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Abstract

The attribute hierarchy method (AHM) (Leighton, Gierl, & Hunka, 2004), which 

is based on the assumption that test items can be described by a set of hierarchically- 

ordered attributes, is designed explicitly to integrate cognitive models with a 

psychometric technique to model students’ test performances and estimate their mastery 

of domain knowledge and cognitive skills. The AHM, by incorporating the assumption of 

attribute dependency, brings an important cognitive property into cognitive diagnostic 

models. However, the validity of this method depends critically on the accuracy and 

adequacy of the attribute hierarchy in representing students’ response processes. This 

study introduces a person-fit statistic, called the hierarchy consistency index ( HCIt), to

help assess the degree to which an observed student response vector is consistent with the 

attribute hierarchy, ultimately enhancing the validity of diagnostic feedback produced 

with the AHM. In order to statistically test the significance of an observed HClt , a

simulation approach was used for setting critical values to determine whether the HCIt

value is sufficiently high to show a statistical fit of the observed response vector to the 

attribute hierarchy.

Simulation studies were conducted for two purposes. The first purpose was to 

evaluate the effectiveness of the HC/, in assessing the misfit of a student response vector

to the attribute hierarchy. The second purpose was to use statistical approaches to identify 

the critical values for testing both person fit and overall model fit using the HCI,.

Simulation results revealed that the HCI) performed well in determining the degree to 

which an observed response vector was consistent with the attribute hierarchy across 

different simulation conditions. Results also indicated that critical values identified for
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examining person fit were overly liberal, suggesting that the use of this statistical 

approach was not practically feasible. In addition, critical values for examining overall 

model fit varied across different hierarchies. Based on the simulation results and the 

author’s practical experience with the HCIt , criteria for interpreting the HCIt were 

recommended.
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Chapter 1: Introduction 

By estimating a person’s location on an underlying latent continuum, traditional 

assessments have been effective for selecting students who are most likely to succeed in a 

particular educational institution or program (Mislevy, 1995). Traditional assessments are 

typically constructed based on logical taxonomies and content specifications but lack 

explicit cognitive models of the structures and cognitive processes that underlie student 

performance (Snow & Mandinach, 1991). As a result, test scores from traditional 

assessments are tied to content areas rather than the student’s cognitive processes 

measured by test items.

Test theories used for interpreting scores from traditional assessments are 

designed to optimize the estimate of a student’s single score on an underlying latent scale 

-  the true score scale in classical test theory (CTT) or the latent trait scale in item 

response theory (IRT). A single aggregate score produced using CTT and IRT provides 

general information about students’ locations on a continuum. However, it fails to provide 

specific information to teachers about their students’ cognitive strengths and weaknesses 

which may, in turn, help teachers make instructional decisions intended to help students 

succeed in educational settings (Nichols, 1994).

Frustrated by the presence of these two limitations with traditional assessment 

approaches, measurement specialists have become increasingly interested in the 

development of new diagnostic assessments that are aimed at uncovering the cognitive 

processes used by students to respond to test items, determining the nature of poor 

performance, and classifying the poor performance in terms of an accepted typology of 

malfunctions (Scriven, 1999). As Nichols (1994) stated:
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These new assessments make explicit the test developer’s substantive assumptions 
regarding processes and knowledge structures a performer in a test domain would 
use, how the processes and knowledge structures develop, and how more 
competent performers differ from less competent performers, (p. 578)

New diagnostic assessments should enable researchers and educators to make 

inferences about the knowledge and processing skills that students use when solving test 

items. A well-designed diagnostic assessment can measure the different knowledge and 

skills required to solve test items in a domain of interest, thereby providing a profile of 

students’ mastery and non-mastery of cognitive skills. The value of diagnostic assessment 

lies in its ability to reveal each student’s specific set of cognitive strengths and 

weaknesses and help design effective diagnostic interventions for individual students.

Chapter 1 of this thesis reviews some currently existing cognitive diagnostic 

models in the literature. Eight cognitive diagnostic models are presented. Of these eight 

models, the attribute hierarchy method introduced by Leighton, Gierl, and Hunka (2004) 

was chosen as the foundation for this research because it brings an important cognitive 

property, attribute dependency, into cognitive modeling methodologies. Chapter 2 

presents a detailed description of the logic and procedures of the attribute hierarchy 

method and discusses the importance of examining the accuracy and the adequacy of 

cognitive models in representing students’ knowledge structure and skills in the test 

domain. Chapter 3 introduces a person-fit statistic called the hierarchy consistency index 

( HCIi ), which is explicitly designed to examine the degree to which a student response 

vector is consistent with the cognitive model used with the AHM. A simulation approach 

is then used for setting critical values to determine whether the 7/C7, value is sufficiently 

high to show a statistical fit of the observed response vector to the attribute hierarchy. 

Chapter 4 presents simulation studies conducted to evaluate the effectiveness of the HCIt
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in determining the degree to which a student response vector is consistent with the 

cognitive model. Simulated data are also used to investigate whether general guidelines 

can be developed for identifying good, moderate, and poor fitting student response 

vectors across different cognitive models by using the HCIt . Chapter 5 provides a brief 

summary of the methods and the results from this study, followed by a discussion of how 

to use substantive analyses to complement the statistical results produced by the //C /(. 

The directions for future research are outlined at the end of the chapter.

Cognitive Diagnostic Models: An Overview 

Over the past two decades, many cognitive diagnostic models (CDMs) have been 

proposed (e.g., Dibello, Stout, & Roussos 1995; Fischer, 1973,1983; Leighton, et. al., 

2004; Mislevy, Almond, Yan, & Steinberg, 1999; Tatsuoka, 1983,1984,1990, 1995; 

Whitely, 1980). CDMs serve two purposes: 1) to aid in the development of diagnostic 

assessments, and 2) to estimate students’ profiles associated with different cognitive skills. 

From a psychometric modeling perspective, most CDMs share a common feature: they 

model the probability of a correct response to an item as a function of students’ attribute 

profiles associated with different cognitive skills, although the probabilistic models might 

take different forms. In the following sections, eight CDMs will be briefly reviewed to 

provide the reader with information regarding the breadth of these models in educational 

measurement.

Linear Logistic Latent Trait Model

Fischer’s (1973,1983) linear logistic latent trait model (LLTM), which is an 

extension of the IRT Rasch model, is considered to be the first approach to bring
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cognitive variables into psychometric models (Stout, 2002). The LLTM is intended to 

account for the difficulty of test items in terms of a set of underlying cognitive skills, or 

attributes, hypothetically needed for solving items. The IRT item difficulty parameters are 

rewritten as a linear combination of the difficulties of K  cognitive attributes. The item 

response probability of the LLTM can be expressed as:

K

e*p(0, -(ZVjtfk +<0) 
p (x 0 = l|0 ,, T]k, c) = ---------------- *=E------------------,

1 + exp ( ^ - ( l M i + c))
4=1

where

xtJ = the response of student i to item j ,

0i = the ability of student /,

qjk = the hypothetical minimum number of times that attribute k has to be used 

in solving item j ,  

rjk = the difficulty of attribute k , and 

c = the normalization constant.

In the LLTM, student ability is modeled as a unidimensional parameter, 6 j. Since only

one ability parameter is specified for each student, the LLTM can not evaluate students 

with respect to the individual attributes. In addition, as recognized by Embretson (1984, 

1991), the cognitive attributes are “compensatory” in the LLTM, indicating that high 

ability on one attribute can compensate for low ability on other attributes. However, 

cognitive attributes are often not compensatory in nature. For example, if comprehension 

of text and algebraic manipulation are both required skills for solving a math problem, 

high ability on comprehension of text cannot compensate the lack of algebraic skills.
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Multicomponent Latent Trait Model

In an effort to overcome the shortcomings of the LLTM, Embretson (formerly 

known as Whitely, 1980) proposed a noncompensatory model called the multicomponent 

latent trait model (MLTM). The MLTM uses subtask responses to measure cognitive 

attributes underlying test items. In the MLTM, the probability of successful performance 

on a test item is expressed as the product of probabilities of successful performances on 

subtasks of the item, each of which follows a separate one-parameter unidimensional IRT 

model,

0j = the vector of K  subtask abilities for student i ,

bj = the vector of K  subtask difficulties for item j ,

xijk = the response of student i to subtask k for item j ,

0ik = the ability of student i on subtask k , and

bfr = the difficulty of subtask k .

By using the multiplicative form of the probabilities for performing each subtask 

correctly, the MLTM captures the noncompensatory nature of cognitive attributes. 

Moreover, a student’s ability parameters for subtasks can be estimated in situations in 

which several cognitive subtasks are required simultaneously to solve each of the test 

items correctly. However, a limitation with the MLTM is that this approach requires 

students’ responses to subtasks of each item, which cannot be directly obtained from 

multiple-choice items. As a result, the usefulness of the MLTM for cognitive diagnosis is,

K p |  exp(0lk- b k) 
L f l  + exp (0lk- b k) ’

p (x0 = i|e, ,b j) = Y l p(xvk = i\0lk,bJk) = n
k=1

where
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to a large degree, limited.

Bayes Net Approach for Cognitive Diagnosis

The Bayes net approach has been applied to cognitive diagnosis by Mislevy and 

his colleagues (Mislevy, 1994; Mislevy, et. al., 1999; Mislevy, Steinberg, & Almond, 

2003). This approach combines an evidence-centered design and Bayesian inference 

networks to aid in the development and interpretation of diagnostic assessments. 

Evidence-centered design consists of three models; the student model, the evidence 

model, and the task model. The student model specifies the knowledge and skills that 

should be used to characterize individual students. The evidence model describes the 

evidence variables required to make inferences about students’ knowledge and skills (i.e., 

the observable item scores), and models the relationship of these evidence variables to 

student model variables. The task model describes the features of a task that are useful to 

extract the evidence specified in the evidence model in order to make inferences about 

students’ knowledge and skills. These three conceptual design models are then 

mathematically translated into probabilistic models using Bayesian inference networks.

The first step of the Bayes net approach to cognitive diagnosis is to define a prior 

distribution of each student’s multidimensional skill vector. An assumption that all 

students share a common prior distribution is made. The prior distribution could range 

from vague to precise depending on the strength of prior theory and experience about the 

nature o f  the targeted knowledge and skills. The posterior distribution is referred to as the 

updated distribution of a student’s skill vector based on the evidence of a student’s 

performance. Once the posterior distribution is estimated, summaries of the posterior 

means and variances can be used to make inferences about students’ knowledge and
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skills.

Rule Space Model

Another important cognitive diagnostic model is Tatsuoka’s (1983,1984,1990, 

1995) rule space model, which is currently used with the Preliminary Scholastic 

Assessment Test (PSAT). As Stout (2002) pointed out, the rule space model is “a major 

pioneering milestone, both from the psychometric and the formative assessment 

perspectives” (p. 508). Broadly speaking, the rule space model is composed of two 

sequential parts. The first part of this model is to define an attribute-by-item incidence 

matrix (Q matrix) of order K  by J , and to derive the universal set of knowledge states 

from the incidence matrix. The Q matrix is a predefined binary matrix consisting of Is 

and Os, where the Is in the j  -th column identify which of the K  attributes are necessary 

for successful performance on item j . For example, a hypothetical Q matrix is shown as

follows:

1 1 1 1 1 1 1 1 1 1 1
1 1 0 0 1 0 1 0 0 1 1
0 1 0  1 0  1 1 1 0  0 1

Qin  = 0 0 1 0 1 0 1 0 1 0 0
0 0 0 1 1 1 0 1 1 1 1
0 0 0 0 0 1 1 0 0 1 0
0 0 0 0 0 0 0 1 1 1 1

This matrix consists of 7 rows and 11 columns, with each row corresponding to an 

attribute and each column corresponding to an item. The first column of this matrix 

shows that item 1 is measuring attributes 1 and 2. The second column indicates that item 

2 is measuring attributes 1, 2, and 3. The rest of columns can be interpreted in the same 

manner. In the rule space model, a student must have mastered all the attributes that an
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item is measuring in order to answer the item correctly. Therefore, in order to answer 

item 1 correctly, the student must have mastered attributes 1 and 2. In the rule space 

model, the Q matrix is typically obtained from a task analysis conducted by test 

developers or content experts by reviewing test items and identifying the attributes that 

underlie the items. Once the Q matrix is established, knowledge states can be derived 

and related to students’ observable response pattern by using Boolean description 

functions (Tatsuoka, 1991; Varadi & Tatsuoka, 1992). In the rule space model, each 

cognitive attribute is dichotomized as mastered or nonmastered. As a result, knowledge 

states, used to describe students’ profiles of cognitive skills, are represented by a list of 

mastered/nonmastered attributes.

The second part of the rule space model is to classify each observed response 

pattern into one of the knowledge states obtained from the analysis of the first part of the 

model (i.e., specification of the Q matrix). The rule space model uses a two-dimensional 

Cartesian coordinate system, characterized by theta ( 9 , the ability level from the IRT 

model) and zeta ( £ ,  an index measuring atypicality of response patterns), and a Bayesian 

decision rule for minimizing errors to facilitate inferences about students’ knowledge 

states. By creating knowledge states from the Q matrix and then classifying observed 

item responses into one of the knowledge states, a link is established between student 

cognition and psychometric applications.

The Unified Model

Inspired by Tatsuoka’s rule space model, Dibello et. al., (1995) proposed a new 

cognitive diagnostic model called the unified model, which “brings together the discrete,
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deterministic aspects of cognition favoured by cognitive scientists, and continuous, 

stochastic aspects of test response behavior that underlie item response theory” (Dibello 

et al., 1995, p. 361). The unified model adds to the rule space approach a cognitively 

based IRT model, which is modeled in terms of discrete cognitive states and a continuous 

latent ability (Dibello et al., 1995). In the unified model, each student is characterized by 

a dichotomous vector representing the student’s attribute mastery profile and a latent 

“residual” ability 6i which is not captured by the Q matrix. Dibello et al. identified four

possible sources of response behaviour that could lead to the variation in observed 

response patterns from those predicted by or derived from the Q matrix. These sources 

are: (1) the use of a different strategy from that presumed by the Q matrix, (2) the 

incompleteness of the Q matrix for attributes, (3) the positivity of an attribute for the 

item (corresponding to the possibility that a student who possesses an attribute may fail to 

apply it correctly to an item and a student who lacks the attribute may still answer the 

item correctly by possessing partial knowledge), and (4) the possibility that a student 

makes a random error. The unified model incorporates these four sources of variation into 

the following equation for the item response probability:

p(x tj = l|0(,a ,)  = (1 -  p){dJY [ ^ rjk r (/k' a'i)p J(d, + ACj) + (1 -</,)/>, (0,)},
k=\

where

p  = probability of making a random error,

dj = probability of using attributes specified in the Q matrix to solve item j , 

a ik = the k th element of vector ,

Cj = completeness index of attributes required for item j ,
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7tjk = P( Attribute k applied correctly to item yjaik = 1), 

rjk -  / ’(Attribute k applied correctly to item j\a ik = 0),

A = 2 , and

Pj (x) = one parameter logistic model with difficulty b j .

Analogous to Embretson’s MLTM, the unified model captures the 

noncompensatory nature of cognitive attributes in the sense that the probability of 

successful performance on an item using the Q matrix strategy is expressed as a product 

of the probabilities of applying each attribute correctly. Moreover, the explicit expression 

of the item response probabilistic function makes the likelihood-based classification 

procedures straightforward. However, the unified model encounters an identifiability 

problem given that the item response data are essentially not rich enough to make all the 

item parameters identifiable. In an attempt to solve the identifiability problem, Hartz 

(2002) reparameterized the unified model so that it can produce statistically identifiable 

and well interpretable parameters.

The DINA and NIDA Model

There are many other cognitive diagnostic models based upon the Q matrix in the 

literature, such as the deterministic input noisy and gate model (DINA) (de la Torre & 

Douglas, 2004; Doignon & Falmagne, 1999; Haertel, 1989; Junker & Sijstma, 2001; 

Macready & Dayton, 1977; C. Tatsuoka, 2002) and the noisy input deterministic and gate 

model (NIDA) (Junker & Sijstma, 2001). The DINA model partitions students into two 

classes for each item, those who have mastered all the attributes required by an item 

( £,t. = 1) and those who have not (£y =0).  It models the probability of a correct response
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to an item with two parameters: the probability that a student fails to answer the item 

correctly when the student has mastered all the required attributes ( S j , the “slipping”

parameter) and the probability that a student gets the correct answer when the student 

does not possess all of the required attributes ( g j , the “guessing” parameter). The item 

response probability can be written as:

where xtJ is the response of student i to item j .

The NIDA model extends the DINA model by defining a slipping parameter sk 

and a guessing parameter gk for each attribute, independent of the item. That is, for all 

the items that require attribute k , the slipping parameter sk and the guessing parameter 

gk for attribute k  are constant across these items. The NIDA model gives the probability 

of a correct response as:

f i x ,  - l|«, ,>,*) = f [ [ ( l  -  J, )"* ]•' ,
k=\

where

a. = the vector of the attribute profile for student /, 

s = the vector of attribute slipping parameters, 

g = the vector of attribute guessing parameters,

qjk = the element of the Q matrix in the j 'h row and k'h column, and 

a ik = the k th element of vector a ..
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The Attribute Hierarchy Method

All of the cognitive diagnostic models just described require the specification of 

the Q matrix, which requires researchers to describe test items using a presumed set of 

attributes. However, the Q matrix does not provide the relationships among attributes. 

