
Performance Analysis of GPU-Accelerated Fast

Decoupled Power Flow Using Direct Linear Solver

Shengjun Huang(1)(2), Student Member, IEEE and Venkata Dinavahi(1), Senior Member, IEEE

(1) Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada

(2) College of Information System and Management, National University of Defense Technology, Changsha, Hunan, China

shengjun@ualberta.ca, dinavahi@ualberta.ca

Abstract—Achieving high solution efficiency for alternating
current power flow (ACPF) analysis from high-performance com-
puting (HPC) architecture is a leading and important challenge in
power system analytics and computation. This paper investigates
the performance of the fast decoupled (FD) method, which is
based on the direct linear solver and implemented on the graphics
processing unit (GPU), for the solution of ACPF. Implementation
platforms, linear equations solution strategies, data storage for-
mats, and fill-in reduction algorithms are compared and discussed
on five benchmark systems ranging from 300 to 13,659 buses.
Within the GPU’s compute unified device architecture (CUDA)
environment, the shortest ACPF solution time for the largest test
case is 0.313s, which is 4.16× faster than its Matlab counterpart.

Index Terms—Fast decoupled power flow, graphics processing
unit, linear solver, LU decomposition, parallel computing.

I. INTRODUCTION

Alternating current power flow (ACPF) analysis is one of

the most fundamental tasks for the power system operation and

optimization [1], which dominates the essential steps of many

practical problems, such as contingency analysis, economic

dispatch, optimal power flow, etc. The challenge of quick

solution techniques always exists for the ACPF, since the

shorter calculation time means better situational awareness,

faster response, and less adverse impact on the system. Except

for the time-critical features, ACPF is also confronted with

great challenges from the increasing system size [2]. In order

to alleviate the solution pressure of ACPF, different proposals

developed by combining advanced algorithms and modern

computation facilities are investigated and evaluated in this

paper.

Historically, a lot of promising algorithms are developed for

ACPF analysis, of which the Newton-Raphson (NR) [3] and

fast decoupled (FD) [4] method received extensive attention

due to their favorable convergence characteristics. According

to their philosophy, the nonlinear ACPF problem is addressed

by a successive solution of linear equation systems (LESs),

e.g., (1) and (2) for NR and FD respectively.
[

H N

J L

] [

∆θ

∆V /V

]

=

[

∆P

∆Q

]

, (1)

{

B′V ∆θ = ∆P /V

B′′∆V = ∆Q/V

}

. (2)

Although derived from the NR, the FD is much simpler

and more efficient algorithmically [1]. One of the main reason

is that the coefficient matrices B′ and B′′ are fixed during

the solution process, i.e., the factorization results are reusable,

while the decomposition process should be carried out iteration

by iteration due to the varied coefficient matrices for the NR

method.

Despite the fact that the iterative solver is more desirable

for the solution of large-scale LESs in the context of parallel

computing [2], we intend to prove in this work that the direct

solver is more preferable for the FD. The procedure of the

direct solver usually consists of factorization and substitution,

which matches the aforementioned property of the FD. In

addition, the direct solver is more robust for ill-conditioned

problems.

Apart from the numerical algorithms, the computation fa-

cility also affects the solution efficiency. In the literature,

the ACPF has been fully investigated on CPU architecture,

including shared memory computers [5], distributed systems

[6], and clusters [7]. Although the reported performance is

solid, the computation infrastructure is unaccessible for the

majority of researchers. On the other hand, with the advances

made in hardware, the graphics processing unit (GPU) has

gained a lot of popularity for the scientific computation [8].

GPUs have been reported to offer significant acceleration

in several critical power system simulation problems, such

as dynamic security assessment [9], electromagnetic transient

simulation [10], and dynamic state estimation [11]. The GPU

is first introduced for the solution of DC power flow by [12].

In terms of GPU accelerated ACPF solution, the NR method

is very popular [13]–[15], while the FD method has not been

utilized until recently [2]. In [2], the preconditioned iterative

solver is employed to address LESs and the whole solution

process is implemented on the GPU; nevertheless, the achieved

speedup is limited.

