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Abstract

The mountain pine beetle (MPB) is among the most destructive eruptive forest pests in North

America. A recent increase in the frequency and severity of oubtreaks, combined with an

eastward range expansion towards untouched boreal pine forests, has spurred a great interest

by government, industry and academia into the population ecology of this tree-killing bark

beetle. Modern approaches to studying the MPB often involve the analysis of large-scale,

high resolution datasets on landscape level damage to pine forests. This creates a need for

new modelling tools to handle the unique challenges associated with large sample sizes

and spatial effects. In this thesis, I develop some of these tools and apply them to study-

ing the spread and attack behaviour of MPB. Chapter 2 introduces a statistical framework

for handling spatial autocorrelation based on the geostatistics paradigm of explicit covari-

ance functions, known as covariograms. This extends previous work on computationally

feasible models for covariances in lattice data, and introduces a powerful new estimator

for the angle of anisotropy in stationary random field representations of autocorrelation.

Chapter 3 unifies a number of previously unconnected results on redistribution kernels,

by presenting a novel mechanistic derivation of a widely-applicable kernel for isotropic

movement patterns. Phenomenological extensions are proposed to account for anisotropy

as well as an approximation with superior computational properties, which is well suited

to model-fitting on extremely large samples. In Chapter 4, these ideas are combined to

construct a comprehensive model for the spatial spread of infested stems, coupled by MPB

dispersal flights. This model facilitates the landscape-level inference of subtle properties

of MPB attack behaviour based on aerial surveys of killed pine. Among these result is an
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accurate estimate of the size of the cryptic endemic MPB population, which formerly has

been measurable only by means of costly and time-intensive ground surveys.
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This thesis is an original work by Dean Koch. No part of this thesis has been previously
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“To those who do not know mathematics it is difficult to get across a real feeling as to the

beauty, the deepest beauty, of nature.”

-Richard P. Feynman
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Chapter 1

Introduction

1.1 Ecology of the mountain pine beetle

The mountain pine beetle (MPB), Dendoctronus ponderosae (Coleoptera: Curculionidae)

is a tree-killing bark beetle native to pine forests of western North America. The MPB

feeds on the phloem of pine trees, gaining access to this well protected inner layer of tissue

through cooperative attacks involving dozens to hundreds of beetles that simultaneously

bore through the bark en masse (Raffa and Berryman, 1983). The shock of this mass

attack in combination with the introduction of mutualistic fungi (pathogenic to the tree),

can overwhelm a pine’s defense system, effectively girdling the tree and leading to its death

(Safranyik and Carroll, 2006).

MPB ecologists have identified a number of distinct phases of MPB behaviour relating

to their population density. The normative state is thought to be the cryptic endemic phase,

in which low density populations cooperate with other bark beetle species to occupy a

small niche of sick and dying pine (Boone et al., 2011; Lindgren and Raffa, 2013). This

phase is so small as to have a virtually undetectable impact on pine populations. However,

quasiperiodic eruptions in MPB populations (outbreaks) are a natural occurance, and, unlike

the endemic phase, an outbreaking population is capable of spreading through a stand to

kill the majority of mature healthy pine trees in a matter of years.

The frequency and severity of these outbreaks is on the rise – with forestry and fire

suppression practices, along with climate change all likely playing important roles in driving
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an apparent regime shift for MPB over the past century (Raffa et al., 2008). In the past

two decades, for example, an epidemic of MPB outbreaks has consumed more than half of

the merchantable pine in western Canada, impacting over 18 million hectares of forestland

(Dhar et al., 2015). This was the largest such event ever recorded, and it is expected to have

severe consequences for the province of British Columbia (BC), both economic (Corbett

et al., 2015) and environmental (Kurz et al., 2008).

Perhaps more worrisome, however, is that this latest epidemic was accompanied by

a range expansion across the Rocky Mountains into Alberta (AB) during the mid-2000s

(Giroday, Carroll, and Aukema, 2012), which threatens to continue eastward through the

uninterrupted belt of jack-pine dominated boreal forest that spans much of the continent

(Safranyik et al., 2010). In response there has been a large research effort towards better

understanding the population dynamics of the MPB and the potential for anticipating and

controlling future outbreaks using mathematical models (eg. Shore and Safranyik, 1992;

Kunegel-Lion, McIntosh, and Lewis, 2018; Goodsman and Lewis, 2016).

However, MPB population modellers have been (and continue to be) challenged by the

many nonlinear interactions and spatial effects that characterize this fascinating species

(Nelson et al., 2008). The accurate forecasting and effective management of outbreaks

remains extremely difficult (Six, Biber, and Long, 2014), in spite of an abundance of spatio-

temporal outbreak data on which to calibrate parameters and test hypotheses (Wulder et al.,

2010). This dissertation will contribute a suite of spatial modelling tools to assist MPB

ecologists in connecting their models to data, in the hope that by better understanding the

beetle today we might avert the continent-wide epidemic that looms tomorrow.

1.1.1 The cryptic endemic population phase

Endemic MPB subsist on an ephemeral group of pine trees whose defensive capability

is compromised due to natural stressors – examples include aging, windthrow, disease,

and suppression by more dominant vegetation (Berryman, 1979; Raffa and Berryman,
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1983; Carroll et al., 2006). The colonization of these trees by bark beetles is met with

little resistance. Mass attacks are not needed, so the Allee effect seen during outbreaks

is largely absent (Bleiker et al., 2014). Because of this difference between the endemic

and outbreak phases, most MPB population models either ignore the endemic population

(viewing it to be negligeably small), or else represent MPB growth dynamics by joining two

different recruitment curves into a single, often discontinuous, multi-equilibrium growth

model (eg. Berryman, 1979; Cooke and Carroll, 2017). However, as time-series on endemic

populations are scarce, such multi-equilibrium models are rarely confronted with data.

I describe a more parsimonious modelling approach in Chapter 4, where a spatially

uniform endemic population (𝜖) is assumed to exist throughout the native range of the

MPB, effectively elevating the intensity of all mass attack attempts. Mathematically, this

amounts to shifting one of my state variables (the attacking beetle population 𝐵𝑡) by

the fixed but unknown quantity 𝜖 . By fitting such outbreak models to large-scale aerial

datasets on MPB damage and comparing with ground surveys, I show that this simple idea

produces remarkably accurate estimates of the size of the endemic population – remarkable

because aerial surveys detect only mass attacks, and therefore contain essentially no direct

observations of the activity of MPB at the endemic-level.

1.2 Forest disturbance as a proxy for insect populations

MPB have a one-year life cycle and highly synchronized summer reproduction schedule,

so it is mathematically convenient to model their generations as non-overlapping. More

precisely, a generation begins in the summer of year 𝑡 − 1 with the death of one or more

host pine trees, within which the mated females of the parent generation have laid eggs. It

ends in the summer of year 𝑡 after the eggs have hatched and the new cohort has emerged

and attempted attacks on different pines, with reproduction occurring only where an attack

has killed the host. Exceptions such as strip (partial) attacks (Rasmussen, 1974) and

multivoltinism (Safranyik et al., 2010) are biologically interesting, but rare enough that
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they are expected to have little bearing on stand level outbreak patterns under ordinary

circumstances (Safranyik and Carroll, 2006).

Since each MPB reproduction event implies a host death, the task of monitoring outbreaks

is usually made simpler and cheaper by tracking their effect on populations of pine. On-

the-ground efforts to monitor MPB – typically by counts of bore holes and/or egg galleries

in individual trees, or by pheromone trapping (Safranyik and Carroll, 2006) – are labour-

intensive and location-specific. Host mortality on the other hand is relatively easy to track

over large expanses of forestland via recordings of crown fade patterns (Westfall and Ebata,

2009).

Crown fade survey operators are trained to distinguish forest health issues affecting

different types of trees. In particular, 𝜙𝑡 , the percent mortality in pines (in a given stand)

due to MPB mass-attacks in summer 𝑡 can be distinguished from other disturbance types.

When data on pre-attack susceptible pine density 𝐻𝑡 (in stems/ha), are also available (or

estimable), the product 𝐼𝑡 = 𝜙𝑡𝐻𝑡 counts the density of stems becoming infested in summer

𝑡. A year later, each of the infested stems produces a cohort of adult beetles that emerge to

join the attacking MPB population, which I will call 𝐵𝑡 .

Thus MPB dynamics are sometimes better described in terms of infested tree units 𝐼𝑡 , or

red-tops (Heavilin and Powell, 2008), from which the beetle population can be estimated

by multiplication with a production rate term (Nelson et al., 2008). For example, assuming

dispersal to be negligeable, if the average number of female MPB to emerge from each

infested stem is 𝛽 then the attacking MPB population in summer 𝑡 + 1 can be modelled as

𝐵𝑡+1 = 𝛽𝜙𝑡𝐻𝑡 = 𝛽𝐼𝑡 (Berryman, 1974). Note that since attacks are initiated by females

(Safranyik and Carroll, 2006), variable 𝐵𝑡 refers (here and throughout this dissertation) to

the density of female MPB (in beetles/ha) attacking in year 𝑡.
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1.2.1 Large-scale surveys of eruptive forest insect populations

In the province of BC, the Aerial Overview Survey (AOS) measures 𝜙𝑡 (x) and other forest

disturbance data over most of its landbase on a yearly basis (Westfall and Ebata, 2009).

This provides a large time series of population data on the MPB, revealing their activity

levels each summer across vast and remote areas. Although AOS data has precision issues

arising from the manual delineation of damage patterns onto maps (Wulder et al., 2009;

Robertson et al., 2009), its wide coverage and high level of detail can be leveraged to yield

very large sample sizes in a data analysis. This approach has been instrumental in modelling

the landscape-level properties of MPB outbreaks in BC that cannot be discerned from small

localized surveys, such as synchrony (Aukema et al., 2006; Chen et al., 2015) and spread

(Chen and Walton, 2011).

A growing number of models for eruptive forest pests are using aerial forest disturbance

data in this way. Similar data have been used to fit contemporary MPB outbreak models

all over the Rocky Mountains region; from AB and BC in the north (eg. Aukema et al.,

2008; Goodsman et al., 2016) to Idaho, Wyoming, Utah and Colorado in the South (eg.

Heavilin and Powell, 2008; Preisler et al., 2012; Chapman, Veblen, and Schoennagel, 2012;

Powell and Bentz, 2014; Strohm, Reid, and Tyson, 2016). Aerial damage surveys are also

routinely used to track populations of similar tree-killing bark beetle and defoliator species

throughout North America (Hall et al., 2016), such as gypsy moth (eg. Hohn, Liebhold, and

Gribko, 1993; Lele, Taper, and Gage, 1998) and spruce budworm (eg. Candau, Fleming,

and Hopkin, 1998; Goodbody et al., 2018).

Improvements from recent decades in data-collection, analysis methodology, and com-

puting technology have made large spatially referenced datasets on forest health such as the

AOS an increasingly rich source of information for ecologists. Aerial surveys are just one

example; others include the use of photography and remote sensing (Wulder et al., 2006);

the interpolation of point data (Zhou and Liebhold, 1995); model extrapolations such as

the forest inventory maps of Beaudoin et al. (2014); and simulation experiments such as
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the MPB population growth models of Raffa and Berryman (1986), Logan et al. (1998),

and Carroll et al. (2003). As ecology evolves to view the spatial nature of data as more of

an asset than a nuisance, these types of analyses should become more common (Legendre,

1993; Kareiva, 1994; Fortin and Dale, 2005).

With this new interest comes a need for new mathematical tools equipped to handle

the unique challenges that come with large spatial ecological datasets. I elaborate on

two of these challenges in Chapters 2 and 3 – autocorrelation and flight-based dispersal,

respectively – and develop novel methodology for handling them. I then combine both

methods in Chapter 4 to infer some difficult-to-measure characteristics of MPB populations,

illustrating the depth of information that can be extracted from the AOS with the proper

tools. First I will introduce the outbreak model used throughout this dissertation, and review

its history in the MPB literature.

1.3 Aspatial models for stand-level MPB attack behaviour

The type of language found in the literature on MPB ecology (eg. host, susceptibility,

outbreak, epidemic) speaks to its disease-like nature. A MPB closely resembles what

disease ecologists call a parasitoid – an species that lives in close association with a host

insect, only to ultimately kill it – except that in the case of the MPB, the host is a plant

(Goodsman et al., 2016). MPB models are therefore often inspired by the classic parasitoid-

host model of Nicholson and Bailey (1935). For example Goodsman, Cooke, and Lewis

(2017) defined a general aspatial MPB model of this type:

𝐵𝑡+1 = 𝛽𝜙(𝐵𝑡 , 𝐻𝑡)𝐻𝑡 , (1.1)

𝐻𝑡+1 = 𝜆 (1 − 𝜙(𝐵𝑡 , 𝐻𝑡)) 𝐻𝑡 , (1.2)

relating pine (𝐻𝑡) and MPB density (𝐵𝑡) at time 𝑡 (here yearly); with 𝜆 ≥ 1 the rate parameter

for geometric growth in the pine population; 𝛽 the number of MPB brood to emerge per

attacked tree, and 𝜙 a function summarizing a density dependent process determining the
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proportion of pine killed. Goodsman, Cooke, and Lewis (2017) defined 𝜙 to be an expected

value for host mortality, and derived it mathematically from a stochastic description of the

attack process. I define it more loosely here as a phenomenological description of average

attack outcomes in stand level (aggregate) data on MPB.

1.3.1 Attack success curves

Rearranging equation (1.1) to emphasize the infested tree count (𝐼𝑡 = 𝐵𝑡/𝛽) yields the

equation 𝐼𝑡/𝐻𝑡 = 𝜙(𝐵𝑡 , 𝐻𝑡). In the phenomenological approach, 𝜙 is usually chosen to have

a simple mathematical form that reasonably matches with empirical relationships between

pine mortality and attack density (eg. Berryman, 1979; Cooke and Carroll, 2017). In this

context, 𝜙 is called an attack-sucess curve (Nelson et al., 2008). It relates attack density,

as measured either by 𝐵𝑡 , 𝐼𝑡 or 𝐵𝑡/𝐻𝑡 , to the proportion of hosts that are successfully mass

attacked in a given year.

Ground surveys suggest that during outbreaks this relationship should be sigmoid, i.e.

it is S-shaped (Raffa and Berryman, 1983; Boone et al., 2011). Berryman et al. (1985),

for example, fitted the probit function for 𝜙 in his study of cooperative attack dynamics. A

mathematically simpler (but qualitatively similar) alternative is the following model with

shape parameter 𝜅𝑡 > 1 and stand-level outbreak susceptibility parameter 𝑎𝑡 > 0:

𝜙(𝐵𝑡 , 𝑎𝑡 , 𝜅𝑡) =
𝐵
𝜅𝑡
𝑡

𝐵
𝜅𝑡
𝑡 + 𝑎𝜅𝑡𝑡

=
𝐼
𝜅𝑡
𝑡

𝐼
𝜅𝑡
𝑡 + (𝑎𝑡/𝛽)𝜅𝑡

. (1.3)

In the special case 𝜅𝑡 = 2, equation (1.3) resembles the familiar type III functional

response curve of Holling (1959), which describes a sigmoid relationship between predation

levels and prey density when there is both prey-switching at low densities and saturation

at high densities. Here the functional dependence in equation (1.3) is on predator (MPB)

rather than prey (pine) density, better characterizing the types of functional responses found

in parasitoid-prey systems (May, 1978; Hassell, 1978); In the case of MPB, cooperative

attacks fail when the attackers are few, and the resulting Allee effect forces a switch to

defensively compromised (eg. injured or dying) pine; At high densities, MPB tend to avoid
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sub-optimal hosts (eg. low vigour pine) until scramble competition forces their hand (as

modelled in Lewis, Nelson, and Xu, 2010), leading to saturation.

Equation (1.3) has these essential features – a concavity near zero, and saturation at

high attack densities – so it is often used to represent the host mortality rate in models for

outbreaking insects. Examples include the spread-damage PDEs of Ludwig, Jones, and

Holling (1978), Strohm, Tyson, and Powell (2013) and Strohm, Reid, and Tyson (2016).

Upon dividing the top and bottom of equation (1.3) by 𝛽𝜅𝑡 (and replacing 𝐵𝑡 with 𝛽𝐼𝑡) we

recover the red-top model of Heavilin and Powell (2008). This same model (with 𝜅𝑡 = 2)

also appears in Goodsman and Lewis (2016) where it was used to study the Allee effect.

Sigmoid attack-sucess curves such as equation (1.3) lead to eruptive dynamics (Berry-

man, 1978; Raffa et al., 2008). This allows modellers to explain MPB outbreak initiation

in terms of critical threshold points: if attack density initially lies below the threshold,

beetle populations decline; if it lies above, they rapidly increase. Mathematical analyses of

the properties of these thresholds (and the dynamical systems they drive) can lead to new

insights in MPB ecology.

For example, the implicitly spatial analysis in Heavilin and Powell (2008) showed how, as

pine stands mature, they can become more susceptible to attack, drawing the threshold down

and making it increasingly likely that a random in-flight of MPB will spark an outbreak.

The spatially explicit extension of this model in Goodsman and Lewis (2016) defined the

threshold more precisely, using it to calculate a minimum founding population for MPB.

I estimate a similar quantity in Chapter 4, the incipient-epidemic transition point, or the

density at which MPB populations switch from endemic to outbreak-level attack behaviour

(Carroll et al., 2006).

1.3.2 The generalized red-top model

The assumption of 𝜅𝑡 = 2 in Heavilin and Powell (2008) (and subsequent work based on the

red-top model) appears to be motivated more by mathematical convenience than empirical
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evidence. The data analysis in Cooke and Carroll (2017) suggests that a range of 𝜅𝑡 values

may be realized in practice, with year-to-year variations due to varying climatic conditions.

My relaxation (𝜅𝑡 > 1) therefore introduces into equation (1.3) some flexibility that was

missing in the original red-top model: When the parameter 𝜅𝑡 becomes large, the sigmoid

shape of the attack success curve becomes more pronounced; reflecting healthier, more

defensively resilient pine. As 𝜅𝑡 → 1 the Allee effect vanishes and equation (1.3) becomes

more like a Beverton-Holt model (Kot, 2001), reflective of defensively compromised (eg.

drought-stressed) pine. This generalized attack success curve, and the parameters 𝛽, 𝑎𝑡 , and

𝜅𝑡 are discussed in more detail in Chapter 4.

Another weakness of the formulation of 𝜙 in the red-top model is that stand susceptibility

𝑎𝑡 – i.e. the attack density 𝐵𝑡 at which 50% of hosts in a stand are killed – is independent

of the density of pine in the stand. Generally speaking, each successful attack requires the

cooperation of many MPB, and each mass-attacked tree corresponds to a distinct group of

MPB (Safranyik and Carroll, 2006). Therefore 𝑎𝑡 should increase with pine density. For

example a pine-leading stand with 1000 stems/ha would have a much higher 𝑎𝑡 value than

a stand with 100 stems/ha, because 10X more attackers would be required (at a minimum)

to carry out the 500 mass-attacks.

One solution is to simply replace parameter 𝑎𝑡 in equation (1.3) by 𝑎𝑡𝐻𝑡 ; or equivalently,

to scale 𝐵𝑡 by 1/𝐻𝑡 , and rewrite the functional response in equation (1.1) as 𝜙(𝑅𝑡 ; 𝑎𝑡 , 𝜅𝑡)

where 𝑅𝑡 = 𝐵𝑡/𝐻𝑡 is the average number of attacking MPB per host. This is similar to the

approach of Goodsman et al. (2016), where 𝑅𝑡 is the mean of a random variable representing

(per-tree) attack density, and 𝜙 is its cumulative distribution function. The system (1.1)-

(1.2) with 𝜙(𝐵𝑡 , 𝐻𝑡) = 𝜙(𝑅𝑡 ; 𝑎𝑡 , 𝜅𝑡) defined as in equation (1.3), is more simplistic in that it

uses a phenomonological attack success curve, but it has similar dynamics at the onset of

outbreaks. I will refer to this system as the generalized red-top model:

𝐵𝑡+1 = 𝛽𝜙 (𝐵𝑡/𝐻𝑡 ; 𝑎𝑡 , 𝜅𝑡) 𝐻𝑡 , (1.4)

𝐻𝑡+1 = 𝜆𝜙 (1 − (𝐵𝑡/𝐻𝑡 ; 𝑎𝑡 , 𝜅𝑡)) 𝐻𝑡 , (1.5)
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When the parameters 𝑎𝑡 = 𝑎 and 𝜅𝑡 = 𝜅 are fixed in time, (1.4)-(1.5) can be solved

analytically. I derive its solution and give a brief discussion of its properties in Appendix

1.6.1. Its description of the onset of mass attack behaviour is similar to that accompanying

the fixed point analysis in Heavilin and Powell (2008). A critical threshold point is defined

by the model parameters 𝑎, 𝛽, and 𝜅; When initial attack density 𝑅0 = 𝐵0/𝐻0 exceeds this

threshold, an outbreak takes hold and the host population is entirely consumed. When 𝑅0

is initially below the threshold, mass attacks tend to fail and the MPB population rapidly

declines to zero.

As time 𝑡 progresses, the model (1.1)-(1.2) loses realism. For example in the absence

of MPB the long-term behaviour of the red-top model in Heavilin and Powell (2008) is

of geometric growth in 𝐻𝑡 , with an outbreak threshold approaching zero. 𝐻𝑡 also grows

geometrically in my generalization (1.4)-(1.5), but the outbreak threshold increases without

bound. Of course neither of these contradictory conclusions is biologically reasonable.

The problem (in both models) is that there is no accounting of the complex process of

succession in forest stand demographics. Susceptible pine density cannot increase without

bound; it will saturate over time, and 𝑎𝑡 will plateau and then decline as aging and crowding

diminishes the defensive capacity of trees (Raffa et al., 2008). Moreover the use of a

single variable to represent the host population (and a linear density dependence term for

its growth), as assumed in the general template (1.1)-(1.2), is a gross oversimplification.

A realistic approach to long-term dynamics would require, at a minimum, a structured

representation of the host population (eg. as in Lewis, Nelson, and Xu, 2010).

However, from the analysis of long-term dynamics and steady state properties of systems

based on (1.1)-(1.2) (eg. Heavilin and Powell, 2008; Goodsman et al., 2016; Goodsman,

Cooke, and Lewis, 2017, and Appendix 1.6.1), we get a more complete picture of the model’s

behaviour, and a better understanding of the limitations of its descriptive ability. We see that

(1.1)-(1.2) is plausible as a model for transient dynamics at the onset of outbreaks, but not

long-term behaviour; and that it is most useful in situations where host population growth is
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known or assumed negligeable (𝜆 = 1). Thus in Chapters 2-4, I use the generalized red-top

model to focus on spatial (rather than temporal) aspects of MPB population dynamics in an

area where 𝐻𝑡 can be estimated at a high resolution.

1.4 Spatial extensions for dispersal and autocorrelation

In the spatially referenced version of the generalized red-top model, beetle and host variables

are associated with a 2-dimensional position vector x. This represents the central point of a

pine stand over which population counts are aggregated to arrive at 𝐵𝑡 and 𝐻𝑡 . Thus in my

1 hectare (ha) resolution dataset, 𝐵𝑡 (x) (in females/ha) and 𝐻𝑡 (x) (in stems/ha) denote the

average MPB and host density within the 100×100 m square block of land with centroid x.

A model development for these data requires incorporating two mathematically chal-

lenging aspects of MPB damage patterns that are not addressed in (1.4)-(1.5): First, MPB

populations are coupled by flight-based dispersal. Prior to attack, this dispersal acts among

stands to redistribute the beetles counted by 𝐵𝑡 (x). Second, measurements of ecological

data at this resolution will be spatially autocorrelated, so in spite of the mathematical appeal

of an independence assumption it would be careless to ignore the dependence structure in

model residuals (Legendre, 1993).

I studied both problems in some depth while developing the spatial generalized red-top

model of Chapter 4. That research led to some novel modelling ideas and methodology with

wider applications in spatial ecology. These results are introduced separately in Chapters 2

and 3, and then used together in Chapter 4 to show how movement and attack behaviour of

MPB can be inferred at high resolution from historical AOS data.

1.4.1 Models for MPB dispersal

In the absence of immigration/emmigration flight events at blockx, the direct substitution of

spatially referenced variables into equations (1.4)-(1.5) produces a reasonable model for the

transient dynamics of an outbreak in a given stand. However, dispersal flights become very
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important to outbreak dynamics when working with data at this high resolution (Aukema

et al., 2008). Large numbers of MPB may be expected to move among stands (particularly

neighbouring ones) before attacking (Safranyik et al., 1992), and we know the model (1.3)

to be highly sensitive to the attacking beetle density. Thus if x𝑖 and x 𝑗 lie close together,

then their corresponding attack dynamics equations (1.4)-(1.5) must be coupled in a way

that allows some of the population 𝐵𝑡 (x𝑖) to move into block x 𝑗 and vice versa.

In a continuous time framework, the natural mathematical tool for modelling movements

is the partial differential equation (PDE). This approach views 𝐵𝑡 (x) as a differentiable

function of time, and models its time-evolution throughout the summer emergence and

attack periods. For example, Powell and Bentz (2014) used PDEs based on diffusion and

chemotaxis to predict attack damage; Strohm, Tyson, and Powell (2013) used them to

explain the spacing of crown fade clusters; and Strohm, Reid, and Tyson (2016) studied the

effectiveness of control efforts in simulation experiments based on PDEs.

In discrete time formulations such as (1.4)-(1.5), MPB dispersal is usually represented

by a redistribution kernel – a probability density function for movement events, often

derived as the solution to a PDE for movements. The model then becomes a system of

integrodifference equations (Kot and Schaffer, 1986). For example in Heavilin and Powell

(2008) and Goodsman and Lewis (2016), the emerging (pre-dispersal) MPB density is

convolved with a Gaussian kernel to produce a post-dispersal attack density that is split

across many neighbouring stands, coupling them together.

The Gaussian redistribution kernel – whose origins in ecology can be traced back to a

PDE for animal movement solved by Skellam (1951) – has pleasant mathematical properties,

making it extremely popular in spatial ecology. However it is just one example of many

plausible kernels for movement. Research by Kot, Lewis, and Driessche (1996), for example,

has shown that integrodifference systems for population spread can be quite sensitive to

the subtle mathematical properties of the redistribution kernel. It is therefore important to

consider the underlying movement mechanism that gives rise to the kernel – and as with the
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Gaussian, this often done by constructing diffusion-based PDEs for movement.

There is a large body of mathematical theory associated with the PDE approach (eg. see

Neubert, Kot, and Lewis, 1995; Okubo and Levin, 2001; Clobert et al., 2012). Building

upon work by Yasuda (1975) and Hapca, Crawford, and Young (2008), I develop a PDE

for biodiffusion in Chapter 3 that unifies some of this theory and produces a quite versatile

family of functions to generalize and extend the Gaussian kernel. In particular, it includes

as special (or limiting) cases three commonly used bark beetle dispersal kernels: The

Gaussian, 2D Laplace, and Bessel kernels (Heavilin and Powell, 2008; Turchin and Thoeny,

1993; Goodsman et al., 2016), tying them together by a common mechanism.

Naturally it is important that the kernel function should also match reasonably well

with patterns of redistribution seen in empirical data. Indeed kernels are often invoked by

ecologists without mechanistic justification, as phenomenological models to this end. For

example the 2D Laplace kernel appears often in the literature because, unlike the Gaussian

kernel, it has a fat-tailed shape (Heavilin and Powell, 2008). Comparative reviews of

other phenomenological models for various species can be found Taylor (1978) and Clark,

Macklin, and Wood (1998) (for flying insects and seeds, respectively). In both of these

reviews it is suggested that model fit is often substantially improved when using kernel

families with more flexibility in tail-shape than the Gaussian. I show in Chapter 3 how my

generalization of the Gaussian redistribution kernel achieves this flexibility by mechanistic

rather than phenomenological arguments.

1.4.2 Models for covariance

Even with the dispersal mechanism properly accounted for, the model errors for a spatially

referenced population variable such as 𝐵𝑡 (x) will often be correlated at nearby locations.

There are several reasons: For one, errors in quantifying the source population (pre-

dispersal) will be propagated in space by the dispersal model, leading to a predictable

structure of spatial autcorrelation (SAC) in population levels post-dispersal. For example
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an error of omission at a single block in the AOS for attack year 𝑡 can induce a cluster of

errors in the model prediction for 𝑡 + 1, as the (unaccounted for) MPB spread outward from

an epicentre. This is discussed further in Section 5.1.1 of my concluding chapter.

More generally, the environment conditions encompassed by the blocks centered at x𝑖

and x 𝑗 tend to be more similar as the separation distance |x𝑖 − x 𝑗 | becomes smaller –

this universal principle is often referred to as Tobler’s First Law of Geography (Tobler,

1970). In the case of MPB, a shared environment drives the beetle to behave similarly in

its interaction with pine at nearby locations. For example, drought stress or windthrow is

unlikely to affect just a single hectare in isolation; Rather it would weaken pine defenses

against MPB over a large set of contiguous blocks that are all exposed to similar weather

patterns (Cooke and Carroll, 2017). For similar reasons, the drivers of measurement error

in the AOS (eg. interpreter bias) may be more alike for measurements recorded at adjacent

locations (Wulder et al., 2009).

SAC is thought to be ubiquitous in high resolution ecological data, so it is important that

this phenomenon be scrutinized during model construction (Fortin and Dale, 2005; Beale

et al., 2010). If SAC is dismissed by an assumption of spatial indendence, for example,

the model will tend to underestimate standard errors, invalidating any planned hypothesis

tests (Hawkins, 2012). Moreover, point estimators of model parameters lose precision in

this situation (Cressie, 1993), in what essentially amounts to pseudoreplication (Legendre,

1993). This misspecification is often accepted as benign enough to ignore for the sake of

simplicity in model-fitting (eg. as did Heavilin and Powell, 2008; Robertson et al., 2008;

Powell and Bentz, 2014; Chen, 2014; Goodsman et al., 2016; Zheng and Aukema, 2010).

However for my purposes – which involve inferring a very small endemic MPB population

through indirect measurements – precision is paramount.

To account for SAC, a covariance structure can be specified either implicitly or explicitly.

The implicit approach usually makes use of one of the autoregressive model families

(commonly abbreviated as CAR and SAR), in which covariances are defined through partial
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correlations (Cressie, 1993; Ver Hoef et al., 2018). This means the precision matrix V −1

(the inverse covariance matrix) is specified directly, which allows speedy computations

of the likelihood function, and leads to computationally simple model-fitting procedures

(Fortin and Dale, 2005). Implicit covariance structures are quite popular in the bark beetle

outbreak literature, appearing for example in the southern pine beetle outbreak model of

Zhu, Huang, and Wu (2005), and the MPB outbreak models of: Zhu et al. (2008); Aukema

et al. (2008); Robertson et al. (2009); Zhu, Huang, and Reyes (2010); Sambaraju et al.

(2012); Reyes, Zhu, and Aukema (2012); and Preisler et al. (2012).

In explicit specifications, the covariance structure is usually defined using a covariogram,

which describes how correlations decay with distance, and therefore (explicitly) defines V .

The advantage in this approach is that SAC is modeled in a transparent and less constrained

way (Wall, 2004), with the caveat that likelihood function evaluations typically involve a

computationally expensive matrix inversion (V −1). For this reason covariograms seem to

be used far less often in spatial ecology than autoregression (Simpson, Lindgren, and Rue,

2012). Exceptions include the gypsy moth outbreak models of Zhou and Liebhold (1995)

and Lele, Taper, and Gage (1998); and the MPB outbreak model of Chapman, Veblen, and

Schoennagel (2012).

Preferring the more intuitive covariogram, while recognizing its computational draw-

backs, I introduce a family of novel covariance models in Chapter 2 for which the computa-

tion of V −1 becomes much simpler when analysing lattice data. These models are simpler

to interpret than the CAR and SAR, while at the same time providing far more flexibility

for accurately handling long-range correlations and anisotropy. My methodology provides

a general statistical framework for handling SAC in ecological data, which I subsequently

put to use in fitting models developed in Chapters 3 and 4.
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1.5 Thesis overview

The expansive coverage of the AOS represents a huge sampling of pine stands and MPB pop-

ulations with which to test ecological hypotheses using models. However when modelling

data of such high resolution, spatial effects become important, and these can be difficult

to capture elegantly without overcomplicating the model: Dispersal flights of the MPB

are difficult to incorporate into population models, but are essential to explaining attack

damage patterns in practice; SAC demands a more careful handling of spatial replicates, lest

they become pseudoreplicates. Further, even with relatively simple representations of these

effects, large sample sizes often lead to issues of computational complexity when fitting to

data or running simulation experiments.

I discuss these challenges in more detail in Chapters 2 and 3, developing new modelling

techniques to handle them, and demonstrating these techniques on AOS data using simplified

spatial extensions of (1.4)-(1.5). Chapter 2 introduces some new methods for parametrizing

and studying SAC structure, and Chapter 3 introduces a novel derivation for a flexible

family of redistribution kernels. Chapter 4 develops the (spatial) generalized red-top model

more fully, incorporating results from both of the earlier chapters to handle computational

roadblocks, and to produce novel estimators of various stand-level properties of outbreak

dynamics. Chapter 5 summarizes these results and discusses their implications in ecology.

1.6 Appendices to Introduction

1.6.1 Solving the generalized red-top equation for 𝜅 ≠ 1

Given the attack-success curve 𝜙(𝑅; 𝑎, 𝜅) = 𝑅𝜅/(𝑅𝜅 + 𝑎𝜅), the generalized red-top model is

𝐵𝑡+1 = 𝛽𝜙 (𝐵𝑡/𝐻𝑡 ; 𝑎, 𝜅) 𝐻𝑡 ,

𝐻𝑡+1 = 𝜆𝜙 (1 − (𝐵𝑡/𝐻𝑡 ; 𝑎, 𝜅)) 𝐻𝑡 .

Assume both beetle (𝐵𝑡) and host density (𝐻𝑡) are initially nonzero, and note that this

implies 𝐵𝑡 > 0 and 𝐻𝑡 > 0 for all 𝑡. I will solve (1.4)-(1.5) by first solving for the yearly
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ratio of attacking beetles to susceptible pine, or attack density 𝑅𝑡 = 𝐵𝑡/𝐻𝑡 , given initial data

𝑅0 > 0. This ratio satisfies the simpler first-order nonlinear difference equation,

𝑅𝑡+1 =
𝐵𝑡+1
𝐻𝑡+1

=
𝛽𝜙(𝑅𝑡 ; 𝑎, 𝜅)𝐻𝑡

𝜆 (1 − 𝜙(𝑅𝑡 ; 𝑎, 𝜅)) 𝐻𝑡
=
𝛽𝑅𝜅𝑡

𝜆𝑎𝜅
,

which is solved by straightforward substitution and induction to get

𝑅𝑡+1 =

(︃
𝛽

𝜆𝑎𝜅

)︃
𝑅𝜅𝑡 =

(︃
𝛽

𝜆𝑎𝜅

)︃ (︃
𝛽𝑅𝜅

𝑡−1
𝜆𝑎𝜅

)︃ 𝜅
=

(︃
𝛽

𝜆𝑎𝜅

)︃ (︃
𝛽

𝜆𝑎𝜅

)︃ 𝜅 (︃
𝛽

𝜆𝑎𝜅
𝑅𝜅𝑡−2

)︃ 𝜅2

... =

(︃
𝛽

𝜆𝑎𝜅

)︃∑︁𝑡
𝑖=0 𝜅

𝑖

𝑅𝜅
𝑡+1

0 .

Recalling the formula for sums of geometric progressions,

𝑡∑︂
𝑖=0

𝜅𝑖 = 𝜅0 + 𝜅1 + ... + 𝜅𝑡 =
{︄
𝑡 + 1 for 𝜅 = 1
𝜅𝑡+1−1
𝜅−1 for 𝜅 ≠ 1

,

the solution for the case 𝜅 ≠ 1 simplifies to become

𝑅𝑡 =

(︃
𝛽

𝜆𝑎𝜅

)︃ 𝜅𝑡−1
𝜅−1

𝑅𝜅
𝑡

0 = 𝑅0

(︃
𝑅0
𝛾

)︃ 𝜅𝑡−1
= 𝛾

(︃
𝑅0
𝛾

)︃ 𝜅𝑡
, where 𝛾 :=

(︃
𝜆𝑎𝜅

𝛽

)︃ 1
𝜅−1

. (1.6)

It is clear from (1.6) that the constant 𝛾 is an unstable fixed point of the dynamical system

in 𝑅𝑡 . For 𝛾 ≠ 𝑅0 the ratio grows or decays rapidly (faster than exponential), depending on

the signs of 𝜅 − 1 and 𝑅0 − 𝛾. For example when 𝜅 > 1, low initial attack densities (𝑅0 < 𝛾)

imply that 𝑅𝑡 decreases monotonically to zero (the stable fixed point); when 𝑅0 > 𝛾 it

increases monotonically. Plugging (1.6) into the attack-success curve yields the trajectory

of pine mortality levels,

𝜙 (𝑅𝑡 ; 𝑎, 𝜅) =

(︂
𝛾 (𝑅0/𝛾)𝜅

𝑡
)︂ 𝜅(︂

𝛾 (𝑅0/𝛾)𝜅
𝑡
)︂ 𝜅

+ 𝑎𝜅
=

(︂
(𝑅0/𝛾)𝜅

𝑡
)︂ 𝜅(︂

(𝑅0/𝛾)𝜅
𝑡
)︂ 𝜅

+ (𝑎/𝛾)𝜅
= 𝜙

(︂
(𝑅0/𝛾)𝜅

𝑡

; 𝑎/𝛾, 𝜅
)︂
.

(1.7)

The trajectory of 𝐻𝑡 for 𝑡 > 0 follows by induction on (1.5) and the direct substitution of

the formula in (1.7),

𝐻𝑡 = 𝐻0𝜆
𝑡

𝑡−1∏︂
𝑖=0

(1 − 𝜙 (𝑅𝑡 ; 𝑎, 𝜅)) =
(𝛽/𝛾)𝑡 𝐻0∏︁𝑡

𝑖=1

(︂
(𝑎/𝛾)𝜅 + (𝑅0/𝛾)𝜅

𝑖
)︂ . (1.8)
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The beetle density 𝐵𝑡 is the product of (1.6) and (1.8), which for 𝑡 > 0 simplifies to:

𝐵𝑡 = 𝑅𝑡𝐻𝑡 =
(𝛽/𝛾)𝑡 (𝑅0/𝛾)𝜅

𝑡−1 𝐵0∏︁𝑡
𝑖=1

(︂
(𝑎/𝛾)𝜅 + (𝑅0/𝛾)𝜅

𝑖
)︂ . (1.9)

1.6.2 Asymptotic behaviour of MPB and pine populations in outbreaks

These solutions of (1.4)-(1.5) describe two possible outcomes for the host pine population

when 𝜅 > 1, depending on whether initial attack density 𝑅0 is above the threshold 𝛾 =

(𝜆𝑎𝜅/𝛽) 1
𝜅−1 ,

1. host depletion (𝑅0 > 𝛾, or 𝑅0 = 𝛾 and 𝜆 < 1 + (𝛾/𝑎)𝜅)

If attack density 𝑅𝑡 initially exceeds 𝛾 it will increase monotonically, and the entire

host population will be killed in the limit 𝑡 → ∞. This is straightforward from (1.6)-

(1.8), since 𝑅0 > 𝛾 =⇒ 𝑅𝑡 → ∞ =⇒ 𝜙(𝑅𝑡 ; 𝑎, 𝜅) → 1 =⇒ 𝐻𝑡 → 0. The MPB

population vanishes with it, but an initial phase of increase (𝐵𝑡+1 > 𝐵𝑡) may precede

the collapse (Figure 1.1)

If 𝑅0 = 𝛾, attack density 𝑅𝑡 is initialized at its nonzero fixed point, so we have constant

host mortality 𝜙(𝛾; 𝑎, 𝜅) in each year. This decay in 𝐻𝑡 is tempered by the geometric

growth rate (𝜆) of the pine: Thus (1.8) shows that hosts 𝐻𝑡 decline when 𝜆 is below

a threshold:

𝜆 < 1 + (𝛾/𝑎)𝜅 =⇒ 𝜆𝜙(𝑎; 𝛾, 𝜅) < 1 =⇒ 𝜆 (1 − 𝜙(𝛾; 𝑎, 𝜅)) < 1 =⇒ 𝐻𝑡 → 0

(1.10)

Thus both 𝐻𝑡 = 𝐻0 (𝜆𝜙(𝑎; 𝛾, 𝜅))𝑡 and 𝐵𝑡 = 𝛽𝜙(𝛾; 𝑎, 𝜅)𝐻𝑡 decay (exponentially) to

zero.

