, 

x(0 ) =  Xq and u(0) =  Uo(a;o):

where At =  t — t0. Integration can proceed until x reaches x^t, and corresponding state 

variable value is the output at time t. The output at a different future time can be obtained 

by varying the initial point x0. The prediction horizon time can be taken to be equal to the 

residence time, since the current value of the state variable and control action can only

ODEs:

x =  a(v, u, x) (4.22)

V =  f (v ,u,x) .

t — to T  At, (4.23)

v

X (4.24)

(4.25)
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affect the output within one residence time. Increasing the prediction horizon beyond the 

residence time will be equivalent to increasing the weighting factor for the terminal output 

in objective functions. This leads to a prediction horizon p equal to the number of initial 

discretization points m .  The manipulated variable can be kept constant or varying during 

the integration. In typical MPC calculation, control actions for the first m c  instants are to 

be determined assuming the control action is kept the same after m c  control horizon time.

This procedure of predicting the future output can be described mathematically by 

assuming that the values of the current state variable v 0 at m  spatial points x i , x 2 , . . . , x m , 

are v Q( x i ) ,  v q ( x 2 ) ,  . . . ,  v o ( x m ) .  Since a ( v ,  u ,  x )  ^  0 in Equation (4.21), it is clear that

=  a ( v ,  u ,  x )  ^  0. (4.26)

By the Implicit Function Theorem, A t — t —to can be expressed from Equation (4.24) as

A t = a ( x ,  Vo, u ,  x 0 ) ,  (4.27)

and therefore the next m sampling times, at which the output can be predicted, are:

A i i  =  t i  -  to =  < * (a w ,  « o ( a i ) , « ,  ® i) ,

At2 =  t2 -  t0 =  a ( x o u t ,  v 0 ( x 2 ) , u ,  x 2 ) ,
(4.28)

A tm == tm to — OtlXoyt, Vol̂ Xffi), U,

The output at the next m  sample instants, ti =  t+ A U , z =  1,2,*-- , m , can be expressed 

as:

y(ti) = 4>v(vo(xi),u,xi, Ati), 

y{h) = <t>v(vo{x2),u, x2, A t2),
(4.29)

yipm) = Xm, A tm).

Thus, from the current m-dimensional measurements or discretizations, the output is 

predicted for the next m  time instants.
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When the coefficient function a is a constant, the PDE in Equation (4.21) becomes 

semi-linear and the first two equations of the characteristic ODE (4.22) can be integrated 

analytically to give:

t — to +  At,
(4.30)

x — x0 +  aAt.

In this case, the next m  time intervals, at which the future output can be predicted, are 

expressed explicitly from Equation (4.30) as:

A t i =  Xowt~-X™,A t2 =  A tm = (4.31)
a a a

Using the current state variable vq at different spatial points as initial conditions, the 

output at time 10 +  A tx, 10 +  Af2, ...,t0 + A tm (m > mc), can be obtained by numerically 

integrating the third equation of the characteristic ODEs (4.22):

yiti) = f  f (v ,  u, xm+i~i + a(r -  t0))dr, *'==1,2, (4.32)
JtQ

Using the above procedure, the prediction of the output by numerical integration of the 

characteristic ODEs is decoupled for each spatial point and prediction time instant. This 

decoupling property allows one to predict the future output with relatively high accuracy 

at no cost of demanding computational requirement.

Given the control action u, Equation (4.29) or (4.32) can be used to predict the output 

for future sample instants. Therefore, the value of u can be obtained by minimizing the 

objective function:

J  =  E  V  -  , (4.33)
i—1

subject to either (4.29) or (4.32), depending on the quasilinear or semi-linear 

characteristics of the system. The more general objective function can also be used:

(yr -  y f Q ( y r -  y) +  Aur RAu, (4.34)

where y r is the desired output trajectory in future time, Q and R  are two positive definite 

weighting matrices, Au is the control increment from the past control action u_i.
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4.3 Stability

The general form of MPC does not guarantee closed-loop stability, because a finite 

horizon criterion is not designed to deliver an asymptotic property such as stability. 

Closed-loop stability can only be achieved by a suitable tuning of design parameters such 

as prediction horizon, control horizon and weighting matrices (Chen and Allgower, 1998). 

In this section, the closed-loop stability of the proposed CBMPC is analyzed for linear 

and quasilinear PDE systems via different routes.

4.3.1 Linear Systems

As discussed in the last section, the unconstrained CBMPC for linear PDE systems has 

the form of an offline control law. Hence, it is possible to analyze the closed loop stability 

by examining the denominator polynomials of the closed-loop transfer functions. This 

method was used to establish stability result for unconstrained MPC based on impulse 

response models (Garcia and Morari, 1982).

The output prediction for linear systems can be explicitly expressed in terms of the 

current state variable profiles and the future output, as in Equation (4.9). Since the current 

state variable value at every spatial point can be determined by the boundary condition 

value Vb and the past control actions, the future output can as well be formulated in terms 

of both past and future control actions as well as the boundary condition value Vb (see 

Figure 4.3). Using a uniform sampling time t s, the time intervals in Equation (4.9) are:

AU =  t s, A t2 = 218, • • • , A tm =  m ts. (4.35)

Then, the output for the next m  time instants, U =  t0 + its, i — 1, • ■ • , m, can be
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t

Figure 4.3: Output prediction from characteristic curves for scalar linear PDEs 

formulated as:

y(ti) = emhtsvb +  (ebts -  1 )^u0

+ (e2u. _  + • • • + (embt° -

y(t2) = embtsVb +  (e2bts — eWs)^u0 + (ebts — l)^wi

+(e36ts -  e264' ) ^ - 1 +  • • • +  (em6ts -

^ (fm j =  embtsz;6 +  (em*6t‘ -  +  ■ • • +  (e6t* -  1 ) ^ - 1

_)_(e(mc+l)6ts _  emc6t^£M_1 _j j_ (em6ts _  el™-1)6*4)^ -^ -™ ,.) ,

y(fm) -  ernbt‘Vb +  (embts -  e(m- 1)bt°)^u0 +  • • • +  (eSm- m-+1)bts -  l ) ^ c- i,
(4.36)

where uq,u\, • • • , umc- i  indicate current and future control actions at ti, and 

• • • , u-(rn-x) indicate the control actions in the past (m — 1) sample instants.
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By defining

hi =  (eibts -  e(i_1)6is)x, i — 1, - • • , m, b
Equation (4.36) can be written concisely in the matrix form as:

y  — Vb +  S iu  +  S2U_i,

where y  and u are defined as in Equation (4.11), and

U_1 =  [u_i, 2, • • • , U-(rn- 1)]T)

vb =  [e^^Vh, embt3vb, • • • ,embtsVb]T,

S i  =

hx 0  ••• 0

h2 hi ••• 0

hmc hmc—i • • • h2

S2 =

h2 hs 

h  hi

hm 0 

0 0

0

0

hi

h jn —i  h m — 2  • • •  / f i n —r r i c + 1  h i
i= 1 

m —m c+ 1
h m  h"ffi—l  • • • fi'm—m c+ 2  X -/ h i

i— 1

hm—i hm 

hm 0

0 0

0  0
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(4.40)
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(4.42)
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The CBMPC calculation in the last section was performed in terms of S and y0. 

Comparing Equation (4.38) and (4.14), it is easy to see that

S =  S1; (4.43)

yo =  Vb +  S2U_1 . (4.44)

In the CBMPC for linear PDE systems, a sequence of control actions are obtained 

explicitly, as in Equation (4.16). The input to be implemented is obtained by selecting 

the first element of the sequence. Hence, the control law developed for the linear PDE 

systems can be written as:

uq =  bTu
(4.45)

=  bT(S1r S1)~1S iT(yr -  vb -  S2u_i)j

where bT =  [1,0, • • • , 0]T. To prove the stability of this control law, the following lemma 

is needed, which can be found in the book by Jury (1964, p i 16).

Lemma 4.3.1 Monotonic Conditions (Jury, 1964). The real polynomial

P(x) = OLnxn + a n- \x n~x-H------- V otix + a 0 (4.46)

has roots outside the unit circle if  a 0 >  cui > ■ • * > a n >  0.

Based on the formulation of the control law in Equation (4.45), the following theorem 

establishes the stability of the proposed CBMPC for linear PDE systems.

Theorem 4.3.1 For control horizon m c chosen sufficiently small, the control law in 

Equation (4.45) is stable for the linear PDE system (4.4).

Proof:

The control law in Z-transform can be obtained by applying Z-transforms to Equation 

(4.45), which has the general form as:

D c(z)u0(z) =  N cr(z)yr (z) -  Ncb(z)vb(z). (4.47)
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Stability of the scheme is determined by the roots of Dc(z). By defining the backward 

shift operator q =  z~x, the equivalent stability condition requires that the characteristic 

polynomial:

C(q) =  1 +  b T(S1TS1) - 1S1TS2 [g, q \  ■ ■ • , q ^ f  =  0 (4.48)

has roots outside of the unit circle. We will establish the result by showing stability for

mc — 1.

From Equation (4.41) through (4.40), it can be obtained that:

/  2 \  2 /  m \  2 m ( J  \  2
s ? s i= h\ + hjj h— f hij = > (4.49)

SiTS2 [q, q2,--'  ,Qm X]T =  M M  +  M 2 +  b hmqm x)
2  m — 1

+  E  hi(h3q +  h^q2 +  b hmqm~2) H +  E  hi(hmq).
i— 1  j = l

Substituting the above two expressions to Equation (4.48) yields:

m  /  j  \  2  / m — 1  i \
E  ( XMi ) + E  E  kihj+X J 9 h

j = i  \ i = i  /  \ ^ j = i  i = i  y

/ m - f c  j \
+ E  E  Mj+fc + • • • + hihmqm~l = 0.

V i=l i=l /

(4.50)

(4.51)

Starting with the last coefficient (hihm), one can verify that all the terms in each 

coefficient are included in the next. From the definition of hi in Equation (4.37), it is 

clear that hi, i = 1, • • • ,m, have the same sign. Consequently, the monotonic condition 

of Lemma 4.3.1 are satisfied. Therefore, the roots of the characteristic polynomial lie all 

outside of the unit circle. This proves the stability of the CBMPC for linear PDE syterns.

4.3.2 Quasilinear Systems

Unlike that for linear PDE systems, the CBMPC for quasilinear PDE systems does not 

have the closed form of control laws. Hence, it is not possible to analyze its stability
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based on the closed-loop transfer functions. In fact, stability of nonlinear MPC has been 

an issue. Some modifications such as terminal constraint or terminal cost are usually 

added to ensure the closed-loop stability. In this subsection, stability of the quasilinear 

systems will be considered by adding a terminal constraint and examining the objective 

functions.

Consider the first-order quasilinear hyperbolic system described by Equation (4.21). 

Assume that the system has constant boundary condition at x  =  0 (i.e., v(x  =  0) =  

const.), and x € [0,1]. In the design of the characteristic-based MPC, the infinite 

dimensional state variable v  is discretized at spatial points x i , x 2, ...,xm. The output 

for the next p sample instants is obtained by integrating characteristic ODEs with initial 

values v(xm) , ..., v(x2),v(xi) and boundary value Vb (see Figure 4.4).

m

■ m

Figure 4.4: Output prediction along characteristic curves for scalar PDEs

The design parameters of the CBMPC are chosen such that p > m  +  m c — 1, 

where p  is the prediction horizon, m c is the control horizon and m  is the number of the 

discretization points. The control action in the first mc sample instants are free variables
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and the remaining p — m c variables are specified as «mc_i =  umc =  ... =  wp_i, or 

Aumc = A«mc+i =  ... =  =  0. The selection p > m  + m c — 1 ensures that the

effect of chosen control actions is included in the prediction horizon.

Based on the current state variable profile v, the CBMPC can be designed to minimize 

a performance objective function. For simplicity of discussion, the objective function 

takes the form as:

J°(v) = minJ(v, u)
Au p (4.52)

=  m in E  [yr -y (U ,v ,u )]2,Au i= 1

with no penalty on the control increments. But the discussion below applies to the case 

with small cost parameters for control increments, as well. Defining

l(ti, v, u) =  [yr -  y(U, v, u ) f  , (4.53)

Equation (4.52) can be written as:
v

J°(v) =  min Y  l(ti, v, u). (4.54)
A u  *

1 = 1

One way of ensuring stability for finite horizon MPC is to add a ‘terminal constraint’ 

which forces the states or output to a particular value or a set at the end of the prediction 

horizon. In this subsection, the following terminal constraint is used to ensure the stability 

of the CBMPC for quasilinear systems:

l(tp,v ,u ) < m in{l(ti ,v ,u i) ,l( t2, v 1u2), ...,l(tp- i , v ,u p-i)}  . (4.55)

This constraint requires that the terminal cost term be the smallest among the 

cost terms within prediction horizon. With this constraint, if a control sequence 

(u0, wi, • • ■ , umc-i)  satisfies Equation (4.55), it is also satisfied by the control sequence 

(ui, U2 , • • • , umc- 1) at the next sample instant. This property will be seen from the

output prediction expression in the proof of the following theorem and is important for 

the guaranteed closed-loop stability of the CBMPC.