The attributes might be independent of each other in the sense that the mastery of each 

attribute does not depend on the possession of any other attributes in the Q matrix. 

However, cognitive research suggests that cognitive skills do not operate independently 

but function as a network of interrelated processes (e.g., Kuhn, 2001; Vosniadou & 

Brewer, 1992). As a result, it is necessary to build the relationships or dependencies 

among attributes into cognitive diagnostic models and integrate this information into the 

statistical pattern classification procedures.

The attribute hierarchy method (AHM) (Leighton et. al., 2004; also see Gierl, 

Leighton, & Hunka, 2000), which is based on the assumption that test items can be 

described by a set of hierarchically ordered attributes, is a cognitive diagnostic model 

designed explicitly to model related cognitive skills underlying academic problem 

solving. In the AHM, attributes are considered to be hierarchically related and therefore 

can be ordered into a hierarchy based upon their logical and/or psychological properties. 

The attribute hierarchy can be used as a basis for the development of test items. After the 

test items are administered to students, vectors of binary responses (1 or 0) that take into 

account the dependencies of the attribute hierarchy are produced. In turn, a student's 

response vector is then used to estimate the student’s probability of mastery and 

nonmastery of the attributes illustrated in the attribute hierarchy.
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Purpose of Current Study

The AHM (Leighton, et. al., 2004) is designed explicitly to integrate cognitive 

models with a psychometric technique to model students’ test performances and estimate 

their mastery of domain knowledge and cognitive skills. The AHM, by incorporating the 

assumption of attribute dependency, brings an important cognitive property into cognitive 

diagnostic models based on the Q matrix. The validity of this new diagnostic model 

depends critically on the accuracy and the adequacy of the attribute hierarchy. For 

example, if the cognitive attributes summarized in the attribute hierarchy do not 

correspond to any real aspects of the cognitive processes used by each student, then any 

diagnoses of the student produced with the attribute hierarchy will be meaningless. In 

addition, the inclusion of superfluous attributes in the attribute hierarchy may lead to a 

high misclassification rate due to the unnecessarily high complexity of the model in terms 

of the large number of deceptive knowledge states around students’ true states. 

Furthermore, a model that fails to include some of the important attributes will not 

provide sufficient diagnostic information to permit test users to develop and implement 

interventions designed to maintain students’ cognitive strengths and address students’ 

cognitive weaknesses.

In order for the AHM to produce cognitively and statistically valid results, it is 

important for the attribute hierarchy to be supported by both psychological and statistical 

evidence which demonstrates that students’ problem-solving behavior has been measured. 

To date, such evidence is limited. Consequently, methods for assessing the accuracy and 

adequacy of the attribute hierarchy in describing the cognitive processes used by students 

to solve test items must be developed. One method for doing this is to employ a person-
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fit statistic. Generally, methods for evaluating the misfit of a student response vector to 

the hypothesized item-score vector have been referred to as "person-fit" methods. 

Numerous person-fit statistics based on CTT and IRT have been proposed and 

investigated (e.g., Donlon & Fischer, 1968; Levine & Rubin, 1979; Meijer, 1994; Meijer 

& Sijtsma, 1995,2001; Sijtsma, 1986; Sijtsma & Meijer, 1992; Tatsuoka & Tatsuoka, 

1983; van der Flier, 1982; Wright & Stone, 1979). However, as will be discussed in 

Chapter 3, most of these methods are based on a single estimate of student ability on the 

true score scale or the latent trait scale without referring to the mastery and nonmastery of 

a set of attributes that underlie student performances. Therefore, it is inadequate to 

directly use these existing person-fit statistics with the AHM.

Consequently, the first purpose of the current study was to develop and validate a 

person-fit statistic called the hierarchy consistency index ( HCIt ; Cui, Leighton, Gierl &

Hunka, 2006). The HCIt is designed to examine explicitly the degree to which a student 

response pattern is consistent with the attribute hierarchy. The second purpose of the 

current study was to conduct simulation studies to assess the effectiveness of the HCIt in 

determining the degree to which a student response vectors fits the attribute hierarchy and 

to identify critical values for interpreting the HCI, with different types of hierarchies,

number of attributes, and sample size, and if the HCIt was influenced by these factors.
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Chapter 2: Review of the Attribute Hierarchy Method

The AHM is a cognitive diagnostic model designed to help develop cognitive 

diagnostic assessments and estimate students’ profiles that reflect their mastery of a set of 

hierarchically ordered attributes. Based on the rule space approach (Tatsuoka, 1983,

1984,1990,1995), the AHM represents an important variation by explicitly modeling 

attribute dependency. In the AHM, attributes are assumed to be hierarchically related, and 

therefore, the attributes can be ordered based upon their logical and/or psychological 

properties. The AHM is composed of three sequential stages. In the first stage, the 

attribute hierarchy is defined to describe the knowledge structures and skill processes that 

students need to use in the test domain. This is a critical step because the validity of the 

cognitive model links directly to the accuracy of the inferences to be made about students 

with the AHM. In the second stage, the attribute hierarchy is used as a basis for 

developing test items to ensure that each component of the cognitive model has been 

measured adequately with test items. In the third stage, statistical classification 

procedures are used to classify each student into one of the knowledge states, derived 

from the cognitive model, thereby making specific inferences about students’ cognitive 

strengths and weaknesses. In order to familiarize the reader with the AHM, this chapter 

provides a detailed description of the three stages of the AHM.

Stage 1: Defining the Attribute Hierarchy 

The first step in using the AHM for cognitive diagnosis is to define the attribute 

hierarchy that serves as a cognitive model in the domain or for the task of interest. 

Leighton and Gierl (2007) identified three types of cognitive models that could be used in
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educational measurement, including cognitive models of domain mastery, cognitive 

models of test specification, and cognitive models of task performance. A model of 

domain mastery describes the population of knowledge and skills associated with 

competence in a test domain. Curriculum-based tests developed by teachers for the 

purpose of formative evaluation are considered as using the cognitive model of domain 

mastery. In order to thoroughly evaluate students’ domain mastery, multiple tests need to 

be administered to students. The use of multiple tests can help teachers gain a detailed 

picture of what their students know and can do within the test domain. According to 

Leighton and Gierl (2007), however, cognitive models of domain mastery that are 

underlying these tests cannot provide strong support for making inferences about 

students’ cognitive strengths and weaknesses given that they fail to clearly specify the 

cognitive processes underlying student performance. Although a student answers an item 

correctly, one cannot conclude that the student uses a correct strategy in solving the item. 

Therefore, cognitive models of domain mastery typically will indicate that a student can 

exhibit a certain test response.

A model of test specification is commonly used in large-scale assessments 

designed to rank students on a continuum within a test domain. Cognitive models of test 

specification are often generated by test developers and content specialists. Although, test 

specification attempts to specify the knowledge and skills that students are supposed to 

use as they solve test items, substantial evidence is often missing for determining whether 

students actually use them. Therefore, cognitive models of test specification fail to 

provide an explicit description of the knowledge structures and cognitive processes that 

students use in solving test items. In addition, the substantial financial costs associated
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with the administration of large-scale assessments make it impossible to use multiple 

tests to extensively evaluate the population knowledge and skills. As a result, only a 

sample of knowledge and skills can be evaluated by large-scale assessments. Given the 

presence of these two limitations with cognitive models of test specification, the grain 

size of these models is often relatively large thereby weakening the specificity of 

inferences made about students’ cognitive strengths and weaknesses.

A cognitive model of task performance is generated based on empirical studies 

that examine the knowledge and cognitive skills used by students as they solve test items. 

The collection of think-aloud verbal reports could play an important role in generating 

cognitive models of task performance. For example, a cognitive model of task 

performance can be generated by administering students a set of test items and having 

them think aloud as they solve these items. In doing so, a detailed description of students' 

cognitive steps or processes is obtained and consequently cognitive models of task 

performance are created with a small grain size. Other methods, such as experimental 

study and the evaluation of expert judges can also be used to generate cognitive models 

of task performance. According to Leighton and Gierl (in press), the grain size of a 

cognitive model is associated to the type of inferences made about student performance. 

Since cognitive models of task performance should illustrate the detailed knowledge and 

skills students actually use as they answer test items, assessments based on these models 

can be used to make specific inferences about students' strengths and weaknesses.

In the AHM, attributes are defined as basic cognitive processes or skills required 

to solve test items correctly (Leighton et al., 2004). The attribute hierarchy serves as a 

cognitive model that specifies the knowledge and skills required for students to answer
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each item correctly. In order to use the AHM to make inferences about student cognitive 

strengths and weaknesses, the attribute hierarchy must be generated at a relatively small 

grain size and also be supported by empirical evidence that demonstrates students 

actually use the model-specified knowledge and skills in solving problem-solving tasks 

or test items.

As pointed out by Leighton et al. (2004), methods from cognitive psychology, 

such as task and protocol analysis, play an important role in the identification of attributes 

and the formation of the attribute hierarchy in a domain. Many studies have been 

conducted to identify the attributes required for successful performance on test items and 

tasks. For example, in a language testing study, Buck and Tatsuoka (1998) identified the 

attribute set for a 35-item listening comprehension test by using two main sources: an 

extensive literature review to seek the theoretical and empirical evidence for the attributes 

that affect performance on listening tests and the results from a series of verbal protocol 

studies conducted by Buck (1990,1991,1994) for examining the second language 

listening processes.

Once identified, the attributes need to be organized into a hierarchy. This is a 

major difference between the rule space model and the AHM in that the hierarchy reflects 

different assumptions about the relationships among attributes. Gierl (2007) discussed 

extensively the differences between the rule space model and the AHM. In the rule space 

model, the attributes are not necessarily related to each other and could operate 

independently. For example, Tatsuoka, Birenbaum, Lewis, and Sheehan (1993) conducted 

a task analysis of the SAT mathematics test and produced 14 independent attributes, 

which accounted for 75% of the total variance of the IRT item difficulties using multiple
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regression. In the AHM, however, the attributes are assumed to be hierarchically related. 

As explained by Leighton et al. (2004), the assumption of attribute dependency is 

consistent with the conclusion that “cognitive skills do not operate in isolation but belong 

to a network of interrelated competencies (Kuhn, 2001; Vosniadou & Brewer, 1992)” (p. 

209).

The ordering of the attributes into a hierarchy should be based on “empirical 

considerations (e.g., a series of well defined, ordered cognitive steps identified via 

protocol analysis) or theoretical considerations (e.g., a series of developmental sequences 

suggested by Piaget such as preoperational, concrete operational, and formal 

operational)” (Leighton et al., 2004, p. 209). Since the attribute hierarchy represents the 

underlying construct of test items, the validity of the AHM depends critically on the 

correct identification of the attribute hierarchy. Leighton et al. (2004) described four 

types of hierarchy structures -  divergent, convergent, linear, and unstructured structures. 

Different types of hierarchy structures describe distinct orderings of cognitive 

competencies required to solve problems successfully in a specific domain. A divergent 

structure represents hierarchies with divergent branches. This type of hierarchy is 

commonly present for a test domain with multiple divergent cognitive competencies. A 

hierarchy with convergent or linear structure ends at a single point, representing a test 

domain that involves a single end state of mastery. An unstructured hierarchy is present 

for a test domain with competencies that are not related to one another.

Stage 2: The Construction of Test Items and Student Knowledge States 

In this stage, a series of matrices (e.g., the adjacency, reachability, incidence, and 

reduced Q matrices) initially introduced by Tatsuoka (1983,1984,1996) are derived
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from the attribute hierarchy to facilitate the development of test items and the 

construction of students’ potential knowledge states in terms of their attribute profiles if 

the attribute hierarchy is true.

Representing the Attribute Hierarchy

Once identified, the attribute hierarchy can be mathematically represented by a 

binary adjacency matrix ( A ) of order K x K ,  where K  is the number of attributes. In the 

adjacency matrix, the direct relationship between each pair of attributes is specified. The 

element a!} of the adjacency matrix indicates if attribute i is a direct prerequisite of

attribute j . It can be expressed as follows:

f 1 if attribute i is the prerequisite of attribute j
au ~ \[0 otherwise

For example, consider the attribute hierarchy illustrated in Figure 1. Attribute 1 is the 

direct prerequisite of attribute 2. Attribute 2 is in turn the direct prerequisite of attribute 3 

and 4. And attribute 4 is the direct prerequisite of attribute 5 and 6. This hierarchical 

configuration is represented in a 6 X 6 adjacency matrix, where the elements 

an , a23, a24, a45, a46 of the adjacency matrix are 1.
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Figure 1. A Six-attribute Hierarchy

The adjacency matrix of the attribute hierarchy is given below:

'0 1 0 0 0 O'
0 0 1 1 0  0 
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0_

Row 1 of the adjacency matrix represents attribute 1 and the elements of row 1 show the 

attributes which are directly connected to attribute 1. Row 2 shows that attributes 3 and 4 

are directly connected to attribute 2. The rest of rows can be interpreted in the same 

manner.

It should be noted that the adjacency matrix only expresses the direct relationship 

between attributes. To specify the direct and indirect relationship among attributes, a 

reachability matrix ( R ) of order K  x K  is used. To derive the reachability matrix from 

the adjacency matrix, Boolean addition and multiplication are performed on the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



22

adjacency matrix. Boolean addition is defined by 1 + 1 = 1 , 1 + 0 = 1 , 0 + 1  = 1, and 0 +

0 = 0. Boolean multiplication is defined by 0 x 0 = 0, 1 x 0 = 0, 0 x 1 = 0, and 1x1  = 1. 

The reachability matrix can be obtained using the equation if = ( A + /)" , where I  is an 

identity matrix of order K x K ,  and n is the integer between 1 and K  that leads R to 

become invariant. That is, when (A + 1) is multiplied by itself repeatedly using Boolean 

algebra until the product become invariant, the obtained matrix is the reachability matrix. 

The Is of the j th row of the reachability matrix identify all the attributes for which 

attribute j  is the direct or indirect prerequisite. For example, to calculate the reachability 

matrix for the attribute hierarchy in Figure 1, (A6 6 + /)" is calculated for n = 1,2,3,4 

separately. Since (A6 6 + I )3 = (A6 6 + 1)4, then R6 6 = (A6 6 + 1)3, which is shown below:

1 1 1 1 1 1  
0 1 1 1 1 1  
0 0 1 0 0 0

0 0 0 1 1 1
0 0 0 0 1 0
0 0 0 0 0 1

The first row of the reachability matrix indicates that attribute 1 is the direct or indirect 

prerequisite for all attributes. Row 2 shows that attribute 2 is the direct or indirect 

prerequisite of attributes 2, 3,4, 5, and 6. Row 3 shows that attribute 3 is a direct 

prerequisite of itself but is neither a direct or indirect prerequisite of any of the other 

attributes. The rest of the rows can be interpreted in the same way. In the AHM, the 

reachability matrix is used to select a subset of items from the potential pool of items, 

which correspond to the dependencies of the attribute hierarchy.

In order to have maximum control over the attributes each item measures,
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Leighton et al. (2004) suggested that the attribute hierarchy should be identified prior to 

the development of test items. In other words, the attribute hierarchy should be used to 

guide the development of test items. When test items are not developed based on an 

attribute hierarchy, the hierarchy has to be extracted from existing items and it becomes 

problematic to ensure that all relevant knowledge and skills have been identified correctly. 

It is difficult in this situation to obtain a unique adjacency matrix in which the direct 

relationships among attributes are specified. In addition, the extraction of the attribute 

hierarchy from actual test items could also lead to the problem of the nonidentifiability of 

certain attributes, when items needed to reflect the relationships in the hierarchy are 

missing from the set of existing test items. Therefore, the construction of test items based 

on the attribute hierarchy in a domain of interest can improve the interpretability of 

student performance on test items.

Creating Potential Item Pool

The potential item pool is designed as the set of items that measure all the 

possible combinations of attributes when the attributes are assumed to be independent of 

each other. In this case, the adjacency matrix is a matrix of order K  x K  in which all the 

elements are 0, and the reachability matrix is a K  x K  identity matrix, where K  is the 

number of attributes. The number of items in the potential item pool is 2 K - 1. The 

potential item pool is represented by the incidence or Q matrix (Tatsuoka, 1983,1984, 

1996), which is an attribute-by-item matrix, which is of order K  x (2K -1 ) . In the Q 

matrix, each column represents one item, and the 1 s in the column identify which 

attributes are required for successful performance on this item. The columns of the Q

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



24

matrix are obtained by converting the integers ranging from 1 to 2K -1  to their binary 

form.The Q matrix for the six-attribute hierarchy (shown in Figure 1) is given by:

' 101010101010101010101010101010101010101010101010101010101010101 '  

011001100110011001100110011001100110011001100110011001100110011 

_  000111100001111000011110000111100001111000011110000111100001111 

^ 6>63 ~ 000000011111111000000001111111100000000111111110000000011111111' 
000000000000000111111111111111100000000000000001111111111111111 
000000000000000000000000000000011111111111111111111111111111111

For this six-attribute hierarchy, the number of items (columns) in the Q matrix is 

26 -1  = 63, and therefore the Q matrix is of order 6x 63. Column 1 of the Q matrix 

represents item 1, and it identifies that only attribute 1 is required in order for students to 

correctly respond to this item. Conversely, according to column 63 of the Q matrix, item 

63 requires all six attributes for a successful response. The rest of the columns can be 

interpreted in the same manner.