Developed by Nvidiar in the late 2006, the compute unified

device architecture (CUDA) [16] programming environment

enables researches to extract acceleration possibilities for

general purpose computing from Nvidiar GPUs. The CUDA

platform is designed for low-level languages, such as C,

C++, and Fortran, with the capability of controlling every

single thread of a specified block and grid abstractions of the

physical GPU cores. As a high-level language, Matlab started

to support GPU computing in 2010. Although many built-in

functions and toolboxes are enhanced for implementation on

GPU, which is beneficial to relieve the low-level programming

2017 IEEE Electrical Power and Energy Conference (EPEC)

978-1-5386-0817-3/17/$31.00 ©2017 IEEEAuthorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 21,2022 at 19:50:15 UTC from IEEE Xplore. Restrictions apply.

READ O
NLY

effort, the performance might be limited since the parallel

programming details are hidden and unaccessible.

In this work, the potential of GPU for the solution of ACPF

with the FD method based on the direct solver is investigated.

Both Matlab and CUDA are selected for implementation. The

comparison has been carried out between CPU and GPU plat-

forms, as well as dense and sparse matrix techniques. In addi-

tion, the performances of different linear solution strategies

and fill-in reduction algorithms are investigated. Numerical

experiments are conducted on five benchmark systems ranging

from 300 to 13,659 buses. The fastest version of ACPF with

Matlab and CUDA for the largest case is 1.303s and 0.313s

respectively.

The rest of this paper is organized as follows. A brief

introduction of the FD method framework for ACPF is given

in Section II. Section III is devoted to the introduction of direc-

tive linear solver. GPU implementation details and numerical

experiments are presented in Section IV, as well as discussions

on the results. Finally, Section V concludes this paper.

II. FAST DECOUPLED POWER FLOW

Given a specified network configuration and generator

power output, the ACPF determines node voltages and branch

power flows such that the system operates under steady-

state, i.e., the power imbalance at each bus is less or equal

to a predefined tolerance ǫ. The polar form of the nodal

power equations is employed by the FD, where the voltage

angle and magnitude are separately updated according to ∆θ

and ∆V , which are obtained from LES (2). In order to

solve (2) efficiently, their coefficient matrices B′ and B′′ are

factorized at the very beginning, and then at each iteration,

the modification step length ∆θ and ∆V can be quickly

identified by backward and forward (B/F) substitutions. For

a LES, the B/F substitutions dependent on the factorization

result of coefficient matrix and the right hand side (RHS)

vector. In terms of LES (2), the RHSs are the active and

reactive power mismatches, which can be quickly generated

by the nodal power equations at each iteration. Fig. 1 depicts

a general framework of the FD for the ACPF.

III. DIRECT LINEAR SOLVER

For simplicity, the LES (2) is represented by a standard form

in this section,

Ax = b, (3)

where the coefficient matrix A is sparse due to the nature of

the power system structure.

Generally, after factorization, the lower and upper triangular

matrices of a sparse matrix are still sparse [17]. Nevertheless,

the fill-ins (matrix entries modified from zero to non-zero by

the factorization) are usually inevitable as shown in Fig. 2,

which demands extra memory space and more arithmetic op-

erations. Fortunately, it can be greatly reduced by simple row

and column switching, whose performance is demonstrated in

Fig. 2 by shifting A to B. The transformation is commonly

described as,

B = QAQT , (4)

Start

End

Data preparation, including B , B , V, and θ, etc.

LU factorization of B and B

(||ΔP|| > ε or ||ΔQ|| > ε) and iter < Max_I ?

tpq = = 1 ?

Calculate ΔP and ΔQ with newly updated V and θ

Output result

Set P-iteration indicator tpq = 1, and iteration number iter = 1

Generate Δθ by substitution

Update θ, set tpq = 0, iter = iter + 1

Generate ΔV by substitution

Update V, set tpq = 1, iter = iter + 1

Y
N

Y N

Start

End

Data preparation, including B , B , V,VV and θ, etc.