Theorem 4,3.2 The C BM PC that satisfies (4.52) subject to (4.21) and (4.55) is stabilizing 

if the process in Equation (4.21) is controllable a ty  =  yr.
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Proof:

Suppose that the control problem of minimizing the cost function (4.52) subject 

to (4.21) and the constraint (4.55) is solved from the current state variable value 

u(xi),u(x2), ...,v(xm), yielding the optimal control sequence:

u°(v) =  { t$ (tO X (v)>-”>*C>-i(u)} , (4.56)

where the superscript0 indicate the optimal value. Under this optimal control sequence, 

the optimal objective function and the optimal output trajectory can be obtained as:

J°(v) = J(v, u » ) ,  (4.57)

y°(t,) =  {yo(v),yi(v), ...,yl(v)} . (4-58)

Using the mathematical description in Equation (4.29) of the last section, the output 

trajectory under the optimal control sequence can be written as:

y°(ti,v) =  ug),

y°(t2, v ) =  ^ ( u ^ ,  <  ul),

y°{tmc, v )  =

(4.59)
y ° ( t m ,  v) = <j)v(vb} ..., u g ^ ) ,  

y ° ( t m + l ,  V) =  (j)v{vb, 11®, ...,

y  (tm+mc—1>^) ^me—l ) 5

y ° ( t p , v )  =  ^ ( t ^ u g ^ x ) .

Note that the predicted output at t  >  is a function of only w°lc_ 1 for constant vb.
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Implementing the first control move °f the optimal control sequence from to through

ti, we get the output y(ti) = y°(ti, v), and a new state variable profile v' at spatial points 

x\ , i = 1, • • • ,m  at ti. Then the problem of minimizing the cost function subject to the 

constraints is solved at t x from the new state variable values at discrete spatial points: 

vr(x,1),v '(x2) , ..., v f(x'm). Define a control sequence u at tx based on the optimal control 

sequence obtained at t0 as:

u  =  «  u°2, - • ■ , u°mc_2, u°mĉ ,  . (4.60)

Then the output trajectory using u  at t x can be obtained

y(v', u) =  {y°(h,v), ....,y°(tp, v), y°(tp+l, t>)}. (4.61)

From Equation (4.59), it is easy to see that y°(tp+i,v) = y°(tp, v). Then u satisfies the 

process model (4.21) and the constraint (4.55) at t x. Therefore, the optimal value of the 

objective function at tx is not greater than the objective function using u. The following 

inequality holds:

J°(r/) < J(v',u). (4.62)

Since

J(v ',u) = J2[yr -y°{ ti ,v )]2 + {yr - y ° ( t p, v ) f
*=2 (4.63)

=  J°(v) ~  l°(ti ,v))+  l°(tp,v),

and l°(tp,v) < l°(ti,v )) (due to the terminal constraint at to), the optimal objective 

function value at two consecutive sample instants satisfy:

J°(v') < J°(v). (4.64)

Therefore, the cost function J° is non-increasing, which implies that the cost function J° 

converges to zero or a positive value.

When J°(v) converges to a steady state positive value, J°(i/) =  J°(v) and l°(ti, v )) — 

l°(t2, v)) — ■ • • =  l°(tp, v)) 7  ̂ 0. Therefore, the output converges to a steady state value

y® 7̂  yr, and the optimal control sequence satisfies u°s0 — u°sl — •■■ = u°sp = u°s. Since
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the process is controllable at y =  yr, there exists a control action u° such that y =  yr 

at the steady state. The objective function value using u° is less than that using u°s. This 

conflict with that u°s is the optimal control action. Therefore, J°(v) converges to zero, not 

a positive number. J Q{v) is a Lyapunove function and the output converges to the setpoint 

yr. This proves that the developed CBMPC is stabilizing. ■

4.4 Implementation Issue

As discussed in Section 4.2, the CBMPC provides an explicit formula of offline control 

law for linear systems. For quasilinear systems, however, calculation of the control 

actions in CBMPC requires to solve an optimization problem involving nonlinear integral 

equations at each sample instant. The corresponding computational requirement may 

be demanding and make the resulting control hard to implement. There are a variety 

of nonlinear MPC algorithms available which can be used to simplify the calculation of 

the control action based on the nonlinear output prediction. In this section, a nonlinear 

quadratic MPC algorithm is used by assuming a locally linearized expression for output 

and input:

y  =  yo +  SAu, (4.65)

where: y o  is the vector of predicted outputs due to the past control actions in the 

prediction horizon time, Au is the vector of future control increments in the next m c 

sample instants, y  is the vector of the predicted outputs for the control increments Au in 

the prediction horizon time, and S is the rate of output variation about the past control 

actions.

As discussed in the last section, the analytical expression for output prediction in the 

form of Equation (4.65) can be obtained for linear PDE systems. There may exist different 

nonlinear MPC algorithms that can be used in the proposed CBMPC for quasilinear PDE 

systems. In this thesis, the similar algorithm to linear PDE systems is used for quasilinear 

systems because of its simplicity and convenience.
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Due to the nonlinearity of the system, Equation (4.65) needs to be updated at each 

sample instants for prediction accuracy. In this expression, y0 and S have to be calculated 

numerically using the described output prediction approach. The calculation of yo can 

be carried out numerically by integrating the characteristic ODEs using the current state

where 5 is the numerical perturbation on past input u_i, y |u_1+<5 and y |u i are the 

predicted future output under the control actions u_x+<5 and u_i.

Equation (4.65) is an approximate expression for the output. The prediction error of 

this equation decreases to zero as the output moves towards setpoint and the required 

control increment A u vanishes gradually. With the linearized expression for the output, 

the control action can be designed to minimize the objective function:

where y r is the desired output trajectory in future time, and, Q and R  are two positive 

definite weighting matrices. The control action minimizing the above objective function 

subject to the linearized prediction equation (4.65) can be obtained:

Then, the first element of Au  is implemented at the next sample instant.

In the control law described by Equation (4.68), online computation is required to 

update S and yo at every sample instant. The prediction horizon p and m c affect the 

dimensions of S and yo, and therefore, can significantly affect the online computational 

demand of the proposed CBMPC. As discussed above, it is reasonable to choose a 

prediction horizon time equal to the residence time (i.e., p = to). The control horizon 

can be chosen to be a small number to reduce the dimension of S and yo, and also in 

favor of stable and smooth operation (Brosilow and Joseph, 2002). If m c =  1, p =  m

variable values as initial conditions and the past control action u_i. The elements of S 

can be computed via perturbation

(4.66)

J  =  (yr -  y)r Q(yr - y )  +  Aur RAu, (4.67)

A u =  (St Qt QS +  R TR)~1STQTQ(yr -  y0). (4.68)
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and SISO control is used, the control action in Equation (4.68) can be calculated via the 

following procedure:

Step I Get the current value of the state variable at m  spatial points based on the 

measurement.

Step II Using the past control action u^i, calculate the future output yo in the next m  

sample time instants by integrating the characteristic ODEs via using Equation

(4.23) through (4.25), or Equation (4.32) for the semilinear case.

Step III Using the control action u -1  +  8, calculate the future output y |u_1+jin the next 

m  sample time.

Step IV Calculate S using Equation (4.66).

Step V Substitute the obtained S and yo into Equation (4.68) to get the required control 

action.

These steps are repeated at every sample instant to update the control action based on new 

measurement. It also applies to MIMO control or the case with larger control horizon and 

prediction horizon.

The proposed CBMPC can produce improved performance with efficient online 

computation. Unlike other numerical methods, the discretization of the state variable 

in this CBMPC does not sacrifice prediction accuracy, but only affects the prediction 

sampling time. Therefore, high prediction accuracy can be obtained with small dimension 

of calculation, which, along with the decoupled nature in the output prediction, makes the 

control method computationally efficient. High performance of the CBMPC comes from 

the high prediction accuracy of this method.

4.5 Examples

In this section, the proposed CBMPC algorithm for hyperbolic PDE systems with a single 

characteristic is evaluated by performing simulations on two systems: a heat exchanger
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and a Plug-Flow Reactor (PFR) with uniform heating. The CBMPC development for 

linear and quasilinear systems are illustrated using the two examples.

4.5.1 Heat Exchanger

The heat exchanger discussed in Section 3.3.1 is also considered in this section. The 

system is modelled as:
dT dT — Tj) — 0,
dt dx  (4.69)

y = T ( x  =  1).

Integrating the characteristic ODEs of this system yields the following analytical 

expression for the characteristic curves:

t =  to + At,

x =  xq +  uAt, (4.70)

T =  (T0 -  T j )e -HM +  Tj.

The solution T  can then be obtained from the above expression as:

T(t0 +  At, x) =  (T(t0, a: -  uAt) -  Tj)e~HAt +  Tj. (4.71)

From this equation, it can be seen that the outlet temperature (at x  — 1) in the future

sample instants t0 +  At can be predicted from the current value of temperature at 

x0 =  1 — uAt. If the current temperature is uniformly discretized into m  points

x0i = 1 ------ , i =  1 , in the spatial range [0 , 1], the outlet temperature can be
m

%

predicted at the sample instants A U =  — , i =
mu

Let A t —  t — 10 and A x  =  x —  x q .  From Equation (4.71), the solution of the PDE can 

be written as:

T(t0 + At, x) =  (T(t0, x  -  uAt) -  Tj)e~HAx/u + Tj. (4.72)

For the CBMPC design of the system, the control horizon is chosen to be m c — 1, the 

prediction horizon is equal to the number of discretization points (i.e ., p = m) with a
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sampling time: t s — A t  = . From Equation (4.72), the future output for the next m
mu

sample instants can be predicted as:

T(t0 + A th l ) =  (T(f0, %i) — Tj)e~H(1~Xî u +  Tj,
(4.73)

i =  1 , 2 , - • • ,m.

Note that the manipulated variable u appears in the exponential term. In order to develop 

a controller that has an analytical formula, it is convenient to design a cost function as:

This cost function provides a convenient approach for an analytical offline control 

formulation. Denote vectors as:

Then the solution of minimizing the objective function in Equation (4.74) is given by:

This formulation of u provides an analytical off-line control law for the heat-exchanger 

and does not involve complicated computation.

A simulation was performed to evaluate the performance of the controller in Equation

(4.76). The parameters used for simulation were: H  — 1, Tj = 10. The initial temperature 

profile was chosen as T(0, x) — 2x and the boundary condition as T(t, 0) =  0. For the 

simulation purpose, the finite difference method was used to derive a finite-dimensional 

approximation of the original PDE equation, with 100 discretization points.

(4.74)

T  — T(t0 +  Ati,  1 ) , T(f0 +  Afm, 1)]T 

T 0 =  [T(t0,xi), ...,T(to,xm)]T ,

A x =  [1 -  x u  1 -  x 2, 1 -  xm] , (4.75)

u —
[log(T0 -  Tj)  -  log (Tap -  T j ) f H A ^ (4.76)

[log(T0—Tj) -  log(Tsp—Tj)]T[log(T0—Tj) -  log(Tsp- T j ) ] '
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Figure 4.5: Output tracking performance of the heat exchanger using CBMPC
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Figure 4.6: Setpoint tracking response of CBMPC in the heat exchanger
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Figure 4.7: Output response of CBMPC for different discretizations in the heat-exchanger 

Table 4.1: Computations for different discretizations: heat-exchanger problem

discretization m 1 2 5 10 20

flops 29 65 167 337 677

Figure 4.5 shows the temperature profile of the heat exchanger subject to the proposed 

predictive control law. The outlet temperature setpoint is specified as: Tap(x =  1) =  3, 

and the discretization number m = 5. It can be seen that temperature profile converges 

to the setpoint smoothly and quickly with reasonable control action. A filter was applied 

to the setpoint to prevent aggressive control action. This is achieved by substituting the 

expression aTsp + ( l~ a ) T ( l , t )  for Tsp in Equation (4.76). Figure 4.6 shows the tracking 

performance of the controller with the filtered setpoint for a value of a  =  0.9.

In CBMPC, the discretization of the state variables corresponds to the number of 

the future sample instants. Since the prediction horizon is designed to be fixed by the 

residence time of the heat exchanger, the discretization only affects the required number of
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Figure 4.8: Performance comparison of CBMPC vs. standard feedback control

sampling intervals. It is of interest to consider the effect of the increase in computational 

requirements on the tracking performance. Figure 4.7 shows the tracking performance 

that results from different discretizations (m =  1,2,5 and 10). In each case, the output 

converges to a neighborhood of the setpoint. This simulation suggests that the choice of 

discretization has a small effect on the ability of the controller to reach the setpoint. In 

fact, only a very coarse discretization of the domain would be required in the present case. 

