
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand corner and continuing

from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NOTE TO USERS

This reproduction is the best copy available.

__ <J>

UMI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U n iv e rs ity o f A lb e r ta

A n O n l i n e A l g o r i t h m f o r D i s c o v e r y a n d L e a r n i n g o f P r e d i c t i v e

S t a t e R e p r e s e n t a t i o n s

by

P e te r M cC racken

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of M a s te r o f Science.

Department of Computing Science

Edmonton, Alberta
Fall 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ONK1A 0N4
Canada

Bibliothdque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

0-494-09240-8

Your file Votre reference
ISBN:
Our file Notre reference
ISBN:

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Predictive state representations (PSRs) are a recently proposed method of mod

elling discrete dynamical systems using predictions about future observations. The

strength of PSRs comes from their ability to represent system state using only ob

servable data, such as actions and observations. Current techniques for learning

PSRs use Monte Carlo methods to estimate prediction probabilities, but do not

take advantage of the structure of the data to extrapolate information. In this

work, we present the constrained gradient algorithm, a new technique for discovery

and learning of PSRs th a t constrains its estimated predictions to augment a gradient

descent approach. This algorithm is also the first online algorithm for PSRs capable

of discovering core tests. We test the algorithm on a variety of standard domains,

and show tha t it is able to build models competitive with current techniques. This

work is an extension and elaboration of published work [McCracken and Bowling,

2006].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgem ents

Foremost, I would like to express my appreciation of all the help provided by my

supervisor, Michael Bowling. Michael encouraged, corrected and advised me as I

tried several different projects, eventually settling on the topic of predictive repre

sentations. He has always been a source of confidence in me and my work. I would

also like to thank the members of the Reinforcement Learning and Artificial Intelli

gence group for introducing me to the topic of predictive representations and being

a sounding board for my research. Of special importance is my friend and colleague

Brian Tanner, with whom I ’ve had many clarifying discussions. Finally, I would like

to thank the members of my thesis committee for reading this thesis and providing

critical feedback.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1 In tro d u c t io n 1

2 D y n am ica l S y s tem s a n d S ta te R e p re se n ta tio n s 4
2.1 Dynamical S ystem s.. 4
2.2 State R e p re se n ta tio n s .. 7
2.3 Predictive State R ep resen ta tio n s .. 10

2.3.1 Tests and H isto rie s ... 10
2.3.2 Core T es ts .. 12
2.3.3 State U p d a te ... 12

2.4 Related W o rk .. 13
2.4.1 Current Learning Methods for P S R s ... 13
2.4.2 Other Predictive Representations of S t a t e 16

3 T h e S y s tem D y n am ics M a tr ix 19
3.1 Infinite Tests and Histories ... 19
3.2 From M atrix to P S R .. 21
3.3 Constraints on the System Dynamics M atrix ... 22

4 C o n s tra in e d G ra d ie n t L e a rn in g 24
4.1 The Constrained Gradient A lgorithm ... 25

4.1.1 A p p ro a c h .. 25
4.1.2 Tests and H isto rie s ... 26
4.1.3 Constructing the Prediction M atrix .. 29
4.1.4 Extracting the PSR P aram eters.. 32
4.1.5 The Complete A lg o r i th m .. 33

4.2 Experim ents... 36
4.2.1 Experimental S e t u p .. 36
4.2.2 Param eter Selection E xperim ents... 37
4.2.3 Offline E x p e r im e n ts .. 42
4.2.4 Online E x p e r im e n ts .. 44
4.2.5 Summary of Learning R e su lts ... 44

5 D iscovery o f C o re T ests 47
5.1 Core Test D isc o v e ry ... 47

5.1.1 Selecting Core T e s t s .. 47
5.1.2 Discovery in the Constrained Gradient A lgorithm 52

5.2 Experimental R esu lts ... 54
5.2.1 Condition Threshold T es ts .. 54
5.2.2 Non-Cumulative Selection of Core T e s t s 57
5.2.3 Summary of Discovery R e s u l t s .. 60

6 A d d itio n a l In v e s tig a tio n 62
6.1 Discovery and L e a r n in g .. 62
6.2 Investigative E x p e rim e n ts ... 65

6.2.1 Examining Sources of E r r o r .. 65
6.2.2 Momentum in L e a rn in g ... 68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2.3 Sets of Core T e s t s .. 70
6.2.4 Summary of Investigative T e s ts ... 71

7 Conclusion 72
7.1 C o n trib u tio n s .. 72
7.2 Future Work .. 73

7.2.1 Discovery T h re sh o ld ... 73
7.2.2 Selection of History S e t ... 73
7.2.3 Reformulation as Optimization P ro b le m 74
7.2.4 Enforcing C o n s tra in ts .. 74
7.2.5 Theoretical Convergence... 75

