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Abstract

Metastasis — the spread of cancer from a primary to a distant secondary

location — is implicated in over 90% of all cancer related deaths. Despite

its importance in patient outcome, a full understanding of the metastatic pro-

cess remains elusive, largely because of the difficulty in studying the phe-

nomenon experimentally. In this thesis, we develop and analyze three models

of metastatic cancer to shed light on the underlying mechanisms responsible

for metastatic spread.

As metastasis is widely believed to be an inherently stochastic process, our

first model is a spatially explicit stochastic model of cancer metastasis. The

model includes the processes of primary tumor release of circulating tumor

cells, circulation of these cells through the body, and metastatic colonization

at a secondary site. We discover a metastatic reproduction number, R0, which

characterizes the long-term behavior of the model, and provides an explicit

condition for metastatic extinction. Parameterization of the model is done

using data from experimental murine models of metastasis. Simulations of the

parameterized model demonstrate the suitability of our modeling framework

by accurately reproducing experimental observations.

Recent experimental observations have brought the prevailing view of metas-

tasis as a passive sequence of random events into question, with several inves-

tigators suggesting that metastasis is an actively regulated process. In par-

ticular, immune involvement in the preparation of the pre-metastatic niche

has inspired the immune-mediated theory of metastasis ; a theory which posits
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that the immune system — corrupted or ‘educated’ by the tumor to play

pro-tumor roles — actively supports metastatic dissemination and growth.

To investigate the implications of the immune-mediated theory of metas-

tasis, our second model is an ordinary differential equation model of tumor-

immune dynamics at the sites of a primary and a metastatic tumor, incorpo-

rating both anti- and pro-tumor immune populations. Model simulations using

literature-derived parameter estimates suggest that the immune-mediated the-

ory of metastasis provides explanations for the poor performance of some im-

munotherapies, and for the observation of metastatic spread to sites of injury.

Our results also suggest new potential avenues for therapy.

Our third model is a reduction of the second, focusing on the tumor-

immune dynamics at the metastatic site. Analysis of the reduced model, using

methods from geometric singular perturbation theory, provides a mathemat-

ical description of metastatic phenomena such as dormancy and blow-up. A

parameter sensitivity analysis is performed, and the parameterized model is

used to simulate the effects of therapeutic interventions. Necessary conditions

for metastatic blow-up after primary tumor resection provide hypotheses con-

cerning the biology of metastasis.

The tumor-immune models investigated in this thesis, both based on the

immune-mediated theory of metastasis, provide an explanation for many ex-

perimentally and clinically observed metastatic phenomena — including dor-

mancy, blow-up, recurrence, and metastasis to sites of injury — under a single

modelling framework; something that previous models of metastasis have been

unable to do. Overall, the results of this thesis provide novel insights into the

metastatic process and introduce new biological questions for future research.
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Preface

The material of Chapter 2 is included in a submitted manuscript:

C. Frei, T. Hillen, and A. Rhodes. A Stochastic Model for Cancer Metas-

tasis: Branching Stochastic Process with Settlement. Mathematical Medicine

and Biology (submitted). Preprint available on bioRxiv, DOI: 10.1101/294157.

In Chapter 2, I summarize the results of the above manuscript and highlight

my own contributions.
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Study conception and design: C.F. and T.H. Analysis: C.F. and T.H. Pa-

rameter estimation and numerical simulations: A.R. Drafting of manuscript:

C.F., T.H., and A.R.
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Chapter 1

Introduction

In this chapter, we provide a brief review of the biology of metastasis, as well

as of the theoretical approaches that have been used to gain insight into this

complex phenomenon. Section 1.1 outlines the biology of metastasis, with an

emphasis on the role of the immune system in preparation for Chapters 3 and

4. Section 1.2 outlines the mathematical models developed up to this point to

address aspects of metastasis. Finally, the structure of this thesis is summa-

rized in Section 1.4. The scientific literature on metastasis is significant and

the references and results presented here have been chosen by their relevance

to the current work and are not meant to be exhaustive.

1.1 Biological Background

Metastasis is the process by which cancer spreads to secondary sites. This

spread can be relatively close to the location of the primary tumor — possibly

remaining within the same organ and referred to herein as local metastatic

spread — or it can be to distant organs, with dissemination of cancer cells

from the primary site aided by the lymph and vascular systems — referred to

herein simply as metastasis. Metastatic spread is often cited to be responsible

for more than 90% of all cancer related deaths [57, 96, 133] and simple concepts

such as the seed and soil hypothesis and the metastatic cascade have allowed us

to gain an intuitive understanding of the meteastatic process. However, many
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of the details of these intuitive descriptions of metastasis are still unclear and

additional research is needed in order to elucidate the underlying mechanisms

responsible for clinically and experimentally observed dynamics. In this first

section of Chapter 1, we review the process of metastasis as it has been, and

as it is currently, understood. This review considers some of the new research

bringing into question long-held beliefs — with special attention given to

immune involvement, the main topic of this thesis.

For over a century, the spread of cancer from a primary site to a distant

organ has puzzled researchers. In the late 1800’s, Paget [110] first proposed

a model for metastasis known as the ‘seed and soil’ hypothesis. Based on the

observations of preferential metastatic spread patterns, Paget hypothesized

that there were two key factors necessary for the successful establishment of

a macrometastasis. First, the cells shed from the primary tumor — the seed

— must be well suited to colonize distant and often hostile environments.

And second, the distant site of potential macrometastasis formation — or

soil — must be at least somewhat hospitable to these incoming cells. While

a relatively old theory, it still has relevance today, with extensive work being

done investigating both the ‘seed’ and the ‘soil’ components of Paget’s theory.

There is still great uncertainty as to whether all cells from the primary tumor

are capable of initiating distant metastases, or whether there is a small subset

of ‘metastatic’ cells (see Section 1.2 for relevant theoretical results). On the

other hand, the idea of a pre-metastatic niche has been developed recently

[84], and will be discussed in greater detail below (see Figure 1.2).

The preferential spread patterns upon which Paget based his hypothesis

have now been well documented in a wide variety of cancer types. Theories

attempting to explain the patterns of preferential spread all begin with cancer

cells breaking away from the primary tumor and entering the vascular sys-

tem (or, to a lesser extent, the lymphatic system) which provides the cancer

cells with a method of rapid dissemination throughout the body. The the-

ory of purely mechanical dissemination posits that blood flow patterns are

sufficient to explain observed patters of metastatic spread [18, 75] suggesting

that metastases preferentially arise downstream of the primary tumor in the

first location that the circulating tumor cells become stuck in small capillaries.
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While this hypothesis provides a partial explanation for the observed patterns,

it cannot fully explain them, with estimates that only approximately 66% of

metastases can be explained by blood flow patterns alone [19]. Moreover, such

an explanation would suggest that a source of tumor cells will eventually lead

to metastatic colonization of targets downstream, but there is evidence that

this is not always the case [57, 131]. Indeed, a study was performed in which

patients received shunts that (inadvertently) released large numbers of cancer

cells directly into their blood streams. Contrary to the purely mechanical de-

scription of metastasis, little to no evidence of increased rates of metastasis

was reported [131].

Many attempts have been made to address the shortcomings of the purely

mechanical explanation of metastasis, including genetically encoded tissue

tropism [83], chemokine-mediated attraction of tumor cells with the appro-

priate chemokine-receptors inducing chemotactic movement of cancer cells to-

wards areas of high chemokine concentration [57, 83] (the CXCR and CCR

chemokine receptors have been of particular interest), and complimentary ad-

hesive molecule pairing between the cancer cells and the homing site [57]. We

remark that these hypotheses bear striking resemblance to the mechanisms of

immune cell homing to sites of injury. We also note that there is a growing

body of evidence that the observed tissue tropism patterns depend on fac-

tors derived from the primary tumor [84]. Indeed, Kaplan and collaborators

demonstrated that the metastatic spread patterns of a specific cancer type

could be altered by introducing factors derived from a different tumor type.

The resulting spread patterns more closely resembled those of the tumor from

which the factors were derived than the tumor being examined. Consequently,

it appears that the spread patterns may be the result of complex interactions

between primary tumor and secondary metastatic sites.

1.1.1 Metastatic Cascade

Few unifying theories of metastasis have been proposed beyond the conceptu-

ally straight-forward ‘seed and soil’ and ‘metastatic cascade’ descriptions. Be-

cause of the ubiquitousness of the metastatic cascade framework [57, 119, 133],
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Figure 1.1: Cartoon model of the ‘immune-mediated’ model of metastasis (see
Section 1.1.2). Based on figure from Chaffer and Weinberg (2011) [18].

we will organize the remainder of this section by the ordered sequence of bio-

logical events that make up the metastatic cascade. Before metastasis begins,

the growth and development of a primary tumor must first occur. Growth of

the primary tumor leads to local invasion of surrounding normal tissue (Figure

1.1 (1)) and can include the preparation of distant sites for later metastatic

establishment (Figure 1.1 (2)). The local invasion eventually encounters a

vessel of the lymphatic or circulatory system. Individual cancer cells — or

small clusters of cells — can enter these vessels (intravasate) (Figure 1.1 (3)),

thereby gaining access to rapid transport throughout the body. If these circu-

lating cells (Figure 1.1 (4)) survive their journey and exit the vessel at some

distant site (extravasate) (Figure 1.1 (5)), they may be able to establish a

micrometastasis, especially at a prepared site. Evasion of local defenses and

adjustment to the hostile foreign environment, or simply arrival at a hospitable

prepared site, can see the micrometastasis grow into a macrometastasis. Fur-

ther growth may eventually lead to a secondary tumor (Figure 1.1 (6)). These

steps are highlighted in Figure 1.1.

The amount of research done investigating metastasis is expansive and can-
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not possibly be summarized in its entirety here. Instead, in preparation for

Chapters 3 and 4, we focus on one of the ‘hallmarks of cancer’ [60]: inflam-

mation. (A recent review of metastasis and the immune system can be found

in [78].)

Formation and Development of the Primary Tumor

The common view of inflammation and cancer is that the cancer cells have

recruited the immunosuppressive regulatory T cells (Tregs) to protect it from

any cytotoxic immune response by inhibiting T-cell function via secretion of

interleukin 10 (IL-10) and transforming growth factor (TGF) β [48, 60, 96]. It

has even been shown that Treg recruitment may be necessary for metastasis

[87]. Moreover, it has been suggested [48, 124] that not only do Tregs prevent

an effective anti-tumor immune response, but these cells may also play an

active tumor promoting role. Indeed, chronic inflammation can result in the

release of DNA damaging molecules (reactive oxygen and nitrogen species as

examples), resulting in DNA damage and the potential for cancer initiation

[117].

Contradictory anti- and pro-tumor effects are not unique to T cells, but

have in fact been observed for several immune cell types (see Table 1 in [83]

or the review in [27] for extensive lists with roles and references). Some re-

searchers have gone so far as to describe these pro-tumor immune cells as

tumor-educated immune cells [96]. Indeed, the tumor releases factors (in-

cluding TGFβ, IL-4, IL-3, and vascular-endothelial growth factor (VEGF))

which can actually change the phenotypes of macrophages (and neutrophils)

from anti-tumor (type M1) to pro-tumor (M2) macrophages [34]. These M2

macrophages are recruited via colony-stimulating factor 1 (CSF-1) and VEGF-

A among others [83]. Similar re-education programs have been observed for T

helper cells, NK cells, and B cells [96]. Other cell types that have been impli-

cated in primary tumor development, tumor initiation, or poor prognosis are

myeloid-derived suppressor cells (MDSCs) which suppress anti-tumor immune

responses [27].

The idea of a tumor’s necrotic core has been a key idea in cancer biology
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for years, and it may be that this collection of necrotic cells plays a crucial role

in the development of the tumor [60]. Indeed, necrosis causes inflammation by

the release of pro-inflammatory signals into the surrounding microenvironment

— which does not occur in programmed cell death (apoptosis) — causing

the recruitment of inflammatory cells to the tumor microenvironment. These

immune cells then produce a host of factors influencing tumor development.

Growth and survival factors resulting in both increased proliferation and de-

creased death. Pro-angiogenic factors that aid in the development of blood

vessels, providing oxygen and nutrients to the tumor mass. And extra-cellular

matrix (ECM) modifying enzymes that facilitate local invasion by destroying

or otherwise modifying the surrounding healthy tissue.

Remote Preparation of the Pre-Metastatic Niche

Early models of metastasis assumed a strictly mechanical distribution of cancer

cells from the primary tumor. In these models cancer cells are shed from

the primary tumor into the vascular system, which then transports the cells

through the body until they become stuck in small blood vessels, where they

extravasate and establish a micrometastasis. Therefore, metastases are always

expected to occur ‘downstream’ of the primary tumor. It has been shown,

however, that such a model cannot explain all observed metastatic spread

patterns [19]. In order to address the short-coming of this model, a new

concept has been introduced — that of the pre-metastatic niche (PMN). Two

models of the PMN have been proposed [117]; one in which the PMN is a

hospitable location for the adherence of circulating tumor cells and subsequent

development of secondary tumors, while the other model posits that the PMN

is better defined as a reservoir of monocytes (macrophage precursors) which

help support the settled cancer cell develop into a secondary tumor at this

distant site. In simple terms, the PMN is either the location, or the labor.

In either case, we can describe the PMN as the hospitable setting in which

secondary tumors are able to establish themselves. We can view this as a

modern version of Paget’s ‘soil’.

In terms of the labor, the most well-documented workers involved are
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Figure 1.2: TOP: GFP+ bone marrow in the lungs after irradiation and before
DsRed-tagged B16 cell implantation (left panel; n = 6). On day 14, GFP+ (green)
BMDCs are seen with no DsRed+ (red) tumour cells (left middle panel and inset;
n = 12). Beginning on day 18, a few single DsRed+ B16 cells adhere to GFP+

bone marrow clusters (right middle panel), and by day 23, DsRed+ tumour cells
proliferate at cluster sites (right panel; n = 8). DAPI stain (blue) shows cell nuclei.
BOTTOM: A graph showing flow cytometric data of bone marrow-derived GFP+
BMDCs and DsRed+ B16 cells in the lung. Figure and caption taken from Figure
1 in [84].

tumor-promoting inflammatory cells [60], including S100 proteins [83, 87, 117],

bone-marrow-derived cells (BMDCs) [25, 83], myeloid-derived suppressor cells

(MDSCs) [96], and platelets [83, 124] among others. Many, if not all, of these

recruitments are orchestrated by the primary tumor, which has been referred to

as a ‘chemokine producing factory’ [25], and which may package and send the

factors/mRNA/etc. required for PMN establishment via extracellular vessicles

[40]. For instance, the primary tumor may secrete factors such as VEGF-A,

tumor necrosis factor (TNF) α and TGFβ [139], which results in the increased

expression of the immuno-attractant S100A8/9 proteins at the PMN. These

proteins act as chemoattractants for BMDCs [83, 87], and some authors have

even suggested that they can act as chemoattractants for cancer cells them-

selves [75]. These ideas have also been used to develop novel ‘metastasis traps’

[1]. Once localized to the PMN, these BMDCs help with adherence, invasion

through secretion of ECM degrading matrix metalloproteinases (MMPs), and

growth of the secondary tumor [87]. It has been observed [84] that these

BMDCs are capable of homing to a future site of metastasis well before any
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cancer cells have arrived anywhere within the vicinity.

Hypoxic cells have also been implicated in this process [25] through their

secretion of lysyl oxidase (LOX) — an ECM protein — which increases in-

vasion, metastasis, and recruitment of BMDCs to the PMN by altering the

surrounding ECM. A feedback loop involving MDSCs and T helper cells has

also been described [96]. MDSCs accumulate in the PMN, where they secrete

factors (IL5, IL23, TGFβ) which act to recruit T helper cells. The T helper

cells in turn secrete IL17, which recruits tumor-promoting MDSCs.

Another hypothesis concerning the homing of circulating cancer cells to

the PMN involves platelets acting as transport vessels [124]. In this case, the

PMN may be nothing more than an injury site, which is naturally populated

with growth factors present as part of a wound-healing response. However, if,

as is hypothesized, cancer cells are transported from the primary tumor site

to this injury site by activated platelets, then the wound healing site would

provide an ideal locale for establishment of a secondary metastasis [17]. This

hypothesis was also based on observations that metastatic tumors have been

observed to occur at sites of injury, including after dental surgery as an example

([89] and references therein). The implication of platelets in metastasis has

been made before (see [26] for example), but often in a protective role in the

circulation phase which will be discussed in greater detail below. Platelets

also secrete several factors, including growth and pro-angiogenic factors [27],

and specifically stromal-derived factor 1 (SDF1), which aids in recruitment of

BMDCs to PMN and has been implicated in the migration of some cancer cell

types [83].

Local Invasion

If the dynamics of PMN formation is one of the least investigated steps in the

metastatic cascade, primary tumor invasion is one of the most investigated.

Here again, there appears to be an important role played by inflammatory

immune cells. As mentioned earlier, inflammatory cells are attracted to the

necrotic cells of the primary tumor. These recruited inflammatory cells ag-

gregate near the boundary of the tumor, where they produce ECM degrading
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enzymes as well as factors that induce the epithelial to mesenchymal transi-

tion (EMT) — in which non-motile epithelial cells undergo a transition to

the more motile mesenchymal cell type — which is widely believed to be a

crucial step in invasion and metastasis [60]. Because of the aggregation near

the invasive front of the tumor, the idea of an invasive niche — composed

of cancer cells, macrophages and epithelial cells — has also been proposed

[83]. This idea is similar to that of an invasive cancer stem cell (CSC) niche

along the boundary of the primary tumor [25]. In fact, if CSCs are the best

candidates for distant seeding — because of their tumorigenic capabilities —

then having a collection of them near the boundary, where they are more prone

to separate themselves from the primary tumor and begin the migration to a

distant site, is a potential strategy to increase rates of metastasis. The idea

of a CSC niche near the boundary has also been investigated theoretically in

models concerned exclusively with CSC dynamics [114, 129].

In order to separate themselves from the primary tumor — a first step to

entering the vascular system — a path must be cleared in the surrounding

ECM. While there is evidence that tumor cells are able to produce ECM

degrading factors on their own, it has been hypothesized that the tumor cells

recruit inflammatory cells, BMDCs and macrophages in particular, to the

boundary to exploit the ECM degrading factors they produce [60, 83]. Some

cancer types use acid to destroy the surrounding ECM and allow for easier

local invasion, and has even been shown to play a role in EMT [2, 3, 52].

The ECM structure itself can play an important role for local invasion and

migration [117]. Indeed, within the ECM there are structural fibres, known

as fibrillary collagen 1, which are anchored to the surrounding blood vessels.

Cancer cells can use these structural fibres as ‘zip-lines’ allowing them rapid

access — movement along these fibres is up to 10× faster than by other means

[24] — to the vascular system and consequently anatomically distant sites.

Moreover, there appears to be an endothelial growth factor (EGF) - CSF1

feedback loop between a breast cancer cell line and tumor-associated macrophages

(TAMs) [83, 117]. In this loop, the TAMs produce endothelial growth factor

(EGF) which increases the tumor’s invasiveness. The cancer cells, in turn,

produce CSF1, which is a powerful chemoattractant for TAMs, thereby pro-
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ducing a self-regulating loop resulting in increased aggressiveness and local

invasiveness. The regulation of this aggressive macrophage phenotype is ac-

complished by T cell secretion of IL4 [117]. The effect of this feedback loop

has also been investigated theoretically (see Section 1.2.3).

Intravasation

Dissemination of cancer cells from a primary tumor site to distant sites is

accomplished largely through the blood system [83]. While cancer cells can

be found in lymph nodes, it is not believed that they travel large distances

through the lymphatic system [19]. In addition to influencing local invasiveness

as we saw in the previous section, the EGF-CSF1 loop appears to be critical to

successful entrance into the blood stream (intravasation) as well [87]. Indeed,

blocking the expression of CSF1 effectively inhibits metastasis but has little to

no effect on the growth of the primary tumor. This phenomenon is a recurring

one for several factors tested and demonstrates that metastasis is, in a certain

sense, a separate process from primary tumor development.

Additionally, there is a connection to factors associated with CSCs in this

step [25]. In particular, the transcription factor ‘TWIST’ has been implicated

in migration in embryonic development as well as in regulation of EMT in

cancer progression. Suppression of TWIST reduces metastasis but does not

effect the primary tumor. As in local invasion, matrix degrading enzymes play

a role in intravasation, the details of which are left out for brevity.

By and large, the main players in cancer cell intravasation are TAMs. In

fact, specific studies (see references in [83] and [96]) noted that intravasation

was only observed where perivascular TAMs were located. Moreover, TAMs

— along with MDSCs and Tregs — produce cytokines (ex: TGFβ) that

induce EMT [96].

Circulation

Once a group of one or more cancer cells has entered the blood stream, the

traditional view is that the transportation is done passively via the current of

the vascular system. As a consequence, the only thing that the cells have to do
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is survive this inhospitable medium. Indeed, upon entrance into the vessel, the

cells move from a relatively static environment to one that is rapidly moving,

and shear forces become a problem, often causing the rapid disintegration of

the cells. Beyond this physical barrier, the cell types populating the blood

vessels are also hostile to invading cancer cells such as natural killer (NK) cells

of the innate immune system.

It is natural, then, that most of the research in this area has focused on the

survival of circulating cancer cells in the vasculature. In a specific model of

experimental breast cancer, Tregs have been shown to be necessary for metas-

tasis [87, 96]. It is hypothesized that these cells protect the circulating cancer

cells when they reach their destination. There has also been work implicating

macrophages in this process [87, 96], but the vast majority of the work has

focused on the protective role of platelets during circulation [83, 87]. Platelets

may act as shields from NK cells and the shear forces present in circulation,

and help protect the cancer cells at their final destination. This shielding effect

is largely mediated through the formation of cancer cell-platelet clumps. In-

creased platelet counts have been associated with decreased survival in several

cancer types including breast, colorectal, and lung among others, and anti-

coagulant treatments and non-steroidal anti-inflammatory drugs (NSAIDs)

have also been shown to decrease rates of metastasis [83, 98].

While this all seems reasonable, some recent evidence brings into question

this assumed protective role of platelets during circulation [26]. Indeed, Cou-

pland and collaborators demonstrated that platelets aid in metastasis even

when NK cells are not involved, suggesting that protection may not be the

only function of platelets. Moreover, even when NK cells were involved, Cou-

pland et al. showed that their action occurred after that of the platelets. That

is, while the platelet-cancer clumps were active, the NK cells were not and vice

versa. As a result, the role of platelets in metastasis remains unclear. One

new hypothesis is that activated platelets actively transport cancer cells from

a primary tumor to a secondary site of inflammation [124].
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Extravasation

It is estimated that tens of thousands of cells are shed from the primary tu-

mor each day, but less than 0.01% of these cells will survive circulation and

successfully extravasate and eventually develop into a macrometastasis [83].

It is believed that extravasation and secondary establishment are the least ef-

ficient steps in the cascade [117]. Experimental metastasis assays suggest that

nearly 20% of the cells that leave the primary tumor perish before arrival at

a secondary site [15, 97]. Naive approaches understand extravasation as the

opposite process to intravasation, but this may be a little too simple.

The first question that extravasation seems to invite is: why here? Tradi-

tionally there have been two answers offered for this question [83]. The first is

genetic; specific tissue tropisms are simply coded for in the cancer cells’ DNA.

The second is chemical [35, 75, 83, 87]; chemicals or secreted factors present at

the secondary site act as chemoattractants for only those cancer cells with ap-

propriate receptors (the most common example is CXCR4 [105]). While both

of these offer possible answers, neither is particularly well developed. How-

ever, the recent hypothesis in [124] addresses these shortcomings — at least

in the case of inflammatory tumors. Shahriyari hypothesizes that metastases

develop at sites of injury or inflammation as a result of being transported there

directly by activated platelets attracted to this site of injury.

The second question is : how? This has been investigated more than the

previous question, but much remains unknown. However, general consensus in

this regard is that, once again, immune cells have a major role to play. Much

like the TAMs described in previous sections, the idea of metastasis associated

macrophages (MAMs) has been developed [87, 96, 117]. These MAMs provide

short-range growth and survival signals, protecting the cancer cells from hostile

environment of the blood vessel and surrounding microenvironment. Moreover,

they also appear to help in the process of moving through the blood vessel

wall through direct contact with the cancer cells. Platelets have also been

implicated [87]. The proposed platelet aided extravasation occurs as follows:

platelet-cancer cell clumps are easily caught in the thin capillaries, platelets

provide survival signals at this location and recruit inflammatory monocytes,
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which then differentiate into MAMs, which in turn promote extravasation

through direct contact. Some factors possibly implicated here are TGFβ,

CCL2, and VEGF-A. It is important to note however, that extravasation can

occur independently of platelets [26].

Development of Macrometastases

Once the cancer cells have escaped the blood vessel, they must once again

travel through the ECM to a location suitable for growth. The cells may once

again follow the structural fibres, but these are not necessarily attached to

the desired endpoint as was the case in local invasion/intravasation. Another

idea — the so-called ‘pioneer’ hypothesis, wherein early arrivals ‘pave a path’

through the ECM, depositing adhesion molecules as they go, thereby leaving

a trail for future arrivals [25]. In order to help visualize this phenomenon, we

can view this as a person walking through a corn field, leaving a clear path

through to their destination.

No matter how they make it to their terminal secondary site, once there,

in order to successfully establish a secondary tumor, need to survive and pro-

liferate. Indeed, this new location is likely incredibly different from that of

the primary tumor, and so this cancer cell would still be ‘fish out of water’.

Luzzi, Cameron, and colleagues [15, 97] found that the transition from qui-

escence to proliferation upon arrival at a secondary site was the rate limiting

factor in metastasis — see also our discussion in Section 2.3.3. Often, these

micrometastases do not develop into full blown secondary tumors, but may

remain dormant for long periods of time [60]. These dormant micrometas-

tases are often revealed after resection of the primary tumor, at which time

‘explosive’ metastatic growth may be observed. Several hypotheses have been

proposed to explain this dormancy, including active suppression of secondary

growth by the primary tumor (anti-angiogenic factors for example) [56, 64],

time required to adapt to the new environment [19], active growth suppression

by the host ECM [19], lack of nutrients [19] or even an immune response [45].

As we have seen before, the immune system appears to play contradic-

tory roles. Indeed, inflammatory cells and BMDCs at the secondary site may
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‘awaken’ dormant cells by providing survival and proliferation signals [60, 83];

recruitment of MAMs is essential for dissemination and growth at secondary

sites [87]. Also, direct contact between platelets and cancer cells at this sec-

ondary location, along with platelet-derived TGFβ increases the survival of

these cancer cells [87]. Inflammatory stromal cells and the primary tumor also

supply the secondary site with TNFα, which promotes adhesion and protec-

tion from NK cells [83]. In Chapter 4 we explore the role of contradictory

immune effects on metastatic dormancy.

Because of the presence of the primary tumor, which is a ‘chemokine fac-

tory’, it is likely that development of the secondary tumor is similar, but not

identical to the initial development of the primary tumor.

1.1.2 Immune-Mediated Metastasis

As we have seen in the previous section, there is a significant amount of re-

search linking the immune system — with inflammation in particular — to

cancer [136, 7]. A link between the immune system and cancer has been noted

for a long time, with tumors even being described as ‘wounds that do not heal’

in the 80s [41, 42], and postulated to be the result of an uncrontrolled healing

process [101]. But it is only recently that an explanatory link to metastasis

has been proposed [124].

Shahriyari [124] has recently proposed a theory of ‘immune-mediated metas-

tasis’. In this hypothesis, the immune system plays a crucial role in the dis-

semination, establishement, and growth of metastases. Shahriyari also notes

that chronic inflammation can, in itself, lead to the formation of a primary

tumor (through release of reactive oxygen species for example), but for the

context of this thesis, we will assume that a primary tumor has already de-

veloped, and will consider the influence of the immune system on metastatic

spread from this pre-existing primary tumor.

In a region of chronic inflammation, Shahriyari suggests that local immune

cells can become ‘adapted’ to the inflammatory environment. This ‘adapta-

tion’ could take the form of increased release of growth-promoting and pro-

angiogenic factors in order to compensate for what may seem to be an unre-
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sponsive wound (for example) and, when combined with possible ‘T cell ex-

haustion’ [80] — a phenomenon in which cytotoxic T cells lose their potency

— could lead to an environment conducive to rapid, uncontrolled growth.

Similar changes in immune response as a result of tumor interactions have

been reported elsewhere, including the observation of spontaneous transition

between cytotoxic T cells to immunosuppressive Tregs as a result of factors

within the tumor microenvironment [107]. For this reason, Liu used the term

‘tumor-education’ (which we borrow in Chapters 3 and 4) to describe the

change in immune phenotype observed within the tumor microenvironment

[96].

We have established how chronic inflammation can influence the immune

environment at the site of a primary tumor, now we look to make the connec-

tion to metastatic spread. First, we note that chronic inflammation can act as

a stabilizing force for a hybrid epithelial/mesenchymal phenotype which has

been shown to highly efficient at seeding metastases [81]. Second, in a highly

inflammatory environment, the rate of cancer-platelet cluster formation may

be large. The formation of these clusters will render the disemination pro-

cess much more efficient in terms of the protection and help platelets provide

with the different steps in the metastatic cascade (see Section 1.1.1). Third,

immune trafficking between sites of injury may provide these cancer-platelet

clusters with rapid access to distant hospitable locations. To see this, let us

assume that an injury occurs at some site distant from the primary tumor. A

directed immune response will be activated. The wound-healing site — full

of growth-promoting, pro-angiogenic, and immunosuppressive factors — be-

comes a welcoming PMN. Cancer cells find their way to this PMN by virtue

of being clustered with activated platelets, which home to sites of injury. Fi-

nally, tumor-educated immune cells from the primary tumor site may also

arrive and maintain the inflammatory wound-healing environment after the

injury has been repaired. This allows the cancer cells to not only successfully

establish a micrometastasis, but to develop into macrometastases as well. This

general process is highlighted in Figure 1.1.