Reducing the Potential Item Pool

As discussed in the previous section, the size of the potential item pool is equal to 

2* -1  when the attributes are assumed to be independent of each other. Hence, even for 

a small number of attributes, the potential item pool will be fairly large. However, when 

the attributes share dependencies, the size of the potential item pool can be significantly 

reduced by imposing the constraints of the attribute hierarchy as embodied in the 

reachability matrix. For example, column 2 o f  the Q matrix is (010000), which indicates 

that only attribute 2 is required to correctly answer the item represented in this column. 

According to the reachability matrix of the attribute hierarchy, however, attribute 2 

requires attribute 1. Therefore, a student must have mastered both attribute 1 and 2 in
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order for the student to correctly answer item 2. That is, item 2 must be represented by 

(110000), which is identical to the item represented by column 3 of the Q matrix. As a 

result, column 2 of the Q matrix can be removed. The removal of items in this manner 

ultimately produces a reduced Q matrix that reflects the dependency among attributes.

Alternatively, the reduced Q matrix can be derived using Boolean addition to 

remove items that do not match the constraints of the reachability matrix. For example, 

column 6 of the reachability matrix specifies that any item that probes attribute 6 must 

also measure attributes 1,2, and 4. If the item does not measure these additional 3 

attributes, the item will not match the attribute hierarchy and, consequently, will be 

removed. The reduced Q matrix of the attribute hierarchy shown in Figure 1 is as follows:

'1 1 1 1 1 1 1 1 1 1 f
0 1 1 1 1 1 1 1 1 1 1
0 0 1 0 1 0 1 0 1 0 1
0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 1 1 1 1

The reduced Q matrix shown above is of order 6x11. Thus, out of a potential pool of 63 

items, if the attribute hierarchy is true, only 11 items are logically meaningful according 

to the attribute hierarchy shown in Figure 1. As explained by Leighton et al. (2004), the 

reduced Q matrix has a particularly important meaning for test development. It should be

used as the cognitive specifications for test construction. For the attribute hierarchy 

shown in Figure 1, at least 11 items need to be developed based on the derived reduced 

Q matrix in order to achieve maximum diagnostic information. Multiple sets of items 

can be used to increase the number of items for ensuring the reliability of the test.
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By describing the cognitive requirements of the domain of interest with the 

attribute hierarchy and specifying the items needed to measure the domain in the reduced 

Q matrix, the AHM makes a direct link between student cognition and the test design.

Generating Expected Response Patterns

Once the reachability matrix and the reduced Q matrix are identified, expected 

response patterns can be derived. Expected response patterns are those response patterns 

that can be clearly explained by the presence or absence of the attributes without any 

errors or “slips.” For example, a student who only possesses attribute 1 is expected to 

answer item 1 correctly and the rest of the items incorrectly. Conversely, if a student has 

mastered all attributes, the student is expected to correctly answer all the items in the 

reduced Q matrix, providing the hypothesized attribute hierarchy is true. As shown in the 

second column of Table 1, eleven expected response patterns are derived from the 

attribute hierarchy illustrated in Figure 1. The second row of Table 1 can be interpreted as 

follows: the attribute pattern (100000), which indicates a student has only mastered 

attribute 1, should produce the expected response pattern (10000000000) and obtain a 

total score of 1. Similarly, row 3 of Table 1 indicates that a student who has mastered 

attributes 1 and 2 is expected to correctly answer the first and second item correctly. It 

should be noted that two students with an equal total score do not necessarily possess the 

same attribute patterns. For example, a total score of 4 can be produced from attribute 

patterns (110110) or (110101). Therefore, a student’s total score cannot be consistently 

associated with a single attribute pattern. In order to identify students’ cognitive strengths 

and weaknesses, total scores are not sufficient. Students’ attribute patterns must be 

estimated to indicate which attributes are absent and what remediation instructions are
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required to help students learn their unmastered attributes. Hence, the attribute patterns 

yielded by the AHM can provide more specific information regarding students’ cognitive 

strengths and weaknesses than the single score derived from item response theory (IRT) 

or classical test theory (CTT).

Table 1

Expected Response Patterns for the Hierarchy Shown in Figure 1

Attribute Pattern Expect Response Pattern_______ Total Score
100000 1 0 0 0 0 0 0 0 0 0 0 1
110000 1 1 0 0 0 0 0 0 0 0 0 2
111000 1 1 1 0 0 0 0 0 0 0 0 3
110100 1 1 0 1 0 0 0 0 0 0 0 3
111100 1 1 1 1 1 0 0 0 0 0 0 5
110110 1 1 0 1 0 1 0 0 0 0 0 4
111110 1 1 1 1 1 1 1 0 0 0 0 7
110101 1 1 0 1 0 0 0 1 0 0 0 4
111101 1 1 1 1 1 0 0 1 1 0 0 7
110111 1 1 0 1 0 1 0 1 0 1 0 6
111111 1 1 1 1 1 1 1 1 1 1 1 11

Stage 3: Classifying the Observed Response Patterns 

In real testing situations, it is possible that a student, who has not mastered all the 

attributes required by an item, can still answer the item correctly by guessing or by 

having partial knowledge. It is also possible that a student, who has mastered all the 

attributes that an item is probing, might reach the wrong answer due to careless mistakes. 

Therefore, the observed student response vectors might consist of slips of the form 1 to 0 

or 0 to 1. By classifying each observed response vector in the presence of slips into one 

of the expected response patterns, students’ attribute mastery can be estimated.

Leighton et al. (2004) proposed two methods for the classification of observed 

response patterns in the AHM. In these two methods, the probability of a correct response
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to individual items is calculated for each expected response pattern using an IRT model. 

The three-parameter logistic IRT model is given by:

I * ~ C ip (XiJ = 10, , « ,  bj ,Cj) = Cj +  ----------------- ,
\ + e ’ 1

where

cij — the item discrimination parameter for item j , 

bj = is the item difficulty parameter for item j ,

Cj = is the pseudo-guessing parameter for item j , and 

9t = is the ability parameter for student i .

The two-parameter logistic IRT model is a special case of the three-parameter model in 

which the c . parameter is set to 0. The one-parameter model also called Rasch model is

another form of the logistic IRT model in which all the items are assumed to have equal 

discrimination power and no guessing. Item parameters can be estimated based on the 

expected response patterns using BILOG 3.11 (Mislevy & Bock, 1990).

Once item parameters and the theta value associated with each expected response 

pattern are estimated, the IRT probability of a correct response to each item can be 

calculated for each expected response pattern. In Method A, an observed response pattern 

is compared against each of the expected response patterns to identify the slips from 1 to 

0 and from 0 to 1. The likelihood of all slips from 1 to 0 and from 0 to 1 for student i is 

given by:

keSf o meSn

where

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



29

PJk(Pj) = the probability of a correct response to item k using the ability 

parameter for expected response pattern j ,

Pjm(0j) = the probability of a correct response to item m using the ability 

parameter for expected response pattern j ,

Si0 = the subset of items with slips from 0 to 1 for the observed response vector 

of student i , and

Sa ~ the subset of items with slips from 1 to 0 for the observed response vector 

of student i .

The higher the value of PijExpected{0^  calculated by comparing the observed response 

vector to the expected response vector j , the more likely the observed response pattern 

originates from this expected response vector. Therefore, the observed response vector 

will be classified as originating from expected response vector j  when the maximum

value of PyBxpecled(6j) is achieved.

In Method B, the expected response patterns that are logically included in the 

observed student response vector are identified and a student is considered to possess all 

attributes logically included within his or her observed response vector. For those 

expected response patterns that are not logically included in the observed vector, the 

likelihood of slips only from 1 to 0 is calculated and compared to a cut-point assigned by 

researchers. The likelihood of slips from 1 to 0 is given by:

* e S ,  i

If an expected response vector’s likelihood value is greater than the cut-point, it is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



30

concluded that the student has mastered the attributes implied by this expected response 

vector.

Another method of analyzing the students’ response patterns is to employ a neural 

network (Gierl, Cui, & Hunka, 2007) to approximate the functional relationship between 

students’ item responses and their attribute mastery profiles. The power of the neural 

network approach lies in its ability to map any relationship between inputs and outputs 

(Dawson, 1998,2004; Lippmann, 1987; Medler, 1998). An example of a neural network 

is presented in Figure 2.

Output Layer (R-Units)

Hidden Layer (A-Units)

Input Layer (S-Units)

Figure 2. A Neural Network with Three Layers

This neural network contains three parallel layers -  input, hidden, and output -  

where each unit in the input layer is connected to each unit in the hidden layer and each 

unit in the hidden layer, in turn, is connected to each unit in the output layer. The arrows 

denote these connections. The purpose of the network is to establish the functional 

relationship between input and output units, so the exemplars from the input layer are 

optimally associated with their responses in the output layer, as indicated by a goodness- 

of-fit measure which is typically an error term.
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In the AHM, the input units of the neural network are students’ responses to test 

items, while the output units are the probabilities that the student possesses individual 

attributes illustrated in the attribute hierarchy. The exemplars used to train the neural 

network are the expected response vectors derived from the attribute hierarchy while the 

target output is their associated attribute patterns assuming that the hierarchy is true. The 

relationship between the expected response vectors with their associated attribute vectors 

is established by presenting each expected response pattern to the network repeatedly 

until the error term of the neural network reaches an acceptable level. Once the 

relationship between input and output units are established successfully, a set of weight 

matrices are produced to transform any observed response vector to its associated 

attribute vector so the attribute probabilities can be computed. Let

l + e

and

y=i <=i

then the attribute probability for attribute k , M *k, is given as

M l= F (a k),

where

q is the total number of hidden units,

vkj is the weight of hidden unit j  for output unit k ,

p  is the total number of input units,

w is the weight of input unit i for hidden unit j , and
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x, is the input received from input unit i .

The strength of using a neural network approach with the AHM is that this 

approach does not rely on IRT models or any assumptions about the distributional 

properties of the parameters. Rather, this approach can be used to estimate the 

probabilities that students have mastered each attribute by minimizing the error 

associated with the estimation. For a detailed description of using the neural network 

approach in the AHM, readers are referred to Gierl, Cui, and Hunka (2007).

Evaluating Some Other Issues in Educational Measurement with the AHM

Efforts have been made to evaluate other issues with the AHM. For example, 

Gierl, et al. (2007) described the concept of attribute reliability and developed a new 

procedure to assess it in the AHM framework. Additionally, Gierl, Zheng, and Cui (in 

press) used the AHM to identify and interpret differential group performance on tests. 

These new developments of the AHM are briefly described next.

Attribute Reliability

As described by Gierl et al. (2007), attribute reliability refers to the consistency of 

the decisions made in a diagnostic test about students’ mastery of specific attributes. The 

reliability of an attribute is estimated by calculating the ratio of true score variance to 

observed score variance on the items that are probing each attribute. In the AHM, an 

item is often designed to measure a combination of attributes. Consequently, for items 

that measure more than one attribute, each attribute only contributes to a part of the total 

item-level variance. In order to isolate the contribution of each attribute to an examinee’s 

item-level performance, the item score is weighted by the subtraction of two conditional 

probabilities. The first probability is associated with attribute mastery (i.e., the
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probability that an examinee who has mastered the attribute can answer the item correctly) 

and the second probability is associated with attribute non-mastery (i.e., the probability 

that an examinee who has not mastered the attribute can answer the item correctly). The 

calculation of these probabilities was discussed in detail by Gierl et al. (2007), which will 

not be repeated here. The weighted scores for items that measure the attribute are used in 

the reliability calculation by adapting Cronbach’s alpha for the AHM framework. The 

derived formula is given by

k,
a, =

* ,-1

M
'Wy2° \

cr2 s ŵ x j
jeSj

where

a, is the reliability of attribute i ,

S, denote the subset of items that measures attribute i

kt is the number of items that are probing attribute i in the Qr (i.e., the number 

of elements in S , ),

<72Xj is the variance of the observed scores on item j ,

'Sy , W 2X l is the weighted observed total score on the items that are measuring
j^st

attribute i , and

cr2 1 WyXj is the variance of the weighted observed total scores.JeSt

This approach can provide information about attribute consistency in the 

measurement process and help determine whether more items are required in order to 

make consistent inferences about student’s attribute-level performance.
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Attribute Differential Functioning

Gierl et al. (in press) described a four-step procedure for estimating and 

interpreting group differences using the AHM. In the AHM, the hierarchy serves as a 

cognitive model that specifies the attributes students use in solving test items. As a result, 

the attribute hierarchy can guide the study of cognitive factors that produce differential 

performance by systematically evaluating which attributes elicit group differences. 

Attribute-level differential functioning, hereafter referred to ADF, can be evaluated on a 

studied attribute by comparing the probabilities that different groups possess this 

attribute. To ensure the ability of examinees from the focal and reference groups are 

comparable before the studied attribute is evaluated, examinees’ score are aligned on the 

matching attributes. ADF occurs when examinees with the same matching attribute 

pattern but from different groups have unequal probabilities responding to items that 

measure the studied attribute.

An ADF analysis has four steps. In step 1, the attribute hierarchy is used to 

generate hypotheses about the nature of attribute-related group differences so the studied 

and matching attributes are identified. The ordering of the attributes provides a logical 

basis for generating ADF hypotheses because the hierarchy specifies the ordered 

dependencies among the attributes according to an underlying cognitive model of task 

performance. In step 2, the probability that examinees have mastered the studied attribute 

in both the focal and reference groups is estimated using the neural network. In step 3, the 

scores for examinees in the focal and reference groups are aligned using the matching 

attributes. In step 4, the magnitude and direction of group differences on the studied 

attribute are estimated and tested.
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The ADF analysis can potentially bridge the gap between the substantive and 

statistical steps commonly applied in DIF detection so group differences can be more 

easily identified statistically and interpreted substantively.

Summary

By incorporating the assumption of attribute dependency, the AHM brings a 

fundamentally important cognitive feature into cognitive diagnostic models. The AHM 

can be used to estimate the specific patterns of attribute mastery underlying students’ 

observed item responses. In order for the AHM to be used to make valid inferences about 

students, however, it is critical to correctly identify the attribute hierarchy in the domain 

of interest. It is unavoidable that students make slips (from 1 to 0 or from 0 to 1) in 

answering test items, which leads to the inconsistency between students’ observed 

response pattern and the expectations of the given attribute hierarchy. Therefore, person- 

fit statistics are needed to explicitly evaluate the degree to which student response vectors 

are consistent with the attribute hierarchy thereby assessing the accuracy and adequacy of 

the attribute hierarchy in describing the knowledge and cognitive skills individual 

students use in solving test items. A good fit of the student response vector relative to the 

attribute hierarchy suggests that the student uses the knowledge and cognitive skills as 

specified in the attribute hierarchy to solve test items. As a result, the inferences to be 

made about the student’s cognitive strengths and weaknesses with the AHM can be

validated.
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Chapter 3: The Hierarchy Consistency Index 

This chapter is divided into three sections. In the first section, currently existing 

person-fit statistics are reviewed, followed by a discussion of why these statistics cannot 

be directly used in the AHM framework. In the second section, a person-fit statistic, 

called the hierarchy consistency index ( HCI, ; Cui et al., 2006), is introduced. The HCI, 

is designed explicitly to examine the degree to which an observed student response 

pattern is consistent with the attribute hierarchy. In the third section, a simulation 

approach that was used to identify critical values in order to statistically test the 

significance of the HCI, is described.

A Review of Existing Person-fit Statistics 

The validation of the underlying construct that is being measured by a test is one 

of the most important aspects in educational measurement. It is fundamentally important 

to investigate whether a student’s item scores can be predicted or interpreted by the 

construct that is being measured. One way to accomplish this is to assess whether the 

pattern of a student’s item responses fit one of the typical item-score patterns that are 

consistent with the test model used in the development and interpretation of test items. 

Attempts to evaluate the misfit of a student’s item-score vector to the test model have led 

researchers to studies of "person-fit" statistics. Numerous person-fit statistics have been 

proposed and investigated, and each has its advantages and disadvantages (e.g., Donlon 

& Fischer, 1968; Hamisch & Linn, 1981; Kane & Brennan, 1980; Levine & Rubin, 1979; 

Meijer, 1994; Meijer & Sijtsma, 2001; Sijtsma, 1986; Sijtsma & Meijer, 1992; Tatsuoka 

& Tatsuoka, 1983; van Der Flier, 1982; Wright & Stone, 1979). These person-fit statistics
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are grouped into two major categories: group-dependent statistics and IRT-based statistics.

Group Dependent Person-fit Statistics

In calculating group dependent person-fit statistics, items are rearranged and 

numbered according to a decreasing proportion-correct score (increasing item difficulty) 

in classical test theory (CTT): n x > k2 > ... > n , , where J  is the number of items in a test

and 7Tj is the proportion-correct score on item j.  Group dependent person-fit statistics

compare the observed item response vector to the expectation under Guttman’s (1944, 

1950) deterministic model, in which the probability that a student correctly answers a 

relatively difficult item but fails to answer a relatively easy item is assumed to be zero. 