7.3 S u m m a r y ... 75

Bibliography 76

A Defining Test Predictions 79
A .l Test Predictions .. 79
A.2 Problems with p (t \ h) ... 80
A.3 Redefining Test P re d ic t io n s .. 82

B Test Dom ains 84
B .l F lo a t-R e s e t... 84
B.2 T ig e r ... 85
B.3 P a in t ... 86
B.4 S h u ttle ... 86
B.5 N e tw o rk .. 87
B.6 4x3 M a z e ... 88
B.7 Cheese Maze .. 89
B.8 Bridge R e p a ir .. 90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f Tables

4.1 Size comparison for different selections of test set T 27

5.1 Summary and comparison of discovery results.. 56

B .l The state transitions for the Network domain... 88
B.2 State transitions for the Bridge domain.. 90
B.3 Observation distributions for the Bridge domain.................................... 91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 The Float-Reset dynamical system ... 6

3.1 An example system dynamics m atrix... 20
3.2 The Float-Reset system dynamics m atrix... 20

4.1 The effect of changing the learning parameter, a 38
4.2 The effect of changing the number of rows in H 41
4.3 PSR error in offline tests... 43
4.4 PSR error in online tests... 45

5.1 Effect of the condition threshold on discovery.. 55
5.2 Non-cumulative discovery performance.. 59
5.3 The condition of y(Q\H) over tim e... 61

6.1 PSR error using discovered core tests.. 63
6.2 Performance when sources of gradient error are eliminated................. 67
6.3 Effect of momentum on constrained gradient learning........................... 69
6.4 Two different core test sets for the Shuttle domain................................ 70

B .l The Float-Reset domain. (Repeated from Figure 2 .1) 85
B.2 The Shuttle domain.. 86
B.3 The 4x3 Maze domain.. 89
B.4 The Cheese domain... 89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Suppose one is learning how to use a DVD player. Essentially, this involves figuring

out which buttons to press on the player in order to produce the desired result, like

powering it off or playing a DVD. Of course, which buttons to press depends on

current properties of the player: Is it powered on or off? Is the DVD tray in or

out? Is there a disc inside it? Properties like these constitute the state of the DVD

player. Some of these properties are directly observable, like whether the tray is

out; others are not directly observable, like whether a disc is inside the machine or

not.

A reasonable way to learn how to use a DVD player is to press the buttons and

observe what happens. There are many different buttons on the DVD player, and

they can be pressed in any order, which means there are many sequences one can try:

W hat happens if the ‘power’ button is pressed? W hat happens if it is pressed again?

W hat happens if ‘play’ and then ‘eject’ and then ‘power’ and then ‘pause’ and then

‘stop’ are all pressed in sequence? In fact, there are an infinite number of such

tests one could perform. But in reality, only a relatively small number of these tests

actually provide unique information; after all, a DVD player is a relatively simple

system, and certainly does not have an infinite amount of complexity. Intuitively,

there is a small number of button combinations on a DVD player tha t are capable

of summarizing the effect of all possible combinations of button presses.

In more technical terms, a DVD player is an example of a dynamical system.

There has been a significant amount of work in the field of dynamical systems.

They are relevant to computer science, engineering, mathematics, and even biology

and psychology. Later in this work, in Section 2.1, we further explain the concept

of dynamical systems, different types of dynamical systems, and various ways to

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

represent the state of a system.

An im portant problem is how one represents the dynamical system. In this work

we focus on the concept of representing the state of a system based on predictions

about the outcomes of tests. In the DVD player example, one can know the state

of a DVD player by knowing how it will react to a series of button presses. This is

the fundamental idea behind predictive state representations: the state of a system

can be represented by a small number of questions about how the system will react

to inputs. Predictive state representations (PSRs) are a relatively recent method

of representing the state of a system, originating with work done by Littman, Sut

ton, and Singh [2002]. In Section 2.3 and Section 2.4, we more formally describe

predictive state representations and explain previous algorithms for learning these

representations.

Our main contribution in this work is the presentation of a new algorithm to

build PSRs from experience gained through interaction with the system. The al

gorithm is also described in a recent paper [McCracken and Bowling, 2006]. This

new algorithm, the constrained gradient algorithm, possesses several advantages over

existing algorithms. First, it is capable of learning a model of a system based on

a single long interaction with the system, without having to make multiple passes

over the data. Furthermore, at every time step the algorithm has an estimate of the

current state of the system. Together, these properties are known as online learning.

Online learning algorithms are preferable because they allow a constantly improving

model to be generated in real time. The second advantage of the constrained gra

dient algorithm is tha t it takes advantage of the large amount of structure inherent

in sequential data obtained from a dynamical system. This structure is described

in Chapter 3. We expect tha t making use of the structure of the data will lead to

more efficient learning and more accurate models.