While this theory of immune-mediated metastasis sounds intriguing and is

supported by several experimental results, its feasibility as a unifying theory

15



of metastatic spread remains untested. Though experimental studies of this

hypothesis may be difficult, theoretical investigations need not be. Indeed, the

implications and validity of this hypothesis are the motivation for the models

and work presented in Chapters 3 and 4.

1.2 Mathematical Background

Because of the difficulty in performing experimental research into the dynamics

of metastasis, the process is a prime candidate for mathematical/theoretical

exploration. While there have been attempts to model this process dating

to the 1970s, there has been no coordinated effort to develop a systematic,

theoretical description of metastasis, and more mathematical investigations of

metastasis are needed [53]. Much like the work on the experimental side, the-

oretical investigations have tended to focus on a specific step of the metastatic

cascade. And, as in experimental case, the bulk of this work has been done

for local invasion or the development of the ‘metastatic phenotype’. In fact,

many of the models described below simply assume that distant metastatic

spread has occurred when cells from the primary tumor migrate ‘far enough’

from the primary tumor [30, 122]. The methods used range from stochastic

models, to discrete cell-based models, to continuous ODE/PDE models, and

the approaches can be broken into the largely theoretical and the data driven.

Unfortunately, the data available is far too coarse/general to gain truly mean-

ingful insights, and therefore the bulk of the data driven modeling has proven

limited in its power. In what follows, we outline the different approaches and

methods used to investigate metastasis. While the works discussed here cer-

tainly do not make up an exhaustive list of all the work that has been done

on this problem, it does provide a sufficient overview of the current state of

affairs. A (relatively) recent review of the models of metastasis is presented in

[123].
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1.2.1 Stochastic Approaches

Based on the understanding of metastasis as an inherently random process,

a number of investigators have developed stochastic models of metastasis. In

particular, there have been a few groups focused on the development, analysis,

and application of such models. The Liotta group [94, 95], the Michor group

[39, 58, 59, 103, 104], and the Hanin group [10, 61, 62, 63, 64] have been

particularly active in this area.

The earliest results are courtesy Liotta and collaborators. In [95], the au-

thors considered a two-dimensional Markov process model which describes the

development of metastases from circulating clumps of tumor cells. Intrava-

sation and death rates for the cancer cell clumps were considered, as well as

a rate of metastatic establishment. Upon calibration of the model to experi-

mental data, it was used to simulate the effect of treatments that prevent the

formation of large cancer cell clumps or that increases the cancer cell clump

death rate within the circulation. In a subsequent paper [94], the same group

developed an expression for the probability of being metastasis-free — in the

sense that no metastases have yet developed and not in the sense discussed

in Chapter 2 — as a function of time which they were then able to compare

to experimental data. Included in this expression are the rate at which CTCs

become lodged in a target-organ’s vasculature and the probabilities that an

arrested cell will either die or develop a metastatic focus. Liotta and collabo-

rators also investigated metastasis with the help of deterministic ODE models

as well [93, 121], which we will discuss further in Section 1.2.2.

A couple of decades after the pioneering work mentioned above, Michor and

collaborators [39, 58, 59, 103, 104] developed and refined a stochastic model

to investigate the emergence and role of the ‘metastatic phenotype’ among

the tumor cells within the primary tumor. In [104], the authors considered a

tumor population with a fixed number of cells split into two subpopulations of

cells: one that cannot metastasize, and another that can. At each cell division

(time step) a mutation confering the mutant cell the ability to metastasize

can occur with some fixed probability. Cells with metastatic potential can

be ‘exported’ from the primary tumor to seed a distant metastasis at a fixed
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rate. Consequently the number of established metastases in this model will

be proportional to the number of mutated (i.e. of ‘metastatic’ phenotype)

cells in the primary tumor. The authors concluded that if the ‘metastatic

mutation’ confers an advantage at the primary site, then most, if not all,

cells within the primary tumor will (eventually) have the potential to seed

metastases. On the other hand, if the ‘metastatic mutation’ proves deleterious

at the primary site, only a small fraction of the primary tumor will have the

capability to metastasize. Similar results were presented in [103], but with two

mutations required to acquire the ‘metastatic phenotype’. Generalizations to

a growing primary tumor are analyzed in [39] (single mutation) and [58, 59]

(two mutations).

More recent stochastic modeling has been done by Hanin and collaborators

[10, 61, 62, 63, 64]. In these works, the authors developed a general stochastic

framework for the metastatic process that, when applied to research or clinical

data, can estimate the natural history of that specific cancer. Factors included

in this natural history are the time of first metastasis formation, the number

of metastatic foci, rate of shedding from primary tumor and effect of primary

tumor resection. These works suggest that metastasis can occur relatively

early in the progression of the primary tumor (contrary to the prevailing belief

that metastasis is the final step in malignant progression), that shedding is

likely homogeneous in time and that the explosive metastatic growth after

primary tumor resection may be the result of the flipping of an angiogenic

switch with the removal of primary tumor. In their most recent work [62], the

authors demonstrated that increasing the growth rate at metastatic sites post

primary resection always provides a higher likelihood when fitting their model

to any data set. They used this to argue that metastatic development is highly

influenced by the primary tumor, and that both metastatic dormancy (when

primary is present) and blowup (upon primary resection) are basic properties

of metastasis.
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1.2.2 Deterministic Approaches

Whereas stochastic models may provide a certain level of realism to the model

— especially when small numbers of cells are being considered — there have

also been several deterministic models formulated in order to interogate the

metastatic process because of their relative ease of analysis. Below we outline

the approaches taken by several investigators. We will note that only a small

fraction of the literature explicitly models metastasis, with most of it focusing

instead on a single component of the metastatic cascade, with local invasion

being particularly well studied.

One of the earliest attempts at developing a theoretical framework for

metastasis was done by Saidel and colleagues in 1976 [121]. The authors de-

veloped a 5 compartment ODE model meant to model the different stages

in the metastatic cascade. Compartments included in the model are primary

tumor size, vasculature of primary tumor, invading cells within blood ves-

sel walls, cancer cells arrested in end organ tissue and number of metastatic

foci. Each compartment is modeled relatively simply with birth-death pro-

cesses with rates of varying complexity. This model was then fit to mouse

data that was obtained concurrently. The calibrated model was then used to

predict dynamics following tumor trauma, amputation and a number of other

scenarios. Elements of this model were adapted and included in a stochastic

model that attempted to predict number of metastatic foci and probability of

no metastases existing after tumor initiation [95, 94] (see Section 1.2.1).

Another well investigated model is the Iwata PDE model describing the

colony size distribution of metastases [77]. The model itself is a simple trans-

port equation — for which the authors provide an explicit solution — incor-

porating primary tumor growth and shedding in a density-dependent manner.

Growth was assumed Gompertzian, and vascularisation of the tumor was also

included. This model was then fit to clinical data (metastatic colony num-

bers as a function of colony size and time) and used to estimate the natural

history of cancer. Similar estimation of cancer history was done in [68] us-

ing the same model. Many researchers have based their investigations on the

model developed in [77], including mathematical analysis in [11, 36], compu-
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tational/numerical analysis in [9, 66], and in application to data from mice in

[67].

More recently, the validity of the Iwata model has been brought into ques-

tion by Baratchart et al. [8] with work that suggests that metastatic foci do

not grow independently of the primary tumor and nearby metastatic foci. The

authors gathered metastatic burden data via MRI imaging and fit the Iwata

model to this data. If they reduced their collected data to be of the same

form as in previous investigations, Baratchart et al. were able to fit the model

— much as previous researchers have. However, once they took advantage

of their more detailed data, they discovered that the model was actually a

poor predictor of both number of metastatic foci and overall metastatic bur-

den, which led them to investigate the influence of several micrometastases

developing in close proximity to one another by developing a spatially explicit

model that included tumor cells, healthy cells and a pressure field. This ‘post-

establishment’ model of metastasis provided an explanation for the poor fit of

the previous model to their data: there are non-trivial interactions between

metastatic foci and possibly between metastases and the primary tumor.

Using a spatially explicit PDE model, Orlando et al. in [109] investi-

gated the role of the primary tumor environment on the development of the

‘metastatic phenotype’. The model includes both cancer cells (with continu-

ously varying phenotypes) and surrounding healthy cells, along with oxygen

concentration. The authors considered two variants of the model - one in

which the tumor destroyed its surrounding environment, and one in which no

such destruction occurs. It was found that environmental destruction selected

for a more invasive phenotype, and that the spatial distribution of phenotypes

mirrored phenotypic distributions observed in ecological settings, with invasive

cells near the tumor boundary and more ’permanent’ cells in the interior of

the tumor.

Eikenberry et al. [45] developed a detailed PDE model of local invasion in

skin cancer which includes tumor cells, healthy cells, tumor angiogenic factor

(TAF), blood vessels, necrotic cells, oxygen, basement membrane density, cy-

totoxic immune cells and immuno-attractant factors. In order to model the

effect of the primary tumor on secondary metastases, the authors simulated
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the model for a fixed time, allowing for the development of a primary tumor.

Secondary metastases were then manually added to the simulation domain as-

suming that metastases are more likely to develop closer to the primary tumor

boundary. After manual seeding, the simulation was restarted, and the effect

of the primary on the metastases was then observed. One scenario tested was

the effect of primary tumor resection. In this case, the model predicted ex-

plosive metastatic growth or, if the immune response was sufficiently strong,

small but persistent metastases. The effects of primary tumor resection on

metastatic growth was also investigated in [38] using an ODE model. Similar

results were obtained there, with the effects of primary tumor resection ranging

from nothing, to explosive metastatic growth, to extinction of all metastases,

depending on the parameters used.

Modeling of local invasion by way of healthy tissue destruction has been

done by several authors, including Gatenby [52], Anderson [5], and Chaplain

and Lolas [20, 21]. Gatenby [52] investigated the role of acid-mediated destruc-

tion of healthy tissue on primary tumor invasion dynamics with a reaction-

diffusion model including equations for healthy tissue, cancerous tissue, and

excess hydrogen ions (acidity). The model predicted a gap between the tumor

front and the healthy tissue which had not been appreciated previously, and

was subsequently confirmed experimentally. Anderson [5] proposed a similar

three component model, including ‘matrix degrading enzymes’ instead of the

hydrogen ions considered in [52]. Under certain parameter regimes, Ander-

son’s model predicts that a small cluster of cancer cells will break away from

the main tumor mass, traveling independently ahead of the main tumor (see

Figure 1.3) which the authors suggest will result in metastatic spread. The

models of Chaplain and Lolas [20, 21] are similar, but focus specifically on the

effects of the proteolytic enzyme urokinase-type plasminogen activator (uPA).

The authors performed numerical simulations of the model using parameters

estimated from the literature. These final uPA models have been analyzed

further in [74], where it was shown that, under certain conditions, the model

converges to a chemotaxis model.

Some of the most recent work — and most relevant to metastasis — comes

from the Enderling lab in a series of papers refining a model for investigat-
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Figure 1.3: One-dimensional simulations of the model of Anderson et al. [5]
showing spatial profiles of tumor density, extra-cellular matrix (ECM) density, and
density of a matrix-degrading enzyme (MDE) at 4 different time points. Figure
taken from Figure 2 in [5].

ing the role of T-cell trafficking on the so-called ‘abscopal effect ’ in radiation

therapy [115, 116, 135, 134]. The ‘abscopal effect ’ describes the phenomenon

in which therapy applied locally to one tumor affects a distant tumor, which

was not directly targeted by the therapy. These works model tumor-immune

dynamics at N distinct anatomical sites. The dynamics at each site are gov-

erned by a modified version of Kuznetsov’s tumor-immune model [91], which

includes equations for a tumor population and an effector (cytotoxic) immune

population. The effector immune cells can travel between metastatic sites by

way of an anatomically informed network, but tumor cells from site i remain

at site i. Because of this, their model provides little in the way of meaning-

ful information concerning metastatic spread, but is an effective model of the

abscopal effect in a system of multiple pre-established tumors. In [115], after

parameterizing the model, the authors showed, by way of numerical simula-

tion of their model using up to N = 3 sites, that the strength of the abscopal

effect depends on which site receives the local radiation. Further work on this

model has included discussion of clinical trial design based on the model [135],
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and further simulations of what the authors call ‘metastatic seeding’ and local

therapies leading to abscopal effects [134].

1.2.3 Other Approaches

There have also been models proposed that do not necessarily fit nicely into

one of the categories outlined above. This includes computational models

[88, 127], agent-based models [22, 120, 132], and hybrid models [4].

Chen et al. [22] developed an agent-based model to investigate the envi-

ronmental selection of the ‘metastatic phenotype’ at the primary tumor site.

The model includes tumor cells, blood vessels, nutrient/oxygen diffusion and

metabolism, and looked at role of resource heterogeneity on development of

invasive phenotype. Metastatic cells were found to be at a disadvantage within

the primary tumor because these cells are spending extra resources maintain-

ing this phenotype that does not help them survive within the primary tumor.

Moreover, resource heterogeneity was shown to select for invasion — which

the authors suggested may lead to metastatic spread. This effect mirrors a

similar effect in ecology, where organisms will travel larger distances if the re-

sources are spread out over a large area [14, 102]. Another agent-based model

with similar scope was developed and analyzed in [120], in which the acid

mediated theory of invasion [52] was also included.

The role of adhesion in primary tumor morphology and spread has also been

an active area of research, with many investigators making links to metastatic

spread. In [4], Anderson looked at the role of adhesion in local invasion using

a hybrid continuous-discrete simulation model. Additional models for cellular

adhesion include: a continuous integro-PDE model developed and analyzed in

[6, 111], an agent-based model in [132], and a computational model in [127].

The computational model [127] investigated the role of adhesion in primary

tumor morphology and found that decreased adhesion strength (both cell-cell

and cell-ECM) can result in highly fragmented tumors, which the authors

argue could lead to metastasis. Morphological results were obtained in [111]

using a PDE model of local invasion including cell-cell and cell-ECM adhesion,

and in [4] using a hybrid model.
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Among all the models reviewed here, there are very few that also include

any form of immune cells. We previously mentioned the work of Eikenberry

and the Enderling Lab, and here we describe two more. First, Knutsdottir

and colleagues [88] investigated the role of macrophages in primary invasion.

They developed a computational model to simulate dynamics of individual

cells within the tumor microenvironment and the effect of CSF1-EGF signal-

ing on tumor cell/macrophage motility. The model incorporates tumor cells

and macrophages together with the chemical signaling molecules CSF1 and

EGF (see Primary Invasion in Section 1.1). CSF1-EGF signaling proved to

be sufficient to replicate observed experimental results of increased motility of

both cell types. Second, Uppal et al. [132] investigated the role of platelets

and adhesion in the metastatic cascade using an agent-based model. Instead

of looking at the role of adhesion in primary tumor invasion and morphology,

the authors considered the role of adhesion in distribution and establishment

of micrometastases at distant sites and found that inhibiting platelet adhesion

reduced tumor cell adhesion at secondary sites, which was interpreted as a

decreased rate of metastatic colonization.

1.3 A Successful Model of Metastasis

Before we get started, we gather the results discussed above into a list of prop-

erties that are desirable in a successful model of metastatic cancer. Although

our list may not be exhaustive, it is meant to serve as a set of motivating

principles to be kept in mind throughout the thesis and in the final chapter

we will summarize our results in part by comparing them to this list.

What should a successful model of metastatic cancer look like? Based on

our discussion above we suggest the following properties are desirable in a

sucecssful model of metastatic cancer.

Can the model (re)produce:

1. establishment and development of a secondary tumor at a site distant

from the primary tumor?

2. immune-mediated help in metastatic establishment? [84, 124]
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3. metastatic dormancy? [62, 138]

4. metastatic blowup upon primary resection? [56, 62]

5. abscopal effects? (these are the effects felt by the secondary tumor in

response to treatment of the primary tumor) [37, 112, 134]

6. metastasis to sites of injury? [124]

7. prescriptions for more effective therapies?

8. testable biological predictions?

9. local recurrence?

10. tumor specific patterns of spread?

1.4 Outline

The remainder of this thesis is organized as follows:

• Chapter 2 discusses a stochastic model for cancer metastasis. The model

includes stationary particles (established tumors) and mobile particles

(CTCs). Stationary particles can give birth to mobile particles, which

move according to a stochastic process until they perish or settle at a

secondary location, thereby establishing a new stationary particle at a

distant location. We show that the stochastic model can be described

in terms of a new type of integro-differential equation whose long term

dynamics are governed by a single number we term the metastatic re-

production number. The model is parameterized using murine data from

experimental metastasis assays, and numerical simulations are performed

demonstrating the applicabililty of the model framework to metastatic

cancer.

• Chapter 3 includes the development of an ODE model for cancer growth

at two different anatomical sites. An 8-dimensional ODE model is pre-

sented, modeling the dynamics of tumor cells, necrotic cells, anti-tumor
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immune cells, and pro-tumor ‘tumor-educated’ immune cells at both a

primary and a secondary site. Criteria for disease extinction are ob-

tained, and the parameterized model is simulated numerically. We find

that our model provides theoretical support for the theory of immune-

mediated metastasis with simulations reproducing experimentally and

clinically observed dynamics including rapid metastatic growth at the

sites of injuries.

• Chapter 4 begins with a simplification of the 8-dimensional ODE model

from Chapter 3 to a 3-dimensional ODE model of tumor-immune dy-

namics, including both anti- and pro-tumor immune populations, at a

metastatic site. Under the assumption that tumor dynamics and im-

mune dynamics occur on different time scales, we perform quasi-steady

state analysis of the model using techniques from geometric singular per-

turbation theory. Our analysis provides insight into the phenomena of

metastatic dormancy, metastatic ‘blow-up’, and abscopal effects, thereby

providing theoretical support for the theory of immune-mediated metas-

tasis as well as a number of biological predictions.

• A summary of our results and concluding remarks are presented in Chap-

ter 5.
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Chapter 2

A Stochastic Model for Cancer

Metastasis

The material of this chapter is included in a submitted manuscript:

C. Frei, T. Hillen, and A. Rhodes. A Stochastic Model for Cancer Metastasis:

Branching Stochastic Process with Settlement. Mathematical Medicine and

Biology (submitted). Preprint available on bioRxiv, DOI: 10.1101/294157.

Here, in Chapter 2, I summarize the results of the above manuscript and high-

light my own contributions.

In this section, we derive, analyze, and apply a stochastic model of particle

dissemination — which we term a branching stochastic process with settle-

ment — to the problem of cancer metastasis. Section 2.1 introduces the

general setting and provides the derivation of the stochastic model. We pro-

vide a summary of analytical results in Section 2.2. (Proofs of these results

have been left out here for brevity, but can be found in the paper [50].) There

are two sets of main results. The first set deals with the characterization of

the following key quantities in our stochastic model: the expected location F

of metastases, their locational variance V , the distribution H of the furthest

invading metastasis, the metastatic extinction probability Q, and the ratio of

moving versus stationary cancer cell groups. Each of the first four quanti-

ties —F, V,H, and Q— satisfies a non-local integro-differential equation with
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distributed delay. These non-local differential equations are of the same type

for all cases and are non-linear in some cases. The second set of main results

provides a simple classification of the asymptotic behavior. Despite the model

complexity and stochasticity, we are able to find a metastatic reproduction

number R0, which is explicitly given in terms of the rates of metastatic shed-

ding, settlement, and death. The magnitude of R0 governs the asymptotic

behavior of the model dynamics. A discussion of the numerical methods used

to simulate the stochastic model is presented in Section 2.3.1 and applica-

tion of the model in the context of metastatic cancer is done in Section 2.3.

The model is parameterized using data from murine models of experimental

metastasis and simulations of metastatic spread and of experimental metas-

tasis assays are presented. Discussion of the results, their implications, and

their limitations is done in Section 2.4

2.1 Setting and Model Derivation

Even though it is implicated in the vast majority of cancer-related deaths, the

inherently stochastic nature of metastasis makes experimental studies difficult,

meaning that a thorough understanding of the process is lacking . While some

of the steps in the metastatic cascade are well understood — for example,

growth and invasion of primary tumors are well studied both experimentally

and theoretically (see the reviews in [119, 123] or in Section 1.1) — under-

standing of others remains elusive. Travel to, and establishment at secondary

sites are particularly poorly understood, with many theoretical investigations

ignoring these aspects altogether (see Section 1.2). Though recent results [84]

have led to novel theories that metastasis may be more intricately orchestrated

than previously thought [124], the process is still believed to be at least partly

stochastic.

Based on these observations, we introduce a new stochastic framework for

metastatic spread in the form of a branching stochastic process with settle-

ment. This model captures simultaneously temporal and locational dynamics.

Stationary tumors emit, or shed, small clusters of cells into the vasculature
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at random times. These shed clusters can then move randomly through the

body, modeled by a stochastic process. While the detailed movement through

the body is complicated, we will use Brownian motion as a first example (see

also the discussion in Section 2.4). The moving clusters — also known as circu-

lating tumor cells/clusters (CTCs) — can settle randomly according to a given

rate. If the CTCs successfully settle, they may establish a secondary tumor,

which itself may shed new CTCs into the blood stream. Both moving and

stationary groups of cancer cells die, each at their own rate.

In contrast to existing stochastic metastasis models (see Section 1.2.1), our

framework accounts for both travel between primary and secondary sites and

establishment at the secondary sites. [65] propose a stochastic model with

secondary metastatic emission as a cascade of Poisson point processes and

link it to the deterministic model introduced by [77]. Differently from us, [65]

model only the size development over time and not the location.

We define the branching stochastic process with settlement as follows: We

start with one tumor that is located at locational position 0. We assume that

the tumor sheds individual cells and small groups of cells into the circulatory

system. It is believed that such CTCs are most responsible for metastasis for-

mation [51]. Hence, in this model, we focus on the shedding of cell clusters. At

a random time ν, the primary tumor emits a cell cluster, which starts moving

randomly. We model the movement of this cell cluster by a stochastic pro-

cess (B(t))t≥0 with cumulative distribution function G(t, x) = P [B(t) ≤ x] for

x ∈ R and t ≥ 0. We assume that for every fixed t, G(t, .) is absolutely contin-

uous so that there is a density function g(t, .) with G(t, x) =
∫ x
−∞ g(t, y) dy for

all x ∈ R. The prime example for (B(t))t≥0 is Brownian motion, in which case

g is the heat kernel g(t, y) = 1√
2πt

e−y
2/(2t), but our model allows for general

stochastic processes (B(t))t≥0. The primary tumor stays at the same location

until it dies. We assume that the shedding time ν is exponentially distributed,

ν ∼ Exp(µ) for some parameter µ ≥ 0, using the convention that ν = ∞ if

ν ∼ Exp(0).

After an additional random time τ (namely, at time ν+ τ), the cell cluster

settles down. We assume that τ is exponentially distributed, τ ∼ Exp(λ) for

some parameter λ ≥ 0. When the cell cluster has settled down, it will take
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Figure 2.1: Illustration of a branching stochastic process with settlement. Taken
from [50].

again a time which is exponentially distributed with parameter µ ≥ 0 until

it emits another cell cluster. Also the first cell cluster will continue to emit

further cell clusters after a time which is exponentially distributed with the

same parameter µ ≥ 0, independently of the other random variables and

processes. Cell clusters that are moving are destroyed at a rate δ1 ≥ 0 while

stationary clusters die at a rate δ2 ≥ 0, again independently of the other

clusters, the movement and the growth. The process is repeated ad infinitum.

Figure 2.1 illustrates our model.

We now extend the notion from cell clusters to more general ‘particles’

since the branching stochastic process with settlement is also relevant to other

applications such as seed dispersal, epidemic spread, and forest fire spread. In

those cases, particles would refer to plant seeds, infectious agents, and burning

branches, respectively. In this paper, our focus is on CTCs and metastatic

dissemination.

We denote by N(t) the number of particles born before time t. Their

30



positions at time t are Xi(t) for 1 ≤ i ≤ N(t) where we enumerate the particles

by their birthdates. For fixed t and i, N(t) and Xi(t) are random variables with

values in N and R, respectively. We denote by M(t) the number of particles

alive at time t. We are interested in the following quantities:

• expected location F (t, x) = E
[∑N(t)

i=1 1Xi(t)≤x
]
: the expected number of

particles located in (−∞, x] at time t,

• locational variance V (t, x) = Var
[∑N(t)

i=1 1Xi(t)≤x
]
: the variation in the

number of particles located in (−∞, x] at time t due to randomness,

• furthest particle distribution H(t, x) = P [maxi=1,...,N(t) Xi(t) ≤ x]: the

probability that all particles are located in (−∞, x] at time t,

• survival probability Q(t) = P [M(t) > 0]: the probability that there is

at least one particle alive at time t,

where we use the convention that 1Xi(t)≤x is zero for all x and times t after

the death time of particle i. We set H(t, x) = 0 for all x if no more particle

exists at time t.

2.2 Summary of Analytical Results

First, we use the above branching stochastic process with settlement to find

a common type of equation for the expected location F , the variance V , the

distribution of the furthest particle H and the survival probability Q.

Theorem 1. Consider the branching stochastic process with settlement defined
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above. The quantities F, V,H,Q satisfy

Ft(t, x) = −δ2F (t, x) + µe−(λ+δ1)tG(t, x)

+λµ

∫ t

0

∫ ∞
−∞

F (t− u, x− z)g(u, z)e−(λ+δ1)u dzdu, (2.1)

Vt(t, x) = −δ2V (t, x) + µe−(λ+δ1)th(t, x)

+λµ

∫ t

0

∫ ∞
−∞

V (t− u, x− z)g(u, z)e−(λ+δ1)u dzdu, (2.2)

with

h(t, x) = G(t, x) + e(λ+δ1)t δ2

µ
F 2(t, x)

+λ

∫ t

0

∫ ∞
−∞

F 2(t− u, x− z)g(u, z)e(λ+δ1)(t−u) dzdu,

Ht(t, x) =
[
µe−λt(1− e−δ1t(1−G(t, x)))− (µ+ δ1)

]
H(t, x)

+λµH(t, x)

∫ t

0

∫ ∞
−∞

H(t− u, x− z)g(u, z)e−λu dzdu, (2.3)

Q′(t) = −
(
δ2 + µe−(λ+δ1)t

)
Q(t) + µe−(λ+δ1)t

+λµ(1−Q(t))

∫ t

0

Q(t− s)e−(λ+δ1)s ds. (2.4)

The proof of Theorem 1, and all subsequent results presented in this sec-

tion, can be found in [50]. To better appreciate that the above equations

(2.1)–(2.4) are all of the same form, we will introduce some notation.We en-

counter integral kernels that depend on one variable and on two variables. We

use the same convolution symbol for both cases; given two kernels k1(t, x) and

k2(t) and two test functions f(t, x) and g(t), we denote

k1 ∗ f(t, x) :=

∫ t

0

∫ ∞
−∞

f(t− u, x− z)k(u, z) dzdu

k2 ∗ g(t) :=

∫ t

0

g(t− u)k(u) du.
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Case r1 r2 q(t, x) p(t, x) k(u, z)

F 1 0 δ2 µe−(λ+δ1)tG(t, x) λµe−(λ+δ1)ug(u, z)

V 1 0 δ2 µe−(λ+δ1)th(t, x) λµe−(λ+δ1)ug(u, z)

H 0 1 qH(t, x) 0 λµe−λug(u, z)

Q 1 −1 δ2 + µe−(λ+δ1)t µe−(λ+δ1)t λe−(λ+δ1)u

Table 2.1: Parameter values for the different cases of expected location F , loca-
tional variance V , distribution of the furthest particle H and survival probability
Q, using the abbreviation qH(t, x) = µ+ δ1 − µe−λt(1− e−δ1t(1−G(t, x))).

Then we combine equations (2.1)–(2.4) in the compact form

ft = −qf + p+ (r1 + r2f) k ∗ f, (2.5)

where we identify parameters and functions as shown in Table 2.1.

For results concerning the general equation of the form 2.5, we require the

following assumptions.

Assumptions (A1):

• We assume r1 ≥ 0, r2 ∈ R,

• q(t, x) ≥ δ > 0 is uniformly bounded and Lipschitz continuous in t and

x.

• For each T > 0 p(t, x) ≥ 0 is uniformly bounded on [0, T ] by P , absolute

continuous in x and continuous in t.

• For the cases F,H, V : k(u, z) ≥ 0 is continuous in x and satisfies for

some constant K > 0 that∫ t

0

∫ ∞
−∞

k(u, z) dzdu < K.
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• For the case Q: k(u) ≥ 0 satisfies for some constant K > 0 that∫ t

0

k(u) du < K.

• The initial condition f0(x) = f(0, x) ≥ 0 is bounded in L∞(R).