That is, if a student’s number-correct score is r , the student is expected to have answered 

the first r easiest items correctly. A response vector is considered as misfitting when 

items with a relatively low proportion-correct score are answered correctly, and items 

with a relatively high proportion-correct score are answered incorrectly. For example, 

Hamisch and Linn (1981) discussed the modified caution index C*:

r J

fi* _  ______ Zzl_____
r  ’

2 X -  2 X
j =1 j = j - r +1

where

xtJ = the response of student / to item j , and

Tij = the proportion-correct score on item j  .

When a student has a number-correct score r and answers the r easiest items correctly 

and the rest of the items incorrectly,
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Z * y - [ Z l x *y + Z 0x;ryJ
c . = i - 1------------------ 7=1---------------------------------- =  ( )

* r r
l > y -  Z * j7=1 7=y-f+l

indicating the response vector of student i fits the model perfectly. Conversely, when the 

student answers the r most difficult items correctly and the rest of the items incorrectly,

q * _   M_______y=r+l______ 1
‘ r r 9

Z * j -
7 = 1  j= J - r + \

indicating a maximum misfit. Tatsuoka and Tatsuoka (1983) proposed a person-fit 

statistic called the norm conformity index A O ,:

2Z
NCI, = 1-------------------  ,

r ( J - r )

where

J  = the total number of items,

x,j = the response of student i to item j , and

r = student i ’s number-correct score.

The NCI, evaluates the misfit of an observed response vector to the test model by

comparing the student’ responses for each item pair with the Guttman pattern. There are 

many other group dependent person-fit statistics, such as Kane and Brennan’s (1980) 

agreement, disagreement, and dependability indices, and van der Flier’s (1982) U3

statistic.

Group dependent person-fit statistics rely on item difficulty as determined by the
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proportion correct score of a group of students. In the AHM, however, item complexity is 

associated to a set of hierarchically ordered attributes. The evaluation of the misfit of 

observed item responses to the AHM should be focused on examining if the reduced Q 

matrix derived from the attribute hierarchy is truly representing the cognitive processes 

used by students to solve test items. Thus, it is inadequate to only use the item difficulty 

parameter to evaluate if a student’s response vector fits the AHM model.

IRT-based Person-fit Statistics

IRT-based person-fit statistics can be used to evaluate the misfit of an observed 

response vector to the IRT probabilities calculated with an IRT model using the student’s 

ability theta and item parameters. Broadly speaking, the IRT-based person-fit statistics 

consist of residual-based statistics, likelihood-based statistics, and caution-index-based 

statistics (Meijer & Sijtsma, 2001).

Residual-based statistics include Wright and Stone’s (1979) U statistic, Wright 

and Masters’s (1982) W statistic, and Smith’s (1985) UB and UW statistics. These 

statistics are used to compare a student’s response relative to the IRT probability of a 

correct response determined by the student’s ability theta and item parameters. The 

difference between the observed response and the IRT probability represents the residual 

which could not be explained by the IRT model. An observed response vector is 

considered as misfitting when the mean squared residuals across items are relatively large.

Likelihood-based statistics are derived from the log-likelihood function to assess 

person fit (e.g., Drasgow, Levine, & McLaughlin, 1991; Drasgow, Levine, & Williams, 

1985; Levine & Drasgow, 1982,1983; Levine & Rubin, 1979; Molenaar & Hoijtink,

1990). The log-likelihood function, first used by Levine and Rubin (1979), is given by;
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/ o , = 2 > , y t a W )  + ( l - * #) ln [ l-^ (0 ,) ]} ,
7=1

where

xtJ -  the response of student i to item j , and

Pj(0,) = the IRT probability of a correct response to item j  by student i .

A low value of l0i suggests that the probability of obtaining this observed response vector 

is small when the hypothesized IRT model is true. In turn, this observed response vector 

will be determined as a misfit of the IRT model. In order for l0i to be used to classify an

observed response vector as misfitting, the distribution of lQi under the null hypothesis of 

the fit between the response vector and the IRT model is needed. However, the null 

distribution of l0i is unknown. In addition, as pointed out by Meijer and Sijtsma (2001),

l0i is not standardized, indicating that the classification of an observed response vector as 

model-fitting or misfitting is influenced by 6i . In order to overcome these problems, 

Drasgow et al. (1985) developed a standardized statistic of l0., which is provided by:

l0-E ( l0i)

" W arU tO f2 ’

where 2s(/0,) an^ Var(l0 ) are the expectation and variance of /0 , respectively:

^ o () = E { ^ ( ^ ) l n i ,7^ )  + [ ( l - ^ ( ^ ) ) ln [ l - P 7^ ) ]}
7=1

and

Var(l0:) -  y  {7>y (0,)[1 -  P t f W t o - M L f .
7=1 1 ~  “j  )
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Drasgow et al. (1985) argued that lzi is less influenced by the value of 6j and the 

presence of non-normality of distribution when true 6i values are used.

Several caution-index-based statistics that are of similar form to Sato’s (1975) 

caution index C( have been developed by Tatsuoka and Linn (1983). C, is defined as the 

complement of the ratio of two covariances: the covariance between the observed 

response vector of student i and the item proportion-correct score vector, and the 

covariance between the theoretical Guttman score vector of student i and the item 

proportion-correct score vector. The caution index is given by

r  i  C o v ( X i > n )
I  ^  *  5

Cov(X, ,n)

where

Xj = the observed response vector of student /, 

n = the item number-correct score vector across students, and 

X.* = the theoretical Guttman score vector of student i .

To adapt this caution index in the IRT framework, Tatsuoka and Linn (1983) 

proposed several statistics, including ECIl,, ECI2i , ECI3n ECIAt , ECI5n and ECI6i . 

ECI\t can be calculated by adapting C, using student i ’s IRT probability vector in place 

of this student’s theoretical Guttman score vector. ECI\i can be written as

^ c / i ,  = i - - Cov(Xi’n) ,
Cov[p(0,),n]

where

X( = the observed item response vector of student i , 

n = the item number-correct score vector across students, and
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P(0,) = the IRT item probability vector of student i .

Since the rest of the caution-index-based statistics are developed in the similar manner to 

the ECI\ i , they are not reviewed in this chapter. For a detailed description of these

statistics, readers are referred to Tatsuoka and Linn (1983).

In general, the IRT-based statistics compare the observed item responses with the 

calculated IRT probabilities using the estimate of the student’s overall ability. However, 

estimations of students’ attribute mastery patterns are often of more interest for cognitive 

diagnoses. As a result, the person-fit statistics should focus on evaluating the cognitive 

and statistical soundness of the inferences made about students’ attribute mastery patterns 

made by the AHM. By only concentrating on the single estimate on the student’s overall 

ability, the person-fit statistics developed for the IRT models are not adequate for the 

AHM.

Initial Person-fit Statistics for the AHM

The first classification method for the AHM, Method A, proposed by Leighton et 

al. (2004), could be used to evaluate person fit. Broadly speaking, this method can be 

considered as a likelihood-based procedure in the sense that the likelihood function of 

slips is used to assess person fit. In Method A, the likelihood of slips is calculated by 

comparing an observed response vector to each of the expected response vectors. The 

higher the likelihood value, the more likely it is that the observed response vector 

originated from the expected response vector. The observed response vector is judged as 

originating from the expected response pattern when the maximum likelihood is achieved. 

However, when the maximum likelihood value is very low, it can be concluded that the 

observed response vector is unlikely to have originated from any of the expected response
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vectors. Thus, the observed response vector will be judged as not fitting the AHM.

However, to a great degree, Method A relies on the accurate estimation of ability 

theta for each of the expected response patterns, which is a critical element in the 

calculation of the likelihood value. As a result, when a misfit is found, one can not tell 

whether it is caused by the misfit of the observed response pattern to the attribute 

hierarchy, the IRT model, or both.

The Hierarchy Consistency Index

This review of the literature on existing person-fit statistics revealed that existing 

person-fit statistics cannot be used to adequately evaluate the misfit of the observed 

response vectors to expected response vectors in the AHM. Hence, the current study was 

designed to develop a person-fit statistic, called the hierarchy consistency index ( //C7,),

to help assess the degree to which an observed student response pattern is consistent with 

the AHM, ultimately enhancing the validity of diagnostic feedback produced by the AHM.

The proposed person-fit statistic HClt depends on item complexity as determined 

by the attribute hierarchy and its associated reduced Q matrix. In the AHM, the reduced 

Q matrix, which is derived from the attribute hierarchy, is used to describe the 

knowledge and cognitive skills required in order for students to solve each item correctly. 

Therefore, by comparing an observed student response vector to the expectations 

associated with the reduced Q matrix, the HCI, can be used to assess whether the 

student uses different cognitive skills (or in a different combination) when solving test 

items from those indicated by the reduced Q matrix associated with the attribute 

hierarchy. To calculate the HCIt , the reduced Q matrix needs to be specified. When the
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attribute hierarchy is used as a cognitive model for test development, the reduced Q 

matrix can be derived from the attribute hierarchy to guide the construction of test items. 

When test items are not developed based on the attribute hierarchy, the reduced Q matrix 

will have to be obtained by reviewing test items and identifying the attributes required by 

each item. However, as discussed earlier, the extraction of the attribute hierarchy from 

actual test items might be problematic if items needed to reflect the relationships in the 

hierarchy are missing from these test items. This can lead to the problem of the 

nonidentifiability of certain attributes.

In the AHM, a student is considered to have mastered all of the required attributes 

for an item when the student answers the item correctly. Thus, the student is expected to 

correctly answer all those items that require the subset of attributes measured by the 

correct-answered item. Therefore, the HCIt for student i is given by

2 I  2 X (
//C /   1 correcti &GSj

where

Scoma, includes items that are correctly answered by student i ,

X, is student i ’s score (1 or 0) to item j ,

Sj includes items that require the subset of attributes measured by item j ,

X t is student i ’s score (1 or 0) to item g , and

NCi is the total number of comparisons for all the items that are correctly

answered by student i .
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The term ^  X, (1 -  X i ) in the numerator of the HCI, represents the
j ^ S correctj

number of misfits between student i ’s item response vector and the expected response 

vectors associated with the reduced Q matrix. When student i correctly answers item j ,

X, = 1, then the student is expected to also correctly answer item g  that belongs to S f , 

namely, X ^  =1 (g  e SV). If the student fails to correctly answer item g , X, = 0 , then 

X, (1 -  X jg) = 1 and it is a misfit of the response vector i to the reduced Q matrix. Thus,

^  ^  X^  (1 -  X, ) is equal to the total number of misfits. The denominator of the
j ^ c o r r e c t j  8 e $  j

HCI,, Nc , contains the total number of comparisons for items that are correctly 

answered by student i . When the numerator of the HCI, is set to equal the total number 

of misfits multiplied by 2, the HCI, has the property of ranging from -1 to +1, which

makes it easy to interpret. When a student’s response vector fits the attribute hierarchy 

perfectly (i.e., the student’s response vector matches one of the expected response 

patterns without any slips), the numerator of the HCIt will be 0 and the HCIt will have a 

value of 1. Conversely, when the response vector completely misfits the reduced Q 

matrix (i.e., the student correctly answers one item but fails to answer any item that 

requires the subset of attributes measured by the correct-answered item), the numerator of 

the HCI, will be equal to (2 x N Ci) and the HCI, will be -1. If the HCI, value of a

student response vector is close to -1, one can conclude that the student likely uses 

different knowledge and skills to solve test items as specified in the attribute hierarchy 

and its associated reduced Q matrix. As a result, the attribute hierarchy fails to provide a
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valid representation of the student cognition and consequently cannot be used to make 

inferences about the student performances. In addition, depending on the shape of the 

distribution of the HCIt , the mean or the median of the HCI, can be used as indicators

of the overall model fit. A high mean or median would suggest an overall fit of students’ 

item responses vectors relative to the attribute hierarchy.

To illustrate the calculation of the HCI, , consider the attribute hierarchy 

presented earlier in Figure 1 and reproduced here for convenience.

Figure l .A  Six-attribute Hierarchy 

The reduced Q matrix associated with this attribute hierarchy is as follows:

‘1 1 1 1 1 1 1 1 1 1 1'

0 1 1 1 1 1 1 1 1 1 1
0 0 1 0 1 0 1 0 1 0 1
0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 0 0 1 1

_0 0 0 0 0 0 0 1 1 1 1

Consider the observed response vector (11000100000) where items 1,2, and 6 are
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correctly answered, namely Scorrecl = {1, 2, 6}. According to the reduced Q matrix, item

6 measures attributes 1, 2, 4, and 5. Since student i correctly answers item 6, he or she is 

considered to have mastered the attributes required by this item. Therefore, student i is 

expected to also answer items 1,2, and 4 correctly, each of which measures a subset of 

attributes required by item 6. That is, S6 = {1, 2,4}. Therefore, for item 6, there are three 

comparisons: item 6 vs. 1, 2, and 4. Since student i failed to answer item 4 correctly,

X k (1 -  X lt) = 1, a misfit between the student’s response vector and the expected response

vector derived from the reduced Q matrix is found. In the same manner, for items 1 and 

2 that are also correctly answered by student i , S2 = {1} and S', = { }. Since S 2 contains 

item 1, which is correctly answered by student i , no misfit is found for item 2. S', is an 

empty set containing no elements, no comparison is made for item 1. Overall, the total 

number of misfits is 1, and the total number of comparisons is equal to 3 + 1 + 0 = 4.

Hence, HCI, = 1 = 0.5.
4

Table 2 displays some sample response vectors and their associated HCI, values

for the six-attribute hierarchy in Figure 1. The first row of Table 1 shows a student who 

correctly answers item 3 but fails to answer the rest of items correctly. In total, for this 

response vector, two pairs of item responses are compared where two misfits are

2x2identified. As a result, the corresponding HCI, value is 1---- —  = -1 . It should be noted

that different observed response vectors might have identical HCI, values. For instance, 

both response vectors (11100110000) and (11000100000) produce an HCIi value of 0.50. 

For response vector (11100110000), the total number of comparisons is 12, and three out
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of 12 comparisons are not consistent with the expectations associated with the reduced Q 

matrix. For response vector (11000100000), a total of four pairs of item responses are 

compared where one pair is not consistent with the expectations of the attribute hierarchy. 

This suggests that distinct response vectors might show the same degree of consistency 

with the attribute hierarchy.

Table 2

Sample Response Vectors and Their Associated HCI, Values

Response Vectors # of Correctly-answered 
Items

Total # of 
Comparisons # of Misfits HCI,

0 0 1 0 0 0 0 0 0 0 0 1 2 2 -1.00
0 0 0 0 0 1 0 0 1 0 0 2 9 9 -1.00
0 0 1 0 0 0 1 0 0 0 0 2 8 7 -0.75
0 0 1 0 1 0 1 0 1 0 1 5 30 21 -0.40
0 0 0 0 1  1 1 101 1 6 33 22 -0.33
0 1 0 0 1 1 1 1 0 1 1 7 34 17 0.00
1 1 1001 1 0 0 0 0 5 12 3 0.50
1 1 0 0 0 1 0 0 0 0 0 3 4 1 0.50
1 1 1 1 1 1 1 1 0 1 1 10 30 1 0.95
1 1 0 1 0 1 0 1 0 1 0 6 14 0 1.00
1 1 1 1 1 1 1 1 1 1 1 11 42 0 1.00

It also should be noted that the distribution of the HCI, under the null hypothesis 

that the student response vector fits the reduced Q matrix is unclear, and must be 

specified so that the critical value can be identified for significance testing. A simulation 

procedure was employed in the present study to approximate the null distribution of the 

HCI, and in turn to set the critical value of the HCI, to test the null hypothesis. Given 

that a higher HCI, value suggests a better fit of a student response vector relative to the 

attribute hierarchy, if the observed HCIi is smaller than the critical value, then the null 

hypothesis of the fit between a student response vector and the reduced Q matrix will be
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rejected at the significance level associated with the critical value.

Simulation Procedure for Identifying Critical values of the HCI,

In hypothesis testing, the result of a statistic is evaluated by assessing the null 

hypothesis. To assess the null hypothesis, researchers first assume it is true and then test 

the reasonableness of this assumption by calculating the probability of obtaining the 

result due to chance. If the estimated probability is less than alpha, the null hypothesis 

will be rejected. The value of alpha is assigned by researchers based on theoretical and 

empirical considerations. The null hypothesis can also be evaluated by using the critical 

value to determine the critical region for rejection of the null hypothesis under the 

distribution curve of the tested statistic. The critical region is defined as the area under 

the null distribution curve that contains all the values of the statistic that allow rejection 

of the null hypothesis. By comparing the observed value of the statistic against the critical 

value, researchers will either reject or fail to reject the null hypothesis.

In the current study, the interest was to test the misfit of a student response vector 

to the attribute hierarchy by using the proposed statistic HCI, . Hence, the HCI, for a

student response vector was evaluated by assessing the null hypothesis that the student 

response vector fits the attribute hierarchy well. Ideally, the probability of obtaining the 

observed HCI, based on the distribution of the HCI, when the null hypothesis is true is

calculated. If the calculated probability turns out to be less than the alpha level, one can 

conclude the student response vector does not fit the attribute hierarchy well.

Unfortunately, the probability distribution is unknown for the proposed HCI, 

under the null hypothesis that the student response vector fits the attribute hierarchy. To
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circumvent this problem, a simulation procedure was used to approximate the null 

distribution of the HCI, using simulated data with known characteristics. This simulation

procedure made possible the identification of the HCI, value at the location in which the

cumulative distribution function has a value that is equivalent to the critical value. 