This property is quite advantageous in light of the corresponding change in computational 

requirements, shown in Table 4.1.

The performance of the predictive controller in Equation (4.76) is compared with 

the feedback control in Equation (3.58) developed in Chapter 3, with m — 5. From 

Figure 4.8, it is noted that the characteristic-based MPC produces quick convergence to 

the setpoint with small overshoot. The improved performance of the CBMPC results 

from that it overcomes the inherent shortsightedness of the feedback control. In this 

specific process, the CBMPC is obtained without additional demanding computational 

requirement since the CBMPC controller in Equation (4.76) only requires simple 

algebraic calculation.

In an attempt to test the response of the proposed controller to disturbances, the
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Figure 4.9: Process response to Tj changes in the heat exchanger under CBMPC

effect of the disturbances in the jacket temperature on the tracking performance was 

investigated. Figure 4.9 shows the result of a change of Tj from 10 to 15 at time t =  1 

and from 15 to 8 at time t = 2. It is noted that the proposed controller rejects the 

disturbances in jacket temperature effectively. The CBMPC provides a desirable response 

to the disturbances in process operating conditions.

The results indicate that the CBMPC yields simple controller formulation for flow rate 

without approximation. It provides a computationally efficient methodology for MPC of 

distributed parameter systems.

4.5.2 Plug-flow Reactor

As a second example, the control of a plug-flow reactor with uniform jacket temperature 

is considered. The output feedback controller in Chapter 3 is also considered to provide
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a comparative basis for the CBMPC. This process can be modelled as:

dCA 0CA -Ei/RTrri- 5 7 - =  ----- k10e ^ / K1-CA,
o t  Ox

+ k10e~Ê C A -  k20e-Ê C B,dC,

(4.77)c)t ()x
A .  =  +  i ^ n l fcl0e -s ,/« 'rCA+
t/£ O X  P rn (--prn

( ~ A H r 2 ) fc 2 0e ^ IKr'CB +  Uw„  (Tj -  Tr),
P m C p m  P m C p m  v r

subject to the boundary conditions:

CA(0 , t) = CAQ, Cb (0, t) = 0 , Tr (0, t) =  Tr0. (4.78)

The nonlinear PDE (4.77) provides a significant challenge for MPC applications. In 

this subsection, the effectiveness of the CBMPC technique is demonstrated. An emphasis 

is put on computational requirements in order to demonstrate, in particular, that CBMPC

is a viable alternative for some nonlinear PDE models.
d dThe vector field =  — +  uj—  is the characteristic vector field of the system.
Ot ox

Following the Method of Characteristics, the system in Equation (4.77) can be described 

by a set of ODEs:

i = l,

x = vh

CA =  - k 10e -E^ C A,
(4.79)

Cb =  kioe~El/RTrCA -  k20e -E*/RTTCB,

Tr =  - m — - +  t M n l k lo e ^ / R T r c A +
O X  p rn C pm

t A A -  % ) .
P m C p m  P ir f ip m  * r

Prediction of the future output is obtained by numerical integration of the characteristic

ODE (4.79) for a finite number of discrete points, as described in Equation (4.31) and
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(4.32) in the last section. The infinite dimensional process variables at the current time 

are discretized into m  spatially uniform points in the x-space. It is assumed that the 

temperature of the reactor can be measured at these m  points Xi, i =  1,..., m, along the 

reactor. The concentrations Ca and Cb at these points can be estimated from the inlet 

concentration value and temperature measurements. The control action is calculated to 

minimize the objective function:
m

J  = J 2 \C rB ~~ Cs{to +  Aij, x  =  l)]2, (4.80)
i=1

1 — ■
where CT, is the setpoint of the outlet concentration Cb , At* =   and Csito +

Vi
Afj, x — 1) are the predicted output in the next m  time instants.

For simulation, the constants in Equation (4.77) are those listed in Table 3.1. The 

simulation is carried out by discretizing the PDE along the space into 500 points. The 

control horizon m c is set to 1. The prediction horizon is taken to be equal to the residence 

time with sampling time being 1 /(mvi). In most cases, m = 5 is used.

At initial state, the jacket temperature of the reactor is Tj = 359.5K, and a steady 

state profile similar to the profiles shown in Figure 3.9 is used. Figure 4.10 illustrates 

the simulation of the response of the state variables to an output setpoint change from 

Cb (x — 1) =  0.8 mol/l to Cb (x = 1) =  1 mol/l. The simulation results indicate that the 

CBMPC provides good tracking performance.

The effect of the prediction horizon was investigated. For a prediction horizon that 

is less than the residence time, the closed-loop response is oscillatory and aggressive. 

Increasing the prediction horizon beyond the residence time does not improve the process 

response significantly. For a control horizon that is greater than 1, a penalty on the 

control action can be added in the performance function to improve the smoothness of 

the response. In general, the following objective function is considered:
m  771c

J  =  Y ) - Cb -  °B{t 0 +  A ti, X  =  l )]2 +  A(A T j) l  (4.81)
i = 1 i=l

where A is a tuning parameter. Figure 4.10 discussed previously shows the simulation 

results for a value of 0 .8 .
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Figure 4.10: Simulation results of the PFR using CBMPC for a setpoint change from 

CB{x = 1) =  0.8 to CB{x = 1) =  1
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Figure 4.11: Performance comparison of the CBMPC and the state feedback control in 

PFR

Figure 4.11 provides a comparison of the proposed CBMPC and the state feedback 

controller developed in Chapter 3. The simulation results indicate that the CBMPC 

provides satisfactory tracking performance without undesirable overshoot and oscillation 

as displayed by the feedback control. The improved performance of the CBMPC over the 

state feedback control results from taking the long-term effect of current control action 

into control development and overcoming the shortsightedness of the feedback control.

The performance of the CBMPC to the disturbances in operating condition changes 

was also studied. Figure 4.12 shows the results of a change of Vi from 1 m/min to 

1.2 m/min and 1.2 m/min to 0.9 m/min. It can be observed that the CBMPC responds 

adequately to the disturbances in operating variables. In a second simulation exercise, the 

process response to the boundary condition changes under the CBMPC was examined. 

The results of a change of the boundary condition Tr{x = 0) from 320 K to 340 K 

and 340 K to 300 K is shown in Figure 4.13. It can be seen that the CBMPC also 

responds satisfactorily to the boundary condition changes, steering the process output 

to the setpoint
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Figure 4.12: Output response to operation variable changes under CBMPC in PFR
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(a) boundary condition changes (b) output

Figure 4.13: Output response to boundary condition changes under CBMPC in PFR
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Figure 4.14: Output response of CBMPC using different discretizations in PFR

Table 4.2: Computations for different discretizations: PFR problem

control method flops (Matlab ®)

CBMPC (m =  1) 1.4870 x 104

CBMPC (m =  2) 2.3024 x 104

CBMPC (m  = 5) 4.7200 x 104

CBMPC (m =  10) 8.8412 x 104

CBMPC (m = 20) 1.7021 x 105
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As in previous example, the effect of the number of discretization points was 

investigated. From Figure 4.14, it can be seen that the effect of discretization on the 

process output response is minor. The process displays an acceptable output response 

even when a small number of discretization points are used. A larger number of 

discretizations tends to produce a more aggressive control action when there is no penalty 

on the input moves. This results from including the effect of the more immediate process 

output in the control calculations using a larger number of discretizations. A compilation 

of the computational requirements for different numbers of discretization points is shown 

in Table 4.2. As expected, the computational demand increases proportionally with the 

number of discretization points. Therefore, the full advantage of the CBMPC can be 

realized by using a small number of discretization points. To emphasize this point, a 

traditional MPC algorithm was applied to control the PFR model. The model used for 

the traditional MPC was generated by discretizing the PDE model to a higher order ODE 

approximation. Since a large number of ODEs are normally required to generate a good 

approximate model, this approach significantly increase the computational demand. It is 

not clear whether this approach provides a good controller. To investigate this, simulations 

were performed using each approach and a performance metric, the ISM, was computed. 

The ISM is the integral of the square of the error given by:

J f t l S M

' {(7B - C B { T , x  = l ) f d T  (4.82)
0

In each case, the control action was computed by minimizing the objective function

(4.80). The computation of the control action by discretization was conducted by 

discretizing the PDE model into 50 points. The time interval for the integration of 

Equation (4.82) was [0,2.2] min. The ISM values are listed in Table 4.3. Results indicate 

that the proposed CBMPC is advantageous due to its computational efficiency, high 

accuracy and relatively simple requirement of state estimation.

104

permission of the copyright owner. Further reproduction prohibited without permission.



Table 4.3: Computations of CBMPC vs. conventional MPC in PFR

MPC using Characteristics Traditional MPC

flops (Matlab ©) 4.73 x 104 4.7 x 107

ISM 0.098 0.103

State Estimation 5 points 50 points

4.6 Summary

Distributed parameter systems modelled by PDEs which admit Cauchy characteristics 

can be fully characterized by the corresponding characteristic ODEs. This property of 

the PDE model was used in Chapter 3 to develop a characteristic-based feedback control 

method. In this chapter, the Method of Characteristics was used to develop the MPC for 

the hyperbolic systems, which overcomes the inherent limitations of the feedback control 

by including the prediction horizon in the control formulation. The proposed CBMPC 

provides a control approach suitable for the dynamics of DPS, and it fully exploits the 

information provided by the Method of Characteristics.

This chapter has focused on the CBMPC development for systems modelled by linear 

or quasilinear PDEs with single characteristics. For linear PDE models, the application of 

the Method of Characteristics can lead to an analytical expression for output prediction, 

which can be used to develop the off-line MPC formulation. The resulting control law 

does not require more complicated computation than standard feedback control, but 

provides high performance as a MPC approach. The complexity of the CBMPC for 

quasilinear PDE systems increases significantly in comparison to the linear PDE systems. 

In quasilinear systems, the output prediction is obtained by integrating numerically 

the nonlinear characteristic ODEs, and the control action is calculated using standard 

nonlinear MPC schemes. In spite of the relative complexity of quasilinear systems, the
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characteristic ODEs of the quasilinear systems discussed in this chapter are decoupled 

for different characteristic curves. This decoupled nature reduces the need for high order 

discretizations of the current state variable profiles in spatial domain in order to obtain the 

prediction accuracy. Thus, the good performance of the CBMPC reported in this chapter 

can be realized without the need for demanding computational requirements..

Similar to most MPC schemes, the proposed CBMPC can only guarantee closed-loop 

stability when a series of restrictive assumptions are made. A stabilizing modification of 

the CBMPC is proposed using a terminal constraint in the CBMPC.

Overall, the proposed MPC scheme for hyperbolic systems with single characteristics 

provides reasonable tracking performance, comparatively simple on-line computation, 

easy requirement of state estimation, and robustness to disturbances. The proposed 

CBMPC provides a promising control method in implemention into industrial practice. 

The success of the CBMPC for systems with single characteristics motivates the research 

on the CBMPC for more complex systems of multiple characteristics, which is the subject 

of the next chapter.
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Chapter 5 

CBMPC for Hyperbolic 

Systems-Multiple Characteristics

The last two chapters were devoted to the problem of designing controllers for systems 

modelled by scalar first-order PDEs or some systems of first-order PDEs with single 

characteristics. For many problems encountered in practice, more than one dependent 

variables are required to model the physical systems. In such cases, the integral manifold 

of the PDEs cannot be presented by the solution of unique characteristics (e.g., a counter

flow heat exchanger, a plug-flow reactor with counter flow heating jacket, a counter flow 

gas absorber and one-dimensional flow of ideal gas, etc). The main objective of this 

chapter is to develop characteristic-based MPC to more complex systems having multiple 

characteristics. In particular, we consider those processes that can be modelled by vector 

systems of first-order PDEs of discrete characteristic values, and second or higher order 

hyperbolic PDEs.

The Method of Characteristics has not received much attention for those systems and 

only limited results are available in the literature. Among them is the state feedback 

control proposed by Hancyc and Palazoglu (1995) for controlling the outlet temperature of
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a counter-flow exchanger. This strategy leads to a complex control structure and provides 

limited performance. In this chapter, it is demonstrated the characteristic-based MPC 

introduced in the previous chapter provides a mechanism to overcome the limitations 

and significantly improve performance. The CBMPC for more complicated systems is 

developed in this chapter.

The focus of the study is on systems modelled by 2 x 2 systems of first-order PDEs 

and second-order scalar hyperbolic PDEs. These relatively simple systems are used to 

generate a framework for the systems of multiple characteristics. The chapter is structured 

as follows. Section 5.1 presents some preliminary discussions of multiple characteristics. 

In section 5.2, the development of CBMPC is studied for first-order and second-order 

systems. Section 5.3 presents a simulation of applying the CBMPC on a counter-flow 

PFR. The chapter closes with a discussion of the proposed approach.