In the DVD player example, we stated that there must be a finite set of predic

tions about button combinations th a t summarize the state of the system. In order

to learn to use the DVD player, one must decide which predictions are included

in tha t special set. This process is known as discovery. Chapter 5 describes the

approach to the discovery problem taken by the constrained gradient algorithm,

and contains empirical evidence th a t the algorithm is capable of finding appropriate

tests with far less data than is required by other algorithms. The second aspect of

learning how a system operates is knowing how the system responds to interaction;

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

how should the predictions about the DVD player change as its buttons are pushed?

This is the process of learning the PSR parameters. In Chapter 4, the constrained

gradient algorithm’s approach to learning is described, and empirical tests compare

its performance with existing methods.

Further investigation of the constrained gradient algorithm is done in Chapter 6,

including final performance results and additional tests to explore interesting results

found during testing. Finally, in Chapter 7 we conclude this work by summarizing

our findings and describing avenues for future work.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Dynam ical System s and State
R epresentations

The purpose of this chapter is to introduce the concept of dynamical systems and

methods of modelling the state of such systems. We will show tha t there exists

many classes of dynamical systems, and tha t state representation is a complicated

problem. In Section 2.1, we describe dynamical systems and a selection of properties

a system might have. Section 2.2 overviews various ways of representing state in

dynamical systems. In Section 2.3, we delve more deeply into the topic of predictive

state representations, which will become the focus of the rest of this thesis. Finally,

in Section 2.4 we describe existing work in PSRs and other predictive representations

of state.

2.1 Dynam ical System s

In the most general sense, a dynamical system is any system that generates a se

quence of observations, taken from a set O, th a t is perceived by an agent. The

agent may, or may not, control the output of the system by taking actions from a

set, A. A dynamical system can be in various ‘sta tes’ th a t can change over time and

in response to actions. The state of a system affects the impact of actions and the

likelihood of observations; formally, the state of a system is any sufficient statistic

for predicting the future of a system [Littman et al., 2002]. Research in dynamical

systems describes classes of systems which meet certain restrictions. Depending on

the class of system, different methods of representing its state are available. In this

section, we list and briefly describe some im portant variations of dynamical systems.

D isc re te /C o n tin u o u s T im e. In dynamical systems, time measures the duration

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the agent’s interaction with the system. In continuous time systems, time

is measured, in units, as a real value, and system dynamics are generally gov

erned by continuous functions. Other systems, such as discrete semi-Markov

systems, measure time in discrete units, but state transitions may take a vari

able number of time units [Howard, 1971]. In discrete time systems, time is

measured in indivisible units called time steps. Each time step is long enough

for the agent to perform a single action and to perceive a single observation.

The agent takes its first action and perceives its first observation at time step

1, and in general time step i is the time when the agent takes its i lh action

and experiences its i th observation.

D isc re te /C o n tin u o u s O b se rv a tio n s . This property describes whether the possi

ble observations in the system, O, are discretely valued or form a continuum.

In a discrete system, possible observations could be things like ‘black’ and

‘white’ or 0 and 1; a continuous system’s observations could include the full

spectrum of grey or an interval of real numbers.

D isc re te /C o n tin u o u s A ctions. This property describes whether the actions in

A are discrete or continuous. Continuous actions take a continuous param

eter, like ‘turn x° left’ or ‘move forward for t seconds’. Discrete actions are

parameterless actions, like ‘reset’, or parameterized actions with pre-defined

parameters, such as ‘go forward one step’ or ‘turn 90° left’.

If a dynamical system is discrete in time, observations and actions, we call it a

discrete dynamical system. Furthermore, if the number of discrete observations and

actions is finite, we call the system a discrete, finite dynamical system. In this work,

we consider only this class of systems, and all future references to dynamical systems

will implicitly assume discrete, finite dynamical systems. Because the sets A and O

are discrete, we can list their elements using the notation A = {ai, a 2 , . . . , an} and

O = {oi, 0 2 , • • •, om}, where a subscript indicates a particular element of the set.

Some additional properties of dynamical systems include:

U n c o n tro lle d /C o n tro lle d . This property is also known as output-only/input-

output [Jaeger, 1998]. In an uncontrolled (output-only) system, the size of

the set A is one; i.e., the agent’s interaction with the system consists only of

a sequence of observations. In a controlled (input-output) system, |A| > 1;

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

---------> reset, p = 1.0, o = 1
--------- >■ reset, p = 1.0, o = 0
 > float, p = 0.5, o = 0

Figure 2.1: The Float-Reset dynamical system. For each line type, the correspond
ing action, the transition probability p and the observation o are given.

the agent is able to affect the output of the system by performing actions

from A, and the agent’s interaction with the system consists of a sequence of

action-observation pairs. The process by which actions are chosen is known

as a policy.