LU factorization of B and B

(((||||||ΔP|| > ε or ||ΔQ|| > ε) and iter < Max___I ?

tpqt = = 1 ?

Calculate ΔP and ΔQ with newly updated V and θ

Output result

Set P-iteration indicator tpqtt = 1, and iteration number iter = 1

Generate Δθ by substitution

Update θ, set tpqtt = 0, iter = iter + 1

Generate ΔV by substitution

Update V, VV set tpqtt = 1, iter = iter + 1

Y
N

Y N

Calculate ΔP and ΔQ with initially guessed V and θ

2:

3:

1:

5:

6,8:

4:

10:

11:

7,9:

12:

Fig. 1. General framework of the fast decoupled method for power flow
analysis.

8 2 2 2 1 8 2 2 2

2 4 0.25 1 3.5 0.5 0.5

2 4 0.25 0.1429 1 3.4286 0.5714

2 4 0.25 0.1429 0.1667 1 3.3333

A AA A L U

é ù é ù é ù
ê ú ê ú ê ú- -ê ú ê ú ê ú= Þ = =
ê ú ê ú ê ú- -
ê ú ê ú ê ú

- -ë û ë û ë û

4 2 1 4 2

4 2 1 4 2

4 2 1 4 2

2 2 2 8 0.5 0.5 0.5 1 5

B BB B L U

é ù é ù é ù
ê ú ê ú ê ú
ê ú ê ú ê ú= Þ = =
ê ú ê ú ê ú
ê ú ê ú ê ú
ë û ë û ë û

A A L

é ù é ù é ù8 2 2 2 1 8 2 2 22 1 8
ê ú ê ú ê ú
2 4 0.25 1 3.5 0.5 0.52 4 0 1 3.

é ù é ù é ùé ù é ù é ù

ê ú ê ú ê ú2 4 0.25 1 3.5 0.5 0.52 4 0.25 1 3.
A A L UA A L

ê ú ê ú ê úê ú ê ú ê ú
2 4 0.25 1 3.5 0.5 0.52 4 0 1 3.2 4 0 1 3.2 4 0 1 3.5 0.5 0.5 0.5 0.

A A LA A Lê ú êê ú êA A L UA A LA A L
ê ú ê ú ê ú2 4 0.25 0.1429 1 3.4286 0.57142 4 0.25 0.1429 1 3.

A A
2 4 02 4 0
ê ú ê ú ê úê ú ê ú ê ú=A AA A L UA A LA A LA AA A
ê ú êê ú êA A L UA A LA A LA A L

0.1429 1 3.4286 0.1 3.0.1 6 0.
ê ú ê ú ê ú
ê ú ê ú ê úê ú ê ú ê ú2 4 0.25 0.1429 1 3.4286 0.57142 4 0.25 0.1429 1 3.2 4 0.25 0.1429 1 3.2 4 0.25 0.1429 1 3.

ë û ë û ë û2 4 0.25 0.1429 0.1667 1 3.33332 4 0 1 3.
ê ú ê ú ê úê ú ê ú ê ú
2 4 0.25 0.1429 0.1667 1 3.33332 4 0 1 3.2 4 0 1 3.2 4 0 1 3.0.1429 0.10.1429 0.1

B B L

é ù é ù é ù4 2 1 4 24 2 1
ê ú ê ú ê ú

4 2 1 4 24 2 1

é ù é ù é ùé ù é ù é ù

ê ú ê ú ê ú4 2 1 4 24 2 1
B B L UB B L

ê ú ê ú ê úê ú ê ú ê ú
4 2 1 4 24 2 14 2 14 2 1

B B LB B Lê ú êê ú êB B L UB B LB B L
ê ú ê ú ê ú4 2 1 4 24 2 1

B B
4 2 14 2 1

ê ú ê ú ê úê ú ê ú ê ú=B BB B L UB B LB B LB BB B
ê ú êê ú êB B L UB B LB B LB B L

ê ú ê ú ê ú
ê ú ê ú ê úê ú ê ú ê ú4 2 1 4 24 2 14 2 14 2 1

ë û ë û ë û2 2 2 8 0.5 0.5 0.5 1 58 0. 5 1 5
ê ú ê ú ê úê ú ê ú ê ú
2 2 2 8 0.5 0.5 0.5 1 58 0.5 0.5 0.5 1 58 0.5 0.5 0.5 1 58 0.5 0.5 0.5 1 5

Fig. 2. Difference on the number of fill-ins by row and column switching.

where Q is the permutation matrix derived from permutation

array q. In terms of Fig. 2, Q and q are given as,

Q =









0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0









, q =









4
3
2
1









.