Consider a system modelled by n first-order semi-linear PDEs in two independent 

variables:

where: v =  [-t^,..., vn]T is the vector of distributed state variables, t is time, x  is space, 

a,ij and fi(x, v, u) are analytical functions. Compared with DPS modelled by scalar first- 

order PDEs, such systems usually require multiple infinite dimensional state variables 

that have to be described along multiple characteristics.

In order to use the Method of Characteristics for the solution of the PDE (5.1), 

some transformation is required to convert the PDE into a characteristic normal form. 

In terms of the n  x n matrix A =  [a^], the column vectors v  =  [v\,V2 , and 

f  =  [/1, / 2, —,/n]. the PDE can be written as:

5.1 Effect of Multiple Characteristics

n
i = 1 ,..., n, (5.1)

vf -f A vj =  f, (5.2)
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whose characteristic polynomial (Duchateau and Zachmann, 1989) is defined as:

F (A) -  det(A -  AI). (5.3)

When F( A) has n real zeros and A has n linearly independent eigenvectors, the system in 

Equation (5.1) is hyperbolic and the matrix A is diagonalizable. Let Ai, A2, A n be the 

n  real zeros of the characteristic polynomial in Equation (5.3). The characteristics for the 

system in Equation (5.1) are the curves in the (x, t) plane satisfying

^  =  Af, i= l ,2 , . . . ,n .  (5.4)
at

These characteristic curves reflect the structure of the solution manifold of Equation (5.1). 

Let A represent the diagonal matrix of eigenvalues of A

A =  diag[Xij], (5.5)

and let P  represent the matrix of eigenvectors of A. The matrices A and P  satisfy the 

eigenvalue problem:

PA  =  AP. (5.6)

Multiplying Equation (5.2) by P  yields

(Pv)t +  A(Pv)x =  P f  +  AP*v. (5.7)

By defining new infinite-dimensional variables v' =  Pv, Equation (5.7) becomes:

v 't +  Av'j. =  P f  +  A P2v. (5.8)

In the PDEs (5.8), the ith equation involves differentiation along the ith characteristics 

only, which provides the possibility of simplifying the required computations.

For PDE systems with multiple characteristics, n characteristic directions exist at each 

point of the solution surface and the value of the solution at each point is regulated by the 

characteristic curves passing through it. If the boundary data v  =  Vo(s) is given as the 

initial curve T and if P  is the intersection of the extreme characteristics through s =  si 

and s ~  S2 (see Figure 5.1 for the case n = 4), the domain enclosed by the boundary and
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Figure 5.1: Domain of dependence of P

Figure 5.2: Region of influence of Q
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these extreme characteristics is called the domain of dependence of P. The solution at P  

depends on the boundary data given within its domain of dependence and is independent 

of boundary data given on sections of the boundary outside it. As well, a given point Q on 

the initial curve has a region of influence defined by the extreme characteristics through 

it, as shown in Figure 5.2; a change in the boundary data would change the solution 

everywhere in its region of influence and only there.

The solutions of the PDE systems may be constructed numerically by approximating 

the characteristic curves by straight lines and approximating the differential relations in 

Equation (5.8) along the characteristics by algebraic relations. In Figure 5.1, the solution 

at P may be obtained from a knowledge of v  at four different points on the initial curves 

for the case n — 4. By varying P, data on a new initial curve is obtained and the procedure 

is repeated. This approximate method of constructing solutions for hyperbolic systems 

has some advantages over other numerical methods. In the next section, this is used to 

predict the future output for CBMPC design.

5.2 CBMPC Design

For hyperbolic systems discussed in this chapter, multiple characteristics determine the 

solution of PDE systems. In this chapter, the CBMPC is developed for systems of 2 

characteristics, which include processes modelled by systems of 2 first-order PDEs and 

second-order scalar hyperbolic PDEs.

5.2.1 First-order Systems

Following the procedure discussed in the last section, a general semilinear system of first- 

order equations with two dependent variable vx and v% and two independent variables t
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and x  can be transformed into a “characteristic normal form”:

(5.9)

y =  h(v i(xout),v2(xout)),

where t is time, x  is spatial coordinate, v\ and v2 are distributed state variables, u is the 

manipulated variable, y is process output, a± and a2 are constants or functions of x, f \  

and / 2 are continuous functions, h is an output function. If Gi =  a2, the system has one 

single characteristic. Otherwise, the system has 2 characteristics. The characteristics for 

Equation (5.9) are two curves determined by:

The variation of state variables Vi and v2 can be described by the ordinary differential 

equations:

Thus, using the Method of Characteristics, the system of PDEs (5.9) is transformed into 

a system of ODEs along the characteristic curves in Equation (5.10).

If the PDEs in Equation (5.9) are homogeneous, i.e., f i{v \ ,v2,u) =  0 and 

/ 2(ux, v2, u) — 0, the characteristic ODEs in Equation (5.11) are decoupled and Riemann 

invariants exist. Therefore, an explicit solution can be obtained for vi, v2 as well as 

y. In most applications, however, the PDE models are inhomogeneous and f\(v i, v2,u) 

and f 2(vi,v2,u) are nonlinear functions. Thus the characteristic ODEs are coupled 

with respect to the characteristic curves and solution is more complex than that for the 

systems discussed in the last chapter. For these systems, the future state variables at one 

spatial point have to be obtained by simultaneously integrating both characteristic ODEs

dxCi characteristic : — =  a\,
at

(5.10)

dx
C2 characteristic : — =  a2.at

= f i (v i ,v 2,u) along C\ characteristic, (5.11)

=  h ( v i ,v 2,u) along C2 characteristic.
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along two nonparallel characteristic curves. Predictions of future output values can be

obtained by discretizing the initial state at a finite number of spatial points, then projecting

characteristic curves from each of these points and computing the values of state variables

at intersection points. Figure 5.3 illustrates the calculation of the state variables at point

P from the values at point Q and point R. The segment QR is the domain of dependence

of point P, since the values of state variables at point P are completely defined by state

variable values on the segment QR (Rhee et al., 1986). The values of points Q and R are

used in the calculation of the state variable value at point P. The spatial coordinates of

point P are obtained from Equation (5.10) as:

fr iP ) i  rxip) i
— dx + t(Q) = / 

c(Q) J  a;(R)

and the time coordinate of P is

r*(P)

f x {  P) 1 r x (  P) i

/  — dx +  f (Q) =  / — dx + f(R), (5.12)
Jx( Q) al J x ( R )  a2

f(P) =  t( Q) +  / —dx. (5.13)
J  x(Q ) a i

In the case where a% and a2 are constants, the spatial coordinate and time coordinate of P 

can be written as:

X(P) =  «ia:(R) -  a2z(Q) +  aia2(t(R) -  t(Q)) (5
ai — a2

t(P) ^  axt(Q) -  2a2t(Q) +  a2t(R) +  x(R) -  x(Q) ^  15)
ax -  a2

Then, the value of the state variables v\ and v2 at point P can be obtained from Equation 

(5.11) using Euler’s method as follows:

r*(?) ^  

e(Q) a l

dx
th(P) =  v1(Q) + f 1(Q) /  —  , (5.16)

Jx{ Q) al 
/•̂ (P) dr

u2(P) =  v2(R) + f 2(R) /  — . (5.17)
Jx(  R) a l

A more accurate estimate can be obtained by replacing /i(Q ) by ^[/i(Q) +  /i(P)] and

A(R) %  jW tR ) +  A(P)].
By varying point P and repeating the procedure, the value of state variables at different 

locations and different future times can be calculated. For output predictions at fixed
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Figure 5.3: Characteristic curves of a system of PDEs with multiple characteristics

sampling time instants, the state variables at intersection points of the characteristic curves 

are calculated by integrating Equation (5.10) and (5.11). If the state variable vt at x =  1 

is the output to be controlled, the prediction of the output can be carried out as shown in 

Figure 5.4. The output at the future sample times can be obtained from the value of the 

state variables at the intersection points.

In the above output prediction procedure, the domain of dependence determining the 

state variable value at one point in a future time is approximated by two points. The 

discretization for these systems is more complicated than the systems discussed in the 

last chapter. Since the discretization affects prediction accuracy, a careful discretization 

is needed in order to get a desired accuracy. On the other hand, the approximation of the 

state variable value within segment QR by that at point Q and R reflects the true solution 

of hyperbolic PDE systems more closely than other numerical solution methods as shown 

in Figure 5.3. This method can accommodate the use of larger spatial grids and time steps 

with a minimal loss of accuracy. The improved efficiency of this method for predicting 

future output is illustrated for the control of a counter-flow PFR.

Using the output prediction method described above, the value of the output for a 

prediction horizon time can be obtained for some specified control actions. Then, the
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Figure 5.4: State variable prediction along characteristics

control action can be calculated in the same way as discussed in the last chapter. The 

predicted output is expressed in the locally linearized form:

y  =  yo +  SAu. (5.18)

The control actions are designed to minimize the objective function:

J — (yr -  y )TQ (yr - y )  + AuTRAu, (5.19)

where y r are the output setpoints, y  are the predicted future outputs, Q and R  are positive 

weighting matrices. The solution of the optimization problem is given by:

Au =  (Sr Qr QS +  R TR )~1STQTQ(yr -  y 0)- (5.20)

Choosing prediction horizon time equal to the residence time and a control horizon 

m c = 1, the calculation of control actions at every sample instant can be carried out as 

follows:

Step I Obtain the current state variable values at a finite number of spatial points 

X i , x m, which may need state estimation or interpolation from measurement.
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Step II In the space of (t,x), draw characteristic lines from X\ to xm, such that they 

intersect with x = x ^ t  and form a grid (see Figure 5.4).

Step III Assume that the current control action is the past control action it_i. Calculate 

the values of time and spatial coordinates and state variables at the intersection 

points immediately connected to the initial points, and then obtain the output value 

at t\. Use the obtained variable values as initial points and repeat the calculation to 

get the output values at t2 until tm. This gives yo-

Step IV Assuming that the current control action is u_i +  5, where 6 is a small 

disturbance, repeat Step III and calculate the output prediction y at 

under «_x -F S.

Step V Calculate S using the following equation:

Step VI Substitute the obtained S and yo into Equation (5.20) to get the required control

These steps can be used to update the control action whenever necessary. The grid size of 

the discretization can be adjusted to get the desired prediction accuracy, and therefore the 

acceptable performance.

5.2.2 Second-order Systems

Although few chemical processes have been found that require second or higher-order 

hyperbolic PDE models, some fluid phenomena exhibit wave patterns that can be 

described by second-order hyperbolic PDEs. In this section, the Method of Characteristics 

is used in the design of a CBMPC for a second-order hyperbolic scalar PDE system. 

Consider a general semi-linear, second-order hyperbolic equation

(5.21)

action.

avtt +  2bvtx + cvxx +  e =  0 (5.22)
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where a, b and c are functions of t and x, e is a function of t, x, v, vt, vx and u. Equation

(5.22) can be classified as hyperbolic, parabolic or elliptic according to the coefficient 

values in the second-order partial derivatives of the equation. For hyperbolic processes, 

restricted to a region R  in (t,x) plane where

b2 — ac > d > 0, (5.23)

Equation (5.22) has two characteristics:

A+ =
b +  \/b2 — ac

a

X.  =  b. ~ ^ E E . (5.24)
a

In order to use the Method of Characteristics to generate the solution manifold for a 

hyperbolic second-order PDE (5.22), the solution is expressed along the characteristics in 

the following way:

— (vt +  A+ux) +  +  X+vx) +  — — (X+)tvx — A_(A+)a;ua; =  0,

d d 6
—(ut +  A_ux) +  A+7^(t>t +  A_uz) h  — — {^-)tvx ~  A+(A_)xux =  0. (5.25)

Since A+ and A_ are the known characteristics of the PDE, the functions (A+)t, (A_)t,

(X+)x and (A-)*, which represent the partial derivatives of the known characteristics, are

also known. Since it is often assumed for control purposes that the processes are time
dv

invariant, it follows that (A+)t =  0 and (A_)* =  0. Defining two new variables p =  —
dv

and q =  — , Equation (5.25) can be written as: 
a t

« +A+& + A - ( f f i +A+S ) +  ; _A+(A- )rf  =  °' <5’26)

The original second-order hyperbolic PDE (5.25) is then decomposed into two first-order 

hyperbolic PDEs with new variables p and q. In fact, a system of two first-order PDEs 

can be combined into a single second-order hyperbolic PDE. For example, a counter-flow
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double pipe heat exchanger modelled by two first-order PDEs:

dTi dTi . .
~dt Ul~dx ^  1 ”  '  ~  ’

^ - U 2f ^ ~ a/io(Tl~ T2) =  ° ’ (5'27)

can be written into the single second-order hyperbolic PDE:

d2Tt ■ , d 2Tx d2Tx m
=  ( 5 .2 8 )

+h<>u2~ j + a h l ( T 1 - T 2).

It is noted that this second-order hyperbolic PDE cannot completely determine the 

original system of first-order PDEs. It has to be combined with one of the first-order 

PDEs in order to determine the temperature of the system.