To prove existence and uniqueness, we consider T > 0 and use as phase

space

X = L∞(0, T ;R)

with the essential supremum norm || · ||∞. To find a mild formulation of (2.5),

we define an integrating factor

W (t, s, x) = exp

(
−
∫ t

s

q(u, x) du

)
(2.6)

where the x-dependence arises only in the case of f = H. Since q is Lipschitz

continuous and q > 0 we have that W (t, s, x) is a non-negative evolution family

with 0 < W (t, s, x) ≤ 1 for all 0 ≤ s ≤ t ≤ T . We use the variation of constant

formula to formally solve (2.5) as

f(t, x) = f0(x)W (t, 0, x) +

∫ t

0

W (t, s, x)
[
p(s, x) + (r1 + r2f) k ∗ f(s, x)

]
ds,

(2.7)

with f(0, x) = f0(x), which is our mild formulation.

Lemma 1. Assume (A1) and let f ∈ X be a mild solution of (2.5).

1. Then f(t, x) ≥ 0 as long as the solution exists.

2. If f(t0, x0) = 0 for a point (t0, x0), then this implies that

f0(x0) = 0 and p(t, x0) = 0 for all 0 ≤ t ≤ t0. (2.8)

3. If in addition p(t, x) > 0 for all (t, x) ∈ (0, T ) × R then f(t, x) > 0 for

all (t, x) ∈ (0, T )× R.

34



Proposition 1. Assume (A1). Then there exists a time T > 0 and a unique

mild solution f ∈ X which satisfies (2.7).

Theorem 2. The unique mild solutions from Proposition 1 exist for all times.

The probabilities H and Q are globally bounded by 1 (as solutions of their

corresponding integro-differential equation).

Now we move on to the second set of results, those concerning the asymp-

totic model dynamics and the metastatic reproduction number. To introduce

the metastatic reproduction number, R0, we reduce the above model by look-

ing at the expected numbers of moving and stationary particles. We denote

by a(t) and b(t) the expected numbers of moving and stationary particles,

respectively. Moving particles die at rate δ1 and become stationary at rate λ

while new moving particles are born at rate µ from the stationary particles.

This reasoning leads to

a′(t) = −(δ1 + λ)a(t) + µb(t). (2.9)

Similarly, stationary particles die at rate δ2 and moving particles become sta-

tionary at rate λ, leading to

b′(t) = −δ2b(t) + λa(t). (2.10)

The differential equations for a and b form a linear system with coordinate

matrix

A1 =

(
−(δ1 + λ) µ

λ −δ2

)
.

The matrix A1 has trace and determinant as

trA1 = −(δ1 + δ2 + λ), detA1 = δ2(δ1 + λ)− λµ.

The trace is negative, hence the origin is asymptotically stable for detA1 > 0

and unstable for detA1 < 0. Now, if we define

R0 =
λ

δ1 + λ

µ

δ2

,
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we find the following result:

Lemma 2. Consider (2.9), (2.10).

• If R0 < 1 then (0, 0) is globally asymptotically stable.

• If R0 > 1 then (0, 0) is unstable (it is a saddle).

• If R0 = 1 then (0, 0) is non-hyperbolic and we have a continuum of steady

states in direction (δ2, λ)T .

It should be noted that a(t) + b(t) = E[M(t)], where E[M(t)] is the ex-

pected total number of particles.

Using specific initial conditions (a(0), b(0)) = (0, 1) we can explicitly solve

equations (2.9), (2.10) and we find the asymptotic ratio of moving versus

stationary particles

lim
t→∞

a(t)

b(t)
=
δ2 − δ1 − λ+

√
(δ2 − δ1 − λ)2 + 4λµ

2λ
.

The importance of R0 can also be seen in the dynamics of the survival prob-

ability, Q, which is a special case of (2.5), where there is no spatial variable.

In this case, (2.5) becomes

Q′(t) = − δ2Q(t)︸ ︷︷ ︸
A

+ (1−Q(t))µe−(δ1+λ)t

(
1 +

∫ t

0

Q(s)λe(δ1+λ)s ds

)
︸ ︷︷ ︸

B

. (2.11)

where

A: death rate of original particle times the survival probability at time t.

Note that this is the only term if µ = 0 (no births), in which case, the

survival probability equals Q(t) = exp(−δ2t).

B: correction term because the birth of particles leads to a higher survival

probability than in the case µ = 0. If the original particle has offsprings,

all of the original particle, the offsprings of the original particle and

further offsprings must die to extinct all particles, which is reflected in

the term B.
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Basedon(2.11),wecanderiveasecond-orderODEforQ,namely,

Q (t)=(δ1+λ)Q(t)−1 −Q(t)µe−(δ1+λ)t 1+
t

0

Q(s)λe(δ1+λ)sds

−δ2Q(t)+µλQ(t)1−Q(t)

=
Q(t)

Q(t)−1
−δ1−λ Q(t)+δ2Q(t)−δ2Q(t)+µλQ(t)1−Q(t)

Thisequationcanbetransformedintoasystemoffirst-orderODEsas

Q = P, (2.12)

P =
P

Q−1
−δ1−λ P+δ2Q −δ2P+µλQ1−Q .

Weshowthefollowingresult:

Lemma3.Considersystem(2.12).

•IfR0<1then(0,0)islocallyasymptoticallystable.

•IfR0>1then(0,0)islocallyunstable(itisasaddle).

Wecanalsoobtainresultsfortheasymptoticbehaviorofboththe mean

numberofparticlesandthesurvivalprobability.

Theorem3. Forµ=0,andλ=0orδ1=δ2,theaveragenumberofparticles

aliveattimetisgivenby

E[M(t)]=
µ−δ2−α−

α+ −α−

eα+t+
−µ+δ2+α+

α+ −α−

eα t,

where

α± =
−δ2−δ1−λ± (δ2+δ1+λ)2+4(R0−1)δ2(λ+δ1)

2
. (2.13)

Forµ=0orbothλ=0andδ1=δ2,theaveragenumberofparticlesattimet

equalsE[M(t)]=(1+µt)e−δ1t.
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Corollary 1. E[M(t)] has the following asymptotic behavior: it . . .

equals (1 + µt)e−δ1t if µ = 0 or both λ = 0 and δ1 = δ2,

grows exponentially at rate α+ if R0 > 1 and not case 1,

converges to 1+λ/δ2
δ2/µ+λ/δ2

if R0 = 1 and not case 1,

shrinks exponentially to 0 at rate α+ if R0 < 1 and not case 1.

Lemma 4. The asymptotic survival probability is

lim
t→∞

Q(t) =



max
{

1− 1
R0
, 0
}

if µ > 0 and λ > 0,

1 if {µ = 0 or λ = 0} and δ2 = 0,

µ
µ+δ2

if λ = 0 and δ1 = 0 and δ2 > 0,

0 otherwise.

2.3 Application to Metastatic Cancer

In this section, we focus on my own contribution to [50]: application of the

modeling framework developed above in the context of metastatic cancer.

First, in Section 2.3.1, we provide a note on the numerical implementation

of the Gillespie algorithm used to simulate the stochastic model. Following

this, we present the results of our simulations for two separate scenarios. In

Section 2.3.2 we apply the numerical framework to the case of metastatic

spread in-vivo. In contrast, Section 2.3.3 sees the numerical framework ap-

plied to the case of experimental metastasis. Both Sections 2.3.2 and 2.3.3

include parameter fitting and the simulation results.

2.3.1 Gillespie Algorithm

In this section, we will provide a brief description of how the Gillespie algo-

rithm was implemented to produce the simulations we report in the follow-

ing sections. Full details of the general algorithm — including derivations

and proofs — can be found in [54, 55]. Originally developed in the context

of well-mixed chemical reactions, the Gillespie algorithm has been adpated
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to spatially-dependent processes on finite spatial domains, such as reaction-

diffusion equations [47]. The Gillespie algorithm is an exact stochastic simu-

lation algorithm which uses adaptive timestepping as opposed to an equally

spaced mesh grid. Therefore, at each timestep, two questions must be an-

swered: first, how long until the next reaction occurs? And second, which

reaction occurs? Below we provide our implementation, but the justification

is found in the original Gillespie papers [54, 55].

For our implementation, we must first gather some preliminaries. We con-

sider a finite spatial domain centred around the origin, [−L,L], which we

divide into K equally spaced ‘bins’ of size h. Our model includes two ‘re-

active species’: stationary particles and mobile particles. We denote by Ai,j

(and Bi,j) the number of stationary (and mobile) particles in spatial bin i at

timestep j. At each timestep, j, any of five different types of reactions could

occur:

1. A mobile particle could move between spatial bins at rate d = D/h2,

where D is the diffusion coefficient,

B1,j

d

�
d
B2,j

d

�
d
· · ·

d

�
d
BK,j.

Note that there are a total of 2K − 2 reactions described here.

2. A stationary particle in bin i could shed a mobile particle at rate µ,

Ai,j
µ→ Ai,j +Bi,j.

Note that there are a total of K such reactions.

3. A mobile particle could settle in bin i, creating a stationary particle at

rate λ,

Bi,j
λ→ Ai,j.

Note that there are a total of K such reactions.
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4. A stationary particle in bin i could die at rate δ2,

Ai,j
δ2→ ∅.

Note that there are a total of K such reactions.

5. A mobile particle in bin i could die at rate δ1,

Bi,j
δ1→ ∅.

Note that there are a total of K such reactions.

Note that there are a total of 6K − 2 possible reactions at each timestep.

We will index all of the possible reactions with α = 1, 2, . . . , 6K − 2. For each

reaction, Rα, we define the propensity of Rα by the quantity

pα = hαcα,

where hα is the number of reactants available for reaction Rα and cα is the

rate of reaction Rα. With this definition, we can now describe the algorithm

beginning at timestep j:

1. Generate two random numbers, r1 and r2, from the uniform distribution

on the unit interval, U(0, 1).

2. Determine the propensity of each reaction occuring at this time step.

• Movement from bin i to i+ 1 (or i to i− 1): Bi,jd

• Shedding from bin i: Ai,jµ

• Establishment at bin i: Bi,jλ

• Mobile death in bin i: Bi,jδ2

• Stationary death in bin i: Ai,jδ1

3. Sum all these propensities to give the quantity

α0 =
6K−2∑
α=1

pα.
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4. Compute the time of the next reaction, t+ τ , via

τ =
1

α0

ln

(
1

r1

)

5. Determine which reaction occurs by finding the first index, 1 ≤ α̂ ≤
6K − 2, such that

1

α0

α̂−1∑
α=1

pα < r2 ≤
1

α0

α̂∑
α=1

pα

6. Adjust the corresponding particle numbers,

• movement: Bi,j+1 = Bi,j − 1 and Bi+1,j+1 = Bi+1,j + 1 (similarly

with i− 1)

• shedding: Bi,j+1 = Bi,j + 1

• establishment: Bi,j+1 = Bi,j − 1 and Ai,j+1 = Ai,j + 1

• mobile death: Bi,j+1 = Bi,j − 1

• stationary death: Ai,j+1 = Ai,j − 1

7. Repeat for timestep j + 1.

We note that in our setup, with only a single stationary cell at the origin,

the initial value of α0 will be relatively small, resulting in a comparatively large

timestep τ . However, as the simulation progresses, the number of particles in

the system increases, and correspondingly, the value of α0 will also increase,

resulting in progressively smaller timesteps. Compared to ‘standard’ stochastic

simulations — using an equally spaced grid for the entire simulation and first

determining at each timestep if a reaction will even occur — this adaptive

approach allows for accuracy over the course of the entire simulation without

excessive precision at early times.
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2.3.2 Application: Disease Spread

Because of the scarcity of quantitative data for metastatic cancer in humans,

the majority of the values discussed below have come from experimental mod-

els of metastasis in mice. Many of the studies mentioned below follow a simi-

lar procedure (those in [15, 49, 97, 126] for example), and we provide a brief

outline of their methods. Tumor-free mice are injected with radio-labeled can-

cer cells (B16 melanoma [49], M19 Fibrosarcoma [126], B16F1(0) melanoma

[15, 97]), and observed and/or sacrificed at various time points ranging from

1 minute to 14 day post-injection. Organs of interest (multiple organs [49],

lungs [15, 126], and liver [97]) are removed and analyzed for the number and

location of cancer cells, cancer cell clusters, and metastases. In addition to the

radio-labeled cancer cells, the Chambers group [15, 97] injected inert micro-

spheres that become lodged within the microvasculature of the target organ

in order to accurately determine the change in cell numbers over time. Details

of specific experimental models can be found in the cited references.

In order to apply our model to the metastatic dissemination of cancer,

we must first carefully define what is meant by ‘stationary’ and ‘mobile’ par-

ticles in this context. ‘Stationary’ particles will play the role of established

tumors capable of shedding mobile particles without exhausting themselves.

‘Mobile particles’, therefore, will represent small clusters of individual cancer

cells that are actively circulating through the vasculature. This interpretation

necessitates different scales for the two classes of particles, with established

tumors consisting of at least 108 cells — corresponding to a tumor volume of

approximately 1cm3 [29] — and CTCs consisting of anything between a single

cell to several dozen [51]. Such a distinction requires careful attention when

parameterizing the model. Below we discuss our approach to address this

concern.

First we consider the shedding rate, µ. Assuming that an established tu-

mor consists of 108 cells [29] and that the number of CTCs shed per day range

between 0.0001% − 0.01% of the cells available within the established tumor

[137], we may choose µ ∈ [100, 10000] cells per day. For the simulations pre-

sented herein, we chose µ = 346 cells/day. This choice was made in order to
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have an average of 10 established tumors by the end of 14 days [126] (deter-

mined using the asymptotic expected ratio of moving to stationary particles

from the comment after Lemma 2).

Parameter Description Value Units References

µ Shedding rate 346 cells/day [29]; [137]
λ Establishment rate 0.0035 tumors/day [97]
δ1 Mobile death rate 7 cells/day [19]; [49]; [93]
δ2 Stationary death rate 3.46× 10−8 tumors/day [79]

Table 2.2: Model Parameters and the values used in presented simulations. The
units can also be interpreted as simply ‘particles/day’, where it is understood that
the meaning of ‘particles’ can be either an established tumor or a CTC. See text for
further details.

Second, we estimate the stationary particle death rate, δ2. With the inter-

pretation of a stationary particle as an established tumor, δ2 corresponds to

the rate of spontaneous tumor remission. We use Jessy’s estimate of p = 10−5

[79] for the probability of spontaneous remission and assume that p = δ2/λ to

obtain the value of δ2 reported in Table 2.2.

Third, we consider the rate of mobile particle settlement, λ. Experimental

murine models of metastasis suggest that nearly 80% of the CTCs shed from

the primary tumor into the vasculature will survive through the circulation

and successfully extravasate at a secondary site [15, 97]. For the purposes of

our model however, successful extravasation alone does not represent ‘settle-

ment’. Indeed, because of the property that ‘settled’ particles are immediately

capable of shedding mobile particles at the same rate as the original stationary

particle, ‘settlement’ in our model includes not only successful extravasation

at a secondary site, but survival and growth to a palpable secondary tumor as

well. For this reason, we use the more suggestive terminology ‘establishment’

instead of ‘settlement’. Moreover, we assume that the establishment rate, λ,

is related to the shedding rate, µ, via λ = µq where q denotes the probability

(per cell) of establishment. The probability q has been estimated by several

investigators to range between 0.0001 and 0.00001 [19, 49, 97, 126]. In the

results presented below, we have used the lower estimate of q = 0.00001 [97].
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Figure 2.2: Total number of particles (stationary and mobile) as a function of
time. Comparison of the theoretical expected value from Theorem 3 (black) and
the average of 2250 realizations of the stochastic model (blue). Parameters as in
Table 2.2. Taken from [50].

Finally, we require an estimate for the mobile particle death rate, δ1. While

approximately 80% of cancer cells released into circulation will survive in the

vasculature and successfully extravasate at a secondary location [15, 97], the

fraction of these extravasated cells that will grow and form a metastasis is

very small [15]. Consequently, our estimate for the mobile particle death

rate must also include the death rate of successfully extravasated cells that

do not become metastases, and will be much larger than if we included only

deaths during transit. Additionally, the time that circulating cancer cells

spend traveling through the circulation has been estimated to be between 1

and 3 hours [97, 126]. Therefore, assuming that ‘mobile particle’ means ‘CTC’,

we expect these particles to be short-lived. Combining these observations, and

based on previous results [19, 49, 93], we chose to have 99.9% of all the cells

that are shed over the course of a day perish that day. Under this assumption,

the mobile death rate becomes δ1 = 7 cells/day.

The implemented algorithm assumes a finite spatial domain, whereas the

theoretical work presented in the previous sections does not. In order to sim-

ulate an infinite domain, we have chosen the finite domain to be sufficiently

large so that there are no collisions between our mobile particles and the do-
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main boundaries within the time of interest. For the simulations presented

here (using diffusion coefficient of D = 19cm2/day; see [126]), it was sufficient

to consider the spatial domain [−75cm, 75cm] divided into K = 1500 bins each

of width 0.1cm. In Figures 2.2–2.4, we present the average results of 2250 dis-

tinct realizations of the stochastic model simulated over a period of 14 days.

None of these realizations had particle-boundary collisions or complete disease

extinction.

Theorem 3 provides an exact description of the expected number of par-

ticles as a function of time. We have therefore used this description to verify

the accuracy of our numerical implementation of the model. Figure 2.2 shows

a comparison between the exact dynamics from Theorem 3 (black curve) and

the average dynamics over 2250 individual realizations of the stochastic model

(blue curve). The average percent error over the 14 days simulated is 0.62%,

with a maximum value of 1.86%.

While the simulations all begin with a single stationary particle, the ex-

pected number of particles increases to approximately 50 within the first day.

This rapid increase is due to the relatively high shedding rate, resulting in the

rapid creation of mobile particles. The slow-down upon reaching 50 particles

reflects the expected asymptotic ratio of moving to stationary particles (com-

ment after Lemma 2) which is approximately 48 with the parameters from

Table 2.2. With the metastatic reproduction number R0 ≈ 5.0× 106 � 1, we

expect the total particle number to grow exponentially at rate

α+ ≈ 0.167 (Corollary 1). After an initial period of transience, we do see

exponential growth, both in the exact and simulated results.

Figure 2.3 illustrates the average spatio-temporal dynamics of the stochas-

tic model. The left column presents the full spatio-temporal dynamics of the

stationary (top) and mobile (bottom) particles, while the right column shows

the spatial distribution of the stationary (top) and mobile (bottom) parti-

cles at time t = 14 days. In no individual simulation did we see the original

established tumor perish. This result is not unexpected given the probabil-

ity of a tumor perishing over the 14 days considered in our simulations is

1− exp(−14δ2) = 4.48× 10−7. Consequently, we always have at least one sta-

tionary particle located at position x = 0. This explains both the horizontal
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Figure 2.3: Average results of 2250 individual realizations of the stochastic model.
Left column: spatio-temporal dynamics of the stationary (top) and mobile (bottom)
particles. The horizontal axis is time (in days) while the vertical axis denotes space
(in cm from location of primary tumor). Number of particles indicated by the
coloring. Note the different scales in the top plot. Right column: average spatial
distribution of the stationary (top) and mobile (bottom) particles at the end of the
14 day simulations. Note the difference in scales from top to bottom. Parameters
used as in Table 2.2. Taken from [50].

line in the top left plot (note the difference in scales), as well as the tall bar at

the origin in the top right plot. The histograms on the right side of Figure 2.3

show relatively symmetric distributions of both stationary and mobile parti-

cles centered around the origin. While the individual location of each particle

is given by a normal distribution as a result of the Brownian dynamics, the

distribution of the aggregate particles (both stationary and mobile) is not nor-

mal (see Figure 2.5). The reason is that shedding, settlement and death cause

additional randomness. Even when λ = 0 (no settlement) and δ1 = δ2 = 0

(no deaths) so that only one stationary particle sheds moving particles, the

distribution of the aggregate moving particles will not be normal. This can be

seen from (2.1), which becomes Ft = µG, hence the density of the aggregate

moving particles in this case is an integral of normal densities and not a normal

46



Figure 2.4: Manipulation of the plots from the left column of Figure 2.3 showing
the areas that may be significantly affected by the primary tumor and its metastatic
spread. More specifically, areas that have, on average, at least 0.025 particles over all
2250 simulations are colored white. Areas in which this is not the case are colored
black. The top shows results for stationary particles, and the bottom for mobile
particles. Taken from [50].

density itself.

In order to more clearly see the interface between empty space and invading

cancer cells, we have taken the data in the left column of Figure 2.3, and

simplified them to be either 1 if there was, on average, at least 0.025 particles

in that location across all 2250 simulations, or 0 otherwise. The results of

this simplification are presented in Figure 2.4. We can see that for stationary

particles, it takes close to four days before we see any significant establishment

events. This result closely mirrors the observations made by [15] and the results

in [95, 93] that no metastases established in the first four days post-injection.

Following a rapid initial jump, the mobile particle boundary appears to

invade at a more or less constant speed. These mobile ‘boundary’ dynamics
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Figure 2.5: Gaussian and Laplacian fits to final time distributions of stationary
particles (top) and mobile particles (bottom). We have subtracted 1 from the centre
bin in the case of stationary particles for clarity of presentation.

(Figure 2.4) are in stark contrast with the ‘interior’ dynamics (bottom left in

Figure 2.3, in particular, the blue-teal interface) where the level sets form tri-

angular regions with edges whose slopes are increasing as we advance through

time.
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2.3.3 Application: Experimental Metastasis

The computational framework developed above can be readily modified to

simulate the ‘experimental metastasis assays’ outlined in the previous section.

Here we present new material which is not in [50] in which we compare our

model simulation output to the data from Cameron et al. [15]. In what fol-

lows, we will describe the data used for our results, explain the modifications

required from our previous description in order to accurately model the data,

describe the process of parameter estimation, and present the simulation re-

sults.

In [15, 97], Chambers and collaborators develop a model of experimental

metastasis designed to interogate the efficiency of metastatic dissemination

and establishment. We describe the work in [15] as it is what we use as com-

parison for our model, but similar techniques were performed in [97]. Mice

were injected with a suspension of 2.5× 105 fluorescently labeled cancer cells

(B16F10 melanoma) and 5× 104microspheres (cells:microsphers = 5:1), and

metastases were counted in the lungs. The microspheres were used in order

to obtain an accurate count of the surviving cancer cells after the mouse was

sacrificed. Because of their size and material the microspheres travel through

the vasculature and become lodged permanently within the lung microvascu-

lature. The known ratio cells:microspheres at the time of injection allows for

accurate calculation of the percentage of injected cells that remain at later

times. We compare our model to these particular results.

Parameter Description Value Units References

µ Shedding rate 0 cells/day
λ Settlement rate 3.7 cells/day [15, 97]
δ1 Mobile death rate 0.9 cells/day [15, 97]
δ2 Stationary death rate 0.136 cells/day [15, 97]

Table 2.3: Model Parameters and the values used in presented simulations.

It is clear from the experimental set up that we require a slightly different

interpretation of the stochastic model components compared to the previous

section. First, we assumed that a ‘stationary particle’ is a fully developed tu-
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Figure 2.6: Comparison of Cameron data [15] (red) to model predictions averaged
over 1000 simulations (blue). A: Percent injected cells remaining at discrete time
points, chosen to compare with Figure 2 in [15]. Means and standard deviations
presented. B: Continuous time predictions of the model compared to Cameron
data. Blue line and shaded region denote mean and standard deviation respectively.

mor, capable of shedding individual/small clusters of cells without exhausting

itself. In order to compare our model to the data from [15] we must change

what we mean by ‘stationary particle’ to ‘individual cancer cells that have ex-

travasated from the bloodstream’ instead. This forces different interpretations

of the model parameters: λ is now a ‘settlement’ or ‘extravasation’ rate, and

δ2 is no longer a rate of spontaneous tumor remission, but the rate individ-

ual extravasated tumor cells perish. Further, with ‘stationary particles’ being

nothing more than individual cells, a shedding event results in both an increase

in mobile cells and a corresponding decrease in stationary cells. While this is

certainly a possibility, we will assume that such events are sufficiently rare to

be neglected (i.e. that µ = 0). Second, instead of beginning with a single

stationary cell — representing a primary tumor — we begin with a large

number of mobile particles — representing the injection of cancer cells into

the vascular system. This difference is easily accounted for in the simulation,

but it does affect some of the aruments used to obtain the analytical results

summarized in Section 2.2. Consequently, we only consider the output of the

simulations against the Cameron data, and not against any ‘exact’ solutions.

Because of these new interpretations, we require new parameter estimates

compared to the previous values given in Table 2.2. In [97], the authors re-
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Figure 2.7: Mean percentage of remaining cells, averaged over 1000 simulations.
Bars split into two cell populations: mobile cells (yellow) and stationary cells (blue).

port that the majority of injected cells remained in the vasculature at the

90 minute mark post-injection, but by 3 days post-injection the opposite was

true. Similarly, Sindelar et al. [126] reported that the mean time spent circu-

lating through the vasculature was around 3 hours. Based on these findings,

we assume that 99% of the injected cells will have left the vasculature — via

death within the bloodstream or extravasation into surrounding tissues — 1

day post-injection. Cameron’s data suggest that approximately 80% of the in-

jected cells will successfully extravasate, while the remaining 20% died within

the vasculature during transit. Combining these assumptions, we arrive at the

estimates λ = 3.7 cells/day and δ1 = 0.9 cells/day. In order to estimate the

death rate of ‘stationary’ cells, we determine the average loss rate between

days 1 and 13 in the Cameron data [15], which gives us δ2 = 0.136 cells/day.

These estimates are summarized in Table 2.3.

The plots in Figures 2.6 and 2.7 are the results of 1000 individual real-

izations of the stochastic model using the parameters reported in Table 2.3.

Figure 2.6 A is a direct comparison to Figure 2 in [15], with the experimental

data in red and the numerical data in blue. Means and standard deviations

are presented for both data sets. We see reasonable agreement between the
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biological and numerical experiments for most of the data points except for

those reported on days 3 and 4. This discrepency is better seen in Figure 2.6

B, which shows the continuous simulation results (mean ± standard deviation)

together with Cameron’s discrete data.

The results from the simulation can be split into two phases, characterized

by the composition of the total population of cells (Figure 2.7). Initially, all

the cells are mobile cells, which perish at a much higher rate than stationary

cells (Table 2.3) resulting in an early, rapid decrease in cell number. However,

within 1 day the vast majority of injected cells have extravasated from the

blood stream (Figure 2.7). With this change in population composition, we

see a corresponding decrease in the magnitude of the slope occuring around

day 1 in Figure 2.6 B. Because our calibrated model is able to track the relative

proportions of moving and stationary cells, we are able to confirm that our

model can reproduce the dynamics observed between these two populations

and allows us to conclude that an additional process not included in our model

must be responsible for the drop observed in Figure 2.6.

2.4 Discussion

In this chapter we introduced a branching stochastic process with settlement,

summarized a number of analytical results, and applied the model to metastatic

cancer growth. From a probabilistic viewpoint, our model generalizes branch-

ing Brownian motion to arbitrary dynamics and the inclusion of settlement and

death of particles. Branching Brownian motion has been analyzed for more

than fifty years, starting with seminal work [76, 99] on the fundamental link

between branching Brownian motion and the Fisher-Kolmogorov-Petrovsky-

Piscounov equation. Since then branching Brownian motion has been inten-

sively studied in its own right. In statistical mechanics, branching Brownian

motion is used for models of spin glasses [13]. Recently, branching processes

have been found useful in simulating semi-linear partial differential equations

[70, 71]. To the best of our knowledge, these are the first results concerning

branching processes with settlement and their applications in the context of
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cancer metastasis.

The fact that the expected number F of particles, the variance V , the dis-

tribution H of the furthest particle and the extinction probability Q satisfy the

same type of integro-differential equation with distributed delay (2.5) reveals

the recursive structure of this process. Methods from differential equations

theory become available to analyze the qualitative behavior of this stochastic

process. A recurring quantity was identified to play the role of a basic repro-

ductive number, similar to epidemic models [72], which we call the metastatic

reproductive number

R0 =
λ

δ1 + λ

µ

δ2

.

For the mouse data that we analyzed as an example, we found R0 ∼ 106,

which, of course, is huge. This is expected, as cell lines for metastasis studies

are chosen specifically to generate metastases efficiently and reliably.

The value of R0 for a typical human cancer will be quite different, and we

leave a detailed estimate of R0 for human cancers for further studies. Still,

we can already see the impact of various possible treatment strategies. To

shrink R0, we like to reduce the shedding rate µ and the settlement rate λ

while increasing the death rates δ1 and δ2 for moving and stationary particles,

respectively. For example, the death rate δ1 for CTCs could be increased

through platelet inhibitors. Platelets are known to shield cancer cells from the

immune surveillance, and less platelets can make cancer cells more exposed

and more vulnerable [26, 119, 124]. The settlement rate λ might be reduced

through decreasing the availability of metastatic niches [119]. This can be

achieved through very simple means such as reduced pH-levels of tissue [125]

to very advanced means such as novel immunotherapies designed to disrupt

the preparation of the pre-metastatic niche [84]. However, removing 90% of

cancer sites would not change the final outcome since the reproductive number

is unchanged. A partial removal would significantly delay cancer spread, but

metastasis would recur over time. Overall, the index R0 has the potential to

become a useful quantity in treatment planning.

While the population compositions from the simulations in Section 2.3.3

53



reasonably match those reported in the litterature [15, 97, 126], the discrepency

observed in Figure 2.6 B may suggest there are additional factors contributing

to the dynamics observed by Cameron than are accounted for in our model.