Researchers can determine whether the student response vector fits the AHM by 

comparing the HCI, of this response vector to the obtained critical value.

In order to produce this outcome, a set of student item response vectors was first 

simulated from the attribute hierarchy and the reduced Q matrix of the AHM. Since the

purpose of this simulation was to approximate the distribution of the HCI, under the null 

hypothesis, the simulated data set had a large sample size to decrease the errors due to 

random sampling. Each student response vector was generated by randomly adding slips 

from 1 to 0 and from 0 to 1 to one of the expected response patterns derived from the 

attribute hierarchy and the reduced Q matrix. The percentage of slips for each item was 

determined according to the prior knowledge about the nature of the item. In the next 

chapter, the procedures for randomly adding slips will be discussed in detail.

After simulating a set of student response vectors, the HCI, value for each

generated response vector was calculated and placed in ascending order. By doing this, 

the approximate distribution of the HCI, under the null hypothesis was obtained. The

HCI, has the property of ranging from -1 to +1. A larger HCI, value for a student 

response vector suggests a better fit of this response vector relative to the attribute 

hierarchy. Therefore, the critical region of the HCI, is on the left side of its distribution.

Using the alpha level of 0.05, the HCI, value below which the 5% most extreme values
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fell was chosen as the critical value. In order for the null hypothesis to be rejected, the 

observed HCIt must be smaller than the critical value. By rejecting the null hypothesis,

one can conclude that the student likely uses different cognitive skills (or in a different 

combination) from those skills indicated by the attribute hierarchy and its associated 

reduced Q matrix.

In the next chapter, the simulated data sets were used to identify the critical values 

of the HCli for distinguishing good, moderate and poor fitting response vector under 

different simulation conditions. In addition, simulated data sets were also used to evaluate 

the effectiveness of the HCli in assessing the misfit of students response vectors relative

to the attribute hierarchy, where the hypothesis is that higher HCIt values should be 

obtained for the data sets with lower percentage of slips.
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Chapter 4: Simulation Studies 

The simulation studies were conducted for two purposes. The first purpose was to 

use simulated data of known characteristics to evaluate the effectiveness of the HCI, in

assessing the misfit of student response vectors to the attribute hierarchy and its 

associated reduced Q matrix in the AHM. The second purpose of simulations was to 

identify critical values of the HCIi for distinguishing good, moderate, and poor fitting 

student response vectors under different simulation conditions by using the simulation 

approach for setting critical values of the HCIt described in Chapter 3.

Method

Research Design

Student response data were simulated under a variety of conditions expected to 

affect the distribution and the effectiveness of the HCI, . Four factors were manipulated:

sample size, number of attributes, hierarchy structure, and percentage of slips. The levels 

of each factor were selected to reflect those that might be found in a real testing situation. 

First, sample size was set at 500,1,000, and 1,500 to reflect small, moderate, and large 

sample sizes. Second, number of attributes was manipulated to range from five to seven 

with an increment of one attribute to examine whether this factor had an impact on the 

distribution and the effectiveness of the HCIt . Third, the three types of hierarchy 

structure discussed by Leighton et al. (2004) -  divergent, convergent, and linear 

structures - were considered. Different types of hierarchy structures describe distinct 

ordering of cognitive competencies required to solve problems successfully in a specific
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domain. Divergent structure represents hierarchies with divergent branches. This type of 

hierarchy is commonly present for a test domain with multiple divergent cognitive 

competencies. A hierarchy with convergent or linear structure ends at a single point, 

representing a test domain that involves a single end state of mastery. These three types of 

hierarchy structure were crossed with the three levels of the number of attributes 

producing a total of nine attribute hierarchies. These hierarchies are shown in Figures 3, 4, 

and 5, respectively. Fourth, the percentage of slips was set at 5%, 10%, and 20%. These 

levels of slips were selected to reflect a relatively good, moderate, and poor model-data 

fit, respectively. Thus, three levels of sample size, three levels of number of attributes, 

three types of hierarchy structure, and three levels of percentage of slips were considered 

in the current study so as to produce a total of 3x3x3x3=81 conditions. Each condition 

was replicated 100 times (Hawell, Stone, Hsu, & Kirisci, 1996) to obtain stable estimates 

of the HCI, values and the critical values.

Data Generation

For each of the nine attribute hierarchies, the matrices of the AHM, including the 

adjacency matrix, the reachability matrix, the incidence matrix, the reduced Q matrix, 

and the expected response matrix, were derived. The obtained expected response matrix 

was used as a basis for the generation of student response data. A sample of 500, 1000, 

and 1500 expected item response vectors were separately generated based on each of the 

nine expected response matrices with the constraint that the total scores associated with 

the expected response patterns be normally distributed. Given that each generated sample
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Figure 3. Three Five-Attribute Hierarchies Used for Simulation.
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Figure 5. Three Seven-Attribute Hierarchies Used for Simulations.
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only consisted of expected response patterns which were free from slips (from 1 to 0 and 

from 0 to 1), slips were randomly added to simulate real test-taking behaviors. In this 

simulation study, an assumption that all the items share an equal percentage of slips was 

made. This assumption may not be reasonable in the sense that the number of slips that 

students make in each item might vary with item characteristics, such as item difficulty 

and discriminating power, and student characteristics, such as ability level and gender. 

However, no studies were found in the literature that systematically investigated whether 

and how item and student characteristics affect the likelihood of slips made by students in 

answering test items. Therefore, in this study, uniform probabilities of 5%, 10%, and 20% 

were separately employed to create slips from 1 to 0 and from 0 to 1 for each generated 

expected response sample.

For example, to generate data based on the 5-attribute divergent hierarchy (HI in 

Figure 3), first, the reduced Q matrix and the expected response matrix were derived 

from the hierarchy. The reduced Q matrix is shown as follows:

1 1 1 1 1 1 1 1 1  
0 1 0  1 1 1 0  1 1  
0 0 1 1 0  1 1 1 1  
0 0 0 0 1 1 0 0 1 
0 0 0 0 0 0 1 1 1

The reduced Q matrix is of order 5 by 9 (i.e., attributes by items), suggesting that a 

minimum of 9 items are required in order to make inferences about students’ mastery of 

the five attributes specified in the hierarchy. The first column of the reduced Q matrix is 

interpreted as showing that mastery of attribute 1 is required in order for students to 

answer item 1 correctly. The last column of the reduced Q matrix shows that item 11
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requires the mastery of attributes 1 to 5 in order to reach the correct answer. The 

remaining columns can be interpreted in the same manner.

Using the reduced Q matrix, the expected response matrix was derived:

0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0
1 1 1 1 1 1 0 0 0
1 0 1 0 0 0 1 0 0
1 1 1 1 0 0 1 1 0
1 1 1 1 1 1 1 1 1

The expected response matrix is of order 10 by 9 (i.e., response vectors by items), 

suggesting that if the attribute hierarchy is truly representing student cognition, ten 

student response vectors, without any slips from 1 to 0 and from 0 to 1, are expected. In 

order to generate data based on expected response patterns, the frequency associated with 

each expected response pattern needs to be calculated for each sample size considered in 

the simulations (500,1000, or 1500). These frequencies were calculated by making the 

assumption that the total scores associated with the expected response patterns are 

normally distributed. The obtained frequencies are shown in Table 3. According to the 

second row of Table 3, the frequencies associated with the response pattern (000000000) 

are 45, 90, and 134 when the sample size is set at 500,1000, and 1500, respectively. It 

should be noted that the total scores associated with the expected response patterns are 

normally distributed, although the frequency distribution of expected response patterns 

shown in Table 3 appear to be positively skewed. This is because different expected
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response vectors may lead to a same total score. For example, expected response patterns 

(111111000) and (111100110) have the same total score of six. Based on the normality 

assumption, the frequency associated with the total score of six was calculated as 72 

when sample size was 500. Correspondingly, two expected response patterns -  

(111111000) and (111100110) -  were assigned to have an equal frequency of 36, 

respectively. By using these frequencies, a data matrix of expected response patterns was 

obtained with each sample size. For instance, the data matrix of 500 expected response 

patterns contained 45 row vectors of (000000000), 68 row vectors of (100000000), and so 

forth. This data matrix ended with 15 row vectors of (111111111).

Table 3

Frequencies for Each Expected Response Pattern Associated with Different Sample Sizes 

for the 5-Attribute Divergent Hierarchy

Sample Size

Expected response pattern 500 1000 1500

( 0 0 0 0 0 0 0 0 0 ) 45 90 134
( 1 0 0 0 0 0 0 0 0 ) 68 136 204
( 1 1 0 0 0 0 0 0 0 ) 45 90 135
( 1 0  1 0 0 0 0 0 0 ) 45 90 135
( 1 1 1 1 0 0 0 0 0 ) 106 211 317
( 1 1 0 0  1 0 0 0 0 ) 52 104 156
( 1 1 1 1 1 1 0 0 0 ) 36 73 109
( 1 0  1 0 0 0 1 0 0 ) 52 104 156
( 1 1 1 1 0 0 1 1 0 ) 36 73 109
( 1 1 1 1 1 1 1 1 1 ) 15 30 45

In order to simulate the real testing behavior, slips were added to the data matrix 

of expected response patterns. An assumption of equal percentage of slips across items 

was made in this study. The number of slips was determined by sample size and 

percentage of slips. For each item, the number of slips was equal to the number of
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responses (500, 1000, or 1500) multiplied by the percentage of slips (5%, 10%, or 20%). 

For example, in the 500 sample size condition with 5% slips, 500 x 5% = 25 responses to 

each item were randomly selected from the 500 expected response vectors. And if the 

selected response was 1, indicating that the student was expected to answer the item 

correctly, a slip from 1 to 0 was created by altering the response from 1 to 0. On the other 

hand, if the selected response was 0, which indicated that the student was expected to 

answer the item incorrectly, a slip from 0 to 1 was created by altering the response from 0 

to 1. Slips for each item were created separately in this way. In total, for the 500 sample 

size condition with 5% slips, (25 x n )  slips were added to the data matrix of expected 

response patterns for each attribute hierarchy, where n is the number of items as 

indicated by the reduced Q matrix associated with the hierarchy. For example, nine items 

were used according to the reduced Q matrix derived from the 5-attribute divergent 

hierarchy (HI in Figure 2). A total of 25 x 9 = 225 slips were created to simulate student 

responses to the nine items from the 5-attribute divergent hierarchy in the 500 sample 

size condition with 5% slips. This process was replicated 100 times, each with a different 

random seed. By doing this, 100 data sets were generated for each condition. Table 4 

presents the number of slips added to the student responses for each item under different 

simulation conditions. The total number of slips added to each data set under different 

conditions is shown in Table 5.
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Table 4

Number o f  Slips Added into Each Item under Different Simulation Conditions

Percentage of Slips
Sample Size 5% 10% 20%

500 25 50 100
1000 50 100 200
1500 75 150 300

Table 5

The Total Number o f  Slips Added under Different Simulation Conditions

Number of 
Attributes

Hierarchy
Structure

Number of 
Items

Sample
Size

Percentage of Slips 
5% 10% 20%

5-attribute Divergent 9 500 225 450 900
Convergent 6 1000 300 600 1200
Linear 5 1500 375 750 1500

6-attribute Divergent 15 500 375 750 1500
Convergent 7 1000 350 700 1400
Linear 6 1500 450 900 1800

7-attribute Divergent 25 500 625 1250 2500
Convergent 8 1000 400 800 1600
Linear 7 1500 525 1050 2100

By first creating a data matrix of expected response patterns and then randomly 

adding a certain percentage of slips, simulated data with known characteristics were 

generated. Using the same procedure for generating data for the 5-attribute divergent 

hierarchy, data for the remaining 8 hierarchies considered in the simulations (shown in 

Figures 3 ,4, and 5) were generated. The expected response patterns and their 

corresponding frequencies for these 8 hierarchies are presented in Tables 6, 7, and 8.
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Expected Response Patterns and Their Associated Frequencies for the 6- and 7-Attribute

Divergent Hierarchies

Divergent Hierarchy Expected response pattern 500

Sample Size 

1000 1500

6-attribute (000000000000000) 31 62 93
(100000000000000) 42 84 126
(110000000000000) 27 54 81
(101000000000000) 27 54 81
(111100000000000) 72 144 215
(110010000000000) 21 43 64
(111111000000000) 25 49 74
(110000100000000) 21 43 64
(111100110000000) 25 49 74
(110010101000000) 75 151 226
(111111111100000) 36 73 109
(101000000010000) 21 43 64
(111100000011000) 25 49 74
(111111000011100) 24 48 72
(111100110011010) 24 48 72
(111111111111111) 4 7 11

7-attribute (0000000000000000000000000) 29 58 87
(1000000000000000000000000) 36 72 107
(1100000000000000000000000) 21 43 64
(1010000000000000000000000) 21 43 64
(1111000000000000000000000) 56 113 169
(1100100000000000000000000) 12 25 37
(1111110000000000000000000) 16 33 49
(1100001000000000000000000) 12 25 37
(1111001100000000000000000) 16 33 49
(1100101010000000000000000) 31 62 93
(1111111111000000000000000) 31 62 93
(1010000000100000000000000) 12 25 37
(1111000000110000000000000) 16 33 49
(1111110000111000000000000) 17 33 50
(1111001100110100000000000) 17 33 50
(1111111111111110000000000) 7 15 22
(1010000000000001000000000) 12 25 37
(1111000000000001100000000) 16 33 49
(1111110000000001110000000) 17 33 50
(1111001100000001101000000) 17 33 50
(1111111111000001111100000) 7 15 22
(1010000000100001000010000) 31 62 93
(1111000000110001100011000) 31 62 93
(1111110000111001110011100) 7 15 22
(1111001100110101101011010) 7 15 22
(1111111111111111111111111) 1 1 2
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Table 7

Expected Response Patterns and Their Associated Frequencies for the 5- 6- and 7-

Attribute Convergent Hierarchies

Convergent Hierarchy Expected response pattern 500

Sample Size 

1000 1500

5-attribute (000000) 55 110 166
(100000) 89 179 268
(110000) 59 118 177
(101000) 59 118 177
(111100) 111 223 334
(111110) 80 159 239
(111111) 46 93 139

6-attribute ( 0 0 0 0 0 0 0 ) 44 88 132
( 1 0 0 0 0 0 0 ) 69 139 208
( 1 1 0 0 0 0 0 ) 47 93 140
( 1 0 1 0 0 0 0 ) 47 93 140
( 1 1 1 1 0 0 0 ) 105 209 314
( 1 1 1 1 1 0 0 ) 88 175 263
( 1 1 1 1 1 1 0 ) 63 126 188
( 1 1 1 1 1 1 1 ) 38 77 115

7-attribute ( 0 0 0 0 0 0 0 0 ) 36 72 108
( 1 0 0 0 0 0 0 0 ) 55 111 166
( 1 1 0 0 0 0 0 0 ) 37 75 112
( 1 0 1 0 0 0 0 0 ) 37 75 112
( 1 1 1 1 0 0 0 0 ) 93 187 280
( 1 1 1 1 1 0 0 0 ) 87 173 260
( 1 1 1 1 1 1 0 0 ) 71 141 212
( 1 1 1 1 1 1 1 0 ) 51 102 153
( 1 1 1 1 1 1 1 1 ) 32 65 97
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Table 8

Expected Response Patterns and Their Associated Frequencies for the 5-, 6- and 7- 

Attribute Linear Hierarchies

Sample Size

Linear Hierarchy Expected response pattern 500 1000 1500

5-attribute (00000) 49 99 148
(10000) 86 173 259
(11000) 114 228 343
(11100) 114 228 343
(11110) 86 173 259
( H i l l ) 49 99 148

6-attribute (000000)  
( 1 0 0 0 0 0 ) 
( i i : : : : :  
( 1 1 1 0 0 0 ) 
( 1 1 1 1 0 0 ) 
( 1 1 1 1 1 0 ) 
(111111)

40 79 119
67 134 201
92 184 276

102 205 307
92 184 276
67 134 201
40 79 119

7-attribute 0 0 0 0 0 0 0 ) 33 66 99
1 0 0 0 0 0 0 ) 54 108 162
1 1 0 0 0 0 0 ) 75 150 225
1 1 10 0 00 ) 88 177 265
1 1 1 1000) 88 177 265
1 1 1 1 1 0 0 ) 75 150 225
1 1 1 1 1 1 0 ) 54 108 162
1 1 1 1 1 1 1 ) 33 66 99
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Evaluating the Effectiveness o f  the HCI,

As discussed in Chapter 3, a higher HCI, value suggests a better fit of the student 

response vector to the attribute hierarchy. Therefore, if the HCI, works well in 

determining the degree to which a student response vector corresponds to the attribute 

hierarchy, the results should indicate that higher HCI, values are obtained for response 

vectors with a lower percentage of slips. In other words, the highest HCI, values are 

expected to be obtained for data sets with 5% slips, and the lowest HCI, values for data 

sets with 20% slips. Of additional interest was to investigate whether the HCI, is

effective in examining the person fit of student response vectors across various forms of 

hierarchical structures.