2. host persistence (𝑅0 < 𝛾, or 𝑅0 = 𝛾 and 𝜆 ≥ 1 + (𝛾/𝑎)𝜅)

When 𝑅0 = 𝛾 and the forest growth rate 𝜆 lies at or above the threshold 1+ (𝛾/𝑎)𝜅, the

host population will either stay constant or increase. By the same chain of arguments

as in (1.10) above, one verifies that if 𝜆 = 1 + (𝛾/𝑎)𝜅, then 𝐻𝑡 remains fixed at
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𝐻0 (and 𝐵𝑡 at 𝐵0), with regeneration exactly matching MPB damage each year; If

𝜆 > 1+ (𝛾/𝑎)𝜅 then regeneration exceeds mortality (𝜆𝜙(𝑎; 𝛾, 𝜅) > 1), and so both 𝐻𝑡

and 𝐵𝑡 grow exponentially.

In the case 𝑅0 < 𝛾, equations (1.6)-(1.7) show that both attack density and pine

mortality decrease with time. MPB populations must eventually approach zero, since

in (1.9) the denominator is positive and the numerator is dominated in the limit 𝑡 → ∞

by the doubly exponential term (𝑅0/𝛾)𝜅
𝑡−1. This however does not preclude an initial

period of increase in the MPB population as in the example of Figure 1.1.

The host population always persists in this 𝑅0 < 𝛾 case (Appendix 1.6.3), though it

may decline substantially in early years before 𝜙(𝑅𝑡 ; 𝑎, 𝜅) becomes negligeably small.

1.6.3 Proof of host persistence

I have shown that host mortality declines monotonically when 𝑅0 < 𝛾. However it is

perhaps still unclear whether the product in equation (1.8) in fact approaches zero (in which

case 𝐻𝑡 → 0), or is bounded below by a positive limit (implying host persistence). This

question can be answered by taking logarithms and considering the convergence of the

resulting infinite series.

Without loss of generality, assume 𝜆 = 1 and rewrite (1.8) on the log scale as

log(𝐻𝑡) = log(𝐻0) −
𝑡−1∑︂
𝑛=0

𝐴(𝑛) where 𝐴(𝑛) := log
(︂
1 + (𝛾/𝑎)𝜅 (𝑅0/𝛾)𝜅

𝑛
)︂
. (1.11)

Note that 𝐻𝑡 → 0 if and only if the infinite series
∑︁
𝐴(𝑛) diverges to +∞. Note

also that the 𝐴(𝑛) are strictly positive. Therefore by the ratio test,
∑︁
𝐴(𝑛) converges

if lim𝑛→∞ |𝐴(𝑛)/𝐴(𝑛 − 1) | < 1. This limit has the indeterminate form 0/0. How-

ever by viewing 𝐴(𝑛) as a differentiable function of 𝑛 ∈ R, and finding its derivative

𝐴′(𝑛) = (𝛾/𝑎)𝜅 log(𝑅0/𝛾) log(𝜅)𝜅𝑛 (𝑅0/𝛾)𝜅
𝑛 to be nonzero, I can apply l’Hôpital’s rule:

lim
𝑛→∞

|︁|︁|︁|︁ 𝐴(𝑛)
𝐴(𝑛 − 1)

|︁|︁|︁|︁ = lim
𝑛→∞

(︃
𝐴(𝑛)

𝐴(𝑛 − 1)

)︃
= lim
𝑛→∞

(︃
𝐴′(𝑛)

𝐴′(𝑛 − 1)

)︃
= lim
𝑛→∞

𝜅 (𝑅0/𝛾)𝜅
𝑛−𝜅𝑛−1

= 0.

Thus by the ratio test
∑︁
𝐴(𝑛) converges, and I conclude that 𝐻𝑡 does not converge to 0.
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Figure 1.1: Solutions of the generalized red-top system (1.4)-(1.5) with parameters: 𝑏 =

200; 𝑎 = 50; 𝜅 = 1.2; 𝜆 = 1.05; and initial host density 𝐻0 = 500 stems. The beetle
population 𝐵0 is initialized to three slightly different levels at 𝑡 = 0 to illustrate the distinct
qualitative behaviours discussed above: MPB eruption and host depletion (𝐵0 = 33.7 >

𝛾𝐻0); coexistence with exponential growth (𝑅0 = 32.7 = 𝛾𝐻0); and MPB collapse with
host persistence (𝑅0 = 31.7 < 𝛾𝐻0)
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Chapter 2

Computationally Simple Anisotropic
Lattice Covariograms

2.1 Introduction

In the analysis of large scale spatial ecological data, researchers frequently encounter special

statistical challenges that preclude the use of more traditional models. Examples include

incomplete data (Nakagawa and Freckleton, 2008); extremely large datasets (Simpson,

Lindgren, and Rue, 2012); complex dependencies among model residuals (Legendre, 1993);

an inability to replicate measurements; and complex underlying ecological systems that

obscure the relationship between covariate and response (Hilborn and Mangel, 1997).

A large number of spatial regression methods have been developed to address these

challenges, including generalized least squares (GLS), the autoregressive model family,

generalized additive mixed models, as well as fully Bayesian approaches. In fact some

authors (eg. Beale et al., 2010; Hawkins, 2012) suggest the sheer diversity of methods in

the literature and resulting paralysis-by-analysis has been an impediment to the widespread

adoption of spatial techniques by ecologists. A framework that is both immediately intuitive

and easy to implement will therefore be useful to researchers outside the field of statistics.

We believe the geostatistical approach is appropriate for this role. Geostatistics, whose

name reflects early origins in the mining industry, has over time grown into a quite gen-

eral and mature spatial statistical framework (see eg. Cressie, 1993; Banerjee, Carlin, and
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Gelfand, 2014). Its theory is built from regionalized random variables 𝑍 (s) whose prop-

erties depend on a location index s that varies continuously through some spatial domain

D. Dependencies among the 𝑛 sample points 𝑍 (s𝑖) are explicitly specified by the covar-

iogram (also known as a covariance function or kernel), which maps coordinate pairs s𝑖,

s 𝑗 to the entries of the 𝑛 × 𝑛 covariance matrix V . In applications, covariograms that

decrease with separation distance can serve as convenient models for data exhibiting spatial

autocorrelation (SAC).

While this transparent representation of covariance has intuitive appeal, a large 𝑛 will

quickly lead to implementation difficulties owing to the O(𝑛3) complexity of important

matrix computations involving V (Simpson, Lindgren, and Rue, 2012). If, however, the

sample sites form a rectangular lattice, the structure of V can often be simplified, and these

computational difficulties largely avoided. Such sampling designs are increasingly common

in ecology today with the widespread adoption of remote sensing methods (Wulder et al.,

2006).

In this paper we revisit the longstanding idea of simplifying V using Kronecker products

and show how this leads to a novel family of anisotropic covariance models; as well as

an estimator of the direction of range anisotropy in geometrically anisotropic data; and

a graphical tool for studying nonstationary covariance structures. Though we emphasize

ecological data and SAC, these models are quite general, and their computational simplicity

makes them attractive in broader applications.

2.1.1 Why model spatial autocorrelation?

SAC describes when the random components of measurements that are near in space tend

to be more (or less) similar than expected for a spatially distant pair. This phenomenon

is extremely common in ecological studies, where the data-generating process is often

driven by environmental factors shared among nearby sites, and/or demographic processes

intrinsically tied to distance, such as aggregation or dispersal (Beale et al., 2010).
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It is widely accepted that neglecting SAC (in favour of an independence assumption)

amounts to pseudoreplication, and leads to precision issues for inference (Legendre, 1993).

Though some authors dispute the importance of this misspecification, it is clear that SAC

should be examined in the course of model development (Keitt et al., 2002). Examples from

our research area include Klutsch et al. (2009), who used SAC as a model diagnostic in a

study of environmental predictors for outbreaks of the mountain pine beetle, and Robertson

et al. (2009), who improved their outbreak model with a simple SAC model.

The autocorrelation patterns themselves are sometimes of scientific interest. For exam-

ple Aukema et al. (2008) used nonparametric covariance functions to study how spatial

synchrony drives different stages of beetle outbreaks. SAC may illuminate features of the

underlying ecological system that generates a dataset. We will touch on this idea in a case

study of beetle outbreak data in Sect. 2.4.

2.1.2 Covariograms in practice

In explicit covariance models, all 𝑛2 entries ofV must be specified, of which up to 𝑛(𝑛+1)/2

can be distinct (by symmetry). Since these values are typically unknown, V is constructed

using a parametric covariogram 𝑐 : (s𝑖, s 𝑗 ;θ) ↦→ Cov
{︁
𝑍 (s𝑖), 𝑍 (s 𝑗 )

}︁
, and the parameters

θ inferred from the data. Many functional forms have been proposed for 𝑐, but some care

is required to ensure a well defined distribution (Guillot et al., 2014). In particular 𝑐 (and

V ) must be symmetric and positive definite (SPD). The reader is directed to Roberts et al.

(2013) for a discussion of design principles and admissible forms for 𝑐.

In spatial ecology, modellers often use covariograms that are a functions of separation

distance 𝑑𝑖 𝑗 = ∥s𝑖 − s 𝑗 ∥ only, ignoring directionality and position. This reflects the

assumption that the 𝑍 (s𝑖) are drawn from a second-order stationary (SOS) and isotropic

random field (Myers, 1989); that is, the covariance structure is invariant to translations

and/or rotations of D. A popular example is the Whittle-Mátern (WM) covariogram which,

23



in 2-dimensional (2D) space, can be written:

𝑐
(︁
𝑑𝑖 𝑗 ;𝜎, 𝜆, 𝜈

)︁
= 𝜎2

(︂
21−𝜈/Γ(𝜈)

)︂ (︁
2
√
𝜈𝑑𝑖 𝑗/𝜆

)︁𝜈
𝐻𝜈

(︁
2
√
𝜈𝑑𝑖 𝑗/𝜆

)︁
, (2.1)

where 𝐻𝜈 is the modified Bessel function of the second kind. Figure 2.1 (top-left)

illustrates the type of spatial patterns generated by the WM. This covariogram has many

names, and many desireable properties, as chronicled in Guttorp and Gneiting (2006).

Given its ubiquity and importance in statistics, we will make use of the WM later on as a

reference model for generating data in our simulation studies.

Isotropy is however seldom justified, except as a means to a parsimonious model. A

more robust model should allow directionality, and one of the simplest ways of building

this into a covariogram is to assume geometric anisotropy. This extends the isotropic

SOS covariogram by applying an affine transformation A to the coordinate system, and

measuring distances by 𝑑𝑖 𝑗 := ∥A(s𝑖 − s 𝑗 )∥. In 2D, A can be understood as the product

of a diagonal scaling matrix S (𝑠𝑥 , 𝑠𝑦), and a rotation matrix R−𝛼: Circular contours of

constant covariance get mapped to ellipses whose axes are stretched by factors 𝑠𝑥 , 𝑠𝑦, and

which are oriented along the counterclockwise rotation of the 𝑥, 𝑦 axes by angle 𝛼. Figure

2.1 (bottom-left) illustrates the resulting pattern of SAC.

2.1.3 Computations with covariance matrices

Among the simplest implementations of the covariogram in regression is GLS. This extends

ordinary least squares (OLS) on the residuals vector Z, when V is given. The model is:

Y = βX +Z where E (Z | X) = 0 Cov (Z | X , θ) = V (θ) (2.2)

where X is the data matrix of covariates.

GLS uses the Cholesky factor L of V to define a transformed response Ỹ = L−1Y for

which the problem of estimating β reduces to OLS. However since V is seldom known,

a parametric form V = V (θ) is often proposed, and θ estimated by numerical likelihood
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ν = 5, λ = 2

WM x WM
νy = 4. 3, λy = 2. 2
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WM x WM
α = 25. 6°
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α = 25. 6°
λy = 17. 8
λx = 80. 1

Figure 2.1: Examples of covariograms in 2D illustrated by heatmaps of the correlation with
the central point. The two leftmost panels illustrate isotropy (top) and geometric anisotropy
(bottom). The others illustrate separable (top) and rotated product (bottom) covariograms,
as introduced in Sect. 2.2.3-2.3. The two rightmost panels are examples of separable
kernels fitted in simulations in Sect. 2.2.4, 2.3.3
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maximization. For example when 𝑍 is multivariate normal (MVN), we minimize:

− logL (θ,β | X ,Y = y) ∝ log |V (θ) | + (y − βX)∗ V (θ)−1 (y − βX) . (2.3)

Note that here (and throughout the paper) we use an asterix to denote transposes.

When 𝑛 is large, evaluations of (2.3) can be computationally demanding because V (θ)

is usually dense, and analytic forms for V (θ)−1 and |V (θ) | are rarely available. Thus

each time the optimizer adjusts θ, it must solve a factorization problem with arithmetic

complexity O(𝑛3). This problem arises in universal kriging interpolation methods (Simp-

son, Lindgren, and Rue, 2012), as well as in more sophisticated extensions of GLS such

as spatial generalized estimating equations (Dormann et al., 2007); spatial generalized

linear mixed models (Heagerty and Lele, 1998); and Bayesian MCMC based techniques

(Banerjee, Carlin, and Gelfand, 2014).

The autoregressive model family (CAR, SAR) avoids this problem by defining V im-

plicitly. A weights matrix is used to specify partial correlations rather than covariances,

thus constructing the precision matrix V −1 directly. Ver Hoef et al. (2018) and Beale

et al. (2010) make compelling cases for the autoregressive approach. There are drawbacks,

however. The implied correlation structure in V is often unclear (Wall, 2004); and some

unintuitive restrictions on the weights are required to ensure valid joint distribution for Z.

Authors preferring the more intuitive covariogram approach have developed various

structured forms for V that avoid the large-𝑛 difficulties (Banerjee, Carlin, and Gelfand,

2014, chap. 12). These include kernel convolution and stochastic partial differential equa-

tion based methods (Simpson, Lindgren, and Rue, 2012), as well as low-rank or sparse

approximations of V (Ambikasaran et al., 2016). Following Genton (2007) we will be

interested in the highly patterned forms of V generated by a separable covariance model.

2.1.4 Chapter outline

We will begin by reviewing a well-known result for SOS spatial processes on rectangular

grids in Sect. 2.2, showing this implies the useful property of bisymmetry in V . We then
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discuss separable covariance structures, demonstrating their flexibility in a simulation study.

In Sect. 2.3 we propose a broader class of covariograms incorporating range anisotropy,

and use them to develop a novel estimator of the angle of geometric anisotropy. Sect. 2.4

demonstrates the method on a spatial ecological dataset.

2.2 Covariograms on the rectangular lattice

A random field is called SOS (or weakly stationary) when its covariogram has the form

𝑐(s𝑖 − s 𝑗 ;θ), and the data are detrended (E {𝑍 (s𝑖)} = 𝜇), for all s𝑖, s 𝑗 (Cressie, 1993,

sec. 2.3). We focus on the application of this model to 2D lattice data, where the random

field has been sampled at a fixed set of locations G ⊂ R2 that together form a spatially

regular 𝑛𝑦 × 𝑛𝑥 rectangular grid (with sample size 𝑛 = 𝑛𝑥𝑛𝑦).

For convenience assume that Z := {𝑍 (s1), . . . 𝑍 (s𝑛)}∗ is indexed in column-vectorized

order, so that Vec−1
𝑛𝑦 (Z) recovers the natural 𝑛𝑦 × 𝑛𝑥 matrix representation for the data (ie.

as a raster image). This ordering introduces computationally useful patterns in V .

2.2.1 Symmetry structures in covariance matrices for lattice data

In an important early paper, Zimmerman (1989) showed that for SOS models on G, the

covariance matrix V is block-Toeplitz with Toeplitz blocks (BTTB). He concluded with an

algorithm that reduces the arithmetic complexity of solving V −1 by a factor of 𝑛𝑥 . Dietrich

(1993) subsequently showed that the Cholesky factor of V can be computed for the same

complexity cost, providing a shortcut for the determinant and quadratic form in (2.3).

Unfortunately these algorithms can become inaccurate when V is numerically singular

(Golub and Van Loan, 2012, sec. 2.7). This problem is not uncommon with large-𝑛

covariance models. For example the popular Gaussian covariogram (the 𝜈 → ∞ limit of

the WM) is known for generating matrices with extremely large condition numbers. It is

prudent in this situation to avoid explicit inversions and Cholesky factorizations in favour of

more robust and numerically stable methods. A common workaround involves the singular

27



value decomposition (SVD) (Neumaier, 1998), however this has O(𝑛3) complexity.

We can nevertheless speed computations by appealing to bisymmetry in V . This is

symmetry about both the diagonal and counterdiagonal. More precisely, if J𝑛 is the

𝑛 × 𝑛 exchange matrix (with ones on the counterdiagonal and zeros otherwise), then V is

bisymmetric if V = J𝑛V J𝑛 and V = V ∗. The SOS assumption implies bisymmetry in V ,

since the BTTB property implies persymmetry (symmetry about the counterdiagonal).

For bisymmetric covariance matrices V , a unitary similarity transformation cuts the

dimensionality of factorizations in half, speeding up computations by a factor of four. We

present the even-𝑛 case here, and refer readers to Abu-Jeib (2002) for the odd case. Suppose

that 𝑛 = 2𝑚, and V is 𝑛 × 𝑛 and bisymmetric. Writing V𝑎 for the (𝑚 × 𝑚) top-left block

and V𝑏 for the bottom-left block of V , we have the block-diagonalization:

H𝑛V H∗
𝑛 =

⎛⎜⎝
V𝑎 + J𝑚V𝑏

V𝑎 − J𝑚V
∗
𝑏

⎞⎟⎠ , where H𝑛 =
1
√

2
⎛⎜⎝

𝐼 𝐽𝑚

−𝐽𝑚 𝐼

⎞⎟⎠ . (2.4)

The diagonal blocks of H𝑛V H∗
𝑛 have two important properties: They are symmetric, as

a consequence of persymmetry in V𝑏 and symmetry in V𝑎; and the union of their spectra is

the spectrum of V , since H𝑛 is orthogonal and H𝑛V H∗
𝑛 block-diagonal. This implies that

both blocks inherit positive definiteness from V , and hence their Cholesky factors exist. It

also implies that their condition numbers are as good or better than that of V .

Equation (2.4) therefore stably converts an 𝑛-dimensional factorization problem in V

into a pair of 𝑛/2-dimensional ones in H𝑛V H∗
𝑛 . In statistical applications, the O(𝑛3)

complexity of the relevant factorization (eg. SVD, spectral, Cholesky) is therefore reduced

by a factor of 23/2 = 4. Moreover sinceH𝑛 has only two nonzero elements per row/column,

the overhead of performing this transformation is O(𝑛2), a negligible cost compared to the

factorization step when 𝑛 is large.

2.2.2 A geometrical perspective on bisymmetry

The action of H𝑛 on vectorized lattice data from Gaussian random fields leads to an

interesting theoretical aside. Since V𝑎 +J𝑚V𝑏 and V𝑎 −J𝑚V
∗
𝑏

are SPD, we can view them
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as covariance matrices for a pair of 𝑚-dimensional random vectors, Z1 and Z2. Indeed by

standard MVN theory, if Z ∼ N (µ,V ) then H𝑛Z := (Z∗
1 ,Z

∗
2)

∗ ∼ N
(︁
H𝑛µ,H𝑛V H∗

𝑛

)︁
.

When vector Z represents a raster image, the transformed components Z1 and Z2 have

a simple geometrical interpretation. Let Z𝐹 denote the transformation of the raster Z by a

left-right, and an up-down reflection. Then Z1 is simply the left half of the superimposition

Z𝐹 +Z. Similarly Z2 is the right half of the superimposition Z𝐹 −Z.

Despite a striking symmetry between the left and right halves of H𝑛Z, they are statisti-

cally independent under the Gaussian model, since by (2.4) their cross-covariance matrices

are zero. While Gaussian data can always be linearly transformed into independent subsets

using eigenvectors of V , (2.4) shows that for SOS lattice data, half of these eigenvectors

are symmetric and the other half are skew-symmetric (Abu-Jeib, 2002).

2.2.3 Separable SOS covariograms

We have seen that a simple transformation H𝑛 speeds computations for the general SOS

model by a factor of four. If the covariance is separable, the speedup can be made closer

to 16x by using transformation, H𝑛𝑥×𝑛𝑦 := H𝑛𝑥 ⊗ H𝑛𝑦 (where ⊗ denotes the Kronecker

product). This partitions G into four subsets, each constructed through superimpositions

of ±Z and ±Z𝐹 . Using H𝑛𝑥×𝑛𝑦 one finds that V is similar to a Kronecker product of

block-diagonal matrices, and this leads easily to a block-diagonal form having four SPD

blocks whose condition numbers are as good or better than that of V .

Nevertheless, with large enough 𝑛, constant factor improvements like these are of little

consequence (numerical stability notwithstanding) and even the O(𝑛𝑥) improvements of

Dietrich (1993) may be inadequate to make computations feasible. In that case we suggest

that modellers consider an a priori assumption of separability in order to exploit compu-

tational efficiency in the well-known algebra of Kronecker products (Van Loan, 2000). In

Sect. 2.2.4 we provide some justification for the robustness of these models.

The idea of separability is to disentangle the 𝑥 and 𝑦 component distances by applying
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1D covariograms (say 𝑐𝑥 and 𝑐𝑦) to each component separately, before taking their product.

Thus if s𝑖 = (𝑥𝑖, 𝑦𝑖), a SOS separable spatial covariogram can be written:

𝑐(s𝑖 − s 𝑗 ) = 𝜎2𝑐𝑥
(︁
𝑥𝑖 − 𝑥 𝑗

)︁
𝑐𝑦

(︁
𝑦𝑖 − 𝑦 𝑗

)︁
, (2.5)

where the marginal variance parameters from 𝑐𝑥 and 𝑐𝑦 have been combined into 𝜎2

(as they are not separately identifiable). The resulting covariance matrix decomposes into

a Kronecker product V = V x ⊗ V y. Whereas the (𝑛 × 𝑛) matrix V has one row per

sample site, matrices V 𝑥 and V 𝑦 (𝑛𝑥 × 𝑛𝑥 and 𝑛𝑦 × 𝑛𝑦, respectively) have only one row

per grid line. V 𝑥 and V 𝑦 are themselves covariance matrices, for a pair of 1D processes

with covariograms 𝜎𝑐𝑥 and 𝜎𝑐𝑦. Indeed this is how separable covariance was originally

formalized by Martin (1979), though he presented it in the framework of autoregression.

Martin (1979) recognized a number of desireable computational properties in (2.5), and

we will mention some of them before moving to less familiar results. In brief, most of

the matrix algebraic computations on V that arise in spatial inference and prediction can

be applied instead to the lower-dimensional components V 𝑥 and V 𝑦. This includes the

inverse and determinant; as well as matrix-vector multiplications; and the SVD, Cholesky,

and spectral decompositions. For example the negative log-likelihood for an observation of

Z ∼ N(µ,V ) is proportional to:

𝑛𝑦 log|V 𝑥 | + 𝑛𝑥 log|V 𝑦 | + (Z − µ)∗vec
{︁
(V 𝑦)−1vec−1

𝑛𝑦 (Z − µ) (V 𝑥)−1}︁ . (2.6)

Comparing with (2.3), this reduces the arithmetic complexity from O
{︁
(𝑛𝑥𝑛𝑦)3}︁ to

O
{︁
(𝑛𝑥)3 + (𝑛𝑦)3}︁. Computer memory requirements are also reduced; Only the components

V 𝑥 and V 𝑦 must be stored in memory, and never the full covariance matrix V . Moreover

since V 𝑥 and V 𝑦 are bisymmetric, we can use (2.4) to further speed computations by 4X.

Formula (2.6) is often exploited in analyses of spatio-temporal datasets, where a Kro-

necker product of spatial and temporal covariance matrices is commonly viewed as the

simplest baseline model (Genton, 2007). It is also well-established in pattern recognition
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applications of machine learning (Wilson et al., 2014). We are however aware of very few

examples in the applied statistics literature of spatially separable covariograms.

Statisticians may prefer isotropic models like the WM (or its geometric anisotropy

extension) for reasons of parsimony. However the more computationally attractive separable

covariogram seems to mimic these standard models quite well, as we demonstrate next in a

simulation study. In the appendix (Online Resource 1), we address computational aspects

of marginal distributions, since these are characterized by submatrices of V that lack

separability.

2.2.4 Simulation study comparing separable and isotropic covariograms

Given the scarcity of empirical results on the performance of separable spatial covari-

ograms, we sought to evaluate their flexibility using simulations. We compared the root

mean-squared prediction error (RMSPE) from separable covariograms against two standard

isotropic ones in simulations of a (40 × 40) lattice of SAC data from a linear model (2.2).

For each of 300 replicates, we generated spatial error terms using two covariance models:

the (isotropic) WM (𝜈 = 5, 𝜆 = 2; Figure 2.1, top-left), and the separable (and highly

anisotropic) product of two 1D WMs (𝜈𝑥 = 5, 𝜆𝑥 = 1, 𝜈𝑦 = 5, 𝜆𝑦 = 3). We then fit

the model (2.2) by maximum likelihood for five different covariogram types, including the

correct one, and compared precision and predictive ability.

For each replicate we used a design matrix X with four covariates: two independent

standard normal variates (uncorrelated); and two Gaussians drawn from the isotropic WM

with strong SAC (𝜈 = 6, 𝜆 = 4). We drew regression coefficients β uniformly at random

from (−1, 1) in each replicate, computed the linear predictorXβ, then added spatial error 𝑍

to form the dataset {y,X}. We then fitted β̂, θ̂ by maximum likelihood under the following

covariance models: OLS (independence); exponential; WM; a separable product of 1D

exponentials; and a separable product of 1D WMs.

To estimate RMSPE in each replicate we randomly generated a new dataset from the
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Figure 2.2: Inference and prediction on simulated data (𝑛 = 40 × 40) from a linear model
with covariance given by: the WM (left); and a separable product of 1D WMs (right). In
each of 300 replicates, we fit MLEs for 5 types of covariogram. We plot errors in one
of the estimated regression parameters (bottom); and RMSPEs in predictions on a second
simulated dataset (top)

same distribution, selected half of the points to condition over (uniformly at random),

and predicted on the other half. These results, and the errors in parameter inference, are

summarized in Figure 2.2. For brevity we plot only the regression parameter estimate

of the first covariate, 𝑋1, and omit the OLS errors. Unsurprisingly these OLS errors were

extremely large by comparison, making it difficult to discern differences among the boxplots

for the other four models. Results for the autocorrelated covariates showed little difference

among the five test models.
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Although the exponenential is nested in the WM family (𝜈 = 0.5), it did relatively poorly

in nearly all of our simulations, outperforming only the naive OLS estimates. Nevertheless,

the separable product of exponentials produced surprisingly robust MLEs for both types of

spatial error. Indeed, when the data were drawn from the isotropic WM covariogram, both

of the separable models were about as precise in their estimates of 𝛽1 as the correct one

(Figure 2.2, bottom-left). Meanwhile, in datasets with separable spatial error (Figure 2.2,

bottom-right), both isotropic models performed noticeably worse than the separable ones.

The RMSPE results were also favourable to separable covariograms. In datasets from

the isotropic WM (Figure 2.2, top-left), the separable product of 1D WMs did nearly as

well as the correct model. The separable product of 1D exponentials performed worse

than the correct model, but better than the isotropic exponential. This was surprising given

the markedly anisotropic nature of the fitted covariograms from this family (Figure 2.1,

top-right).

These results suggests a remarkable flexibility in separable products of the 1D WM. In our

simulations they did well to approximate their isotropic counterparts, but the converse was

not true. Moreover, the likelihood maximization problem was far simpler with separability.

The reduction in computational complexity is borne out even on this relatively small dataset,

where separable models fit around 400X faster than nonseparable ones.

2.3 Product anisotropic covariograms

In Sect. 2.1.2 we saw that isotropic covariograms can be generalized to incorporate direc-

tionality by a modification of the coordinate system, called geometric anisotropy. What

happens if we do the same with separable covariograms?

Separable covariograms are already equipped to handle some degree of range anisotropy,

since 𝑐𝑥 and 𝑐𝑦 can be assigned different range parameters. However, the directionality is

constrained to align with the coordinate system, making this approach relatively inflexible.

This motivates an extension that we will call the product anisotropic covariogram (PAC),
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in which we compose a separable covariogram with an affine transformation (A) of coordi-

nates. Using the notation of Sect. 2.1.2, we write the general 2D spatial PAC as a function

of the transformed coordinate differences:

𝑐(s𝑖 − s 𝑗 ) = 𝜎2𝑐𝑥
(︁
�̃�𝑖 − �̃� 𝑗

)︁
𝑐𝑦

(︂
�̃�𝑖 − �̃� 𝑗 )

)︂
where (�̃�𝑖 − �̃� 𝑗 , �̃�𝑖 − �̃� 𝑗 )∗ = A(s𝑖 − s 𝑗 ). (2.7)

Some examples are illustrated in Figure 2.1 (middle and righthand panes). Just as

geometric anisotropy assumes that A−1 leads to an isotropic process, the product form

covariogram supposes it leads to a separable process. Taking the simulation results from

Sect. 2.2.4 as an indication that the (unrotated) exponential PAC adequately approximates

the WM, it follows that its rotated analogue should adequately approximate geometric

anisotropy. We propose that the former can serve as a computationally efficient surrogate

in situations where the latter is a reasonable model.

This approach allows more flexibility in covariance structure than does the classical

approach of geometric and/or zonal anisotropy. For example, 𝑐𝑥 and 𝑐𝑦 need not be from the

same covariogram family; the contours of constant covariance are not restricted to ellipses;

and sill anisotropy is naturally accommodated in addition to range anisotropy. These are

highly desirable features since, as discussed in Zimmerman (1993), subtly different types

of anisotropy can have important consequences for predictions.

Recalling Sect. 2.2.1, the covariance matrix defined by (2.7) is BTTB (and bisymmetric).

However, it will usually not be separable. Thus in generalizing the separable covariogram

we seem to have lost its main selling point of computational efficiency. However, for

Gaussian data it turns out that in some cases we can partition the data into subsets whose

marginal covariance is separable, as we show next.

2.3.1 Special transformations of the coordinate system

The key insight here is to consider transformations A for which 𝛼, 𝑠𝑥 , and 𝑠𝑦 satisfy:

𝛼 = arctan (𝛼𝑦/𝛼𝑥) , where 𝛼𝑥 , 𝛼𝑦 ∈ Z+, and 𝑠𝑥 = 𝑠𝑦 = ∥(𝛼𝑥 , 𝛼𝑦)∥. (2.8)
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Figure 2.3: Special transformations of lattice coordinates. The left diagram illustrates the
geometry of a rotation by 𝛼 = arctan(1/2) and a scaling of 𝑠 =

√
5. The shaded rectangle

is the rotated 𝑛𝑦 × 𝑛𝑥 subgrid Gκ, which lies on the (unrotated) 𝑁 𝑦 × 𝑁𝑥 grid G. The right
panel shows Gκ (black cells) on a much larger domain. The gray and black cells together
make up the full set of subgrids corresponding to the 12 special angles in (2.13). Our
proposed range anisotropy estimator uses these shaded cells to fit covariograms to each of
the 12 angles, and their complement (white cells) to estimate error.

The scaling 𝑠 = ∥(𝛼𝑥 , 𝛼𝑦)∥ ensures that the entries of A are integers, so that the

transformed coordinates lie in the square lattice Z2. Thus if the original coordinate system

G is an 𝑁 𝑦 × 𝑁𝑥 regular rectangular grid then we can always choose a subset of locations

Gκ ⊂ G that forms a 𝑛𝑦 × 𝑛𝑥 regular rectangular grid with respect to the transformed

coordinates, provided 𝑁𝑥 and 𝑁 𝑦 are large enough. Specifically, it is necessary that

𝑁𝑥 − 1 ≥ 𝛼𝑥 (𝑛𝑥 − 1) + 𝛼𝑦 (𝑛𝑦 − 1) and 𝑁 𝑦 − 1 ≥ 𝛼𝑦 (𝑛𝑥 − 1) + 𝛼𝑥 (𝑛𝑦 − 1). (2.9)

For example Figure 2.3 (left) shows how 𝛼 = arctan(1/2) produces a 3 × 4 rotated inner

subset within an 8 × 9 outer grid. It is fairly straightforward (though tedious) to find the

indexing vector κ that pulls this inner subset from G in column-vectorized order, so we state

the general case here without proof and refer the reader to the appendix (Online Resource

1) for a derivation. Let V be the covariance matrix for MVN vector Z, as in (2.7), with A

defined as in (2.8). If the subgrid dimensions 𝑛𝑦 × 𝑛𝑥 satisfy (2.9), we define the indexing
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vector κ by:[︁
vec−1

𝑛𝑦 (κ)
]︁
𝑖 𝑗
= 1 + 𝛼𝑦 (𝑛𝑥 − 1) + (𝑁 𝑦𝛼𝑦 + 𝛼𝑥) (𝑖 − 1) + (𝑁 𝑦𝛼𝑥 − 𝛼𝑦) ( 𝑗 − 1). (2.10)

Referring to Figure 2.3 (left), if the unshaded rectangle is D, then the indexing κ selects

the inner rectangular lattice Gκ of grey points. By construction, κ selects these points in

column-vectorized order. Their covariance matrix is therefore a Kronecker product (similar

to that of G except with the spacing of grid lines increased by a factor of 𝑠).

Notice that through translations τ𝑘 following the rotation and scaling, the entire integer

lattice Z2 can be partitioned into 𝑠2 disjoint subsets of the form A𝑇s𝑖 + τ𝑘 , a consequence

of Pick’s theorem (Pick, 1899). From each subset, one may select a rectangular grid Gκ(𝑘)

of sample sites that lies in G, by a suitable choice of the indexing vector κ(𝑘) . Thus up to

𝑠2 disjoint subsets Gκ(𝑘) ⊂ G are available, each with the same separable covariance matrix

Vκ.

2.3.2 Applications of product anisotropic covariograms

An immediate application for the ideas of Sect. 2.3.1 is in analyses where a MVN with

geometric anisotropy is a suitable model, and the angle 𝛼 is known or has been estimated

(eg. from directional semivariograms). If 𝑁 is large enough that computational complexity

becomes an issue, we suggest using a PAC with a nearby special angle of the form (2.8).

Separability can then be exploited over the subsets Gκ(𝑘) .

Of course when using one of the Gκ(𝑘) and discarding points from G \ Gκ(𝑘) , we lose

efficiency. However much of this efficiency can be recovered by using a composite marginal

likelihood function L𝐶 (Lindsay, 1988) that combines information from all 𝑠2 subsets:

L𝐶

(︂
µ, θ |

{︂
𝑍𝑖; s𝑖 ∈ ∪𝑠2

𝑘=1G
(𝑘)
κ

}︂)︂
=

𝑠2∏︂
𝑘=1

L
(︂
µ, θ | Z [κ(𝑘)]

)︂
. (2.11)

This can be evaluated using (2.6), with the factorization of Vκ reused for all 𝑠2 terms.

Typically the direction of range anisotropy 𝛼 will be unknown and so must be estimated

from the data. For a second application we propose a simple cross-validation-like method for
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constructing such an estimator. The idea is to assemble a set of test angles 𝛼 𝑗 ( 𝑗 = 1, . . . 𝑚),

each of the form (2.8), that define a suite of candidate PAC models. We then fit each of

these candidates to its corresponding rotated subgrid Gκ(𝛼 𝑗 ) (defined precisely in Appendix

2.6.5, equation 2.28). The model-fitting points ∪𝑚
𝑗=1Gκ(𝛼 𝑗 ) do not cover all of G, so from

the unused portion we can select at random a test set, Gpred to predict over, conditional on

the remaining data. Figure 2.3 (right) illustrates this partition of G into test and training

data.

Having estimated the prediction errors for each 𝛼 𝑗 , a preferred angle can be chosen by

lowest RMSPE. Alternatively one can compute the circular mean of the 𝛼 𝑗 ’s, inversely

weighted by their RMSPE; Letting 𝜔 𝑗 denote the 𝑗 𝑡ℎ weight, the circular mean is:

𝛼ω̂ = (1/2) arg
⎧⎪⎨⎪⎩
𝑚∑︂
𝑗=1
𝜔 𝑗

(︁
cos(2𝛼 𝑗 ) + 𝑖 sin(2𝛼 𝑗 )

)︁⎫⎪⎬⎪⎭ . (2.12)

This simply maps each angle to a vector on the unit circle, scaling lengths according to

RMSPE, before finding the angle of the resulting vector sum. Note that because covariance

functions are symmetric, we cannot distinguish between 𝛼 and 𝛼 ± 𝜋. Hence we double

each 𝛼 𝑗 ∈ [0, 𝜋) before mapping it to the unit circle in equation (2.12), dividing the final

result by 2 to return to [0, 𝜋).

The more conventional method of investigating the angle of range anisotropy involves

studying empirical directional (co)variograms for ad-hoc sets of angles and spatial lags

(Sherman, 2011). This approach is both computationally fast and intuitive, and remains an

important part of model selection. However, as an informal graphical diagnostic it suffers

from issues of subjective interpretation (Guan, Sherman, and Calvin, 2004). By comparison

our method requires very little calibration on the part of the user. It also appears quite robust

to model misspecification, as we demonstrate in the next section.

2.3.3 Simulation study for range anisotropy detection

We examined the performance of the angle estimators of the preceding section using

simulated data exhibiting range anisotropy. As we are mainly interested in situations where
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the covariance structure is unknown, we considered a situation of model misspecification:

simulating data from a WM with geometric anisotropy (𝜈 = 3, 𝜆 = 1, 𝑠𝑦/𝑠𝑥 = 2), but using

exponential PACs to fit each candidate angle.

We used the experimental setup of Sect. 2.2.4: a linear model with two autocorrelated

covariates and two independent ones, on a 40 × 40 spatial domain. We tested 50 values

of 𝛼 ∈ [0, 𝜋) for the true spatial error covariogram (chosen uniformly at random). For

each of these angles we replicated the simulation with new data 50 times, following the

procedure outlined in the previous section to construct two angle estimates per replicate.

Our candidate models comprised the 12 angles of the form (2.8) for which the interpoint

distance 𝑠 ≤ 5, or:

𝛼 𝑗 = {arctan(𝛼𝑦/𝛼𝑥) | 𝛼𝑦, 𝛼𝑥 ∈ {1, . . . 4} , ∥(𝛼𝑥 , 𝛼𝑦)∥ ≤ 5}
⋃︂

{0} . (2.13)

From this list we constructed the subsets G(𝛼 𝑗 ) using equation (2.28). In the case of

𝛼 𝑗 = 0, we defined G(0) by simply omitting all even-numbered gridlines from G. For the

nonzero angles, note that the dimensions 𝑁 𝑦 ×𝑁𝑥 of the full dataset can be decremented by

discarding outer rows/columns, and the dimensions 𝑛𝑦 × 𝑛𝑥 of the subgrids G(𝛼 𝑗 ) adjusted

as needed, until the dimensional constraints (2.9) are met. A more cautious implementation

could seek to ensure equal sample sizes in each G(𝛼 𝑗 ). However, we found this had little

impact on our simulation results.

Because we used the same covariogram family for 𝑐𝑥 and 𝑐𝑦 (the 1D exponential), the

model for G(𝛼 𝑗 ) simultaneously tests both 𝛼 𝑗 and 𝛼 𝑗 + 𝜋/2. Our test set (2.13) therefore

encompasses 24 angles, whose positions on the (mod 𝜋) compass rose are indicated by

the gray bars in Figure 2.4 (left). For a given fitted covariogram, we distinguished 𝛼 𝑗 and

𝛼 𝑗 + 𝜋/2 by taking the larger of the two fitted range parameters (𝜆�̂� or 𝜆 �̂�) to indicate the

major axis direction.