Cameron suggests that this rapid drop in cell count between days 3 and 4

are a result of quiescent cells becoming active. The authors demonstrate that

newly extravasated cells are quiescent — and therefore relatively resistant to

cell death — and they appear to become active — and therefore relatively

sensitive to cell death — around the time this large drop was observed. As

we’ve noted before, the lack of growth dynamics in our model prevents us from

confirming or denying this explanation, but we are able to note that without

including the difference between quiescent and proliferating cells we were un-

able to accurately reproduce this sudden drop in cell numbers, suggesting that

there is something else required in the model to capture these dynamics.

We see various extensions and limitations of the model as we discuss now.

1. In Sections 2.2 and 2.3.2 we started with a stationary individual, but

in Section 2.3.3 we started with mobile particles. While this was easy

to simulate, the analysis of the system beginning with mobile particles

would be more difficult. Furthermore, if we know the function F of

our model, we can find the corresponding function F̃ in a model with

randomly moving first particle by

F̃ (t, x) = E

[
N(t−min{τ,t})∑

i=1

1Xi(t−min{τ,t})+B(min{τ,t})≤x

]

=

∫ t

0

E

[
N(t−s)∑
i=1

1Xi(t−s)+B(s)≤x

]
λe−λse−δ1s ds+

∫ ∞
t

P [B(t) ≤ x]λe−λse−δ1t ds

=

∫ t

0

∫ ∞
−∞

F (t− s, x− y)g(s, y)λe−(λ+δ1)s dy ds+G(t, x)e−(λ+δ1)t,

where B(min{τ, .}) is a random process describing the movement of the

first particle up to time τ , and the factor e−δ1s is the survival probability

of the first particle at time s.

2. In order to circumvent the issues with ‘scale’ discussed in Section 2.3.2,
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and the poor fit to the data from days 3 and 4 in Section 2.3.3, additional

elements may need to be incorporated into the model. In particular, the

inclusion of growth dynamics of stationary cells would be of particular

value. Indeed, accounting for the growth of settled cells would allow

us to avoid the need for distinguishing between particles as ‘cells’ and

as ‘tumors’. Additionally, including ‘proliferating’ and ‘quiescent’ cells

may be sufficient to capture the precipitous drop in cell count observed

in Figure 2.6. This addition is left as future research.

3. The spatial transport and settlement of a real cancer in a human body

is much more complicated than assumed in our example. Here, as an

example, we considered Brownian motion as spatial process and a ho-

mogeneous settlement rate, λ. However, our framework is based on a

general spatial process, (B(t))t≥0, whose distribution could reflect more

realistic body-wide properties. Such a specification is a complex issue

and left for future research.

4. It is well known that certain tumors tend to metastasize to certain or-

gans, for example prostate cancer preferentially metastasizes to the bone,

and breast tumors often spread to the brain, bone, liver, and lungs [19].

In this case, the settlement rate, λ, is no longer homogenous, rather it de-

pends on the location x. Moreover, this spatial dependency encodes the

locations of pre-metastatic niches [84]. However, the branching stochas-

tic process with settlement would then lose its recursive nature, which

was crucial in the proofs of our results. Consequently, additional work

must be completed before this intricacy can be included into future it-

erations of the model.
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Chapter 3

A Deterministic Model for

Cancer Metastasis: Two Sites

In this chapter we investigate the implications of the immune-mediated the-

ory of metastasis (see Section 1.1.2) using an ODE model of cancer-immune

dynamics at two anatomically distant sites. In Section 3.1 a brief summary of

tumor-immune modeling is provided before developing our model. The steady

states of the model and conditions necessary for disease extinction are deter-

mined in Section 3.2. We discuss the process of parameterizing the model in

Section 3.3 with numerical results presented in Section 3.4, including simula-

tions of treatements. Model simulations suggest that the presence of a pro-

tumor immune population can not only limit the effectiveness of immunother-

apies, but potentially render such therapies harmful. It is also shown that

an injury at a distant site can inhibit or promote the growth of a metastatic

tumor at that site, depending on timing of the injury relative to disease pro-

gression. We conclude this chapter with a discussion of the results and their

implications in Section 3.5.

3.1 The Model

In order to provide context for our model, this section begins by highlighting a

number of models from the literature used to investigate the interplay between
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tumor and immune cells. We then develop our model in addition to introducing

the functional coefficients chosen for the numerical simulations presented in

Section 3.4.

A review of the current questions, models, and methods being used to in-

vestigate the dynamics of tumor-immune interactions are presented in [43, 44].

In what follows we describe only those approaches that are directly relevant to

our model, with interested readers referred to the reviews [43, 44] for further

discussion. A key model of tumor-immune dynamics is the model of Kuznetsov

[91]. In 1994, Kuznetsov proposed an ODE model of tumor-immune reactions

including tumor cells and effector immune cells, which was analyzed and ef-

fectively applied to experimental data [91]. It was found that this simple

model could accurately describe observed dynamics including oscillations in

tumor size, reminiscent of spontaneous remission and relapse in leukemia cell

lines, and tumor escape from immune surveillance after growing sufficiently

large. A subsequent paper [90] saw the addition of a second tumor cell type

whose dynamics were not influenced by the effector immune cells. Due to

its simplicity and its success in accurately describing observed tumor-immune

dynamics, Kuznetsov’s model has been adapted and included in several other

models of tumor-immune interactions, including the work of the Enderling

group [115, 116, 135, 134] and the current thesis.

While there are models developed that include both anti- and pro-tumor

immune effects ([34] and [138] for example), such approaches are relatively

new, with the vast majority of the research considering only the cytotoxic ef-

fect of immune cells. For instance, de Pillis [28] has been actively researching

tumor-immune dynamics mathematically for years, with a particular focus on

the development of effective therapies through the use of optimal control the-

ory. In de Pillis [28], a 4 compartment ODE model — including equations for

tumor cells, effector immune cells, circulating lymphocytes, and a chemothera-

peutic agent — is considered. The purpose of including a circulating lympho-

cyte population is to provide some realistic restraints on the optimal control

problem, viewing this population as an indicator of patient health. Without

the chemotherapeutic agent, the basic Kuznetsov model is recovered. Simi-

larly, the 5 compartment ODE model for cancer immuno-therapy presented in
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[16] is an extension of the original Kuznetsov model, with only cytotoxic CD8

T cells playing any direct role on the tumor population. In both [28] and [16],

the contradictory effects of the immune response to cancer (as highlighted in

Section 1.1.2) are neglected.

Our goal with this chapter is to develop a model of tumor-immune interac-

tions that accounts for the contradictory roles of the immune system not only

on the development of a primary tumor, but on the dynamics of metastatic

dissemination as well. To begin, we assume that there are two sites of interest:

a primary site, where the initial tumor is located, and a secondary site, where

a metastasis will develop. In our model, we include only a single secondary

‘site’, but this could also be interpreted as total metastatic burden assuming

homogeneity between the sites and choosing an appropriate growth function.

In the current work, however, we assume simply that the secondary site is a

single location where a single metastatic tumor establishes. While we consider

only two sites, our framework could easily be extended to multiple sites with

careful modeling of the flow between the sites, using an approach similar to

the Enderling group [115] using network modeling as in [85].

At both the primary site and the secondary site (i = 1 and 2, respectively),

we model the behavior of 4 different quantities: the number of tumor cells,

ui(t), the number of necrotic cells, vi(t), the number of cytotoxic (CT) immune

cells, xi(t), and the number of tumor-educated (TE) immune cells, yi(t). A car-

toon version of the model is presented in Figure 3.1. Because we are interested

in modeling metastatic spread, we assume that the ‘tumor cells’ described by

ui are tumorigenic and therefore capable of establishing a secondary tumor in

ideal conditions. Another way of describing the population of cells in ui could

be as CSCs or as cells with the ‘metastatic phenotype’. While the identity of

the cells capable of metastasizing is still an active area of research (see Section

1.2.1 for example), herein we assume that a fraction of the cells within the

tumor can metastasize. We now detail the specific assumptions for each of the

quantities described above.
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CT Immune Cell
TE Immune Cell

Figure 3.1: Cartoon model of the 8 ODE model of metastasis (3.6). Arrows
indicate positive effects, and flat ends indicate inhibitory effects. Solid lines represent
direct effects and dashed lines denote indirect influence. See text for details.

Tumor Cells

At both the primary and secondary sites we include immune-influenced birth-

death dynamics, together with shedding from the primary site and establish-

ment of shed cells at the secondary site. Both sites include an intrinsic growth

function, g1,2, which is a decreasing function of the tumor population, u1,2.

Tumor growth can be supported by the activity of TE immune cells which can

supply the local microenvironment with growth and pro-angiogenic factors

(Section 1.1.1). We model the TE immune cell enhancement of tumor growth

with ‘enhancement ’ functions, γ1,2(y1,2), which we assume are increasing func-

tions in y1,2. Under the assumption that tumors grow at their intrinsic growth

rates without any growth enhancement in the absence of TE immune cells (i.e.

y1,2 = 0), we fix γ1,2(0) = 1. We assume further that the functions γ1,2(y1,2)

are bounded in their arguments, corresponding to the assumption that the

enhancement effect of TE immune cells on tumor growth rate saturates.

Also included is immune-influenced tumor cell death at both sites. Tu-
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mor cell death increases as a function of the CT immune cell population and

decreases as a result of the protective effects of TE immune cells (which can

act as immunosuppressive Tregs, for example). Therefore, we assume that

the tumor cell death rates, σ1,2(x1,2, y1,2), are increasing in CT immune cells,

x1,2, and decreasing in TE immune cells, y1,2. As in the case of tumor growth

rates, we assume that the death rates are bounded both above and below for

non-negative arguments.

Finally, terms are included for shedding of circulating tumor cells (CTCs)

by the primary tumor and arrival of CTCs to the secondary site. We first

note that the effects of metastatic ‘re-seeding’ are not included. That is, we

assume that the secondary tumor does not shed cells that could travel to

the primary site. Inclusion of such effects in models of metastatis have been

done before [67] with little effect on the model outcomes, thereby justifying

our modeling choice to neglect the effects of ‘re-seeding’. In line with other

models of metastasis [62], we assume that shedding of CTCs is proportional

to the primary tumor size and occurs at a constant rate, s1 > 0. Combining

the above assumptions we arrive at the equation governing the primary tumor

dynamics,
du1

dt
= γ1(y1)g1(u1)u1︸ ︷︷ ︸

growth

−σ1(x1, y1)u1︸ ︷︷ ︸
death

− s1u1︸︷︷︸
shedding

. (3.1)

To complete the description of tumor dynamics at the secondary site, we must

model the establishment of CTCs at that location. In order to investigate

the implications of the theory of immune-mediated metastasis [124], it is as-

sumed that secondary establishment depends on CT and TE immune cells

and the number of necrotic cells present at the secondary location. Denote

by est(v2, x2, y2) the establishment rate at the secondary site. Much like

in the case of the tumor cell death rates discussed above, we assume that

est(v2, x2, y2) is decreasing in the CT immune population at the secondary

site, x2, and increasing in the TE immune population at the secondary site,

y2. Shahriyari hypothesizes that the presence of an injury or wound at a dis-

tant site can act as a supportive PMN for CTCs [124]. Therefore, we assume

that est(v2, x2, y2) is an increasing function of the necrotic cells at the sec-
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ondary site, v2. In the absence of necrotic cells, we assume a small, positive

establishment rate to reflect the fact that not all metastases occur as a result

of the process outlined by the immune-mediated theory of metastasis. It is also

assumed that the effect of necrotic cells on the establishment rate saturates.

Implicitly included in this formulation is the proportion of shed cells, s1u1,

that successfully extravasate at the secondary site and begin to proliferate, so

we require 0 ≤ est(v2, x2, y2) ≤ 1. Combining all of the above observations and

assumptions leads us to the following equation for the tumor cell dynamics at

the secondary site:

du2

dt
= γ2(y2)g2(u2)u2︸ ︷︷ ︸

growth

−σ2(x2, y2)u2︸ ︷︷ ︸
death

+ est(v2, y2, x2)s1u1︸ ︷︷ ︸
establishment

. (3.2)

Necrotic Cells

Necrotic cells arise at site i = 1, 2 as a result of tumor cells perishing at the rate

σi(xi, yi), and are cleared away by cell lysis at the rate µi. As mentioned previ-

ously, we assume that the population of tumor cells included in the quantities

ui consists of the fraction of the total tumor population that is tumorigenic,

and thus capable of successfully seeding secondary metastases. However, all

cells within the total tumor population — tumorigenic or not — are capable

of perishing and contributing to the population of necrotic cells. Therefore, we

include a scaling constant, θ1,2 ≥ 1, to account for this modeling assumption.

The equations governing the dynamics of the necrotic cell population are given

by
dvi
dt

= θiσi(xi, yi)ui︸ ︷︷ ︸
dying cells

− µivi︸︷︷︸
lysis

, (3.3)

with i = 1, 2.

CT Immune Cells

The skeleton of the equations for the CT immune cell populations (dynamics

are assumed the same at both sites) is borrowed from Kuznetsov [90, 91] with a

few key additions. As in the Kuznetsov model, we include a natural influx rate,
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αi, a decay term where decay occurs at rate ωi, and a loss term corresponding

to fatal interactions with the tumor cells, occuring at rate ρi. Kuznetsov’s

model included a term to account for tumor-mediated expansion of the CT

immune population, but we modify this term to also include immune recruit-

ment due to necrotic cells. We assume that CT immune recruitment occurs at

rate λi(ui, vi), where λi is an increasing function in each of its arguments, and

is bounded above and below for non-negative arguments. Finally, we assume

that a tumor can ‘educate’ a CT immune cell, causing a phenotypic change

and resulting in an immunosuppressive TE immune cell [107, 124]. While

the exact mechanism responsible for this phenotypic plasticity is unknown,

it will be assumed that the ‘education’ rate of CT immune cells by tumor

cells is an increasing function of the tumor size, edi(ui), with the property

that edi(0) = 0. Summarizing the above, we arrive at the following equations

governing the CT immune cell populations at sites i = 1, 2:

dxi
dt

= αi︸︷︷︸
natural influx

+λi(ui, vi)xi︸ ︷︷ ︸
growth

− ρiuixi︸ ︷︷ ︸
interaction with tumor

− ωixi︸︷︷︸
natrual death rate

− edi(ui)xi︸ ︷︷ ︸
tumor education

.

(3.4)

TE Immune Cells

Finally, the dynamics of the TE immune cells are considered. We first describe

the TE immune dynamics at the primary site. In the absence of a primary

tumor, no tumor education can occur therefore there will be no TE immune

cells. Once a tumor establishes at the primary site, however, education of CT

immune cells can occur. With the first ‘graduating class’ and the development

of a positive TE immune cell population at the primary site, the TE immune

population can grow further under the influence of the primary tumor at rate

f1(u1) — which we take to be a bounded, increasing function of primary tumor

size u1. The TE immune population can also shrink due to natural death, at

rate τ1, and shedding from the primary site into the surrounding vasculature,

at rate s̃1. A fraction, p, of these disseminated TE immune cells will arrive

at the secondary site, allowing for the development of a TE immune popula-

tion at the secondary site, even in the absence of a secondary tumor. Once
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a secondary tumor has established, we assume dynamics similar to the pri-

mary site, including tumor education, tumor-mediated expansion, and natural

death. The TE immune cell dynamics are captured in the equations

dy1

dt
= ed1(u1)x1︸ ︷︷ ︸

tumor education

− τ1y1︸︷︷︸
death

− s̃1y1︸︷︷︸
shedding

+ f1(u1)y1︸ ︷︷ ︸
tumor mediated expansion

,

dy2

dt
= ed2(u2)x2︸ ︷︷ ︸

tumor education

− τ2y2︸︷︷︸
death

+ ps̃1y1︸ ︷︷ ︸
arrival

+ f2(u2)y2︸ ︷︷ ︸
tumor mediated expansion

.

(3.5)

The Full Model

For clarity of presentation we now summarize the previous discussions by dis-

playing the full two-site, 8 equation model for immune-mediated metastasis.

Notational details and model assumptions can be found in the text above.

Functional coefficients used for numerical simulations presented in the follow-

ing sections are discussed below.

du1

dt
= γ1(y1)g1(u1)u1 − σ1(x1, y1)u1 − s1u1

dv1

dt
= θ1σ1(x1, y1)u1 − µ1v1

dx1

dt
= α1 + λ1(u1, v1)x1 − ρ1u1x1 − ω1x1 − ed1(u1)x1

dy1

dt
= ed1(u1)x1 − τ1y1 − s̃1y1 + f1(u1)y1

du2

dt
= γ2(y2)g2(u2)u2 − σ2(x2, y2)u2 + est(v2, y2, x2)s1u1

dv2

dt
= θ2σ2(x2, y2)u2 − µ2v2

dx2

dt
= α2 + λ2(u2, v2)x2 − ρ2u2x2 − ω2x2 − ed2(u2)x2

dy2

dt
= ed2(u2)x2 − τ2y2 + ps̃1y1 + f2(u2)y2

(3.6)

Functional Coefficients

While the framework we developed above is highly general and assumes very

little on the functional coefficients used, specific choices must be made in
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order to perform numerical simulations. Here we highlight the choices made

to obtain the plots presented below. For simplicity, the same functional forms

are used at both the primary and secondary sites, even if this may not be the

most accurate choice [67].

Tumor growth is assumed logistic,

gi(ui) = ri

(
1− ui

Ki

)
,

with intrinsic growth rate ri and carrying capacity Ki, i = 1, 2. This as-

sumption has been made by several other investigators [91, 115] because of its

simplicity and relative success at capturing observed dynamics. It has been

shown to be a reasonable model for the growth of a primary tumor, but it

does not perform as well as a model of secondary tumor growth [67].

Tumor-mediated expansion of the immune cell populations is modeled us-

ing Michaelis-Menten type equations with exponent 1 [91, 115]. For complete-

ness, we list the functions used below:

λi(ui, vi) =

(
a1iui
b1i + ui

)
+

(
a2ivi
b2i + vi

)
fi(ui) =

htiui
hbi + ui

.

(3.7)

We note that for the λi expression, even if one of either the tumor cell or

necrotic cell population has gone extinct, there is still CT immune recruitment

to the tumor environment given one of the populations is non zero.

Following the work of den Breems and Eftimie [34], we assume the education

of CT immune cells by tumor cells follows the law of mass action at both tumor

sites,

edi(ui) = χiui.

While the process of immune education is most likely much more intricate than

a simple mass action interaction term, the dynamics of this sub-process are

not the focus of this work and without any strong evidence supporting another

functional form, we have chosen the simplicity of mass action.
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Figure 3.2: tanh threshold function. With parameters from Table 3.1.

For many of the other saturating functions, we borrow the tanh switch-like

functions used in [108] because of their simple interpretation. The functions

include 4 parameters — a lower bound (m), an upper bound (m+M), an

activation threshold (A), and a saturation threshold (S). The role of each of

these parameters is outlined in Figure 3.2. We include two variants of the

function: one increasing in its argument (x),

ν(x;m,M,A, S) =

M

2

[
tanh

(
6

S − A

(
x− S + A

2

))
− tanh

(
−3(S + A)

S − A

)]
+m

(3.8)

which increases from m when x = 0 to m+M as x→∞, and one decreasing

in its argument,

ξ(x;m,M,A, S) =

M
(

1− tanh
(

6
S−A

(
x− S+A

2

))
+m

(
tanh

(
6

S−A

(
x− S+A

2

))
− tanh

(
−3(S+A)
S−A

)))
1− tanh

(
−3(S+A)
S−A

)
(3.9)
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which decreases from M when x = 0 to m as x→∞.

The tumor cell death rate functions, σ1,2, are increasing in CT immune cell

population, x1,2, and decreasing in the TE immune cell population, y1,2. In

the presented simulations, we have used

σi(xi, yi) = ξ(yi; 0, 1, upDi, lowDi)ν(xi;minCi,maxCi, upCi, lowCi)

for i = 1, 2.

For the TE immune cell enhancement of tumor growth, γ1,2(u1,2), similar

threshold dynamics are assumed: little to no enhancement for TE immune

populations below a certain threshold, rapid increase to saturation at levels

above another threshold, as above. Following the assumptions made on γi in

the previous sections, we choose

γi(ui) = ν(ui; 1,maxi, lowi, upi). (3.10)

Finally, we must determine a functional expression for the establishment

rate of CTCs at the secondary site, est(v2, x2, y2). Again, we will assume

threshold dynamics, this time in all three of the arguments. We also note

that the incidence of spontaneous malignancy in immune-deficient settings is

100−1000 times the incidence in immune-competent settings [56]. Therefore, a

constant, MER, is included to account for these observations. The functional

form used for the establishment rate in the simulations presented below is

est(v2, x2, y2) =ν(v2;minV,maxV, lowV, upV )

× ξ(x2; 0,MER, lowDest, upDest)

× ν(y2;minEst,maxEst, lowEst, upEst).

(3.11)

The time-dynamics of this establishment function for the parameters in Ta-

ble 3.1 are presented in Figure 3.3. In region 1, the high level of CT immune

cells at the secondary site provides a strong defence against metastatic estab-

lishment. However, as the CT immune population decreases, being replaced

with TE immune cells, the rate of metastatic establishment jumps significantly.

This is in line with the data from [56] mentioned above. As the number of
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Figure 3.3: Left: Secondary site dynamics with parameters in Table 3.1. Right:
The establishment rate at the secondary site as a function of time using the solutions
from the left plot. Region (1) is characterized by a strong population of CT immune
cells, resulting in a low rate of establishment. As the CT immune cell population
falls around t = 200, so does the establishment rate. A peak of necrotic cells occurs
at time (2), in which we can see a corresponding peak in the establishment rate.
Finally, in region (3), the CT immune cells have been ‘replaced’ with TE immune
cells, and we see a much higher rate of establishment.

necrotic cells at the secondary site peaks in region 2, we see a corresponding

peak in the estblishment rate. Finally, the higher level of TE immune cells in

region 3 explains the corresponding plateau in the establishment rate.

We have now introduced the full model as presented in the simulations in

Section 3.4. Parameter values used for the simulations can be found in Table

3.1. A discussion of the quality of these choices is presented in Section 3.5.

3.2 Analytical Results

In this section we present basic analysis of the model (3.6). We find the

model has three steady states: a disease-free steady state (DFSS), a metastasis

only steady state (MOSS), and a full disease steady state (FDSS). We discuss

the existence of the steady states, and determine conditions guaranteeing the

stability of the MOSS and the DFSS.
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3.2.1 Steady States

Setting the eight equations above (Equation 3.6) to zero, we find that our

model has three potential steady states. The first two arise from first assuming

that u1 = 0, followed by considering the cases when u2 = 0 and u2 6= 0. The

third steady state comes from assuming that u1 6= 0.

1. A disease-free steady state (DFSS), given by

(u1, v1, x1, y1, u2, v2, x2, y2) =

(
0, 0,

α1

ω1

, 0, 0, 0,
α2

ω2

, 0

)
. (3.12)

This state corresponds to a healthy individual. Both primary and sec-

ondary sites are cancer-free, and there is a non-zero immune presence

throughout the body. For the purposes of informing treatment deci-

sions, conditions for stability of this steady state are of interest, and are

presented in the following section. Figure 3.4 shows the model solution

when the DFSS is stable.

2. A metastatic-only steady state (MOSS), given by

(u1, v1, x1, y1, u2, v2, x2, y2) =

(
0, 0,

α1

ω1

, 0, u2, v2, x2, y2

)
, (3.13)

where the barred values (when they exist) are defined by the following

equations:

g2(u2) =
σ2(x2, y2)

γ2(y2)

v2 =
θ2

µ2

σ2(x2, y2)u2

x2 =
−α2

λ2(u2, v2)− ρ2u2 − ω2 − ed2(u2)

y2 =
ed2(u2)x2

τ2 − f2(u2)
.

(3.14)

Observe that γ1(y1) ≥ 1∀y1 ≥ 0, so the RHS of the first expression is

always well-defined. However, we note that the expressions for x2 and

y2 do not necessarily give non-negative values. In order for the model to
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Figure 3.4: Simulation of the model 3.6 with parameters in Table 3.1, with the
exception of s1 = 0.2, r1 = 0.475, and r2 = 0.2 chosen in order to have FDSS stable.

Initial conditions were
(

10, 0, α1
ω1
, 0, 0, 0, α2

ω2
, 0
)

.The dynamics at the primary site are

on the left, and the dynamics at the secondary site are on the right. Quantities
scaled in order to observe dynamics. Shown are: u1(t), v1(t)×10−3, x1(t) ·5×10−6,
y1(t)× 10−3, u2(t)× 1010, v2(t)× 107, x2(t) · 5× 10−6, y2(t)× 10−3.
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Figure 3.5: Simulation of the model 3.6 with parameters in Table 3.1, with the
exception of s1 = 0.2, and r1 = 0.475, chosen in order to have MOSS stable. Initial

conditions were
(

10, 0, α1
ω1
, 0, 0, 0, α2

ω2
, 0
)

.The dynamics at the primary site are on

the left, and the dynamics at the secondary site are on the right. Quantities scaled
in order to observe dynamics. Shown are: u1(t), v1(t) × 10−3, x1(t) · 5 × 10−6,
y1(t)× 10−3, u2(t), v2(t)× 102, x2(t)× 102, y2(t)× 103. Note the difference in scales
between the two sites.

remain biologically realistic, we must insist on non-negativity. Further,

assuming that our growth function, g2, is non-negative and decreasing

implies that for a solution to exist to the first equation in 3.14, we need

the RHS to lie in the range of g2. Both of these observations give rise to

assumptions which we discuss in greater detail below. Figure 3.5 shows

the model dynamics when the MOSS is stable.

3. A full-disease steady state (FDSS) given by

(u1, v1, x1, y1, u2, v2, x2, y2) = (ũ1, ṽ1, x̃1, ỹ1, ũ2, ṽ2, x̃2, ỹ2) (3.15)
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where the values on the RHS are defined by the following equations,

g1(ũ1) =
σ1(x̃1, ỹ1) + s1

γ1(ỹ1)

ṽ1 =
θ1

µ1

σ1(x̃1, ỹ1)ũ1

x̃1 =
−α1

λ1(ũ1, ṽ1)− ρ1ũ1 − ω1 − ed1(ũ1)

ỹ1 =
ed1(ũ1)x̃1

τ1 + s̃1 − f1(ũ1)

ũ2 =
est(ṽ2, ỹ2, x̃2)sũ1

σ2(x̃2, ỹ2)− γ2(ỹ2)g2(ũ2)

ṽ2 =
θ2

µ2

σ2(x̃2, ỹ2)ũ2

x̃2 =
−α2

λ2(ũ2, ṽ2)− ρ2ũ2 − ω2 − ed2(ũ2)

ỹ2 =
ed2(ũ2)x̃2 + ps̃1ỹ1

τ2 − f2(ũ2)
.

(3.16)

As in the case of the MOSS, in order for biologically relevant FDSS to

exist, a number of assumptions will need to be met. Non-negativity of

the immune steady states is again a concern, as are solutions to the

ũ1 equation and the implicit ũ2 equation. Figure 3.6 shows the model

dynamics when the FDSS is stable. In contrast to the two previous

figures, Figure 3.6 is presented with a log scale in order to capture the

model dynamics with small values.

Before we proceed any further, we make a brief note on the existence of

these steady states. It is unclear a priori that solutions to the expressions

above exist. Of particular relevance for the coming results is the question of

boundedness of the solutions to the immune cell populations. Indeed, because

the steady state expressions for each of x1,2 and y1,2 involves a denominator

that may change signs (have a root) in our domain of interest, we must be

careful to ensure that such a root does not occur, as that would result in

unbounded solutions. Based on the parameter estimates that we obtain in

Section 3.3, the denominator cannot be zero and unboundedness of solutions
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Figure 3.6: Simulation of the model 3.6 with parameters in Table 3.1. Initial

conditions were
(

1, 0, α1
ω1
, 0, 0, 0, α2

ω2
, 0
)

. The dynamics at the primary site are on the

left, and the dynamics at the secondary site are on the right.

is not an issue.

3.2.2 Stability Analysis

Because of its relevance to treatment, we now investigate the stability of the

DFSS as well as the MOSS. We find an explicit condition required for disease

eradication at both the primary and secondary sites.

Theorem 4. The DFSS, when it exists, is stable if and only if both

g1(0) < s1 + σ1

(
α1

ω1

, 0

)
and

g2(0) < σ2

(
α2

ω2

, 0

)
are satisfied.