For each generated data set, the HCI, was applied to the simulated response 

vectors, and the median of the HCI, values over the response vectors was calculated. The 

use of medians as the measure of central tendency was due to the markedly negatively 

skewed distribution of the HCI,, which will be demonstrated in the results section. For 

data sets generated based on a same attribute hierarchy and at a same level of sample size 

(500,1000, or 1500), the means of the median HCI, values over the 100 data sets with 

5%, 10%, and 20% slips were compared thereby providing a general criterion to evaluate 

the effectiveness of the HCI, .

Identifying Critical Values for Interpreting the HCI,

Simulated data sets were also used to identify critical values of the HCI, for
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distinguishing good, moderate, and poor fitting response vectors relative to the attribute 

hierarchy. For each simulated data set, the HCI, values were calculated and ordered 

according to decreasing misfit and the value below which the 5% most extreme misfitting 

values fell was taken as the critical value for the data set. As a result, for each condition, 

100 critical values were calculated and the mean of the 100 critical values was used as the 

final critical value. In this study, the simulated data sets with 5% slips were used to set the 

critical values for distinguishing a good and a moderate person fit, and the simulated data 

sets with 10% slips were used to set the critical values for distinguishing a moderate and 

a poor person fit. For each attribute hierarchy, if the HCI, value for a student response

vector is greater than the critical value produced from the data sets with 5% slips, one can 

conclude that there is a good fit between the student response vector and the attribute 

hierarchy. If the HCIt value for a student response vector is smaller than the critical

value produced from the data sets with 5% slips but greater than the critical value 

produced from the data sets with 10% slips, one can conclude that there is a moderate fit 

between the student response vector and the attribute hierarchy. A smaller observed HCI,

value than the critical value produced from the data sets with 10% slips suggests a poor 

fit of the student response vector to the attribute hierarchy. As a result, for each attribute 

hierarchy, a guideline was produced for identifying good, moderate, and poor fitting 

response vectors to the attribute hierarchy.

Meanwhile, the median of the HCI, values for each data set was used as the

critical value to evaluate the overall model-data fit. For each condition, 100 medians were 

calculated and ordered, and the fifth smallest median was used as the critical value for the 

overall model fit. For an observed data set, if the median of the //C /( values is greater
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than the critical value for the overall model fit produced from the data sets with 5% slips, 

one can conclude that there is a good overall model fit. If the median of the HCI, values

for an observed data set is smaller than the critical value for the overall model fit 

produced from data sets with 5% slips but greater than the critical value produced from 

data sets with 10% slips, one can conclude that there is a moderate overall model fit. A 

smaller median of the HCI, values than the critical value for the overall model fit 

produced from data sets with 10% slips suggests a poor overall model fit. Therefore, for 

each attribute hierarchy, a guideline was produced for identifying the good, moderate, and 

poor overall model-data fit. The results for the different attribute hierarchies were 

compared to investigate whether critical values of the HCI, were influenced by sample 

size, number of attributes, and hierarchy structure.

Results

The results from the simulation studies are presented in four parts. Typical 

example frequency distributions of the HCI, are first presented to give the reader a

general idea of what the distributions of the HCI, look like. The results used for

evaluating the effectiveness of the HCI, through the comparison of the median HCI,

values across different conditions are then presented, followed by the results associated 

with the critical values for evaluating the person fit of a student response vector to the 

attribute hierarchy. Finally, the results for the overall model-data fit are described.

The Frequency Distributions o f  the HCI,

Figure 6 shows the HCI, frequency distribution associated with one of the 100
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data sets that were generated based on the expected response vectors of the 6-attribute 

divergent hierarchy (HI in Figure 3) where 5% slips were added and the sample size was 

500. The HCI t appeared to be non-normally distributed and substantially negatively

skewed, with a mean of 0.64 and a standard deviation of 0.53. The median and the mode 

of this frequency distribution were both 1.00. Of the 500 simulated response vectors, 

approximately 55% of vectors had an HCIt value of 1, suggesting a perfect fit of student 

response vectors relative to the attribute hierarchy. Although data were generated based 

on the attribute hierarchy, almost 3% of the simulated response vectors had HCI t values

of -1. Suppose that a student, who has not mastered any attributes as specified in the 

attribute hierarchy, randomly guessed a difficult item correctly. Because the student 

correctly answered the difficult item but failed to answer any of its prerequisite items 

correctly, the HCI, value for this student response vector was -1. In this case, one single 

slip to a difficult item led to a maximum misfit of the student response vector to the 

attribute hierarchy ( HCI, = -1), suggesting that the HCI, is sensitive to the location of 

slips a student makes when the student has not mastered any attributes.
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Figure 6. Tpyical Frequency Distribution of the HCIt for the 6-attribute Divergent 

Hierarchy (5% Slips).

Figures 7 demonstrates the frequency distributions of a typical 5-attribute 

divergent hierarchy at the 10% slips condition. The HCIt remained non-normally

distributed but with a smaller negative skewness compared to the HCIi distribution at the 

5% slips condition. Of the 500 simulated response vectors, around 30% of vectors had an 

HCIi value of 1 while 2% of vectors had an HCIt value of -1. The frequency 

distributions of the HCIi for the rest of the hierarchies considered in the simulations

showed similar patterns as those for the 5-attribute divergent hierarchy in both shape and 

trend, and therefore are not presented here.
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Figure 7. Tpyical Frequency Distribution of the HCI, for the 6-attribute Divergent 

Hierarchy (10% Slips).

The Medians o f  the HCI, Values

Given the substantively skewed distribution of the HCIt , the median was chosen 

as the measure of central tendency for the purpose of evaluating the effectiveness of the 

HCI t. The means and standard deviations of the median H C f values across the 100 

replications under each condition are presented in Table 9. The standard deviations are 

presented in parenthesis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



69

Table 9

The Means and Standard Deviations o f  the Median HCIt Values across the 100

Simulated Data Sets under Different Simulation Conditions

Hierarchy Number of Percentage of Errors

Structure attributes Sample Size 5% 10% 20%

Divergent 5 attributes 500 1.00 (0.00) 0.98 (0.05) 0.34 (0.03)
1000 1.00 (0.00) 0.99 (0.03) 0.34 (0.02)
1500 1.00 (0.00) 0.99 (0.02) 0.33 (0.01)

6 attributes 500 1.00 (0.00) 0.56 (0.03) 0.20 (0.02)
1000 1.00 (0.00) 0.56 (0.02) 0.20 (0.02)
1500 1.00 (0.00) 0.56 (0.01) 0.19(0.02)

7 attributes 500 0.70 (0.03) 0.30 (0.02) 0.05 (0.02)
1000 0.71 (0.02) 0.30 (0.02) 0.04 (0.01)
1500 0.71 (0.02) 0.30 (0.02) 0.05 (0.01)

Convergent 5 attributes 500 1.00 (0.00) 1.00 (0.00) 0.55 (0.06)
1000 1.00 (0.00) 1.00 (0.00) 0.55 (0.04)
1500 1.00 (0.00) 1.00 (0.00) 0.54 (0.04)

6 attributes 500 1.00 (0.00) 1.00 (0.00) 0.51 (0.01)
1000 1.00 (0.00) 1.00 (0.00) 0.50 (0.01)
1500 1.00 (0.00) 1.00 (0.00) 0.50 (0.01)

7 attributes 500 1.00 (0.00) 1.00 (0.01) 0.50 (0.00)
1000 1.00 (0.00) 1.00 (0.00) 0.50 (0.00)
1500 1.00 (0.00) 1.00 (0.00) 0.50 (0.00)

Linear 5 attributes 500 1.00 (0.00) 1.00 (0.00) 0.91 (0.14)
1000 1.00 (0.00) 1.00 (0.00) 0.95 (0.11)
1500 1.00 (0.00) 1.00 (0.00) 0.96 (0.10)

6 attributes 500 1.00 (0.00) 1.00 (0.00) 0.53 (0.06)
1000 1.00 (0.00) 1.00 (0.00) 0.51 (0.03)
1500 1.00 (0.00) 1.00 (0.00) 0.51 (0.03)

7 attributes 500 1.00 (0.00) 1.00 (0.00) 0.49 (0.02)
1000 1.00 (0.00) 1.00 (0.00) 0.50 (0.01)
1500 1.00 (0.00) 1.00 (0.00) 0.50 (0.01)

When 5% slips were added to the expected response vectors, the mean of the 

medians of the HCI, values were equal to 1.00 except for the 7-attribute divergent 

hierarchy. This suggested that at least 50% of simulated response vectors were consistent
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with the expected response vectors without any slips. For the 7-attribute divergent 

hierarchy, the mean medians of the HCI, values were 0.70, 0.71, and 0.71 under the 500, 

1000, and 1500 conditions, respectively. For the 10% slips condition, the mean medians 

of the HCI, values remained at 1.00 for convergent and linear hierarchies. However, for

the divergent hierarchies, the mean medians of the HCI, values ranged from 0.30 to 0.99.

These values appeared to decrease as the number of attributes increased after controlling 

for the factor of sample size. For example, when the sample size was fixed at 500, the 

mean medians of the HCI, values were 0.98, 0.56, and 0.30 for the 5-, 6-, and 7-attribute 

divergent hierarchies, respectively. Sample size did not appear to affect the median values 

of the HCI, within a hierarchy structure of a given number of attributes, with the 

maximum difference of only 0.01.

For the 20% slips condition, hierarchies of divergent structure produced the 

smallest mean medians of the HCIt values, ranging from 0.04 to 0.34, while hierarchies

of linear structure yielded the largest values, ranging from 0.49 to 0.96. The mean 

medians of the HCI, values ranged from 0.50 to 0.55 for convergent hierarchies. As the

number of attributes increased, the median of the HCI, values decreased considerably for 

divergent hierarchies after controlling for sample size, suggesting that the number of 

attributes displayed a negative effect on the median HCI, values for hierarchies with

divergent structure. For example, the mean median HCI, values were 0.34, 0.20, and 

0.05, respectively, for data sets generated from the 5-, 6-, and 7-attribute divergent 

hierarchies. For convergent hierarchies, however, the mean medians of the HCI, values 

only slightly decreased as the number of attributes increased after controlling for sample
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size. For linear structure, the medians of the i/C/, values dropped dramatically when the

number of attributes increased from five to six, while the values slightly decreased when 

the number of attributes increased from six to seven. In addition, sample size did not 

show a significant impact on the median HCIi values within a hierarchy structure of a

given number of attributes. The maximum difference occurred when comparing the 

median values of the 500 sample size condition with respective values under the 1500 

condition for the 5-attribute linear hierarchy.

To summarize, the magnitude of the median i/C7; values appeared to be stable 

for data sets of different sample sizes, with a maximum difference of 0.03, after 

controlling for hierarchy structure, number of attributes, and percentage of slips. The 

maximum difference was produced when data were simulated by adding 20% slips to the 

expected response vectors derived from the 5-attribute linear hierarchy. Given the 

negligible difference in the mean median HCI, values across different sample sizes, one

can conclude that sample size did not show an impact on the median HCI, values.

Results also showed that the mean median HCI, values under the 20% slips 

condition were consistently lower than the respective values under the 10% slips 

condition, w hich, in turn, were lower than, if not equal to, the values under the 5% slips 

condition after controlling for hierarchy structure, number of attributes, and sample size. 

For example, for the data sets simulated based on the 5-attribute divergent hierarchy and 

with the sample size of 500, the mean median i/Ci, Values were 1.00, 0.98, and 0.34, 

respectively, when 5%, 10%, and 20% slips were randomly added into expected response 

vectors. Thus, the percentage of slips showed a negative effect on the median HCI,
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values after controlling for other factors, suggesting that higher HCI, values tended to be 

produced by data sets with lower percentage of slips. Given that a higher HCIt value 

suggests a better fit of a student response vector to the attribute hierarchy, to evaluate the 

effectiveness of the HCI, the hypothesis is that the HCI, values should decrease as the 

percentage of slips increases. Since the simulation results confirmed this hypothesis, one 

can conclude that the HCI, works well in examining the degree to which a student 

response vector is consistent with the attribute hierarchy.

Critical Values for Testing the Person-Fit

The critical values, selected to statistically examine the person fit of a student 

response vector to the attribute hierarchy, are presented in Table 9. Two statistically-set 

critical values were selected under each simulation condition, one used for discriminating 

a good and a moderate person-fit (CV1), the other for discriminating a moderate and a 

poor person-fit (CV2). For example, according to the first row of Table 10, two critical 

values, -0.58 and -0.94, were identified for determining the person fit of a student 

response vector to the 5-attribute divergent hierarchy (HI in Figure 3) when sample size 

was set at 500. If an observed HCI, value for a student response vector is greater than 

-0.58, one can conclude there is a good fit between the student response vector and the 

attribute hierarchy. If the observed HCI, value is smaller than -0.58 but greater than 

-0.94, one can conclude that the student response vector fits the attribute hierarchy 

moderately. If the HCI, value for a student response vector is smaller than -0.94, the 

corresponding student response vector will be judged as not fitting the attribute hierarchy.
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Table 10

Critical Values for Testing the Person-Fit

Hierarchy
Structure

Number of 
attributes Sample Size

Critical Values 

CV1* CV2*

Divergent 5 attributes 500 -0.58 -0.94
1000 -0.60 -0.96
1500 -0.60 -0.96

6 attributes 500 -0.65 -0.78
1000 -0.64 -0.78
1500 -0.63 -0.78

7 attributes 500 -0.79 -0.80
1000 -0.79 -0.80
1500 -0.79 -0.80

Convergent 5 attributes 500 -0.46 -0.96
1000 -0.47 -0.97
1500 -0.48 -0.99

6 attributes 500 -0.44 -0.82
1000 -0.44 -0.79
1500 -0.45 -0.83

7 attributes 500 -0.41 -0.72
1000 -0.40 -0.71
1500 -0.40 -0.71

Linear 5 attributes 500 -0.28 -0.83
1000 -0.33 -0.82
1500 -0.33 -0.85

6 attributes 500 -0.28 -0.69
1000 -0.32 -0.66
1500 -0.31 -0.66

7 attributes 500 -0.29 -0.65
1000 -0.31 -0.64
1500 -0.30 -0.64

Note: CV1 is the critical value identified for distinguishing a good and moderate fit 
CV2 is the critical value identified for distinguishing a moderate and poor fit 
The values were the mean of critical values across 100 replications under each 
simulation condition

All the identified critical values for person fit were negative, ranging from -0.28 

to -0.79 for CV1 (critical values for distinguishing a good and a moderate person fit) and 

from -0.64 to -0.99 for CV2 (critical values for distinguishing a moderate and a poor 

person fit). These values were close to the lower bound of the HCIt (-1), which indicates
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a maximum misfit of the student response vector relative to the attribute hierarchy. Using 

these low critical values, a response vector can be easily identified as fitting the attribute 

hierarchy. As a result, the critical values yielded by the statistical approach appeared to 

provide overly liberal criteria for testing person fit. Therefore, statistical analyses for 

identifying critical values for person fit were not pursued further.

Critical Values for Testing the Overall Model Fit

In order to evaluate the overall model data fit, two critical HCIt values for

examining the overall model data fit were selected under each simulation condition, one 

for discriminating a good and a moderate overall fit, and the other for discriminating a 

moderate and a poor overall fit. These critical values are presented in Table 11. The first 

row of Table 11 shows that two critical values, 1.00 and 0.86, were identified for 

examining the overall model data fit for the 5-attribute divergent hierarchy when sample 

size was set at 500. If the median of the HCI, values for an observed data set is 1.00,

suggesting at least 50% of response vectors produced an H C f value of 1.00, one can

conclude that students’ response vectors are, in general, statistically consistent with the 

expected response vectors associated with the given attribute hierarchy. If the median of 

the H C f values is smaller than 1.00 but greater than 0.86, one can conclude that there is 

a moderate overall model fit of students’ response vectors relative to the attribute 

hierarchy. If the median of the H C f values is smaller than 0.86, a poor overall model fit 

is found between student response vectors and the attribute hierarchy.
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Table 11

Critical Values for Testing the Overall Model Fit

Hierarchy
Structure

Number of 
attributes Sample Size

Critical Values 

CV1 CV2

Divergent 5 attributes 500 1.00 0.86
1000 1.00 0.88
1500 1.00 0.96

6 attributes 500 1.00 0.50
1000 1.00 0.52
1500 1.00 0.54

7 attributes 500 0.65 0.26
1000 0.65 0.27
1500 0.67 0.28

Convergent 5 attributes 500 1.00 1.00
1000 1.00 1.00
1500 1.00 1.00

6 attributes 500 1.00 1.00
1000 1.00 1.00
1500 1.00 1.00

7 attributes 500 1.00 1.00
1000 1.00 1.00
1500 1.00 1.00

Linear 5 attributes 500 1.00 1.00
1000 1.00 1.00
1500 1.00 1.00

6 attributes 500 1.00 1.00
1000 1.00 1.00
1500 1.00 1.00

7 attributes 500 1.00 1.00
1000 1.00 1.00
1500 1.00 1.00

Note: CV1 is the critical value identified for distinguishing a good and a moderate fit 
CV2 is the critical value identified for distinguishing a moderate and a poor fit 
The critical values were the mean of median values across 100 replications 
under each simulation condition

Results from Table 11 indicate that the critical values for testing the overall model 

fit using the H C f appeared to vary with the type of hierarchy structures after controlling

for sample size and number of attributes. For divergent structure, when sample size was 

set at 500, the critical values identified for discriminating between a good and a moderate
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overall model fit (CV1) were 1.00, 1.00, and 0.65 for the 5-, 6-, and 7-attribute 

hierarchies, respectively. Therefore, in order for the 5- and 6-attribute divergent 

hierarchies to be judged as having a good overall model data fit, at least 50% of student 

response vectors should have an HCli value of 1.00. However, for the 7-attribute 

divergent hierarchy, only a median HCIt value greater than 0.65 is required to be 

classified as having a good overall model fit. Therefore, the number of attributes showed 

a negative impact on CVls. In addition, sample size did not display a significant effect on 

the values of CVls, with a maximum difference of only 0.02.