In the final step, we selected from the unused data (white cells in Figure 2.3, right) a

subset of size
√
𝑛𝑥𝑛𝑦 = 40 to set aside as a conditioning set, and predicted the remaining

points Gpred under each of the 12 candidate models. We then determined the angle with least
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Figure 2.4: Rose diagrams summarizing estimates of the angle of range anisotropy over
50 simulation replicates. Datasets were generated from a model with a geometrically
anisotropic WM covariogram, oriented at angle ≈ 105◦. Estimates by least RMSPE select
the best performing angle from 24 specially chosen candidates (grey bins, left). Weighted
circular mean (right) combines information from all 24 candidates to form a continuous
estimate

RMSPE, and the weighted circular mean 𝛼ω̂, and recorded the error (mod 𝜋) in each case.

Figure 2.4 plots the results for one of the 50 tested angles (the other 49 can be generated

using the R code files in Online Resource 2). In Figure 2.5 we show the pooled errors over

all 2500 simulations.

While Figure 2.5 suggests that both estimators are reasonably unbiased, least-RMSPE

tended to favour angles with higher sampling density (specifically𝛼 𝑗 = 0, 𝜋/4, 𝜋/2), leading

to a multimodal error distribution. Moreover, the individual histograms often exhibited an

interesting (but unwanted) dip near the true angle, as in Figure 2.4, left.

Weighted circular mean performed far better. Its pooled error distribution appears

unimodal, as do the individual histograms, and there was noticeably less variance. Even

for the worst performing simulation angle (in terms of error variance), 𝛼ω̂ fell within 15◦

of the true angle in 70% of the repetitions. Over all simulations it was within 45◦ of the

true angle 99.1% of the time, and 77% of the time it was within 15◦ (Figure 2.5). This is

remarkable given that our estimator derives from only 12 candidate angles. Recall that an
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Figure 2.5: Errors in two estimators of the angle of range anisotropy for data generated
from a model of geometric anisotropy (WM covariogram). Left and right histograms are the
pooled results over the same set of simulations, with 50 repetitions for each of 50 randomly
chosen true angles

empirical rose plot over 12 evenly spaced angles in [0, 𝜋) would have a detection tolerance

of 15◦.

By design, the computing resources needed to estimate 𝛼 are quite reasonable for large

sample sizes. A desktop PC required only around 1-3 seconds with the 40×40 sample size.

Moreover the algorithm is completely automated. Unlike the empirical rose plot there is no

need to pick an ad-hoc collection of spatial lags or contour levels, nor does the output rely

on any kind of subjective visual inspection.

Needless to say, these estimators are only meaningful if it is reasonable to assume a

SOS process with range anisotropy. A number of nonparametric tests can detect departures

from isotropy (Weller, Hoeting, et al., 2016), but we are aware of very few such tests for

stationarity. Modellers will more often seek to detrend the data using a careful constructed

mean function. This is not always possible however, and sometimes it is informative to

study the nonstationary covariance structure itself, particularly with ecological data.

For example Sampson and Guttorp (1992) described how nonstationarity can be ex-

plored visually using smooth nonlinear deformations of the spatial domain. We will do

something similar with 𝛼ω̂. Suppose that the spatial process over the 𝑁 𝑦 × 𝑁𝑥 domain D is

nonstationary, but exhibits local stationarity on the scale of a much smaller 𝑛𝑦 × 𝑛𝑥 subgrid.
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We propose using our range anisotropy detection method repeatedly on a sliding window

of size 𝑛𝑦 × 𝑛𝑥 that moves across D, estimating at each position the angle 𝛼ω̂ and the

range parameters �̂�𝑥 , �̂�𝑦. These values define a pair of orthogonal vectors for each location.

Plotted together, these depict graphically how the covariance changes through space, much

like a biorthogonal grid. This idea is demonstrated in the following case study.

2.4 Case study: mountain pine beetle damage

We applied our angle detection method to analyse damage to pine forests caused by the moun-

tain pine beetle (MPB). Populations of this tree-killing bark beetle have in recent decades

grown to unprecedented levels, leading to an epidemic of mortality in pines throughout its

vast native habitat in Western North America. The economical and ecological consequences

of the epidemic will be severe and long-lasting (Dhar, Parrott, and Heckbert, 2016).

In response, a large body of research has sought to reveal the factors that give rise to

MPB outbreaks and allow them to spread, including microclimate, altitude, pine density and

proximity to infested stands (Safranyik and Carroll, 2006). Nevertheless, the large-scale

dispersal habits of the MPB are difficult to assay, and remain poorly understood. We applied

our methods here to better understand the movements of this forest pest, in the hope that

spatially explicit predictions of future outbreaks can be improved.

Monitoring efforts by the Canadian province of British Columbia (BC) are a source of

unusually detailed and comprehensive spatial data on MPB activity (Westfall and Ebata,

2009). These data comprise yearly sketch maps of the severity of damage by the beetle

(% of pines killed per hectare). We rasterized these maps to produce regular gridded data

covering almost the entire treed area of the province, at a one hectare resolution.

In the preliminary analysis we looked at a 300× 300 subset, using the linear model (2.2)

with an exponential PAC. To avoid the complications of temporal dependence, we only

fitted the spatial process from a single year, 𝑡 = 2007 (around the peak of the pine beetle

epidemic in Southern BC). Our response variable 𝑌𝑡 (s𝑖) is the logit-transformed beetle
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Figure 2.6: Beetle damage data from from 2007 (left) used to fit a nonstationary covariance
structure (right). Arrows indicate the directions �̂�ω identified by a blockwise application of
the angle-detection technique of Sect. 2.3.1 to model residuals. Black arrows indicate the
major axis direction (largest �̂�) and arrow thickness indicates the magnitude of the sill (�̂�)

damage measurement for site s𝑖 in year 𝑡, after adding a small offset 𝜖𝑡 to adjust for zeroes

(Warton and Hui, 2011) (Figure 2.6, left). The design matrix X comprised 29 covariates –

mostly climate and weather related – known to influence MPB attack dynamics. The full

list can be found in Appendix 2.6.6.

To begin we fit the covariogram to the full 300 x 300 domain by maximum likelihood,

given an initial set of OLS estimates for β. We then used GLS, as described below equation

(2.2), to obtain β̂𝐺𝐿𝑆, and refitted the covariogram using the updated regression parameters.

Next, to examine nonstationarity we constructed a 12 x 12 layout of spatial blocks, each

of size 80 x 80, with an overlap of 60 cells in each direction. Within each block (and with

β fixed to β̂𝐺𝐿𝑆) we fitted the linear model (2.2) using exponential PACs corresponding to

each of the angles in (2.13). We estimated the within-block angle by 𝛼ω̂ using the method of

Sect. 2.3.3, picking the nearest special angle from the set (2.13) and using its corresponding

fitted covariogram to predict over the unseen data in that block. We then compared RMSPE

values of these blockwise predictions with those of the separable model fitted to the full
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Figure 2.7: Observed pine beetle damage in a 30 x 30 km area of Southern BC in year
2008 (left). A random sample of 20% of these datapoints was used to predict the remainder
(right), using a linear model with rotated product anisotropic covariograms fitted blockwise
to previous-year data

domain.

Lastly, to gauge future predictive ability we used the 2007 (blockwise) models to estimate

damage in the year 2008 (Figure 2.7, left), conditional on a subset of the response data from

that year. The conditioning set comprised a random subsample of 20% of the points from

the non-overlapping 20 x 20 subsets at the center of each block (black grid in Figures 2.6 and

2.7). We then predicted on the unobserved points to compute RMSPE. This arrangement

ensured that the spatial locations of the predictions lay entirely within the subset used to fit

the covariogram of the previous year (Figure 2.3, right). Again, we formulated blockwise

predictions from both the PAC (within block) and the ordinary separable covariogram (full

domain) models, and compared prediction error.

The fitted values of 𝛼ω̂ (Figure 2.6, right) revealed an interesting pattern of range

anisotropy varying through space, indicating nonstationarity. However, large parts of

the study area exhibited a consistent directionality and effective range, suggesting that

an assumption of local stationarity is reasonable over these areas. This is reflected in
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the within-block predictions for the model fitting year, for which the product covariogam

(RMSPE = 0.026) outperformed the (full domain) separable covariogram (RMSPE = 0.027).

Unsurprisingly, both spatial models improved on the nonspatial OLS predictions (RMSPE

= 0.032), highlighting the strong SAC in these data.

If the same spatial covariance structure persists to some degree between years, we

can expect to improve 2008 predictions by incorporating information from the blockwise

estimated covariograms from the previous year. This was indeed the case, with OLS

estimates producing much larger errors in next-year predictions (RMSPE = 0.069) when

compared with kernel-based predictions from the separable (RMSPE = 0.044) and PAC

(RMSPE = 0.046) models.

Note that overall, the separable covariogram outperformed the blockwise PAC on these

next-year test data. This could be a consequence of the decreased sampling resolution

induced by (2.28) (see discussion), or of year-to-year changes in the covariance structure.

The PAC, however, performed far better on blocks heavily damaged by the pine beetle,

producing the lowest MSPE in 40 of the 64 blocks (63%) for which damage extended over

25% or more of the area. Nevertheless, in spite of the variability in 𝛼ω̂, both spatial models

performed adequately. The predicted sizes and shapes of the beetle damaged areas in 2008

appear quite reasonable given the sparsity of the conditioning set.

Computationally, this analysis was very simple. The entire process - from GLS, angle-

detection and fitting, to prediction, for both models on all 144 blocks - was completed by

an ordinary desktop PC in about 7 minutes. By contrast it took closer to an hour to fit a

standard model of geometric anisotropy to a single block, even with 𝛼 known. Moreover,

the blockwise approach is easily parallelized, and thus if needed it could be sped up even

further by using a cluster of computers.
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2.5 Discussion

The computational complexity involved with explicit representations of covariance can be

a formidable obstacle. Building upon work by Zimmerman (1989), we have argued for the

unconventional solution of using covariograms that are separable in space. These models are

not without their drawbacks. Stein (2005) noted issues related to ridges along the coordinate

axes that lead to undesirable correlations in linear predictors. These ridges are visible in

the plot of the exponential product covariogam in Figure 2.1 (top-right), for example, as

well as the predicted values in Figure 2.7. Moreover, separable covariograms are never

mathematically isotropic (except in the special, but problematic case of the Gaussian).

In many applications, however, we believe these issues have minimal impact on pre-

diction and inference, and that the drawbacks are outweighed by the substantial reduction

in computational complexity. In ecology, this complexity often prevents a SAC-corrected

analysis in the first place – here it bears repeating the observation of Keitt et al. (2002), that

"making any correction is more important than quibbling about which correction to make".

Our simulations suggests that separable WM product covariogams are adequate surrogates

for more conventional isotropic models. Thus, we suggest them as a simpler alternative to

the more sophisticated approximations developed in Genton (2007) and Hirano (2014).

On simulating data exhibiting range anisotropy with a known direction, we found that

separable covariograms substantially improved MSPE compared with isotropic ones, in

spite of a model misspecification. This kind of flexibility will be desirable to modellers

with reason to doubt the assumption of isotropy in their data, a common situation in ecology.

Note that the separable product of WM covariograms limits to a Gaussian (as 𝜈 → ∞), so not

only is this extremely common model well approximated, it is generalized to include a range

of heavier-tailed alternatives. Readers interested in separable approximations are directed

to Wilson et al. (2014), who showed that any SOS covariogram can be approximated to

arbitrary precision using sums of separable covariograms.

While the direction of range anisotropy will rarely be known a priori, we showed in
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Sect. 2.3 how separability leads to a fast estimator of this angle, 𝛼ω̂. The simulation

results in Sect. 2.3.3 demonstrated a satisfactory level of accuracy and precision, in spite

of model misspecification. We believe this method will nicely complement more standard

data exploration techniques such as windrose plots, and formal tests of anisotropy, such

as in Guan, Sherman, and Calvin (2004). It could be used to automate the analysis of a

large number of datasets; to identify specific angles and lags to study in more detail using

directional (co)variograms; and to provide an objective verification of the conclusions of

the graphical analyst.

Note that because the dimensional constraints in (2.9) preclude large values of 𝛼𝑥 , 𝛼𝑦,

not all angles of the form (2.8) can be feasibly tested in a given domain D. Moreover

the interpoint distance 𝑠 of points in the rotated subgrid increases with both 𝛼𝑥 and 𝛼𝑦,

making its sampling layout increasingly grainy, and hindering the detection of small-scale

covariances over the data in Dκ. For example, in our case study the largest interpoint

distance was 𝑠 = 5. At a one-hectare resolution this was acceptable, given that the clusters

of beetle damage of greatest concern were much larger than 500 metres. However, depending

on the application, modellers may need to upsample their raster data, or shrink the set of

candidate angles (2.13), until the scale of interest is smaller than the largest 𝑠. Alternatively

one could modify the composite likelihood function in (2.11) to incorporate information on

both the large and small scale, much like the hybrid method proposed by Varin, Reid, and

Firth (2011).

By building 𝛼ω̂ into a sliding-window estimator, we revealed a remarkably smooth

pattern of directional dependence resembling a vector field (Figure 2.6) in the pine beetle

damage dataset. An ecological explanation for these patterns would be an interesting topic

for further research, as it could shine a light on the dispersal habits of the beetle and assist

in future predictions. In future work, we hope to explore the connection between local

estimates 𝛼ω̂ and local covariates such as wind direction or connectivity of forest corridors

- both likely drivers of directionality in pine beetle damage patterns (Aukema et al., 2006).
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Though 𝛼ω̂ served as an exploratory tool in our demonstration, it could be useful in

other roles. For example, covariance plots like Figure 2.6 might lead to a graphical means

of model selection similar to that described in Das et al. (2002); candidate covariate sets

can be compared in terms of fitted covariograms, with the aim of finding a minimal set

of explanatory variables that yields a stationary process. Another interesting avenue of

research would be to construct a predictor that incorporates information from nonlocal

covariance estimates. For example, one could take an average of the blockwise predictions,

weighted by distance to the block centroid, to obtain a smoothed prediction surface.

We have throughout this paper used the WM covariogram in demonstrations because it is

extremely common in spatial statistics. However, in future research, it will be important to

compare against other covariance families to get a more complete picture of the robustness of

the product-form alternatives proposed here. Although our empirical results are promising,

a healthy skepticism of 𝛼ω̂ is wise until its statistical properties are investigated more

formally in a theoretical setting.

Until then we would simply argue that separable PACs are a viable means of accounting

for SAC, while speeding up analyses by many orders of magnitude on large-𝑛 problems.

Though our focus here is spatial, we remind the reader that Kronecker product decom-

positions also apply to separable spatio-temporal covariance matrices. It is our hope that

by adopting this trick in the spatial domain, practitioners can continue to use the easily

interpreted geostatistical model in the rapidly developing world of big data. However, those

preferring to use more conventional nonseparable models such as geometric anisotropy can

nevertheless enjoy a stable 4X speedup by exploiting bisymmetry.

2.6 Appendices to Chapter 2

2.6.1 Matrix symmetries

All covariance matrices are symmetric about their diagonal, but a regular arrangement of

sampling locations can lead to additional useful structures in V :
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Definition 1 (Toeplitz structure) A is Toeplitz when its entries satisfy A[𝑖, 𝑗] = A[𝑖 +

𝑘, 𝑗 + 𝑘] for all feasible 𝑘 . Equivalently, the entries along its 𝑘-diagonals are all equal. A

is called block-Toeplitz when it has identical blocks along all of its block-diagonals.

Definition 2 (The exchange matrix J𝑚) Also called the counteridentity, J𝑚 is the 𝑚 × 𝑚

matrix with 1’s on the counterdiagonal and zeroes everywhere else.

J𝑚
𝑚×𝑚

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . 0 1
... 1 0

0 ...
...

1 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Note J𝑚 is symmetric and orthogonal. When left-multiplied by matrix A, it reverses the

order of the columns in A, and when right-multiplied it reverses the order of the rows. This

leads to the following symmetry definitions:

Definition 3 (Persymmetry and bisymmetry) A is persymmetric if J𝑚AJ𝑚 = A𝑇 . This

is symmetry about the counterdiagonal. If A is symmetric then AJ𝑚 and J𝑚A are both

persymmetric, and vice versa. A is bisymmetric if it is both symmetric and persymmetric.

Definition 4 (Centrosymmetry) A is centrosymmetric if J𝑚AJ𝑚 = A. This is symmetry

about the centre of the matrix. Centrosymmetric matrices need not be symmetric, but when

they are, bisymmetry is implied. If J𝑚AJ𝑚 = −A then A is called skew-centrosymmetric.

2.6.2 Kronecker products

the Kronecker product of 𝑚 × 𝑛 matrix A (with entries 𝑎𝑖 𝑗 ) and 𝑝 × 𝑞 matrix B is the

matrix:

A ⊗ B⏞ˉ̄⏟⏟ˉ̄⏞
𝑚𝑝×𝑛𝑞

:=
⎛⎜⎜⎜⎜⎝
𝑎11B . . . 𝑎1𝑛B
...

...

𝑎𝑚1B . . . 𝑎𝑚𝑛B

⎞⎟⎟⎟⎟⎠
. (2.14)

Kronecker products admit the following useful identities (Golub and Van Loan, 2012):
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Proposition 5 (Determinant) If A is order𝑚 and B is order 𝑛, then |A⊗B | = |A|𝑛 |B |𝑚.

Proposition 6 (Inverse) If A and B are nonsingular, then (A ⊗ B)−1 = A−1 ⊗ B−1.

Proposition 7 (Mixed product) If the products AC and BD are conformable, then

(A ⊗ B) (C ⊗ D) = (AC ⊗ BD) .

Proposition 8 (Decompositions of Kronecker products) IfA = U𝐴C𝐴V𝐴 andB = U𝐵C𝐵V𝐵,

A ⊗ B = (U𝐴 ⊗ U𝐵) (C𝐴V𝐴 ⊗ C𝐵V𝐵) = (U𝐴 ⊗ U𝐵) (C𝐴 ⊗ C𝐵) (V𝐴 ⊗ V𝐵) .

Proposition 9 (Matrix equation representation) If the product ABC is conformable,

then

vec (ABC) =
(︂
C𝑇 ⊗ A

)︂
vec(B).

2.6.3 Indexing via selection matrices

We use the square-bracket notation of Horn and Johnson (2013) to refer to submatrices and

subvectors: If A is 𝑀 × 𝑁 , and κ indexes a subset of rows and γ a subset of columns, then

we write A[κ, γ] for the corresponding submatrix. However, we also allow duplications

and re-orderings of rows and/or columns in A[κ, γ] when this is indicated in κ and/or γ.

This concept is likely familiar already to users of the R programming language, in which

arrays can be manipulated by this syntax. Let us make this precise:

Definition 10 (Selection matrices) If γ is a length-𝑛 vector with entries 𝛾𝑖 drawn from

{1, . . . , 𝑁}, and e𝑁
𝑖

is the 𝑖𝑡ℎ standard basis vector ofR𝑁 , the 𝑁 × 𝑛 selection matrix Sγ is:

Sγ :=
(︂
e𝑁𝛾1 e𝑁𝛾2 ... e𝑁𝛾𝑛

)︂
(2.15)

Thus if κ (length-𝑚) has entries drawn from {1, . . . , 𝑀}, and γ (length-𝑛) has entries

drawn from {1, . . . , 𝑁}, then we write A[κ, γ] to mean the 𝑚 × 𝑛 matrix product S𝑇𝜿AS𝜸.
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Using square-bracket notation, we can also express (2.14) as a Hadamard (entrywise)

product. Writing 1𝑚 for the length-𝑚 vector of ones, and letting m = (1, . . . 𝑚)𝑇 denote

the column vector of the first 𝑚 positive integers (and similar for n, p, and q), we write

A ⊗ B = A[m ⊗ 1𝑝,n ⊗ 1𝑞] ⊙ B [1𝑚 ⊗ p,1𝑛 ⊗ q] . (2.16)

This will be convenient when dealing with submatrices of Kronecker products, such as

in the marginal covariance formula of Section 2.6.5. We present this idea in a lemma:

Lemma 11 (Selections) Suppose A is 𝑚 × 𝑛; and B is 𝑝 × 𝑞; where 𝑀 = 𝑚𝑝, 𝑁 = 𝑛𝑞. If

γ𝑟 (length-𝑟) has entries drawn from {1, . . . 𝑀}, and γ𝑐 (length-𝑐) from {1, . . . 𝑁}, then

(A ⊗ B) [γ𝑟 , γ𝑐] = A[(m ⊗ 1𝑝) [γ𝑟], (n ⊗ 1𝑞) [γ𝑐]] ⊙ B [(1𝑚 ⊗ p) [γ𝑟], (1𝑛 ⊗ q) [γ𝑐]] .

(2.17)

Proof. This is immediate from (2.16) on recognizing that the square-bracket indexing admits

a composition rule X [κ𝑟 ,κ𝑐] [η𝑟 ,η𝑐] = X [κ𝑟 [η𝑟],κ𝑐 [η𝑐]], as well as a distributive rule

over Hadamard products (X ⊙ Y ) [κ,η] = X [κ,η] ⊙Y [κ,η]. These properties become

obvious upon switching to the selection matrix representation in (2.15).

2.6.4 Distance matrices for rectangular grids

We will focus on covariance models for lattice data where the random field variable 𝑍 (s)

is observed at a fixed set of locations G = {s𝑘 }𝑘=1,...𝑛 ⊂ R2 that together form a spatially

regular 𝑛𝑦 × 𝑛𝑥 rectangular grid in the Cartesian plane (where 𝑛 = 𝑛𝑥𝑛𝑦). Assuming our

random vector Z := (𝑍 (s1), . . . 𝑍 (s𝑛))∗ is in column-vectorized order, the position (𝑖, 𝑗) in

the grid is mapped to the index 𝑘 = vec𝑛𝑦 (𝑖, 𝑗) := 𝑖+𝑛𝑦 ( 𝑗−1) inZ. For convenience we will

assume that G has been scaled/translated to lie on the integer lattice Z2 with its bottom-left

corner on the origin, so that its point coordinates are given by s𝑘 = (𝑥𝑘 , 𝑦𝑘 ) = ( 𝑗−1, 𝑛𝑦−1).

In this configuration, pairwise distances between points in G can be succinctly repre-

sented using Kronecker products. To see this, number the grid lines of G using vectors

gx = (1, . . . 𝑛𝑥)∗ and gy = (𝑛𝑦, . . . 1)∗, so that if s𝑘 is at the (𝑖, 𝑗)𝑡ℎ position in the grid,
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its 𝑥 and 𝑦 coordinates are 𝑥𝑘 = [(1𝑛𝑦 ) (gx)∗]𝑖, 𝑗 and 𝑦𝑘 = [(gy) (1𝑛𝑥 )∗]𝑖, 𝑗 (where 1𝑚 is the

length-𝑚 column vector of ones). Vectorizing these outer products, one obtains the full set

of coordinates for G (in column-vectorized order) as the vectors x = (𝑥1, ...𝑥𝑛)∗ = gx ⊗1𝑛𝑦

and y = (𝑦1, ...𝑦𝑛)∗ = 1𝑛𝑥 ⊗ gy. Denote the matrix of differences among the 𝑥 coordinates

as [δ𝑥]𝑖, 𝑗 := 𝑥𝑖 − 𝑥 𝑗 , and similar for 𝑦. Then a straightforward application of Property 7

yields:

δ𝑥 = x1∗𝑛 − 1𝑛x∗ =
(︁
gx1∗𝑛𝑥 − 1𝑛𝑥gx

∗)︁ ⊗ (1𝑛𝑦 (1𝑛𝑦 )∗) , (2.18)

δ𝑦 = y1∗𝑛 − 1𝑛y∗ = (1𝑛𝑥 (1𝑛𝑥 )∗) ⊗
(︁
gy1∗𝑛𝑦 − 1𝑛𝑦gy

∗)︁
. (2.19)

This reveals a (𝑛𝑥 × 𝑛𝑥) pattern of (𝑛𝑦 × 𝑛𝑦) blocks in both matrices: in δ𝑥 the 𝑖, 𝑗 𝑡ℎ

block is (𝑖 − 𝑗)𝐼; and in δ𝑦 it is gy1∗𝑛𝑦 − 1𝑛𝑦gy
∗. These matrices provide an algebraically

convenient decomposition of s𝑖 − s 𝑗 into its projections along the 𝑥 and 𝑦 axes, leading

naturally to the idea of separability. They also allow us to write the matrix of pairwise

Euclidean distances [D]𝑖 𝑗 = 𝑑𝑖 𝑗 as the (entrywise) square root of:

D ⊙ D = δ𝑥 ⊙ δ𝑥 + δ𝑦 ⊙ δ𝑦 . (2.20)

Structure in covariance matrices for nonseparable SOS models

Note that both of the coordinate difference matrices in (2.18)-(2.19) are block-Toeplitz with

Toeplitz blocks (BTTB). This is because g1∗𝑚 − 1𝑚g∗ expresses the differences between

adjacent entries of the length-𝑚 vector g, and therefore becomes Toeplitz when the entries

of g are regularly spaced (eg. as when G is a regular grid).

In an SOS isotropic model, where covariance is defined by applying the covariogram

function 𝑐 to the vector s𝑖 − s 𝑗 = ( [δ𝑥]𝑖, 𝑗 , [δ𝑦]𝑖, 𝑗 )∗, the covariance matrix V inherits the

BTTB structure. This is because the entrywise application of any function to a matrix (for

instance to δ𝑥 and δ𝑦) preserves all of its unsigned symmetry structures. Thus the entrywise

squares, sums, and square-roots implied in (2.20) are all structure-preserving, which means

that D inherits the BTTB property from δ𝑥 and δ𝑦, and V inherits it from D in turn. These
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arguments also apply with geometric anisotropy, where the δ𝑥 and δ𝑦 terms in (2.20) are

replaced by linear combinations 𝑠𝑥 (cos(𝛼)δ𝑥 + sin(𝛼)δ𝑦) and 𝑠𝑦 (cos(𝛼)δ𝑦 − sin(𝛼)δ𝑥).

Linear combinations preserve BTTB structure, and thus V is also BTTB.

The BTTB result was proven in more generality by Zimmerman (1989). However by

emphasizing more directly how matrix symmetry patterns emerge from the regular spacing

of grid lines, we believe our description has pedogogical value to readers unfamiliar with

lattice designs. Moreover (2.18)-(2.20) holds more generally for irregular grid lines (with

spacings defined in g𝑥 , g𝑦) and so could prove useful in expressing the block structure in

V common to any SOS model for gridded data.

2.6.5 Covariance matrices for marginal distributions

Applications often call for marginal distributions over subsets of the data. Examples include

cross-validation; conditional expectation, such as in Kriging; and inference with missing

data. We will consider the Gaussian case, for which subsets of Z are themselves Gaussian

with covariances given as submatrices of V . Let κ denote the indexing vector for the subset

of interest, so that Zκ = Z [κ] is the subset, and V𝜅 = V [κ,κ] is its covariance matrix.

Generally speaking Vκ inherits neither separability, BTTB structure, nor bisymmetry

from V , unless the subset in question forms a regular rectangular grid (note that the angle

estimator from Section 3 of the main text exploits this exception.) Thus Vκ may be more

difficult to work with than V , in spite of its smaller dimensionality. However if the subset

is not too small, one can use a shortcut suggested in Ver Hoef et al. (2018): Leting κ𝑐 index

the observations not in κ, the determinant and inverse of Vκ can be computed using:

V −1
κ = V −1 [κ,κ] −

(︂
V −1 [κ,κ𝑐]

)︂ (︂
V −1 [κ𝑐,κ𝑐]

)︂−1 (︂
V −1 [κ𝑐,κ]

)︂
(2.21)

|Vκ | = |V | |V −1 [κ𝑐,κ𝑐] |. (2.22)

When it is computationally cheap to evaluate the inverse and determinant of V , but not

Vκ, these formulae can lead to substantial speedups; If 𝑚 is the length κ and 𝑛 the length

of Z, we trade a problem of dimension 𝑚 for one of dimension 𝑛 − 𝑚 (the length of κ𝑐).
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These formulae are proved as follows. Suppose {1, . . . 𝑛} is partitioned into sets of size

𝑚 and 𝑛 −𝑚, identified by the index vectors κ and κ𝑐, respectively. Then if V is any 𝑛 × 𝑛

matrix, the permutation P = ( Sκ Sκ𝑐 ) takes V and its inverse to the block forms:

P 𝑇V P =
⎛⎜⎝

Vκ V [κ,κ𝑐]

V [κ𝑐,κ] Vκ𝑐

⎞⎟⎠
P 𝑇V −1P =

⎛⎜⎝
V −1 [κ,κ] V −1 [κ,κ𝑐]

V −1 [κ𝑐,κ] V −1 [κ𝑐,κ𝑐]
⎞⎟⎠ (2.23)

Writing [A]𝑖 𝑗 for the four blocks of a square partitioned matrixA, the matrixA/[A]22 :=

[A]11 − [A]12 [A]−1
22 [A]21 is called the Schur complement of [A]22 in A. Ver Hoef et al.

(2018) note that [A]−1
11 = A−1/[A−1]22, and suggest this identity as a shortcut to invert a

block of a covariance matrix, after having computed its full inverse. Thus equation (2.21)

follows from letting A = P 𝑇V P and writing its inverse in the form (2.23). Equation (2.22)

follows from the identity |A/B | = |A|/|B | for Schur complements.

A Bayesian perspective

A more general version of (2.21) due to Pukelsheim is presented in Searle, Casella, and

McCulloch (2009, pp. 447-452), in the context of likelihood functions for hierarchical

models. Before discussing applications, let us revisit this Bayesian perspective. Suppose

we put an improper prior on the mean of Z. In particular consider the normal hierarchical

model,

Z | µ ∼ 𝑁 (Xκ𝑐µ,V ) with 𝜇𝑖
𝑖𝑖𝑑∼ unif(−∞,∞), (2.24)

where the 𝑛 × 𝑛 design matrix Xκ𝑐 has a one at each diagonal entry indexed in κ𝑐, and

is zero otherwise. Using (2.15) we can write Xκ𝑐 = Sκ𝑐 (Sκ𝑐 )𝑇 where the 𝑁 × (𝑁 − 𝑛)

selection matrix Sκ𝑐 is generated from the length-(𝑁 − 𝑛) indexing vector for unobserved

datapoints.

The likelihood function L(V | Z = z) is then equal to L(V | Y = y) for the model

Y ∼ 𝑁 (0,Vκ), over all z for which z [κ] = y. This is because the effect of Xκ𝑐µ is to add
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noise to the mean-zero version of Z, but only to those components indexed in κ𝑐. As the

variance of this noise increases, the corresponding entries in the precision matrix for (2.24)

shrink, and in the limit of unbounded variance they vanish.

The improper Bayesian posterior likelihood completely ignores these components of Z,

as their values are washed out by the noise of the flat prior. From an information-theoretical

perspective, it is equivalent to simply omit the noisy, unreliable components. Indeed the

likelihood function for (2.24) contains exactly those formulae (2.21)-(2.22) that specify Zκ.

Applications of the marginal covariance formula

Equations (2.21)-(2.22) will speed evaluations of the MVN likelihood function (for a

marginal distribution) whenever it is computationally simpler to find the inverse and de-

terminant of V and V −1 [κ𝑐,κ𝑐] instead of Vκ. This happens when 𝑛 is large and the

number (𝑛 − 𝑚) of points omitted from κ is relatively small. For example, if we consider

only the highest order (cubic) terms in the arithmetic complexity, then computation time

is reduced whenever V (but not Vκ) is bisymmetric and (𝑛 − 𝑚)/𝑛 < 3
√︁
(𝑚/𝑛)3 − 1/4,

or (approximately) (𝑛 − 𝑚)/𝑛 < 0.37. If V (but not Vκ) is separable and we assume for

simplicity that G is a square grid, the bound becomes (𝑛 − 𝑚)/𝑛 < 3
√︁
(𝑚/𝑛)3 − 2/𝑛(3/2) .

Asymptotically (for large 𝑛), the bound is (𝑛 − 𝑚)/𝑛 < 0.5.

An obvious application is in analyses where the locations D lie on a lattice, but do

not form a complete rectangular subset. In this case one simply formulates V over a grid

G covering the bounding box for the data, by introducing empty cells and indexing them

in κ𝑐. Other applications include cross-validation and leave-one-out estimators, where

subsets of the data are withheld and the marginal distribution over the remainder is of

interest. For example Ver Hoef et al. (2018) implemented (2.21)-(2.22) in a predictions

over unobserved data. More generally these formulae can simplify computations of the

conditional expectation when a partial observation Zκ is used to inform estimates of the

unobserved components Zκ𝑐 , since the conditional distribution of Zκ𝑐 given Zκ = z [κ]
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is:

N
{︁
µ[κ𝑐] + V ∗

κκ𝑐V −1
κ (z [κ] − µ[κ]) ,Vκ𝑐 − V ∗

κκ𝑐V −1
κ Vκκ𝑐

}︁
, (2.25)

where Vκ𝑐 is the marginal covariance matrix for Zκ𝑐 , and Vκκ𝑐 is the cross covariance of

Zκ and Zκ𝑐 . Note that in the case of separable covariance, the computationally prohibitive

step of forming the 𝑁 × 𝑁 matrix V = V 𝑥 ⊗ V 𝑦 can be avoided. The required matrices

can easily be computed directly from V 𝑥 and V 𝑦 using the identity (2.17), which leads to

Vκκ𝑐 = V [κ,κ𝑐] = V 𝑥 [κ𝑥 ,κ𝑥] ⊙ V 𝑦 [κ𝑦,κ𝑦], (2.26)

Vκ𝑐 = V [κ𝑐,κ𝑐] = V 𝑥 [κ𝑥 , (κ𝑥)𝑐] ⊙ V 𝑦 [κ𝑦, (κ𝑦)𝑐], (2.27)

where the sites indexed in κ have x-coordinates gx [κ𝑥] and y-coordinates gy [κ𝑦], and the

κ𝑥 , κ𝑦 can be found using the inverse vectorization operator: (κ𝑥 [𝑖],κ𝑦 [𝑖]) = vec−1
𝑛𝑦 (κ[𝑖]),

vec−1
𝑛𝑦 (𝑘) = (𝑖𝑘 , 𝑗𝑘 ) =

(︃
𝑘 − 𝑛𝑦

(︃⌈︂ 𝑘
𝑛𝑦

⌉︂
− 1

)︃
,

⌈︂ 𝑘
𝑛𝑦

⌉︂)︃
.

Indexing of the rotated sublattice

Here, we derive the indexing vector κ for the rotated subgrid in G described in Section 3.1.

Without loss of generality we will assume that 𝑁𝑥 , 𝑁 𝑦, 𝑛𝑥 , and 𝑛𝑦 have been suitably chosen

to satisfy equation (18).

Begin by applying the transformationA𝑇 to the coordinates s𝑘 of points in the 𝑛𝑦×𝑛𝑥 sub-

lattice G0 with grid line vectors g𝑥0 = (0, . . . 𝑛𝑥 −1)𝑇 and g
𝑦

0 = (𝑛𝑦−1, . . . 0)𝑇 . By construc-

tion, these new coordinatesA𝑇G0 =
{︁
s̃𝑘 = A𝑇s𝑘 ; 𝑘 = vec𝑛𝑦 (𝑖, 𝑗), 𝑖 = 1, . . . 𝑛𝑦, 𝑗 = 1, . . . 𝑛𝑥

}︁
are a subset of Z2 that forms a regular rectangular grid in the rotated coordinate system

D𝛼 =
{︁
R𝛼v𝑘 ;v𝑘 ∈ R2}︁, with inter-point spacing 𝑠 = ∥(𝛼𝑥 , 𝛼𝑦)∥. Thus if we apply equa-

tion (15) to the s̃𝑘 , we recover the separable kernel in equation (8), since AA𝑇 = 𝐼. It

follows from (8) that after rescaling the coordinate difference matrices δ𝑥 and δ𝑦 by the new

inter-point distance 𝑠, we obtain 𝑐(s̃𝑖 − s̃ 𝑗 ) = 𝜎2𝑐𝑥 (𝑠 [δ𝑥]𝑖 𝑗 )𝑐𝑦 (𝑠 [δ𝑦]𝑖 𝑗 ), which implies the

Kronecker product representation in equation (20).
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Now let us track one of the grid points along the transformation. The position s𝑘 =

( 𝑗 − 1, 𝑛𝑦 − 𝑖)𝑇 of the (𝑖, 𝑗)𝑡ℎ element in G0 gets mapped to the new position s̃𝑘 = A𝑇s𝑘 =

(𝛼𝑥 ( 𝑗 − 1) − 𝛼𝑦 (𝑛𝑦 − 𝑖), 𝛼𝑥 (𝑛𝑦 − 𝑖) + 𝛼𝑦 ( 𝑗 − 1))𝑇 . In order to find the row/column index

in V corresponding to s̃𝑘 ∈ A𝑇G0, we must identify the element of G that coincides with

s̃𝑘 . However, following the transformation by A𝑇 , some of the leftmost points of A𝑇G0

will have fallen out of G (they have negative 𝑥 coordinates). So, we simply translate all of

the points A𝑇G0 to the right by distance 𝛼𝑦 (𝑛𝑦 − 1) to ensure that the least 𝑥 coordinate

becomes zero. Note that such translations of coordinates have no bearing on the covariance

matrix for points in A𝑇G0 under the SOS assumption.

Following this translation, the new positions are (�̃�𝑖 𝑗 , �̃�𝑖 𝑗 ) = (𝛼𝑥 ( 𝑗−1)+𝛼𝑦 (𝑖−1), 𝛼𝑥 (𝑛𝑦−

𝑖) + 𝛼𝑦 ( 𝑗 − 1))𝑇 , where 𝑖 = 1, . . . 𝑛𝑦, 𝑗 = 1, . . . 𝑛𝑥 . With reference to G, we identify

their row and column indices as 𝑖 = 𝑁 𝑦 − �̃�𝑖 𝑗 and �̃� = 1 + �̃�𝑖 𝑗 . This simplifies to 𝑖 =

1+𝛼𝑥 (𝑖−1) −𝛼𝑦 ( 𝑗 −1) +𝛼𝑦 (𝑛𝑥 −1) and �̃� = 1+𝛼𝑥 ( 𝑗 −1) +𝛼𝑦 (𝑖−1). The vectorized index

for the element of G in row 𝑖 and column �̃� is vec−1
𝑁 𝑦 (κ) [𝑖, 𝑗] = 𝑖 + 𝑁 𝑦 ( �̃� − 1). Substituting

the above expressions for 𝑖 and �̃� , and collecting terms, we obtain:[︁
vec−1

𝑛𝑦 (κ)
]︁
𝑖 𝑗
= 1 + 𝛼𝑦 (𝑛𝑥 − 1) + (𝑁 𝑦𝛼𝑦 + 𝛼𝑥) (𝑖 − 1) + (𝑁 𝑦𝛼𝑥 − 𝛼𝑦) ( 𝑗 − 1) (2.28)

=⇒ Vκ = V [κ,κ] = 𝜎2𝑐𝑥
(︁
𝑠(nx1∗𝑛𝑥 − 1𝑛𝑥nx∗)

)︁
⊗ 𝑐𝑦

(︁
𝑠(ny1∗𝑛𝑦 − 1𝑛𝑦ny∗)

)︁
(2.29)

where nx is the length-𝑛𝑥 vector (1, 2, . . . 𝑛𝑥)∗ (representing the grid lines of G0), and

similar for 𝑦.
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2.6.6 Mountain pine beetle covariates

Category Covariates Notes

topography altitude, slope, aspect, lakes indica-
tor

host quality tree density, pine density, stand age baseline 2001 estimates from
Beaudoin et al. (2014), with pine
density adjusted for cumulative
mortality

beetle activity beetle pressure (200, 400, 800,
1600, 3200 metre radius)

a (WM) kernel convolution of the
product of the previous year bee-
tle damage and the host pine den-
sity. Radius indicates the effec-
tive range of the kernel

beetles/host (200, 400, 800, 1600,
3200 metre radius)

beetle pressure divided by pine
density (attack density)

microclimate seasonal precipitation (winter and
spring); precipitation as snow; de-
gree days (below 0, below 18); sea-
sonal temperatures: mean in coldest
winter month; min, max, & averages
(spring, winter)

weather station data interpo-
lated using ClimateBC software
(Wang et al., 2007)

Table 2.1: Covariates included in the linear regression model for mountain pine beetle
damage patterns.
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Chapter 3

A unifying theory for 2D spatial
redistribution kernels with applications
to model-fitting in ecology

3.1 Introduction

Given that environmental heterogeneity and movement is present virtually everywhere in

the natural world, ecologists are inherently concerned with questions of a spatial nature.