Proof. Let J = (Ji,j) ∈ R8×8 denote the Jabobian matrix of the ODE system
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(3.6). Simple computations show us that

J =



J1,1 0 J1,3 J1,4 0 0 0 0

J2,1 J2,2 J2,3 J2,4 0 0 0 0

J3,1 J3,2 J3,3 0 0 0 0 0

J4,1 0 J4,3 J4,4 0 0 0 0

J5,1 0 0 0 J5,5 J5,6 J5,7 J5,8

0 0 0 0 J6,5 J6,6 J6,7 J6,8

0 0 0 0 J7,5 J7,6 J7,7 0

0 0 0 J8,4 J8,5 0 J8,7 J8,8


, (3.17)

where

• J1,1 = γ1(y1)g1(u1) + γ1(y1)g′1(u1)u1 − σ1(x1, y1)− s1,

• J1,3 = −u1∂x1σ1(x1, y1),

• J1,4 = γ′1(y1)g1(u1)u1 − u1∂y1σ1(x1, y1),

• J2,1 = θ1σ1(x1, y1),

• J2,2 = −µ1,

• J2,3 = θ1u1∂x1σ1(x1, y1),

• J2,4 = θ1u1∂y1σ1(x1, y1),

• J3,1 = (∂u1λ1(u1, v1)− ρ1 − ed′1(u1))x1,

• J3,2 = ∂v1λ1(u1, v1)x1,

• J3,3 = λ1(u1, v1)− ρ1u1 − ω1 − ed1(u1),

• J4,1 = ed′1(u1)x1 + f ′1(u1)y1,

• J4,3 = ed1(u1),

• J4,4 = −τ1 − s̃1 + f1(u1),

• J5,1 = s1est(v2, x2, y2),
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• J5,5 = γ2(y2)g2(u2) + γ2(y2)g′2(u2)u2 − σ2(x2, y2),

• J5,6 = s1u1∂v2est(v2, x2, y2),

• J5,7 = s1u1∂x2est(v2, x2, y2)− u2∂x2σ2(x2, y2),

• J5,8 = γ′2(y2)g2(u2)u2 + s1u1∂y2est(v2, x2, y2)− u2∂y2σ2(x2, y2),

• J6,5 = θ2σ2(x2, y2),

• J6,6 = −µ2,

• J6,7 = θ2u2∂x2σ2(x2, y2),

• J6,8 = θ2u2∂y2σ2(x2, y2),

• J7,5 = (∂u2λ2(u2, v2)− ρ2 − ed′2(u2))x2,

• J7,6 = ∂v2λ2(u2, v2)x2,

• J7,7 = λ2(u2, v2)− ρ2u2 − ω2 − ed2(u2),

• J8,4 = ps̃1,

• J8,5 = x2ed
′
2(u2) + y2f

′
2(u2),

• J8,7 = ed2(u2), and

• J8,8 = −τ2 + f2(u2).

We can also write J from (3.17) as a 2× 2 lower-triangular block matrix with

4× 4 blocks,

J =

[
J l 0

Jl Jr

]
,

meaning that the eigenvalues of J are simply the eigenvalues of the diagonal

blocks, J l and Jr. In order to determine the stability of the DFSS (3.12), we

note that, evaluated at the DFSS, the following entries are 0:

• J1,3 = −0 · ∂x1σ1

(
α1

ω1
, 0
)

= 0,
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• J1,4 = 0 ·
(
γ′1(0)g1(0)− ∂y1σ1

(
α1

ω1
, 0
))

= 0,

• J2,3 = 0 · θ1∂x1σ1

(
α1

ω1
, 0
)

= 0,

• J2,4 = 0 · θ1∂y1σ1

(
α1

ω1
, 0
)

= 0,

• J5,6 = 0 · s1∂v2est
(

0, α2

ω2
, 0
)

= 0,

• J5,7 = 0 · s1∂x2est
(

0, α2

ω2
, 0
)
− 0 · ∂x2σ2

(
α2

ω2
, 0
)

= 0,

• J5,8 = γ′2(0)g2(0) · 0 + 0 · s1∂y2est
(

0, α2

ω2
, 0
)
− 0 · ∂y2σ2

(
α2

ω2
, 0
)

= 0,

• J6,7 = 0 · θ2∂x2σ2

(
α2

ω2
, 0
)

= 0, and

• J6,8 = 0 · θ2∂y2σ2

(
α2

ω2
, 0
)

= 0.

Therefore, both J l and Jr are lower triangular, and thus their eigenvalues (and

so the eigenvalues of J) are the diagonal entries. Again, simple substitution

and recall of the model assumptions (γi(0) = 1, fi(0) = 0, λi(0, 0) = 0,

edi(0) = 0) show that

• J1,1 = γ1(0)g1(0)− σ1

(
α1

ω1
, 0
)
− s1 = g1(0)− σ1

(
α1

ω1
, 0
)
− s1,

• J2,2 = −µ1 < 0,

• J3,3 = λ1(0, 0)− ω1 − ed1(0) = −ω1 < 0,

• J4,4 = −τ1 − s̃1 + f1(0) = −(τ1 + s̃1) < 0,

• J5,5 = γ2(0)g2(0)− σ2

(
α2

ω2
, 0
)

= g2(0)− σ2

(
α2

ω2
, 0
)

,

• J6,6 = −µ2 < 0,

• J7,7 = λ2(0, 0)− ω2 − ed2(0) = −ω2 < 0, and

• J8,8 = −τ2 + f2(0) = −τ2 < 0.

It is clear from above that the only eigenvalues that are not necessarily negative

are J1,1 and J5,5. The result follows immediately.
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We also note that the de-coupling of the primary and secondary sites —

in particular the fact that the secondary site does not influence the primary

site in any way — allows us to reach a (partial) conclusion concerning the

stability of the MOSS.

Corollary 2. If

g1(0) < s1 + σ1

(
α1

ω1

, 0

)
,

then extinction of the primary tumor is stable.

These results lead to an interesting question concerning possible bi-stability.

Indeed, while we have presented conditions that guarantee the stability of the

exintction steady states, we have not shown extinction is the only possibility

under these conditions. We investigate possible bistability numerically in this

chapter, but provide a more detailed analysis on a simplified version of the

model 3.6 in Chapter 4.

3.3 Parameter Estimation

In order to parameterize the model, we searched both experimental and the-

oretical literature. While estimates were obtained for several of the model

parameters, many parameters have not previously been investigated in the

literature. When this was the case, educated guesses were made, or param-

eters were tuned in order to achieve a desired outcome. As an example of

the former, many of the threshold values presented in Table 3.1 are reported

without a reference. When a CT immune cell threshold was required, we chose

the thresholds relative to the DFSS value of αi

ωi
for i = 1, 2 (15% and 65% for

lower and upper, respectively, was a common choice). TE immune thresholds

were chosen to be one order of magnitude smaller than for CT immune cells.

Necrotic cell thresholds were 5% and 55% of the tumor carrying capacity, K1,2.

As an example of tuning parameters to achieve a desired model outcome, the

CT immune cell inlflux rate, α1,2, was tuned so that the DFSS CT immune cell

population would be of the order 106 [34, 106, 130]. When educated guesses

were impossible, we simply chose values that seemed reasonable in some sense.
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Parameter Description Value Units References

r1,2 tumor growth rate 0.38 1/day [115]
K1,2 tumor carrying capacity 5.3196× 108 cells [115]
θ1,2 CSC scaling constant 65.67 — [46, 118]
µ1,2 dead cell lysis rate 0.01, 0.05 1/day [45, 120]
α1,2 CT immune influx rate 1× 106 1/day [45]
ρ1,2 fatal immune-tumor interaction rate 0.001, 0.01 1/day [45]
ω1,2 CT decay rate 0.59 1/day [115]
χ1,2 immune education rate 5× 10−5 1/day [34, 86]
τ1,2 TE decay rate 0.05 1/day [45]
s1 tumor shedding rate 0.01 1/day [57, 83]
s̃ TE shedding rate 0.05 1/day [45]
p proportion successful TE 1× 10−4 — —

min1,2 min TE growth 1 — —
max1,2 max (increase) TE growth 0.5 — —
low1,2 growth activation 25424 cells —
up1,2 growth saturation 110169 cells —

lowD1,2 death activation: TE 25424 cells —
upD1,2 death saturation: TE 110169 cells —
minC1,2 min death rate 0.2 1/day [109, 121]
maxC1,2 max increase death 0.1 1/day —
lowC1,2 death activation: CT 254237 cells —
upC1,2 death saturation: CT 1101695 cells —
a11,12 CT expansion: tumor 0.524 1/day [90]
a21,22 CT expansion: dead 0.786 1/day —

b11,12,21,22 immune damping (dead;tumor) 1.61× 105 cells [90]
ht1,2 TE expansion rate 0.04 1/day [90, 115]
hb1,2 TE expansion damping 1.6× 105 cells [90, 115]
MER max (increase) establish rate 100 — [56]

lowEstCT,TE activation level: establish 254237, 25424 cells —
upEstCT,TE saturation level: establish 1101695, 110169 cells —
minEstTE,V min establish rate 0.001 1/day [15, 19, 83, 100]
maxEst max establish rate (increase) 0.002 1/day —
lowV activation: dead cells 2.66× 107 cells —
upV saturation: dead cells 2.93× 108 cells —
minV min establish rate 0.001 1/day —
maxV max establish rate (increase) 0.999 1/day —

Table 3.1: Model Parameters and the values used in presented simulations.
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For instance, we assumed that TE immune cell effects could increase the tumor

growth rate by 50% because this seems both reasonable and conservative. We

also note that, while the model allows for different parameter values between

the distant tumor sites, we have followed the example of the Enderling group

[115] and, without any strong evidence to suggest otherwise, used the same

parameters at both the primary and the secondary site.

3.4 Numerical Results

In this section we present results of numerical simulations of the model using

MATLAB and the built-in ODE solver ‘ode15s’. The results of Theorem 4

were demonstrated in Figures 3.4, 3.5, and 3.6. Below, we perform a number

of numerical experiments in order to gain an understanding of the model pre-

dictions. We use the parameterized model to conduct numerical investigations

into the effects of primary tumor resection, immune therapies, and injury.

3.4.1 Primary Resection

We begin this section by considering the model-predicted effects of primary

tumor resection. The gold-standard treatment for many tumors is surgical

removal (resection). In perfect conditions, this would mean removal of 100%

of the cells making up the tumor. However, surgery is rarely this efficient,

and the surgeons can only remove what they can see. Consequently, there is

always a risk that a small number of cancer cells — invisible to the naked eye

and medical imaging techniques — may be left within the tumor environment

after surgery, leading to recurrence. In an attempt to remove the remaining

cells that cannot be removed by surgery and hopefully prevent local recurrence,

surgery is often paired with other treatments, such as radiation, chemotherapy,

or immune therapies.

Potential metastatic tumors only complicate the situation. Indeed, surgery

to remove a primary tumor does little to directly address any potential distant

metastatic tumors. While there have been reports of indirect effects of primary

resection on secondary tumor growth, through an abscopal effect, these effects
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Figure 3.7: Effects of primary resection on tumor population dynamics at the
primary (left) and secondary (right) sites. Primary tumor was removed at time
t = 90 days (vertical dashed line in left plot) with efficiency ranging from 99.99% to
100% (blue to red). Arrow indicates the direction of increasing resection efficiency.
The black curves represent control dynamics.

and their underlying causes remain poorly understood.

In order to investigate the predictions of our model on the effects of primary

tumor resection, we perform a series of numerical investigations simulating

the effects of surgery at the primary site. Our simulations begin with a single

cancer cell at the primary site and DFSS CT immune levels at both sites.

The primary tumor is allowed to grow until it reaches a size that may be

considered clinically detectable. In our simulations we have assumed that this

level is achieved at a primary tumor composed of approximately 107 cells,

which occurs at t = 90 days after tumor initiation. At day 90, resection of the

primary tumor is performed with a prescribed efficiency. A resection of rEff%

efficiency is achieved by stopping the simulation, removing rEff% of each of

the quantities at the primary site, and restarting the simulation with these

reduced quantities as initial conditions. While more intricate simulations could

be performed — and are discussed further in Section 3.5 — we have chosen

to use this simple procedure to coincide more closely with the simulations

presented in [115].
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Figure 3.8: Effect of primary resection on secondary tumor dynamics for vari-
ous times of primary resection, ranging between t = 10000 and t = 12500 days.
Primary resection was assumed to be 100% effective, meaning there was no influ-
ence on secondary site from the primary site following resection. Secondary tumor
growth rate was r2 = 0.2999 so that extinction of metastases was stable. The black
trajectory shows secondary tumor growth without primary resection and acts as a
control curve. Green trajectories are destined for extinction, while red trajectories
are destined for full secondary tumor.

The results of these primary resection simulations for removal efficiency

varying between 99.99% and 100% are presented in Figure 3.7. This range was

chosen in order to observe any noticeable effect from surgical intervention —

smaller removal efficiencies had little effect. Primary and secondary dynamics

are presented on the left and right hand sides of Figure 3.7, respectively. The

delay in tumor regrowth at both sites is increased as we increase the removal

efficiency (blue to red). If our surgery is anything less than 100% efficient,

primary recurrence is expected. Even with successful removal of the primary

tumor, we still expect to see a secondary tumor develop after a significant

delay.

Based on the observation of secondary persistence even upon primay ex-
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tinction, we investigate the possibility of bi-stability in the model by way of

resection simulations. In Figure 3.8 we show secondary tumor cell dynam-

ics in response to 100% primary resection at varying times. Parameters were

chosen so that extinction at the secondary site was stable (Theorem 4). If

the primary is removed sufficiently early, the secondary tumor may go extinct

(green curves). However, if the primary is removed later than a threshold time,

thereby allowing the secondary tumor to grow large enough to support itself,

primary resection only delays metastatic growth, with a full secondary tumor

expected to develop. We note that the choices of parameters used to produce

Figure 3.8 may not be realistic, given the long timescale that results.

3.4.2 Immune Therapy

As mentioned in the previous section, primary tumor resections are often cou-

pled with other therapeutic approaches. Of particular interest to us are im-

munotherapies. The term ‘immunotherapy’ is general, and can refer to many

different thereapeutic approaches, all with the goal of taking advantage of the

ability of the immune system to effectively kill foreign invaders. Approaches

range from tumor ‘vaccines’, which serve to identify the cancer cells to CT

immune cells (by various methods) in order to illicit a response, to stimulation

of the production of CT immune cells (such as CD8+ or NK cells) through

the use of cytokines or chemokines, to the simple injection of additional CT

immune cells.

While the concept of using a patient’s own immune response to destroy a

tumor has inspired significant experimental and theoretical research into im-

munotherapies, their effectiveness has proven somewhat disappointing. One

possible explanation for this unexpected result is the complex interplay be-

tween the anti- and pro-tumor effects of the immune system. We use our model

to investigate the effect of these contradictory roles on immunotherapies. For

simplicity, ‘immunotherapy’ in the context of our model is any intervention

that results in an increased influx of CT immune cells. This is a sufficiently

general modeling choice to approximate each of the previously mentioned im-

munotherapeutic approaches. Indeed, the goal of vaccines, cytokine therapies,
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Figure 3.9: Effect of immune therapy on growth of the metastatic tumor. Left:
Tumor cell dynamics at the secondary site for increasing CT immune cell influx
rates, α1 and α2. Therapy administered at time t = 90 days. Values are increasing
from blue to red. Dash line represents half the carrying capacity, K2/2. Right: Time
secondary tumor reaches half its carrying capacity as a function of the factor the
CT immune cell influx rate increased.

and immune supplementation is an increased number of effective CT immune

cells present at the tumor site. We simulate this increased population of effec-

tive CT immune cells by increasing the CT immune cell influx rates, α1,2, by

a scaling factor ≥ 1. As in the case of primary resection, such an intervention

requires the identification of a primary tumor, so we begin therapy on day 90

and, for simplicity, assume that this therapy is continuously applied until the

end of the simulation. Our model predicts that immunotherapy has little to no

effect on the primary tumor if we wait for it to grow to a clinically detectable

size. Therefore, we have presented only the dynamics at the secondary site.

Figure 3.9 shows the effect of immunotherapy on the growth dynamics

of the secondary tumor for a range of increases to the immune influx rates,

α1,2. On the left are the time dynamics of the tumor, with α1,2 increasing as

we go from blue to red, with the leftmost curve acting as the control curve.

The dashed line denotes a population size of half the carrying capacity at the

secondary site (K2/2). On the right we have the time to K2/2 as a function of

the increase to α1,2 which are simply the intersection points of dashed line and
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Figure 3.10: Effect of two-pronged immune therapy on growth of the metastatic
tumor. Left: Tumor cell dynamics at the secondary site for increasing CT immune
cell influx rates, α1 and α2, and prevention of immune education, χ1,2 = 0. Therapy
administered at time t = 90 days. Values are increasing from blue to red. Leftmost
curve represents control dynamics. Dash line represents one quarter the carrying
capacity, K2/4. Right: Time secondary tumor reaches a quarter its carrying capacity
as a function of the factor the CT immune cell influx rate increased.

solution curves in left plot. For small increases in α1,2 we see a marked delay in

tumor growth. However, this effect not only saturates, but actually becomes

detrimental for larger increases. This is a result of the tumor’s ‘education’ of

CT immune cells into pro-tumor TE immune cells. Indeed, this can be seen

by comparing the results of Figure 3.9 with those in Figure 3.10.

Figure 3.10 was produced assuming that immunotherapy also preveneted

the direct tumor education of CT immune cells (χ1,2 = 0). First, we note that

this assumption results in a final tumor of approximately half the size observed

in Figure 3.9. Consequently, the endpoint considered here is K2/4 (dashed line).

Second, the tumor delay is also appreciably longer when compared to those

presented in Figure 3.9. Third, while the time-to-endpoint slows dramatically

(right), it monotonically increases over the entire range of values tested. These

results suggest that tumor education of immune cells is responsible for the non-

monotonicity observed in Figure 3.9.

Figure 3.11 shows the effects of combination resection-immunotherapy on
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Figure 3.11: Effects of different combination therapies on the dynamics of the
secondary tumor. Black is control, blue is resection only, magenta is resection and
increased immune cell influx rate, and blue is resection, increased immune cell influx
rate, and decrease in tumor education rate. Resection was done with 99.9999999%
efficiency, education rates decreased by factors of 10, and CT influx rates increased
by factors of 1.5 (solid) and 2.5 (dashed). Control paramaters as in Table 3.1. All
treatments initiated at time t = 90 days.
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the dynamics of the secondary tumor. Primary resection alone (blue curve)

offers significant growth delay compared to the control dynamics (black curve),

but combination with immunotherapy does not necessarily result in improved

outcome. Indeed, if we increase α1,2 by a factor of 1.5 we see a modest im-

provement over resection alone (magenta solid). However, increasing the CT

influx rate further results in a worse outcome than resection alone (magenta

dashed). Immunotherapy that includes both an increase to the CT immune

cell influx rate and a decrease in the education rate of CT immune cells (red

curves) is more effective than immunotherapy that includes only one of these

approaches. Moreover, in agreement with the results in Figure 3.10, increasing

the factor by which we increase the CT immune cell influx rate from 1.5 (solid)

to 2.5 (dashed) results in a marked improvement in tumor growth delay.

3.4.3 Injury at Secondary Site

The theory of immune-mediated metastasis proposed by Shahriyari [124] pro-

vided a potential explanation for the observation that metastases appear at

the sites of injury via immune-assisted trafficking of cancer cells to the growth-

supporting injury site (See Section 1.1.2 for full details). We use our model to

explore the implications of an injury incurred at a distant secondary site.

To simulate an injury at the secondary site, we introduce an ‘injury’ con-

sisting of 1× 107 necrotic cells to the secondary population of necrotic cells at

the time of injury. In order to evaluate the effect of the injury on metastatic

growth, we determine the time required for the secondary tumor to reach a

population of K2/2 = 2.6595× 108 cells. Figure 3.12 shows how the timing of

the injury influences secondary tumor growth. Our model predicts early and

late responses: if the injury occurs relatively early in the progression of the

primary tumor it will have beneficial effects on secondary tumor growth delay

(green), whereas late injuries have the opposite effect (red). Early and late

effects are distinguished by the dashed line, denoting the control results.

To gain insight into the underlying dynamics responsible for this biphasic

behavior, we have chosen the injury times corresponding to the best (t = 74.1

— slightly before clinical detectability) and worst (t = 102.5 — slightly after
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Figure 3.12: Time required for secondary tumor to reach K2/2 = 2.6595×108 cells
as a function of the time an injury of 1 × 107 necrotic cells was incurred. Dashed
line represents the control value. Green indicates a desirable outcome, while red
indicates an undesirable outcome. Parameters as in Table 3.1.
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Figure 3.13: Dynamics of the tumor cells, (A), necrotic cells (B), CT immune cells
(C), and TE immune cells (D) at the secondary tumor site upon the simulation of
an injury. Two injury times are presented (arrows): an early injury at t = 74.1 days
(green) and a late injury at t = 102.5 days (red). Injury was 1× 107 necrotic cells.
Dashed line in (A) represents endpoint value of K2/2. Parameters as in Table 3.1.
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clinical detectability) outcomes presented in Figure 3.12 and investigated the

resulting dynamics at the secondary site. These results are summarized in

Figure 3.13. Control (black), early injury (red), and late injury dynamics are

presented for the secondary tumor cells (A), necrotic cells (B), CT immune

cells (C), and TE immune cells (D). The times of injury are reported as arrows

along the horizontal axis, and the endpoint tumor size K2/2 is marked by the

dashed line in (A).

An immediate and significant CT immune response is observed after both

injuries (Figure 3.13, (C)). In the early injury case, this response is slightly

larger and is maintained for a much longer period of time relative to the case

of a late injury, where an abrupt, precipitous decline is observed after having

reached a maximum. In concert with this decline in CT immune cells is a rapid

increase in the TE immune population (Figure 3.13 (D), red). The combined

effect of a decreased CT immune population and increased TE immune popu-

lation results in the rapid growth of the tumor (Figure 3.13 (A), red), whereas

the relatively large CT immune population and small TE immune population

in the early injury case allows for the prolonged suppression of tumor growth

(Figure 3.13 (A), green).

Note that the injuries occur on either side of a period of significant tumor

growth (Figure 3.13 (A), black). At the time of the early injury, the tumor

is sufficiently small that tumor education of CT immune cells is negligible,

meaning that the CT immune response to the injury remains largely anti-

tumor. At the time of the late injury, however, the tumor has grown to such a

size that tumor education of CT immune cells is no longer negligible, and the

CT immune response to injury is quickly educated by the tumor to become

tumor-promoting.

Even with a large injection of necrotic cells at the secondary site, the

resulting spike in CT immune cells ensures that the establishment rate remains

low for a period after the injury in both simulations (Figure 3.14). Once

the CT immune cells have been cleared from the secondary site, we see the

establishment rate increase. This spike in the establishment rate occurs at

approximately the same time as the final increase in tumor growth rate in all

three curves in Figure 3.13 (A).
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Figure 3.14: Establishment rate as a function of time for the injury simulations
presented in Figure 3.13. Two injury times are presented: an early injury at t = 74.1
days (green) and a late injury at t = 102.5 days (red). Injury was 1× 107 necrotic
cells. Parameters as in Table 3.1.

3.5 Discussion

In this chapter, we developed an ODE model to interrogate the validity of the

‘immune-mediated’ theory of cancer metastasis [124]. Our model consisted of

a system of 8 coupled ODEs describing the dynamics of tumor cells, necrotic

cells, anti-tumor CT immune cells, and pro-tumor TE immune cells at the

sites of both a primary tumor and a distant metastatic tumor. We performed

steady state analysis and derived conditions required for disease extinction.

After parameterizing the model based on estimates in the literature (where

available), the parameterized model was used to conduct several numerical

experiments.

The results presented herein should be taken with a degree of caution. We

have chosen to model metastasis — an inherently spatial process — with

spatially homogenous ODEs. This is certainly a simplification and a spa-

tially explicit model should be developed and analyzed further. As is the case

with other models for tumor-immune interactions including pro-tumor effects
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[34, 138], parameter estimation in the current work was difficult given the

dearth of available data. Consequently, many parameters were chosen without

a specific reference from the literature, and the resulting predictions may be

inappropriate. For example, the number of CT immune cells recruited to the

injury site — on the order of 1010 cells — is potentially unrealistically large

given the human body is estimated to be composed of ∼ 1013 cells [12]. We

also observed that the efficiency of primary tumor resection must be very near

100% in order to see any apreciable effect on the system dynamics (Figure

3.7) which is likely too restrictive. Moreover, for simplicity we assumed equal

parameters at both the primary and secondary site, which is almost certainly

not the case. We also note that the model itself may have unnecessary depen-

dencies — such as TE immune cells playing a role in both the tumor cell birth

rate and the death rate — which may serve only to complicate the model

and obscure the results. A simplified version of the model is presented and

analyzed in Chapter 4.

The model presented above considers only two tumor sites — a primary

site and a secondary, metastatic site — but could easily be modified to include

N > 2 sites by borrowing network modeling ideas from [85, 115, 134]. We

provide a brief sketch of such a model now. Let ui, vi, xi, and yi denote

the number of cancer, necrotic, CT, and TE cells at tumor site i, where i =

1, 2, . . . N . Let φi,j, ψi,j, and ζi,j denote the number of tumor cells, TE immune

cells, and CT immune cells respectively, leaving site j and arriving at site

i. We assume that necrotic cells do not travel between sites. Under the

above assumptions, we arrive at the following N site model for tumor-immune

interactions including both pro- and anti-tumor immune effects
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dui
dt

= γi(yi)gi(ui)ui − σi(xi, yi)ui − siui + esti(vi, xi, yi)

(
N∑
j=1

φi,j

)
dvi
dt

= θiσi(xi, yi)ui − µivi

dxi
dt

= αi − ρiuixi − ωixi − edi(ui)xi +

(
N∑
j=1

ζi,jλj(uj, vj)xj

)
dyi
dt

= edi(ui)xi − τiyi − s̃iyi +

(
N∑
j=1

ψi,jfj(uj)yj

)
.

(3.18)

Modeling of the connection terms, φi,j, ψi,j, and ζi,j, is a complicated prob-

lem (see [115, 134, 135] for discussion on the ζi,j term) and left as future

research.

A final note of caution concerning the model itself is the choice of death

functions. We have chosen to have the tumor death rates decrease to zero as

the TE immune pool saturates. It is for this reason that we see the gradual

extinction of necrotic cells in our model dynamics (Figure 3.6), instead of

a stable population of necrotic cells that may be observed at the core of a

sufficiently large solid tumor. However, if we recall our assumption that the

‘tumor’ cells modeled are CSCs, immortality is not necessarily unfounded [73],

in which case a slightly different formulation of the necrotic cell dynamics may

be necessary. In a related note, the model predicts the CSC population to reach

the carrying capacity of the entire tumor. Based on the theoretical results in

[73], this may also be more reasonable than it first appears. Indeed, the CSC

fraction within a solid tumor is a highly debated area of active research [46].

In contrast to many of the previous models for tumor-immune interactions,

the model developed here includes pro-tumor effects of the immune system in

addition to the well-known anti-tumor effects. With inflammation recently

named as a ‘hallmark of cancer’ [60], this inclusion is of the utmost impor-

tance, and its use in mathematical models for tumor-immune interactions is

beginning to gain traction. den Breems and Eftimie [34] developed an ODE

model for tumor-macrophage interactions in which a transition between anti-
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and pro-tumor macrophages was included. Upon data-assisted parameteri-

zation of the model, the authors found that the transition rates between the

macrophage types played an important role in the final outcome and suggested

that future study was warranted. Our model included a similar ‘transition’

between immune types, which we termed ‘tumor education’. Similarly to den

Breems, we found that the transition/education rate plays an important role

in the system dynamics (See Figure 3.13), especially in the context of im-

munotherapies. Indeed, the education terms allow for non-monotonic behav-

ior with immunotherapies, and provides a potential explanation for the poor

performance of immunotherapies in the clinical setting (Figures 3.9, 3.10, and

3.11). It should also be noted that we explicity model the process of metastatic

disemination and establishment, which was absent in the papers by the En-

derling group [115, 134].

Theorem 4 gave us an explicit condition necessary to have complete disease

extinction. In simple terms, if the growth rate is less than the death rate,

extinction is stable. This is intuitive and allows us to conclude that primary

resection alone — assuming some level of inefficiency — will not likely be

curative, with local recurrence and distant metastasis the most likely outcomes.

We did, however, show that complete removal of the primary tumor can, in

some instances, lead to metastatic extinction or persistent metastatic disease,

sometimes after a period of dormancy (Figure 3.8). In Chapter 4 we explore

the phenomena of bistability and dormancy further using a simplified version

of the model developed above. In general, however, our model predicts that

resection should be coupled with a treatment that decreases tumor growth

rate or increases its death rate.

Immunotherapies are aimed at increasing tumor cell death with the help of

CT immune cells. Our model predicts that the desired effect may not always

be achieved by simply increasing the influx rate of CT immune cells if ‘tumor

education’ [107] is possible. If, however, there is a method to inhibit tumor

education of CT immune cells, our model predicts much improved outcomes

(Figure 3.11). While our model — with general anti- or pro-tumor immune

cells — may be too general to provide clinical treatment insight, the results

presented herein suggest that more detailed studies involving immune pheno-
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typic plasticity may be warranted as the dynamics are relevant to treatment

outcomes.

Preferential metastatic dissemination to sites of injury has been used as

evidence to support the immune-mediated theory of metastasis [124]. Our

model predicts that injury at a secondary site can have very different effects

depending on the time of injury relative to disease progression. The influx of

CT immune cells in response to a wound can be tumor-suppressing, if the local

tumor is sufficiently small to make ‘education’ negligible, or tumor-promoting,

if the tumor has grown to such a point that it can effectively ‘educate’ the infil-

trating CT immune cells causing them to become tumor-promoting. Therefore,

our model can successfully reproduce instances of rapid metastasis to the sites

of injury.