Furthermore, for divergent hierarchies, critical values identified for discriminating 

a moderate and a poor overall model fit (CV2) were found to be influenced by number of 

attributes and sample size. As the number of attribute increased, CV2s decreased 

considerably after controlling for sample size. For example, for the 5-attribute divergent 

hierarchy, when the sample size was 500, the median of the HCI, values needed to be

greater than 0.86 in order to be judged as having a moderate fit relative to the attribute 

hierarchy. However, for the 6- and 7-attribute divergent hierarchy, in order to reach a 

moderate fit, the median of the HCIt values only needed to be greater than 0.50 and 0.26,

respectively. These results showed that, for divergent hierarchies, it is relatively easier to 

obtain a moderate overall model fit for hierarchies with more attributes. In addition, 

sample size appeared to positively affect the critical HCIt values for discriminating a 

moderate and poor fit. For example, for the 5-attribute divergent hierarchy, the values 

were 0.86, 0.88, and 0.96 for the sample sizes of 500, 1000, and 1500, respectively. The 

increments among the critical values were relatively larger for the 5-attribute hierarchy 

compared to those for the 6- and 7-attribute hierarchies.
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On the other hand, for the convergent and linear hierarchies, critical values were 

consistently equal to 1.00 across different number of attributes and sample sizes. These 

results indicated that, in order for an observed data set to reach the statistical fit relative to 

a convergent or linear hierarchy, at least 50% of student response vectors must yield an 

H C f value of 1.00. These results showed that the magnitude of the critical H C f values 

for the overall model data fit varied for attribute hierarchies with different hierarchy 

structures.

Summary and Conclusions of Simulation Studies 

The first purpose for conducting the simulation studies was to evaluate the 

effectiveness of the HCI, index in examining the degree to which a student response 

vector is consistent with the attribute hierarchy. The second purpose of conducting the 

simulation studies was to identify the critical values of the HCIt for testing both person 

fit and overall model fit under different simulation conditions.

The Effectiveness o f  the H C f

The H C f was shown to be effective in examining the degree to which a student 

response vector fits an attribute hierarchy under different conditions manipulated in the 

simulations. As discussed in chapter 3, a higher H C f value suggests a better fit of a

student response vector relative to the attribute hierarchy. Therefore, the hypothesis for 

evaluating the effectiveness of the H C f is that higher H C f values should be able to

increase as the percentage of slips decreases. Given that the simulation results showed 

that higher H C f values were consistently found for simulated response vectors with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



78

lower percentage of slips across different simulation conditions, one can conclude that the 

HCI, works well in examining the degree to which a student response vector is 

consistent with the attribute hierarchy.

Additionally, the magnitude of the mean medians of the HCI, values was found 

to vary across different simulation conditions. Although sample size was not found to 

affect the mean medians of the HCI, values, the number of attributes and the hierarchy 

structure showed an impact on these values as shown in Table 10. As the number of 

attributes increased, the mean medians of the HCI, values appeared to decrease. The

hierarchy structure was also shown to affect the mean medians of the HCI, values. 

Results showed that the highest mean medians of the HCI, values were produced by data 

sets generated based on hierarchies of convergent and linear structures, while the lowest 

values were found for data sets generated from divergent hierarchies.

The impact of hierarchy structure and number of attribute can be explained by the 

logic of the HCI, . The HCI, is operationalized by assuming that a student who correctly

answers item A should be able to correctly answer those prerequisite items that include a 

subset of the attributes measured by item A. Item response comparisons are made to 

examine whether a student answers one item correctly but fails to answer its associated 

prerequisite items. If so, misfits are found. As the number of attributes increases or a 

divergent hierarchy is used instead o f  a linear or convergent hierarchy, the number o f  

items needed to measure the attributes increases, and items tend to share more 

complicated prerequisite relationships. As a result, when a student makes a slip on an 

item, more item response comparisons tend to be judged as misfitting for a hierarchy with
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a greater number of attributes, or a hierarchy of divergent structure. For example, for the 

5-attribute linear hierarchy shown in Figure 3 (H3), the derived reduced Q matrix, of 

order (5, 5), is shown as follows:

'1 1 1 1 1'
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1

_0 0 0 0 I

According to this reduced Q matrix, five items should be created to estimate students’ 

attribute profiles for the 5-attribute linear hierarchy. On the other hand, the reduced Q 

matrix derived from the 5-attribute divergent hierarchy, of order (5, 9), is specified as 

follows:

'1 1 1 1 1 1 1 1 f
0 1 0 1 1 1 0 1 1
0 0 1 1 0 1 1 1 1
0 0 0 0 1 1 0 0 1
0 0 0 0 0 0 1 1 1

This matrix suggests that nine items should be constructed to estimate students’ mastery 

of attributes illustrated in the 5-attribute divergent hierarchy. Compared to the reduced Q 

matrix derived from the 5-attribute linear hierarchy (QRss), four additional items

(represented by columns 3, 5, 7, and 8 in Q&.J are required, which leads to more 

complicated prerequisite relationships among items. For instance, in the reduced Q 

matrix (QRs5), item 1 is the prerequisite of items 2, 3,4, and 5 in the sense that students 

are not expected to solve these items correctly if they fail to answer item 1. However,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



80

according to the reduced Q matrix associated with the divergent hierarchy (QRi9), item 1

is the prerequisite of items 2 to 9. If a student who has mastered attribute 1 makes a 

random slip on item 1, four comparisons will be judged as misfitting for the linear 

hierarchy but eight comparisons for the divergent hierarchy. Therefore, for the divergent 

hierarchy, the H C f  is more sensitive to the slips that students make in answering test

items thereby producing relatively low H C f  values. On the other hand, because fewer 

comparisons are needed for linear hierarchies, the HCli is less sensitive to the slips that 

students make in answering test items thereby producing relatively high H C f values. In 

a similar manner, as the number of attributes increases, more items are associated with 

the reduced Q matrix. As a result, hierarchies with a larger number of attributes are

typically associated with lower HCI, values.

Identifying Critical Values for Examining Person Fit

Results showed that critical values identified for testing person fit using the 

statistical approach were very liberal in the sense that all the critical values were negative, 

ranging from -0.28 to -0.79 for CV1 (critical values for distinguishing a good and a 

moderate person fit) and from -0.64 to -0.99 for CV2 (critical values for distinguishing a 

moderate and a poor person fit) (see Table 100). These values were close to the lower 

bound of the HCI, (-1), suggesting that it is very easy for a response vector to be judged 

as fitting the attribute hierarchy thereby limiting the power of the H C f in identifying 

misfitting response vectors. A misfit of a student response vector relative to the attribute 

hierarchy suggests that inferences cannot be made about student performance based on 

the attribute hierarchy given that the student uses different knowledge and skills in
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solving test items from those specified in the hierarchy. As a result, failing to identify the 

misfit of a student response vector relative to the attribute hierarchy can falsely validate 

the inferences made about student’s cognitive strengths and weaknesses and further lead 

to incorrect decisions about student performance. Therefore, the use of statistical 

approach for selecting critical values to examine person fit is not practical.

However, according to the author’s practical experience with the HCI\ through 

the use of simulated and real data (Cui et al., 2004; Gierl et al., 2007; Leighton, Cui, & 

Cor, 2007), an HCIt value of 0.80 and above would generally indicate a good fit between

a student response vector and the expected response vector while a value greater than 0.6 

would reflect a reasonable fit. Inferences should not be based on the attribute hierarchy 

about student performance if the student response vector produces an H C f value below

0.6, indicating that students likely used different sets of knowledge and skills from those 

specified in the attribute hierarchy when solving test items. These criteria are based on 

subjective judgment so they cannot be considered as infallible. However, they are more 

realistic and powerful than the initially proposed statistical criteria in detecting the misfit 

of student response vectors relative to the attribute hierarchy. Further research is needed 

to examine the reasonableness of these criteria for interpreting the H C f .

Identifying Critical Values for Examining Overall Model Fit

The critical values for evaluating the overall model fit were also identified across 

different simulation conditions. Unlike the critical values for person fit, the identified 

values for overall model fit did not appear to be overly liberal in identifying misfitting 

response data sets. The critical values for distinguishing a good and a moderate overall
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model-data fit (CV1) ranged from 0.65 to 1.00 while values for distinguishing a good and 

a moderate overall model-data fit (CV2) ranged from 0.22 to 1.00 (see Table 11).

For divergent hierarchies, critical values for the overall model fit were found to be 

influenced by the number of attributes and sample sizes. The number of attributes 

appeared to show a negative impact on the critical values for the overall model fit, where 

the critical values decreased as the number of attributes increased. The critical values 

specifically for CV2s, tended to slightly increase as sample size increased. However, for 

convergent and linear hierarchies, critical values identified for the overall model fit were 

consistently equal to 1.00 across different number of attributes and sample sizes, 

indicating that at least 50% of simulated response vectors produced a HCI, value of 1.00.

Based on the simulation results and the author’s practical experience with the 

HCI, , for divergent hierarchies, a median HCI, value of 0.80 and above would normally 

indicate a good fit of the observed data set relative to the attribute hierarchy. A median 

HCI, value of 0.60 and above would generally indicate a moderate fit of the observed

data set to the attribute hierarchy. A model with a median HCI, value smaller than 0.20 

should not be used as a basis for making inferences about student performances. However, 

as the number of attributes becomes relatively large, the criteria for interpreting the HCI, 

can be relaxed to some extent. For convergent and linear hierarchies, on the other hand, a 

median HCI, value greater than 0.80 must be achieved in order for a set of observed 

response vectors to reach an adequate fit to the attribute hierarchy. Additional research 

must be conducted to investigate the reasonableness of the proposed criteria of using the 

HCI, to examine the overall model fit.
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Chapter 5: Summary and Conclusion 

The growing demand for providing diagnostic information about students’ 

cognitive strengths and weaknesses has led measurement specialists to investigate new 

ways of developing test items and interpreting students’ performance. In order to make 

specific inferences about students’ cognitive strengths and weaknesses, cognitive models 

in educational measurement are needed to make explicit the knowledge and cognitive 

skills required to solve test items correctly.

Leighton, Gierl, and Hunka (2004) proposed a cognitive diagnostic model, called 

the attribute hierarchy method (AHM), which is aimed at integrating cognitive models 

with a psychometric technique to model students’ cognitive performances. The AHM 

makes explicit the assumption that test items can be described by a set of hierarchically 

ordered attributes. This method is composed of three sequential stages. In the first stage, 

an attribute hierarchy is defined to describe the knowledge structures and skill processes 

that students would use in the test domain. The attribute hierarchy serves as a cognitive 

model that helps construct test items and facilitates the explanation and prediction of 

student performance. This is a critical step because the validity of the attribute hierarchy 

links directly to the accuracy of the inferences to be made about students from the AHM. 

In the second stage, the attribute hierarchy is used as a basis for developing test items to 

ensure that each component of the attribute hierarchy has been adequately measured. In 

the third stage, statistical classification procedures are used to classify each student into 

one of the knowledge states, derived from the attribute hierarchy, thereby making specific 

inferences about students’ cognitive strengths and weaknesses.

While the trustworthiness of the inferences to be made with the AHM critically
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depends on the validity of the attribute hierarchy used in the test domain, the question 

remains of how to validate the attribute hierarchy in the test domain. This study 

introduced a person-fit statistic, the HCI,, to evaluate the degree to which a student 

response vector is consistent with the attribute hierarchy, which could serve as one source 

of evidence for validating the attribute hierarchy used with the AHM. Simulation studies 

were conducted to evaluate the effectiveness of the HCI, in terms of examining the 

degree to which a student response vector fits the attribute hierarchy. In addition, 

simulated data were also used to identify the critical values of the HCI, for testing both

person fit and overall model fit under different simulation conditions.

This chapter is divided into five sections. In the first section, the proposed statistic, 

the HCI, , is described, followed by a brief summary of the methods used in the

simulation studies. In the second section, a summary and discussion of the simulation 

results are presented. In the third section, the limitations of the simulation studies are 

discussed. In the fourth section, the conclusions from the present study are provided. In 

the fifth and final section, the directions for future research are outlined.

A Summary of the HCI, Index and Simulation Methods

The HCI, Index

The HCI, is a person-fit statistic designed explicitly to investigate the degree to 

which a student response vector is consistent with the attribute hierarchy. It can be 

calculated by:
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where

Scorrect, includes items that are correctly answered by student i ,

X, is student / ’s score (1 or 0) to item j ,

Sj includes items that require the subset of attributes measured by item j ,

X, is student i ’s score (1 or 0) to item g , and
g

N C) is the total number of comparisons for all the items that are correctly

answered by student i .

The HCI, depends on item complexity as determined by the prerequisite

relationship among test items specified in the reduced Q matrix. The logic of the HCI, is 

that a student should not be able to answer an item correctly unless the student has solved 

its prerequisite items successfully. The HCI, ranges from -1 to +1, where a higher HCI,

value suggests a better statistical fit of the student response vector to the attribute 

hierarchy.

Simulation Methods

Simulation studies were conducted for two purposes. The first purpose was to 

assess the effectiveness of the HCI, in evaluating the degree to which an observed 

response vector fits the attribute hierarchy used in the AHM. To assess the effectiveness 

of the HCI,, the hypothesis is that data sets with lower percentage of slips should be able
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to produce higher HCIt values than data sets with higher percentages of slips. The

second purpose was to identify the critical values of the HCI, for examining both person

fit and overall model fit. Different critical values were sought for identifying good, 

moderate, and poor fitting response vectors for nine different attribute hierarchies. Data 

were generated based on the nine different attribute hierarchies by randomly adding a 5, 

10, and 20 percentage of slips to the expected response vectors associated with each 

hierarchy for three sample sizes -  500,1,000, and 1,500.

Simulation Results and Discussion 

The HCI, was found to be non-normally distributed and substantially negatively 

skewed across simulation conditions. Simulation results indicated that the HCI, performs 

well in determining the degree to which observed response vectors are consistent with the 

attribute hierarchy. Higher HCI, values were obtained consistently for data sets with

lower percentages of slips. Critical values were also identified for each simulated data set.

However, it was found that the identified critical values for examining person fit 

using statistical procedures were very liberal, meaning that a student response vector 

could be easily identified as fitting the attribute hierarchy by using these critical values. 

Therefore, it was concluded that statistical approach was not practically feasible.

However, according to the author’s practical experience with the HCI, through the use of 

simulated and real data (Cui et al., 2006; Gierl et al, 2007; Leighton et al., 2007), it was 

recommended that an HCI, value of 0.80 be used to distinguish a good and a moderate

fit of a student response vector to the attribute hierarchy and an HCI, of 0.60 be used to 

distinguish a moderate and a poor fit. Although these criteria are based on subjective
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judgment, they are more realistic and powerful than the initially proposed statistical 

criteria in detecting the misfit of student response vectors relative to the attribute 

hierarchy. Further research is needed to examine the reasonableness of these criteria of 

the HCI, for testing person fit.

Unlike the critical values for person fit, the identified values for the overall model 

fit did not appear to be overly liberal in identifying misfitting response data sets. For 

divergent hierarchies, critical values for the overall model fit were found to be influence 

by the number of attributes and sample sizes. The number of attributes appeared to show 

a negative impact, while sample size tended to show a slightly positive effect on the 

critical values for the overall model fit. On the other hand, for convergent and linear 

hierarchies, critical values identified for the overall model fit were consistently equal to 

1.00 across different number of attributes and sample sizes, indicating that at least 50% of 

simulated response vectors produced an HCI, value of 1.00.

Based on the simulation results and the author’s practical experience, for 

divergent hierarchies, it was recommended that a median HCI, value of 0.80 be used to 

distinguish a good and a moderate fit of the observed data set relative to the attribute 

hierarchy and use a median HCIt value of 0.60 be used to distinguish a moderate and a

poor fit of the observed data set to the attribute hierarchy. A model with a median HCI,

value smaller than 0.20 was not recommended to be used as a basis for making inferences 

about student performances. However, as the number of attributes becomes relatively 

large, the criteria for interpreting the HCIt can be relaxed to some extent. For convergent 

and linear hierarchies, on the other hand, it was recommended that a median HCI, value
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greater than 0.80 must be achieved in order for a set of observed response vectors to 

reach an adequate fit to the attribute hierarchy. Additional research must be conducted to 

investigate the reasonableness of the proposed criteria for using the HCIi to examine the 

overall model fit.

Limitations of the Simulation Studies

One limitation of the simulation studies in this thesis was that the number of items 

was not manipulated for a hierarchy and therefore its effect might be confounded with 

those caused by the type of hierarchy structure and number of attributes. In the AHM, the 

columns of the reduced Q matrix specify the items needed to be developed in order to 

achieve maximum diagnostic information. However, multiple sets of items can be used to 

increase the total number of items for ensuring the reliability of the test. In the present 

study, only one set of items specified in the reduced Q matrix was considered.