They are therefore often rewarded by new insights when the mechanism underlying a spatial

effect can be worked into models (Kareiva, 1994). Redistribution kernels are a popular

means to this end, with applications as diverse as predator-prey interactions (Neubert, Kot,

and Lewis, 1995); range expansion and invasion biology (Kot, Lewis, and Driessche, 1996);

grouping/swarming behaviour (Okubo and Levin, 2001); chemical communication (Powell

and Bentz, 2014); and cellular movements (Painter and Hillen, 2018).

Statistical ecologists are concerned with the many of the same questions. However the

focus in statistics is how to characterize the randomness in measurements of an ecological

system. These measurements are often spatially autocorrelated, a phenomenon that (if

ignored) can dramatically reduce the precision of estimators. A common solution is to use

phenomenological models, known as covariance kernels (Chiles and Delfiner, 2012), that

tie correlation to separation distance.

There is a remarkable degree of overlap between the families of functions that are
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typically chosen in statistics to serve as kernels for covariance and those chosen in ecology

for redistribution. An example that we find particularly interesting is the Whittle-Matérn

covariance kernel (Matérn, 1986). Its versatility and mathematical elegance makes it one

of the most important kernels in spatial statistics (Lindgren, Rue, and Lindström, 2011).

However, as a redistribution kernel, it is rarely seen in ecology, in spite of many advantages

over more familiar alternatives.

Up to a normalization constant and a restriction on the shape parameter, the Whittle-

Matérn is identical to a redistribution kernel first described by Yasuda (1975), and later by

Yamamura (2002) and Hapca, Crawford, and Young (2008). We focus in this paper on its

use in redistribution, but in recognition of the theory contributed from spatial statisticians

we will refer to it as the Whittle-Matérn-Yasuda (WMY) kernel.

In the context of redistribution, a kernel 𝐷 (x,x′) maps a pair of coordinates (source x′

and destination x) to a probability density for the redistribution event from x′ to x. When

modeling movement events having a random character, kernels provide a simple means of

parametrizing their probability density functions (PDFs). The simplest such models are

stationary, meaning their kernels are functions only of the separation vector r = x − x′,

independent of location.

When isotropy (radial symmetry) is also assumed, kernels can be defined more simply

as a function of 𝑟 = |r |. Such kernels assign probability densities to movement distances.

In this case one must take care to differentiate between the density 𝐷 (𝑟) at point (𝑟, 𝜃)

and the marginal density 𝐷𝑟 (𝑟) at radius 𝑟. For example in 2-dimensional (2D) space the

redundant angular coordinate is sometimes conditioned out from 𝐷, and the kernel for

marginal density is written:

𝐷𝑟 (𝑟) :=
∫ 2𝜋

0
𝑟𝐷 (𝑟) d𝜃 = 2𝜋𝑟𝐷 (𝑟). (3.1)

The distinction is important but sometimes unclear in the literature. Our notation will

distinguish the two by always using an 𝑟 subscript to indicate marginal density functions,

as in (3.1).
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The WMY is an example of a stationary and isotropic kernel. In the 2D case it is written:

D(𝑟; 𝜅, 𝜌) = 𝐴 (𝜅, 𝜌) (𝑟/𝜌)𝜅𝐾𝜅 (𝑟/𝜌) , with 1/𝐴 (𝜅, 𝜌) = 2𝜅+1𝜋𝜌2Γ(𝜅 + 1), (3.2)

where 𝐾𝜅 denotes the 𝜅𝑡ℎ order modified Bessel function of the second kind (Appendix

3.7.1), 𝜌 > 0 is a distance-scaling (range) parameter, and 𝜅 is a shape parameter. The

domain of 𝜅 depends on the application: For covariance, 𝜅 > 0; and for redistribution,

𝜅 > −1. By studying 𝜅, we will see that the WMY is closely related to a number of other

kernels in common use among ecologists. Indeed, it generalizes some the most prominent

ones (Table 3.1), in addition to providing a spectrum of others that combine fat tails with

Gaussian-like behaviour near the origin (Appendix 3.7.2).

shape (𝜅) kernel name density* 𝐷 (𝑟) mechanistic derivation

(−1, 0) - (𝑟/𝜌)𝜅𝐾𝜅 (𝑟/𝜌) 2D fractal diffusion with constant settling
hazard (Section 3.2.1)

0 Bessel 𝐾0(𝑟/𝜌) 2D Fickian diffusion with constant settling
hazard (Broadbent and Kendall, 1953)

1/2 2D Laplace exp(−𝑟/𝜌) 2D turbulent diffusion with instantaneous
settling (Joseph and Sendner, 1958)

∞ Gaussian exp(−(𝑟/𝜌)2) 2D Fickian diffusion with instantaneous
settling (Skellam, 1951)

Table 3.1: Notable examples from the WMY family D(𝑟; 𝜅, 𝜌). All arise from 2D Fickian
diffusion with gamma-distributed settling times (Yasuda, 1975). The special cases listed here have
been derived independently under various movement models. Alternatively, the full WMY family
can be derived by repeated iterations of the kernel in the top row (Section 3.2.2). *for brevity the
normalization 1/2𝜋

∫ ∞
−∞ 𝑟𝐷 d𝑟 is omitted.

This makes the WMY an unusually flexible model for the spread of populations. An

example that we will use throughout the paper is the mountain pine beetle (MPB). Dispersal

flights of this forest pest allow population outbreaks to spill outward into neighbouring

areas, and are therefore a key part of spatially explicit modeling efforts. At the conclusion

of the paper we will show how the WMY can be used in modeling MPB outbreak patterns,

60



using example data from the height of a recent string of infestations in British Columbia

(BC), Canada.

First, to motivate the use of equation (3.2) more generally, we begin Section 3.2 by

deriving the WMY kernel in a novel way, constructing it as the solution to a partial

differential equation (PDE) for diffusion through inhomogeneous habitat.

We then discuss some of the appealing mathematical properties of WMY as an isotropic

model, before showing in Section 3.3 how simple extensions can be used to accomodate

departures from isotropy. In Section 3.4 we discuss how kernels like the WMY can be used

in applications, emphasizing practical considerations of computational complexity. This

motivates a data analysis in Section 3.5 demonstrating how approximations can be used in

data-fitting on large-samples, where computing time is otherwise problematic.

3.2 The WMY as a model for diffusion with settling

Yasuda (1975) derived the WMY as the settled density in a Fickian diffusion process with

gamma distributed settling times. Equation (3.2) can therefore be understood as a macro-

scale description of random walks taking place in unrestricted 2D space. However, in the

spatial statistics community, the WMY is known as a covariance model. It describes co-

variances in the stationary random field solution of a fractional stochastic PDE resembling

a generalized Helmholtz equation (Whittle, 1954). This suggests that as a redistribution

kernel, the WMY might also solve a similar deterministic PDE involving fractional deriva-

tives.

These exotic dynamical systems often appear in connection with the statistical mechanics

of random walks through a complex medium that hinders movement. They are studied in

Metzler, Glöckle, and Nonnenmacher (1994) for example, to explain the physical and

chemical properties of porous substrates. Here we adapt these results in the ecological

context to find a versatile description of disperser movements.
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3.2.1 Diffusion over fractal media

In our application, we imagine the flight of a forest-dwelling insect as a random walk in 2D.

Unlike most random walk models, however, we suppose that obstacles in the environment

inhibit movements to some degree. This better reflects flights constrained to lie within the

complex network of gaps in the forest vegetation, or ones that track patchy distributions of

habitat.

Our constrained domain of movement can be viewed abstractly as a porous medium. Its

porosity, like many other aspects of forest structure, is more conveniently described using

the mathematics of fractals (Zeide, 1991). The idea is not unfamiliar in forest ecology;

Goodchild and Mark (1987) discussed fractal aspects of tree crown cover; hydrological

networks; and topography. These structures exhibit power laws under scaling that allow their

pertinent features to be summarized by simple parameters, such as the fractal (Hausdorff)

dimension 𝑑 𝑓 (Seuront, 2010). For example, Jonckheere et al. (2006) improved predictions

of light penetration in pine forests by estimating the 𝑑 𝑓 value in hemispherical images of

scots pine canopy gaps, finding them to be highly fractal. We will use 𝑑 𝑓 to summarize the

network of habitat navigated by an insect in flight.

𝑑 𝑓 summarizes space-filling properties. In full 2D space the area enclosed in a disk of

radius 𝑟 scales as 𝜋𝑟2, whereas in an embedded fractal space it would scale as 𝜋𝑟𝑑 𝑓 (Méndez,

Campos, and Bartumeus, 2014). Unlike the topological dimension (in our case, 𝑑 = 2),

fractal dimension can assume non-integer values. One can define spaces with 0 < 𝑑 𝑓 < 2

that nearly fill the plane, yet leave a complex arrangement of patches inaccessible, with

the availability of habitat decreasing with 𝑑 𝑓 . For example, Hargis, Bissonette, and Turner

(1999) used fractal dimension to characterize the quality of marten habitat, estimating a 𝑑 𝑓

in the range of 1.7-1.9 for pine and spruce forests in their Utah study area.

In the context of random walks, a fractal medium offers less space for movement. This

prompts some adjustments of the balance law behind Fickian diffusion: Suppose 𝑢(𝑟, 𝑡) is

a PDF for occupancy within the available space at radius 𝑟 , at time 𝑡. If all of R2 were
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available, the density within the annulus Ω would be measured by 2𝜋
∫
Ω
𝑢(𝑟, 𝑡)𝑟 d𝑟. On a

𝑑 𝑓 -dimensional fractal it is:

2𝜋
∫
Ω

𝑢(𝑟, 𝑡)𝑝(𝑟)𝑟 d𝑟 where 𝑝(𝑟) = 𝑟𝑑 𝑓 −2, and 0 < 𝑑 𝑓 ≤ 2. (3.3)

The scaling function 𝑝(𝑟) = 𝜋𝑟𝑑 𝑓 /𝜋𝑟2 is the proportion of the area inside radius 𝑟 that is

available for movement. For notational convenience we will suppress this dependence on 𝑟

(and 𝑑 𝑓 ) and simply write 𝑝. The function 𝑢(𝑟, 𝑡) is therefore an occupancy PDF with the

(unusual) distance-scaled probability measure 𝑝𝑟 d𝑟 . Under the more familiar Lebesgue

measure, the PDF is 𝐷 (𝑟, 𝑡) = 𝑢(𝑟, 𝑡)𝑝.

O’Shaughnessy and Procaccia (1985) explained how the usual equation for Fickian

diffusion may be modified in order to remain consistent with the scaling property (3.3).

Their generalized 2D heat equation describes the time-evolution of 𝐷 (𝑟, 𝑡)/𝑝 = 𝑢(𝑟, 𝑡):

𝜕𝑢

𝜕𝑡
=

1
𝑝𝑟

𝜕

𝜕𝑟

(︃
𝛼𝑝𝑟

𝜕𝑢

𝜕𝑟

)︃
with 𝛼 > 0, 𝑢(𝑟, 0) = 𝛿(𝑟)

2𝜋𝑝𝑟
, (3.4)

where 𝛿(𝑟) denotes the 1D Dirac delta function (and 𝛿(𝑟)/2𝜋𝑝𝑟 its 2D analogue), represent-

ing the initial departure of the disperser from the origin. Notice the diffusivity 𝛼𝑝 scales

with distance, approximating correlations in movements to due geometrical constraints

(Metzler, Glöckle, and Nonnenmacher, 1994).

Under the condition 𝑢 → 0 as 𝑟 → ∞ (required for a valid PDF), the general solution

to equation (3.4) is given in O’Shaughnessy and Procaccia (1985). Switching to Lebesgue

measure, it can be written:

𝐷 (𝑟, 𝑡) = 𝑢(𝑟, 𝑡)𝑝 =

(︂
𝜋Γ(𝑑 𝑓 /2) (4𝛼𝑡)𝑑 𝑓 /2

)︂−1
𝑟𝑑 𝑓 −2 exp

(︂
−𝑟2/4𝛼𝑡

)︂
, (3.5)

where 𝐷 (𝑟, 𝑡) is the PDF for the position (𝑟, 𝜃) at time 𝑡 of a random walker that departs

the origin at 𝑡 = 0 and diffuses through a medium with fractal dimension 𝑑 𝑓 . The effect of

decreasing 𝑑 𝑓 is to make this density function more peaked and fatter-tailed relative to a 2D

Gaussian kernel.
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Note that 𝑢(𝑟, 𝑡) is simply a Gaussian kernel renormalized for measure 𝑝𝑟 d𝑟. Indeed

when 𝑑 𝑓 = 2 we have 𝐷 (𝑟, 𝑡) = 𝑢(𝑟, 𝑡) (since 𝑝 = 1), and equation (3.4) is the usual 2D heat

equation in radial coordinates, with the 2D Gaussian kernel its well-known solution (Okubo

and Levin, 2001). When 𝑑 𝑓 = 1 equation (3.4) simplifies to become a 1D diffusion equation

(since 𝑝𝑟 = 1), so in the resulting marginal density function 𝐷𝑟 = 2𝜋𝑢(𝑟, 𝑡)𝑝𝑟 = 2𝜋𝑢(𝑟, 𝑡)

we find the 1D Gaussian kernel.

Settling via constant hazard

When building kernels directly from equation (3.4)-(3.5), one must assume that movement

proceeds until a particular fixed time 𝑡. However, in reality the duration of dispersal is often

stochastic. Unpredictable environmental factors such as temperature can compel dispersers

to wait out unfavourable conditions (Jackson et al., 2008). Moreover, settling events can be

prompted by chance encounters, such as the detection of a prey item (Turchin and Thoeny,

1993) or mate (Yasuda, 1975).

Preferring a model that accounts for randomly cued settling events, we suggest a simple

extension of equation(3.4) that introduces a constant settling hazard 𝜆 > 0. We then define

our kernel as the total settled density over all time. Thus we have 𝐷 =
∫ ∞

0 𝜆𝑢𝑝 d𝑡, with 𝑝

defined as in equation (3.3), and:

𝜕𝑢

𝜕𝑡
=
𝛼

𝑝𝑟

𝜕

𝜕𝑟

(︃
𝑝𝑟
𝜕𝑢

𝜕𝑟

)︃
− 𝜆𝑢 with 𝑢(𝑟, 0) = 𝛿(𝑟)

2𝜋𝑝𝑟
and lim

𝑟→∞
𝑢(𝑟, 𝑡) = 0. (3.6)

Here, the disperser moves about the domain as in (3.4) but settles at a randomly deter-

mined time, drawn from an exponential distribution with mean 1/𝜆. 𝐷 (𝑟) now expresses

the PDF for position at the time of settling. To find 𝐷, one can integrate the PDE (3.6)

over all time and consider weak solutions 𝑢 (Appendix 3.7.3). The resulting kernels are the

singular members of the WMY family:

𝐷 (𝑟) =
∫ ∞

0
𝜆𝑢𝑝 d𝑡 = D(𝑟; 𝜅, 𝜌) where 𝜅 = 𝑑 𝑓 /2 − 1 and 𝜌2 = 𝛼/𝜆. (3.7)

These WMY kernels (−1 < 𝜅 ≤ 0) also emerge as the long-time limit of 𝑢(𝑟, 𝑡)𝑝 when

the point source is stationary in time rather than instantaneous. To see this, we modify
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(3.6) by viewing 𝜆 as a mortality hazard and adding a source term 𝐹 = 𝜆𝛿(𝑟)/2𝜋𝑝𝑟 to

the right-hand-side of the PDE. Dispersers are therefore continuously introduced from the

origin, and continously removed throughoutR2 in a density-dependent manner. The steady

state in this smokestack-like system is lim𝑡→∞ 𝑢(𝑟, 𝑡)𝑝 = D(𝑟; 𝜅, 𝜌), with 𝜅, 𝜌 defined as in

(3.7) (Appendix 3.7.3).

The (non-fractal) case of 𝑑 𝑓 = 2 produces a Bessel kernel, or D(𝑟; 0, 𝜌). This model

has a long history in ecology, with Broadbent and Kendall (1953) and Williams (1961) first

using it to explain movements of worms and moths, respectively; and Awerbuch, Samson,

and Sinskey (1979) later proposing it as a model for the biological activity of a chemical

diffusing outward from the center of a petri dish.

In the data analysis of the latter study – and more recently in the bark beetle flight

model of Turchin and Thoeny (1993) – a (long distance) asymptotic form D(𝑟; 0, 𝜌) ∼

𝑟−1/2 exp(−𝑟/𝜌) was used in lieu of the Bessel, for computational convenience. Interest-

ingly, this approximation is yet another special case of the WMY, with 𝜅 = −1/2; It arises

from diffusion with constant settling when 𝑑 𝑓 = 1. Thus the WMY family generalizes both

the Bessel and a commonly used approximation, with the PDE (3.6) revealing a common

mechanistic explanation for both.

3.2.2 Multi-stage extensions

Redistribution events may naturally split into multiple stages. For example diurnal periods

of flight activity occur in many insect orders (Hu et al., 2016). Moreover forest-dwelling

insects like the MPB may initially fly in the unrestricted space above the canopy before

switching to subcanopy dispersal (Jackson et al., 2008). In this section we look at two

simple ways of extending (3.6) to model multi-stage processes.

Switching via constant hazard

The first idea is to connect each stage by a switching hazard with rate constant 𝜆 > 0.

Writing 𝑢𝑚 (𝑟, 𝑡)𝑝 for the density in the 𝑚𝑡ℎ stage, we assume an instantaneous point release
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of unit density initializes dispersers in the first stage, so that the dynamics of 𝑢1 are the same

as 𝑢 in (3.6). As time progresses, this initial impulse trickles through subsequent stages,

eventually exiting the 𝑛𝑡ℎ stage at rate 𝜆 (as settled density). We will be interested in the

long-term settled density:

𝐷 (𝑟) = 𝑈𝑛 (𝑟)𝑝 = 𝜆

∫ ∞

0
𝑢𝑛 (𝑟, 𝑡)𝑝 d𝑡, where (3.8a)

𝜕𝑢1
𝜕𝑡

=
𝛼

𝑝𝑟

𝜕

𝜕𝑟

(︃
𝑝𝑟
𝜕𝑢1
𝜕𝑟

)︃
− 𝜆𝑢1, with 𝑢1(𝑟, 0) =

𝛿(𝑟)
2𝜋𝑝𝑟

, and (3.8b)

𝜕𝑢𝑚

𝜕𝑡
=
𝛼

𝑝𝑟

𝜕

𝜕𝑟

(︃
𝑝𝑟
𝜕𝑢𝑚

𝜕𝑟

)︃
+ 𝜆𝑢𝑚−1 − 𝜆𝑢𝑚 (3.8c)

with 𝑢𝑚 (𝑟, 0) = 0, for 1 < 𝑚 ≤ 𝑛.

Assuming lim𝑟→∞ 𝑢𝑚 (𝑟, 𝑡) = 0, an analytic solution is available (Appendix 3.7.3):

𝐷 (𝑟) = 𝑈 (𝑟)𝑝 =

(︂
2𝑛−1+𝑑 𝑓 /2𝜋𝜌2Γ(𝑛)Γ(𝑑 𝑓 /2)

)︂−1
(𝑟/𝜌)𝑛−2+𝑑 𝑓 /2 𝐾𝑛−𝑑 𝑓 /2 (𝑟/𝜌) . (3.9)

where 𝜌2 = 𝛼/𝜆. The PDF in (3.9) is simply the (renormalized) product of the WMY kernel

D(𝑟; 𝑛 − 𝑑 𝑓 /2, 𝜌) with the scaling function 𝑝. Thus in the non-fractal case of 𝑑 𝑓 = 2 it

produces the kernel family 𝐷 = 𝑈 = D(𝑟; 𝑛 − 1, 𝜌). This extends the Bessel kernel (𝑛 = 1)

to yield a sequence of distributions that are concave and bounded in their approach to the

origin.

For 𝑑 𝑓 < 2, however, the distribution (3.9) remains singular at the origin for all 𝑛. In

general, by increasing 𝑛 we shift density away from the tails, effectively stalling dispersers

near the origin. Decreasing 𝑑 𝑓 has the opposite effect, producing fatter tails and a highly

peaked shape.

This approach of linking PDEs for 𝑛-stage processes was suggested by Neubert, Kot, and

Lewis (1995) to describe (non-fractal) diffusion with settling on the real line. In their 1D

system, the solution is a product of a Laplace kernel and a polynomial of order 𝑛− 1. These

same kernels were proposed by Schlägel and Lewis (2016) as extensions of the Laplace that

are robust to changes in sampling frequency. We show in Appendix 3.7.3 that they emerge

also from (3.8)-(3.9), as the marginal density functions 𝐷𝑟 for the case 𝑑 𝑓 = 1.
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Convolutions of WMY kernels

A simpler approach to the 𝑛-stage modeling problem is to suppose a long time delay

separates stages. Thus within each stage, we assume the fractal diffusion process (3.6)

operates until (nearly) all density has settled. The 𝑡 → ∞ limit in (3.7) then becomes initial

data for the next stage. Under this assumption, the 𝑛𝑡ℎ stage settled density can be written

as a convolution of 𝑛 WMY kernels.

This is because when a population independently undergoes the redistribution process

represented by 𝐷 twice in succession, the resulting composite kernel is the autoconvolution

𝐷 ∗𝐷. More generally if a population undergoes a sequence of 𝑛 independent redistribution

stages described by the kernels 𝐷 (1) , 𝐷 (2) , . . . 𝐷 (𝑛) then their combined effect is 𝐷 =

𝐷 (1) ∗ 𝐷 (2) ∗ · · · ∗ 𝐷 (𝑛) .

Certain kernel families have the property of closure under 𝑛-part convolutions. Chesson

and Lee (2005) explained how this property aids interpretability, using it to develop redis-

tribution kernels for lattice data. The Gaussian kernel is an example. The WMY is another,

provided the range parameter 𝜌 > 0 is fixed in all stages (Appendix 3.7.2). In particular if

D (𝑚) = D(𝑟; 𝜅𝑚, 𝜌) is a 2D WMY kernel,

D (1) ∗ D (2) ∗ · · · ∗ D (𝑛) = D (𝑟; 𝜅, 𝜌) , where 𝜅 = 𝑛 − 1 +
𝑛∑︂

𝑚=1
𝜅𝑚 . (3.10)

Note that we may assume the shape parameters 𝜅𝑚 belong to (−1, 0], since 0 < 𝑑 𝑓 ≤ 2.

So by allowing arbitrary 𝑛 > 0, the model (3.10) generates the complete set of thinner-tailed

and bounded WMY kernels (0 < 𝜅 < ∞) not captured by the single stage model (3.6) in

the previous section.

By adding stages we increase 𝜅, shifting density away from the tails and origin, and

towards the shoulders of the distribution. Thus as 𝜅 increases through zero, D becomes

bounded at the origin; and as 𝜅 increases through 1/2, its approach to the origin switches

from convex to concave (Appendix 3.7.2). With further increases in 𝜅, the WMY increas-

ingly resembles a 2D Gaussian kernel; In fact if we parametrize 𝜌2 ∝ 1/𝜅, then D limits to
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a Gaussian kernel as 𝜅 → ∞ (Stein, 1999).

When 𝜅 = 1/2 the WMY simplifies to D(𝑟; 1/2, 𝜌) = (2𝜋𝜌2)−1 exp(−𝑟/𝜌), which has

the same functional form as a (1D) Laplace kernel. The Laplace is the 1D analogue of

the Bessel; it arises from diffusion with constant-hazard settling in R1 (Okubo and Levin,

2001). In the 2D setting, exponential decay of this form arises from turbulent limnological

diffusion (Joseph and Sendner, 1958). However, in most ecological applications it is

invoked simply as a phenomenological model (eg. as in Heavilin and Powell, 2008; Gilbert

et al., 2017). Equations (3.6)-(3.7) and (3.10) provide a new mechanistic origin for this 2D

Laplace kernel. 𝜅 = 1/2 can arise, for example, in a two-stage process where the first stage

of diffusion takes place in unrestricted 2D space (with 𝑑 𝑓 = 2) and the second in a fractal

medium with 𝑑 𝑓 = 1 (so that 𝜅1 = 0 and 𝜅2 = −1/2).

Note that if all of the 𝜅𝑚 are identical, (3.10) expresses that the WMY family is robust

to changes in sampling frequency. In fact, Schlägel and Lewis (2016) described the WMY

family implicitly (in Fourier space) as their first example of a 2D kernel with this property.

Equation (3.2) gives the explicit (back-transformed) density function for this kernel.

The kernel convolution approach – and resulting WMY family – appears well suited

to modeling MPB flight patterns. In radar-based MPB flight surveys, Ainslie and Jackson

(2011) observed a diurnal cycle of above-canopy dispersal events lasting multiple days. The

D (𝑚) in that case would represent movements during the 𝑚𝑡ℎ day, and D in (3.10) their net

outcome after 𝑛 days of flying.

3.2.3 Flexibility in kurtosis

The foregoing derivations are meant to illustrate how WMY patterns of redistribution might

arise in a very wide range of ecological systems. Inhomogeneous environments are the rule

rather than the exception in ecology; It makes sense to relax the assumption of unrestricted

movement while retaining it as a special case (the Bessel), as we did in the model (3.6). The

natural extension in (3.10) generates a wide spectrum of kernel shapes, ranging from highly

68



singular and heavy-tailed examples like the Bessel, to the highly smooth and thin-tailed

Gaussian kernel. Let us now consider how this flexibility in shape is also attractive from a

phenomenological standpoint.

One of the more important factors to consider when modeling redistribution is the balance

of peakedness and tailedness in a kernel, or its kurtosis. InR1, kurtosis is the (standardized)

fourth moment. InR2, we use the bivariate kurtosis measure 𝑘 (𝐷) suggested in Clark et al.

(1999). This is based on the zero-centered fourth marginal moment of distance 𝑟, or 𝐷𝑟 , as

defined in (3.1):

𝑘 (𝐷) =
∫ ∞

0 𝑟4𝐷𝑟 d𝑟(︂∫ ∞
0 𝑟2𝐷𝑟 d𝑟

)︂2 . (3.11)

This definition is similar to the univariate case, but differs in that: we use 𝐷𝑟 rather

than 𝐷; and the moments in (3.11) are centered on zero, rather than the (nonzero) marginal

mean of 𝑟. However, it summarizes the relevant behaviour of radially symmetric kernels

in a concise way: Larger values of 𝑘 (𝐷) indicate fatter tails (a higher density assigned to

long-distance events) and a sharper peak at the origin (Clark et al., 1999). For the WMY,

kurtosis is determined entirely by 𝜅 (Appendix 3.7.2):

𝑘 (D) = 2
(︃
𝜅 + 2
𝜅 + 1

)︃
, where 𝜅 ∈ (−1,∞). (3.12)

The 2D Gaussian kernel sits at the low end of this range with a kurtosis of 2 (it is the

𝜅 → ∞ limit of D). The WMY family extends it to capture a wide range of leptokurtic

(higher than Gaussian) alternatives. The 2D Laplace, for example, has kurtosis 10/3; For

the Bessel it is 4. The 1-stage diffusion model (3.7) spans (4,∞), with extremely fat-

tailed examples emerging as 𝑑 𝑓 becomes small. This kind of flexibility in kurtosis is of

particular importance in dynamical systems for population spread, where the tail behaviour

can determine both the success and speed of invasions during a range expansion (Kot, Lewis,

and Driessche, 1996). For example, a model that uses a (thin-tailed) Gaussian kernel out of

mathematical convenience might fail to account for tail-like long-distance range expansion

events.
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Range expansions are highly relevant in models of MPB populations, which carry out

yearly dispersal flights. While this flight is often adequately characterized by Gaussian

kernels (Heavilin and Powell, 2008), radar evidence suggests that wind-assisted movements,

carrying MPB very long distances, are not uncommon (Ainslie and Jackson, 2011). One

such long-distance event recently carried populations across a mountain range from BC

into central Alberta, Canada – a range expansion with severe ecological and economic

consequences (Giroday, Carroll, and Aukema, 2012). Equation (3.12) shows how by using

WMY kernels, the probability of tail-like events in a model can be finely tuned using 𝜅.

3.3 Anisotropic extensions

While mathematically pleasant, the assumption of isotropic redistribution is often unsat-

isfactory in ecological applications. Wind, for example, is of course directional, and

wind-assisted migratory flights occur regularly in insects (Jackson et al., 2008). Indeed

such events are central to explaining the recent range expansion of the MPB (Giroday,

Carroll, and Aukema, 2012).

Isotropic kernels are nevertheless useful as a jumping-off point in model development.

We show in this section how they can be used as building blocks towards phenomenological

kernels with a more realistic degree of flexibility.

3.3.1 Advection

Our first extension approximates of the effect of drift. This is the passive transport of

individuals along a certain direction for a certain distance – as a result of wind, for example

– moving them along a displacement vector which we will call τ := x′−x. We will assume

spatial homogeneity in this effect, so that all individuals drift in the same way, regardless

of their position.

In the absence of diffusion, drift amounts to a translation of coordinates. We denote this
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advection operator by 𝐷τ , and define it by its action on a population density 𝑁 (x):

𝐷τ ∗ 𝑁 (x) = 𝑁 (x + τ ) . (3.13)

Drift is typically incorporated into diffusion models by introducing an advection term

into the PDE for movement density (Okubo and Levin, 2001). Doing so allows the two

drivers of movement – advection and diffusion – to act simultaneously. By contrast, we

assume the two drivers act in sequence. Composing advection with a kernel representing

diffusion, we obtain the model 𝐷 ∗ 𝐷τ .

This is of course a simplification. However, in the case of bark beetles (like the MPB)

it may be closer to the reality. Experimental observations by Shegelski, Evenden, and

Sperling (2019) and survey data in Jackson et al. (2008) suggested behavioural adaptations

in this genus for "drifting": individuals ride thermals by extending – but not flapping – their

wings, exerting substantial flight effort only to maintain an optimal altitude. During these

drifting periods we may view the diffusion process to have slowed, as the beetle ceases its

horizontal flight effort and is passively transported by the wind.

The kernel 𝐷 ∗ 𝐷τ can be interpreted as a two-part MPB flight model: individuals first

fly upwards to catch the wind and drift along vector τ . This allows them to escape heavily

infested stands where host depletion would limit their ability to reproduce. After some time

they descend back below the canopy and begin a diffusive flight (D), in search of new hosts

and mates.

3.3.2 Geometric anisotropy

Another type of anisotropy in redistribution is introduced by directed search behaviours like

phototaxis and chemotaxis. Isotropic diffusion might reasonably characterize an undirected

search, but a MPB search flight is coordinated by a range of cues, including temperature,

stem silhouettes, and chemical signatures of hosts and conspecifics (Safranyik and Carroll,

2006).
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A full accounting of such a complex system is a formidable modeling problem (Powell

and Bentz, 2014). We propose a far simpler phenomenological model: Suppose the net

effect of these directional cues is to deform the circular contours of an isotropic kernel

𝐷 into ellipses with by semi-axis lengths Δ𝑥 and Δ𝑦, and oriented along angle 𝜃. This is

accomplished by a linear transformation of coordinates, defining a directional version of 𝐷:

𝐷a (r) ≔ 𝐷 (𝑟a)/(Δ𝑥Δ𝑦) (3.14)

where 𝑟a = |Ar | and A =
⎛⎜⎝

cos 𝜃/Δ𝑥 − sin 𝜃/Δ𝑥
sin 𝜃/Δ𝑦 cos 𝜃/Δ𝑦

⎞⎟⎠ .
The same technique is often suggested in statistics for extending isotropic covariograms to

incorporate geometric anisotropy (Stein, 1999). We see it far less often with redistribution

kernels. However, the observation of ellipsoid clusters of MPB damage in practice (eg.

Figure 3.4 of Section 3.5) suggests that the contours of a MPB flight kernel should admit

these shapes. Equation (3.14) introduces the necessary flexibility. It is easy to implement,

and its effect on 𝐷 is easy to visualize and understand. Figure 3.1 (left and right panels)

illustrates the two-part kernel Da ∗ 𝐷τ , where the WMY is used for the diffusive stage.

Figure 3.1: Geometry of advection (𝐷τ ) and geometric anisotropy (𝐷a) demonstrated for
two redistribution kernels: the WMY and the separable product-WMY. Source densities
are first translated by the vector τ to represent initial drift (left). Geometric anisotropy
then rotates/scales the coordinate system (right) prior to the kernel convolution, producing
diffusion ellipses. With the product-WMY (middle), this convolution is formulated as a
composition of two 1D WMY kernels.

.
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3.3.3 Product-WMY kernels

Our last extension employs a simple trick for constructing anisotropic 2D kernels from 1D

isotropic ones; We take the product of a 1D kernel applied along the 𝑥-axis followed by

another (possibly different) one applied along the 𝑦-axis. This builds 2D kernels with the

computationally desirable property of separability. We will see in the next section how

this property can resolve issues of computational complexity that would otherwise make

the kernel-based analyses of large datasets infeasible.

Separability is the property that 𝐷 (r) factors into the product of two 1D kernels, 𝐷𝑥 (𝑟𝑥)

and 𝐷𝑦 (𝑟𝑦), where r = (𝑟𝑥 , 𝑟𝑦)𝑇 , each depending on only one of the spatial dimension.

The 2D Gaussian kernel is an example: it has the form 𝐷𝑥 (𝑟𝑥)𝐷𝑦 (𝑟𝑦), where 𝐷𝑥 (𝑟) =

𝐷𝑦 (𝑟) = (
√
𝜋𝜌)−1 exp(−(𝑟/𝜌)2) are 1D Gaussian kernels. The 2D WMY kernel, on the

other hand, is not separable. In seeking a computationally efficient alternative we propose

the product-WMY:

D⊗ (r; 𝜅𝑥 , 𝜅𝑦, 𝜌𝑥 , 𝜌𝑦) =
D(|𝑟𝑥 |; 𝜅𝑥 , 𝜌𝑥)D(|𝑟𝑦 |; 𝜅𝑦, 𝜌𝑦)∫ ∞

−∞

∫ ∞
−∞ D(|𝑟𝑥 |; 𝜅𝑥 , 𝜌𝑥)D(|𝑟𝑦 |; 𝜅𝑦, 𝜌𝑦) d𝑟𝑥 d𝑟𝑦

. (3.15)

where r = (𝑟𝑥 , 𝑟𝑦)𝑇 . Here, the component kernels 𝐷𝑥 and 𝐷𝑦 are 1D WMY kernels.

These have the same functional form as the 2D WMY (3.2), differing only in normalization

constants. Thus both component kernels limit to a 1D Gaussian kernel in the limit of

large shape and small scale parameters (Stein, 1999). This implies that D⊗ limits to a

2D Gaussian kernel (Figure 3.2), much like the WMY. Moreoever it is easily shown via

Fourier transforms that, with fixed range parameters, the family D⊗ is closed under 𝑛-part

convolutions (Appendix 3.7.2), leading to an identity analogous to (3.10).

Rewriting D⊗ in polar coordinates reveals an angular dependence for any choice of

parameters. The product-WMY is always anisotropic to some degree. For example, setting

𝜅𝑥 = 𝜅𝑦 = 1/2 and 𝜌𝑥 = 𝜌𝑦 = 𝜌 yields D⊗ = exp(−(|𝑟𝑥 | + |𝑟𝑦 |)/𝜌), a 2D Laplace kernel

imbued with a Manhattan distance metric, for which the anisotropy is quite pronounced

(Figure 3.2, left). Such a model might for example be appropriate for animals following
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Figure 3.2: Heatmaps of the product-WMY kernel redistributing a point mass about the
center of a 100 × 100 lattice of sites. Shape parameter values, 𝜅 = 𝜅𝑦 = 𝜅𝑦 are indicated in
the plots. With range parametrized as 𝜌𝑥 = 𝜌𝑦 ∝ 1/

√
𝜅, the kernel approaches isotropy as 𝜅

increases while the effective range stays fixed, with fast convergence to a Gaussian kernel
for large 𝜅 (right).

anthropogenic features in the landscape, such as seismic lines (Painter and Hillen, 2018),

provided they form a dense grid.

In spite of the inherent anisotropy in D⊗, visual inspection suggests it closely resembles

D when 𝜅 is not too small (eg. Figure 3.1, middle). A numerical investigation of pointwise

relative error (RE) between the two kernels supports this observation, indicating that for

WMY kernels with moderate shape values of around 𝜅 ≈ 2 and higher, D⊗ is a good

approximation, provided the sampling density is high enough (Appendix 3.7.4). However

it also suggests poor approximations to the Bessel (𝜅 = 0) and 2D Laplace (𝜅 = 1/2), two

popular choices for modeling MPB movements. As there is very little empirical data on

MPB dispersal habits to inform the choice of 𝜅, we sought to estimate it in the next section,

by fitting D to historical records of MPB activity.

3.4 Fitting redistribution kernels to data

Redistribution kernels are the central feature of the integrodifference equation (IDE), a

model that combines growth (𝐺) with spatially explicit dispersal (𝐷) for a population

density variable 𝑁𝑡 (x) indexed continuously in space and discretely in time (Kot and

Schaffer, 1986). 𝐷 is stationary in the most well-studied case, and the IDE reads 𝑁𝑡 (x) =

(𝐷 ∗ 𝐺 (𝑁𝑡−1)) (x), where ∗ denotes convolution. A rich theory has emerged in connecting

the mathematical properties of the function 𝐷 with the spread dynamics of 𝑁𝑡 as 𝑡 becomes
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large (see eg. Kot, Lewis, and Driessche, 1996; Lewis, 2000).

However, redistribution kernels are also often applied in analyses of data from individual

and aggregated years (eg. Heavilin and Powell, 2008; Clark et al., 1999). In this more

general setting, �̃� (x) = (𝐷 ∗ 𝑁) (x) simply connects the pre- and post-dispersal levels in

a population, and the modeler proposes a function 𝑔 to connect �̃� (x) with the mean of a

measurable response 𝑌 (x),

E [𝑌 (x) | 𝑁 (x),β] = 𝑔
(︁
x, �̃� (x)

)︁
= 𝑔 (x, (𝐷 ∗ 𝑁) (x)) . (3.16)

where β is the vector of all model parameters, including those of 𝐷 and 𝑔.

3.4.1 Discretization and error structure

In practice, the response 𝑌 (x) is observed over a finite set of sites on the plane, with

centroids {x𝑘 } (𝑘 ∈ 1, . . . 𝑛). The (continuous) kernel convolution 𝐷 ∗ 𝑁 must therefore

be replaced with a discretized version: In place of 𝐷 one specifies an 𝑛 × 𝑛 redistribution

matrix D, where entry [D]𝑖 𝑗 assigns density to the redistribution event from location x 𝑗 to

x𝑖. The simplest way to construct this matrix is by means of the pointwise kernel density

values in 𝐷 (Chipperfield et al., 2011):

[D]𝑖 𝑗 =
𝐷 (r𝑖 𝑗 )∑︁
𝑖, 𝑗 𝐷 (r𝑖 𝑗 )

where r𝑖 𝑗 = x𝑖 − x 𝑗 (3.17)

Let vector y, with entries y𝑘 = 𝑌 (x𝑘 ), be the observed response data. Similarly, define

the pre and post-dispersal vectors by n𝑘 = 𝑁 (x𝑘 ) and ñ𝑘 = �̃� (x𝑘 ). The discretized

analogue of model (3.16) then becomes E [y𝑘 | n,β] = 𝑔 (x𝑘 , ñ𝑘 ), where through (3.17),

the parameters of 𝐷 define ñ = Dn.

Real measurements of y will of course deviate from this expected value. Model-

fitting techniques are built around notions of minimizing these model residuals, ϵ𝑘 =

y𝑘 − 𝑔 (x𝑘 , ñ𝑘 ), given their collective sampling distribution. This error distribution is

context-dependent, and reflects a careful consideration of how process and measurement

error are manifested in the 𝑌 (x).
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Modelers will seek a balance of mathematical convenience and realism that works for

their choice of 𝑌 (x), and their data. For example in the IDE of Goodsman et al. (2016),

the ϵ𝑘 are independent Poisson random variables, reflecting uncertainty in the number of

infested pines; In the "red-top" model of Heavilin and Powell (2008) they are independent

Gaussians, as justified by (large-sample) asymptotic results when 𝑌 (x) is an estimating

function (Lele, Taper, and Gage, 1998); and in Appendix 3.7.5 we describe a modified

red-top model where ϵ is multivariate Gaussian, reflecting both the multiplicative process

error in beetle populations and their spatial-autocorrelation.