Similarly, the system of first-order PDEs (5.26) does not completely represent the 

original second-order PDE (5.22). It needs to be combined with a contact form existing 

on the solution manifold. The contact form for variables p, q and v in a second-order PDE 

system is:

w — dv — pdx + qdt, (5.29)

where d is a differential operator. It is required that w zero on the tangent space to

the solution manifold. The two first-order hyperbolic PDEs in Equation (5.26), along

with the contact form (5.29), describe the original second-order hyperbolic PDE exactly.

Applying a suitable transformation (t, x ) — ► (£, rj), the two characteristic vector fields

of the system can be written in (t, x) space as:

d d d
<9£ dt ^  ~ dx ’

+  A+— . (5.30)d _  d d 
drj d t +dx

Taking £ and tj as two new independent variables, Equation (5.26) can be expressed by £ 

and q in the simple form:

! + a+! + 5 _ m a +w  _  o,

+  +  -  —A+(A _kp  =  0. (5.31)
or) or) a
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Noticing that every equation only involves partial differentiation with respect to only one 

independent variable, one can express the equation by an ODE along the characteristic 

directions. This can be achieved by transferring variables p and q into new variables w\ 

andw2:

wi =  q + X+p,

w2 =  q +  A_p. (5.32)

The partial differentiation of Wi and w2 with respect to the new independent variables £ 

and rj can be directly derived from Equation (5.31). The differentiation of v with respect 

to the variables £ and r) is:

dv
—  =  A_p +  q,

~  =  X + P  + q- (5.33)arj

These equations can then be expressed in characteristic ODE form along the two
dx doc

characteristic directions — =  A+ and —  =  A_. Along the A+ characteristic, the ODEs
dt dt

are:

i =  1,

x — A-)-,

w2 =  - -  +  A+(A_)xp, (5.34)
CL

v =  X+P + q, 

while along the A_ characteristic, they are:

i =  1 ,

x  =  A_, (5.35)
g

Wl =  f A_(A + )j;P.a

To avoid redundancy, the contact form can only appear once in either A+ or A_ 

characteristics.
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Equations (5.34) and (5.35) are equivalent to the “characteristic normal form” of 

Equation (5.22), given by (Simpson, 1967):

dt 9 x _
~  + &i +  ’

dq . dp e d t
_ !  _ l .  \  _i-------------------=  n

d { + as + ad£  ’
du dt dx n+  u  +  _ p  = o, (5-36)

d t  d i
. dt dx

“  a— a-  ~  ’ dr) drj
dq . d p  e dt
a- -------- a------- a~ —dr] drj a dr]

This can easily be verified by substituting Equation (5.30) into Equation (5.36).

Given a control action, Equations (5.32), (5.34) and (5.35) can be used to predict the

sampled future output for second-order hyperbolic PDE systems. The solution of the 

second-order PDEs requires the initial condition of state variable v as well as its first-order 

partial derivatives p and q. If variables v, p and q are known at current time, the output 

prediction can be carried out in a way similar to what is shown in Figure 5.4. In the t  — x  

plane, the spatial coordinate is discretized into a finite number of points at the current time 

and the two characteristic curves are drawn from each of these spatial points. Applying 

numerical integration schemes such as Euler, corrected Euler, or Runge-Kutta methods 

to Equation (5.34) and (5.35), the resulting equations, along with Equation (5.32), can be 

used to calculate the variables t, x, v, p, q, wx and w% at every intersection point of the 

characteristic curves. The output at the future sampling times i 2> can thus be 

obtained. This output prediction method can be cast into the control calculation procedure 

described in the last subsection for first-order systems. The optimal control action can 

then be obtained through optimization. This procedure constitutes a generalization of 

CBMPC to systems with multiple characteristics.

The initial values for v, p and q are required for the prediction of the future values 

of the state variables. If the process is initially at steady state, the infinite-dimensional 

profile of v can be obtained by solving the ordinary differential equation obtained by 

setting the time derivative of the original PDE model to be zero. The variables p and q
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dl)( X)can be estimated by p — —p— and q =  0, respectively. If the initial condition is not at
ax

steady state, the profile of state variable v can be estimated by numerical approximation
dv(x')

from a finite set of measurements. The variable p is calculated as p =  ■■■—■—. An estimate 

of q is obtained by substituting the estimates of v and p into the original PDE model and 

by solving the resulting ODE.

5.3 Example - Counter Flow PFR

In many applications, the heating or cooling temperature of a PER in the jacket is not 

spatially uniform. In such situations, the distributed state variables include both variables 

related to the states inside the reactor and the jacket. As a result, these systems have to be 

described along two different characteristics. In this section, the application of CBMPC 

for a non-isothermal PFR with counter-flow heating media in the jacket is considered. The 

reactor described in last section is used. However, it is assumed that the jacket fluid has a 

spatially varying temperature. The fluid velocity of the jacket rather than the temperature 

is manipulated to control the outlet concentration of product B. The schematic of the 

process is shown in Figure 5.5.

Heating steam Tj0

l i l

C T 
A 0 f  A O

CA(1,t),CB(1,t)
CG(1it),TA(1.t)

ur
TfO.t)

Figure 5.5: Counter flow PFR
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The process model is given by:

k10 e -^ /^ C U ,

+ ki($e~El/RTrCA -  h o e -E^ C B,

dTr dTr ( - A H ri)
dt

kwe~El/RTrCA (5.37)

f L  .AM k2oe-E2/RrrCB +
'm̂ prnVr

dx PmjCpmjVj
subject to the boundary conditions:

CA(0,t) = CAQ, CB(0,t) = 0, Tr(0,t) = Tr0, Tj( l ,t )  = Tj0, (5.38)

where: t is time, x  £ [0,1] is the normalized spatial coordinate along the reactor, CA and 

CB are the concentrations of the species A  and B  in the reactor, Tr is the temperature of 

the reactor, Tj is the temperature in the jacket, AHri and AHT2 are enthalpy of the two 

reactions, p m  and Cpm  is the density and heat capacity of the fluid in the reactor, p mj  and 

cpmj are the density and heat capacity of the fluid in the jacket, Vr is the volume of the 

reactor, Vj is the volume of fluid in the jacket, Uw is the heat-transfer coefficient in the 

reactor, UWj is the heat-transfer coefficient in the jacket, CA0 and TA0 are concentration 

and temperature of the inlet stream in the reactor, u is the velocity of fluid in the jacket.

In comparison with the PDE model for the plug flow reactor with uniform heating 

discussed in Chapter 4, Equation (5.37) includes one additional PDE to model the 

variation of the jacket temperature. The first three equations are the same as for uniform 

heating and can be described by a system of ODEs along the characteristic vector field:

( 5 - 3 9 )

Since the heating fluid in the jacket flows in a different direction and at a different rate 

than the reactants in the reactor, the PDE representing the jacket temperature has to be 

described by a different vector field:
d d
~ M-r- (5.40)
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(5.41)

Since this process has slow and complex dynamics, it is desirable to design a controller 

that takes into account the long-term effect of the control action. The design of an MFC 

requires a scheme for the prediction of the output. In this case, the output prediction 

is performed using the Method of Characteristics described in the last section, which 

predicts the behavior of the system along the characteristic vector fields £1 and £2. Along 

£l, the solution of Equation (5.37) is described by the set of ODEs:

t = l,

x  = vh

CA =  - k 1Qe - Ê C A,

Cb =  kioe~El/RTrCA -  k20e -E2/RT̂ CB,

Tr = t . ^ Hl A kwe~E1/RrrCA+
PmCpm

t A. ? ^ l k x e -E ,I R T r C B  +  U ~  ( T ,  -  % ) .
Pm('pm Ptri'-pm U

Along the vector field £2, it is given by:

t = l ,

x = —u,

t i = 0 c "  V ( % ~ Ti)- 

The future output is predicted by numerically integrating Equation (5.41) and (5.42). 

The integration of Equations (5.41) and (5.42) is carried out for a finite number of discrete 

spatial points to generate the output prediction at future sampling times. Unlike traditional 

methods of discretization, the discretization here does not involve approximation. It 

provides the initial spatial points for integration. Assume that, at the current time t, the 

dependent variables in the reactor and in the jacket are given at m  discrete spatial locations 

Xi, i = 1 , m,  along the reactor. From each of these m  points, two characteristic lines 

can be drawn in the (t , x) space corresponding to the two characteristic vector fields 

and £2 for a fixed value of the control u. The characteristic lines from xi,X2 , xm form
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a grid in (t, x) space. By indicating the time and spatial coordinates of the intersection 

points at the ith sampling time and j th spatial position as Uj and Xy, j  — 1 , 2 , 

i =  1 , 2 ,..., oo, the time and spatial coordinates of the intersection points in the grid can 

be calculated from the initial discretization points using the integration of vector fields £1 

and£>:

f. — X i 3 ~  ~  Vrtij ~  xi,j~1 4 3 )
t + 1 , j  U  +  Vi

U X i j  - f -  V i U t i j - i  T "  V i X i j —x V i U t i j  s k  A  A \

X i + u  — ------------------------------; - ( P - W )
U  +  Vi

The value of the state variables at the intersection points is computed by integrating 

Equation (5.41) and (5.42) along vector fields ^  and £2, respectively, from the current 

time to next sample time. A variety of numerical schemes for integration are available. 

In this example, a corrected Euler method was used to compute the prediction of the state 

variables at the intersection points. Assuming that the output is Cg at xou< =  1, the output 

at the discrete future time can be estimated as in Figure 5.4. The sample instants, at which 

the outlet concentration can be predicted, are f0 +  At, , where

j  = i ? 2 ,..., m. (5.45)
v i

The output is predicted from the above prediction procedure. The sampling time can be 

modified by adjusting the discretization at the initial time.

The controller is designed to minimize an objective function:
m

•, = X > r - * ) 2+ A (A“ )2’ (5-46)
i=1

where: yr is the setpoint of outlet concentration Cb - The optimal input trajectory subject 

to the linearized output function is computed following the nonlinear quadratic DMC

algorithms (Mutha et al, 1997). The model parameters used for simulation are listed in

Table 3.1. In addition, the jacket properties are given as Cpmj — 0.8 kcal/(kg o K), Vj = 8 

It, pmj =  0.10 kg/lt, Tjo — 375 K. The simulation is performed by discretizing the PDE 

model along the space into 60 points and solving the resulting system of ODEs. The 

number of discretization points for the control calculation is taken to be m — 10. The
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parameters of the nonlinear quadratic DMC algorithm used are p =  m  =  10, m c =  1, and 

A =  0.0004 as tuning parameters. The initial condition is assumed to be steady state for a 

flow rate of 0.5 m/min. The initial steady state variable profiles are shown in Figure 5.6.

Figure 5.7 shows a process response for a setpoint change of Cb (z  = 1) from 0.83 

mol/lt to 1 mol/lt. The proposed CBMPC yields a smooth output setpoint tracking 

response. The process output converges to the setpoint quickly without large overshoot 

and oscillations.

In the CBMPC calculation, a spatial discretization grid is used to get the future output 

prediction at the appropriate discrete sample times. In control of the PFR with uniform 

heating discussed in the last chapter, discretization did not affect the prediction accuracy 

and the control performance. In this chapter, the effect of discretization was examined 

for the counter-flow PFR, to investigate its effect on CBMPC performance for systems 

with multiple characteristics. Figure 5.8 shows the performance of the CBMPC using 

different discretizations. It can be seen that an insufficient number of discretization points 

(m =  2 or 3) do not yield good prediction accuracy and poor tracking performance is 

observed. A reasonably fine discretization (m > 6 in this example) is required to obtain 

good prediction accuracy and the desired control performance.

The performance of the CBMPC in comparison with that of a MPC based on a finite 

difference method was also investigated. Figure 5.9 gives the performance comparison 

of the two MPC methods. For the proposed CBMPC, satisfactory performance can 

be obtained using discretization m  =  10. On the other hand, finer discretization is 

required in finite-difference based MPC in order to get the good performance. Using 

20 discretization points (m = 20) in the finite difference approximation, the MPC yields 

a closed-loop performance comparable to that of the proposed MPC (m — 10) except 

a slightly larger offset in the finite difference-based MPC. Obviously, finite difference 

based MPC can reach the performance of CBMPC when enough discretization is made. 

It is the computational efficiency that makes the CBMPC more favorable than finite- 

difference based MPC. The computational efficiency of the proposed CBMPC with 

different discretization points and that of the finite difference based MPC are compared
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Figure 5.6: Initial state variable profiles in the counter-flow PFR
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Figure 5.7: Evolution of the state variable profiles under CBMPC in the counter-flow PFR
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counter-flow PFR
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Table 5.1: Computations of CBMPC vs. conventional MPC in counter-flow PFR

Control Method flops

CBMPC (m =  2) 1.714 x 103

CBMPC (m =  3) 3.584 x 103

CBMPC (m =  6 ) 1.3298 x 104

CBMPC (to =  10) 3.5826 x 104

CBMPC (to =  20) 1.4003 x 105

finite difference-based MPC (to = 10) 6.31 x 1G6

finite difference-based MPC (to = 20) 1.40 x 107

in Table 5.1. For the proposed CBMPC for systems with multiple characteristics, the 

computational demand increases with the number of discretization points in control 

calculation. The computation required in the CBMPC is much more efficient than that 

in the finite difference-based MPC. The improved computational efficiency makes the 

proposed CBMPC advantageous in implementation to industrial processes.