It should be noted that there is only one entry with value 1

for each row and column in Q, while all the other elements

are 0. In addition, Q has the following property,

QQT = QTQ = I . (5)

Based on the introduction of Q, the following equations can

be deduced,

Ax = b ⇒ AQTQx = b ⇒ QAQTQx = Qb. (6)

Remark Qx = x̂ and Qb = b̂, then equation (6) can be

rewritten as,

Bx̂ = b̂. (7)

2017 IEEE Electrical Power and Energy Conference (EPEC)

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 21,2022 at 19:50:15 UTC from IEEE Xplore. Restrictions apply.

READ O
NLY

TABLE I
GENERAL INFORMATION OF BENCHMARK SYSTEMS

Cases
System scales B

′
B

′′

Bus Branch Size Sparsity Size Sparsity

A 300 411 299 0.9875 231 0.9851
B 1,354 1,991 1,353 0.9974 1,094 0.9972
C 2,746 3,279 2,745 0.9988 2,382 0.9988
D 9,241 16,049 9,240 0.9996 7,796 0.9995
E 13,659 20,467 13,658 0.9997 9,567 0.9996

On the basis of the above analysis, the solution process of

(3) can be summarized as follows:

• Step 1: Generate permutation array q and matrix Q.

• Step 2: Construct B according to (4) and then factorize

it into LB and UB .

• Step 3: Establish b̂. Except for the matrix-vector mul-

tiplication b̂ = Qb, the vector b̂ can also be quickly

generated with,

b̂i = bqi . (8)

• Step 4: Deduce x̂ with B/F substitution,

LBŷ = b̂ ⇒ ŷ = L−1

B b̂, (9)

UBx̂ = ŷ ⇒ x̂ = U−1

B ŷ. (10)

• Step 5: Retrieve the final result x by any of the following

methods,

x = QT x̂, (11)

xqi = x̂i. (12)

IV. NUMERICAL EXPERIMENTS WITH GPU

A. Benchmark Systems

Five benchmark systems retrieved from [18] are utilized for

numerical experiments. Table I summarizes basic information

on the power system scale, matrix size, and sparsity. The

implementation platform includes: Intel Xeon E5-2620 CPU

with 32GB RAM, Nvidiar GeForce Titan Black GPU, Matlab

version 2015b, CUDA version 8.0, and Visual Studio 2015.

B. GPU Implementation with Matlab

1) GPU Programming Features in Matlab: Without user

intervention, the Matlab code will run on the CPU and all data

will be stored in the workspace allocated by Matlab in CPU.

On the other hand, the GPU also provides a few Gigabytes

of space called device memory. All the data stored in the

device memory should be in the type of gpuArray. The

data transformation from CPU to GPU is explicitly fulfilled

by the function gpuArray(), or it can also be performed

implicitly by any GPU-enabled built-in functions (GEBFs),

such as mtimes(). A full list of the latest GEBFs is posted

in [19]. In contrast, retrieving data from GPU to CPU can be

achieved by the function gather().

The type of the input data determines where the GEBF

will be executed. If any input arguments are with the type

TABLE II
EXECUTION TIME OF DIFFERENT TYPES OF FD WITH DENSE MATRICES

USING MATLAB (S)

Cases
lu() mldivide()

CPU GPU CPU GPU

A 0.018 0.257 0.063 0.160
B 0.282 1.402 0.751 0.762

C 1.420 8.048 6.606 4.203

D 17.413 out of memory 141.371 out of memory
E 37.847 out of memory 327.209 out of memory

of gpuArray, the GEBF will be executed on the GPU;

otherwise, the CPU will be utilized for calculation. Therefore,

the simplest way to employ GPU for computation in Matlab

is to employ two steps: 1) convert all the input data into

gpuArray type; and 2) fetch results from device memory

after the algorithm termination. Intermediate data generated

from GEBFs running on GPU will be automatically stored in

device memory in the type of gpuArray. The data transfer

rate between CPU and GPU is limited by the PCIe interface

bandwidth.