3.4.2 Computational aspects of maximum likelihood

Having characterized the error distribution, the modeler obtains a likelihood function L(β |

y,n), that is maximized to estimate β. Regardless of how the distribution of ϵ𝑘 has been

defined, L will be functionally dependent on ϵ, which in turn depends on ñ. Thus if L is

to be optimized numerically, we encounter a fundamental issue of computability with large

𝑛: The matrix product ñ = Dn (in L) must be repeatedly evaluated, and this operation has

O(𝑛2) complexity.

However there are remedies: When the sampling locations {x𝑘 } are arranged in a regular

lattice of dimensions 𝑛𝑦 × 𝑛𝑥 = 𝑛, multiplications with D can be done using fast Fourier

transforms (FFTs) (Andersen, 1991), reducing the complexity from O(𝑛2) to O(𝑛 log 𝑛).

Better still, if 𝐷 is spatially separable, the complexity can be further reduced to O(𝑛2
𝑥 + 𝑛2

𝑦),

without the use of FFTs. On square domains, that is O(𝑛), a considerable improvement. The

implementation of this trick is straightforward, but notationally awkward, so we relegate

the details to Appendix 3.7.5.

Two practical advantages of the product-WMY kernel defined in (3.15) are now clear.

Like the Gaussian kernel, it can be evaluated far more quickly than a nonseparable kernel

such as the WMY (Figure 3.3), allowing a more comprehensive and expedient search of the

parameter space for the maximum likelihood estimator (MLE) of β. Unlike the Gaussian
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kernel, it also has the flexibility to closely mimic the more realistic WMY family over a

large part of the its parameter space. In the next section we show how this flexibility can

also lead to improvements in model performance.

Figure 3.3: Time to compute the length-𝑛 post-dispersal vector Dn, for redistribution
matrices from the WMY (dashed line) and product-WMY (solid line) kernels. The product-
WMY is computed using Kronecker products (Appendix 3.7.5), while the nonseparable
WMY uses FFTs.

3.5 Application: damage patterns of the mountain pine
beetle

To demonstrate the ideas of Section 3.2-3.4 on a real ecological problem, we use the example

of MPB outbreaks. These insects kill pine trees on an annual basis in forests of Western

North America, exhibiting eruptive population dynamics with outbreak periods of elevated

activity that can persist for decades (Safranyik and Carroll, 2006). Tree mortality becomes

visible on the landscape during these outbreaks. Clusters of faded crowns (dead pines,

or "red tops") spread through space from year to year, reflecting macro-scale movement

patterns of the beetle (Chen and Walton, 2011).

Aerial overview surveys (AOS) of MPB damage are carried out by the provincial gov-

ernment annually. We rasterized these AOS data (sensu Chen et al., 2015) to a 100 × 100
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m (1 ha) resolution for the years 2007-2008, over a 100 × 100 km area (𝑛 = 106) centered

on the pine-rich Merritt Timber Supply Area (Figure 3.4). This provides a window into

redistribution at the height of the latest MPB outbreak in Southern BC, in one of its most

heavily damaged areas (Boone et al., 2011).

Figure 3.4: AOS survey of pine mortality due to MPB attacks in the summers of 2007-2008.

3.5.1 Growth and dispersal model

We used a slight modification of the red-top model of Heavilin and Powell (2008) to model

the AOS data. Their IDE relates the pine mortality in a given year to its value in the

following year. Pine deaths are used as a proxy for the beetle population in this model, and

dispersal across the landscape is represented by the kernel 𝐷. A single growth dynamics

parameter 𝛼 > 0 parametrizes a nonlinear growth function representing the dynamics of

beetle-pine interactions from year to year. A more detailed description of the red-top model

is given in Appendix 3.7.5.

To better suit our BC dataset, we make three changes: First, based on observations by

Boone et al. (2011), we introduce a small local endemic MPB population that is constant

and uniform in space; Second, we relax the Gaussian kernel redistribution assumption,
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testing it along with the alternative hypotheses of WMY and product-WMY kernels; Third,

finding the model errors to be highly correlated in space, we assume a multivariate Gaussian

structure for the residuals. This allows us to specify a covariance matrix V , parametrized

by variance 𝜎2 and range 𝑐 > 0, to account for spatial auto-correlation. This model and its

likelihood function are detailed in Appendix 3.50.

In fitting the modified red-top model to these data, we considered three questions: Which

WMY kernel (ie. which 𝜅) best characterizes MPB spread? Is the product-WMY a useful

surrogate for the WMY? And do the extensions in Section 3.3 increase explanatory power?

3.5.2 Kernel comparisons on blocks

Although we have focused on stationary redistribution patterns in this paper, we must

accept that local conditions influence MPB movements to some degree. To account for

these variations we divided the data into a set of 𝑁 = 81 nonoverlapping blocks, each

of size 10 × 10 km. We assumed that beetle flight was reasonably homogeneous within

each of these smaller regions. This allowed us to exploit the results on stationary kernels

developed in Sections 3.3-3.4, by fitting the modified red-top model separately to each

block. Each model fit is viewed as a trial in which the within-block errors are evaluated

to measure predictive power. By pooling the results over all blocks, we can compare the

overall performance of different kernels (Figure 3.5).

Within each block, we randomly selected 25% of the response data to withhold as a test

set. Likelihoods were then numerically optimized over the remaining within-block training

data, and the resulting MLE of β used to compute E [𝑌 (x)] over the test set, conditional

on the training data.

Comparing these predictions with the observed data 𝑌 (x), we calculated two model

performance statistics: root mean squared prediction error (RMSPE) which views the

errors as independent points; and log-likelihood (LL), which corrects RMSPE for spatial

auto-correlation using V .
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Figure 3.5: A process for comparing redistribution kernels. At left: the covariance matrix
is estimated by maximizing likelihood assuming no dispersal. The dataset is then split
into nonoverlapping blocks, each randomly partitioned into test and training sets. At
right: within-block likelihood is optimized over the training data, and subsequent test set
predictions are used to estimate error. Pooled errors from all blocks are compared for
different redistribution kernels (𝐷).

The parameters of interest are those of 𝐷, whereas the variance 𝜎2 and range 𝑐 which

determine the covariance matrix V are essentially nuisance parameters. We therefore

estimated V prior to the blockwise analysis (using the combined training data from all

blocks), by numerically maximizing the likelihood function (Appendix 3.50, equation 3.52)

with 𝐷 fixed to an initial guess. For this initial 𝐷 we used the Gaussian kernel with a

biologically plausible range of 𝜌 ≈ 250m (Heavilin and Powell, 2008).

Thus, we assumed that each datapoint shares a common covariance structure, and that the

difference between this trueV and the one estimated under an initial (simpler) redistribution

model is negligeable. This is reasonable given that when using the red-top model in

practice, we have found the MLEs for V (estimated jointly with 𝐷) to be very similar under

quite different redistribution kernels. Moreover this approach avoids the complication of

accounting for differences – among blocks and kernels – in the sampling distribution of our
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MLE forV . It also reduced the number of unknowns to be estimated later over the relatively

small sample sizes (𝑛 = 104) within blocks, allowing the numerical solver to converge more

quickly in the blockwise analysis.

In each block, we separately fitted kernels from three families: the Gaussian; the WMY

(with 𝜅 > 0, to exclude singularities at 𝑟 = 0); and the product-WMY (with 𝜅𝑥 , 𝜅𝑦 > 0). For

each of these families we fitted the kernel with and without the geometric anisotropy and

advection extensions of Sections 3.3.2 and 3.3.1 (eg. for the product-WMY we fit both D⊗

and Dτ ∗ Da
⊗ ).

For both the covariance and within-block MLEs, the likelihood function was optimized

numerically using the hjkb function (Hooke and Jeeves, 1961) in the R package dfoptim,

to a maximum of 104 iterations. Translations and rotations of coordinates were computed

using the image processing libraries in package imager. Separable kernel convolutions were

computed using Kronecker products (Appendix 3.50) and nonseparable ones using FFTs as

implemented in the package smoothie. The Bessel function in (3.2) was calculated using

R’s built-in function besselK.

3.5.3 Kernel comparison results

Figure 3.6 summarizes the results from the 81 trials by centering each test statistic on that

of the best performing model for that block. Like Akaike’s information criterion (AIC),

the boxplots provide a ranking of model performance. Indeed negative LL on test data

produces the ranking that is intended by AIC, as the two statistics approximate the same

thing – (relative) expected Kullback-Liebler information loss (Burnham and Anderson,

2004). Averaging LL over all blocks, the extended product-WMY (Dτ ∗ Da
⊗ ) ranked

highest (best) among the six kernels.

For all three kernel familes, the advection and geometric anisotropy extensions improved

test set performance substantially, increasing mean LL and decreasing RMSPE. Though

evaluations of L were only marginally slower, convergence of the optimizer required more
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Figure 3.6: Model performance on hold-out sets for six redistribution kernels over 81
model-fitting trials: The Gaussian, WMY, and product-WMY; along with extended ver-
sions (indicated by "ext") incorporating geometric anisotropy and advection. RMSPE and
negative log-likelihood were computed in each trial, and their differences (Δ) with the best
model within that trial are summarized as boxplots. Extreme outliers (points to the right
of the boxplot whiskers) were associated with blocks having very low levels of MPB activ-
ity, where it appears there was insufficient information to reliably parametrize movement
patterns.

iterations, so computing time increased by around 4X. This was in the neighbourhood of

8 minutes for the (separable) Gaussian kernel and product-WMY to 16 minutes for the

(nonseparable) WMY.

Comparing among the three kernels without the advection and geometric anisotropy

extensions, the WMY was slightly favoured by both LL and RMSPE (in averages over

blocks). The performance of the product-WMY was very similar to that of the isotropic

WMY, with both kernels reducing errors dramatically compared to the Gaussian kernel on

certain blocks having low estimated 𝜅.

We observed a wide spread of 𝜅 estimates among the isotropic WMY kernels. On only

23% of blocks did the fitted shape parameter indicate a Laplace/Bessel-like spread pattern

with convex behaviour at the origin (𝜅 ≤ 1/2). On 34% of blocks, 𝜅 stalled at its upper

bound (𝜅 = 25), indicating a tendency towards Gaussian-like spread patterns; and on the

remaining 43% it was intermediate, with a combination of fat tails and a concave behaviour

at the origin.
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Interestingly, only 5% of the fitted isotropic WMY kernels lay in the region of good

approximability (RE < 5%) indicated by numerical simulations (Appendix 3.7.4). Nev-

ertheless the product-WMY appeared to match or exceed the performance of the WMY

overall.

3.6 Discussion

Model selections by Heavilin and Powell (2008) and Goodsman et al. (2016) on MPB

damage datasets similar to ours have led to somewhat contradictory conclusions on the

character of MPB movement patterns: In the latter, the Bessel is favoured over the Gaussian

kernel, and the authors argued for a movement mechanism with constant settling hazard; In

the former, the Gaussian kernel is favoured over a 2D Laplace, suggesting abrupt settling

events that lead to thin-tailed movement patterns.

This inconsistency can be resolved by simply dropping the assumption of single-stage

redistribution. We saw in Section 3.2.2 that the 𝑛-stage model D(𝑟; 𝑛 − 1, 𝜌) for Fickian

diffusion with constant settling hazard captures the behaviour of both the Bessel (𝑛 = 1)

and thinner-tailed kernels like the Gaussian (large 𝑛). These two classes of redistribution

patterns, though qualitatively very different, can emerge from the same mechanism, differing

only in the number of times the flight event is interrrupted and restarted (eg. by fluctuations in

temperature). Since it is reasonable to assume that this number may differ when populations

are sampled in different geographical areas, we can retain the parsimonious assumption of

constant settling hazard – a hypothesis supported by the laboratory flight-mill experiments

of Evenden, Whitehouse, and Sykes (2014) and Shegelski, Evenden, and Sperling (2019).

Notice that because a sum of exponential settling times has a gamma distribution, our

𝑛-stage model is a particular case of the original formulation of the WMY by Yasuda (1975).

However, unless we abandon the constant settling hazard assumption, neither interpretation

accounts for WMY kernels with non-integer shape parameters. We showed in Sections

3.2.1 and 3.2.2 how these gaps in the parameter space of the WMY family can be filled by
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relaxing the assumption of unobstructed diffusion. By modeling the heterogeneous medium

of a forest using fractal scaling properties (summarized by dimension 𝑑 𝑓 ), we recovered

the full complement −1 < 𝜅 < ∞ in the multi-stage formulation (3.10), along with a novel

family of singular kernels in (3.9).

This explains the wide range of WMY shape parameter estimates in the analysis of

Section 3.5 – most of which were non-integer. At different geographic locations, we expect

both 𝑛 and 𝑑 𝑓 to vary, and thus so does 𝜅. The standard models listed in Table 3.1 (Bessel,

2D Laplace, Gaussian kernels), on their own, lack the flexibility to capture the full range

of redistribution patterns exhibited by the AOS data. The WMY, which extends all three,

can therefore be expected to improve model performance. Though our results suggested a

Gaussian kernel was appropriate over large parts of the study area, the more flexible WMY

led to improvements overall, in both RMSPE and LL.

In Section 3.2.3, we explained how this notion of flexibility can be made more precise,

using 2D kurtosis. The WMY admits an exceptionally large range of kurtosis values.

To our knowledge, the only other redistribution kernel with this flexibility is the 2Dt, a

phenomenological model of seed shadow distributions (Clark et al., 1999). In fact these

two kernels are closely related: the 2Dt and WMY are Fourier duals; ie. the spectral

density of the WMY has the same functional form as the 2Dt kernel (and vice versa). This

is because the WMY can be derived by placing a gamma prior on the range parameter of

the Gaussian kernel, whereas the 2Dt is derived using an inverse gamma.

Kurtosis is useful in quantifying the degree to which a kernel assigns importance to

long-distance movements, or its tail behaviour. Fat-tailed kernels (with high kurtosis)

would assign a higher redistribution density to the types of long-distance flight events that

led to the recent expansion of the historical range of the MPB. On the other hand, it appears

the vast majority of MPB dispersal flights are short-range, for which a thin-tailed kernel is

more appropriate. Given that models for MPB outbreak risk are unavoidably sensitive to

local beetle density estimates (Nelson et al., 2008), we therefore suggest that MPB modelers
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in search of an isotropic kernel family should prefer those having a high degree of flexibility

in tail behaviour, such as the WMY or 2Dt.

For the MPB, long distance flight events are most likely driven by wind (Giroday,

Carroll, and Aukema, 2012). We conceptualize this as a drifting behaviour followed by

a diffusive flight, motivating the development of an advection extension in Section 3.3.1

that differs from the more typical advection-diffusion PDE based models. We think this

could prove useful in spatial models for the flights of a wide range of other insects. Hu

et al. (2016) described how a surprisingly diverse assemblage of flying insects appear to

orient themselves towards a downwind direction, suggestive of the same type of drifting

behaviour. Moreoever, our formulation may also help to account for measurement errors,

since in visual surveys (like the AOS), precision issues may arise simply as a result of

operators marking the wrong location on the map. In addition to representing the length

and direction of a drifting event, the advection vector τ can serve to re-center imprecise

datapoints.

In Section 3.3.2, we proposed geometric anisotropy as an extension of general isotropic

kernels to better match the diffusion ellipses often seen in real-world survey data. Though

we present it as a phenomenological model, a mechanistic justification may be forthcom-

ing: Note that if 𝐷 is the Gaussian kernel then (3.14) solves the standard 2-dimensional

anisotropic diffusion equation with diffusion tensor (A𝑇A)−1, as derived in Painter and

Hillen (2018). In future work we hope to pursue a similar derivation incorporating the

scaling properties discussed in Section 3.2.1.

The results in Figure 3.6 showed that these two anisotropy extensions improved model

predictive performance across the board. This is important because it demonstrates that

overfitting was not an issue on the MPB data, in spite of the introduction of an additional 4

parameters. In Chapter 4, we show how a complex nonstationary pattern of MPB movements

can be revealed by fitting anisotropic kernels blockwise in the manner of Section 3.5.2. Since

these anisotropy extensions are simple to understand and implement with any stationary
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kernel, we think they could be used to study directionality in a wide range of ecological

redistribution problems.

Moreover, in combining these extensions with the novel product-WMY kernel, we

achieved a higher level of predictive performance than even the WMY. This separable

kernel family takes the best of both worlds: by design it is computationally fast and simple,

like the Gaussian kernel, yet it closely approximates the more flexible WMY over a large

part of its parameter space, and appears to consistently match it in predictive performance

on test data of MPB damage patterns.

It is often pointed out that difficulties in tracking the flight habits of an insect as small as

the MPB hinders the study of its life cycle and its impacts on the forest ecosystem (Nelson

et al., 2008). Our hope is that by providing new modeling tools for the redistribution phase,

we might open new avenues for research on cryptic dispersal processes in ecology.

3.7 Appendices to Chapter 3

3.7.1 The modified Bessel functions

We define the WMY kernel by means of 𝐾𝜅 (𝑧), a modified Bessel function of the second

kind. These functions emerge from the following ordinary differential equation (ODE) for

𝑦(𝑧) : C→ C,

𝑧2𝑦′′ + 𝑧𝑦′ −
(︂
𝑧2 + 𝜅2

)︂
𝑦 = 0.

The general solution of this ODE can be written in the form 𝑐1𝐼𝜅 (𝑧) + 𝑐2𝐾𝜅 (𝑧) (for arbitrary

𝑐1, 𝑐2 ∈ C), where 𝐼𝜅 and 𝐾𝜅 are the modified Bessel functions of order 𝜅 ∈ C, defined by:

𝐼𝜅 (𝑧) = 𝑧𝜅
∞∑︂
𝑚=0

𝑧2𝑚

22𝑚+𝜅𝑚!Γ (𝜅 + 1 + 𝑚)
and, for 𝜅 ∉ Z, 𝐾𝜅 (𝑧) =

𝐼−𝜅 (𝑧) − 𝐼𝜅 (𝑧)
2 sin(𝜋𝜅)/𝜋 . (3.18)

In the case 𝜅 = 𝑛 an integer, 𝐾𝜅 is defined as the limit 𝜅 → 𝑛. The series representation

for 𝐼𝜅 shows that 𝐾𝜅 is continuous with respect to its order for all 𝜅. In the special case

of half-integer orders, 𝐾𝜅 becomes the product of an exponential and a polynomial, with
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(3.18) reducing to

𝐾𝑛+1/2(𝑧) = exp (−𝑧)
(︃
𝜋

2𝑧

)︃1/2 𝑛∑︂
𝑚=0

(𝑛 + 𝑚)!
𝑚!(𝑛 − 𝑚)!(2𝑧)𝑚 . (3.19)

In physical applications, 𝐾𝜅 is the more useful solution because it decays exponentially

through positive values as 𝑧 → ∞ (Watson, 1995). An asymptotic series expansion shows

that for large 𝑧,

𝐾𝜈 (𝑧) ∼ (2𝑧/𝜋)−1/2 exp(−𝑧) (1 + O(1/𝑧)) (3.20)

At the origin, 𝐾𝜅 diverges, behaving either like 𝐾𝜅 (𝑧) ∝ 𝑧−|𝜅 | for 𝜅 ≠ 0 or 𝐾0(𝑧) ∝

− log(𝑧) when 𝑧 → 0. For |𝜅 | < 1 however, 𝐾𝜅 is absolutely integrable on R+ = (0,∞).

It is also regular enough near the origin to admit the following useful integral (Gradshteyn

and Ryzhik, 1965, p. 6.561.16):∫ ∞

0
𝑧𝜇𝐾𝜅 (𝑧/𝜌) d𝑧 = 2𝜇−1𝜌𝜇+1Γ

(︃
1 + 𝜇 + 𝜅

2

)︃
Γ

(︃
1 + 𝜇 − 𝜅

2

)︃
for 1 + 𝜇 ± 𝜅 > 0 (3.21)

𝐾𝜅 also satisfies the following for all 𝜅 and 𝑧 ≠ 0 (Gradshteyn and Ryzhik, 1965, p. 8.486):

𝑧 (𝐾𝜅−1(𝑧) − 𝐾𝜅+1(𝑧)) = −2𝜅𝐾𝜅 (𝑧) (3.22)
1
𝑧

d
d𝑧

(︂
𝑧𝜅𝐾𝜅 (𝑧)

)︂
= −𝑧𝜅−1𝐾𝜅−1(𝑧) (3.23)

3.7.2 Properties of the WMY kernel family

For simplicity we define an unnormalized WMY family for 𝜌 > 0, 𝜅 > −1,

𝑤𝜅,𝜌 (𝑟) = (𝑟/𝜌)𝜅𝐾𝜅 (𝑟/𝜌) = D(𝑟; 𝜅, 𝜌)/𝐴 (𝜅, 𝜌) . (3.24)

These are strictly positive functions belonging to the Lebesgue space 𝐿1(R2). The norm of

𝑤𝜅,𝜌 can be calculated using (3.21) after integrating out the redundant angular coordinate:

∥𝑤𝜅,𝜌∥1 =

∫
R2
𝑤𝜅,𝜌 ( |x|) dx = 2𝜋𝜌−𝜅

∫ ∞

0
𝑟𝜅+1𝐾𝜅 (𝑟/𝜌) d 𝑟 = 2𝜅+1𝜋𝜌2Γ(𝜅 + 1). (3.25)

From this one obtains the WMY kernel normalization constant, 1/𝐴 (𝜅, 𝜌) = ∥𝑤𝜅,𝜌∥1. A

similar calculation yields 𝜇𝑛 =
∫ ∞

0 𝑟𝑛D(𝑟; 𝜅, 𝜌) d𝑟, the 𝑛𝑡ℎ marginal moment of the WMY
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kernel:

𝜇𝑛 = 2𝜋𝜌−𝜅𝐴 (𝜅, 𝜌)
∫ ∞

0
𝑟𝜅+𝑛+1𝐾𝜅 (𝑟/𝜌) d𝑟

= (2𝜌)𝑛Γ(𝜅 + 1 + 𝑛/2)Γ(1 + 𝑛/2)/Γ(𝜅 + 1). (3.26)

For nonzero even 𝑛, this reduces to (2𝜌)𝑛 (𝑛/2)! ∏︁𝑛/2
𝑚=1(𝜅 + 𝑚), from which the kurtosis

expression in Section 2.3 of the main text can be derived.

The spectral density (𝑑-dimensional Fourier transform) of the 𝑑-dimensional WMY

kernel is

D̂ (z; 𝜅, 𝜌) =
∫
R𝑑

D (|x|; 𝜅, 𝜌) exp (−2𝜋𝑖z · x) dx ∝
(︂
|z |2 + 𝜌−2

)︂−(2𝜅+𝑑)/2
where z ∈ R𝑑 .

(3.27)

This relationship is widely known in spatial statistics community (see eg. Guttorp and

Gneiting, 2006; Stein, 1999) but less so in mathematical ecology.

Note that in the 2D case (𝑑 = 2), the Hankel transform of D is identical to the spectral

density (3.27). Thus, in the sense of Schlägel and Lewis (2016), D is a robust kernel: That

is, the 𝑛𝑡ℎ power of (3.27) is again the spectral density of a WMY kernel, with the same range

parameter, and shape 𝑛(𝜅 + 1) − 1. More generally, since convolutions become products

in Fourier space, the spectral density of the 𝑛-part convolution D (𝑟; 𝜅1, 𝜌) ∗ D (𝑟; 𝜅2, 𝜌) ∗

. . .D (𝑟; 𝜅𝑛, 𝜌) is proportional to:
𝑛∏︂

𝑚=1

(︂
|z |2 + 𝜌−2

)︂−(2𝜅𝑚+𝑑)/2
=

(︂
|z |2 + 𝜌−2

)︂−∑︁𝑛
𝑚=1 (2𝜅𝑚+𝑑)/2

=

(︂
|z |2 + 𝜌−2

)︂−(2𝜅+𝑑)/2
(3.28)

where 𝜅 =
∑︁𝑛
𝑚=1 𝜅𝑚 + (𝑛−1)𝑑/2. Therefore the WMY family is closed under convolutions.

The WMY family is bounded everywhere in 𝑟 > 0. It becomes unbounded at the origin

when 𝜅 ≤ 0, and otherwise we have 𝑤𝜅 (0) = 2𝜅−1Γ(𝜅) < ∞. This is easily shown by setting

𝑎𝑚,𝜅 = 22𝑚+𝜅𝑚!Γ (𝜅 + 1 + 𝑚) and 𝑧 = 𝑟/𝜌 and using the representation (3.18) to write for

𝜅 ∉ Z:

𝑤𝜅,𝜌 =
𝜋

2 sin(𝜋𝜅)

(︃(︃
1

𝑎0,−𝜅
+ 𝑧2

𝑎1,−𝜅
+ 𝑧4

𝑎2,−𝜅
+ . . .

)︃
−

(︃
𝑧2𝜅

𝑎0,𝜅
+ 𝑧

2(𝜅+1)

𝑎1,𝜅
+ 𝑧

2(𝜅+2)

𝑎2,𝜅
. . .

)︃)︃
.

(3.29)
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The WMY family is strictly decreasing in 𝑟 , since by (3.23) its first derivative can be

written:
d
d𝑟

(︁
𝑤𝜅,𝜌

)︁
= − 𝑟

𝜌2𝑤𝜅−1,𝜌 . (3.30)

From the expansion in (3.29), one sees that this derivative becomes unbounded at the origin

whenever 𝜅 < 1/2 and otherwise is finite. Similarly, after differentiating a second time we

obtain:

d2

d𝑟2
(︁
𝑤𝜅,𝜌

)︁
=

(︂
1/𝜌2

)︂ (︂
(𝑟/𝜌)2 𝑤𝜅−2,𝜌 − 𝑤𝜅−1,𝜌

)︂
=

(︂
1/𝜌2

)︂ (︁
𝑤𝜅,𝜌 + (1 − 2𝜅)𝑤𝜅−1,𝜌

)︁
(3.31)

where (3.22) is used for the second equality. From (3.31) the second derivative is finite

and negative at 𝑟 = 0 when 𝜅 > 1. When 1/2 < 𝜅 ≤ 1, the (1 − 2𝜅)𝑤𝜅−1 term in (3.31)

diverges to −∞ as 𝑟 → 0; whereas for 𝜅 < 1/2 it diverges to +∞. Thus the special case of

the exponential kernel (𝜅 = 1/2) marks a qualitative change in behaviour; For 𝜅 > 1/2 the

approach to the origin is concave (and bounded), whereas for 𝜅 < 1/2 it is convex with an

unbounded first derivative.

3.7.3 The modified Laplace operator

We now introduce a PDE to serve as our general isotropic dispersal model for a population

density 𝑢(𝑟, 𝑡)𝑝(𝑟). It describes the time evolution of 𝑢 by the sum of three terms: an fractal

diffusion operator 𝐿𝜅𝑢; a decay term of the form −𝜆𝑢 with rate constant 𝜆 > 0, and a source

term 𝐹 (𝑟, 𝑡) ≥ 0:

𝜕𝑢

𝜕𝑡
= 𝛼𝐿𝜅𝑢 − 𝜆𝑢 + 𝐹 where 𝐿𝜅𝑢 =

1
𝑟𝑑 𝑓 −1

𝜕

𝜕𝑟

(︃
𝑟𝑑 𝑓 −1 𝜕𝑢

𝜕𝑟

)︃
. (3.32)

The linear differential operator 𝐿𝜅 is an extension of the Laplacian to diffusion occuring

in fractal media. The Hausdorf dimension 0 < 𝑑 𝑓 ≤ 2 reflects geometric constraints on

movement and 𝛼 > 0 the diffusivity, so that in the edge case 𝑑 𝑓 = 2 we recover Fickian

diffusion, or 𝐿𝜅 = ∇2 = 1
𝑟
𝜕
𝜕𝑟

(︂
𝑟 𝜕
𝜕𝑟

)︂
. For notational convenience, define the shape parameter

𝜅 = (2 − 𝑑 𝑓 )/2, and distance scaling factor 𝑝(𝑟) = 𝑟𝑑 𝑓 −2 = 𝑟−2𝜅. Note that the operator
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𝑝𝐿𝜅 can expressed in the form:

𝑝𝐿𝜅 = 𝑝

(︃
(1 − 2𝜅)1

𝑟

𝜕

𝜕𝑟
+ 𝜕

𝜕𝑟2

)︃
=

(︃
𝜕𝑝

𝜕𝑟

)︃ (︃
𝜕

𝜕𝑟

)︃
+ 𝑝

𝑟

𝜕

𝜕𝑟

(︃
𝑟
𝜕

𝜕𝑟

)︃
. (3.33)

For radially symmetric 𝑢, this means 𝑝𝐿𝜅𝑢 = ∇𝑝 · ∇𝑢 + 𝑝∇2𝑢 = ∇ · (𝑝∇𝑢). Thus (3.32)

can also be written in a normal form for parabolic problems in Euclidean coordinates, as in

Zauderer (2006): (︂ 𝑝
𝛼

)︂ 𝜕𝑢
𝜕𝑡

= ∇ · (𝑝∇𝑢) −
(︃
𝜆𝑝

𝛼

)︃
𝑢 + 𝑝𝐹

𝛼
(3.34)

When 𝑢 and/or its derivatives have singularities at the origin (eg. 𝑢 ∝ 𝑤𝜅,𝜌 for 𝜅 < 1/2)

we use a weaker formulation. Integrating (3.34) over a closed and bounded region Ω ∈ R2

then applying the divergence theorem, we obtain a balance law for density in Ω in terms of

the measure
∫
Ω
𝑢𝑝𝑟 d𝑟,∫
Ω

(1/𝛼) 𝜕𝑢
𝜕𝑡
𝑝 dx =

∫
𝜕Ω

𝜕𝑢

𝜕𝑛x
𝑝 d𝑠x +

∫
Ω

(1/𝛼) (𝐹 − 𝜆𝑢) 𝑝 dx, (3.35)

where 𝑑𝑠x is the surface differential over 𝜕Ω and 𝜕𝑢/𝜕𝑛x the exterior normal derivative of

𝑢 on this boundary. The law states that the rate of change of disperser density in Ω is equal

to the flux through the boundary (𝜕Ω) plus the sum of sources (𝐹) and density-dependent

losses (at rate 𝜆). Weak solutions of (3.32) satisfy (3.35) along with the appropriate initial

and boundary conditions.

A stationary point emission of dispersers

Begin by considering the density pattern that arises under a continuous release of dispersers

from a point source. We will assume that new dispersers are released from the origin at a

constant rate of 𝛾 > 0 (in density per unit time). Recalling the density measure
∫
Ω
𝑢𝑝 dx,

the source term 𝐹 in (3.32) will be a renormalized 2D Dirac delta function of the form

𝛾𝛿(𝑟)/2𝜋𝑟 𝑝.

Upon their release, dispersers diffuse through R2 according to 𝐿𝜅, and are subject to

a constant mortality hazard with rate 𝜆. To obtain biologically reasonable solutions we

further assume disperser density 𝑢(𝑟, 𝑡)𝑝(𝑟) vanishes as 𝑟 → ∞; and for consistency with
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the Bessel kernel (𝑑 𝑓 = 2, or 𝜅 = 0) we also assume this density becomes unbounded in the

limit 𝑟 → 0.

Supposing the system has reached its steady state, we can set 𝜕𝑢/𝜕𝑡 = 0 in (3.34) and

solve the resulting elliptic problem in 𝑢(𝑟). Away from the origin there are no sources, so

the PDE becomes:

0 = 𝛼𝐿𝜅𝑢 − 𝜆𝑢 for 𝑟 > 0, (3.36)

where lim
𝑟→∞

𝑢(𝑟)𝑝(𝑟) = 0, and lim
𝑟→0

𝑢(𝑟)𝑝(𝑟) = ∞.

At the origin, the source term
∫
Ω
𝑝𝐹/𝛼 in (3.35) equals 𝛾/𝛼 whenever 0 ∈ Ω and

vanishes otherwise. Following Chapter 6.7 of Zauderer (2006) a sufficient condition for

this behaviour can be found by letting Ω be a small disk centered at the origin, and taking

the limit of (3.35) as Ω → 0,

lim
𝑟→0

(︃
2𝜋𝑝𝑟

𝜕𝑢

𝜕𝑟

)︃
= −𝛾/𝛼. (3.37)

WMY functions with 0 < 𝜅 < 1 satisfy both conditions, as we show next. First note

that 𝑤𝜅,𝜌 (𝑟)𝑝(𝑟) → 0 as 𝑟 → ∞ for all 𝜅, by (3.20). Further, if 𝜌2 = 𝛼/𝜆, then 𝑢 = 𝑐𝑤𝜅,𝜌

satisfies (3.36) for arbitrary normalization constants 𝑐, since by (3.30)-(3.31) 𝑤𝜅,𝜌 is an

eigenfunction of 𝜌2𝐿𝜅 for all 𝜅:

𝜌2𝐿𝜅𝑤𝜅,𝜌 = 𝜌
2(1 − 2𝜅)1

𝑟

𝜕𝑤𝜅,𝜌

𝜕𝑟
+
𝜕𝑤𝜅,𝜌

𝜕𝑟2

= −(1 − 2𝜅)𝑤𝜅−1,𝜌 + 𝑤𝜅,𝜌 + (1 − 2𝜅)𝑤𝜅−1,𝜌 = 𝑤𝜅,𝜌 . (3.38)

Next we use (3.30) and the series representation (3.29) to show that if 𝑢 = 𝑐𝑤𝜅,𝜌 (and

𝜅 ∉ Z+),

lim
𝑟→0

(︃
2𝜋𝑝𝑟

𝜕𝑢

𝜕𝑟

)︃
= −2𝜋𝑐𝜌−2𝜅 lim

𝑟→0

(︂
(𝑟/𝜌)−2(𝜅−1)𝑤𝜅−1,𝜌

)︂
= −𝑐

[︁
21−𝜅𝜋𝜌−2𝜅Γ(1 − 𝜅)

]︁
= −𝑐

[︃
(1/𝜌2)

∫
R2
𝑤𝜅,𝜌 (𝑟)𝑝(𝑟) dx

]︃
(3.39)

The square-bracketed expression in (3.39) is finite for 0 < 𝜅 < 1, so by setting the

normalization constant 𝑐 = (𝛾/𝜆)/
∫
R2 𝑤𝜅,𝜌𝑝 dx, the required behaviour (3.37) at the origin
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is established. By (3.29), the density 𝑤𝜅,𝜌𝑝 is unbounded in the limit 𝑟 → 0 for all

0 ≤ 𝜅 < 1. Moreover, because 𝑤𝜅,𝜌 is continuous in 𝜅, equation (3.39) also holds for 𝜅 = 0.

Thus for all reasonable values (0 < 𝑑 𝑓 ≤ 2) of the fractal dimension, the free-space Green’s

functions of (3.36) belong to the WMY family.

Switching back to Lebesgue measure, solutions 𝑢(𝑟)𝑝(𝑟) remain in the WMY family.

This is because the modified Bessel functions satisfy 𝐾𝜅 = 𝐾−𝜅 for all 𝜅, and so when

0 < 𝜅 ≤ 1, we may rewrite 𝑤𝜅,𝜌 (𝑟)𝑝(𝑟) = 𝜌−2𝜅 (𝑟/𝜌)−𝜅𝐾𝜅 (𝑟/𝜌) = 𝜌−2𝜅𝑤−𝜅,𝜌. Using

(3.25), this simplifies to:

𝑤𝜅,𝜌 (𝑟)𝑝(𝑟) = 𝑐𝑟−2𝜅𝑤−𝜅,𝜌 (𝑟) = (𝛾/𝜆)𝐴−𝜅,𝜌𝑤−𝜅,𝜌 (𝑟) (3.40)

Thus when 𝛾 = 𝜆we recover the WMY kernelD(𝑟;−𝜅, 𝜌) with shape parameter 𝑑 𝑓 /2−1.

Settling after an instantaneous point release

Next suppose that mortality is negligeable, and consider a one-time point release of dis-

persers that diffuse in space and settle with constant hazard. We therefore interpret 𝜆 in

(3.32) as a settling (rather than mortality) rate, and 𝑢(𝑟, 𝑡)𝑝(𝑟) as the remaining density of

active dispersers. All individuals eventually settle, so as 𝑡 → ∞ the accumulated density of

settled individuals approaches:

𝑈 (𝑟)𝑝(𝑟) where𝑈 (𝑟) = 𝜆
∫ ∞

0
𝑢(𝑟, 𝑡) d𝑡 . (3.41)

As before we assume 𝑈 (𝑟)𝑝(𝑟) diverges at zero and vanishes in the limit 𝑟 → ∞.

Assume further that all active dispersers are initially concentrated at the origin, with total

density 𝑁0. The initial condition for 𝑢 is therefore the renormalized 2D Dirac delta function

𝑢(0, 𝑟) = 𝑁0𝛿(𝑟)/2𝜋𝑟 𝑝. The PDE for 𝑈 is then found by setting 𝐹 = 0 in (3.32) and

integrating both sides over all time:

𝜆

∫ ∞

0

d𝑢
d𝑡

d𝑡 = −𝜆𝑢(0, 𝑟) = −𝜆𝑁0𝛿(𝑟)/𝜋𝑟 𝑝

= 𝜆

∫ ∞

0
(𝛼𝐿𝜅𝑢 − 𝜆𝑢) d𝑡 = 𝛼𝐿𝜅𝑈 − 𝜆𝑈 (3.42)

where lim
𝑟→∞

𝑈 (𝑟)𝑝(𝑟) = 0, and lim
𝑟→0

𝑈 (𝑟)𝑝(𝑟) = ∞.
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Up to a relabeling of variables, this is equivalent to the stationary point emission problem

of the previous section: Away from the origin, the left hand side of (3.42) vanishes and we

have the elliptic problem of (3.36), with𝑈 taking the place of 𝑢; At the origin we can view

the left hand side of (3.42) as a stationary source term 𝐹, and by setting 𝛾 = 𝜆𝑁0 we recover

the condition (3.37). Thus:

𝑈 (𝑟) =
(︄

𝑁0∫
R2 𝑤𝜅,𝜌𝑝 dx

)︄
𝑤𝜅,𝜌 (𝑟), where 𝜌2 = 𝛼/𝜆. (3.43)

Notice that by the same arguments as in (3.40), when 𝑁0 = 1 the settled density becomes

𝑈 (𝑟)𝑝(𝑟) = D(𝑟;−𝜅, 𝜌); ie. it is identical to the steady state of the stationary emissions

problem.

Extensions to multiple stages

Lastly, we consider augmenting equation (3.42) with additional stages of dispersal, each

connected by a stage-switching hazard term with rate constant 𝜆 > 0. Writing 𝑢𝑚 (𝑟, 𝑡)𝑝(𝑟)

for the density in the 𝑚𝑡ℎ stage, we will assume that an instantaneous point release of unit

density initializes dispersers in the first stage, so that the dynamics of 𝑢1 are the same as

𝑢 in the previous section (with 𝑁0 = 1). As time progresses, the impulse moves through

the stages and exits the 𝑛𝑡ℎ stage at rate 𝜆 (as settled density). We will be interested in the

long-term accumulation of settled density:

𝑈𝑛 (𝑟)𝑝(𝑟) = 𝜆
∫ ∞

0
𝑢𝑛 (𝑟, 𝑡)𝑝(𝑟) d𝑡, where (3.44a)

𝜕𝑢1
𝜕𝑡

= 𝛼𝐿𝜅𝑢1 − 𝜆𝑢1, with 𝑢1(𝑟, 0) = 𝛿(𝑟)/2𝜋𝑟 𝑝, and (3.44b)

𝜕𝑢𝑚

𝜕𝑡
= 𝛼𝐿𝜅𝑢𝑚 + 𝜆𝑢𝑚−1 − 𝜆𝑢𝑚, with 𝑢𝑚 (𝑟, 0) = 0, for 1 < 𝑚 ≤ 𝑛. (3.44c)

In the previous section we solved the one-stage analogue of this system. We now show

how this more general 𝑛 ≥ 1 stage case can be solved more directly using survival analysis.

Similar to Yasuda (1975) and Lutscher, Pachepsky, and Lewis (2005), we will write the

settled density function as𝑈𝑛 =
∫ ∞
𝑡=0 𝑢(𝑟, 𝑡) 𝑓 (𝑡) d𝑡, where 𝑓 (𝑡) is the PDF for time to settling

out the 𝑛𝑡ℎ stage, and 𝑢(𝑟, 𝑡) is the PDF for disperser position (in terms of measure 𝑢𝑝 d𝑟).
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As before, we assume the stage-wise density functions 𝑢𝑚 (𝑟)𝑝(𝑟) vanish in the limit of

large distances.