5.4 Summary

In this chapter, a CBMPC method is developed for generalized PDE systems with multiple 

characteristics. In particular, the focus has been on systems in which two characteristic 

lines pass through every point of the solution surface. For these systems, two or more state 

variables are coupled in the non-parallel characteristic ODEs. The resulting Method of 

Characteristics is more complex, but is manageable. Discretizing the current state variable 

at a finite number of spatial points and combining the numerical integration schemes into
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the Method of Characteristics, the output at future times can be predicted from current 

state variable profiles. The CBMPC exploits this prediction procedure to compute an 

optimal control action. Since the numerical Method of Characteristics closely reflects the 

true solution of the PDE systems, the proposed CBMPC can produce the desirable closed- 

loop performance due to high prediction accuracy that does not require demanding on-line 

computation. This control approach uses the efficient numerical scheme in the control 

development, and therefore overcomes the difficulties existing in the standard feedback 

control for these systems, as discussed in chapter 3.

The proposed CBMPC was evaluated, via simulation, on a counter flow PFR. The 

controlled process output has a desirable closed-loop response to setpoint changes. In 

contrast to the case for single characteristics, the discretization was shown to have an 

impact on the closed-loop performance. Satisfactory performance could be recovered by 

refining the discretization. The CBMPC was also shown to outperform the conventional 

MPC approach based on finite difference method.

In the last two chapters, the CBMPC has been developed for systems that are 

deterministic, strictly hyperbolic and have no model-plant mismatch. Although these 

represent ideal cases for a range of important industrial processes, many industrial 

processes do not strictly belong to this class of systems, but can be considered close. 

Among such systems are convection-dominated parabolic systems. Extending the 

proposed CBMPC to these system is important, due to their wide existence, and is 

discussed in the next chapter.
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Chapter 6 

CBMPC for Convection-Dominated 

Parabolic Systems

A common form of parabolic DPS encountered in chemical engineering and other 

industries is diffusion-convection-reaction processes, which arise very frequently in 

various reactors and other applications {e.g., compression processes, dendritic growth, 

thermal aging of plastic material, batch sedimentation, absorption process, pollutant 

propagation, etc). The dynamics of such processes can usually be modelled by second- 

order parabolic partial differential equations. This chapter focuses on the design of PDE- 

based MPC for convection-dominated diffusion problems.

When convection mechanism is dominant, a second-order parabolic system contains 

obvious hyperbolic features. It is then reasonable to consider the extension of the CBMPC 

technique to these systems. Two approaches are used, in this chapter, to extend the 

CBMPC and develop the control methods for convection-dominated parabolic systems. 

First approach considers the diffusion term in a second-order parabolic model as a 

bounded uncertainty. A robust control approach is developed that combines a model- 

plant mismatch compensation scheme into the CBMPC for hyperbolic systems. In a
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second approach, a finite difference approximation of the diffusion term is used. The 

CBMPC for hyperbolic systems is then applied to the resulting approximate models. In 

fact, the technique of combining the Method of Characteristics with the finite element 

or finite difference methods has been considered in the mathematical field (Douglas and 

Russell, 1982; Marion and Mollard, 2000). These studies demonstrate the advantage of 

this approach over other numerical techniques. To best of our knowledge, the use of this 

method for the control of parabolic PDE systems is new.

This chapter is structured as follows. Section 6 .1 presents some properties and solution 

methods for convection-dominated parabolic systems. Section 6.2 describes two CBMPC 

approaches developed for these systems. In Section 6.3, the control methods are applied 

for control of a bleaching reactor. A summary is provided in Section 6.4.

6.1 Convection-Dominated Systems

Convection-dominated parabolic systems occur in convection-diffusion problems, in 

which both diffusive and convective mass transfer are involved. When convection 

dominates, such systems are referred to as convection-dominated parabolic systems. A 

general convection-diffusion problem is described by

I + ™

where the coefficient a(x) reflects the fluid velocity and b(x) is the diffusivity. In 

this description, the convection dominance can be indicated by the relative ratio of 

the coefficients b(x)/a(x), or the inverse of Peclet Number. The Peclet Number is a 

dimensionless number and is defined as Pe =
o

Solution methods for convection-dominated parabolic systems are usually the same 

as those for other parabolic systems. Although the vast literature exists for parabolic 

problems, spanning a wide variety of mathematical techniques, the most commonly 

used methods are probably eigenfunction expansions and the finite difference method 

(Ockendon et al., 1999).
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Eigenfunction expansions are used to generate finite dimensional approximations 

of parabolic PDEs. This technique can often result in a low order approximation. 

For convection-dominated systems, this property can be lost because of their nearly 

hyperbolic nature. Since all eigenmodes of hyperbolic systems contain almost the same 

amount of energy, an infinite number of eigenmodes are required to represent these 

systems. The large dimension of eigenfunction expansions renders this method unusable 

for the control of convection-dominated systems.

The finite difference method has been used extensively for simulation and control 

of PDE systems. In spite of their wide acceptance and popularity, both explicit and 

implicit finite difference methods involve significant computational requirement for 

approximation accuracy. Thus, use of finite difference approaches for MPC of convection- 

dominated systems can lead to prohibitively demanding techniques and as such, is an 

unattractive approach.

To overcome these limitations for convection-dominated parabolic problems, it is 

natural to seek numerical methods that reflect their almost hyperbolic nature. As 

discussed in previous chapters, the Method of Characteristics provides a computationally 

efficiently solution method for hyperbolic systems. It may be appropriate for constructing 

solutions to convection-dominated parabolic problems as well. For parabolic systems, 

a small diffusion term can be easily identified and approximated with a large spatial 

grid without impacting the overall accuracy. It is shown in this chapter that the 

combination of the Method of Characteristics with the finite difference schemes produces 

a computationally efficient solution method for convection-dominated parabolic systems.

Denoting the characteristic direction associated with the operator vt +  avx in Equation 

(6 .1) by t  = t ( x ) ,  and
d d . . d=  — + a (x )— , (6 .2 )

dr{x) dt dx
Equation (6.1) can be written as:

dv d^v
= /(*,*>)■ (6-3)dr(x) dx2

Applying the finite difference scheme to Equation (6.3), the solution at times U = iAt
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can be approximated for a time step A t >  0. Let

x  — x — a(x)At, (6.4)

and note that

dr(x)
dv v(x,tj) — v{x,t j-1) 

A t
_  v(x,tj) -  v(xtti-i)

[(t — x ) 2 +  (A f) 2]1/ 2

These procedures can yield an improvement in approximation accuracy. Approximation 

of dv/dt  by standard backward difference leads to the error of the form K  \\d2v / <9t2|| A t

significant convection, the solution changes much less rapidly in the characteristic r  

direction than in the t direction (Douglas and Russell, 1982). Thus, this scheme will 

permit the use of larger time steps, with corresponding improvements in efficiency, at no 

cost in accuracy. There is no stability limitation on the size of At.

When convection is distinctively more important than diffusion (i.e., for large Peclet
02v

numbers), the diffusion term b(x)---z can be replaced by centered, second difference
ox

approximation with minimal impact on overall accuracy. Therefore, Combination 

of the Method of Characteristics with Finite Difference approximation (CMCFD) 

permits convection-dominated parabolic problems to be solved with high accuracy and 

comparatively small computational load. In this chapter, the CMCFD approach is used to 

develop MFC for convection-dominated parabolic systems.

in suitable norms, while the above method yields K  ||d2u/c?r2|| At. In problems with

6.2 Mismatch Compensation

Consider a convection-dominated parabolic process modelled by

(6.6)

y = v(xout)-
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Qfiy
When the diffusion term b{x)-—^ is negligible, it may be possible to approximate the

ox2
PDE in Equation (6 .6 ) by a hyperbolic PDE:

^  + a(x )^;== f ( x ’v>u)’ <6-7>

which can be described along the characteristic direction in the ODE form:

i  =  1,

x = a(x),
(6 .8)

v = f (x ,u ,v ) ,  

y  =  v{Xout).

Then, the future output can be predicted by numerically integrating Equation (6 .8).

The CBMPC for the system in Equation (6 .6 ) can be developed using the strategy for

hyperbolic systems discussed in Chapter 4. The locally linearized output prediction 

equation is modified by adding a mismatch compensation term:

y =  yo +  SAu +  e, (6.9)

where e is a mismatch term and includes the contribution of the diffusion term on the 

output. In Equation (6.9), yo and S are calculated in the same way as that for a hyperbolic 

system based on Equation (6.7), the components of e are calculated using the similar 

strategy that is used for disturbance effects in DMC. It is taken to be zero initially and is 

updated iteratively at every sample time instant using the formula:

e r "  =  <£“ +  £(»£■-& ), (6 .10)

e k+1 — &k+2 =  =  efc,

where y™ is the measured output at k sample time instant, y* is the predicted output at 

the kth sample time instant, L  is an updating factor and is often taken to be 1. As shown 

in Figure 6.1, the measured output is compared with the predicted output and an updated 

prediction is obtained and used in the MPC development.
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M

Figure 6.1: Structure of model-plant mismatch compensation in CBMPC 

The control action that minimizes the objection function

J  =  (yr -  y)TQ(yr -y) +  AuTRA u, (6 .11)

is:

Au =  (St Qt QS +  R TR)~1Sr QTQ(yr -  yo -  e). (6.12)

By neglecting the effect of diffusion, the current control action can influence the output 

only until the residence time. Thus it is reasonable to choose a prediction horizon time 

to be equal to the residence time. The CBMPC for the system in Equation (6 .6) can be 

developed using the following procedure:

Step I At time tQ, assume e* =  0.

Step II Calculate y 0 and S based on Equation (6 .8), by using the same technique as that 

described in chapter 4. Calculate the control action Au using Equation (6.12).

Step III Implement the first element of Au. Get the output measurement ym at time t\. 

Update e using Equation (6.10).

Step IV Repeat Steps II and HI.

This compensation scheme can be used to correct the output prediction obtained from 

the approximate hyperbolic PDE models. It can also be used in other cases of model-plant
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mismatch to improve the robustness of the CBMPC proposed in chapters 4 and 5. Using 

this scheme in CBMPC development yields an approach that applies to the systems where 

the effect of diffusion is small. As the contribution of the diffusion term increases, control 

performance of the CBMPC is expected to degrade.

6.3 Finite Difference Approximation

Adding boundary conditions to the PDE (6 .6) yields:

—  (x — 0) =  a(ux=o -  V i n ) ,
d x K (6.13)
dv
— (x =  1) =  P(vx= 1 -  V o u t )  =  0,

V =

As discussed in the previous section, ignoring the diffusion term yields the characteristic 

vector field:

(6 -14)
Along this characteristic direction, the parabolic PDE in Equation (6.13) can be described 

as:

i =  l,

x  =  o,(x), (6.15)

d2v
v =  b ( x ) ~ + f ( x , v , u ) .

This is an exact expression of the original PDE, but presence of a second-order spatial

derivative makes it more complicated than that for a hyperbolic system.

The solution method using Equation (6.15) requires replacing the second-order 

derivative by some numerical approximation. Here, the approximation using centered 

finite difference is adopted (see Figure 6.2):
d2v v(xi+i) -  2v(xi) -I- v ( x ^ i)
dx2 hi

for x = x 2>...,xm-i ,  (6.16)
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x1 x2 xm x

Figure 6.2: Output prediction using CMCFD

where hx is a spatial step. The approximation of the second-order derivative of v at 

boundaries can be developed based on the boundary conditions:

0 2 V  1 (  v { x m )  -= ° _  ^ ' , for x — xm-
ox1 hx \  hx )

Substituting the finite difference approximation of the second-order derivative in 

Equations (6.16) and (6.17) into Equation (6.15), the parabolic PDE model in Equation 

(6.13) can be described by a system of ODEs:

i =  1,

X = b ( x ) ,

Vx\ 1!