2) Implementation Strategies: In order to explore the per-

formance of the FD for ACPF in detail, different data storage

formats, LES solution techniques, and implementation plat-

forms are investigated and compared, which can be divided

into the following three pairs:

• CPU versus GPU: As two different architectures, CPU

and GPU have distinctive area of expertise. Generally,

CPU is suitable for randomly accessed computing, while

GPU is skillful for intensively regulated calculation.

• lu() versus mldivide(): Except for the factorization

strategy introduced in Section III, which is based on

the GEBF lu(), Matlab also provides another powerful

LES solution technique mldivide(). The former gains

profits from the iterative process of ACPF, where the

coefficient matrices of LESs are fixed. Based on the

detection of the coefficient matrix property, the latter

dispatches an appropriate solver from its formidable

arsenal to minimize the computation time.

• Dense versus Sparse: As shown in Table I, the coefficient

matrices B′ and B′′ are extremely sparse and suitable

for sparse technique application. Nevertheless, the two

GEBFs lu() and mldivide() do not support sparse

gpuArray at present, i.e., the sparse version of FD on

GPU is not feasible on the basis of GEBFs. Therefore,

only the dense FD is implemented on the GPU.

3) Experimental Results and Discussion: All the results

are grouped into Table II and Table III according to dense

and sparse storage types respectively. Fig. 3 and Fig. 4 give

the visualization for Table II and Table III for the purpose

of identifying the increasing trend of execution time along

with system size. The following observations can be collected

corresponding to the above comparison categories:

• CPU versus GPU: Since there is no GPU result in Table

2017 IEEE Electrical Power and Energy Conference (EPEC)

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 21,2022 at 19:50:15 UTC from IEEE Xplore. Restrictions apply.

READ O
NLY

TABLE III
EXECUTION TIME OF DIFFERENT TYPES OF FD WITH SPARSE MATRICES

USING MATLAB (S)

Cases
lu() mldivide()

CPU GPU CPU GPU

A 0.008 not supported 0.015 not supported
B 0.062 not supported 0.059 not supported
C 0.198 not supported 0.173 not supported
D 4.143 not supported 0.964 not supported
E 7.986 not supported 1.303 not supported

0 3000 6000 9000 12000 15000

0

50

100

150

200

250

300

350

0 500 1000 1500 2000 2500 3000
0

2

4

6

8

10

E
x
e
c
u
ti
o
n
T
im
e
(s
)

System Scale

lu() + CPU

lu() + GPU

mldivide() + CPU

mldivide() + GPU

Fig. 3. Execution time of different types of FD with dense matrices.

III, the finding is drawn from Table II and Fig. 3. If

lu() is employed, the CPU is always faster than GPU,

but the speedup decreases from 14.5× in CaseA to 5.7×

in CaseC. As highlighted in Table II, GPU outperforms

CPU in CaseC where mldivide() is utilized. Overall,

two remarks should be given: 1) GPU performs better for

larger systems; and 2) the limited device memory space

restricts its utilization for large-scale systems with dense

matrices.

• lu() versus mldivide(): To evaluate the perfor-

mance of lu() and mldivide(), the implementation

platform should be separated. On the GPU, the superiority

of mldivide() has been validated by all successive

cases. On the other hand, if run on CPU, lu() out-

performs mldivide() with dense matrices in Table

II; nevertheless, the circumstance is totally reversed for

sparse matrices in Table III. Therefore, the superiority

depends on which architecture is utilized.

• Dense versus Sparse: According to Table II and Table

III, it is obvious that the sparse techniques benefit both

lu() and mldivier() in CPU. Although dense matrix

is fully supported with GPU, the performance is only

mediocre. On the contrary, the support for GPU with

sparse matrices requires further investigation.