The tumor-suppressing effects of immune activation upon injury are remi-

niscent of hypothesized mechanisms for the abscopal effect [37]. In the context

of a combination radiation and immunotherapy, Dewan and collaborators sug-

gested that a single large dose of radiation provided enough signals from dead

cancer cells to ‘awaken’ the immune system to the cancer’s presence, both

at the site of radiation and distant metastatic sites. Once ‘awakened’ to the

presence of the cancer, the host immune system was able to induce an effective

defence, resulting in decreased tumor burden at metastatic sites. Our model

suggests that a similar ‘immune activation’ occurs upon injury, and that this

effect is beneficial assuming the response can remain tumor-inhibitory, which

may be the case in a combination treatment scenario.

The resection simulations presented in Figure 3.8 modeled the effects of

primary resection on the secondary site by simply ‘turning off’ the sources of

cancer and TE immune cells from the primary site. It has been shown, how-

ever, that a strong, short-lived, systemic immune response is observed upon

primary resection [113]. Therefore, the inclusion of an immune response in

addition to the switching off of the source terms at the secondary site will

provide a more accurate model of the effects of primary resection on growth at

the secondary site. An initial simulation including an inflammatory response

is presented in Figure 3.15 (magenta), in which the immune influx rate was

increased 500 times at the same time the source terms were ‘turned off’. For
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Figure 3.15: Secondary tumor cell dynamics upon primary resection that induces
a sustained inflammatory response. The black curve is the control tumor growth at
the secondary site (no intervention), while the magenta curve describes secondary
tumor growth after primary resection and a wound-healing response (α1,2 increased
by a factor of 500). All other parameters as in Table 3.1.
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nearly 100 days, the abscopal effects felt by the secondary tumor in response to

primary resection kept its size below that of the control tumor (black). In the

case that the primary tumor was surgically removed, positive abscopal effects

give way to negative abscopal effects slightly before day 200 of the simula-

tion, at which time the model predicts metastatic ‘blow-up’, with the ‘treated’

metastatic tumor outgrowing the control tumor. Therefore, our model sug-

gests that ‘metastatic blow-up’ is a phenomenon of the pro-tumor effects of

the immune system. In contrast, Eikenberry et al. [45] suggest that (local)

metastatic blow-up is the result of a weakened anti -tumor immune response.

Many other theories explaining metastatic blow-up rely on the assumption that

the primary tumor actively suppresses secondary growth through the produc-

tion and dissemination of anti-angiogenic factors or other cytokines (see [45]

and references therein). While further research must be done in order to eluci-

date the exact mechanism responsible for metastatic blow-up, our model gives

us reason to suspect that the immune system plays a critical role, and that the

inflammatory response to primary resection surgery should not be discounted.

We note that the model of primary resection inducing an inflammatory

response described above is the same as the model used for combination resec-

tion and immunotherapy (Figures 3.9, 3.10, and 3.11). Consequently, we see

that the effects of tumor-education can not only reduce the effectiveness of im-

munotherapies (as in Figure 3.9), but can also render their effects harmful by

causing metastatic blow-up (as in Figure 3.15). The role of tumor-education

is critical in these results, as Figure 3.10 demonstrates, and is the key factor

preventing a monotonic increase in immunotherapy effectiveness. The results

of immune phenotypic plasticity is, therefore, of utmost importance in terms

of treatment planning, and further study is needed.

Whereas the importance of the contradictory anti- and pro-tumor roles of

the immune system has long been appreciated, the implications of this di-

chotomy have only recently become the subject of rigorous investigation. The

model of immune-mediated metastasis presented in this chapter has shown —

by successfully reproducing well-known metastatic phenomena such as dor-

mancy, blow-up, and metastasis to sites of injury, as well as providing a poten-

tial explanation for the poor performance of immunotherapies — that both
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the tumor inhibiting and tumor promoting roles of the immune system are

important to consider when designing models of cancer progression and treat-

ment. Based on our results, further investigations into the precise nature of

this dichotomy are warranted.
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Chapter 4

A Deterministic Model for

Cancer Metastasis: Secondary

Site

In Chapter 4, we present and analyze a simplified version of the model for

immune-mediated metastasis developed in Chapter 3. Model simplifications

are carried out in Section 4.1, reducing the system of 8 ODEs from Chapter

3 to a system of 3 ODEs, thereby allowing for further analysis in Section 4.2.

Analytical results include proofs for the positivity and boundedness of model

solutions; together with a quasi-steady state analysis showing that the sys-

tem of 3 ODEs is governed by a single ODE in certain parameter regimes.

Explicit conditions for metastatic exintction are derived and bifurcation anal-

ysis reveals the possibility of metastatic dormancy. Numerical simulations of

the model are presented in Section 4.3, beginning with parameter estimation

and a sensitivity analysis, followed by simulations of treatments, including

primary tumor resection and immunotherapy. A discussion of our results and

concluding remarks are made in Section 4.4.
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4.1 The Model

This section reduces the 8 ODE model (Equations (3.6)) from Chapter 3 to

allow for more rigorous mathematical analysis. We begin by making a num-

ber of observations concerning the model that was the focus of the previous

chapter:

1. The two sites are nearly decoupled from each other: the primary site is

unaffected by the dynamics at the secondary site, and the only effects

of the primary site on the secondary site are through the arrival of shed

cancer cells or TE immune cells.

2. When the FDSS is stable (Figure 3.6), the tumor population at the

primary site reaches steady state before a single tumor cell is established

at the secondary site.

3. The effects of the necrotic cells are on CT immune cell recruitment and

secondary establishment. CT immune cells are also recruited by the tu-

mor cells, and secondary establishment is also promoted by TE immune

cells.

4. TE immune cells act to both promote tumor establishment and growth,

and prevent tumor cell death.

Observations 1 and 2 allow us to consider only the secondary site and

view the primary site as a source of cancer and TE immune cells, thereby

reducing the number of equations in our model from 8 to 4. We can reduce

the model by one more equation by virtue of observation 3 — because the

two roles played by necrotic cells are also played by other cell types. These

reductions leave us with a 3 ODE model consisting of equations for tumor cells,

u, CT immune cells, x, and TE immune cells, y, at a secondary tumor site.

Finally, as noted in observation 4, pro-tumor effects of the TE immune cells

are two-fold. In order to better distinguish between the anti-tumor effects of

CT immune cells and pro-tumor effects of TE immune cells, the TE immune

dependence is dropped from the tumor cell death rate function, σ(x, y) = σ(x).

The inhibitory effect of TE immune cells on the tumor cell death rate is still

98



indirectly included in the model thanks to the education term: education

increases the TE population at the detriment of the CT population resulting

in an overall decrease in the tumor cell death rate. For the purposes of this

model, the explicit dependence of σ on x is sufficient.

Observation 4 suggests that dropping the tumor death rate dependency

on TE immune cells is reasonable, as the education of CT immune cells will

deplete the CT immune population thereby decreasing the death rate — ad-

ditional, explicit dependence on TE immune cells is therefore unnecessary.

Under these simplifying assumptions, we arrive at the following reduced model

for tumor-immune interactions at a metastatic site:

du

dt
= γ(y)φ(t)︸ ︷︷ ︸

arrival

+ γ(y)g(u)u︸ ︷︷ ︸
growth

−σ(x)u︸ ︷︷ ︸
death

dx

dt
= α︸︷︷︸

influx

+λ(u)x︸ ︷︷ ︸
growth

− ρux︸︷︷︸
tumor interaction

− ωx︸︷︷︸
death

− ed(u)x︸ ︷︷ ︸
tumor education

dy

dt
= qψ(t)︸ ︷︷ ︸

arrival

+ ed(u)x︸ ︷︷ ︸
tumor education

+ f(u)y︸ ︷︷ ︸
growth

− τy︸︷︷︸
death

(4.1)

where u(t), x(t), and y(t) denote the tumor, CT immune, and TE immune

populations at the secondary site at time t. Those coeffients that are in both

the simplified and the original model are as described in Section 3.1. The

parameters φ(t), ψ(t), and q are new for this model, and so will be described

in further detail.

The function φ(t) denotes the rate of successful arrival and establishment

of CTCs at the secondary site. φ(t) replaces the term s1u1 from the previous

model (3.6). We allow the establishment rate to depend on time to reflect

the theory that metastatic shedding is proportional to primary tumor size

[62] which is highly dependent on time. For ease, we assume that φ(t) is

constant in the analysis and numerical results presented below. To model

the PMN, which provides CTCs with a supportive environment in which to

settle and grow, we have scaled the establishment rate, φ(t), by an increasing
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Figure 4.1: Cartoon model of the 3 ODE model of metastasis (4.1). Arrows
indicate positive effects, and flat ends indicate inhibitory effects. Solid lines represent
direct effects and dashed lines denote indirect influence. See text for details.

enhancement function, γ(y). For simplicity, we have assumed the same TE

enhancement effect for both settlement of CTCs as well as growth of the

established tumor. The function ψ(t) plays much the same role as φ(t), but

in relation to the arrival of TE immune cells that have been disseminated

from the primary tumor. TE immune cells successfully make the journey from

primary to metasatic sites with probability q.

In contrast to the previous model 3.6, we have assumed that tumor cell

death depends only on CT immune cells. This choice was made in order

to prevent over-accounting for the effects of TE immune cells. Moreover,

we no longer assume that ‘tumor cells’ are CSCs, rather that u(t) denotes a

general tumor cell population. Based on this assumption, we choose the tumor

cell death rate, σ(x), to be a strictly positive, decreasing function of the CT

immune population, x.

All parameters are assumed to be positive, and the functional coefficients

are assumed to have the following behavior:
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Assumptions (A4.1):

• γ(y): increasing from γ(0) = 1 to a finite, maximum value as y →∞.

• g(u): decreasing, non-negative function with a value, K > 0, such that

∀u ≥ K we have g(u) = 0.

• σ(x): decreasing, strictly positive function.

• λ(u) and f(u): increasing, bounded functions which evaluate to 0 when

u = 0.

• ed(u): increasing function with ed(0) = 0.

• φ(t) and ψ(t): non-negative and bounded.

For full biological motivation of the above choices, consult the detailed

discussion in Section 3.1.

In the following analysis, we often consider two cases: the case when a

primary tumor exists at some distant location (φ > 0 and ψ > 0), and the

case when the primary tumor no longer exists (φ = 0 and ψ = 0) to model

therapy applied to the primary tumor.

4.2 Analytical Results

The goal of this section is to determine if treatment of the primary tumor can

result in abscopal effects at the secondary site, and of what these effects might

consist. We use ideas from geometric singular perturbation theory [69] to per-

form quasi-steady state approximation of the model. Stability and bifurcation

analysis are then performed on the approximate model, providing threshold

tumor densities that predict disease extinction or persistence in the case that

the source term, φ, is zero. We begin with some preliminary results.

4.2.1 Positivity and Boundedness

Non-negative, bounded solutions to our model are required in order that they

be biologically realistic. The following lemmas guarantee positivity and bound-
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edness of our model solutions.

Lemma 5. Given non-negative initial data, (u0, x0, y0), the solutions to 4.1

remain non-negative. In other words, the domain Ω = [0,∞)3 is positively

invariant.

Proof. We show that along the coordinate axes the solutions flow into Ω. Once

this is shown, it follows that if solutions approach the boundary, ∂Ω, they will

not pass through the boundary. The result follows.

Along the u-axis:

In this case, u ≥ 0 but we have zero immune presence. Substituting (u, x, y) =

(u, 0, 0) into the equations 4.1 and using the assumptions (A4.1) we arrive at

du

dt
= φ(t) + u (g(u)− σmax)

dx

dt
= α > 0

dy

dt
= qψ(t) > 0.

In particular, the final two equations guarantee that the vector field is pointed

toward the interior of Ω.

Along the x-axis:

In this case, we have x ≥ 0 and u = 0 = y. The governing equations in this

case read
du

dt
= φ(t)γ(y) > 0

dx

dt
= α− ωx

dy

dt
= qψ(t) > 0.

Here again, because the tumor and TE immune populations are increasing

along the x-axis, we see solutions that start along the x-axis flow into Ω.

Along the y-axis:

In this case, we have y ≥ 0 and u = 0 = x. The governing equations in this
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case read
du

dt
= φ(t) > 0

dx

dt
= α > 0

dy

dt
= qψ(t)− τy.

Because the tumor and CT immune populations are increasing along the x-

axis, we see solutions that start along the x-axis flow into Ω.

For boundedness, we require a few assumptions. In preparation, set

σmin = min
x≥0

σ(x)

γmin = min
y≥0

γ(y)

σmax = max
x≥0

σ(x)

γmax = max
y≥0

γ(y)

λmax = max
u≥0

λ(u)

φmax = max
t≥0

φ(t)

ψmax = max
t≥0

ψ(t).

All of the above extrema exist under the assumptions (A4.1).

Lemma 6. Assume that both λmax < ω and fmax < τ . Then the solutions to

equations 4.1 are bounded for all times.

Proof. We first consider the u equation. Suppose that u ≥ K. Then, from

(A4.1), g(u) = 0, and so the equation governing the evolution of u reads

du

dt
= φγ(y)− σ(x)u.

It follows that u will be decreasing whenever

φγ(y) < σ(x)u.
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By the positivity of σ(x) (A4.1), we can isolate

u > φ
γ(y)

σ(x)
.

By the boundedness of our functional coefficients, we see that

φ(t)
γ(y)

σ(x)
< φmax

γmax
σmin

<∞.

Then, for

u > max

{
φmax

γmax
σmin

, K

}
,

u will be decreasing, and hence u is bounded.

Next, we consider the x equation. By the first step, we know that u is

bounded,

0 ≤ u ≤ umax <∞.

This implies that

1. 0 ≤ λ(umax) ≤ λmax,

2. 0 ≤ ρu ≤ ρumax, and

3. 0 ≤ ed(u) ≤ ed(umax).

Multiplying 2 and 3 by −1, adding the resulting inequalities to 1, and sub-

tracting ω > 0 gives us

A := −ρumax − ed(umax)− ω ≤ λ(u)− ρu− ω − ed(u) ≤ λmax − ω =: B < 0,

where the final inequality is by the assumption of the lemma. Therefore, we

have an upperbound on the ODE governing the x dynamics,

α + Ax ≤ dx

dt
≤ α +Bx

where B < 0. It is easy to see that the ODE

dx̃

dt
= α +Bx̃
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has a single, positive (as B < 0) steady state, x̃∗ > 0, and that dx̃
dt

> 0

whenever x̃ < x̃∗ and dx̃
dt
< 0 whenever x̃ > x̃∗. Therefore, x̃ is bounded, and

as dx
dt
≤ dx̃

dt
, we conclude that x is also bounded.

Using the boundedness of both u and x allows us to reduce the y equation

to a similar ODE as in the x case, yielding

dy

dt
≤ (qψmax + ed(umax)xmax) + (f(umax)− τ) y =: C +Dy,

where C > 0 and D < 0 by the assumption of the lemma. Arguing similarly,

we conclude that y is also bounded.

From this point forward, we will make the assumption (A4.2) that both

λmax < ω and fmax < τ

in order to assure that our dynamics are bounded. We also note that these

assumptions guarantee that both λ(u)− ρu− ω− ed(u) < 0 and f(u)− τ < 0

for all values of u. We now proceed to determine the steady states of the model

4.1.

4.2.2 Steady States

For simplicity, assume that the source terms, φ(t) and ψ(t), are simply con-

stants, φ and ψ, respectively. Setting the model equations to zero gives us

0 = γ(y)φ+ γ(y)g(u)u− σ(x)u

0 = α + λ(u)x− ρux− ωx− ed(u)x

0 = qψ + ed(u)x+ f(u)y − τy.
(4.2)

Two cases are considered.

Case: φ 6= 0 and ψ 6= 0
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First, note that if γ(y)g(u) = σ(x), then the first equation in 4.2 reads

0 = γ(y)φ > 0,

which is impossible. Therefore, we cannot have γ(y)g(u) = σ(x) hold at the

same time as the first equality in 4.2. This allows us to solve for the u nullcline,

u =
φγ(y)

σ(x)− γ(y)g(u)
.

Note that in order for this surface to remain non-negative, we require that the

denominator satisfy σ(x) − γ(y)g(u) > 0. Similarly, the assumption (A4.2)

allows us to solve the x and y equations in 4.2 explicitly, giving the nullclines

x =
α

− (λ(u)− ρu− ω − ed(u))
> 0

and

y =
qψ + ed(u)x

f(u)− τ
> 0.

Steady states will be points, (u, x, y), which lie on all three of the above

nullclines. The number of such solutions is not immediately obvious, and

depends on the choice of functional parameters. Note that tumor extinction

is impossible in this case — assuming that a source of tumor cells exists, the

model predicts the persistence of metastatic disease.

Case: φ = 0 and ψ = 0

In this case, the first equation in 4.2 reduces to

0 = (γ(y)g(u)− σ(x))u,

which has two potential solutions: the trivial solution, u = 0, and the non-

trivial solution defined by the equation γ(y)g(u) = σ(x). As before, the num-

ber of solutions to this equation is not immediately obvious, but further ex-

ploration of this question is done at a later point. While the x nullcline does
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not change from the previous case, the y nullcline decreases in magnitude to

y =
ed(u)x

f(u)− τ
> 0.

Subcase: u = 0

Based on the assumptions (A4.1), we see that the x nullcline evaluated at

u = 0 reduces to

x =
α

ω
,

and the y nullcline evaluated at these two points gives y = 0. Consequently,

we have found an extinction steady state,

(uext, xext, yext) = (0,
α

ω
, 0).

Note that this steady state is similar to the DFSS 3.12 from Chapter 3.

Subcase: u 6= 0

Then our steady state value(s) , (ũ, x̃, ỹ), satisfy

γ(ỹ)g(ũ) = σ(x̃)

x̃ =
α

− (λ(ũ)− ρũ− ω − ed(ũ))

ỹ =
ed(ũ)x̃

f(ũ)− τ
.

(4.3)

In summary, we have three potential defining equations for steady states, de-

pending on the value of the source terms φ and ψ: a full-disease state, (u, x, y),

a disease-free state, (uext, xext, yext), and a persistent disease state, (ũ, x̃, ỹ). As

in Chapter 3, we now consider the stability of the disease-free state.

Proposition 2. Assume that φ = 0 = ψ and that g(0) = g0 < σ(α
ω

). Then

the disease-free state, (0, α
ω
, 0), is stable.

Proof. We compute the Jacobian for the system 4.1 as

J =

J1,1 J1,2 J1,3

J2,1 J2,2 0

J3,1 J3,2 J3,3

 , (4.4)
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where

• J1,1 = γ(y)g(u) + γ(y)g′(u)u− σ(x),

• J1,2 = −σ′(x)u,

• J1,3 = γ′(y)(g(u)u+ φ),

• J2,1 = λ′(u)x− ρx− ed′(u)x,

• J2,2 = λ(u)− ρu− ω − ed(u),

• J3,1 = ed′(u)x+ f ′(u)y,

• J3,2 = ed(u),

• J3,3 = f(u)− τ .

Evaluating J at (u, x, y) = (0, α
ω
, 0) with φ = 0 = ψ gives us g0 − σ(α

ω
) 0 0

α
ω

(λ′(0)− ρ− ed′(0)) −ω 0
α
ω
ed′(0) 0 −τ

 ,

whose diagonal entries are its eigenvalues. Under the assumption of the propo-

sition, we see that all the eigenvalues are negative, and therefore the extinction

state is stable.

The stability of the steady states (u, x, y) and (ũ, x̃, ỹ) are treated in greater

detail in Section 4.2.4.

Remark: Role of TE Immune Cells

In the context of metastatic cancer, we might reasonably expect that metas-

tases would die out assuming we could successfully remove the primary tumor

in the very early stages of disease progression. On the other hand, removal of

the primary tumor in the late stages of disease progression should not erad-

icate metastatic disease. Translated to the language of our model, we would

like for the stability of both the extinction and the non-trivial steady states
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to be possible in the case that φ = 0 = ψ. In order to appreciate the effects

of the TE immune cell population, assume that we have no TE immune cells.

Without TE immune cells, and with φ = 0 = ψ, our model then reduces to a

slightly generalized version of the Kuznetsov model [91]. A non-trivial steady

state will exist if a solution exists to the equation

g(ũ) = σ(x̃). (4.5)

In particular, such a solution is only possible if σ(x̃) ∈ [0, g0]. alternatively,

for the extinction steady state to be stable, we require that g0 < σ(α
ω

). Be-

cause σ is an increasing function, if we assume that the steady state x̃ > α
ω
,

(which is biologically reasonable, as the tumor microenvironment is highly

populated with immune cells — see Chapter 1 and [42] for example) simulta-

neous existence of the non-trivial steady state and stability of the extinction

state requires

g0 < σ(
α

ω
) < σ(x̃) < g0,

which is impossible. However, re-introducing the TE immune cells changes

the condition (4.5) for the non-trivial steady state to

g(ũ) =
σ(x̃)

γ(ỹ)
.

Assuming that ỹ > 0, we have γ(ỹ) > 1, thereby allowing us to choose param-

eters so that
σ(x̃)

γ(ỹ)
< g0 < σ(x̃),

guaranteeing the existence of a biologically realistic, non-trivial steady state

at the same time that extinction is stable.

We note that the bistability we have described here is possible in the

Kuznetsov model (see Figure 5(d) in [91]), but requires that x̃ < α
ω

, which

may not be biologically sound. We also note that in the TE version of the

model, the CT immune cell steady state may satisfy x̃ < α
ω

because of the

effects of tumor education.
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4.2.3 Quasi-Steady State Analysis: Fast Tumor, Slow

Immune

In the following two sections, we assume relative magnitudes of the model

parameters in order to perform quasi-steady state analysis of the model using

methods from geometric singular perturbation theory [69]. In this section,

we assume that the tumor dynamics are fast relative to those of the immune

system, and in the following section we consider the opposite case.

In order to perform the analysis, we bring the model 4.1 into a convenient

form. Let U = u, V = (x, y), and Z = (u, x, y). With this notation, our model

(4.1)can be written as
dU

dt
= F (Z; ε)

dV

dt
= Ĝ(Z; ε),

(4.6)

where
F (Z; ε) = γ(y)(g(u)u+ φ)− σ(x)u

= γ(y)(g(u)u+ φ̂ε)− σ(x)u

=
du

dt

and

Ĝ(Z; ε) =

(
α + λ(u)x− ρux− ωx− ed(u)x

qψ + ed(u)x+ f(u)y − τy

)

=

(
α̂ε+ ˆλ(u)εx− ρ̂εux− ω̂εx− ˆed(u)εx

qψ̂ε+ ˆed(u)εx+ ˆf(u)εy − τ̂ εy

)

=

(
dx
dt
dy
dt

)
= εG(Z).

(4.7)

Assuming that the tumor dynamics are fast relative to the immune dynamics,

we can factor a small parameter, 0 < ε � 1, from the immune parameters,
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resulting in the so-called ‘fast’ system [69]

dU

dt
= F (Z; ε)

dV

dt
= εG(Z).

(4.8)

With the change of variables τ̂ = εt, we arrive at the associated ‘slow’ system

[69]

ε
dU

dτ̂
= F (Z; ε)

dV

dτ̂
= G(Z).

(4.9)

The equations (4.8) and (4.9) are equivalent for ε > 0, but we are most

interested in studying the reduced systems that come from considering the

limiting case ε→ 0. Letting ε→ 0 sees equations (4.8) and (4.9) become

dU

dt
= F (Z; 0)

dV

dt
= 0

(4.10)

and
0 = F (Z; 0)

dV

dτ̂
= G(Z; 0),

(4.11)

respectively. Equations (4.10) and (4.11) make up the ‘reduced’ system. The

object of interest in this section is the slow manifold,

M1 =
{
Z ∈ R3|F (Z; 0) = 0

}
, (4.12)

which describes the U nullcline (when φ = 0). In other words, on M1, U is

in steady state insofar that dU
dt

= 0, meaning that changes in V (the immune

population) result in (near) instantaneous changes in the U dynamics. Con-

sequently, if the V dynamics are understood, then so too are the U dynamics

[69, 82]. More precisely, we show that the slow manifold, M1, can be written

as a graph, U = U(V ). We also provide an explicit expression for M1 for
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specific choices of functional parameters. Such a description of M1 allows us

to reduce the system of 3 ODEs to a system of 2 ODEs, with the dynamics

organized by M1.

Theorem 5. Assume that γ(y)g0 > σ(x). Then we can write M1 as a graph,

U = U(V ).

Proof. M1 is defined by the equation

F (Z; 0) = γ(y)g(u)u− σ(x)u = 0,

which can be expressed as

γ(y)g(u)u = σ(x)u. (4.13)

Note that if u = 0, (4.13) is trivially satisfied. So, WLOG, we assume that

u > 0 (Lemma 5). In this case, (4.13) reduces to

γ(y)g(u) = σ(x). (4.14)

The RHS of (4.14) is positive and constant in u, while the LHS begins at

γ(y)g0 > σ(x) and decreases to zero by u = K. Clearly, there is a unique

solution, u = u(x, y), to (4.14) for each fixed, non-negative value of x and y.

The result follows.

Next, we characterize the general behavior of the surface M1.

Corollary 3. The graph of M1, u = u(x, y), is such that ux < 0 and uy > 0.

Proof. First, we show that ux < 0. Differentiating both sides of (4.14) with

respect to x gives

d

dx
(γ(y)g(u(x, y))) =

d

dx
(σ(x))

γ(y)g′(u(u, y))ux(x, y) = σ′(x).
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By assumption, we know that γ(y)g′(u(x, y)) < 0 and σ′(x) ≥ 0, so we can

isolate

ux(x, y) =
σ′(x)

γ(y)g′(u(x, y))
< 0 (4.15)

as claimed. Similarly for the uy result, we differentiate (4.14) with respect to

y,
d

dy
(γ(y)g(u(x, y))) =

d

dy
(σ(x))

γ′(y)g(u(x, y)) + γ(y)g′(u(x, y))uy(x, y) = 0.

Solving for uy and using the assumptions (A4.1) gives

uy(x, y) =
−γ′(y)g(u(x, y))

γ(y)g′(u(x, y))
> 0. (4.16)

The final result in this section concerns the suitability of using geometric

singular perturbation analysis in order investigate the model, and relies on the

following theorem due to Fenichel [69].

Theorem 6 (Fenichel). Suppose M0 ⊆ M1 is compact, possibly with bound-

ary, and normally hyperbolic, that is, the eigenvalues λ of the Jacobian ∂F
∂U

all

satisfy <(λ) 6= 0. Suppose F and G are smooth. Then for ε > 0 and suffi-

ciently small, there exists a manifoldMε, O(ε) close and diffeomorphic toM0

that is locally invariant under the flow of the full problem (4.8).

Note that by Lemma 6, our dynamics will take place over a bounded domain

in R3, and so the function u = u(x, y) from Theorem 5 will be bounded and

need only be considered over a bounded domain of R2. Additionally, the

continuity of u(x, y) ensures that its image over a compact domain is itself

compact. Therefore, M1 ⊆ R3 is compact.

We can also easily compute the Jacobian

∂F

∂U
= γ(y)(g′(u)u+ g(u))− σ(x).
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On M1, (4.14) holds so that the above reduces to

∂F

∂U
= γ(y)g′(u)u < 0

(assuming that u > 0). This means exactly that M1 is normally hyperbolic

and so we have shown the following result:

Proposition 3. For sufficiently small ε > 0, the dynamics of the reduced

system 4.11 on the slow manifold M1 provide a reasonable approximation (in

the sense of Theorem 6) of the full system (4.9).

The slow manifold, M1, together with several solution trajectories is pre-

sented in Figure 4.2. The threshold functions γ(y) and σ(x) are responsible

for the formation of 4 distinct regions of the surface. Regions I and IV corre-

spond to a medium sized tumor when the effects of CT and TE immune cells

balance each other, while TE immune effects dominate in region II, and CT

immune effects dominate in region III. Biological interpretation of Figure 4.2

is provided in the discussion (Section 4.4).

We choose g(u) = r(1− u
K

). In this case, the slow manifold M1 is defined

explicitly by the equation

u(x, y) =
K (γ(y)r − σ(x))

γ(y)r
. (4.17)

4.2.4 Quasi-Steady State Analysis: Slow Tumor, Fast

Immune

In this section, we assume instead that the dynamics of the tumor are slow

relative to those of the immune system. This assumption is biologically rea-

sonable, as immune dynamics — such as immune response to an injury —

occur on the timescale of minutes or hours [113], whereas tumor dynamics, es-

pecially dormant metastases, can be on the timescale of years or even decades

[64].

To begin, we reformulate the setting. As before, we have U = u, V = (x, y),

Z = (u, x, y), and 0 < ε � 1, so that the model (4.1) can be written as in
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II

I

III

IV

Figure 4.2: 2D slow manifold defined by equation (4.17) (surface) together with
solution trajectories beginning at (u0, x0, y0) = (0, 0, 0) that differ only in the CT
immune cell influx rate, α (increasing from blue to red). See Section 4.4 for inter-
pretation.

(4.6). However, in this case assume that g(u) and σ(x) are of O(ε) so that we

can write

F (Z; ε) = γ(y)(g(u)u+ φ)− σ(x)u

= γ(y)(εĝ(u)u+ φ̂ε)− εσ̂(x)u

= εF̂ (Z)

=
du

dt
.

We also assume that the coefficients in G are no longer of O(ε), leaving us

with

G(Z) =

(
α + λ(u)x− ρux− ωx− ed(u)x

qψ + ed(u)x+ f(u)y − τy

)
=

(
dx
dt
dy
dt

)
, (4.18)

where G no longer depends on ε. Under these assumptions, we can write

our model as the singular system (abusing notation and writing F for F̂ for

simplicity)
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dU

dt
= εF (Z; ε)

dV

dt
= G(Z).