^
T

- 'v -2  -  V i

v h x
Ol{v x—q V i  n)^ +  f ( x , v u u ) ,

=  a ( x ) -----
— 2  V i  +

h i

V%—\  - /   ̂
+  f ( x , V i , U ) , % =  2 ,  . . . m

Vx-m = a(x)r,{ 0 1 1̂

h .  ) +/(x'K‘mi vi) ■
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Integrating this system of equations, from the current state variable values at

Xi, x2, leads to output prediction at future sample instants. For output prediction,

the value of v at x =  0  is needed and can be calculated by combining the boundary

condition with the finite difference approximation of the first-order spatial derivative:

d v  _  (  \  
o  — ■ ® {V x= 0 D in)
dx , , (6.19)

(vX2 -  vXl)
hX

Then, the value of v at x ~  0 can be approximated by:

(6.20)
ahx + 1

Various numerical integration schemes can be used to integrate Equation (6.18) along the
1 — X

characteristic direction. The integral time step can be taken as At =  — T^T'  or *ess‘
C L [< jC  j

Based on the prediction obtained by integrating Equation (6.18), the CBMPC for 

convection-dominated systems can be developed using the same approach as that for 

hyperbolic systems. By expressing the output-input relation in a locally linearized form:

y  =  yo +  SAu, (6.21)

the control action minimizing the same objective function as that in Equation (6.11) is:

A u =  (St Qt QS +  R TR )“ 1STQTQ(yr -  y0). (6.22)

The calculation of S and y0 at every sample instant constitutes the main part of the

CBMPC on-line computation. S and y 0 are obtained based on the integration of Equation

(6.18) for the control action u0 and uQ + S.

Due to the diffusion mechanism, the current control action affects the output for a 

period longer than the residence time. Therefore, the CBMPC for convection-dominated 

systems using finite-difference approximation requires a prediction horizon time larger 

than the residence time in order to get a stable and smooth operation.
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6.4 Example - Bleaching Reactor

The bleaching process is one of the last steps in pulp production. Its purpose is to improve 

the brightness of the pulp to a specified level that fulfills customers needs. The control 

objective for a bleaching reactor is then to obtain the desired brightness with a minimum 

output brightness variance at the lowest possible chemical cost. In this section, the two 

proposed CBMPC methods are evaluated, via simulation, on a bleaching reactor modelled 

by a system of parabolic PDEs.

6.4.1 Using Mismatch Compensation

The CBMPC using model-plant mismatch compensation technique is applied to bleaching 

reactors in this subsection. Both SISO and MIMO control cases are considered.

Bleaching Reactors-SISO

A PDE model for the bleaching reactor can be obtained by mass balance on lignin and 

C102 in the reactor and the model varies for different kinetic structures. Assuming a 

nonlinear kinetic structure, the model takes the form (Renou et al., n.d.):

where: t is time, x £ [0,1] is a normalized spatial coordinate and L  is the concentration 

of Lignin, C  is the concentration of C102, u is superficial velocity and D  is dispersion

dt
dC
dt

dL kLC2L2,

11
U ,  =  - ( L (0  , t ) ~ L in(t)),

\z^o = ~ ( C ( 0 , t ) - C in(t)),
(6.23)
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coefficient. The concentration of the reactant L  at the outlet is the variable to be 

controlled, for which a setpoint is specified. The concentration of the reactant C  is used as 

the control variable at the inlet. The process parameters are: fa  = 0.0065, f a  = 0.0010, 

v =  1/30 and D  =  0.001.

The CBMPC proposed in Section 6.2 was applied to the system, taking the inlet 

concentration of Lignin as Lin — 9 Kappa, with the reactor initially at steady state. 

The output responses are shown in Figure 6.3 for a setpoint change from 5 Kappa to 6 

Kappa. Note the transport delay of approximately 30 min observed in the process output. 

From Figure 6.3, it is observed that the proposed CBMPC with mismatch compensation 

generates a satisfactory output response.

In the bleaching reactor, the concentration of the reactant L at the inlet, Lin, 

is determined by the previous processes and may vary due to operation variations. 

Simulation was performed to investigate the process response of the proposed CBMPC 

for measured and unmeasured disturbances in Lin. Figure 6.4 shows the process output 

response and the control action for measured disturbances in Lin. The proposed CBMPC 

can reject measured disturbances in Lin and ensures the process output back to the desired 

setpoint. The capability of the CBMPC with the mismatch compensation in rejecting the 

unmeasured disturbances in Lin is illustrated in Figure 6.5. It appears that unmeasured 

disturbances perturb the process more than measured disturbances and the process output 

deviates farther from the setpoint, but the CBMPC can reject the unmeasured disturbances 

and drive the process output back to setpoint. The capability of the proposed CBMPC to 

reject the unmeasured disturbances results from the mismatch compensation scheme used.

Renou and Perrier (Renou and Perrier, 2000) used global differences as an 

approximation for the spatial partial derivatives and developed a nonlinear controller for 

the bleaching process with the form:

c u t )  =  +  DCm (t) +  ~

+ f a u  -  v(Lm (t) -  Li„(t)) +  D(Lm -  (6 2 4 >
KLi

u — A[(Lsp Lout(t)) +  T Jo (-̂ sp Loat(r jjcfr],
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where A and 7  were PI tuning parameters, for which A =  —0.05 and 7  =  0.02 were 

used in the simulation. The setpoint tracking behavior of the proposed CBMPC scheme 

and the nonlinear controller in Equation (6.24) are compared in Figure 6 .6 . For this 

simulation study, the proposed CBMPC approach exhibits better performance than the 

nonlinear controller of Equation (6.24) in terms of output response, with less aggressive 

control action.

Bleaching Reactor-MJMO

In this section, the applicability of the CBMPC with the mismatch compensation to multi

input multi-output control is examined on a bleaching reactor. Assuming a linear kinetic 

structure, the reactor is modelled by:

The two outputs are the outlet concentrations of Lignin and C102, Lout and C ^u  and the 

two inputs are the inlet concentrations of Lignin and CIO2, Lin and Q n.

Similar to the SISO case, the controller for this system is developed based on the 

approximate model obtained by ignoring the diffusion term in Equation (6.25). According 

to the Method of Characteristics, the current control variables Lin and C{n only affect the 

process output Lout and in the future at the residence time A t =  1/u. Therefore, the 

CBMPC with a prediction horizon of 1/u is used.

^ | „ o  =  ^ ( C ( 0 , t ) - C jn(t)),
(6.25)

p r  ar

d C . dCcmt
dz 2 1 dx
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Set

K  =
ki k2

h  h
(6.26)

Coul Cin ec
(t +  At) =  exp(KAt) (t) +

Lout Lin eL

Since the reactions are linear, the analytical expression of the future outputs from the 

approximate model can be expressed explicitly using the Method of Characteristics:

(6.27)

In the above expression, ec and are obtained iteratively as described in the last section. 

The control variables Lin and Cin are formulated such that the process outputs converge 

to their setpoint.

The simulation was performed by discretizing the PDE model along the space into 

100 points and applying the finite difference method to Equation (6.25). The model 

parameters were taken as: v = 0.05 m/s, D = 0.0005 to2/ s, kx — 0.03 1/s, k2 — 0.02 

1/s, kz = 0.05 1/s, k± =  0.04 1/s. For the initial state variable profiles as shown in Figure
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6.7, the process response for the setpoint change was examined when the setpoint of C 

changes to 0.6 g/1 and the setpoint of L changes to 6 g/1. From Figure 6.8, it can be seen 

that the CBMPC using the mismatch compensation scheme is able to drive the process 

outputs to their setpoints. In spite of the inherent process transport delay, the process has 

quick response to the setpoint changes under the CBMPC.

The performance of the controller to disturbances were investigated. Figure 6.9 

shows the process response for the measured disturbances in u. It is observed that 

the CBMPC rejects the measured disturbances well and the process returns to the 

setpoint quickly. Figure 6.10 shows the output response if the disturbances in u are 

unmeasured. Even though the process displays larger deviation from the setpoint for 

the unmeasured disturbance than that for the measured disturbance, the process outputs 

return to the setpoint in a reasonably short period of time and the CBMPC using mismatch 

compensation has the capability of rejecting the unmeasured disturbances.

6.4.2 Using Finite Difference Approximation

The bleaching reactor discussed in the last subsection can also be used to illustrate the 

CBMPC with the finite difference approximation in this section. As in model (6.23), the 

inlet concentration Cin is manipulated to control the outlet concentration Lout.

The process output is predicted using the CBMPC scheme based on CMCFD, which 

requires the approximation of the diffusion term using the finite difference method. For 

the finite difference approximation of the diffusion term, the process is discretized into m

grids. The prediction sampling time is set to be — , where u is defined as in Equation
mu

(6.23). The finite difference approximation of the diffusion term is obtained at the 

beginning of every sample instant and assumed to keep constant until the next sample 

instant. By this approximation, output prediction can be performed by integrating the 

low-dimensional ODEs. The accuracy of the output prediction using CMCFD requires 

the convection term to be dominant over the diffusion term (i.e., large Peclet number).

For the purpose of simulation, the process was represented by discretizing the PDE
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model into a large number of ODEs (more than 200 discretization points). The initial 

condition used was the steady state with Cin =  1.3 g/1 and Lin = 9 Kappa. For a 

change in manipulated variable Cin from 1.3 g/1 to 2 g/1, the process output prediction 

using CMCFD (m =  10) was compared with the ‘real’ process output obtained via 

fine discretization for different values of 1/Pe. Figure 6.11 shows the comparison of 

output prediction using different schemes, where solid line indicates the ‘true’ process 

output, dashed line indicates the predicted output using CMCFD, and dash-doted line 

indicates the predicted output obtained by ignoring the effect of diffusion and using the 

Method of Characteristics. When D — 0, the diffusion term vanishes and CMCFD 

technique becomes the Method of Characteristics and provides an accurate description of 

the process. For small values of 1/Pe, CMCFD generates better prediction than the pure 

Method of Characteristics at a slightly higher computation expense. As 1/Pe increases, the 

predicted output using CMCFD displays oscillation and the solution becomes unstable. 

This is because the large discretization spatial steps for approximating the diffusion term 

can lead to solution instability when diffusion becomes important.

The absolute values of the error for the predicted steady state output using both 

CMCFD and the pure Method of Characteristics are shown in Table 6.1 and Figure 6.12. 

It can be seen that the absolute error of the steady state output prediction using CMCFD 

is much smaller than that using the Method of Characteristics when diffusion exists but 

is not dominant. When 1/Pe increases to 0.06, the absolute error using CMCFD increases 

considerably and appears to increase exponentially beyond this point.

Using the operating conditions and the parameter values given in the last section, 

performance of the CMCFD-based MPC was examined for a setpoint change. Choosing 

m =  5 and the prediction horizon as p = 15, the MPC based on CMCFD technique yields 

a output response for a setpoint change to 6 kappa, as shown in Figure 6.13. It is observed 

that the process output converges to the setpoint quickly and smoothly without frequent 

control moves. In the case of no model plant mismatch, the process produces offset-free 

response.

The advantages of the proposed CMCFD-based CBMPC for convection-dominated
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Table 6.1: Steady state output prediction error

1/Pe Method of Characteristics CMCFD

0 0 0

0.003 0.0194 0.0035

0.006 0.0344 0.0036

0.015 0.0716 0.0005

0.03 0.126 0.0013

0.045 0.0895 0.008

0.054 0.2122 0.0401

0.06 0.2209 0.0895

0.1

0.08

S-iO
faw

0 .0 6

0 .0 4

0.02

0.060.02 0.04
1/Pe

Figure 6.12: Output prediction error of CMCFD in the bleaching reactor
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Table 6.2: Computations for CBMPC vs. conventional MPC in the bleaching reactor

Control Method flops (in Matlab ®)

MPC using CMCFD (m=5) 4.756 x 105

MPC using finite difference (m=10) 4.207 x 106

parabolic systems can be shown by comparing the performance and computational 

efficiency of the MPC using the CMCFD with that using the finite difference method. 

The output response for a setpoint change using the CMCFD-based MPC and the finite 

difference based MPC is compared in Figure 6.14. For the outlet lignin concentration 

setpoint of 6 kappa, CMCFD-based MPC with 5 discretization points generates similar 

response to that of the finite difference based MPC with 10 discretization points, 

except that the finite difference based MPC generates larger offset and overshoot. The 

computational requirements of these two MPC methods are compared in Table 6.2, using 

“flops”, the number of floating operations in Matlab. It is noted that the proposed 

CMCFD-based MPC requires only one tenth of the computation flops of the finite- 

difference based MPC, with smaller offset and smoother response. From an analysis 

of the two computation methods, the computational demand of the CMCFD-based MPC 

increases linearly with the number of discretization points while the finite difference based 

MPC increases nearly exponentially with the number of discretization points. Therefore, 

the proposed CBMPC using CMCFD has the advantage of combining prediction accuracy 

with computational efficiency, and yields a high performance control that is easy to 

implement.

The CMCFD-based CBMPC was compared with the CBMPC using mismatch 

compensation. The CBMPC using mismatch compensation for the bleaching reactor is 

developed by ignoring the diffusion term and applying the Method of Characteristics. 