Given that different reduced Q matrices likely contain a different number of 

columns, the number of items might have an impact on the HCIi and its associated

critical values. For example, as the number of attributes increases, the number of items, 

as specified by the columns of the reduced Q matrix, also increases. Although results

showed that the number of attributes had a negative impact on the HCI,, it cannot be

determined from the results of the present study whether this impact is due to the increase 

in the number of attributes, the increase in the number of required items, or both.

Likewise, the effect of the hierarchy structure is also confounded by the effect of 

the number of required items. With the same number of attributes, the reduced Q matrix 

derived from the divergent hierarchy contains more items than the matrices from the
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linear and convergent hierarchies. Again, for the divergent hierarchy, relatively low 

HCI, values could be caused by the divergent structure, the increase in the number of 

items, or both.

In addition, data were generated by randomly adding a certain percentage of slips 

into the expected response vectors in the simulations. Hence, only random inconsistencies 

between observed response vectors and expected response vectors were considered in this 

study. However, other non-random sources of assessment errors as discussed by Meijer 

and Sijtsma (2001) -  such as sleeping (e.g., inaccurately answering the first questions in a 

test because of problems getting started), plodding (working very slowly and 

methodically and, as a result, failing to finish later items in a test), and cheating (e.g., 

copying answers from another student) -  were not considered. Additional studies are 

needed to investigate whether the HCI, is effective in detecting the misfit of a student 

response vector to the attribute hierarchy that is caused by these non-random unusual 

testing behaviors.

Conclusions

This study introduced a person fit statistic, the HCI, , which is designed to

statistically evaluate the degree to which a student response vector is consistent with the 

attribute hierarchy. Tentative criteria were established for evaluating both person fit and 

overall model fit using the HCI, . For person fit, an HCI, value of 0.80 were used as the 

critical value for distinguishing a good and moderate fit and an HCI, value of 0.60 for 

distinguishing a moderate and a poor fit. For overall model fit, two sets of criteria were 

established. For divergent hierarchies, it was recommended to use a median HCI, value
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of 0.80 to distinguish a good and a moderate fit and use a median HCIt value of 0.60 to 

distinguish a moderate and a poor fit of the observed data set to the attribute hierarchy. 

For convergent and linear hierarchies, it was recommended that a median HCIt value 

greater than 0.80 must be achieved in order for a set of observed response vectors to 

reach an adequate fit to the attribute hierarchy. Further research is needed to examine the 

reasonableness of these criteria.

Although developed within the AHM framework, the HCIt should be helpful in 

other cognitive diagnostic models that are guided by cognitive models given that the 

index allows the researcher to evaluate the fit of the cognitive model relative to the 

student response data. Specially, the HCIt should be useful for the Q matrix based 

cognitive diagnostic models, such as the rule space model (Tatsuoka, 1983,1984,1990, 

1995), the unified model (Dibello, et al., 1995), the deterministic input noisy and gate 

model (DINA) (de la Torre & Douglas, 2004; Doignon & Falmagne, 1999; Haertel, 1989; 

Junker & Sijstma, 2001; Macready & Dayton, 1977; C. Tatsuoka, 2002), and the noisy 

input deterministic and gate model (NIDA) (Junker & Sijstma, 2001). In these models, 

the HCIt can be directly used to evaluate the fit of the observed response vectors to the 

expectations of the Q matrix and consequently to determine whether students’ cognitive 

processes differ from the cognitive processes hypothesized in the Q matrix.

The HCIi is straightforward to use and therefore it can be applied to a large 

sample of students so the results from the HCIt can be generalizable to the target 

population. A low H C I value suggests that misfit is found between the student response 

vector and the attribute hierarchy. However, there are at least two possible interpretations
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for the misfit. First, the misfit of the student response vector to the attribute hierarchy 

could be due to the fact that the cognitive model, as specified in the attribute hierarchy, 

fails to accurately describe the prerequisite relationship among the attributes. As a result, 

observed student response vectors are not consistent with the expectations associated with 

the given attribute hierarchy. It is also possible that the prerequisite relationships among 

attributes are specified correctly in the attribute hierarchy but the reduced Q matrix fails 

to correctly specify the attributes that students use in solving each item. In other words, 

students use different combinations of attributes when solving test items than those 

described in the reduced Q matrix. In order to determine what actually causes the misfit 

of the student response vector to the attribute hierarchy, further substantive analyses are 

required.

In addition, it should be noted that the 7/C7,. focuses on the hierarchical structure

used to configure the attributes but gives little attention to the specification of each 

individual attribute. For example, suppose that attribute A is the prerequisite of attribute B 

and item 1 measures attribute A, and item 2 measures attributes A and B. Given these two 

items, four types of student response vectors are possible, including (0, 0), (1, 0), (0,1), 

and (1,1). According to the logic of the //C7,, if the prerequisite relationship of attributes 

A and B is specified correctly, students are not expected to answer item 2 correctly unless 

they answer item 1 successfully. As a result, the student response vector (0, 1) is not 

consistent with the prerequisite relationship between attributes A and B, and will be 

judged to be misfit. The HCI, can successfully detect the misfit caused by the

misspecification of the prerequisite relationship among attributes. However, the HCIt is 

not able to identify the inaccuracy associated with the knowledge structure and
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processing skills specified by each attribute. The misfit of student response vectors 

relative to the attribute hierarchy would not be found when the attribute hierarchy 

specifies the prerequisite relationship among attributes successfully but fails to provide a 

precise interpretation for each individual attribute. By only focusing on the prerequisite 

relationship among attributes, the HCIi results cannot be used to validate the

interpretation of individual attributes in depth. As a result, more substantive evidence is 

required to conclude whether the attribute hierarchy truly represents the knowledge and 

skills students use as they answer the items. The use of think aloud procedures and 

protocol analysis (Ericsson & Simon, 1993; Leighton, 2004) and the use of experimental 

studies (e.g., Tatsuoka & Tatsuoka, 1997) are two procedures that could be used to 

validate substantively the attribute hierarchy. These two procedures provide relatively 

detailed pictures of how students actually solve items on tests, which helps validate and 

interpret the HCI, results.

Directions for Future Research 

At least four areas require additional research. The first area is related to the 

critical values of the HCI, for examining both person fit and overall model fit. Although

simulation studies were conducted to identify these critical values under different 

simulation conditions, the number of items was not manipulated for each attribute 

hierarchy. Consequently, this factor was intertwined with the other two factors 

manipulated in the present study -  hierarchy structure and number of attributes -  which 

makes it difficult to separate the effect associated with each of them. Therefore, in future 

research, simulation studies should be conducted to systematically investigate the effect
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of the number of items on the HCIi and the critical values for examining person fit and 

overall model fit. Additionally, general criteria were recommended for interpreting the 

77C7, results in the present study. These criteria were partially based on subjective

judgments so further research is needed to investigate their reasonableness.

The second area that needs additional research is to investigate the usefulness of the 

HCIi in determining whether different attribute hierarchies should be used to describe 

the knowledge and skills used by students from different groups. Currently, the AHM 

makes the assumption that one cognitive model, as specified by the attribute hierarchy, 

can be used to account for the test performance of students from different groups (e.g., 

ability, gender, or language groups) in terms of the mastery and nonmastery of attributes 

illustrated in the attribute hierarchy. However, this assumption may not be tenable. For 

example, a recent study conducted by Leighton, Cui, and Cor (2007) suggested that 

students of high ability appeared to differ from average- to low-ability students not only 

in terms of possessing more attributes illustrated in the attribute hierarchy but also in 

terms of using different strategies from those used by average- or low-ability students 

while solving test items.

To investigate whether a cognitive model is equally accurate in interpreting the 

performance for students from different groups, the 7/C7, could be employed. The HCI,

should be applied to each individual student response vector and the median 7/C/, values 

for distinct groups can be calculated and compared to determine whether the cognitive 

model fits student response vectors from different groups evenly. A significant difference 

in the median 77C7. values among distinct groups suggests that students from distinct 

groups differ in terms of the strategies they use while solving test items. If so, the use of
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multiple cognitive models holds promise in providing more accurate representations of 

student knowledge structures and response processes and ultimately in improving the 

validity of the cognitive feedback produced with the AHM.

An issue raised by the use of the HCIi for investigating group differences is how

to determine whether differences in the median HCIt values are sufficiently large to be 

able to conclude that a statistically significant difference exists. In addition, a challenge 

for future research is to investigate how to incorporate multiple cognitive models into test 

development and statistical classification techniques so that students’ attribute profiles 

can be estimated accurately and efficiently.

The third area that requires further research is to investigate how to use the HCli

to help determine the appropriateness of the grain size of the attribute hierarchy. 

According to Leighton and Gierl (2007), the grain size or the level of detail of a cognitive 

model is directly linked to the type of inferences made about student performance. In 

order to make inferences about students’ cognitive strengths and weaknesses within a test 

domain, a cognitive model must be specified at a relatively small grain size. In the AHM, 

the attribute hierarchy serves as a cognitive model that specifies the knowledge and skills 

required in order for students to answer each item correctly. To make inferences about 

students’ cognitive strengths and weaknesses, an attribute hierarchy with a relatively 

small grain size is required. However, there is a tradeoff between the grain size of a 

cognitive model and its ability to generalize the knowledge and cognitive skills over a 

group of students as well as a set of items. In order to address this issue, diversity of 

problem-solving processes must be considered.

Diversity of problem-solving processes is an empirical fact (Ericsson & Simon,
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1993; Lohman, 2000). It is inevitable that students vary widely in the knowledge and 

cognitive skills they possess and use in solving test items. If an item elicits alternative 

solution paths, student diversity in solving problems is not surprising. Additionally, many 

researchers suggest that large intra-individual differences exist in strategy use. For 

example, Ericsson (1975) conducted a study that investigated subjects’ sequences of 

moves in solving a sliding block puzzle. It was found that the similarity of move 

sequences among subjects starting from the same puzzle configuration was no greater 

than chance. Interestingly, the similarity of the solutions of each individual subjected to 

repetitions of the same problem was also no greater than chance. Accordingly, no single 

model could be expected to predict the exact sequences. However, when subjects’ move 

sequences were analyzed at a more general or abstract level, most subjects followed the 

same orderly and predictable sequence. This study suggests that in order to uncover 

generalizable aspects of cognitive processes, cognitive models may have to be formulated 

in abstract terms, which may jeopardize the small grain size of models.

The AHM is mainly designed to help construct educational tests that are used to 

evaluate the performance of a group of students across a set of items. These tests 

commonly consist of multiple items to ensure that the inferences to be made about 

students’ performance are highly reliable. As a result, the attribute hierarchy should be 

able to lend itself to being aggregated at different levels of grain sizes so it can be used 

for different assessment purposes (e.g., to produce fine-grained diagnostic information as 

well as coarser-grained summary information). Research must be conducted to 

investigate whether and how the grain size of the cognitive model influences the 

magnitude of the HCI, . And further research is also needed to examine how the HCI,
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can help determine the appropriateness of the attribute hierarchy for capturing the 

commonality a group of students might have in terms of the knowledge and skills used in 

solving a set of items while at the same time making sufficiently detailed inferences 

about students’ cognitive strengths and weaknesses.

The fourth area of future research is to investigate how to collect substantive 

evidence to complement the statistical results from the HClt for validating the attribute

hierarchy. Two procedures could be used -  the use of think aloud procedures and protocol 

analysis (Ericsson & Simon, 1993; Leighton, 2004) and the use of experimental studies 

(e.g., Tatsuoka & Tatsuoka, 1997). Although these procedures are often time consuming 

and costly, they can provide detailed information about student problem solving, which 

may help interpret and validate the HCI, results and ultimately enhance the validity of

the diagnostic feedback produced with the AHM.
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Appendix A

Mathematica Functions for Calculating the Hierarchy Consistency Index

rndoff[n_,d_] rounds a real number n to a number with d  decimal digits.

Rndof f [n_, d_] := N[10 'd Round [n 10d] ]

Index [reQ , n j  creates a vector of item numbers in the reQ that require the subset of 
attributes measured by item n, where reQ is the reduced Q matrix.

Index [reQ_, n__] : =Module [ {reQl, indexF, index},
reQl=Map[Plus[Transpose[reQ] [[n]] ,#]&,Transpose [reQ]] ; 
indexF=Range[Dimensions[reQ] [ [ 2 ] ] ]  ; 
index=Union[Flatten[Map[Position[#,- 

1]&,Transpose[reQl]]] ] ; 
index=Complement[indexF,index,{n}];

Return[index];
] ;

HCI [obs_,reQ_,d J  calculates the HCIt for examinee i with the response vector obs,
with d  decimal places. The algorithm briefly is as follows:

1) Create a vector of item number that examinee i answered correctly
2) Create a vector of item number that requires the subset of attributes measured by 

each item that is answered correctly by examinee i
3) Calculate the total number of comparisons
4) Calculate the HClt and return the value with d decimal digits

Calls: mdoff[n_,d_J; Index [reQ _,n_]

HCI[obs_,reQ_,d_]:=Module[{n,NC,HCI}, 
n=Flatten[Position[obs,1]]; 
index=Index[reQ,#]&/@n;
NC=Length[Flatten[Index[reQ, #]&

/@Flatten[Position[obs,1]] ] ] ;
If[NC=<0,NC=1];
HCI=1-2*Total[1-obs[[#]]&/@Flatten[index]]/NC;
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Return[{rndoff[HCI, d] } ] ; 
] ;
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Appendix B

Mathematica Functions for Simulating Data

np[mn_,std_,i_] calculates the probability of the occurrence of the total score i under the 
normal curve with a mean of mn and a standard deviation of std.

np[xm , std , i ] : = Integrate[------------ , {x, i- 0 .5 ,  i + 0 . 5 } l- -  ~ 1 (2 7t)0-5* std J

frequency[erp_,nexaminee_J calculates the frequency of occurrence of the expected 
response vector erp given the total number of examinees is nexaminee. The algorithm 
briefly is as follows:

1) Calculate the total score for each expected response vector.
2) Calculate the mean and standard deviation of the total scores.
3) Consider a normal curve with x-axis metric of total-score units. The real limit of 

each total score is used to construct an interval between which the area under the 
normal curve is the proportion of the occurrence of the total score.

4) The proportion of each total score is divided by the sum of all the proportions 
since the sum is not equal to 1.

5) Because several expected response vectors may lead to a same total score, the 
proportion of the expected response vector is equal to the proportion of its total 
score divided by the number of expected response vectors of the same total score.

6) Multiply the proportion of each expected response vector by the total sample size 
desired to get the frequency of the expected response vector.

Calls: np[mn_,std_,i J

frequency[erp_,nexaminee_]:=
Module[{totalscore,u,sd,npl,ntotal,np2,np3,f},
totalscore=Total[Transpose[erp]];
u=Mean[Total[Transpose[erp]]];
sd=(Variance[Total[Transpose[erp]]])A0 .5;
npl=np[u,sd,#]&/0totalscore;
ntotal=Count[totalscore,#]&/@totalscore;
np2=npl/ntotal;
np3=np2/Total[np2];
f=Round[np3*nexaminee] ;

Return[f];
] ;
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RandomRelist[x_List] gives a list with the same members as the input list, x, but in a 
random reordering.

RandomRelist[x_List]:=Block[{n=x,p},
Do[p=Random[Integer,{1,i}]; 

n[[{p,i}]]=n[[{i,p}]],
{i,Length[x]}

]; (*end do*)
n] ;

Note: RandomRelist[x_List] could be replaced by the function, 
RandomPermutation[x]. In order to use the latter function, the package 
«DiscreteMath'Combinatorica' must be first read into Mathematica.

slipsgen[nex_,erm_,h_,asp_] creates a matrix of nex expected response vectors from 
expected response matrix and then randomly generates slips of form from 1 to 0 and of 
form from 0 to 1 at a probablity of asp level, h is employed to control the random seed 
used in the simulation so that results can be replicated. In this study, h was assigned from 
1 to 100 separately for the 100 data sets under each simulation condition. The algorithm 
briefly is as follows:

1) Calculate the frequency of occurence of each expected response vector from the 
expected response matrix, given the total number of examinees.

2) Create the data matrix of nex expected response vectors
3) Calculate the number of random slips (nslips) by multiplying the total number of 

examinees with the probability of slips.
4) For each item, nslips examinee responses are randomly selected, and altered to 1 

if a correct response is selected or altered to 0 if an incorrect response is selected.
Calls: frequency[erp_,nexamineej ; RandomRelist[x_List];

slipsgen[nex_,erm_,h_,asp_]:=
Module[{j,nslips,f,serm,a,g,k,index),
f=frequency[erm,nex];
serm=Flatten
[Table[erm[ [#]],{f [[#]]}]&/§Range[Length[erm]],1]; 

nslips=Round[asp*Length[serm]];
j=i;
While[j=<Length[Transpose[erm]], 

a=Transpose[serm] [ [ j]];
SeedRandom[h*100+j];
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index=Take
[RandomRelist[Range[Length[serm]]],nslips]; 

k=l;
While[k=<Length[index] , 

g=index[[k]]; 
a [ [ g ] ] = l - a [ [ g ] ] ;  

k++
];(*end while*)
serm=Transpose[ReplacePart[Transpose[serm],a,j]];
j++
];(*end while*)

Return[serm];
] ;
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