Recall that in the absence of stage-switching/settling (𝜆 = 0), the PDF for disperser

position is:

𝑢(𝑟, 𝑡)𝑝(𝑟) =
(︂
(1/4𝛼𝑡)1−𝜅 exp(−𝑟2/4𝛼𝑡)/𝜋Γ(1 − 𝜅)

)︂ (︂
𝑟−2𝜅

)︂
When 𝜆 > 0, this becomes the conditional PDF for position at time 𝑡, given that the

disperser has not yet settled. Meanwhile, the stage switching process operates independently

of the movement process; At time 𝑡, the probability of belonging to the 𝑚𝑡ℎ stage is the

integrated density 𝑢𝑚 (𝑟, 𝑡)𝑝(𝑟):

𝑣𝑚 (𝑡) = 2𝜋
∫ ∞

0
𝑢𝑚𝑝𝑟 d𝑟 = 2𝜋

∫ ∞

0
𝑟1−2𝜅𝑢𝑚 d𝑟 . (3.45)

Let 𝑇 denote the (random) duration of movement before settling, and let 𝑓 (𝑡) be its PDF.

The survival function for𝑇 is the probability that the disperser remains in any of the 𝑛 active

stages at time 𝑡, or 𝑆(𝑡) = Pr (𝑇 > 𝑡) = ∑︁
𝑣𝑚. This is related to the settling time PDF by

𝑓 (𝑡) = − d𝑆/d𝑡. Thus we can find 𝑓 via the 𝑣𝑚. Beginning with 𝑣1, we rearrange (3.44b)

and integrate over space:∫
R2

𝜕

𝜕𝑡
(𝑝𝑢1) dx = 𝛼

∫
R2

∇ · (𝑝∇𝑢1) dx−𝜆
∫
R2
𝑝𝑢1 dx =⇒ d𝑣1

d𝑡
= −𝜆𝑣1, (3.46)

This follows by letting 𝐵𝑟 be a disk of radius 𝑟 centred at the origin, with normal vector nx

and length element d𝑠x, and using the divergence theorem to simplify the second integral

in (3.46):∫
R2

∇·(𝑝∇𝑢1) dx = lim
𝑟→∞

∫
𝐵𝑟

∇·(𝑝∇𝑢1) dx = lim
𝑟→∞

∫
𝜕𝐵𝑟

𝑝∇𝑢1·n𝑥 d𝑠x = lim
𝑟→∞

(︃
2𝜋𝑝𝑟

𝜕𝑢

𝜕𝑟

)︃
= 0.

The ODE for 𝑣1 in (3.46) has initial data 𝑣1(0) = 1 and so is solved by 𝑣1(𝑡) =

exp(−𝜆𝑡). Integrating equation (3.44b) in the same way we obtain for 𝑚 > 1 a set

of ODEs, d𝑣𝑚
d𝑡 = 𝜆(𝑣𝑚−1 − 𝑣𝑚) with 𝑣𝑚 (0) = 0. These are solved in sequence using
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integrating factors to obtain the recurrence relation 𝑣𝑚 = (𝜆𝑡)𝑚−1 exp(−𝜆𝑡)/(𝑚 − 1)! Thus

𝑓 (𝑡) = − d
d𝑡

∑︁
𝑣𝑚 = 𝜆𝑣𝑛, ie 𝑓 ∼ Gamma(𝑛, 𝜆).

With 𝑓 and 𝑢 so defined, and setting 𝜌2 = 𝛼/𝜆 and �̃� = 𝜅 + 𝑛 − 1, we obtain:

𝑈 (𝑟) =
∫ ∞

0
𝑓 (𝑡)𝑢(𝑟, 𝑡) d𝑡

=

(︂
(4𝛼)1−𝜅𝜋𝜆−𝑛Γ(𝑛)Γ(1 − 𝜅)

)︂−1 ∫ ∞

0
𝑡 �̃�−1 exp

(︂
−𝜆𝑡 −

(︂
𝑟2/4𝛼

)︂
/𝑡

)︂
d𝑡

=

(︂
(4𝛼)1−𝜅𝜋𝜆−𝑛Γ(𝑛)Γ(1 − 𝜅)

)︂−1
(︃
2
(︂(︂
𝑟2/4𝛼

)︂
/𝑡

)︂ �̃�/2
𝐾�̃�

(︃
2
√︂(︁
𝑟2/4𝛼

)︁
/𝜆

)︃)︃
=

(︂
2𝑛−𝜅𝜋𝜌2−2𝜅Γ(𝑛)Γ(1 − 𝜅)

)︂−1
(𝑟/𝜌) �̃� 𝐾�̃� (𝑟/𝜌) ∝ 𝑤 �̃�,𝜌 .

where the identity in the second line is found in Gradshteyn and Ryzhik (1965) (3.471.9).

Using (3.21) one can verify that the normalization factor in the third line ensures 1 =

2𝜋
∫ ∞

0 𝑈𝑝𝑟 d𝑟. Thus

𝐷 (𝑟) = 𝑈 (𝑟)𝑝(𝑟) =
(︂
2𝑛−𝜅𝜋𝜌2Γ(𝑛)Γ(1 − 𝜅)

)︂−1
(𝑟/𝜌)𝑛−1−𝜅 𝐾𝑛−1+𝜅 (𝑟/𝜌) (3.47)

is a properly normalized PDF under Lebesgue measure. Notice that in the case 𝑑 𝑓 = 2

(or 𝜅 = 0), equation (3.47) defines the subset of WMY kernels with integer-valued shape

parameters. In the case 𝑑 𝑓 = 1 (or 𝜅 = 1/2), we use (3.19) to simplify (3.47) and express

the marginal distribution as:

𝐷𝑟 (𝑟) = 2𝜋𝑈𝑝𝑟 = 2𝜋𝑈

=

(︂
2𝑛−1𝜌Γ(𝑛)

)︂−1
(︄
𝑛−1∑︂
𝑚=0

(𝑛 − 1 + 𝑚)!
2𝑚𝑚!(𝑛 − 1 − 𝑚)! (𝑟/𝜌)

𝑛−1−𝑚
)︄

exp (−𝑟/𝜌) . (3.48)

Notice that this kernel family is identical to the one described in Neubert, Kot, and Lewis

(1995) for multi-stage 1D diffusion with settling (in the case of equal stage switching rates).

3.7.4 Error in approximations of D by D⊗

Lacking an analytic result on approximations of the WMY by the product-WMY, we in-

stead investigated the relative errors (RE) in the entries of the redistribution matrices,(︁
[D]𝑖 𝑗 − [D⊗]𝑖 𝑗

)︁
/[D]𝑖 𝑗 , over a large parameter grid. For each of 104 WMY kernels

95



D(𝑟; 𝜌, 𝜅), we numerically optimized the parameters of D⊗ with the constraint 𝜌𝑥 = 𝜌𝑦 and

𝜅𝑥 = 𝜅𝑦, to minimize the mean absolute RE in the redistribution matrices for a 100 × 100

lattice of sample sites. Figure 3.7 plots the results.

Figure 3.7: Heatmap of the error in approximation by product-WMY kernels parametrized
to resemble the (isotropic) WMY. Parameters were set by minimizing mean absolute RE
for each of 100 × 100 = 10, 000 parameter pairs. Approximations appear to be adequate
provided 𝜌 and 𝜅 are not too small.

Point clouds of the signed relative errors (not shown) indicate that the product-WMY

tends to assign less density to short distances than the WMY. At long distances, the errors

are more evenly spread out, with separation vectors orthogonal to the coordinate axes

overestimating the WMY, and those at a 45 degree angles underestimating. For low 𝜅𝑥 and

𝜅𝑦 values, this introduces the characteristic diamond-shaped contours that are obvious in

Figure 2 of the main text (left panel).

Unsurprisingly, these approximations are poor when the shape value of D is low. How-

ever, as long as the range parameter 𝜌 is not too small, approximations rapidly improve as

𝜅 increases through moderate values. Note that 𝜌 is directly tied to sampling resolution.
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For example if D(𝑟; 𝜅, 𝜌 = 5) is an appropriate model for points sampled at 1 km intervals,

then D(𝑟; 𝜅, 𝜌 = 10) should be used for data sampled at 500 meter intervals.

3.7.5 Redistribution kernels in practice: the red-top model

Our modeling approach closely follows that of Heavilin and Powell (2008), in which beetle

population sizes are represented implicitly through measurements of their contribution to

pine mortality.

Let the (pre-attack) number of susceptible pines in summer 𝑡 at site x be 𝑆𝑡 (x). MPB

must attack and kill a fraction of them, 𝑀𝑡 (x), so their offspring can overwinter under the

bark. By the next summer these infested pines become obvious due to their faded (red)

crowns, and their number 𝐼𝑡+1(x) is more easily counted. Pine mortality in year 𝑡 can thus

be written 𝑀𝑡 (x) = 𝐼𝑡+1(x)/𝑆𝑡 (x).

In summer 𝑡 + 1, the (now mature) offspring emerge in large numbers from each of the

𝐼𝑡+1(x) infested host trees to disperse and attack new pines. For now we assume the number

of surviving offspring per tree, 𝜆, is uniform across the landscape. Thus 𝐵𝑡+1 = 𝜆𝐼𝑡+1(x)

emerge from site x.

After dispersal, the attacking cohort may be joined by endemic MPB populations. The

endemic population phase is cryptic and low-density, so its impact is too slight to observe

directly by aerial survey. However it appears to be ubiquitous in our study area, at a level

of around one endemic host tree per hectare (Boone et al., 2011). Thus we write the post-

dispersal MPB density in year 𝑡 + 1 as the sum �̃�𝑡+1(x) = 𝜆(1 + (𝐷 ∗ 𝐵𝑡+1) (x)). These

MPB will infest susceptible pines with varying success; Pines can repel small numbers but

are overwhelmed in mass attacks. This leads to a nonlinear attack curve expressing the pine

mortality rate as a sigmoid function of �̃�𝑡+1(x):

𝑀𝑡+1(x) =
�̃�𝑡+1(x)2

�̃�𝑡+1(x)2 + 𝑎2⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
attack curve

with �̃�𝑡+1(x) = 𝜆 (1 + (𝐷 ∗ 𝑀𝑡𝑆𝑡) (x))⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
endemic + post-dispersal MPB

, (3.49)

where parameter 𝑎 > 0 is the attacking beetle density at which 50% pine mortality occurs.
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Note that (3.49) is identical to the red-top model of Heavilin and Powell (2008), except

that we have added the endemic component and changed the notation for 𝐵𝑡 . Inverting the

attack curve in (3.49) and taking logarithms of both sides, we find the equivalent model for

the mortality log-odds:

logit (𝑀𝑡+1(x)) = log
(︃
𝑀𝑡+1(x)

1 − 𝑀𝑡+1(x)

)︃
= 2 log (1 + (𝐷 ∗ (𝑀𝑡𝑆𝑡)) (x)) − 2 log (𝛼) . (3.50)

where 𝛼 = 𝑎/𝜆 (in units of trees/ha) expresses the 50% mortality level of attacking beetle

density in terms of infested tree equivalents. Thus (3.49) and (3.50) provide two plausible

expressions for the expected damage to pine stands.

Error structure

We should expect that variations in beetle productivity and mortality introduce process

errors into the post-dispersal MPB counts. These errors likely have a multiplicative effect

so it is reasonable to assume that �̃�𝑡+1(x) will be log-normally distributed (Limpert, Stahel,

and Abbt, 2001). Equation (3.50) becomes:

logit (𝑀𝑡+1(x)) = 2 log (1 + (𝐷 ∗ (𝑀𝑡𝑆𝑡)) (x))−2 log (𝛼)+𝑍 (x), where 𝑍 (x) ∼ 𝑁 (0, 𝜎2).

(3.51)

The measurement process also contributes error. We model this by adding a further

mean-zero Gaussian term to equation (3.51). However, as measurements are presumably

independent of the growth and dispersal process, it is (mathematically) equivalent to simply

increase the variance of 𝑍 (x). Thus we merge the two error terms and hereafter view 𝜎2

in (3.51) as their combined variance.

The 𝑍 (x) are likely to be spatially autocorrelated; pairs of errors located near to each other

in space will be more highly correlated than ones spaced far apart. Thus we specify these

correlations as a decreasing function of distance, by means of a parametric covariance kernel

𝐶. Recall that these functions are very similar to redistribution kernels. For simplicity,

we use the Gaussian, so that Cov
[︁
𝑍 (x𝑖), 𝑍 (x 𝑗 )

]︁
= 𝐶 (𝑟𝑖 𝑗 ;𝜎2, 𝑐) = 𝜎2 exp(−𝑟2

𝑖 𝑗
/𝑐), where

𝑟𝑖 𝑗 = |x𝑖 − x 𝑗 |.
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Finally, we assume that 𝑍 (x) is a Gaussian random field. This property conveniently

implies that every finite sample ϵ := (𝑍 (x1), . . . , 𝑍 (x𝑛))𝑇 is distributed as a multivariate

Gaussian Z ∼ N(0,V ), where [V ]𝑖 𝑗 = 𝐶 (𝑟𝑖 𝑗 ) (Chiles and Delfiner, 2012). Having

specified the distributional properties of the model residuals from (3.51) in full, we now

turn to the problem of inference.

Discretization and likelihood

If the observed data are m𝑡 = (𝑀𝑡 (x1), . . . 𝑀𝑡 (x𝑛))𝑇 and s𝑡 = (𝑆𝑡 (x1), . . . 𝑆𝑡 (x𝑛))𝑇 , the

(expected) post-dispersal MPB density then becomes 𝜆 (1 +D (m𝑡 ⊙ s𝑡)), where 1 is the

length-𝑛 vector of 1’s and ⊙ is the pointwise product. Letting boldface log and logit denote

entrywise transforms, the likelihood function 𝐿 for (3.51) can now be written compactly in

terms of the data vectors:

𝐿 ∝ detV +exp
(︂
ϵ𝑇V −1ϵ

)︂
where ϵ = logit (m𝑡+1)−2log (1 +D (m𝑡 ⊙ s𝑡))+2 log (𝛼) 1.

(3.52)

𝐿 is a function of the attack parameter 𝛼; the covariance parameters, 𝑐 and 𝜎2 (defining

V ); and the redistribution parameter(s) (defining D). Thus, given a dataset {m𝑡+1,m𝑡 , s𝑡},

it appears fairly straightforward to implement (3.52) in code and maximize it (numerically)

to fit the model (3.51).

However optimization algorithms must evaluate (3.52) many times, so it becomes im-

portant in large-𝑛 problems that the matrix operations of determinant, inverse, and product

are done efficiently. Our application, like many in spatial ecology, has data in the form of

a raster, where the sampling locations {x𝑘 } are arranged in a regular lattice of dimensions

𝑛𝑦 × 𝑛𝑥 = 𝑛. This introduces symmetries in V and D that permit certain computational

shortcuts. For a given ϵ, the efficient minimization of detV + ϵ𝑇V −1ϵ in this situation is

a well-studied problem in spatial statistics (eg. Lindgren, Rue, and Lindström, 2011). We

focus instead on the evaluations of D (m𝑡 ⊙ s𝑡) needed to construct ϵ.

Whenever the {x𝑘 } form a lattice, separability implies that the redistribution matrix D⊗
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has a Kronecker product factorization:

𝐷 (r) = 𝐷𝑥 (𝑟𝑥)𝐷𝑦 (𝑟𝑦)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
spatial separability

=⇒ D⊗ = D𝑥 ⊗ D𝑦⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
Kronecker product

=⇒ D⊗u = vec
(︂
D𝑇
𝑦 vec−1

𝑛𝑦×𝑛𝑥 (u)D𝑥

)︂
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

O(𝑛2
𝑦+𝑛2

𝑥) complexity
(3.53)

The x-component redistribution matrix D𝑥 is computed as the pointwise discretization of

𝐷𝑥 , with 𝑟𝑥 = 𝑥𝑖 − 𝑥 𝑗 replacing r, and similar for D𝑦. vec() denotes column-vectorization

(stacking the columns of a matrix to form a vector) and vec−1
𝑚×𝑛 () denotes its inverse, with

target dimensions indicated in the subscript. This formula is discussed in more detail

in Chapter 2, along with block-diagonalizations of D𝑥 and D𝑦 (not discussed here) that

facilitate additional constant-factor reductions in complexity.
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Chapter 4

The signature of endemic populations in
the spread of mountain pine beetle
outbreaks

4.1 Introduction

The mountain pine beetle (MPB) Dendoctonus ponderosae Hopkins (Coleoptera Curculion-

idae), is a tree-killing species of bark beetle native to pine forests of Western North America.

Each year for a short period in summer, adult MPB seek to complete their life cycle by

attacking a suitable living host pine. During attacks, MPB bore into the bark, introducing

fungal pathogens in the process, and ultimately girdle the tree (Safranyik and Carroll, 2006).

Death follows swiftly for a pine whose defense systems fail to eject these attackers. When an

attack succeeds, MPB use the host to feed and reproduce, laying eggs in galleries excavated

underneath its bark. Outbreaks of these insects can be devastating to pine forests, prompting

modeling efforts to explain their origin and how they spread across the landscape.

With few exceptions, the adult MPB die after reproduction, and their progeny emerge

as teneral adults the following summer to begin the cycle again. This semelparity, and

the approximately linear relationship between reproductive success and host death, are

mathematically convenient properties when constructing models to track large-scale year-

to-year changes in MPB populations. For example if a total of 𝐵 beetles have attacked a

stand containing 𝐻 susceptible pines, killing a fraction 𝜙 of them, then a rough estimate of

101



the MPB population emerging in the next year is 𝜆𝜙𝐻, where 𝜆 > 0 is a suitably chosen

constant representing average per-stem productivity (Heavilin and Powell, 2008).

Two major complications in MPB dynamics must be addressed by modelers attempting

to link 𝜙 with the underlying beetle population (Nelson et al., 2008). First, any plausible

recruitment curve relating 𝜙 to the attack density 𝐵must be highly nonlinear to accomodate

the eruptive nature of MPB populations (Berryman, 1978) and the distinctive behaviours

that occur in different population phases: During the incipient-epidemic phase, attacks

occur at densities low enough to be defended by hosts, so cooperative efforts in overcoming

these defenses leads to positive density dependence (or Allee effect) in 𝜙 (Boone et al.,

2011); However as the number of attacking individuals rises, and the MPB enters epidemic

and post-epidemic phases, the density dependence turns negative as a result of scramble

competition (Peters and Peters, 1991).

Thus empirical data on 𝜙(𝐵) (Raffa and Berryman, 1983) reveals an S-shaped, or

sigmoid relationship. This form is reminiscent of the familiar type-III functional responses

for parasitism behaviour (Holling, 1959), and indeed many aspects of MPB population

dynamics are well described by parasitoid-prey systems theory (Goodsman et al., 2016).

Second, models describing the evolution of an outbreak over multiple years (𝑡) cannot

easily relate 𝐵𝑡+1 and 𝜆𝜙(𝐵𝑡)𝐻 without incorporating the spatial effects of dispersal. Given

the sensitive and nonlinear dependence of recruitment on attack density 𝐵𝑡 , it is clear that an

oversimplification of the redistribution process can have strong (and undesireable) effects

on predictions of pine mortality 𝜙. Dispersal flights of the MPB allow it to escape depleted

stands, spark outbreaks in neighbouring areas, and expand its range (Giroday, Carroll, and

Aukema, 2012). By modeling 𝐵𝑡 as the outcome of a spatially explicit dispersal event, we

are better equipped to capture these interesting and important ecological phenomena, and

achieve a higher precision in fitting 𝜙(𝐵) to data. With these advantages however, comes

mathematical complexity.

A variety of MPB dispersal models can be found in the literature (eg. Goodsman et al.,
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2016; Preisler et al., 2012; Aukema et al., 2008; Heavilin and Powell, 2008), but most

make two simplifying assumptions for mathematical convenience: that movements occur

in all directions with equal probability (isotropy); and that patterns of redistribution do

not vary with spatial location (stationarity). The main novelty in our model is that our

dispersal model has the flexibility to capture directed and location-dependent (anisotropic

and nonstationary) events – it is meant as a phenomenological alternative to dynamical

systems based approaches to the same problem (eg. Garlick et al., 2011; Powell and Bentz,

2014; Powell et al., 2018), but with a simpler mathematical representation that borrows

computationally efficient methods from spatial statistics.

One of our goals in presenting this modeling framework is to demonstrate the remarkable

amount of information that can be extracted from visual aerial surveys, which are both cost-

effective and cover large spatial and temporal extents. Our observations of pine mortality

(𝜙) are derived from the Aerial Overview Survey (AOS), which covers most of the forestland

in the province of British Columbia (BC), and is published annually. Similar datasets are

available for the neighbouring province of Alberta (AB), in which a MPB range expansion

of great economic and scientific interest is currently underway. Since our methods do not

rely on expensive and time-consuming ground surveys, they offer a cost-effective way of

conducting large-scale analyses of MPB attack dynamics in contemporary areas of concern

in Western Canada.

Modelers using AOS data must contend with errors – both positional and temporal –

introduced by a reliance on imprecise visual evidence (eg. Kautz, 2014; Wulder et al.,

2006). However, in spite of its shortcomings, the AOS covers an impressively large extent

and timeline of forest damage patterns in BC. For this reason, a considerable body of

landscape-level MPB research draws from the AOS and its predecessor, the Forest Insect

and Disease Survey (eg. Aukema et al., 2006; Robertson et al., 2009; Chen and Walton,

2011; Reyes, Zhu, and Aukema, 2012; Sambaraju et al., 2012; Chen, 2014; Chen et al.,

2015). We will show that by employing a statistical framework well-equipped to handle
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spatial error, we regain precision and accuracy by exploiting the large sample sizes available

in the AOS.

In particular our model accurately estimates the size of the cryptic, low-density endemic

MPB population using only spatial data on outbreaks. This is remarkable given that pine

mortality caused by the endemic phase happens at levels far below the operational detection

threshold of the AOS (Cooke and Carroll, 2017). Studies of endemic MPB more typically

rely on intensive ground surveys of attacked pine (eg. Boone et al., 2011; Bleiker et al.,

2014). Rather than observing these attacked hosts directly, our model infers them using

data on outbreak-level pine mortality.

Section 4.2.1 begins by reviewing a popular mathematical representation for 𝜙(𝐵), with

several refinements introduced in Sections 4.2.2-4.2.4. The flight model is outlined in

Section 4.2.5, and an error model suitable for the AOS dataset is proposed in Section 4.2.7.

We demonstrate the model in Section 4.3 by fitting to data on outbreaks of the MPB in BC.

4.2 Methods

Our case study covers a pine-rich area of roughly 10,000 km2, centered over the Merritt

Timber Supply Area (TSA) of Southern BC (Figure 4.1). We divided this into a 1 hectare

(ha) resolution grid (sensu Aukema et al., 2006) to form a 1000 x 1000 lattice of cells,

with matching layers provided by the province (http://www.hectaresbc.org) on wildfire,

cutblocks, and topography.

Since we are interested in how dispersal patterns are related to outbreak development, we

analysed the attack years 2006-2008, in which a large number of pine-leading stands would

see transitions from endemic to epidemic behaviour (the incipient-epidemic population

phase). This period captures the peak of the larger epidemic in the Merritt TSA (in terms

of basal area damaged) at a time when around one out of four cells in the area exhibited

crown-fade due to MPB activity.

Our analysis tracks four state variables, indexed by year (𝑡) and location (𝑖): Only two of

104



2006 mortality

50
.1

0
50

.1
6

−121.01 −121.09
Longitude

La
tit

ud
e

2007 mortality

0 10 20km

−4

0

4

log(stems)

Figure 4.1: Hosts killed by MPB (𝜙𝑖,𝑡𝐻𝑖,𝑡 , in stems/ha) in the summers of 2006-2007. AOS
data on damage severity were rasterized to approximate susceptible host mortality (𝜙𝑖,𝑡).
Host density 𝐻𝑖,𝑡 was derived from pine volume estimates in Beaudoin et al. (2014), as
described in Appendix 4.5.1

them can observed on large scales in practice: pine mortality (𝜙𝑖,𝑡) and host density (𝐻𝑖,𝑡 , in

stems/ha) (Appendix 4.5.1); The others, MPB density pre-dispersal �̃�𝑖,𝑡 and post-dispersal

𝐵𝑖,𝑡 (in females/ha), are latent variables, inferred by the model but never observed (Table

4.1). In Sections 4.2.1-4.2.5, we develop a model relating these four variables. Sections

4.2.7-4.3 connect the model to data.

location 𝑖 vectorized definition units type

𝐻𝑖,𝑡 H𝑡 pre-attack susceptible pine density
stems/ha observed

𝜙𝑖,𝑡 ϕ𝑡 proportion of 𝐻𝑖,𝑡 killed by MPB

�̃�𝑖,𝑡 B̃𝑡 emerging MPB density (pre-dispersal)
females/ha latent

𝐵𝑖,𝑡 B𝑡 MPB attack density (post-dispersal)

Table 4.1: Notation for state variables in the MPB attack dynamics model. Indexing is
by year 𝑡 and location 𝑖, and boldface denotes the vector of all 𝑛 locations, eg. ϕ𝑡 =

(𝜙1,𝑡 , 𝜙2,𝑡 , . . . , 𝜙𝑛,𝑡)′.
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4.2.1 Attack dynamics (𝜙)

Our description of pine mortality 𝜙𝑖,𝑡 (𝐵𝑖,𝑡) will generalize the red-top model of Heavilin and

Powell (2008) to better match the types of recruitment curves fitted in Cooke and Carroll

(2017). The red-top model is more easily introduced by focusing at first on a particular

location and year; so for notational convenience I omit the subscripts 𝑖 and 𝑡 until they

are needed again in Section 4.2.4. Thus, for 𝑖 and 𝑡 fixed, we relate the attack density 𝐵

(females/ha) to pine mortality 𝜙 by:

proportion of 𝐻 killed = 𝜙(𝐵) = 𝐵𝜅

𝑎𝜅 + 𝐵𝜅 where 𝑎 > 0, 𝜅 > 0. (4.1)

Parameter 𝑎 is the half-saturation value, or attack density (in females/ha) at which 50%

mortality occurs; and 𝜅 is a shape parameter controlling the density dependence. The special

case 𝜅 = 2 recovers the red top model of Heavilin and Powell (2008) (after multiplying

both sides by 𝐻). Other 𝜅 values reflect alternative regimes of density dependence. For

example larger 𝜅 (and/or 𝑎) values would coincide with a stronger defensive response by

pines, whereas when 𝜅 ≤ 1 the Allee effect vanishes, reflecting compromised defenses as

might occur for example during a drought.

Parameter estimation becomes simpler if (4.1) can be made linear in its parameters.

Observing that the odds-ratio of pine mortality 𝜙/(1− 𝜙) is (𝐵/𝑎)𝜅, we can take logarithms

to get:

logit(𝜙) = −𝜅 log(𝑎) + 𝜅 log(𝐵), (4.2)

a linear equation on the logit-log scale. This also happens to be the mathematical form of

the recruitment curve fitted in Cooke and Carroll (2017) to the data reported in Boone et al.

(2011) on attacked pines in our study area. Their analysis estimated �̂� = 1.66 for the 2 years

leading up to 2006. In years prior, a much lower value (0.56) was estimated, suggesting that

environmental stressors on pine may have relaxed the Allee effect and bolstered endemic

populations to spark the large-scale outbreaks we observe in 2006-2008 (Figure 4.1).

Once started, outbreaks are not easily stopped. Though pine vigour recovers from periods
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of stress, irruptions from the endemic to epidemic behaviour may continue as in-flights from

neighbouring infested stands push local populations higher. Figure 4.2 illustrates how 𝜙(𝐵)

changes in relation to MPB attack density for healthy pines (𝜅 > 1). Above a certain density

threshold, the MPB have sufficient numbers (𝐵𝑇 ) to cooperatively attack a healthy pine (a

mass attack), releasing them from the ordinary pressures of the Allee effect and marking

the beginning of the incipient-epidemic phase. Empirical data from our study area suggest

that a density of �̂�𝑇 ≈ 300-600 females/ha is sufficient to instigate this change in an area of

1/𝑇 = 15.3 ha (Carroll et al., 2006; Cooke and Carroll, 2017).

Figure 4.2: Host mortality as a function (4.1) of MPB attack density 𝐵 for 𝜅 = 3. Below
the inflection point (𝐵𝐴) is a regime of negative density dependence. When 𝐵 ≈ 0, the
endemic population is too small to mass-attack healthy pine. When 𝐵 rises to the incipient-
epidemic transition point 𝐵𝑇 , mass attacks become feasible and the MPB are released from
the endemic phase. At moderate densities, each attacked pine accounts for ≈ 𝑚𝐴 beetles. At
higher densities, intraspecific competition leads to diminishing returns and negative density
dependence

𝐵𝑇 is of course scale dependent; Amman (1984) estimated a quite different transition

point at the 1/𝑇 = 40.5 ha sampling resolution. However, given any scale of interest (𝑇),

and given the values of 𝜅 and 𝑎, 𝐵𝑇 can be estimated by setting 𝜙(𝐵𝑇 ) = 𝑇/𝐻 and inverting

(4.1) to get:

𝐵𝑇 =
𝑎

𝜅
√︁
𝐻/𝑇 − 1

. (4.3)

The number of beetles aggregating for a mass attack appears to be carefully moderated by
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pheromones (Safranyik and Carroll, 2006), suggesting that MPB attempt to find an optimal

attack density that is sufficient to overwhelm the tree but low enough to avoid crowd

competition. This optimum lies around 61 attackers/m2 (Raffa and Berryman, 1983), so its

stand-wide average would depend on the bark area of the trees. For example, a tree with 5.5

m2 of bark available for attack (typical of the pine-leading stands in our study area) would

have an optimum around 340 females/stem.

Under ideal conditions for MPB attack, this optimal density will presumably match the

average attack density per attacked tree, which we call the mass attack number 𝑚𝐴 (in

females/stem). This average is approximated by the slope of 𝜙(𝐵) near its inflection point

𝐵𝐴 = 𝑎 𝜅
√︁
(𝜅 − 1)/(𝜅 + 1) (where 𝜙′′(𝐵𝐴) = 0), since, at this intermediate density, 𝜙(𝐵) is

nearly linear, and increases with 𝐵 at rate 𝜙′(𝐵𝐴) ≈ 1/(𝑚𝐴𝐻). From (4.1) we can therefore

compute the approximation:

𝑚𝐴 ≈ 1/(𝜙′(𝐵𝐴)𝐻) =
4𝐵𝐴𝜅

𝐻 (𝜅2 − 1)
. (4.4)

4.2.2 Stand susceptibility (𝑎)

Though (4.3) and (4.4) have a complex nonlinear dependence on 𝜅, both equations scale lin-

early with the half-saturation value 𝑎. Stands that are highly susceptible to MPB attack have

lower values, and vice versa. It is therefore appropriate to view 𝑎 as a susceptibility measure,

which can vary with environmental factors such as weather and stand characteristics such

as pine density.

However, lacking a clear biology-based model to connect half-saturation to these factors,

we simply take the best linear approximation on the logit-log scale, writing xβ = −𝜅 log(𝑎)

for a set of unknown regression parameters β = (𝛽1, . . . 𝛽𝑛𝛽 ) and (covariate) data x =

(𝑥1, . . . 𝑥𝑛𝛽 ). By embedding xβ into (4.1) we obtain an absolute risk model in terms of

mortality (𝜙) (Nelson et al., 2008), as opposed to a relative risk model such as the stand

susceptibility index (SSI) of Shore, Safranyik, and Lemieux (2000).

Similar regression models such as in Aukema et al. (2008) have been useful for identifying
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environmental factors that have a significant (𝛽𝑘 ≠ 0) effect on outbreak occurence. For our

purposes the β simply serves as a (location-wise) correction of 𝑎 through which to estimate

MPB population sizes, so we do not focus on the 𝛽𝑘 or their effect sizes in our analysis.

However, interested readers will find the full set of linear regression covariates listed in

Appendix 4.5.1.

4.2.3 Endemic populations (𝜖)

The (aspatial) red-top model of Heavilin and Powell (2008) has no endemic equilibrium:

low density populations are viewed as unstable, tending to extinction, and occuring only by

means of immigrations from a reservoir of distant outbreaks appearing stochastically across

the landscape. However, empirical data (eg. Boone et al., 2011; Bleiker et al., 2014) suggest

that stable resident endemic populations are widespread and persistent. These low-density

populations subsist on a small number of defensively compromised pines and an assemblage

of secondary bark beetle species that assist in the colonization of weakened trees.

We introduce this stable endemic equilibrium into the red-top model by adding the

constant term 𝜖 > 0 (in females/ha) to the post-dispersal MPB population 𝐵 in the red-top

model at all sites/years prior to attack. The number 𝜖 represents a constant and spatially

uniform background level of emerging MPB. Should an in-flight from a neighbouring

outbreak occur, its density is added to the endemic cohort 𝜖 , and the combined population

attacks pines according to (4.1). The effect of the endemic term is therefore to boost the

effective size of spreading populations, increasing the likelihood that an incipient-epidemic

transition will succeed in sparking a local outbreak.

In the absence of immigrating MPB, the endemic population is too small to attack healthy

pines, so it instead seeks out defensively weakened trees. Because this pool of suitable hosts

is ephemeral and extremely small compared to 𝐻, endemic MPB incur a much higher flight-

establishment mortality cost than do outbreaking populations: Safranyik and Carroll (2006)

estimates the generation mortality of endemic MPB at 97.5%. Assuming most of this loss
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can be attributed to the search flight, the rate of attack on defensively weakened hosts under

this model would be (1 − 0.975)𝜖 females/ha (or slightly above), with the healthy pine

population variable 𝐻 unaffected.

However, if an endemic population joins with a cohort of immigrating outbreak-level

MPB, suitable hosts suddenly become abundant, and the flight-establishment losses should

drop accordingly. We assume that the generation mortality in populations capable of mass-

attacks – thought to lie in the range 80-98.6% (Safranyik and Carroll, 2006; Amman, 1984)

– mostly occurs as a result of tree defenses and crowd-competition. Unlike search flight

losses, these effects are subsumed into 𝜙(𝐵) under the model (4.1). Therefore, we estimate

the total number of attacking beetles at a given site as the sum of 𝜖 and any MPB (local or

immigrant) originating from mass-attacked trees.

4.2.4 Reproduction (𝜆)

Reproduction connects subsequent years, so we must now make the dependence of our model

variables on time and location explicit. In the red-top model, reproduction is summarized

by �̃�𝑖,𝑡 = 𝜆𝑡−1𝜙𝑖,𝑡−1𝐻𝑖,𝑡−1. This expresses that �̃�𝑖,𝑡 , the density of (non-endemic) mature

MPB emerging in year 𝑡 at location 𝑖, is proportional to the number of mass-attacked stems

in year 𝑡 − 1.

The scaling constant𝜆𝑡−1 is a productivity parameter giving the (per-tree) average number

of female MPB brood that survive to maturity and attack the following year. This kind

of large scale averaging foregoes some precision, but simplifies the model considerably,

summarizing in a single constant the many MPB within-tree growth and developement

processes that cannot be observed in aerial surveys (Berryman, 1974).

Under this model, productivity 𝜆𝑡 is not identifiable from data on 𝜙𝑖,𝑡 and 𝐻𝑖,𝑡 without

knowledge of 𝑎𝑖,𝑡 . So we instead fixed the value of 𝜆𝑡 = 𝜆 in all years to a plug-in estimate

of 𝜆 = (2/3) (250) = 166.7 (females/stem) suggested by empirical productivity data for

epidemic phase MPB (Cole and Amman, 1969, Fig. 9), and assuming a 1:2 male-female
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sex ratio (Reid, 1962). This productivity value is consistent with a 90% generation mortality

rate, calculated using the brood production regression in (Safranyik, 1988, eq. 14) on the

mean diameters (Carroll et al., 2006) and heights (Safranyik and Linton, 1991) of pine in

our study area.

Although a time (and space) dependent 𝜆 would be more realistic, it would complicate

the model considerably. We do however allow all other process model parameters to vary

with time (eg. 𝜖𝑡 , 𝜅𝑡 , β𝑡 , and the parameters of 𝐷𝑡), estimating them separately for each

year in our analysis. Variations in productivity are therefore reflected in changing stand

susceptibility 𝑎𝑖,𝑡 , which varies both spatially and temporally through β𝑡 and the local

covariates x𝑖,𝑡 (Table 4.2).

submodel vector symbols definition units

attack θ𝜙𝑡

𝜅𝑡 density dependence shape value unitless
𝜆 beetle production per attacked host females/stem
𝜖𝑡 emerging endemic MPB population level females/ha
𝑎𝑖,𝑡 half-saturation / susceptibility value females/ha
β𝑡 linear regression coefficients for 𝑎𝑖,𝑡 -

dispersal θ𝐷𝑡 𝚫𝑘,𝑡 pWMY kernel: angle, shape and range -

error θ𝑉𝑡
𝜎2
𝑡 marginal variance unitless

ρ𝑡 Gaussian autocorrelation range (x and y) km

Table 4.2: Parameters of the generalized red-top model. All except for 𝜆 are fitted to data separately
by year (𝑡). For dispersal, a 5-parameter product-WMY (pWMY) kernel (Appendix 4.5.2) is assigned
to each of 𝑚 = 625 data blocks, indexed by 𝑘 = 1, . . . 𝑚. A vector of 44 regression coefficients (β𝑡 )
defines stand susceptibility through the linear model 𝜅𝑡 log(𝑎𝑖,𝑡 ) = x𝑖,𝑡β𝑡 for local covariates x𝑖,𝑡

(Appendix 4.5.1), where 𝑖 indexes location.

4.2.5 Dispersal (�̃� → 𝐵)

We model dispersal using a redistribution kernel 𝐷𝑡 . If the emerging MPB population

�̃�𝑡,𝑖 is observed at 𝑛 spatial locations, 𝐷𝑡 specifies an 𝑛 × 𝑛 matrix (D𝑡) whose 𝑖, 𝑗 𝑡ℎ entry

[𝐷𝑡]𝑖 𝑗 is the expected proportion of the population �̃�𝑡, 𝑗 that will move to cell 𝑖 in the
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course of dispersal (Appendix 4.5.2). Thus, after adding the endemic MPB, the expected

attack density is E
(︁
𝐵𝑖,𝑡

)︁
= 𝜖𝑡 +

∑︁
𝑗

(︁
[𝐷𝑡]𝑖 𝑗 �̃�𝑡−1, 𝑗

)︁
. The equivalent matrix-vector equation

E (B𝑡) = 𝜖𝑡I +D𝑡B̃𝑡 allows us to drop the cumbersome location indices (𝑖), so we will use

this simpified notation whenever possible.

The 𝑖𝑡ℎ entry of E (B𝑡) estimates the density of attackers, sometimes called beetle

pressure, at stand location 𝑖 in year 𝑡. Beetle pressure is a common feature of MPB outbreak

risk models (eg. Wulder et al., 2006; Preisler et al., 2012), where it expresses proximity

to infestations by a weighted sum of severity values or presence/absence indicators in a

neighbourhood of the target stand. The choice of 𝐷𝑡 reflects assumptions about how MPB

redistribute in search of new hosts. Ad-hoc assignments of weights to [𝐷𝑡]𝑖 𝑗 often suffices

for predictive modeling (eg. Kärvemo et al., 2014; Kunegel-Lion, McIntosh, and Lewis,

2018), but when studying attack dynamics it is more desireable to use a model for the

process of flight (Nelson et al., 2008) such as a biodiffusion-based redistribution kernel.

Our flight model approximates the Whittle-Matérn-Yasuda (WMY) kernel family (Ya-

suda, 1975), which describes diffusive movements through complex habitat (see Chapter 3).

Included in this family are a number of distinct isotropic kernels that have been advocated

in previous studies of similar datasets (eg. Turchin and Thoeny, 1993; Heavilin and Powell,

2008; Goodsman et al., 2016). Figure 4.3 (middle) is one example, arising from diffusion

with constant settling.

We will calculate the [𝐷𝑡]𝑖 𝑗 values using pWMY kernels (Appendix 4.5.2), which

in addition to closely approximating the WMY, easily incorporate anisotropic (directed)

movement patterns (Figure 4.3, right) as might be expected from the effect of local winds

(Ainslie and Jackson, 2011) and patchy habitat (Powell et al., 2018).