(4.19)

As before, letting τ̂ = εt gives the associated ‘slow’ system

dU

dτ̂
= F (Z; ε)

ε
dV

dτ̂
= G(Z).

(4.20)

Letting ε→ 0 gives the reduced system

dU

dt
= 0

dV

dt
= G(z),

(4.21)

and
dU

dτ̂
= F (Z)

0 = G(Z).
(4.22)

The slow manifold in this case is defined by

M2 =
{
Z ∈ R3|G(Z) = 0

}
. (4.23)

Figure 4.3 shows a plot of the null surfaces defined by setting du
dt

= 0

(purple), dx
dt

= 0 (blue), and dy
dt

= 0 (red). The intersection of the immune-

related null surfaces defines the slow manifold M2 (green curve), while the

intersections of all three surfaces (open circles) define the steady states of the

system. We now provide a few results concerning the manifold M2.

Lemma 7. The manifold M2 is normally hyperbolic.

Proof. We compute the Jacobian

∂G

∂V
(Z) =

(
λ(u)− ρu− ω − ed(u) 0

ed(u) f(u)− τ

)
(4.24)
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Figure 4.3: Null surfaces of the model (4.1). Blue is dx
dt = 0, red is dy

dt = 0 and

purple is du
dt = 0. The slow manifold is the intersection between the x and y null

surfaces, denoted by the green curve. Intersections of all three surfaces (denoted
by circles) are steady states. Parameters as in Table 4.2, with the exception of
max1 = 2.5, up1 = 0.1, φ = 0, and ψ = 0.

and note that the diagonal entries are both negative as a consequence of as-

sumptions (A4.2) (λmax < ω and fmax < τ).

Proposition 4. We can write M2 as a graph, (u, x, y) = (u, x(u), y(u)).

Proof. Fix u ≥ 0. M2 is defined via G(Z) = 0. More explicity, this means

that both of the following equations hold:

0 = α + λ(u)x− ρux− ωx− ed(u)x

0 = qψ + ed(u)x+ f(u)y − τy.
(4.25)

The assumptions (A4.2) allow us to solve the first expression explicitly for x,

yielding

x = x(u) =
α

− (λ(u)− ρu− ω − ed(u))
> 0, (4.26)

which is an explicit expression for x = x(u). Similarly for y, we can solve the
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second equation in (4.25) in terms of u and x as

y =
qψ + ed(u)x

− (f(u)− τ)

=
qψ + ed(u)x(u)

− (f(u)− τ)
> 0,

(4.27)

thereby giving us an explicit expression y = y(u).

Combining the previous proposition together with the boundedness of our

system, we conclude, as in the previous section, thatM2 ⊆ R3 is compact and

we can use Fenichel to arrive at the following result.

Theorem 7. For sufficiently small ε > 0, the dynamics of the reduced system

4.22 on the slow manifoldM2 provide a reasonable approximation (in the sense

of Theorem 6) of the full system 4.20.

Therefore, to understand the dynamics of the full system, we need only

investigate the dynamics of the reduced system. In order to obtain explicit

characterizations of the dynamics alongM2, we will now choose specific forms

for our functional parameters.

The choices of functional coefficients in this chapter are similar to the

choices made in Chapter 3. We briefly outline the choices below:

• Tumor growth,

g(u) = r
(

1− u

K

)
,

where r denotes an intrinsic growth rate, and K is a carrying capacity.

• TE immune cell enhancement of tumor growth,

γ(y) = ν(y;min1,max1, low1, up1),

where ν is as defined by equation (3.8), and where min1 = 1.

• Tumor cell death rate,

σ(x) = ξ(x;min2,max2, low2, up2),
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where ξ is defined by the equation (3.9).

• CT (TE) immune cell recruitment mediated by the tumor density,

λ(u) =
a1u

b1 + u
,

and

f(u) =
a2u

b2 + u
,

repectively.

• Tumor education of CT immune cells,

ed(u) = χu.

For a full explanation of all the model parameters, their meaning, and justifi-

cation of the model, we refer the reader to the detailed descriptions in Section

3.1.

Having made the above choices for functional coefficients in our model, we

arrive at the following description of the dynamics along the slow manifold

M2 in terms of the derivatives xu = ∂x
∂u

and yu = ∂y
∂u

, where x(u) and y(u) are

as in (4.25) and (4.27), respectively.

Proposition 5. xu > 0 for u < u+ and xu < 0 for u > u+, where

u+ = −b1 +

√
a1b1

ρ+ χ
.

Additionally, yu > 0 for all 0 ≤ u ≤ K.

Proof. We compute the derivatives xu(u) and yu(u). We begin with xu:

xu(u) = ∂u

(
α

− (λ(u)− ρu− ω − ed(u))

)
=

α (λ′(u)− ρ− ed′(u))

(λ(u)− ρu− ω − ed(u))2 .

(4.28)
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Figure 4.4: The slow manifold, M2 (red) and the solution to the system (4.1).
Initial conditions (u0, x0, y0) = (0, 1, 0). Parameters as in Table 4.2.

The sign of xu depends entirely on the sign of

λ′(u)− ρ− ed′(u).

With the choices we made for λ(u) and ed(u), we arrive at the following chain

of equivalent conditions:

xu(u) > 0

λ′(u)− ρ− ed′(u) > 0

a1b1

(b1 + u)2
− ρ− χ > 0

a1b1

ρ+ χ
> (b1 + u)2

0 > u2 + 2b1u+ b2
1 −

a1b1

ρ+ χ
.

(4.29)
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The roots to the above quadratic are given by

u+,− = −b1 ±

√
a1b1

ρ+ χ
. (4.30)

This gives distinct, real roots (assuming that a1b1 6= 0) with at least one of

them negative. If u+ > 0, then we see that xu > 0 for u < u+ and negative

otherwise. If u+ < 0, then we simply have xu < 0 for all non-negative u.

Next, we consider yu. We show simply that yu is non-negative, as

yu(u) = ∂u

(
qψ + ed(u)x(u)

− (f(u)− τ)

)
=
−(ed′(u)x(u) + ed(u)xu(u))(f(u)− τ) + (qψ + ed(u)x(u))f ′(u)

(f(u)− τ)2

≥ −(ed′(u)x(u) + ed(u)xu(u))(f(u)− τ)

(f(u)− τ)2
.

(4.31)

The final inequality results from the fact that (qψ+ ed(u)x(u))f ′(u) ≥ 0 since

f is increasing (A4.1). Now, we can use the expressions for x(u) and xu, as

well as our choice of ed(u) = χu to arrive at

(4.31) =

[
χα

−(λ(u)− ρu− ω − ed(u))
+

χuα(λ′(u)− ρ− ed′(u))

(λ(u)− ρu− ω − ed(u))2

]
(τ − f(u))

=
χα

−(λ(u)− ρu− ω − ed(u))
(τ − f(u))

[
1− u(λ′(u)− ρ− ed′(u))

λ(u)− ρu− ω − ed(u)

]
.

(4.32)

The sign of this expression depends only on the sign of the term[
1− u(λ′(u)− ρ− ed′(u))

λ(u)− ρu− ω − ed(u)

]
=
λ(u)− ω − ed(u)− λ′(u)u+ ed′(u)u

λ(u)− ρu− ω − ed(u)
.

By assumption (A4.2), the denominator is always negative, and therefore the

sign of the above expression is determined by the sign of its numerator. With

the choices for ed(u) and λ(u) made above, the numerator simplifies to

u2(a1 − ω)− 2b1ωu− ωb2
1

(b1 + u)2
.
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Using the fact that a1−ω < 0 (A4.2) guarantees that the quadratic is negative

for all u ≥ 0, and therefore yu(u) ≥ 0 for all u ≥ 0.

4.2.5 Number of Steady States and Bifurcation Analy-

sis

In the situation of fast immune dynamics and slow tumor dynamics, Theorem

7 and Proposition 4 allow us to reduce the system of 3 ODEs in (4.1) to a

single ODE in the tumor cell density, u,

du

dt
= γ(y(u))(g(u)u+ φ)− σ(x(u))u = H(u;φ). (4.33)

Consequently, the questions of number and stability of steady states reduce

to the number of solutions to H(u;φ) = 0 and the sign of H on either side

of these solutions, respectively. In this section, we investigate the number of

possible steady states as well as the possibility of bifurcations in the parameter

φ ≥ 0, which have relevance to dynamics of metastatic disease upon treatment

of the primary tumor.

While a full characterization of all possible steady states is not available

at present, we provide a brief discussion of the problem itself, and observed

behavior of the model.

Of interest is the number of solutions to

H(u;φ) = γ(y(u))(g(u)u+ φ)− σ(x(u))u = 0.

We can evalute H(0;φ) = γ(y(0))φ > 0. Note that the boundedness and

positivity of σ and γ guarantee the existence of a sufficiently large value of u

(call it u∗) such that H(u∗;φ) = γ(y(u∗))φ− σ(x(u∗))u∗ < 0. Therefore, we

always have at least one positive steady state, u ∈ [0, u∗].
Furthermore, the behavior of x(u) and y(u) on the slow manifold M2 has

been characterized (Proposition 5). Indeed, since y(u) is increasing in u, and

γ is an increasing function, we know that the term γ(y(u))φ is increasing in

u. In contrast, because g(u) is decreasing in u, the expression γ(y(u))g(u)
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Parameter 1 2 3 4 5 6

max1 2.5 2.5 2.5 1.5 0.2 0.2
low1 — — — 0.5 — —
up1 0.095 0.095 — 0.95 0.095 0.095
min2 9.085× 10−6 9.085× 10−6 — 9.085× 10−5 9.085× 10−6 9.085× 10−6

max2 — — — 7.268× 10−4 — —
low2 0.2 0.2 — 7.268× 10−4 0.2 0.2
r 2.0× 10−4 2.0× 10−4 2.0× 10−4 8.0× 10−4 2.0× 10−4 2.0× 10−4

φ 1.25× 10−6 0 6.25× 10−6 0 5.0505× 10−7 0

Table 4.1: Model parameters used in Figure 4.5 that differ from those in Table
4.2.

may not be monotonic. We have determined that it begins at a positive value

no smaller than g0 and evalutes to zero for u ≥ K. The exact behavior

is rather complicated. Instead of a full analysis, we present a few cases in

Figure 4.5 to show the richness of the possibilities. The parameter values

used to generate the plots in Figure 4.5 are in Table 4.1, but we note that the

presented parameter values are by no means the only ones capable of producing

the number of steady states shown in Figure 4.5 (see Figure 4.7 for example).

The final expression included in H is the death term, σ(x(u))u. While it

is assumed that σ is decreasing, we know that xu changes from positive to

negative at the value u+. The exact dynamics of the term σ(x(u))u therefore

depend on the value of u+ and the choice of σ. The details are left for future

study.

For the specific choices of functional parameters we have made here, how-

ever, it is possible to see anywhere from 1 to 6 solutions to H(u;φ) = 0 (as

highlighted in Figure 4.5). These results are similar to those presented in [91],

where they found that their model had at most 5 steady states. We also note

that, based on the approximation results in Theorem 7, we can view the plots

in Figure 4.5 as phase line diagrams. Consequently, the stability of the steady

states are simply determined by the sign of H(u;φ) on either side of the root,

u∗: if H(u;φ) > 0 as u→ u∗ from the left, and H(u;φ) < 0 as u→ u∗ from the

right, then u∗ is stable, otherwise it’s unstable. These results are highlighted

in Figures 4.5 and 4.6 using solid dots to denote stable steady states, and open

dots to denote unstable steady states.
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Figure 4.5: Phase line diagrams for the 1D system (4.33) showing possibilities
for the number of steady states. Plots of du

dt = H(u;φ) resulting in 1, 2, 3, 4, 5,
or 6 steady states — indicated by circles. Solid circles denote stable states and
open circles denote unstable states. Parameters adjusted from those in Table 4.2 as
indicated in Table 4.1.
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Figure 4.6: Solution trajectories for u for the system (4.1), with initial conditions
varying between 0 and 1 (increasing from blue to red). Inset: the corresponding
plot for du

dt on the slow manifold M2. Steady states are where du
dt = 0 and are

denoted by circles. Open circles indicate unstable, while solid circles represent
stable. Parameters as in Table 4.1 (5).

Confirmation of these approximation results are presented in Figure 4.6,

where, in addition to the phase line diagram, we also plot solution trajectories

for u for the full model (4.1) with varying initial conditions between 0 and

1 (increasing from blue to red). In the solution plots, the locations of stable

and unstable steady states is clear, and the alignment with the phase line dia-

gram is good, suggesting that our slow-manifold approximation is a reasonably

accurate approximation of the dynamics of the full system (4.1).

Next, we consider bifurcations in the tumor cell source term, φ. With φ

representing the rate of establishment at the secondary site, the role it plays in

the dynamics is of great interest to treatment outcomes. Here we investigate

the role of φ on the number of steady states in the model by varying φ around

the base value reported in Table 4.2. Figure 4.7 shows the results of this
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analysis for two values of the parameter max1, with the plot on the left made

using the smaller value of max1. In both plots we see that for larger values of φ

the model predicts a single stable steady state, corresponding to full metastatic

disease. However, as we decrease φ, a new branch of steady states emerges.

This emergence corresponds to the du
dt

curve hitting and then passing the origin

(see, for example, Figure 4.10), creating one, then a pair of new solutions to
du
dt

= 0. Following the creation a new branch of steady states, there exists a

range of values for φ in which bistability is possible (marked in blue). Although

bistability is not continued to the origin in the case of a smaller max1 (left),

increasing the maximum value of the TE growth enhancement function allows

us to extend this period of bistability to the origin, φ = 0.

Relevant to treatment is the case φ = 0. In the left plot, only the tumor-

free state is stable (bottom branch), meaning that removal of the source φ will

always result in disease extinction. In comparison, the right plot allows for

bistability in the case φ = 0, with the final outcome — disease extinction or

persistence — governed by the location of the unstable steady state (saddle).

The implications of this in the context of treatment are explored further in

the following section (see Figure 4.10).

Finally, we note that we have only presented numerical results for a spe-

cific parameter regime, but given explicit choices for functional the functional

coefficients — σ(u), ed(u), f(u), g(u), γ(y), and σ(x) — the analysis of the

phase-line diagrams provides insight into the general behavior. Indeed, the

process of appearing/disappearing steady states described above can be ap-

plied to the cases in which we have more than 3 steady states, as illustrated in

Figure 4.5. The explanation of these bifurcations by way of the phase-line di-

agrams resulting from the quasi-steady state approximation of our full system

demonstrates the effectiveness of this approach.

4.3 Numerical Results

In this section we perform numerical simulations of the model. We begin

by obtaining a baseline set of parameters informed by the currently available
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Figure 4.7: Steady state solutions to H(u;φ) = 0 for varying values of φ. Green
denotes stable and red denotes unstable. Left: parameters as in Table 4.2. Right:
The value of max1 increased to 2.5. Regions of bistability are in blue/violet. There
are regions in both plots with 1, 2, or 3 steady states, demonstrating that the choices
in Figure 4.5 and Table 4.1 are by no means unique.

literature where possible. Once we have obtained a set of baseline parameters,

we perform a parameter sensitivity analysis in order to investigate the relative

importance of the various model parameters on tumor density. We follow this

analysis with the numerical simulation of various treatments, and explain the

results in terms of the quasi-steady state analysis performed in the previous

section.

4.3.1 Parameter Estimation

The choices of functional coefficients in this chapter are similar to the choices

made in Chapter 3, and were outlined in the previous section. As in Chapter

3, parameter estimates were obtained from the literature when available, and

informed choices were made when no such estimation was possible. For the

baseline parameters presented in Table 4.2, the following assumptions have

been made. We have chosen K = 1 for simplicity. The growth rate, r, was

estimated by fitting a logistic growth curve to normalized tumor growth data

from [112]. The parameters that our model shared with the Kuzntesov model

[91] were estimated by using the dimensional parameters presented in [91] and

non-dimensionalizing by assuming that the baseline CT immune and tumor
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cell densities are 107 and 5×108, respectively. The CT immune cell influx rate,

α, was assumed as α = ω in order to normalize the disease-free density of CT

immune cells (this differs from Kuznetsov’s choice for α). In order for the slow

manifold approximation to hold, we have increased the value of the immune

parameters, and decreased the value of the tumor parameters — each by a

factor of 10.

Threshold parameters have been estimated in the following way. Assuming

that a tumor population initiates a CT immune response, and that the immune

system can effectively activate and destroy sufficiently small tumors, we have

chosen low2 = α
ω

= 1, and min2 to be chosen such that upon primary tumor

removal, the disease-free steady state is stable (i.e. r < σ
(
α
ω

)
: see also Figure

4.7 (left)). The values of up1,2, max1,2, and low1 were chosen in order to have

the rates change in time (i.e. the thresholds were passed at least once).

Finally, the TE immune related parameters. The rate of tumor education

of immune cells was informed by [34, 86], but also chosen so that the tumor

density u+ (see Proposition 5) was approximately 0.1. The growth and death

parameters a2, b2, and τ were tuned from the Kuznetsov values to achieve a

total immune population near the end of the simulation of approximately 1.

The results of this estimation process are summarized in Table 4.2.

Using the parameters in Table 4.2 as our baseline parameters, we performed

a basic parameter sensitivity analysis in order to determine the relative im-

portance of the model parameters on the system outcome. A baseline solution

for our tumor density, u, was obtained using the parameters in Table 4.2.

For each model parameter, solutions were obtained for 30 different choices of

the parameter value taken from the range ±70% of the baseline value. The

value of 70% was chosen in order that the solutions to our system remained

bounded. Among the solutions obtained for the various parameter values, the

ones that differed most significantly from the baseline solution were reported.

We reported the maximum differences because they show the most extreme re-

sults among the values tested and allows for meaningful comparisons between

parameters. This process was done at three time points in Figure 4.8 — one

early in disease progression, one in the late-middle stage of the disease, and a

final time point when all solutions have reached steady state value — and at
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Parameter Description Value Units References

r tumor growth rate 1.82× 10−4 1/time [91, 112]
K tumor carrying capacity 1 density —
min1 min TE growth 1 — —
max1 max (increase) TE growth 1.48 — —
low1 growth activation 5× 10−2 density —
up1 growth saturation 0.2 density —
φ CTC arrival 2.5× 10−5 density/time [137]

min2 min death 1.82× 10−4 1/time —
max2 max (increase) death 1.82× 10−4 1/time —
low2 death activation 1 density —
up2 death saturation 1.2 density —
α CT immune influx rate 7.5× 10−3 density/time [91]
a1 CT expansion rate 2.26× 10−2 1/time [91]
b1 CT expansion damping 0.404 density [91]
ρ fatal immune-tumor interaction rate 3.11× 10−2 1/time [91]
ω CT decay rate 7.5× 10−3 1/time [91]
χ immune education rate 4.9× 10−3 1/time [34, 86]
q proportion successful TE 0.8 — [19]
ψ TE shedding 1× 10−3 density/time [137]
a2 TE expansion rate 1× 10−2 1/time [91]
b2 TE expansion damping 0.485 density [91]
τ TE decay rate 2.27× 10−2 1/time [91]

Table 4.2: Model Parameters and the values used in presented simulations.
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54 time points with time increments of two weeks in Figure 4.9 to highlight

the effect of the different parameters in time.

In Figure 4.8 we present the maximum percentage change in tumor density

at times T = 14 days (A), T = 560 days (B), and T = 1484 days (C).

Red bars indicate that the observed change occured as a result of decreasing

the parameter of interest, while green bars indicate that an increase in that

parameter was responsible for the observed change. There are two parameters

that play a major role in tumor density at early times (A): the TE immune cell

decay rate, τ , and the establishment rate of CTCs, φ. Decreasing τ results in

a significant increase in the tumor density by allowing for a larger TE immune

population at the metastatic site, thereby allowing for successful establishment

and growth early in disease progression. On the other hand, increasing τ has

little effect on the model dynamics. Not surprisingly when considering the

biological context, φ is the most sensitive parameter at 14 days. Indeed, early

growth of the metastatic tumor depends almost entirely on the source of cells

from the primary site. Increasing (decreasing) the source of cells arriving at

the secondary site can markedly increase (decrease) the early growth of the

secondary tumor. At this early stage in the disease, the remaining parameters

have a limited effect.

In contrast to the early effects, (B) shows that all the parameters have a

noticeable sensitivity at the later time point. Although φ remains the most

sensitive to cause a decrease in tumor density, it is no longer alone in hav-

ing a significant effect. Indeed, the tumor growth rate, r, together with the

minimum and maximum tumor cell death rates, min2 and max2 can also

significantly decrease the tumor density at later times compared to baseline.

Moreover, min2 is the parameter responsible for the largest increase in tumor

density compared to baseline. We also observe a that TE immune parameters

are better able to increase tumor density compared to CT immune parameters,

while the opposite is true with respect to affecting a decrease in tumor den-

sity, where CT immune parameters are more sensitive than their TE immune

counterparts.

By time T = 1484 days, the system has now settled at a steady state,

and so (C) allows us to compare the effects of different parameters on steady
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Figure 4.8: Maximum percentage change in tumor density compared to baseline
at time T = 14 days, T = 560 days, and T = 1484 days. Red bars indicate that the
resulting change in tumor density resulted from a decreased parameter value, while
increased parameters are indicated by the green bars. Further details in the text.
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state values. Decreasing the minimum tumor death rate, min2, results in

the largest increase in steady state tumor size. Close behind are the growth

parameters, r and max1, and the source term φ. We also note that increases

in the CT immune influx rate or tumor-mediated recruitment rate result in

larger tumors, but different increases to these same values also result in some

of the smallest tumors. As was the case at time T = 560 days, the parameters

capable of affecting the largest decrease in tumor size are the source term φ

and the tumor growth rate, r.

Based on the stark difference between sensitivities at different time points,

we performed the same sensitivity analysis at intervals of 2 weeks for 54 total

observations (we also performed the same analysis for 107 2 week increments,

but the plots looked similar to those presented here, and so are left out). Figure

4.9 shows the percentage increase (top) and decrease (bottom) for each of our

model parameters (horizontal axis) over the course of 108 weeks (vertical axis).

Percentages are indicated by the color bars. Consider first the top plot. Most of

the parameters have similar effects progressing through time: increasing until a

point of maximal influence, followed by a period of decreasing influence. What

this pattern tells us is when, relative to the baseline solution, the growth is most

influenced by the parameter of interest. Take the most sensitive parameter at

large times, min2, as an example. For small times, we see little change from

baseline. However, around the t = 15 (2 week increments) mark, we see the

difference between baseline increase to a maximum of nearly 500% by t = 25.

This period of increase reflects the fact that the baseline solution remains

relatively unchanged over this period, whereas the perturbed solution is in a

phase of rapid growth. The period of decreased effect compared to baseline

(beginning at t = 25) is indicative of the perturbed system arriving at steady

state, and the control system ‘catching up’. Finally, at long times when both

solutions are in steady state, we see the effect of the parameter perturbation

on the steady state (Figure 4.8 can be interpreted in this way). With this view,

we can see that the effects of min2 are relatively late in disease progression

compared to τ or up1, but changes in min2 result in the largest change in

steady state value. We also note that φ is most sensitive for early times, and

only results in a (relatively) modest increase in steady state value.
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The second plot in Figure 4.9 can be viewed similarly and interpretation

can be aided by consulting the plots in Figure 4.7. Indeed, φ has a significant

impact on tumor size from the beginning, as expected. By the end of the test

period, we can see that the solution perturbed in φ is a very small fraction of

the baseline solution. Such a difference at the end of the time period suggests

settlement at a significantly different steady state. We can see that this is

in fact the case by consulting the left hand side of Figure 4.7, wherein the

value of φ for our baseline solution (φ = 2.5 × 10−5) is to the right of the

region of bistability, and the value of φ responsible for the greatest decrease in

tumor density relative to baseline is within the region of bistability. Because

all solutions begin with u = 0 initially, the solution will approach the lower of

the two stable states. A similar phenomenon is also likely for the parameters

that see a difference from baseline of ≥ 60% (tumor growth, death, and the

CT immune dynamics). The parameters that do not see such large changes

from baseline likely do not induce similar bifurcations. As a final note, the

source term φ is always the most sensitive in the case of decrease.

Even with parameters estimated from the literature when possible, Figures

4.8 and 4.9 reveal the importance of accurate parameter estimation in order to

inform novel biological investigations. In particular, if the baseline parameters

are close to a bifurcation value, caution must be execised. We note, however,

that the parameters estimated in Kuznetsov [91] also resulted in their system

being relatively close to a separatrix.

4.3.2 Simulations: Primary Resection

We now use our parameterized model to investigate the possible implications

of the immune-mediated theory of metastasis. In this section we consider the

effects of primary resection on the metastatic tumor. Figure 4.10 demonstrates

the effect of bistability discussed in Section 4.2.5 on the results of primary

resection. Figure 4.10 (A) shows the tumor density as a function of time. The

black curve is the control, while the red and green curves are the dynamics at

the secondary site upon primary resection — simulated by setting the source

terms φ = ψ = 0 — at various times. If primary resection is performed
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sufficiently early in the progression of the metastatic tumor, we can see disease

extinction (green curves). If, however, primary resection is done at a later time,

we see persistent metastatic disease (red curves).

To confirm the suitability of using the slow-manifold approximation 4.33 to

analyze the model dynamics, we compare our solution trajectories in (u, x, y)

space to the slow manifold(s)M2. Figure 4.10 (B) shows the model dynamics

and the slow manifolds projected onto the x − y plane. The manifolds are

monotonically increasing in u beginning at (u, x, y) = (0, 1, 0) (blue, dashed

line) and (u, x, y) = (0, 1, qψ
τ

) (black). All solutions begin at (u0, x0, y0) =

(0,α /ω, 0) = (0, 1, 0) and quickly travel to the slow manifold (black, dashed

line). The control dynamics travel alongM2 until the full-disease steady state

(marked as a black circle) is reached. The remaining trajectories travel along

M2 until primary resection occurs and the source terms φ and ψ are set to

zero. Not only does removing the source terms change the dynamics, it also

shifts M2 down along the y-axis to the blue dashed line.

Upon resection, solutions quickly jump between the φ 6= 0, ψ 6= 0 manifold

(black) to the φ = ψ = 0 manifold (blue). Solutions landing on the blue M2

below the open circle are destined for extinction (blue solid circle at (0, 1, 0)),

while those that land above the open circle result in persistent metastatic

disease (left blue solid circle). The close agreement of the model dynamics

and the slow manifold(s)M2 allow us to use the slow-manifold approximation

4.33 to determine the number, location, and stability of steady states in the

model.

Plot (C) shows the dynamics of du
dt

as determined by (4.33) for the case when

φ and ψ are non-zero (black), and for the resection case, φ = ψ = 0 (blue).

The control dynamics show a single, stable steady state that corresponds well

with the observed behavior in plots (A) and (B). The post-resection case shows

the existence of 3 steady states: a stable, persistent metastatic disease state,

a stable disease-free state (solid blue circles), and an unstable saddle node

between them. Note that the location of the saddle node coincides with the

‘threshold’ tumor density that determines whether or not primary resection

will be successful at disease eradication. Therefore, the success of primary

resection is determined entirely by the location of the saddle node in the post-
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Figure 4.10: Results of simulated primary resection. Primary resection was sim-
ulated by setting the source terms, φ = 0 and ψ = 0 at different times. (A)
The effect of primary resection on secondary tumor growth. Early interventions
result in disease extinction (green) and late interventions result in disease persis-
tence (red). (B) Model dynamics in 3-space, with the slow manifold for φ, ψ 6= 0 is
the dashed black curve, and the dashed blue curve denotes the slow manifold when
φ = 0 = ψ. (C) Phase line diagrams for the cases when the source is on (black)
and off (blue). Steady states are indicated by circles, solid representing stable and
hollow representing unstable. The steady states are also marked in plots (A) and
(B) for illustration. Parameters as in Table 4.2, with the exception of max1 = 2.5,
up1 = 0.1, and φ = 1.8519× 10−5.
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resection dynamics.

In contrast to the simple ‘turning off’ of the source terms φ and ψ used

to model primary resection in Figure 4.10, Figure 4.11 shows the effects of

simulating primary resection by including a transient, systematic inflamma-

tion response after resection [113]. At day 365, approximately when the tumor

reaches its steady state value (A), we simulate primary resection by setting

the source of tumor cells φ, to zero. We assume that for 7 days there will be

an inflammatory response to the surgery at the primary site. The inflamma-

tory response is modeled by increasing the CT immune cell influx rate, α, by

anywhere between 2 and 500 times. As a control, we include one trajectory in

showing the effects of not changing the CT immune response, as well as one in

which we halve the influx rate for the 7 day period of transient inflammation.

We also keep ψ 6= 0 over this week in order to model the pro-growth aspect

of the immune response. A week after the primary tumor has been removed,

the CT influx rate is returned to its original value, and increase the education

rate of CT immune cells by the tumor by a factor of 2.42. After these final

adjustments we allow the system to evolve without further interaction.

The results of these simulations are presented in Figure 4.11 (top). The

control dynamics are in black, and we see a small, persistent tumor that reaches

its maximum density after approximately one year. For low inflammatory re-

sponses to the primary resection, we see slow secondary tumor decay (green

curves), whereas larger inflammatory responses can result in rapid metastatic

growth after a varying period of little to no growth. As in the previous simu-

lations, these dynamics can be explained by the slow manifold approximation

(4.33), which is presented in the bottom half of Figure 4.11. The black curve

denotes the control dynamics and the blue curve denotes the post-resection

dynamics.