In addition to the above findings corresponding to im-

plementation, more observations related with computation

complexity and scalability are accessible. Without rigorous

0 3000 6000 9000 12000 15000

0

2

4

6

8

0 500 1000 1500 2000 2500 3000
0.00

0.05

0.10

0.15

0.20

E
x
e
c
u
ti
o
n
T
im
e
(s
)

System Scale

lu() + CPU

mldivide() + CPU

Fig. 4. Execution time of different types of FD with sparse matrices.

0.266

0.037

0.757

0.416

0.833

0.098

0.318

0.13
0.145

Dense + CPU

(time: 1.420s)

Dense + GPU

(time: 8.048s)

Sparse + CPU

(time: 0.198s)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
p
o
rt
io
n

Implementation Types

Factorization

Substitution

Others

Fig. 5. Execution time proportions of different steps for the FD with lu().

mathematical analysis, the execution time in the same platform

can be regarded as an indication of computation burden. For

each line in Fig. 3 and Fig. 4, the computing environment

of all five cases is the same; therefore, the line increasing

trend represents the computation complexity. It can be seen in

Fig. 3 that all lines are steep, which means the execute time

increases faster than the system scales. On the other hand, the

solid line in Fig. 4 is the mostly flat, i.e., the scalability of

sparse mldivide() is more favorable.

The main steps of FD shown in Fig. 1 and Section II are

also analyzed. Fig. 5 illustrates the execution time proportion

of main steps for CaseC. It can be seen that the substitu-

tion process, which is highly sequential, heavily drags the

performance in GPU with dense matrices. The improvement

on sparse matrices should be put on the factorization process

in the future since it consumes the largest amount of time.

C. GPU Implementation with CUDA

1) GPU Programming Features with CUDA: Different with

C functions running on the CPU only once with one call,

the kernels are CUDA C extended functions that can be

executed N times simultaneously with N different threads.

2017 IEEE Electrical Power and Energy Conference (EPEC)

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 21,2022 at 19:50:15 UTC from IEEE Xplore. Restrictions apply.

READ O
NLY

Fig. 6. Sparsity structure of B′ and L
′

B
+U

′

B
for caseB.

Kernels access the input data from device memory spaces,

including global, constant, texture, shared, and local memories

[16]. The memory throughput and multiprocessor occupancy

achieved by the kernels greatly determine the parallel

efficiency of the whole application, which demands careful

code tuning and proper algorithm structure design. Fortunately,

a lot of GPU-accelerated libraries containing highly-optimized

algorithms and functions are provided by CUDA [20], such as

cuBLAS, cuSPARSE, and cuSOLVER.

2) Implementation Schemes: Although execution on GPU

with single data type is much faster, it cannot meet the preci-

sion requirement of ǫ = 10−8; therefore, the double precision

data is utilized in this work. Except for the data preparation

and condition judgments, the majority of FD steps shown

in Fig. 1 are fulfilled with the refined kernels contained

in cuSOLVER, such as LU factorization and substitution.

As indicated in Section III, for sparse coefficient matrices,

the permutation is of key importance for the reduction of

the fill-ins. Two strategies for reordering provided by cu-

SOLVER are implemented, i.e., reverse Cuthill-Mckee (RCM)

and approximate minimum degree (AMD) algorithms. The

intuitive performance of RCM and AMD is illustrated in

Fig. 6, where B′ is generated from CaseB. It can be seen

that both AMD and RCM gain excellent performance by

curtailing the number of fill-ins from 149,064 to 6,934 and

13,036 respectively, with the reduction rate reaching 95.35%

and 91.25% respectively. The behavior of AMD and RCM for

other cases are summarized in Table IV.