Importantly, the pWMY can be computed far more quickly than the WMY. Computational

simplicity allows different dispersal patterns to be quickly fitted at different sites within a

dataset. In our study area, this revealed a complex pattern of directionality (nonstationarity)

that varies depending on the position of the source population.
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sources isotropic kernel

0 4 8km

anisotropic kernel

Figure 4.3: MPB density pre (left) and post-dispersal (middle and right) for two models of
MPB flight patterns: an isotropic Bessel kernel (middle) with parameters from Goodsman
et al. (2016), and an anisotropic pWMY kernel (right) parametrized to resemble it, but with
the addition of a northeast-facing directionality

Nonstationarity in dispersal is unsurprising in light of work by Powell and Bentz (2014)

on cues for direction and motility in MPB flights. However, lacking high resolution data

on these cues, we opted for a phenomenological model that combines multiple stationary

(pWMY) kernels to form a nonstationary one. Each stationary kernel is fitted separately to

a 10 × 10 km block of the data, and a weighted average of their predictions is taken, with

weights inversely related to distance from the block centroid (Figure 4.4). The resulting

nonstationary dispersal model is itself a kernel, so we refer to it as 𝐷𝑡 (with associated

matrix D𝑡). Its explicit mathematical form is derived in Appendix 4.5.2.

To construct 𝐷𝑡 we used a total of 625 stationary kernels, positioned on a 25 × 25 grid

of block centroids covering the study area. Each captures local flight patterns only; Thus

we allow it to influence beetle pressure E (B𝑡) only in a neighbourhood of the block over

which it was fitted. The distance-weighting function was chosen such that zero weight is

assigned beyond a distance of 7.1 km, corresponding to the distance from the centroid to

the corners of the block.

This scheme tracks movements up to 14.2 km, a reasonable upper bound on self-powered

dispersal given laboratory studies suggesting fewer than 10% of MPB are capable of flight

beyond this distance (Shegelski, Evenden, and Sperling, 2019). To avoid overparameterizing
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Figure 4.4: A nonstationary flight pattern estimation scheme: stationary kernels are sepa-
rately fitted to small overlapping blocks of data (at left, a block and its centroid). Expected
beetle pressure (detail, at right) is computed as the distance-weighted average of nearby
kernel predictions. The middle panel shows the nearest 9 block centroids and their kernel
predictions before averaging

an already complicated model – and lacking data on wind patterns – we assumed that

atmospherically-driven flight events (such as those documented by Jackson et al., 2008)

were rare enough to ignore.

4.2.6 Data

Pine density H𝑡 was estimated using the model output of Beaudoin et al. (2014) for the

year 2001, after adjusting for losses due to wildfire, logging, and pest damage incurred

during the intervening years (Appendix 4.5.1). For simplicity we did not attempt to model

regeneration, but rather assume that changes in density due to growth were small enough to

ignore over the period 2001-2008.

Pine mortality data are drawn from the AOS of the Merritt TSA (Figure 4.1) for the attack

years 2006-2008. These were rasterized by standard methods (Appendix 4.5.1) to produce

a 1000 × 1000 grid of sample locations at a 1 ha resolution, matching the geometry of the

pine density dataset. To avoid edge effects in dispersal calculations, we excluded a ≈10km

buffer at the edge of this grid from the response data, forming the (logit-transformed) vector

ϕt from the subgrid of dimensions 893× 893 centered on this region (a within-year sample
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size of 797,449 points).

4.2.7 Errors and data-fitting

A redistribution kernel is a probabilistic model – it connects MPB damage patterns to the

expected density of attackers arriving next year at each location E(B𝑡). Variations of

B𝑡 about this mean should therefore be modeled as error. Investigations into ecological

dispersal by Preston (1948) and Limpert, Stahel, and Abbt (2001) inform us these errors

are likely to be lognormally distributed. Assuming,
(︁
E(𝐵𝑖,𝑡) − 𝐵𝑖,𝑡

)︁ 𝑖𝑖𝑑∼ lognormal(0, �̃�2
𝑡 ),

we can summarize Sections 4.2.1-4.2.4 in the equation:

logit (ϕ𝑡)⏞ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ⏞
pine mortality log-odds

= X𝑡β𝑡⏞⏟⏟⏞
susceptibility

+ 𝜅𝑡 log(𝜖𝑡I + 𝜆D𝑡 (ϕ𝑡−1 ⊙ H𝑡−1))⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
beetle pressure

+ Z𝑡 ,⏞⏟⏟⏞
error

(4.5)

where X𝑡 = (x′
1,𝑡 , . . .x

′
𝑛,𝑡)′ is the (covariate) data matrix for year 𝑡, and Z𝑡 is the vector of

process errors arising from B𝑡 . The logit and log functions are applied elementwise, and

the symbol ⊙ denotes elementwise multiplication. This slight abuse of notation allows us

to suppress the location indices 𝑖 and write the complete model (4.5) in terms of length-𝑛

vector operations.

Under the lognormal assumption, Z𝑡 is mean-zero multivariate normal (MVN), with a

variance 𝜅𝑡�̃�2
𝑡 that scales with the strength of the density dependence in 𝜙(𝐵). We assume

that measurement error introduces an additional mean-zero MVN random vector appearing

additively on the logit scale of (4.5). Since these errors are presumably independent of

B𝑡 , their effect (by standard MVN theory) is to simply increase the variance of Z𝑡 . Thus,

ignoring any autocorrelation, we could write Z𝑡 ∼ MVN
(︁
0, 𝜎2

𝑡 I
)︁
, where 𝜎2

𝑡 is the sum of

the variances from process and measurement error.

For simplicity we ignored temporal autocorrelation by treating each year of data in the

analysis as independent, as is commonly done in large-scale MPB outbreak analyses (eg.

Heavilin and Powell, 2008; Goodsman et al., 2016). While this is not ideal, it avoids

the difficulties associated with aligning subsequent years of raster data containing a large
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number of slight positional errors (Wulder et al., 2009), while simplifying the error model

both mathematically and computationally.

Spatial autocorrelation, on the other hand, is more easily corrected using covariograms

(Chiles and Delfiner, 2012). For computational efficiency we used the Gaussian covari-

ogram, which generates a covariance matrix V𝑡 (to replace 𝜎2
𝑡 I above) based on 𝜎2

𝑡 and

a pair of correlation range parameters, ρ𝑡 . In this model, the logarithm of the likelihood

function for observations of ϕ𝑡 , given ϕ𝑡−1 and X𝑡 is proportional to:

L (θ𝑡 | Z𝑡) = − log (det(V𝑡)) −Z′
𝑡V

−1
𝑡 Z𝑡 where θ𝑡 =

(︁
θ𝜙𝑡 , θ𝐷𝑡

, θ𝑉𝑡
)︁

(4.6)

with Z𝑡 as defined in (4.5), and model parameters θ𝑡 organized into components of attack

dynamics (θ𝜙𝑡 ), dispersal (θ𝐷𝑡
), and error (θ𝑉𝑡 ); as in Table 4.2. The model can now be

fitted to data by maximum likelihood estimation (MLE), which finds the maximizer of (4.6),

called θ̂𝑡 = (θ̂𝜙𝑡 , θ̂𝐷𝑡
, θ̂𝑉𝑡 ).

Our estimation method for θ̂𝑡 is based on the 2-step algorithm described in Crujeiras and

Van Keilegom (2010), but with a blockwise approach to approximating the large number

of parameters in θ̂𝐷𝑡
. Each of the 625 pWMY kernels is fitted indendently to the data

in its block, before being combined to form the nonstationary kernel matrix D̂𝑡 . By

assuming D𝑡 ≈ D̂𝑡 , estimation of the remaining parameters θ̂𝜙𝑡 and θ̂𝑉𝑡 then becomes

straightforward using generalized least squares (GLS) based methods (Chiles and Delfiner,

2012). Simulations indicated that our approach yields unbiased and reasonably precise

estimates for θ̂𝑡 (Appendix 4.5.3).

4.3 Results

The estimated endemic densities and attack curve shapes in all three years (Figure 4.5)

matched closely with ground surveys of our study area during the period 2001-2005.

The emerging endemic population (𝜖𝑡) was estimated at 388, 279, and 566 (females/ha),

respectively for the years 2006 − 2008; After flight-establishment loss, this would indicate
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approximately 7 − 14 attacks/ha by the endemic phase, similar to the ranges reported in

Boone et al. (2011) and Bleiker et al. (2014). A density dependence in attack was detected

in all years, with 𝜅 estimated at 1.69, 1.32, and 1.67
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Figure 4.5: Fitted attack parameters. At left, estimates of the endemic population and
expected attack rates lying within the range (dotted lines) reported in Boone et al. (2011).
At right, estimates of the attack curve shape compared with reference levels from Cooke
and Carroll (2017) (dotted lines)

Estimates of stand susceptibility 𝑎𝑖,𝑡 varied across the landscape, being spatially depen-

dent on x𝑖,𝑡 . Locations unsuitable to MPB (such as unforested areas) tended to assume

extremely large 𝑎𝑖,𝑡 values whereas areas with optimal habitat for MPB assumed much

smaller ones. Restricting our attention to optimal stands only – ie. those having a density

of 800-1500 stems/ha and aged > 80 yrs (Carroll et al., 2006), representing around 150,000

locations – the observed distribution of susceptibility values is more easily compared to

empirical data from similar outbreaks (Figure 4.6).

For example the modes of the estimated 𝑚𝐴𝑖,𝑡 values over these optimal stands were

centered at 336, 932, and 480 females/stem, for the years 2006-2008 respectively. This is

reasonably consistent with the 300-617 females/stem range observed in our study area by

Safranyik and Linton (1991) during a previous outbreak in 1984. Using data on average

diameters and attack heights for these optimal stands (23cm, Carroll et al., 2006; and
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11.36m, Safranyik and Linton, 1991; respectively), we estimate a typical bark area of 5.5

m2/stem (Safranyik, 1988, eq. 6). Our typical per-m2 observed attack density (𝑚𝐴𝑖,𝑡/5.5)

therefore lay in the range of 61-170 females/m2. Note that the lower end of this range

(observed in 2006) coincides exactly with the optimal attack density measured by Raffa and

Berryman (1983) (Figure 4.6, right).
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Figure 4.6: Histograms of estimated susceptibility (𝑎𝑖,𝑡 left) in stands optimal for MPB in
the years 2006-2008, and two associated quantities: (middle) the beetle pressure required
for one mass attack per 15 ha, with dotted lines indicating an empirical range (Cooke
and Carroll, 2017); and the mass attack number (right), with a dotted line indicating the
optimum of Raffa and Berryman (1983).

Flight events under the fitted model are summarized by the blockwise kernel estimates

in Figure 4.7 and resulting beetle pressure heatmaps in Figure 4.8.

4.4 Discussion

The S-shaped recruitment curves that characterize the nonlinearity of MPB attack dynamics

(eg. Raffa and Berryman, 1983; Boone et al., 2011) are usually fitted to field data on

individual attacked trees, and so they relate attack density to the mortality among pines

undergoing attack. This is a conditional probability model. For example the model of
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infested

Figure 4.7: Diffusion ellipses summarizing the angle and effective range corresponding
to each of the 625 fitted pWMY parameter sets used to construct D̂𝑡 for each year. Each
ellipse inscribes a contour of constant density for dispersal from its center. Line thickness
is scaled to match the estimated number of MPB displaced, emphasizing major outbreak
centers. Infestations from the previous year are shaded to indicate the spatial distribution
of source populations.
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Figure 4.8: Heatmaps of log(𝜆D̂𝑡 (ϕ𝑡−1 ⊙ H𝑡−1)), the fitted beetle pressure values arising
from flight events in the years 2006-2008 (excluding endemic MPB). D̂𝑡 is the moving
average of predictions from a 25 × 25 grid of local stationary models, each fitted to a local
subset of the data

Cooke and Carroll (2017) has the form:

logit (Pr(pine mortality | attack)) = 𝐴 + 𝜅 log(𝑁𝑎) = (𝐴 − 𝜅 log(𝑐)) + 𝜅 log(𝐵) (4.7)

where 𝐴 is an dimensionless intercept; and 𝑁𝑎 is the number of stems attacked within the

study plot, which we expect to scale according to 𝑐𝑁𝑎 ≈ 𝐵 with the attack density 𝐵 (in

females/ha).

Our model however is based on aerial data, from which failed attacks cannot be resolved.
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In (4.2) we therefore related 𝐵 to the unconditional probability of stand level mortality

Pr(pine mortality | attack) Pr(attack), which we called 𝜙. Notice that when Pr(attack) =

1, both the red-top model of Heavilin and Powell (2008) and our generalization (4.1)

coincide exactly with (4.7). In reality, attack rates will be much lower, so in the high-level

description (4.1) we make the assumption that the logit-linear relationship (4.7) remains

after aggregating mortality data at the 1 hectare scale.

Our results (Figure 4.5) supported this assumption. Indeed the estimated density de-

pendence parameter �̂� in 2006 and 2008 very nearly matched the value of 1.66 reported

by Cooke and Carroll (2017) for pooled recruitment curve data from the preceeding years

2002-2003 and 2005. This indicates that not only is density dependence detectable from

stand-level AOS data (in the absence of failed attack counts) – supporting the findings of

Goodsman et al. (2016) on Allee effects – but also that the precise shape of the attack curve

in (4.7) can be estimated from aerial data on ϕ𝑡 and H𝑡 alone. This includes both the Allee

and compensatory (crowd competition) effects (Figure 4.2).

In Section 4.2.1 we showed how, via stand-susceptibility (𝑎), this 𝜅 value is mathe-

matically linked to the mass attack number and the incipient-epidemic transition point. A

comparison of our point estimates for these parameters with empirical data from previous

years showed reasonably good agreement, supporting the theory behind formulae (4.3) and

(4.4). From yearly plots of the distribution of these values over locations of optimal habitat

(Figure 4.6), we see that 2006 was a year of strong population growth for MPB, with a rela-

tively low threshold for outbreak emergence (𝐵𝑇 ), and mass attack numbers (𝑚𝐴) centered

at or near the optimum for brood production.

MPB populations continued to expand through the next two years, before collapsing in

2009. This expansion was accompanied by a large number incipient epidemic transition

events. Our model indicates that in optimal habitat these events typically happened when

MPB attack densities increased through the range 427-1114 of females/ha (the modes of

the estimated 𝐵𝑇𝑖,𝑡 by year; Figure 4.6, middle). This agrees with empirical observations by
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(Cooke and Carroll, 2017) of a transition point in the 300-600 range during the five years

leading up to 2006, and indicates that 𝐵𝑇 values spiked as the epidemic neared collapse in

2008

These increases, along with the elevated 𝑚𝐴 levels in 2007-2008, can be attributed

to host depletion. MBP tend to prefer pine of a certain phloem, size, and vigour class

(Shrimpton and Thomson, 1985; Cole and McGregor, 1983; Raffa and Berryman, 1983).

As the preferred hosts become scarce, MPB likely balance increasing fitness costs by first

intensifying mass attacks on the few that remain (Lewis, Nelson, and Xu, 2010), thus

effectively increasing 𝑚𝐴 above its optimal level. Similarly, a scarcity of suitable mass-

attack targets can be expected to make spontaneous eruptions from the endemic phase less

likely.

These findings support the observation of Carroll et al. (2006) that the incipient-epidemic

transition point seems to occur at a level slightly above the density required to mass-attack

a single pine. Our model expresses this quantity by the ratio 𝐵𝑇𝑖,𝑡/𝑚𝐴𝑖,𝑡 , whose median

values (in optimal MPB habitat) were 2.2, 0.5, and 2.0 in the years 2006-2008, respectively.

Our estimates of the endemic population size 𝜖𝑡 in each year (Figure 4.5) were in re-

markably close agreement with ranges expected from field studies of this cryptic population

phase (Boone et al., 2011; Bleiker et al., 2014). On dividing the 𝐵𝑇𝑖,𝑡 values in Figure 4.6

by these estimated 𝜖𝑡 and taking medians, we find that a 2.5− 3.2X increase in the endemic

population was typically sufficient to initiate an outbreak. This illustrates how outbreaks

might sporadically arise across the landscape – if environmental conditions were to double

or triple the number of injured/weakened pines available to the endemic population, this

could allow it to grow to the point of exceeding 𝐵𝑇 in the absence immigrating MPB – in

accordance with the theory of Berryman (1978), and the explanation of Cooke and Carroll

(2017) as to the origin of the outbreaks analysed in Section 4.3.

In-flights of MPB are of course crucial to understanding MPB outbreak dynamics –

allowing them to spread through space. This is clear from the large number of spatial
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regression studies pointing to beetle pressure as the single most significant factor in outbreak

development (eg. Aukema et al., 2008; Preisler et al., 2012; Sambaraju et al., 2012). As

we explained in Section 4.2.5, beetle pressure simply expresses our modeling assumptions

about MPB dispersal; Different modelling approaches handle this problem in different ways.

With few exceptions (such as Powell and Bentz, 2014; Powell et al., 2018) forecasting

models often reconstruct beetle pressure in a heuristic way, by defining infestation indicator

variables that are summed over local spatial neighbourhoods (see eg. Shore, Safranyik, and

Lemieux, 2000; Aukema et al., 2008; Robertson et al., 2009; Kunegel-Lion, McIntosh, and

Lewis, 2018). Many attack dynamics regression models also employ this trick (eg. Zhu,

Huang, and Reyes, 2010; Preisler et al., 2012; Sambaraju et al., 2012; Kärvemo et al.,

2014), and indeed a stationary and isotropic kernel-based representation (as in Heavilin

and Powell, 2008; Goodsman et al., 2016) is simply a refinement that finds a biology-based

shape (and range) for the filter. Our method refined this idea further, in a novel way, by

introducing directedness and location-dependence by means of a weighted combination of

stationary kernels.

These fitted pWMY kernels identified a large number of highly directed (anisotropic)

dispersal events in all years. Their combination to form a nonstationary kernel (�̂�𝑡) brings

into focus a complex landscape of MPB movement patterns (Figure 4.8), illustrating how

detailed information on beetle pressure can be recovered from AOS data by rethinking the

usual modeling assumptions about dispersal. The fitted grid of dispersal kernel parameters

(θ̂𝐷𝑘,𝑡
) that generate �̂�𝑡 (Figure 4.7) resembles a smooth vector field, suggestive of a

connection with local wind patterns or habitat characteristics. Future work might connect

environmental drivers to θ𝐷𝑘,𝑡
(similar to Powell and Bentz, 2014) as a means of studying

the dispersal process itself.

Though we do not analyse the kernel parameters (θ𝐷𝑡
) here, it is worth remarking that in

most of the pWMY kernels a leptokurtic pattern of dispersal was favoured over the simpler

Gaussian model of biodiffusion. This highlights the versatility of the pWMY in modeling
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different flight mechanisms (see also Chapter 3), and suggests that a wide range of MPB

flight behaviours are realized across the landscape: including both the fat-tailed patterns,

proposed by Goodsman et al. (2016) and Turchin and Thoeny (1993); and the Gaussian,

suggested by Heavilin and Powell (2008).

The model-fitting procedure of Section 4.2.7 is intended to study attack dynamics (at

least) one year after they occur, not to predict them in future summers. Nor is our esti-

mate of stand susceptibility 𝑎𝑖,𝑡 (as a log-linear function of local covariates) intended for

extrapolation; A more judicious choice of covariates whose values can be projected in time

(combined with a significance-based feature selection) would be needed in a predictive risk

model for MPB damage. Nonetheless we think the framework in (4.5) – and in particular

the nonstationary approach to dispersal – will be helpful in building model-based solutions

to management and forecasting problems.

For example, given observations (or projections) of pre-dispersal MPB density (B̃𝑡), the

fitted dispersal matrix and endemic level (say D̂ and 𝜖) from a previous year could be used

to predict beetle pressure using the equation B𝑡 = 𝜖I + D̂B̃𝑡 from Section 4.2.5. This

in turn could be compared with a given incipient-epidemic transition point 𝐵𝑇 to classify

stands as potentially infested (𝐵𝑖,𝑡 > 𝐵𝑇 ) or not. We illustrate the idea in Figure 4.9 using

the empirical threshold of 𝐵𝑇 = 450 (the midpoint of the range reported in Cooke and

Carroll, 2017), and comparing to estimates that assume 𝜖𝑡 = 0. Notice that neither 𝑎𝑖,𝑡 , 𝜅𝑡

nor θ𝑉𝑡 is needed for this classification.

The true positive rate in the training year 2006 was 93.5%, and in the forecast for 2007

it improved to 98.0%. Note that these high detection rates lie near the level mentioned

in Six, Biber, and Long (2014) for stabilizing outbreaks by mitigation measures (such as

cut and burn). However with high recall comes a high false positive rate (low precision);

Moreover the 2007 prediction required information on pre-dispersal density that is typically

not available until after the attack summer being predicted – recall that B̃𝑡 is derived from

crown fade data with a one-year lag. One possible solution would be to iterate equation
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Figure 4.9: Infested locations identified in the training year and next-year forecasts. Using
the fitted values of 𝜖𝑡 and D𝑡 from the training year 2006 (left), locations were classified
as infested (shaded) if the predicted beetle pressure exceeded 𝐵𝑇 = 450. Using these
same parameters along with the observed attack damage and pine density in 2006, we then
predicted infestations in 2007 (right). For comparison, an endemic-free estimate is also
plotted (darker shaded regions) by replacing 𝐵𝑖,𝑡 with 𝐵𝑖,𝑡 − 𝜖𝑡 . The effect is to withdraw
the contours of infestation inward, limiting spread considerably.

(4.5) with simulated error to produce a suite of multi-year forecasts under various scenarios

of stand susceptibility and process error, an idea we plan to explore in future work.

Figure 4.9 illustrates an important consequence of the ubiquity of endemic MPB in their

natural range: it increases the potential for outbreaks to spread into new areas. By including

the endemic population in our beetle pressure estimates, the contours of the infestation

predictions broadened, sometimes by several kilometers. This improved detection rates

(true positive rate in 2006 without the endemic component: 71%; and in 2007: 84%), a

finding that may be important to modelers building outbreak spread forecasts.

It also suggests that the potential for range expansion may be underestimated if the

endemic contribution to MPB outbreaks is ignored. This will be of particular relevance in

contemporary areas of concern, such as the Boreal forest in Alberta (Safranyik et al., 2010).

The establishment of endemic populations should be monitored as it has the potential to

accelerate the spread of outbreaks and thus speed the range expansion of the MPB.
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4.5 Appendices to Chapter 4

4.5.1 Datasets

Host density H

Host density 𝐻𝑖,𝑡 , or the number of susceptible overstory pine trees within the 1 ha square

of land in cell 𝑖 in year 𝑡, was approximated using variable ℎ𝑖,𝑡 , the combined above-ground

biomass at cell 𝑖 attributed to Pinus species. We calculated this from a 2001 baseline

estimate supplied in Beaudoin et al. (2014), making adjustments in each subsequent year by

subtracting losses from wildfire and logging (using data from http://www.hectaresbc.org),

as well as MPB.

While raw data in units of live mature stems/ha would be both more realistic and

convenient, they are typically not available at the scale and resolution that we are interested

in. We therefore simply rescaled ℎ𝑖 to match empirical distributions of 𝐻𝑖 based on ground

surveys (Figure 4.10).

Figure 4.10: Heatmap of host density 𝐻𝑖,𝑡 = 𝑠ℎℎ𝑖,𝑡 , estimated from rescaled pine volume
data ℎ𝑖,𝑡 . At right, the empirical CDF of pre-attack host density in 2006 and 2008 (dashed
and dotted lines) are compared against an overstory pine density survey from 2006 by Nigh,
Antos, and Parish (2008) (solid line).
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In a 2006 survey of 28 high-density stands in the Merritt TSA by Nigh, Antos, and Parish

(2008), the highest observed density was 2810 stems/ha, 92% of which was pine. Based on

that maximum we assigned a scaling factor of 𝑠ℎ = 0.92×2810/max𝑖 (ℎ𝑖,2006) = 9.1 and fixed

𝐻𝑖,𝑡 = 𝑠ℎℎ𝑖,𝑡 . A more cautious approach, for example using mensurational projections for the

stands in our study area, is possible but was avoided for the sake of simplicity. However our

linear rescaling produced a reasonably close agreement in empirical cumulative distribution

(CDF) functions (Figure 4.10), and the scaling factor of ≈ 10𝑋 is essentially a linearization

of the more carefully constructed nonlinear volume-density curve derived in Goodsman

et al. (2016) (Appendix S1).

Pine mortality ϕ

Our response variable 𝜙𝑖,𝑡 is the percent of 𝐻𝑖,𝑡 killed by pine beetle attack in the summer

of year 𝑡. We derived these values from AOS data comprising two types of GIS information

collected annually by BC’s provincial forest management agency: polygons with categorical

damage severity attributes (digitized sketch maps) indicating large contiguous areas of

infestation; and spot data indicating a small cluster of infested stems at a particular location.

Because crown-fade typically happens with a one-year delay, we refer to year 𝑡 + 1 in the

AOS dataset as the attack year 𝑡.

To convert polygons to raster format we followed a protocol introduced by Chen and

Walton (2011); the five AOS damage severity categories (corresponding to intervals of

percent mortality: trace <1%, light 1-10%, moderate 11-29%, severe 30-49%, very severe

>50%) were interpreted by multiplying the midpoint of each interval with the percent area of

overlap with each cell. Spots were interpreted by defining a quarter-hectare circle centered

at the point coordinates and assigning it a 30% mortality value (reflecting AOS-wide average

stand loading and spot infestation levels).

Some minor modifications of these mortality data were needed to correct obvious posi-

tional errors and to make our analysis approach feasible: Attack rates >1 (due to multiple
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overlapping damage observations) were truncated to one, and values at locations unsuitable

for MPB (water bodies, non-treed areas, etc.) were set to zero. We then added the small

constant 𝜉 = 4 × 10−6 (equal to one half the minimum finite logit value) to each cell before

dividing by 1 + 𝜉. This ensured that 0 < 𝜙𝑖 < 1, so that logit(𝜙𝑖) is defineable all sites. It is

also consistent with premise of ubiquitous endemic MPB populations, undetectable by the

AOS (Wulder et al., 2006).

Stand susceptibility covariates

Beetle pressure is only part of the equation in MPB attack dynamics. Environmental

conditions before and during an attack, as well as the density, composition, and health of

the stand influence the ability of a given pine to resist bark beetle attack (Safranyik and

Carroll, 2006; Nelson et al., 2008). These local conditions are often summarized as stand

susceptibility, a ranking of relative risk (to MPB attack) computed from local covariates.

The model of Shore, Safranyik, and Lemieux (2000), for example, uses the product of four

covariates relating to: pine dominance; stand density; stand age; and elevation.

Our model uses a similar product of stand characteristics along with a suite of additional

microclimate and topography-related covariates, similar to those found in Aukema et al.

(2008). Local stand characteristics, such as 𝐻𝑖, were derived from the Beaudoin et al.

(2014) model, and topographical features were drawn from provincial government datasets

(http://www.hectaresbc.org). Local weather variables, such as temperature and precipitation

highs/lows were constructed using the climateBC model, via elevation-adjusted extrapola-

tions from weather station measurements and climatic norms (Wang et al., 2007). In total,

we compiled 43 such covariates for each of the 𝑛 sites in the study area (𝑛𝛽 = 44, including

an intercept). These are the rows of the 𝑛 × 𝑛𝛽 matrices X𝑡 . They are summarized in Table

4.3.
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4.5.2 Redistribution kernels for 2-dimensional space

Redistribution kernels view dispersal events as moving individuals from a fixed source to a

random destination. If the coordinates of the 𝑖𝑡ℎ possible destination are s𝑖 = (𝑥𝑖, 𝑦𝑖)′, then

we write the movement vector from source ( 𝑗) to destination (𝑖) as δ𝑖 𝑗 = s𝑖 −s 𝑗 = (𝛿𝑥
𝑖 𝑗
, 𝛿
𝑦

𝑖 𝑗
)′,

where 𝛿𝑥
𝑖 𝑗

= 𝑥𝑖 − 𝑥 𝑗 and 𝛿𝑦
𝑖 𝑗

= 𝑦𝑖 − 𝑦 𝑗 are the components of the movement along the

𝑥 and 𝑦 axes. Direction (angle 𝛼𝑖 𝑗 ) and distance (𝑑𝑖 𝑗 ) are then given by the identities

𝑑2
𝑖 𝑗
= |δ𝑖 𝑗 |2 = (𝛿𝑥

𝑖 𝑗
)2 + (𝛿𝑦

𝑖 𝑗
)2, and tan(𝛼𝑖 𝑗 ) = 𝛿𝑦𝑖 𝑗/𝛿𝑥𝑖 𝑗 .

We define the redistribution kernel𝐷 (s𝑖, s 𝑗 ;𝚫) to be the probability mass function (PMF)

for possible destinations, with parameters𝚫. For simplicity modelers usually choose kernels

that are spatially stationary (invariant to location), and isotropic (invariant to direction).

Stationarity means movement probabilities depend only on direction and distance, so 𝐷 can

be written 𝐷 (δ𝑖 𝑗 ;𝚫). With the additional assumption of isotropy, 𝐷 becomes a function of

distance 𝑑𝑖 𝑗 only, or 𝐷 = 𝐷 (𝑑𝑖 𝑗 ;𝚫). In general, we will write 𝐷 for the function and [𝐷]𝑖 𝑗

for its value with source 𝑗 and destination 𝑖.

The (isotropic and stationary) Gaussian is the most common kernel in applications:

𝐷𝐺 (𝑑𝑖 𝑗 ; 𝜌) = 𝑐 exp
(︂
−𝑑2

𝑖 𝑗/𝜌
)︂
, where 𝑑𝑖 𝑗 = |s𝑖 − s 𝑗 |. (4.8)

𝑐 is a normalization constant, chosen such that with s 𝑗 fixed, the summation of (4.8) over all

destinations is equal to one. This normalization is a general requirement of any PMF, but

in the context of redistribution kernels it ensures that total population counts are conserved.

More precisely, if we start from local source populations of size �̃� 𝑗 , with individuals at each

source dispersing independently and according to 𝐷, then the expected number to arrive at

destination 𝑖 is 𝐵𝑖 =
∑︁
𝑗 [𝐷]𝑖 𝑗 �̃� 𝑗 , and the sum of the 𝐵𝑖 is equal to the sum of the source

populations.

Thus 𝐷 is sometimes chosen by selecting a function that matches the profile of empirical

data on 𝐵𝑖. Other times, hypotheses about the movement mechanism lead to mathematical

derivations. For example, under a quite general set of circumstances, diffusion through
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2D space gives rise to the WMY kernel family (Yasuda, 1975; Yamamura, 2002; Hapca,

Crawford, and Young, 2008):

𝐷𝑊
(︁
𝑑𝑖 𝑗 ;𝚫𝑊

)︁
= 𝑐

(︁
𝑑𝑖 𝑗/𝜌

)︁𝜈
𝐾𝜈

(︁
𝑑𝑖 𝑗/𝜌

)︁
, where 𝚫𝑊 = (𝜈, 𝜌)′, (4.9)

with shape parameter 𝜈 > −1; range parameter 𝜌 > 0; normalization constant 𝑐 (computed

as above); and with 𝐾𝜈 to denote the 𝜈𝑡ℎ order modified Bessel function of the second kind.

The Gaussian (4.8) and 2D Laplace kernels used in Heavilin and Powell (2008), are

limiting/special cases of the WMY (𝜈 → ∞, and 𝜈 = 1/2, respectively). The Bessel kernel

appearing in the bark beetle models of Turchin and Thoeny (1993) and Goodsman et al.

(2016) is another special case (𝜈 = 0). In this sense (4.9) is robust with respect to hypotheses

about movement. We use an approximation to (4.9) that is somewhat more flexible, the

geometrically anisotropic product-WMY:

𝐷⊗
(︁
δ𝑖 𝑗 ;𝚫

)︁
= 𝑐𝐷𝑊

(︂
𝑑𝑥𝑖 𝑗 ;𝚫

𝑥
)︂
𝐷𝑊

(︂
𝑑
𝑦

𝑖 𝑗
;𝚫𝑦

)︂
, (4.10)

with 𝚫 = (𝛼,𝚫𝑥 ,𝚫𝑦)′ , and (𝑑𝑥𝑖 𝑗 , 𝑑
𝑦

𝑖 𝑗
)′ = R𝛼δ𝑖 𝑗 ,

whereR𝛼 is the standard 2D rotation matrix for angle 𝛼 and 𝑐 the normalization constant.

This kernel is similar to the WMY, closely approximating it over much of its parameter

range, yet it can be computed far more quickly because, like the Gaussian, it is spatially

separable (as discussed in Chapter 3). Moreover it better captures directed movements, by

means of angle 𝛼 and the independent shape/range parameter sets, 𝚫𝑥 and 𝚫𝑦, representing

two orthogonal directions. Thus unlike an isotropic kernel, (4.10) captures ellipsoid patterns

of redistribution (Figure 4.3).

Our nonstationary formulation of 𝐷 uses a weighted combination of 𝑚 = 625 stationary

kernels 𝐷⊗𝑘
(𝑘 = 1 . . . 𝑚), each of the form (4.10), and each with its own parameter set 𝚫𝑘 .

Each is spatially referenced, with coordinates r𝑘 to denote the centroid of a 10×10 km block

over which 𝐷⊗𝑘
is assumed to reasonably approximate local flight patterns. The predictions

of these local kernels are combined by weighted averaging, with weights inversely related
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to distance from the centroid r𝑘 to the prediction site s𝑖. For a given weighting function

𝜔(𝑑), we define the nonstationary kernel:

𝐷 (s𝑖, s 𝑗 ;θ𝐷) = 𝑐
𝑚∑︂
𝑘=1

𝜔 ( |s𝑖 − r𝑘 |) 𝐷⊗𝑘

(︁
s𝑖 − s 𝑗 ;𝚫𝑘

)︁
, where θ𝐷 = (𝚫1, . . . ,𝚫𝑚)′ (4.11)

with normalization constant 𝑐 computed in the usual way. We used a bisquare weighting

function 𝜔(𝑑) =
⌈︁
1 − (𝑑/𝑟)2⌉︁2, with the ceiling function ⌈𝑥⌉ enforcing a cutoff distance of

𝑟 = 7.1 km beyond which zero weight is assigned. Centroids r𝑘 were arranged in a 25× 25

grid of overlapping blocks, with a spacing of 3.3 km between centroids. This balanced a

need for large samples within each block (10 × 10 km = 104 points) and a desire for high

resolution estimates of E (B𝑡).

4.5.3 Model-fitting and simulations

Covariograms are in many ways similar to redistribution kenels. We use a geometrically

anisotropic Gaussian covariogram, which defines the covariance between errors at s𝑖 and

s 𝑗 to be:

[V𝑡]𝑖 𝑗 = Cov
(︁
𝑍𝑖,𝑡 , 𝑍 𝑗 ,𝑡

)︁
= 𝜎2

𝑡 exp
(︂
(𝑑𝑥)2/𝜌𝑥

)︂
exp

(︂
(𝑑𝑦
𝑖 𝑗
)2/𝜌𝑦

)︂
, (4.12)

where (𝑑𝑥 , 𝑑𝑦)′ = R𝛼 |s𝑖 − s 𝑗 |

with 𝜌𝑥 , 𝜌𝑦 > 0 the range parameters, and 𝛼 the angle of orientation. For reasons of

computational efficiency we fixed 𝛼 = 0 so that (4.12) remains spatially separable (for more

detail on separable covariograms see Chapter 2).

4.5.4 Estimation

Supposing beetle pressure is known – either by direct measurement, or by fixing biologically

reasonable values for 𝜖𝑡 and θ𝐷𝑡
– (4.5) will become linear in the remaining attack dynamics

parameters 𝜅𝑡 and β𝑡 . The maximization problem (4.6) then becomes a spatial linear

regression on stand susceptibility, much like in Aukema et al. (2008) and Zhu, Huang, and

Reyes (2010) except with an explicit (rather than implicit) error model. In this situation,
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using generalized least squares (GLS), it is straightforward to find θ̂𝜙𝑡 and θ̂𝑉𝑡 numerically

using a 2-step estimator (Chiles and Delfiner, 2012).

Similarly if θ𝐷𝑡
, but not θ𝜙𝑡 , is known, it remains a relatively straightforward 1-

dimensional optimization problem to find θ̂𝜙𝑡 and θ̂𝑉𝑡 by profile likelihood on 𝜖 using

GLS as above (Crujeiras and Van Keilegom, 2010). However with all three components

unknown, the inference problem is far more involved. Our solution is three stage algorithm

that requires an initial estimate of beetle pressure. We used 𝜖 = 0 and the stationary Bessel

kernel reported in Goodsman et al. (2016):

1. Assume V𝑡 ∝ I . Estimate β̂𝑡 and �̂�𝑡 by OLS given the initial beetle pressure values.

Estimate �̂�𝑡 by blockwise MLE given β = β̂𝑡 . Estimate θ̂𝜙𝑡 by profile likelihood on

𝜖 given 𝐷𝑡 = �̂�𝑡 .

2. Estimate θ̂𝑉𝑡 by MLE on the model residuals from stage 1. Refine the estimate of θ̂𝜙𝑡

by profile likelihood on 𝜖 given 𝐷𝑡 = �̂�𝑡 .

3. Assume θ𝑉𝑡 = θ̂𝑉𝑡 . Refine the estimate of �̂�𝑡 by blockwise MLE given β = β̂𝑡 from

stage 2. Refine the estimate of θ̂𝜙𝑡 by profile likelihood on 𝜖 given 𝐷𝑡 = �̂�𝑡 .

In stages 1 and 3, "blockwise MLE" for �̂�𝑡 means the following: we split the dataset

into square blocks (each containing 104 locations) centered over the 625 points of a 25× 25

evenly spaced grid covering the study area, and assigned a pWMY kernel (with parameters

𝚫𝑘,𝑡) to each one. Fixing β𝑡 and V𝑡 to their most current estimates as specified in stages

1/3, for each block we jointly estimated the seven remaining unknown parameters (𝜖 , 𝜅, and

𝚫𝑘,𝑡) by numerically maximimizing the likelihood function (4.6), under the assumption that

𝐷𝑡 is the stationary kernel (4.10) with parameters 𝚫𝑘,𝑡 . We then used the �̂�𝑘,𝑡 to construct

𝐷𝑡 using (4.11) (discarding the local estimates of 𝜖 and 𝜅).
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Simulations

Our 3-stage algorithm is similar to one described by Crujeiras and Van Keilegom (2010),

where θ̂𝜙𝑡 and θ̂𝐷𝑡
are jointly estimated and θ̂𝑡 is known to be asymptotically normal and

unbiased. However since ours estimates θ̂𝜙𝑡 and θ̂𝐷𝑡
separately, we have no theoretical

guarantees of its large-sample properties. Instead we investigated the properties of our

estimators in simulations.

Since our model is computationally intensive, we conducted simulations on a smaller

spatial scale – 33 × 33 km, covered by a 5 × 5 layout of blocks – and generated 𝐷𝑡 using

anisotropic Gaussian (instead of pWMY) kernels. The fitted model, however, was as

described in the main text, using pWMY kernels to fit 𝐷𝑡 . In each of 100 repetitions, we

assigned values to the parameters in Table 4.2 uniformly at random within a biologically

reasonable range – eg. 0.1 < 𝜅 < 25, 1 < 𝜖 < 500, and 25 < 𝜆 < 1000 – and used covariate

data pulled from a randomly located subset of the full 2008 data. We then used (4.5) to

compute the true response values logit(ϕ), adding them to randomly generated MVN errors

Z𝑡 to produce a (simulated) observed response.

The response and associated covariates were fed into the algorithm of Appendix 4.5.4 to

yield estimates θ̂𝑡 separately for each repetition. Errors in estimation for the attack param-

eters θ𝜙𝑡 and the angles of anisotropy 𝛼𝑘,𝑡 are summarized in Figure 4.11. For comparison

we also report the errors after stage 1, where the Z𝑡 are assumed to be indepedendent in

space (a model misspecification).