The control dynamics have three steady states: stable large and small

tumors separated by an unstable saddle. Of note is the close proximity of the

saddle to the smaller stable steady state — a small increase in the tumor

density here can result in the development of a much larger tumor. Because

φ = 0 post-resection, the extinction state an unstable saddle and the blue

curve has 4 roots, with 3 of them distributed similarly to the control case. In
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Figure 4.11: Results of simulated primary resection. Primary resection was sim-
ulated by setting the source term φ = 0. A transient immune response of 7 days
was simulated by changing the value of α for those seven days. Green curves had
α change by factors of 0.5, 1, 2, 5, and 10 (from bottom to top). Red curves had
α change by factors of 25, 50, 100, 250, and 500 (from right to left). After the
inflammatory response, we also set ψ = 0 and increased the education rate, χ, by a
factor of 2.42. Inset is an expanded depiction of the boxed region. Parameters as in
Table 4.2, with the exception of max1 = 2.5, r = 0.0002, and φ = 1.8519× 10−5.
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particular, the education increase factor of 2.42 was chosen to have the post-

resection saddle approximately equal to that of the control dynamics (see inset

detail).

The proximity of the small steady state in the control dynamics to the

saddle in the post-resection dynamics explains the different outcomes possible

in the top plot. Indeed, the transient, systematic inflammation response to

primary resection can result in a brief period of tumor growth at the secondary

site. If this growth is sufficient to pass the saddle node in the post-resection

dynamics, then our model predicts the development of a large metastatic tumor

(rightmost solid blue circle). Otherwise, the secondary tumor will decay to the

smaller, persistent tumor (leftmost solid blue circle).

4.3.3 Simulations: Immune Therapy

The final simulations we present in Figure 4.12 are of primary resection coupled

with an immune response in the case that the disease-free steady state is stable

in the post-resection dynamics. Primary resection occurs at time t = 243.85

days (indicated by arrow) and is simulated by setting both source terms, φ

and ψ, to zero. We also include a transient inflammatory response where the

CT immune cell influx rate is increased over the course of 7 days (marked as a

pink vertical band), and then returned to its original value on the seventh day

after primary removal. The effect of primary resection and an inflammatory

response of strength 50 (α increased by a factor of 50) is shown in the red

curve, where we see metastatic growth after a sustained period of little to no

growth (blue region). Decreasing the strength of the inflammatory response

to 49 gives us the magenta curve, and tumor extinction after a similar period

of little to no growth. With no inflammatory response (of strength 1), we see

rapid extinction of the metastatic tumor (green). Similar extinction results

can be observed with an inflammatory response of strength 50 if the tumor

education rate is decreased to 95% its original value (blue). As before, these

bistable dynamics are governed by the emergence of a saddle node between

two stable steady states in the post-resection dynamics (see Figure 4.10)
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Figure 4.12: Results of simulated primary resection with an induced immune
response. Primary resection was simulated by setting the source term φ = 0 and
ψ = 0 at time t = 243.85 days. A transient immune response of 7 days was simulated
by changing the value of α for those seven days (increased by factor of 50 in red
and blue, 49 in magenta, and no increase in green). The effect of decreasing the
education rate was tested (blue - decreased to 95% its original value starting at
time of resection until end of simulation). Time of primary resection indicated by
arrow. Transient period of inflammation indicated by the region in red. Region in
blue highlights delayed tumor growth or death. Parameters as in Table 4.2, with
the exception of max1 = 2.5, up1 = 0.1, and φ = 1.8519× 10−5.
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4.4 Discussion

In Chapter 4 we have introduced, analyzed, and simulated a model of tumor-

immune dynamics at a secondary site that includes both anti- and pro-tumor

effects of the immune system. By assuming tumor dynamics and immune

dynamics occur on different time scales and using techniques from geometric

singular perturbation theory and quasi-steady state analysis, we were able to

reduce the original system of 3 ODEs, making the model more amenable to

analysis.

In the case that tumor dynamics are fast relative to the immune dynamics,

our 3 ODE system reduces to a 2 ODE system and the dynamics take place

along the 2 dimensional slow manifold. Figure 4.2 shows the slow manifold

and solution trajectories for increasing (blue to red) values of α, the rate of CT

immune cell influx. A simple model of immunotherapy is to increase the value

of α, thereby supplying the tumor environment with more CT immune cells to

destroy the tumor cells. In this case, our model predicts 4 distinct outcomes

for tumor density. For small values of α, there will be a low immune presence,

resulting in a medium sized tumor (region I). As we increase the value of

α, the steady state tumor density (marked as black circles) is increasing and

moving towards the high plateau of region II, corresponding to a tumor in

which the pro-tumor effects of the immune system dominate. Increasing α

further, however, sees the CT immune cell population pass a critical threshold

where the anti-tumor effects of the immune system dominate, resulting in a

markedly lower final tumor density in region III. Increasing α further results

in a paradoxically larger tumor in region IV. Tumor education of CT immune

cells into pro-tumor TE immune cells is responsible for this climb between

regions III and IV.

Therefore, in the case of fast tumor and slow immune dynamics, our model

provides a possible explanation for the poor performance of some immunother-

peutic strategies. Indeed, if the tumor is able to educate infiltrating CT im-

mune cells, then increasing the source of these cells has the effect of increasing

the number of TE immune cells. This increase in TE immune cells allows the

tumor to grow larger, rather than die away. These results suggest that more
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careful study of the contradictory effects of the immune system may be needed

in order to increase the efficacy of immunotherapeutic strategies. We do note,

however, that these results have assumed fast tumor and slow immune dynam-

ics, which is most likely not the case, with tumor growth occuring on the scale

of months or years, and immune responses on the scale of minutes (a wound

healing response for example).

Consequently, it is of more interest biologically to study the case when

tumor dynamics are assumed to be slow relative to the immune dynamics,

which was the focus beginning at Section 4.2.4. Under the assumption of slow

tumor and fast immune dynamics, we showed that the model dynamics are well

approximated by the slow manifold approximation. Using the slow manifold

approximation allowed us to determine the steady states and their stability by

considering simple phase line diagrams. Upon parameterization of the model,

our analytical results gave a full explanation of observed dynamics, providing

insights that would not be possible otherwise. We now discuss the biological

interpretations of these analytic results.

Where possible, estimates were obtained from the literature, with the tu-

mor growth rate being fit to experimental data from Park [112] and a large

number of the CT immune parameters taken from Kuznetsov [91] which were

themselves fit to experimental data from Siu et al. [128]. Values for the source

terms, φ and ψ, were informed by the data presented by Weiss [137]. The

education rate of CT immune cells by the tumor, u, was based on the results

of den Breem and Eftimie [34], which were parameterized to data from Chen

et al [23]. Literature estimates for the parameters associated with TE immune

cells could not be found, and were assumed to be similar to the analogous

CT immune cell parameters. Only the threshold parameters in the functional

coefficients σ(x) and γ(y) could not be justified in some way by the litera-

ture, which was not unexpected given the relative novelty of the approach

taken herein. Therefore, we can be relatively confident that the simulations

presented above are somewhat representative of reality, but caution is always

prudent when estimating parameters from the literature (see the discussion in

[138] for example).

In order to address the potential uncertainty in our results arising from
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our parameter estimates, we have presented the results of a parameter sensi-

tivity analysis in Figures 4.8 and 4.9. While increases in tumor steady state

values were modest for most parameters, with the notable exception of the

minimum tumor cell death rate, min2, changes in many parameter values

could result in significantly smaller steady state tumor densities. In the case

of the tumor source term, φ, using numerical bifurcation analysis we found

that the creation of new steady states explained this phenomenon. Similarly,

Kuznetsov [91] found that their parameterized model was highly sensitive to

initial conditions because of the proximity of experimental initial conditions

to a separatrix. These bifurcations may provide insight into treatment strate-

gies, and is discussed in further detail below. Assuming that the parameter

estimates in Table 4.2 are accurate, the result that several parameters are

quite sensitive and result in bifurcation suggest that treatment options may

not need to be very strong, but must be appropriately targeted to effect one

of the most sensitive parameters.

We also found that the relative sensitivities of the model parameters varied

greatly in time. As intuitively expected, parameters that had early effects on

the tumor density were the source rate, φ, and the TE immune parameters,

up1 (saturation level) and τ (decay rate). Indeed, when our metastatic site

begins devoid of any cancer cells, it is clear that a source of cells to colonize the

site will have a great effect on the early dynamics. Moreover, the sensitivity of

the parameters associated with the TE immune population demonstrates the

importance of the PMN [84] on metastatic establishment and provides support

for the theory of immune-mediated metastasis [124]. The final parameter

we discuss here is the minimum tumor cell death rate, min2, which plays

a significant role in both increasing and decreasing the final tumor density.

Again, this result is fairly intuitive: increasing the death rate results in a

smaller tumor, and decreasing the death rate allows for the development of

a larger tumor. Unfortunately, this is one of the parameters for which no

reasonable estimate could be found in the literature. Our results suggest that

studies to determine the value of these death rates should be done in order

to increase the reliability of our model predictions and because they may be

important to inform treatment planning.
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Of particular relevancy to cancer treatment is the model dependency on the

source parameter φ. Although we have previously interpreted the decrease in

φ as a removal of the primary tumor, it may also be interpreted as interference

with successful establishment at a secondary site. As discussed in Chapter 1,

the use of anti-inflammtory medications that can inhibit tumor-platelet clump

formation has been shown to effectively decrease the incidence of metastasis.

Such an intervention could be interpreted in our model as a decrease to the

source/establishment term φ. In this case, the bifurcation plot in Figure 4.7

(left) becomes of particular interest. Indeed, if we begin with a high value

of φ, the model predicts a single stable steady state corresponding to full

metastatic disease. As we decrease φ — through the use of NSAIDs for

example — we may see decreased establishment of CTCs at the secondary

site, resulting in a decreased value of φ. As φ decreases, we move into the region

of bistability. If this intervention occurs sufficiently early in the progression of

the disease, the secondary tumor density may lie below the saddle threshold

value, and we would then expect a small metastatic tumor. Otherwise, a large

metastatic tumor is expected, but its size decreases as we decrease the value

of φ. Finally, if we decrease φ enough, the region of bistability is exited and

a small metastatic tumor will persist. These results reflect the experimental

observations of decreased incidence of metastasis with the use of NSAIDs [83,

98] and lend further credibility to the results presented herein.

Recent theoretical studies by Hanin and collaborators [62] have suggested

that metastatic dormancy is a ‘natural law’ in the progression of cancer.

Metastatic, and more generally tumor dormancy, has been of interest in the-

oretical investigations of cancer progression for years [32, 33]. In many in-

stances, dormancy is characterized by the smallest population among a num-

ber of steady states (see [91] for example). However, a recent paper by Wilkie

and Hahnfeldt [138] characterizes dormancy as a transient state of little to

no growth. Our model is capable of describing dormancy in both definitions.

The control dynamics in Figure 4.11 have two stable steady states; one large,

‘full disease’ state, and a smaller, ‘dormant’ state, thereby providing the steady

state interpretation of dormancy. The transient explanation can be seen in the

treatment curves of Figure 4.11 and in the red and magenta curves of Figure
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4.12. Solutions in these plots remain nearly constant for extended periods of

time (between 1 and 6.5 years) before eventually either growing or decaying.

We have shown that these transient dynamics are governed by an unstable

saddle node which acts as a threshold for tumor fate.

In [56], Gorelik summarizes the effects of primary resection on metastatic

tumor growth dynamics based on the size of the primary tumor: removal of

a small primary tumor results in decreased metastatic disease; if the primary

tumor is medium-sized, primary resection has little effect on metastatic pro-

gression; and allowing the primary tumor to grow to a large size before removal

results in explosive post-resection metastatic growth. Our model successfully

captures these observed dynamics. In Figure 4.10 there is a threshold (sec-

ondary) tumor density, below which primary removal results in metastatic

decay and eventual disease clearance (green curves), and above which pri-

mary removal delays and slightly stunts metastatic growth, but the disease

persists (red curves), thereby accounting for the Gorelik observations of re-

moving small and medium sized (primary) tumors. In order to capture the

explosive metastatic growth observed after removing a large primary tumor,

we re-introduce the concept of metastatic ‘blow-up’.

Metastatic ‘blow-up’ — rapid metastatic growth upon removal of the pri-

mary tumor [62] — can also be reproduced with our model (Figure 4.11).

Treating primary resection not only as a removal of the source of CTCs, but

also as a wound that illicits a wound-healing response (source of both CT and

TE immune cells) results in a small jump in tumor density after the resection

event due to the increased immune presence, with the CT cells being edu-

cated by the tumor to play a pro-tumor role. Importantly, in order to observe

blow-up in our model, the TE immune population must be maintained. In

our model this can be done by either keeping a positive source term, or by in-

creasing the education rate. The simulations presented have assumed that the

education rate increases, and the source of TE immune cells vanishes at the

end of the inflammatory period. However it is accomplished, if the secondary

tumor is capable of maintaining a sufficiently large population of TE immune

cells, we see rapid metastatic growth after a period of dormancy.

Eikenberry and colleagues considered local metastatic spread in a spatially
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explicit PDE model [45] and included immune cells that could kill tumor cells,

as well as provide pro-angiogenic factors to the tumor microenvironment. The

angiogenic factors allowed for the growth of blood vessels to supply the lo-

cal tumor environment with oxygen, thereby supporting tumor growth. Upon

manual seeding of local metastases, the authors simulated primary resection

by removing all cell types within the resection area, including immune cells.

With certain parameter values, their model showed metastatic blow-up. The

authors argued that the removal of the immune population in the resection al-

lowed the previously controlled micrometastases to grow rapidly after primary

removal. In contrast, our blow-up phenomenon is induced by an inflamma-

tory response not included in Eikenberry’s simulations, and is well character-

ized mathematically, whereas the explanation provided in [45] is based on the

authors’ intuition because the complexity of their model precludes rigorous

analysis.

In our model, blowup is (as we have seen before) due to the emergence

of a saddle node acting as a threshold tumor density governing disease out-

come. So, the phenomenon is understood mathematically, but the biology is

not as clear. Very little is known about the dynamics of tumor education of

CT immune cells, but our results suggest a couple of new avenues for exper-

imental studies. First, is there an increase in pro-tumor inflammatory cells

at metastatic sites upon primary resection? Second, if such an increase is

observed, how is it mediated; through recruitment or education? Third, if

TE expansion is through education, what precisely is meant by ‘education’?

Many investigators have suggested an active role for the primary tumor in the

suppression of metastatic growth [62]. Based on the results of our model, we

suggest that one way in which this active suppression could be mediated is by

maintaining a limited population of pro-tumor TE immune cells at the sec-

ondary site. Such control of distant sites may be best accomplished by larger

primary tumors, in which case our results coincide with the effects of primary

resection summarized by Gorelik [56] and introduced above. Assuming that

the primary tumor can regulate the TE immune population size at the sec-

ondary site, removal of the primary would result in an increased population

of TE immune cells at the secondary site, possibly resulting in metastatic
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blow-up as seen in Figure 4.11. Further theoretical and experimental investi-

gations are needed in order to fully elucidate the validity of this addition to

the immune-mediated theory of metastasis [124], especially considering these

results are in stark constrast to the concerns presented in [119], suggesting that

delayed metastatic growth argues against the concept of a PMN and related

concepts including primary tumor intervention at secondary sites.

Experimental results by Park and colleagues [112] provide another valida-

tion of our model predictions. In [112] the authors demonstrated that peri-

operative implantation of a gel scaffold containing immunotherapeutic agents

that prevent a pro-tumor inflammatory response and bolster an anti-tumor

immune response to the wound incurred during primary resection surgery can

effectively eliminate distant metastases. Figure 4.12 presents the results of

simulating primary resection that induces an inflammatory immune response.

In the presence of an inflammatory response to the primary resection surgery,

the growth of the secondary tumor arrests for an extended period of time, until

eventually growing into a large metastatic tumor (red curve), although smaller

than the control tumor (black curve). If we are able to prevent the inflamma-

tory response, we can see curative responses like in [112] (magenta and green

curves). On the other hand, the same inflammatory response can be felt, but

prevention of the tumor education of CT immune cells can result in relatively

rapid metastatic extinction (blue curve). Therefore, our model predictions are

supported by the experimental evidence in [112] in so far that prevention of a

pro-tumor inflammatory response and stimulation of an anti-tumor response

upon primary resection can result in metastatic extinction.

The effects felt by the secondary tumor in response to treatment of the

primary tumor are known as abscopal effects. The Enderling group has re-

cently developed a model for immune trafficking between distant metastatic

sites and have presented simulations with biologically realistic connections be-

tween organs in order to investigate the potential role of immune trafficking

on abscopal effects [115, 135, 134]. While their presented results cannot cap-

ture the development of metastatic disease, they do provide insight on the

dynamics of treatment under the assumption of pre-existing metastatic tu-

mors. Their model is able to reproduce both positive (lower tumor burden at
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secondary site) and negative (blow-up) abscopal effects upon resection of one

of the tumors. Similarly to Eikenberry [45], the authors suggest that this is a

result of the re-distribution of CT immune cells and depends on the immune

cell trafficking between the disparate sites. Their explanation of the observed

effects differ slightly from ours as they do not account for the pro-tumor effects

of the immune system in their model.

However, the Enderling group’s framework does allow for biologically real-

istic trafficking between distant anatomical sites — something that our sim-

ple two-site model cannot do. Future refinement of our model may include

such considerations and may follow the Enderling group’s lead, incorporating

ideas from disease transmission models [85]. Because of the importance of the

source/establishment term φ, it would be valuable to consider the case of a

time-dependent source, φ(t), instead of assuming a constant source. Choices

for φ(t) could include increasing functions in t — assuming that the primary

tumor is growing and shedding more cells into the circulation thus allowing for

increased settlement — or even a source that turns ‘on’ and ‘off’ according

to a stochastic process to incorporate the stochastic nature of metastasis into

the model [92]. In any case, further study into the dynamics of metastatic

establishment are warranted as the process is poorly understood and critical

to disease outcome. A similar concern arises with the modeling of tumor edu-

cation of CT immune cells. We have assumed simple mass-action kinetics here

[34], but the precise dynamics are likely much more complicated and warrant

further study in their own right. As metastasis is an inherently spatial pro-

cess, the explicit inclusion of space would be a valuable addition to the model,

especially to investigate potential roles of the PMN on establishment patterns

(for example).

As a final remark, we note that our model is just that — a model. With-

out better data informing parameter estimates and choices of functional coef-

ficients, caution must be taken when interpreting our results, especially when

discussing potential implications for therapeutic strategies [31]. Having made

the appropriate disclaimer, we believe that the work presented here provides

strong theoretical evidence for further research into the competing roles of the

immune system in cancer progression. A number of direct biological ques-
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tions have been put forth, and additions to the immune-mediated theory of

metastasis have been made.
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Chapter 5

Conclusion

What should a successful model of metastatic cancer look like? What proper-

ties should it have? What observed phenomena should it be able to reproduce?

At the end of Chapter 1 we suggested a list of 10 desirable properties that we

suggested a successful model of metastasis would include. In this final chapter

we re-visit that list and discuss the success of the models investigated in Chap-

ters 2 – 4, and possible modifications to address shortcomings. We maintain

the same numbering as the original list in Chapter 1.

1. Can the model reproduce the establishment and development of a sec-

ondary tumor at a site distant from the primary tumor?

• Yes, all three of the models investigated herein are capable of pro-

ducing secondary tumors at sites distant from the primary. The

stochastic model from Chapter 2 interprets the settlement of a mo-

bile particle as the establishment of a tumor at a secondary site,

thereby allowing us to investigate the spatial dynamics of metastatic

spread. Growth dynamics at the secondary site were not explicitly

modeled, and we demonstrated that, as a result, our model could

not accurately reproduce the results of the experimental metastasis

assay from [15], suggesting that modeling growth at the secondary

site would be an important addition to the model. The determinis-

tic models from Chapters 3 and 4 include explicit models of tumor-

immune dynamics at a secondary site, allowing for the establish-
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ment of CTCs released from the primary tumor and the growth

of these micrometastases into macrometastases and eventually full

metastatic tumors.

• Although a positive answer to question (1) may seem like the very

least required of a model of metastasis, many previously investi-

gated models that report results relevant to metastasis are incapable

of answering ‘yes’. Whether metastasis is assumed to have occured

upon sufficient local invasion [5, 127], or metastases are manually

seeded, sometimes even of a magnitude similar to that of the pri-

mary tumor [45, 134], many of the previous models investigating

metastasis cannot (or do not) describe metastatic establishment

or early metastatic growth. Based on our results, these processes

should are important in the dynamics of metastatic cancer, and

should be included in models desiring to accurately represent the

metastatic process.

2. Can the model reproduce immune-mediated help in metastatic establish-

ment? [84, 124]

• Without including immune cells of any type, the stochastic model

of Chapter 2 cannot reproduce any immune-related phenomena.

However, based on the results of Chapters 3 an 4, extensions of the

model to include immune effects may be warranted.

• Yes, both deterministic models developed in Chapters 3 and 4 in-

clude immune-mediated help in metastatic establishment. Figures

3.9 and 3.10 demonstrate that tumor-education of immune cells can

result in a significantly larger tumor developing much faster than

when no such phenotypic transition is possible. Similarly, the in-

jury simulations in Figure 3.13 show that a wound healing response

can be corrupted by a sufficiently large secondary tumor, causing

immune-mediated metastatic blow-up.

3. Can the model reproduce metastatic dormancy? [62, 138]
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• Because the stochastic model of Chapter 2 does not include any

growth dynamics, it is incapable of reproducing metastatic dor-

mancy. We have already noted that this shortcoming is likely

responsible for the poor fitting of the model to the experimental

metastasis data from Cameron et al. [15] (Figure 2.6); the inclu-

sion of sub-models for tumor growth dynamics of settled cells may

address this deficiency in the model.

• Yes, metastatic dormancy can be observed in both of the deter-

ministic models investigated in Chapters 3 and 4. Mathematically,

dormancy was characterized as either a small steady state value, or

dynamics slowed by the proximity to a saddle node (both shown

in Figure 4.11). The transient nature of dormancy observed in our

model is in agreement with other recent theoretical investigations

that have found similar results in the context of general tumor dor-

mancy [138].

4. Can the model reproduce metastatic blow-up upon primary resection?

[56, 62]

• Although not specifically tested using the stochastic model from

Chapter 2, the independence of the individual particles assumed

in the model does not allow for an appreciable effect to be felt by

removing the primary tumor. The assumption of indepence between

particles may be relaxed, but such a modification would significantly

alter the model and is left as future research.

• Yes. While both deterministic models from Chapters 3 and 4 could

produce results that were interpreted as metastatic blow-up (Fig-

ures 3.15 and 4.11), the simplicity of the 3 ODE model from Chapter

4 allowed us to explore the phenomenon more carefully, resulting

in the discovery of a more realistic scenario leading to blow-up.

5. Can the model reproduce abscopal effects? [37, 112, 134]

• As in the previous case, the independence of the stationary particles
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in the stochastic model of Chapter 2 precludes any abscopal effects

in the model.

• Yes. Abscopal effects were considered in several contexts with the

deterministic models from Chapters 3 and 4. Primary resection

was considered in both chapters and could result in either posi-

tive (tumor delay or extinction in Figures 3.8 and 4.10) or nega-

tive (metastatic blow-up in Figures 3.15 and 4.11) abscopal effects,

depending on the method of modeling the intervention and the re-

sulting immune response. Similar theoretical results have been re-

ported by Walker et al. in [134], where the authors also considered

the effects of localized radiotherapy applied to the primary tumor.

Although not considered in this work, the effects of radiotherapy

could easily be included in the modeling framework we have devel-

oped, and is left as future work.

• The results presented in Figure 4.12 are in qualitative agreement

with the experimental results of Park et al. [112], thereby providing

the concept of immune phenotype plasticity (tumor education of CT

immune cells) as a possible explanation of their observations.

6. Can the model reproduce metastasis to sites of injury? [124]

• Yes. The full 8 ODE, 2 site model investigated in Chapter 3 was

successful in replicating observations of metastatic spread to sites

of injury (Figure 3.13). If the injury occurs when the tumor pop-

ulation at the secondary site is sufficiently small, the wound heal-

ing immune response remains largely anti-tumor, and dramatically

slows metastatic development. If, on the other hand, the injury oc-

curs after a sufficient tumor population has established at the site,

the wound healing immune response is educated/corrupted by the

tumor, resulting in a large pool of pro-tumor immune cells in the

metastatic environment, which triggers metastatic blow-up.

7. Can the model provide prescriptions for more effective therapies?
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• Yes. The metastatic reproduction number, R0, derived from the

stochastic model in Chapter 2, provides a simple, easily understand-

able condition for metastatic extinction: reduce the shedding and

establishment rates of CTCs, or increase cancer cell death rates.

While decreases to the rates of shedding and establishment may

require more advanced approached (such as disrupting the PMN

for instance), increases to the death rates may be accomplished

much more simply by way of cytotoxic therapies such as radiother-

apy or chemotherapy. Of particular interest, the use of NSAIDs

to disrupt the formation of platelet-cancer clusters, which has been

shown to decrease the instances of metastasis [26, 119, 124], may be

interpreted as increasing the death rate of mobile particles thereby

decreasing the value of R0.

• A similar appeal to NSAIDs can be made based on the results from

both Chapters 3 and 4. Although the ‘switching off’ of the source

term was often suggested to model primary resection therapies, it

could be viewed as a model for any therapy that reduces the number

of CTCs arriving and establishing at a secondary site. In particular,

reduction of the source of CTCs could be accomplished by way of

NSAID therapy.

• The models in Chapters 3 and 4 also provided a potential ex-

planation for the disappointing effects of some immunotherapies:

tumor-education of CT immune cells. Figures 3.9 and 3.10 show

that education is responsible for the non-monotonic response to

immunotherapy predicted by the model, and that preventing edu-

cation can markedly increase the effectiveness of immunotherapy.

Similarly, metastatic extinction as a consequence of decreasing the

education rate (Figure 4.12) — a theoretical result supported by

the experimental results of Park et al. [112] — illustrates the

potential power of preventing tumor education on treatment out-

comes.

• Explicit conditions necessary for the stability of disease-free states
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in the two deterministic models were also obtained (Theorem 4 and

Proposition 2). These conditions suggest that increasing tumor

death rate or decreasing tumor growth rate must be done in order

to see disease extinction.

8. Can the model provide testable biological predictions?

• Yes. All three of the considered models have produced biological

predictions. Highlights include:

– The metastatic reproduction number, R0, and its predictive

power within our model suggest that estimation of the four

component parameters — rates of shedding, establishment,

mobile and stationary death — should be estimated using data

from human cancer to determine the relevancy of R0 in predict-

ing the metastatic potency of different cancers.

– The biphasic response to injury at the secondary site ca (Figure

3.12) could be explored experimentally in order to confirm or

deny the theoretical results presented herein.

– In order to observe metastatic blowup in Figure 4.11 the sec-

ondary site must maintain a substantial population of pro-

tumor TE immune cells. We assumed that an increase to the

education rate of CT immune cells by the secondary tumor oc-

cured upon primary tumor resection, suggesting that the pri-

mary tumor may inhibit the TE immune population growth

at the secondary site. Experiments to confirm or deny such a

mechanism would provide further insights into the phenomenon

of metastatic blow-up.

– The inclusion of tumor education (tumor-induced immune phe-

notypic plasticity) provided a potential explanation for the dis-

appointing performance of some immunotherapies. Based on

the results presented here, further research into the mechanisms

of such education are warranted.

9. Can the model reproduce local recurrence?
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• Without including the primary site explicitly, the 3 ODE model in

Chapter 4 cannot reproduce local recurrence.

• Even though simulations of primary resection were not presented in

Chapter 2, if primary resection took place after the establishment of

metastatic tumors, the model would allow for the ‘re-seeding’ of the

primary site by the mobile cells shed by the metastatic tumors. No

specific, targeted re-seeding at the primary site would take place,

however, due to the spatial homogeneity of the establishment rate.

• Primary resections that were less than 100% efficient did result in

local recurrence in the full 8 ODE model from Chapter 4.1. Recur-

rence in this case was a function of the tumor cells that were left

by the incomplete resection, and the secondary tumor had no effect

on this re-growth.

• Local recurrence may be better incorporated into these models,

either by considering multiple sites as in the proposed system (3.18),

or by introducing a spatially-dependent rate of establishment. Both

of these modifications are left as future research.

10. Can the model reproduce tumor specific patterns of spread?

• None of the models investigated in this thesis are capable of re-

producing tumor-specific patterns of metastatic spread. However,

extensions to each of them could be considered that may address

this shortcoming, for example:

– More biologically realistic models of cell movement and spatially-

dependent settlement rates may be introduced to the stochastic

model from Chapter 2.

– An extension of the 2-site models from Chapters 3 and 4 to an

N -site model (as in equations (3.18)) incorporating biologically

realistic travel between anatomical sites using ideas from [85,

134].

Overall, the models investigated in this thesis have been remarkably suc-

cessful as models of metastatic cancer. Although there are shortfalls, modifi-
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cations have been proposed to address them. Our results provide new insights

into the metastatic process and introduce new biological questions for future

research.
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