The model-plant mismatch resulting from ignoring the diffusion term is compensated
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Figure 6.14: Comparison of CMCFD-based CBMPC vs. finite difference-based MPC

by adding the model-plant mismatch compensation term to the MPC. Since there is a 

remarkable time lag for the output to be affected by the input and the input can be 

adjusted by the error compensation term only after the effect of input is observed in 

the output, the CBMPC with mismatch compensation is expected to result in sluggish 

response in comparison to the CMCFD-based CBMPC. From Figure 6.15, the CMCFD- 

based CBMPC yields much quicker convergence to the setpoint.

In CMCFD, the impact of the prediction horizon on control performance is different 

from the CBMPC using the pure Method of Characteristics. The performance of proposed 

CBMPC based on CMCFD was examined for different prediction horizons. With a 

spatial discretization m  — 5, the sampling time being 1/5u. Figure 6.16 shows the 

output response for a setpoint change with prediction horizon being 3 residence times, 

2 residence times and 1.5 residence times, respectively. It is observed that the prediction 

horizon of 1.5m or less results in oscillatory or even unstable process response. When 

the prediction horizon is 2m, the process output displays quick and smooth response with 

little overshoot. The overshoot decreases as the prediction horizon increases. Therefore, 

in contrast to hyperbolic systems, the parabolic system requires a prediction horizon larger
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than the residence time, which leads to some increases in computational requirements.

6.5 Summary

Convection-dominated systems display hyperbolic nature, which can be exploited to 

develop a characteristic-based MPC for these systems. In this chapter, two approximation 

approaches are used to deal with the effect of diffusion and are combined into the CBMPC 

proposed for hyperbolic systems in the last two chapters.

The CBMPC with mismatch compensation takes the diffusion term as model-plant 

mismatch and adds a mismatch compensation term to the output prediction equation 

obtained from the approximate hyperbolic models. Simulation study of a bleaching 

reactor shows that this control scheme performs well, is computationally efficient, and 

is capable of dealing with both measured and unmeasured disturbances. The mismatch 

compensation used in this chapter also provides an effective way of dealing with model- 

plant mismatch for any of the problems within the scope of this thesis.

The CBMPC with CMCFD approximates the diffusion term by finite difference and 

then applies the Method of Characteristics to the resulting approximate model. When 

the diffusion term is relatively small, convection-dominated parabolic problems can be 

solved with the CMCFD approach using small dimensionality and satisfactory accuracy. 

Simulation on the bleaching reactor shows that this method applies to diffusion problems 

within a range of Peclet numbers. In the bleaching reactor discussed in this chapter, the 

CMCFD provides an output prediction with high accuracy when the 1/Pe is in the range of 

0 — 0.06. This range increases with the finer discretization; however, a finer discretization 

increases the computational demand. Therefore, it is advantageous to apply the CMCFD 

for the output prediction when 1/Pe is small.

Overall, the computational demands of the CMCFD-based MPC are larger than 

those of the CBMPC with mismatch compensation due to the larger dimension of the 

approximate characteristic ODEs and longer prediction horizon requirement. In fact, 

the computation requirement of the CMCFD-based MPC is between the CBMPC and
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the finite-difference based MPC. However, the CMCFD-based CBMPC produces better 

performance than the CBMPC with the mismatch compensation, resulting from the higher 

prediction accuracy. It can effectively overcome the sluggishness of output response, 

resulting from the time lag between input and output, and yields quick output convergence 

to setpoint for convection-dominated parabolic systems.
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Chapter 7

Conclusions and Recommendations

Many industrial processes are distributed parameter systems and can be modelled by 

first-order hyperbolic PDEs or second-order parabolic PDEs with high hyperbolicity. 

Geometric understanding of these PDE models leads to a powerful solution method, 

the Method of Characteristics, for these systems. Control development based on this 

method shows the promise of improving the control performance and generating a control 

design that is advantageous for implementation in industrial operations. This thesis has 

been devoted to the development of high performance control for DPS by exploring the 

characteristic properties of the PDE models.

7.1 Conclusions

Although the Method of Characteristics has been well recognized as an elegant solution 

method for PDE systems, limited results have been reported on the control development 

for PDE systems using this method. This thesis provides the design of standard 

feedback control and model predictive control for PDE systems using the Method of 

Characteristics. Initial work focussed on designing a standard feedback control for 

systems modelled by first-order scalar PDEs using a nonlinear feedback control strategy

161

permission of the copyright owner. Further reproduction prohibited without permission.



based on the characteristic ODEs of the underlying PDE model. The resulting feedback 

control scheme has a relatively simple formulation in comparison to available feedback 

controller in the literature and good performance in comparison to conventional PI 

control.

The development of the standard feedback control for first-order scalar PDE systems 

was discussed in Chapter 3. Based on the Method of Characteristics, a state feedback 

control scheme was formulated using nonlinear feedback control technique with an 

additional integral term. The resulting state feedback controllers possess the simple 

form of PI control plus a feedforward term. In comparison to the available feedback 

control methods for PDE systems, the proposed feedback control approach does not 

require demanding computation and can produce satisfactory performance to setpoint 

changes and various disturbances. Asymptotic stability of the state feedback control 

was proved based on the technique of a time transformation along the characteristics. 

The implementation of the state feedback control requires estimation of the infinite

dimensional state variables, which has been a challenging subject in DPS control. In 

this thesis, design of an infinite-dimensional state observer was discussed based on the 

semigroup theory, and a sufficient condition for the estimated state to converge to the 

true state was proposed. The simulation study illustrated an example of designing an 

infinite-dimensional state observer. General design methods remain to be developed.

In spite of the good performance of the proposed feedback control approach, several 

limitations of this method became evident: the proposed controller performance is limited 

by the “speed” of the process dynamics and will be sluggish for DPS with slow dynamics; 

the control scheme is only applicable to a narrow class of hyperbolic systems; and 

extension of the method to more complex system is not promising. Recognition of these 

limitations of standard feedback control for DPS motivated research on the characteristic- 

based MPC.

Due to the observation that in DPS the effect of control action on output is usually 

not immediate and control without explicitly including the prediction horizon can lead to 

sluggish or oscillatory process response, research was directed towards model predictive
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control. The Method of Characteristics permits one to predict the future output from 

the current state variable profile with high accuracy and efficient computation. The 

resulting CBMPC fully exploits the information from the Method of Characteristics and 

yields a control approach that combines an accurate continuous PDE model with a digital 

MPC formulation. The application of the Method of Characteristics in model predictive 

control is a new approach, as there has been no previous work reported in the literature. 

The research in this thesis indicates that such an approach provides an efficient use of 

geometric tools in advanced control of complex systems and is a worthwhile subject.

Extensive efforts were made to develop the characteristic-based MPC for various 

hyperbolic PDE systems, and examples were used to illustrate different cases. The MPC 

technique for hyperbolic systems was also extended to an important group of second-order 

parabolic PDE systems using a combination of the finite-differences and the Method of 

Characteristics, a technique that has garnered the interest of mathematicians, but has been 

neglected by control researchers. In the MPC approach of this thesis, a particular focus 

has been on output control (mostly single output) at the boundary.

Chapter 4 presented the CBMPC development for processes with a relatively simple 

characteristic nature. In MPC, prediction of future process behavior has a great influence 

on the resulting control performance and the required on-line computations. Use of the 

Method of Characteristics for future output prediction was one of the focuss in Chapter 4. 

The characteristic-based output prediction method was presented for hyperbolic systems 

with single characteristics. Such systems can be exactly described by a system of ODEs, 

and the decoupled nature of these characteristic ODEs makes the output prediction in the 

proposed CBMPC accurate and computationally efficient. For linear, scalar PDE systems, 

this method led to an offline control law. Otherwise, a nonlinear quadratic MPC algorithm 

was used to calculate the control action. The CBMPC for linear systems discussed in 

this chapter was proved to have guaranteed stability. A terminal constraint was added 

to the proposed CBMPC approach to ensure stability of the method for quasilinear 

systems. Simulation studies using a heat-exchanger and a PER with uniform heating 

were presented to illustrate the CBMPC development for linear and quasilinear systems.
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The CBMPC for hyperbolic systems with a single characteristic is a straightforward 

application of the characteristics inherent in the PDE models.

The CBMPC for hyperbolic systems with multiple characteristics was discussed in 

chapter 5. The focus was on systems of two first-order PDEs and second-order scalar 

PDEs. Applying the Method of Characteristics to these more complicated systems led 

to multiple sets of characteristic ODEs. The coupled nature of the ODEs affects the 

prediction accuracy and computational efficiency of the CBMPC for such systems. In 

spite of the increased computational load, the resulting CBMPC is capable of yielding 

reasonable performance due to high prediction accuracy. The corresponding on-line 

computation is less than the MPC using the finite difference method. Complexity of the 

CBMPC for systems with multiple characteristics increases significantly in comparison 

to that for single characteristics. The CBMPC design for systems with more than two 

characteristics does not involve new ideas, and was not considered in the thesis. However, 

it is expected that, as dimension and/or complexity of the characteristics increase, the 

CBMPC may not be an effective approach in comparison with other MPC schemes.

Chapter 6 presented an extension of the CBMPC to convection-dominated second- 

order parabolic systems. Many industrial processes characterized by diffusion and 

convection often possess important hyperbolic nature due to the relative dominance 

of convection. Two control strategies were proposed using the different ways of 

approximating the diffusion terms. CBMPC with mismatch compensation generates 

acceptable control performance with efficient computation. Moreover, the proposed 

mismatch compensation technique provides a way of improving the robustness for all 

CBMPC in this thesis. Approximating the diffusion term via finite differences leads to a 

new approach, the combination of the finite-difference and the Method of Characteristics, 

which makes an efficient and relatively accurate numerical scheme to predict the future 

process states and outputs for these processes. Use of this technique in controller 

development is innovative and no previous work has been reported.

The characteristic-based control methods proposed in this thesis are shown to be 

promising approaches in the control of DPS due to improved performance and relatively
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low computational requirements. The application of these approaches may require some 

preliminary geometric analysis of the systems and their PDE model. The advantages of 

such methods diminish as the characteristics of the PDE models become complicated 

or the hyperbolicity of the systems decreases. The applicability of the proposed control 

approaches is limited by the characteristic nature of the systems.

7.2 Recommendations

This thesis was devoted to the control developments for DPS using geometric techniques 

and significant progress was made in developing characteristic-based control approach. 

It is recognized from the thesis that the PDE-based control using geometric tools is a 

fascinating subject and the research of this thesis is by no means exhaustive.

Design of an infinite dimensional state observer is important but challenging in control 

of DPS. The thesis proposed a state observer design structure based on Semigroup 

theory. However, the abstract formulation does not provide guidelines for selection of 

design parameters and/or operators. Further development of infinite dimensional state 

observers will include justification of the observer structures, specific guidelines of design 

procedures as well as the parameter selection.

The proposed state feedback control was proved to have closed-loop stability. The 

output feedback control laws were obtained by combining the state feedback controllers 

and the state observers. The thesis did not imply that stability of the resulting output 

feedback controllers were ensured by separate stability of the state feedback controllers 

and the state observers. Therefore, it is important to investigate stability of the proposed 

output feedback controllers.

In this thesis, it was assumed that there were no model plant mismatch. Since this 

can be a significant issue in industrial practice, further work is required. Similarly, 

only deterministic processes were considered here, yet most industrial processes exhibit 

some stochastic behavior. Consideration of the stochastic dynamics would widen the 

applicability of the proposed techniques.
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To implement the proposed CBMPC, it requires the information of current state 

variables at some discrete spatial points. The state observer for CBMPC and the 

requirement of number and location of measuring sensors for observer design will be 

in the future work.

The characteristic-based MPC in this thesis did not consider constraints. Convenience 

of handling constraints is one of the reasons that MPC has gained wide popularity. The 

proposed CBMPC should extend easily to handle constraints in a similar fashion to other 

MPC schemes. Further work may be required to build a constrained CBMPC scheme.

Due to the finite horizon nature, general MPC schemes do not have guaranteed 

stability. In recognizing the importance of stability for the control laws, the stability 

of the CBMPC for systems with single characteristics was discussed. It was found that 

the CBMPC for linear systems had guaranteed stability. Further research is needed to 

address stability of the CBMPC for more complicated processes.

Much of the work in this thesis was mainly concerned with the systems having single 

characteristics or double characteristics of the opposite directions. In practical situations, 

the characteristics patterns in between exist and are not addressed by the thesis. The 

relative patterns of double characteristics definitely affect the discretization, sampling 

time and other elements of the control design. A complete study on the effect of the 

characteristics patterns on control design has a theoretical and practical significance.

Characteristics are the main geometric property of a PDE system concerned by the 

thesis; however, it is only a special case of isovectors in a general PDE system within 

the context of exterior differential equations. The limitation of characteristics affects 

the applicability of the proposed control methods. Using more generalized geometric 

properties such as isovectors in high performance control would be a great breakthrough 

from both mathematical and control point of view.

Control of DPS is a challenging but valuable subject. Many areas are unexplored in 

this field and opportunities exist for explorative researchers to develop advanced control 

theories for DPS.
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