TABLE IV
FILL-IN REDUCTIONS ACHIEVED BY THE AMD AND RCM ALGORITHMS

Cases
Default AMD reordering RCM reordering

Size Size Reduction Size Reduction

A 7,889 1,640 79.21% 2,515 68.12%
B 149,064 6,934 95.35% 13,036 91.25%
C 451,657 17,328 96.16% 58,326 87.09%
D 3,709,484 65,876 98.22% 200,921 94.58%
E 4,078,641 79,751 98.04% 228,221 94.40%

3) Experimental Results and Discussion: It is noticeable

in Table IV that the AMD outperforms RCM in the fill-in

reduction; nevertheless, the performance is reversed when they

are integrated in the FD, which is shown in Fig. 7. The speedup

of RCM over AMD is also demonstrated in Fig. 7, which

indicates that the difference is even higher for large-scale

systems. One of the explanation for this reversal is that the

AMD pursues more powerful algorithmic performance with

the sacrifice of longer execution time, which means the AMD

is more preferable for memory-restricted circumstances.

Several types of FD coded with Matlab are implemented

in Section IV.B; however, the performance of GPU-enabled

ones is unsatisfactory. Therefore, the most efficient CPU

version (sparse matrix and mldivide() with Matlab run-

ning on CPU, the fourth column of Table III) is utilized in

this subsection for comparison with AMD and RCM, whose

2017 IEEE Electrical Power and Energy Conference (EPEC)

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 21,2022 at 19:50:15 UTC from IEEE Xplore. Restrictions apply.

READ O
NLY

0.005 0.022
0.056

0.241

0.313

0.005
0.031

0.081

0.601

1.103

1

1.36
1.45

2.49

3.52

A B C D E

0.0

0.2

0.4

0.6

0.8

1.0

1.2
E
x
e
c
u
ti
o
n
T
im
e
(s
)

Cases

RCM

AMD

0

1

2

3

4

S
p
e
e
d
u
p

Fig. 7. Execution time of FD with cuSOLVER based on AMD and RCM.

TABLE V
SPEEDUPS GAINED BY THE AMD AND RCM ALGORITHMS IMPLEMENTED

WITH CUDA OVER THE FASTEST MATLAB IMPLEMENTATION

Algorithms CaseA CaseB CaseC CaseD CaseE

AMD 3.05 1.95 2.14 1.60 1.18
RCM 3.05 2.66 3.09 4.00 4.16

execution time is given in Fig. 7. Table V summarizes the

results. Although AMD is much slower than RCM, it is still

more efficient than the Matlab implementation. RCM gains a

maximum speedup of 4.16× over the fastest Matlab execution

in CaseE with only 0.313s.

V. CONCLUSION

To investigate the GPU-accelerated ACPF solution perfor-

mance, the FD method based on the direct linear solver

is implemented and analyzed. The comparison is conducted

on different architectures, data storage formats, and fill-in

reduction algorithms with five benchmark systems ranging

from 300 to 13,659 buses. The GPU implementation with

Matlab is restricted to dense matrices and the performance

is unsatisfactory. Although sparse matrices running on CPU is

acceptable with Matlab, it is slower than the CUDA version

with both AMD and RCM. The CUDA with RCM is the most

promising of all investigated implementations. Furthermore,

the obtained speedup for a single power flow solution may not

appear significant; however, mulitple power flow simulations

for contingency analysis exploring the GPU’s massive data

parallelism can be expected to provide higher speedups. For

future work, the promising FD method with sparse matrices

based on direct linear solver with Matlab and CUDA is

reserved for investigation on newer GPU architectures.

VI. ACKNOWLEDGE

S. Huang was sponsored by the China Scholarship Coun-

cil (CSC) under Grant No. 201403170337. This work was

supported by the Natural Sciences and Engineering Research

Council of Canada (NSERC).

REFERENCES

[1] X. Wang, Y. Song, and M. Irving, Modern power systems analysis. New
York, NY, USA: Springer, 2008.

[2] X. Li, F. Li, H. Yuan, H. Cui, and Q. Hu, “GPU-based fast decoupled
power flow with preconditioned iterative solver and inexact Newton
method,” IEEE Trans. Power Syst., vol. PP, no. 99, pp. 1–9, 2017.

[3] W. F. Tinney and C. E. Hart, “Power flow solution by Newton’s method,”
IEEE Trans. Power Appar. Syst., vol. PAS-86, no. 11, pp. 1449–1460,
Nov. 1967.