Raster plots of the estimated post-flight MPB density closely approximated the true

(simulated) ones. Individual fitted stationary kernels also closely resembled the true ones,

favouring large shape values (and thus approximating the Gaussian closely), and estimating

the dispersal orientation angles with remarkable precision. Interestingly the autocorrelation

correction (stages 2-3) had little impact on these angle estimates, so although beetle density

estimates differed slightly between stages 1 and 3, the error distribution of the 𝛼𝑘,𝑡 appears

largely unchanged (Figure 4.11).
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Figure 4.11: Kernel density plots (smoothed histograms) of the relative errors in parameter
estimates using the 3-stage algorithm (Appendix 4.5.4), in 100 independent simulations
(indexed by 𝑡). Results on 44 regression parameters (𝛽1,𝑡 . . . 𝛽44,𝑡), and 25 angles of
dispersal anisotropy (𝛼1,𝑡 . . . 𝛼25,𝑡) are pooled. Stage 1 estimators ignore autocorrelation.
Stage 3 estimators correct for it.

However the results for the other parameters highlight some of the reasons we must not

ignore spatial autocorrelation: uncertainty is underestimated under an incorrect indepen-

dence assumption, leading to a wider than expected spread of errors and more frequent

misspecifications of �̂�𝑖,𝑡 . In our case, this imprecision appeared to introduce bias in the

more sensitive components of the model; Both 𝜖 and 𝜅 tended to be underestimated in stage

1. The stage 3 autocorrelation correction appears to largely eliminate this bias and improve

precision (peakedness of the density plots).

The error distributions of the individual �̂�𝑘,𝑡 showed good agreement with the large
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sample asymptoptic theory in Crujeiras and Van Keilegom (2010), from which confidence

intervals can be computed by inverting the Fisher information matrix corresponding to (4.6).

Uncertainty in the distributions for 𝜖 and 𝜅, however, was underestimated by this theory; with

only 38% (and 42%, respectively) of estimates lying inside their nominal 95% intervals.

This may be due to an inadequate sample size, or a failure to find the values of θ̂𝜙𝑡 and θ̂𝐷𝑡

that jointly maximize (4.6) in stages 1 and/or 3. We therefore omit confidence intervals for

these parameters in the main text, reporting the 𝜖 and �̂� simply as point estimates.
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Category Name Units Source

topography

altitude m above sea level
provincial topography
layers from hectaresbc.org
(accessed 06/2019)

slope ◦ above horizontal

aspect ◦ from true north

lakes indicator binary

stand inventory

treed area % damage-adjusted
estimates from Beaudoin
et al. (2014) based on
remotely-sensed data from
2001 (see Section 4.5.1)

stand age years

pine density stems/ha

log pine density log(stems/ha)

beetle activity
lagged pine mortality % 𝜙𝑡 and 𝜙𝑡𝐻𝑡 lagged by one

and two years (see
Sections 4.5.1-4.5.1)lagged infested stems stems/ha

temperature

minima ◦C

All climatic variables are
seasonal, with separate
covariates for: autumn of
year 𝑡 − 1; winter, spring,
and summer of year 𝑡.
These are estimated using
climateBC software from
(Wang et al., 2007).

averages ◦C

maxima ◦C

cooling days
days below 0◦C ◦C · days

days below 18◦C ◦C · days

warming days
days above 5◦C ◦C · days

days above 18◦C ◦C · days

precipitation totals mm / 4 months

Table 4.3: The 43 covariates included in the linear regression model for stand susceptibility.
31 of these are climatic (four seasons × 8 factors, with the exclusion of degree days above
18◦ to avoid collinearity problems); Four are lagged state variables (pine mortality and
infested stem counts, lagged by one and two years); Four describe the local host population;
and four are topographical.
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Chapter 5

Discussion

In this thesis, I have contributed new methodologies for modelling the correlation structure

of ecological data and the patterns that result from flight-based dispersal events. Chapters

2-3 developed these ideas separately, but they are alike in emphasizing how practical issues

of computationally efficiency can be resolved using the mathematical concept of separability

on spatial lattices. Chapter 4 showed how, in combination, these ideas become powerful

tools for extracting information on subtle aspects of MPB attack behaviour from large-scale

crown fade surveys.

I conclude here with a brief summary of my results in the context of established MPB

ecology, and a discussion of the directions where these lines of thought may lead us in the

future.

5.1 Separable models for spatial autocorrelation

The findings of Legendre (1993), Beale et al. (2010), Hawkins (2012) (and others) caution

ecologists to be wary of issues that can arise if spatial autocorrelation (SAC) is ignored in

spatial data. These issues were borne out, for example, in my simulation experiments in

Chapter 4, where the sampling distributions of three attack dynamics parameters became

far more precise (and for one of the nonlinear parameters, less biased) after repeating the

inference using covariograms.

However, the MPB ecology literature remains split, with some authors correcting for
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SAC and many others ignoring it. In part this may be due the mathematical complexity of

the popular autoregressive approach, which can be daunting to ecologists unfamiliar with

multivariate statistical methods. The covariogram on the other hand is more immediately

intuitive, but suffers from issues of computational complexity that can make large-sample

analyses infeasible.

I proposed a family of covariograms in Chapter 2 that exploit the mathematical properties

of lattices to simplify computations involved in Gaussian likelihood-based data analyses.

Covariance models for lattice data have a long history in spatial statistics, with influential

theoretical contributions from researchers such as Besag (1974) and Cressie (1993) popular-

izing the use of Gaussian Markov random field models (GMRFs) such as the CAR and SAR

(Fortin and Dale, 2005; Ver Hoef et al., 2018) that are now prevalent in the contemporary

MPB modelling literature. My formulation also draws on random field theory. However,

it is not a Markov model – it requires no Markovian assumptions about neighbourhoods of

dependence, nor does it obscure the implied correlation structure by representing it through

a matrix inverse, as do the CAR and SAR models (Wall, 2004). Instead it appeals to the

more intuitive geostatistical paradigm (Matheron, 1962; Stein, 1999), in which covariances

are given explicitly as a function of separation distance.

Chapter 2 assembled a number of logical next-steps in the discourse set forth by Zim-

merman (1989), on separable lattice covariograms and anisotropy, combining them with

some new results, in a context more accessible to ecologists who may not be well-versed in

random field theory. My hope is that this work may breathe new life into the field of geo-

statistics, which is often dismissed out-of-hand by applied researchers for its computational

issues (Simpson, Lindgren, and Rue, 2012).

Following Zimmerman (1989), I addressed computability by defining spatially separable

covariograms based on the Whittle-Matérn (WM) model (Guttorp and Gneiting, 2006), and

demonstrated through simulations their suitability as surrogates for non-separable covari-

ograms. This showed how the "big 𝑛 problem" in spatial statistics (Simpson, Lindgren, and
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Rue, 2012) can be avoided without abandoning the intuitive appeal of covariograms. In that

sense my research is similar to that of Lindgren, Rue, and Lindström (2011), who discussed

situations in which the pervasive WM covariogram is well-approximated by a certain class

of GMRFs for which computations are dramatically faster.

Along the way I discovered some less-obvious features of separable lattice models,

including a data partitioning scheme that leads to a fast and accurate estimator of the angle

of range anisotropy. In spatial ecology, such departures from isotropy often reflect subtle

environmental conditions driving the data-generating process, such as wind and topography

(Fortin and Dale, 2005). For example Zhu, Huang, and Reyes (2010) considered anisotropy

in their SAR model as a result of directed dispersal flights by MPB. My AOS data analysis in

Chapter 2 demonstrated how, using covariograms, these directions can be inferred over large

nonstationary landscapes, revealing a smooth field of directionality in forest disturbance

patterns. This warrants further research into the environmental origins of this directionality,

as they might be used to improve the accuracy of outbreak forecasts.

5.1.1 Relating autocorrelation and dispersal

I described in Chapter 3 a very general set of ecological circumstances in which the expected

pattern of redistribution for dispersing inviduals is a WMY kernel. In spatial statistics the

same family of functions (the WM kernel) is well-known for its versatility as a covariogram

(Stein, 1999). It is interesting that such different fields should converge on the same

mathematical form, and the reader may wonder what (if any) meaningful connections are

suggested between the concepts of redistribution and autocorrelation.

One way to connect the two concepts is to examine the correlation structure that is

introduced into a random variable when it is convolved with a redistribution kernel. Recall

that if 𝜇(x) counts a population at location x, and all individuals disperse according to

the stationary kernel 𝐷, then the expected post-dispersal population is given by 𝜇𝐷 (x) =

𝐷 ∗ 𝜇(x). Now suppose process error introduces variation about 𝜇(x), and denote this
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pre-dispersal population by random variable 𝑍 (x) with mean 𝜇(x) and variance 𝜎2. The

post-dispersal population is then 𝑍𝐷 (x) = 𝐷 ∗ 𝑍 (x). How would we characterize its

distribution?

If 𝑍 (x) is a Gaussian random field (RF), this is a well-known problem from sampling

design in geostatistics, where 𝑍𝐷 (x) is called a regularization of 𝑍 (x) by the sampling

function �̆� (r) := 𝐷 (−r) (Chiles and Delfiner, 2012, section 2.4). From standard theory,

it follows that if 𝐷 is square integrable then 𝑍𝐷 (x) is a Gaussian random field with mean

𝐷 ∗ 𝜇𝑍 (x) and its covariance kernel 𝐶𝐷 is proportional to the convolution of 𝐷 and �̆�.

This is sometimes called the auto-correlation of 𝐷. For example if we assume 𝑍 (x) has

covariance kernel 𝐶𝑍 (𝑟) = 𝜎2𝛿(𝑟) (a delta function, implying all finite samples of 𝑍 (x)

are uncorrelated and have equal variance 𝜎2), then the correlation induced in 𝑍𝐷 by 𝐷 is:

𝐶𝐷 (r)/𝜎2 =
(︁
𝐶𝑍 ∗ 𝐷 ∗ �̆�

)︁
(r)/𝜎2⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

correlation function of 𝑍𝐷

=
(︁
𝐷 ∗ �̆�

)︁
(r) =

∫
R𝑑

𝐷 (s)𝐷 (r + s) ds⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
auto-correlation of 𝐷

. (5.1)

When D is isotropic, (5.1) becomes 𝐶𝐷/𝜎2 = 𝐷 ∗ 𝐷, the autoconvolution of 𝐷. In the

moving average model of Matérn (1986) a similar equation was derived starting from a

Poisson point process 𝑍 (x) with intensity 𝜎2. In that context, the convolution with 𝐷 was

viewed as a disturbance produced by the measuring device. Here it is an ecological process,

such as a flight-based dispersal.

I showed in Chapter 3 that the WMY kernel family (D) has the desireable property of

closure under convolutions: The autoconvolution of 𝐷 = D (𝑟; 𝜅, 𝜌) is yet another WMY

kernel; 𝐷 ∗ 𝐷 = D (𝑟; 1 + 2𝜅, 𝜌). This is unusual among 2-dimensional redistribution

kernels (Schlägel and Lewis, 2016). In the context of equation (5.1), it shows that in a

process where (uncorrelated) errors have been redistributed by a WMY kernel, the resulting

correlation structure is described by the WM covariogram.

More generally, equation (5.1) defines a plausible covariance structure for post-dispersal

measurements when the dominant source of unexplained variability in a data analysis is

uncorellated pre-dispersal process error. This suggests a natural grouping of covariance
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and redistribution kernels into pairs, with one (𝐷) giving rise to the other (𝐶𝐷) via the

spatial autocorrelation mechanism described above. A tabulation of these pairs (eg. Table

5.1) might be useful to modellers tasked with selecting the appropriate covariance kernel

for a spatial analysis, given mechanistic assumptions about the physical dispersal of error

sources. Some examples are derived in Appendix 5.5.2, in the hope that they might have

pedagogical value and/or serve as a useful reference.

redistribution (𝐷) further reading on D covariance (𝐶𝐷 = 𝐷 ∗ 𝐷)

spherical pulse Chiles and Delfiner (2012) spherical

2Dt (shape 𝛽 = 1/2) Clark et al. (1999) Cauchy

Bessel (WMY, 𝜅 = 0) Broadbent and Kendall (1953) Whittle (WM 𝜅𝐷 = 1)

2D Laplace (WMY, 𝜅 = 1/2) Joseph and Sendner (1958) WM (𝜅𝐷 = 2)

general WMY (𝜅 > −1/2) Yasuda (1975) WM (𝜅𝐷 = 1 + 2𝜅)

Gaussian Skellam (1951) Gaussian

Table 5.1: A reference list of 2-dimensional stationary isotropic covariance kernels 𝐶𝐷 that can
be written as the autoconvolution of a redistribution kernel 𝐷. Note that, up to normalization
constants, the WMY and WM (Whittle-Matérn) kernels are mathematically identical, as are the 2Dt
and rational quadratic kernels. 𝜅𝐷 denotes the shape parameter of the WM covariance kernel.

In my analyses in Chapters 3-4, I used the pWMY kernel as a model for redistribution, and,

by adjusting attack density to account for dispersal flights, I attempted to remove as much

autocorrelation as possible. Much of it remained however, in part because the adjustment

itself was based on noisy AOS data. Although the autoconvolution of the pWMY is again

a pWMY kernel, I modelled covariance using a Gaussian kernel for simplicity. It would be

interesting to investigate whether a pWMY covariance kernel might have improved model

fit. Further research is needed to investigate whether the autoconvolutions in Table 5.1

could be used more generally to improve error models in situations where dispersal plays a

central role in the data-generating process.
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5.2 The WMY and pWMY redistribution kernels

It is unfortunate that the redistribution kernel developed by Yasuda (1975) should have such

a low profile in the ecological literature today. After all, it generalizes three of the more

commonly used kernels in quantitative ecology (the Gaussian, 2D Laplace, and Bessel),

and was independently derived and published at least twice in prominent journals (the

second time by Hapca, Crawford, and Young, 2008). Yet this kernel family is referenced

only indirectly, for example, in the comprehensive theoretical reviews of Okubo and Levin

(2001) and Lewis, Petrovskii, and Potts (2016), and is altogether absent from the extensive

table of phenomenological 2-dimensional kernels in Clobert et al. (2012).

Given the popularity of the Bessel kernel (Broadbent and Kendall, 1953; Williams, 1961;

Awerbuch, Samson, and Sinskey, 1979; Turchin and Thoeny, 1993; Goodsman et al., 2016),

it appears that a more parsimonious hypothesis of constant hazard settling is preferred by

modellers over the gamma-distributed settling times of Yasuda (1975). Thus I started from

the constant hazard assumption in my mechanistic derivation of the WMY kernel in Chapter

3. However, recognizing the spatial heterogeneity of the habitat through which forest insect

flight takes place (Hapca, Crawford, and Young, 2008), I replaced the usual PDE for Fickian

diffusion through homogeneous media (Okubo and Levin, 2001) with a PDE developed in

statistical physics by O’Shaughnessy and Procaccia (1985) that better describes diffusion

through disordered media.

In deriving the Bessel kernel, Broadbent and Kendall (1953) used Fickian diffusion to

describe the movement of a parasitic larva wandering at random through a field until it is

trapped at the end of a blade of grass, where it waits to be eaten by its host. We are reminded

of the famous "ant in a labyrinth" problem from percolation theory (deGennes, 1976) that

inspired a generation of research into anomolous diffusion through complex media (Metzler,

Glöckle, and Nonnenmacher, 1994). De Gennes’ labyrinth seems a better analogy for insect

dispersal than does (unimpeded) Fickian diffusion. An insect moving through vegetation –

be it a larva in a field of grass or a MPB in flight through the forest canopy – must navigate
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a mazelike network of obstacles and passages.

It can be mathematically convenient to describe the geometry of such disordered habitats

as fractal media (Zeide, 1991). By doing so in Chapter 3, I obtained a PDE with a modified

Laplace operator to represent random walks through disorded media – and by adding a

constant settling term, I defined a subset of the WMY kernel family that includes the Bessel

kernel as a special case. Thus I generalized the model of Broadbent and Kendall (1953) by

introducing a more realistic depiction of movement through the available space.

I extended this model to include the full WMY kernel family by considering what happens

when the movement process is iterated (independently) over multiple stages of dispersal.

This result used the property that the WMY kernel is closed under convolutions, which itself

is a highly desireable characteristic from a sampling design standpoint (Schlägel and Lewis,

2016). However it also provides a new interpretation for the WMY kernel shape parameter:

Under the model of Yasuda (1975), it corresponds to the shape of the gamma-distributed

stopping time; In my model it is determined by both the number of stages and the Hausdorf

dimension 𝑑 𝑓 of the habitat.

Radar-based surveys such as Ainslie and Jackson (2011) and laboratory experiments by

Shegelski, Evenden, and Sperling (2019) suggested the possibility of multi-stage dispersal

events by MPB. In future work it would be interesting to examine whether the number

of dispersal stages could be inferred from MPB data by fitting the WMY kernel to data

and estimating its shape parameter. Alternatively, one might fix the number of stages and

estimate 𝑑 𝑓 locally based on habitat covariates such as the spatial distribution of forestland

(similar to Hargis, Bissonette, and Turner, 1999), to parametrize a kernel for movement

ahead of model-fitting. This is not unlike the approach of Powell and Bentz (2014), who

used a diffusion model to describe MPB movements with diffusivity a decreasing function

of host density.

The second half of Chapter 3 turned to phenomenological extensions of the WMY

kernel that characterize aspects of movement where the mechanism is impractical to model.
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For example, data on local wind patterns during MPB dispersal would be difficult (if not

impossible) to obtain at high resolution in a retrospective study. However wind likely

introduces a strong directionality into flight patterns (Jackson et al., 2008). Flying MPB

have been observed orienting themselves towards the upwind and downwind directions

(Safranyik et al., 1992), as is common among flying insect taxa (Hu et al., 2016). Thus

I proposed two simple extensions to introduce anisotropy into general isotropic and/or

separable redistribution kernels. These substantially improved model fit on AOS data,

supporting the position of Powell and Bentz (2014) that the common assumption of isotropic

and stationary dispersal is far too simplistic for the predictive modelling of MPB damage

patterns.

Chapters 2 and 3 are not only similar in both using variants of the same kernel (WM

and WMY), but also in that they both address computational bottlenecks using the math-

ematics of separability on the lattice. In Chapter 2, a matrix inversion problem of O(𝑛3)

arithmetic complexity was reduced to one of O(𝑛3/2) by means of the product covariogram;

and in Chapter 3, this same trick was used to reduce a O(𝑛2) matrix multiplication to

O(𝑛) complexity by approximating the WMY kernel with the pWMY. Through numerical

simulations, I examined the parameter space of the WMY to identify situations where this

approximation is adequate. Future researchers may use these numerical results as a guide in

deciding when the computationally superior pWMY may be used as a drop-in replacement

for the more realistic WMY kernel. However as I was unable to establish an analytical

result on approximability, I leave this problem to future investigators.

5.3 Inferring MPB attack behaviour from AOS data

My data analysis in Chapter 4 demonstrated how the ideas developed in the foregoing

chapters can be synthesized to create a MPB outbreak model suitable for AOS data. I

addressed some of the shortcomings of the red-top model introduced in Chapter 1 by using

the product-covariograms of Chapter 2 to correct for SAC, and the pWMY redistribution
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kernels of Chapter 3 to couple together sampling locations through a more realistic depiction

of dispersal flights.

One of the more novel ideas presented in Chapter 4 is the construction of a nonstationary

redistribution pattern as a distance-weighted average of the predictions of numerous locally

fitted stationary pWMY kernels. This nonstationary construction was motivated by the

results of Chapters 2-3, which indicated a high degree of nonstationarity in dispersal

patterns at the one-hectare resolution, combined with the need for a computationally simple

model. My scheme has the flexibility to capture nonstationarity, yet remains computationally

efficient and scalable, as I demonstrated in fitting to an unusually large dataset encompassing

nearly 800,000 locations.

The rationale for using a weighted average is that when the pWMY kernel fitted to the

block centered at y is a good model for flight events near y, then predictions �̂�y (x) of

beetle pressure based on this kernel are most informative at pointsx that are close to y. This

same principle underlies the theory of geographically weighted regression (Fotheringham,

Brunsdon, and Charlton, 2003): viewing �̂�y (x) as a measurement of the true beetle pressure

𝐵(x) from the vantage point of location y, my weighted average would become the kernel

estimator of 𝐵(x) (Staniswalis, 1989). Of course �̂�y (x) is a model prediction, not a

measurement, so we cannot appeal to the unbiasedness results from kernel estimator theory.

In future research I hope to develop a rigorous theory to support this heuristic reasoning.

Similar to Powell and Bentz (2014), my model captures sinuous patterns of nonstationary

and anisotropic movement across the landscape. However it differs in using a phenomeno-

logical model for dispersal for which the correction for SAC in parameter inference is made

easier. There are advantages and disadvantages to this approach; On one hand, by address-

ing SAC we may expect to improve the precision of our estimators; On the other hand,

the mechanistic PDE-based model of Powell and Bentz (2014) is more readily extended to

predictions in novel habitat.

Moreover, more research is needed to develop a rigourous statistical theory to justify the
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model-fitting methodology described in the appendix to Chapter 4. Although numerical

simulations indicated that estimators of both the attack function parameters and the angles

of anisotropy in redistribution are reasonably unbiased, it would preferable to support this

evidence with a robust statistical theory (eg. similar to Crujeiras and Van Keilegom, 2010).

5.3.1 Strengths and weaknesses of the generalized red-top model

I introduced the generalized red-top model in detail in Chapter 4, explaining how it is

connected to the log-logit attack curve of Cooke and Carroll (2017). My analysis showed

how its parameters can reveal information on attack dynamics that have been overlooked

in other analyses based on the red-top model: In particular, my estimates of the mass-

attack number (𝑚𝐴) and the incipient-epidemic transition point (𝐵𝑇 ) were in reasonable

agreement with published data on ground surveys in my study area, which lends support to

my interpretation of the attack curve in these terms.

AOS-based estimates of these attack curve properties can be useful in validating eco-

logical hypotheses on MPB behaviour. For example my results indicated that for older,

high-density stands, the number of MPB aggregating to mass-attack a single tree (𝑚𝐴)

tended to lie near (but often above) the optimum suggested in Raffa and Berryman (1983).

Further, the transition point at which MPB behaviour switched from endemic to epidemic

(𝐵𝑇 ) happened when per-hectare attack densities lay close to this optimum, in support of

the hypothesis by Carroll et al. (2006).

One of the biggest advantages in my modelling approach is that an analysis similar to that

of Chapter 4 could be carried out over any region covered by the AOS. I chose the Merritt

region for my study area in part so that field data such as Carroll et al. (2006) and Boone

et al. (2011) could be compared against my results. However since there are many remote

areas of the province for which ground surveys are lacking, the AOS in combination with

my modelling techniques would allow quantities such as 𝑚𝐴 and 𝐵𝑇 to estimated virtually

anywhere. Thus it would be interesting in future work to fit the model to other areas of the
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province. One could, for example, use estimates of 𝐵𝑇𝑖 to map out areas where eruptions in

MPB populations are most likely (for a given in-flight density), similar to the risk-ranking

system of Shore and Safranyik (1992).

I must, however, acknowledge some limitations shared by the red-top model and its gener-

alization. For example, neither can explicitly account for within-host scramble competition

since, whenever an attack is successful, the model assumes a fixed number (𝛽) of adults

will emerge from the infested tree in the following summer. By contrast, empirical attack

data reveals a strong negative feedback effect on productivity at high densities – mated

females must compete under the bark for a limited amount of egg gallery space, and their

offspring must compete for a limited food supply (Raffa and Berryman, 1983). The resulting

compensatory effect is sometimes described by exponentially decaying productivity curves,

𝛽(𝐵𝑡), such as the Ricker-like model of Berryman (1974). In a more mechanistic analysis

of Goodsman, Cooke, and Lewis (2017), this type of overcompensation was shown to drive

outbreaks to collapse well ahead of host depletion.

The generalized red-top model does indeed exhibit negative density dependence with

large MPB populations (𝐵𝑡+1/𝐵𝑡 decreases as 𝐵𝑡 increases due to scramble competition for

the limited number of hosts). However since host mortality is nondecreasing in 𝐵𝑡 , the model

cannot describe early collapse due to intra-specific competition and overcompensation. Thus

where the generalized red-top model is fitted to data on outbreak damage at very high beetle

population levels, we may expect it to overestimate pine mortality.

The likely result is a bias towards lower estimates of stand susceptibility (ie. higher 𝑎𝑖,𝑡 ,

in the notation of Chapter 4) as the model attempts to match high 𝐵𝑡 values with lower-than-

expected 𝜙𝑡+1. This in part explains why my estimators of the incipient-epidemic transition

(𝐵𝑇𝑖,𝑡 ) and mass-attack density (𝑚𝐴𝑖,𝑡 ) – both of which scale with �̂�𝑖,𝑡 – were on the high-

end of the range of values reported in the literature. For example Goodsman, Cooke, and

Lewis (2017) estimated the minimum number of attackers needed to colonize a host at 289,

whereas my estimates of the incipient-epidemic transition point – which is expected to lie
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close this minimum (Carroll et al., 2006) – ranged from 427–1114.

Nevertheless, the generalized red-top model remains a good model for outbreak onset,

since in that early stage, MPB populations are far from the point of host depletion. The

years fitted in Chapter 4 represented the leadup to the collapse of the MPB epidemic in

my study area, so the effect of overcompensation likely played a minor role in my attack

function parameter estimates. However future investigators will need to consider this effect

more carefully if the model is to be fitted to a MPB population undergoing collapse at the

landscape level.

5.3.2 Endemic MPB populations

The dynamics of endemic MPB populations are rarely investigated in the modelling litera-

ture. To my knowledge, model predictions of year-to-year dynamics at these low levels have

never been confronted with data, simply because it is very difficult to collect a sufficiently

long time series. However, in theoretical work by Berryman (1974) and Cooke and Carroll

(2017) it is hypothesized that the absence of an Allee effect creates a stable equilibrium (𝜖)

for low MPB densities. Weakened hosts therefore provide a refugium for populations that

would otherwise collapse.

Favourable climatic conditions, such as drought, may release the endemic MPB from

this stable state by providing access to higher quality hosts, which in subsequent years

allows attack densities to rise far above 𝜖 . This is the "outbreak epicenter" hypothesis

of Royama (2012), which is supported by empirical studies such as in Chapman, Veblen,

and Schoennagel (2012), Bleiker et al. (2014) and Cooke and Carroll (2017), for example.

Heavilin and Powell (2008) offered a different explanation in which there is no endemic

equilibrium, suggesting that low MPB populations are sustained by in-flights from distant

outbreaks across the landscape.

The AOS contains no data on endemic populations, so in estimating 𝜖 in Chapter 4, I

used a far simpler representation than the multi-equilibrium models of Berryman (1974)
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and Cooke and Carroll (2017) – one that represents endemic MPB implicitly through their

effect on outbreaking populations. By assuming that non-outbreak MPB populations are

all at the spatially uniform equilibrium level 𝜖 , I was able to reconcile the mathematically

simple attack dynamics model of Heavilin and Powell (2008) with the outbreak epicenter

hypothesis. My approach models attack densities at levels far below the detection threshold

of the AOS; Yet the estimator 𝜖 was in remarkably close agreement with ground surveys

of my study area by Boone et al. (2011) and Carroll et al. (2006) (in the range of 7-14

attackers/ha). Had there been no stable endemic population in the area, we would expect 𝜖

to be near zero.

Thus while the endemic population is small, it is not necessarily small enough to ignore

for the purpose of modelling MPB spread. Local endemic MPB inflate the attack density in

areas experiencing in-flights from nearby outbreaks, effectively lowering the Allee thresh-

old. This threshold was conceptualized in Goodsman and Lewis (2016) as a plane whose

intersection with the 2-dimensional MPB density function inscribes areas of positive MPB

population growth. A fixed background endemic population has the effect of lowering this

plane by a fixed amount – contours of positive growth get larger and the minimum founding

population becomes smaller.

In this way the endemic population appears to prime its habitat for outbreaks to arise

more easily, by requiring fewer immigrating MPB to meet the incipient-epidemic threshold.

This effect could have important consequences for the management of MPB spread in novel

habitats east of the Rocky Mountains, as the establishment of endemic populations may

foreshadow the onset of outbreak-level populations that might otherwise fail to take hold.

5.4 Conclusion

My work here is just one small piece of a larger multi-disciplinary effort in recent decades to

anticipate and manage the effects of the MPB on the pine forest ecosystem. However I expect

the ideas presented in this thesis to assist future MPB researchers in calibrating and refining
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their models for outbreak spread, by providing a more feasible means of accessing the

information contained in large, high-resolution spatial datasets such as the AOS. Through

such improvements we get closer to the goal of understanding, managing, and forecasting

MPB outbreaks effectively.

In the course of constructing the outbreak model of Chapter 4, I developed a suite of

modelling tools with applications in spatial ecology that go far beyond the MPB. As survey

datasets grow more expansive, the covariograms of Chapter 2 and the redistribution kernels

of Chapter 3 will be useful in guiding quantitative ecologists to better account for both the

error and dispersal processes that drive their models.

5.5 Appendices to Discussion

5.5.1 The Fourier and Hankel transforms

Denote by �̂� (u) the Fourier transform of the integrable function 𝐷 (r) ≥ 0, where r ∈ R𝑑:

�̂� (u) =
∫
R𝑑

𝐷 (r) exp (−2𝜋𝑖u · r) dr, (5.2a)

𝐷 (r) =
∫
R𝑑

�̂� (u) exp (2𝜋𝑖u · r) du . (5.2b)

When 𝐷 is radially symmetric, its spectral density �̂� is also radially symmetric in

𝑑-dimensional Fourier space. Thus, upon switching to a spherical coordinate system,

(5.2a) becomes an integration over 𝑟 = |r |, and �̂� becomes a function of frequency radius

𝑢 = |u| only. It is therefore often notationally convenient to treat 𝐷 and �̂� as single-variable

functions. This will be indicated by an unbolded argument, ie. 𝐷 (𝑟) and �̂� (𝑢), respectively.

Note that �̂� (𝑢) refers to the 𝑑-dimensional transform of 𝐷 (r) – not to be confused with the

one-dimensional Fourier transform of 𝐷 (𝑟).

As functions of 𝑑 variables, 𝐷 and �̂� are related by the Fourier transform. However, as

functions of a single variable, they can be more simply related using Hankel transforms,

as for example in the spectral density inversion formula of Stein (1999) (pp. 42–46)
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for isotropic kernels. This useful identity is restated for reference below, along with the

definition of the 𝜈𝑡ℎ order Hankel transform H𝜈, which is written in terms of the 𝜈𝑡ℎ order

Bessel function of the first kind, 𝐽𝜈:

�̂� (𝑢) = (2𝜋𝑢)−𝑑/2𝑢H𝑑/2−1

(︂
𝑟𝑑/2−1𝐷 (𝑟)

)︂
(𝑢), (5.3)

where H𝜈 ( 𝑓 (𝑟)) (𝑢) =
∫ ∞

0
𝐽𝜈 (𝑢𝑟)𝑟 𝑓 (𝑟) d𝑟

When deriving the spectral density of a 𝑑-dimensional isotropic covariance function

𝐶 (𝑟) (where 𝑟 = |r |), equation (5.3) is often simpler to work with than (5.2a) (see Schlägel

and Lewis, 2016). The inverse transformation, �̂� → 𝐶, is equally simple thanks to the

self-reciprocal nature of the Hankel transform – H𝜈 is its own inverse (Birkinshaw, 1994).

For example when 𝑑 = 2,

�̂� (𝑢) = (1/2𝜋)H0 (𝐷 (𝑟)) (𝑢), with inverse 𝐷 (𝑟) = 2𝜋H0
(︁
�̂� (𝑢)

)︁
(𝑟). (5.4)

The integral transform in (5.3) is generally not trivial to solve analytically. However

because many popular covariance models are derived by first building a spectral represen-

tation (see eg. Cressie, 1993, section 2.5), their Fourier and Hankel transforms often have

uncomplicated forms, as we will see in several examples in the next section.

5.5.2 Examples of kernel autoconvolution pairs

Convolutions become products in Fourier space. This means that when 𝐷 is isotropic the

spectral density of the auto-correlation function 𝐶𝐷/𝜎2 = 𝐷 ∗ 𝐷 is simply the square of

the spectral density of 𝐷. Thus in the simple case of 2-dimensional space (𝑑 = 2) equation

(5.4) implies that:

𝐶𝐷 (𝑟) = 𝜎22𝜋H0

(︂
(H0 (𝐷))2

)︂
. (5.5)

Note that while a proper redistribution kernel must be scaled to satisfy
∫
R𝑑 𝐷 (r) dr = 1,

its normalization constant is unimportant to establishing functional relationships between

𝐷 and 𝐶𝐷 . This is because once the functional form of 𝐶𝐷 is determined, we may derive
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its scaling constant using the identity lim𝑟→0𝐶𝐷 (𝑟) = 𝜎2. Thus in the following examples

I will omit the normalization constants for 𝐷 and 𝐶𝐷 whenever doing so simplifies the

presentation.

The rectangular pulse and triangle functions

The rectangular pulse function Π𝑑 (r; 𝜌) is an indicator variable taking value 1 over the

𝑑-dimensional cube of side length 𝜌 centered over the origin, and zero elsewhere. It is

separable, since its dependence on spatial coordinates r = (𝑟1, 𝑟2, . . . 𝑟𝑑)𝑇 has the form

Π𝑑 (r, 𝜌) = Π1(𝑟1; 𝜌) . . .Π1(𝑟𝑑; 𝜌). Separability makes it simple to derive the spectral

density directly from (5.2a) and a table of integral transforms (eg. Gradshteyn and Ryzhik,

1965), from which we find:

Π̂𝑑 (u) =
𝑑∏︂
𝑘=1

(sinc(𝑢𝑘/𝜌)/𝜌) , where sinc(𝑥) =
{︄

1 for 𝑥 = 0,
sin(𝑥)/𝑥 otherwise,

(5.6)

where u = (𝑢1, 𝑢2, . . . 𝑢𝑑)𝑇 . The effect of the pulse function on a point mass is to simply

spread the density evenly within the surrounding hypercube. From equations (5.1) and (5.6)

one finds the spectral density of its auto-correlation, �̂�𝐷 (u)/𝜎2 = Π𝑑
𝑘=1 (sinc(𝑢𝑘/𝜌)/𝜌)2,

which is easily inverted:

𝐶𝐷 (r; 𝜌) ∝ Π𝑑
𝑘=1Λ (𝑟𝑘 ; 𝜌) /𝜌2, where Λ (𝑟; 𝜌) =

{︄
1 − 𝑟/𝜌 for 0 ≤ 𝑟 < 𝜌,
0 otherwise.

(5.7)

In the general 𝑑-dimensional case, equation (5.7) shows that 𝐶𝐷 is proportional to a

separable product of triangle functions (Λ). In the one-dimensional case (𝑑 = 1), this

reduces to an isotropic kernel known as the tent (or triangle) covariogram (Cressie, 1993,

p.84). Though rarely used in practice, the tent covariogram is a useful textbook example;

It is a one-dimensional covariance function that becomes invalid in higher dimensions (eg.

Λ is not positive definite when 𝑟 is distance in R2). This serves to remind that when

considering extensions of a given covariance model to higher dimensions, it is not enough

to simply redefine the measure by the obvious relabeling 𝑟 = |r |.
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On the other hand 𝐶𝐷 (r; 𝜌) in (5.7) is positive definite in any dimension. In fact, any

product of kernels that are valid in one-dimensional space (with respect to the component

distances 𝑟1, . . . 𝑟𝑑) is a valid model in R𝑑 (Rasmussen and Williams, 2006). This idea

can be used to construct computationally efficient extensions of existing models in higher

dimensional spaces, as I did with the pWMY kernel (a product of one-dimensional WMY

kernels).

The spherical pulse and covariance models

Consider the redistribution kernel 𝐷 (r; 𝜌) ∝ 1|r |<𝜌 that spreads point mass evenly in the

surrounding 𝑑-dimensional sphere of radius 𝜌. This produces the spherical covariance

family (eg. as derived in Chiles and Delfiner, 2012, pp. 85–88). I showed in the previous

section that the R1 case produces a tent covariogram. In R3 the spherical kernel takes the

form:

𝐶𝐷 (𝑟; 𝜌) ∝
{︄

1 − (3/2) (𝑟/𝜌) + (1/2) (𝑟/𝜌)3 for 0 ≤ 𝑟 < 𝜌
0 otherwise.

(5.8)

Despite some theoretical and practical drawbacks (eg. as discussed in Stein, 1999, pp.

52-53), the spherical covariance kernel in equation (5.8) remains in popular use (both in

R3, and inR2 where 𝐶𝐷 remains positive definite) – in large part because of computational

advantages related to its compact support.

The WMY and and Whittle-Matérn kernel families

Recall from Chapter 3 that a WMY redistribution kernel has the form:

D(𝑟; 𝜌, 𝜅) ∝ (𝑟/𝜌)𝜅 𝐾𝜅 (𝑟/𝜌) , for 𝜌 > 0, and 𝜅 > −1, (5.9)

where 𝐾𝜅 denotes the order 𝜈 modified Bessel function of the second kind. Consulting

a table of integrals (Gradshteyn and Ryzhik, 1965, equation 6.565.4), we find the Hankel

transform of D(𝑟; 𝜌, 𝜅) to be a simple rational function of 𝑢, which is easily squared and
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back-transformed:

H0 (D(𝑟; 𝜌, 𝜅)) ∝
(︂
𝑢2 + 𝜌−2

)︂−(𝜅+1)
for 𝜅 > −3/4 (5.10)

=⇒ (H0 (D(𝑟; 𝜌, 𝜅)))2 ∝
(︂
𝑢2 + 𝜌−2

)︂−(2𝜅+2)
=

(︂
𝑢2 + 𝜌−2

)︂−((1+2𝜅)+1)

=⇒ D(𝑟; 𝜌, 𝜅) ∗ D(𝑟; 𝜌, 𝜅) ∝ H0

(︂
(H0 (D(𝑟; 𝜌, 𝜅)))2

)︂
∝ D(𝑟; 𝜌, 1 + 2𝜅).

Note that 𝐶D (𝑟)/𝜎2 = D ∗D is a valid covariance kernel only if its shape parameter is

strictly positive (Guttorp and Gneiting, 2006), hence the restriction 𝜅 > −1/2 on the shape

parameter of D in Table 5.1. Notable examples include Whittle’s (1954) correlation model

(a WM with shape 𝜅 = 1), which arises as the autoconvolution of a Bessel redistribution

kernel (𝜅 = 0) (Williams, 1961); and the WM with shape 𝜅 = 2, which corresponds to

the autoconvolution of a 2D Laplace kernel (Joseph and Sendner, 1958). Interestingly, the

discretizations of these two covariance kernels closely approximate second and third-order

Markov random field models (Lindgren, Rue, and Lindström, 2011).

Clark’s 2Dt redistribution kernel and the Cauchy covariance model

Clark et al. (1999) developed a model for seed dispersal by replacing the range parameter in

the Gaussian redistribution kernel by a gamma-distributed random variable. This represents

a diffusion process where diffusivity varies at random among the propagules. The resulting

density function is called the 2Dt, so named because it extends a Student’s t distribution to

2-dimensional space:

𝐷 (𝑟; 𝛽, 𝜌) =
(︂
𝑟2 + 𝜌2

)︂−(𝛽+1)
. (5.11)

where 𝜌 > 0 is a range parameter and 𝛽 > 0 a shape parameter. Note that when 𝛽 =

0 equation (5.11) is known as the Cauchy kernel, which arises from Lévy walks in 2-

dimensional space (Kot, Lewis, and Driessche, 1996). Note also that equation (5.11) has

the same form as the spectral density of the WMY kernel; The 2Dt and WMY models are

Fourier duals.

When using likelihood-based methods, Clark et al. (1999) recommended fixing parameter

𝛽 to a low value (suggesting 1/2 or 1) for reasons of numerical stability. Let us consider the
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case 𝛽 = 1/2. Equation (5.10) shows that the Hankel transform of (5.11) is proportional to

D(𝑢; 𝛽, 1/𝜌), which for 𝜅 = 1/2 is proportional to exp(−𝜌𝑟) (see Appendix 3.7.2). This

implies that:

𝐶𝐷 (𝑟)/𝜎2 = H0

(︂
(H0 (𝐷 (𝑟; 1/2, 𝜌)))2

)︂
∝ H0 (exp(−2𝜌𝑟)) ∝ 𝐷 (𝑟; 1/2, 2𝜌).

Therefore the autoconvolution of a 2Dt kernel with 𝛽 = 1/2 is again a 2Dt, but with a

doubled scale parameter. As a covariance kernel the function in (5.11) is known to the

statistics community as the Cauchy model (Chiles and Delfiner, 2012, pp. 89-90) and in the

machine learning community, as the rational quadratic kernel (Rasmussen and Williams,

2006, pp. 86-87)
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