[4] B. Stott and O. Alsac, “Fast decoupled load flow,” IEEE Trans. Power

Appar. Syst., vol. PAS-93, no. 3, pp. 859–869, May 1974.

[5] T. Cui, R. Yang, G. Hug, and F. Franchetti, “Accelerated AC contingency
calculation on commodity multi-core SIMD CPUs,” in Proc. IEEE

Power Energy Soc. Gen. Meeting,, MD, USA, Jul. 2014, pp. 1–5.

[6] X. Yang, C. Liu, and J. Wang, “Large-scale branch contingency analysis
through master/slave parallel computing,” J. Mod. Power Syst. Clean

Energy, vol. 1, no. 2, pp. 159–166, Sept. 2013.

[7] Z. Huang, Y. Chen, and J. Nieplocha, “Massive contingency analysis
with high performance computing,” in Proc. IEEE Power Energy Soc.

Gen. Meeting,, Calgary, AB, Canada, Jul. 2009, pp. 1–8.

[8] N. Ploskas and N. Samaras, GPU programming in MATLAB, 1st ed.
Cambridge, MA, USA: Elsevier, 2016.

[9] V. Jalili-Marandi and V. Dinavahi, “Simd-based large-scale transient
stability simulation on the graphics processing unit,” IEEE Trans. Power

Syst., vol. 25, no. 3, pp. 1589–1599, Aug. 2010.

[10] Z. Zhou and V. Dinavahi, “Parallel massive-thread electromagnetic
transient simulation on GPU,” IEEE Trans. Power Delivery, vol. 29,
no. 3, pp. 1045–1053, Jun. 2014.

[11] H. Karimipour and V. Dinavahi, “Extended kalman filter-based parallel
dynamic state estimation,” IEEE Trans. Smart Grid, vol. 6, no. 3, pp.
1539–1549, May 2015.

[12] A. Gopal, D. Niebur, and S. Venkatasubramanian, “DC power flow based
contingency analysis using graphics processing units,” in Proc. IEEE

Power Tech., Lausanne, Switzerland, Jul. 2007, pp. 731–736.

[13] V. Roberge, M. Tarbouchi, and F. Okou, “Parallel power flow on graphics
processing units for concurrent evaluation of many networks,” IEEE

Trans. Smart Grid, vol. PP, no. 99, pp. 1–10, Nov. 2015.

[14] D. Chen, H. Jiang, Y. Li, and D. Xu, “A two-layered parallel static
security assessment for large-scale grids based on GPU,” IEEE Trans.

Smart Grid, vol. PP, no. 99, pp. 1–10, Aug. 2016.

[15] G. Zhou, Y. Feng, R. Bo, L. Chien, X. Zhang, Y. Lang, Y. Jia, and
Z. Chen, “GPU-accelerated batch-ACPF solution for N-1 static security
analysis,” IEEE Trans. Smart Grid, vol. PP, no. 99, pp. 1–11, Aug. 2016.

[16] NVIDIA, “CUDA C programming guide 8.0,” Santa Clara, CA, USA,
2017.

[17] T. A. Davis, Direct methods for sparse linear systems. Philadelphia,
PA, USA: SIAM, 2006.

[18] R. D. Zimmerman, C. E. Murillo-Sanchez, and R. J. Thomas, “MAT-
POWER: Steady-state operations, planning, and analysis tools for power
systems research and education,” IEEE Trans. Power Syst., vol. 26, no. 1,
pp. 12–19, Feb. 2011.

[19] MathWorks, “Run built-in functions on a GPU,” [Online], avail-
able: https://www.mathworks.com/help/distcomp/run-built-in-functions-
on-a-gpu.html.

[20] NVIDIA, “GPU-accelerated libraries,” [Online], available:
https://developer.nvidia.com/gpu-accelerated-libraries.

2017 IEEE Electrical Power and Energy Conference (EPEC)

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 21,2022 at 19:50:15 UTC from IEEE Xplore. Restrictions apply.

READ O
NLY