C o m p le te ly /P a r tia lly O bservab le . In a completely observable system, there is

a one-to-one mapping between states and observations; i.e., each observation

is a sufficient statistic for representing the state of the system. In a partially

observable system, the observations produced at each state do not uniquely

identify the state.

D e te rm in is tic /S to c h a s tic . In a deterministic system, performing the same action

sequence, starting at time step 1, will always generate the same observation

sequence. In a stochastic system, observations are generated according to some

probability distribution, and performing the same action sequence from the

first time step always generates observations according to the same probability

distribution.

In general, methods tha t are capable of handling controlled, partially observable

or stochastic dynamical systems are more powerful than methods tha t restrict the

system, respectfully, to uncontrolled, completely observable or deterministic sys

tems.

Figure 2.1 shows an example dynamical system, called Float-Reset, th a t is con

trolled, stochastic, and partially observable. This system was introduced by Littman

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

et al. [2002] as an example system, and has been used in other PSR work [Singh,

Littm an, Jong, Pardoe, and Stone, 2003; Singh, James, and Rudary, 2004]. Float-

Reset, as depicted in Figure 2.1, has five positions, including a special ‘reset’ po

sition. The action set in Float-Reset is A = { /, ?•}, where / stands for ‘float’ and

r stands for ‘reset’. The observation set is O — {0,1}. The reset action takes the

system back to the reset position. The agent observes a 1 when resetting if the

action is taken when the system is already in the reset position, otherwise the agent

observes a 0. The float action randomly moves the system to the left or right with

uniform probability, except on the end positions where the system either stays in

the same position or goes to the adjacent position. The agent always observes a 0

when floating. The Float-Reset system is relatively simple, but provides a useful

example system for explaining concepts related to dynamical systems and predictive

state representations.

The overarching problem in dynamical systems is determining a policy for opti

mal control of the agent. In this problem, states in the system are associated with

some scalar reward, and the goal of the agent is to maximize its reward during its

interaction with the system. This is a very large topic, and in this work we will

focus on a crucial subproblem: How can an agent represent the state of the system,

and update its state when it takes actions and perceives observations? The next

chapter discusses existing methods of state representation in dynamical systems.

2.2 State Representations

Looking at the Float-Reset diagram in Figure 2.1, one can easily label each of the

five positions as a state of the system, because each of these positions is sufficient to

predict future observations. However, the concept of state is not so simple. Consider

an agent interacting with the Float-Reset system, and assume the agent knows the

current state of the system is the reset position. If the agent takes the float action,

it no longer knows the exact position in which the system resides. The state of

the system can be described as “the state that has a 50% chance of being in either

the reset position or the the position adjacent to it” or “the state tha t has a 50%

chance of generating a 1 observation when a reset action is taken.” These types

of descriptions are known as information states, since they are the most accurate

description of the system possible, given the information tha t is available to the

agent. In contrast, we refer to a specific set of states used to describe a system, such

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the five positions of the Float-Reset system, as nominal states. Note that nominal

states are not necessarily a subset of reachable information states; in Float-Reset,

for example, the system can never reach an information state tha t corresponds to

any of the four non-reset positions. Unless otherwise specified, we use the term state

to mean information state. A sta te only has meaning in the context of other states,

and how they interact with each other using the dynamics of the system. We call

the combination of the sufficient statistic and the description of dynamics a state

representation.

One im portant property of a state representation is whether it requires more

knowledge about the underlying system than is available from the history, or whether

it is based entirely on the observable quantities contained in the history. Any system

which expresses its state using only elements of the action and observation sets,

A and O, is said to be grounded in observable quantities. We prefer grounded

representations because they can be learned entirely from experience [Littman et al.,

2002],

The most general sta te representation possible is a complete recording of the

agent’s interaction with the system since the first time step; i.e., the list of all

actions and corresponding observations the agent has experienced. This is known as

a history, and it is always a sufficient statistic. Of course, as a state representation

for online learning, histories are impractical. There are an infinite number of possible

histories for a given system, they can be infinite in length, and they do not allow

for generalization between time steps, since each time step has a unique history.

The goal of state representation algorithms is to map these histories to more

useful representations. There are many methods of representing the state of a sys

tem, depending on the properties of the system as outlined in the previous section.

Below, we briefly describe some existing methods of state representation.

Markov M ethods

Markov processes, or Markov chains, are a method of representing uncontrolled,

fully observable dynamical systems [Russell and Norvig, 2003]. They map histories

to states by using the previous observation as the state, and they have functions to

map states to probability distributions over next states.

Markov decision processes [Puterman, 1994] generalize Markov processes to the

controlled case. Transition functions use state and action pairs to map to distribu-

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tions over subsequent states. MDPs are based entirely on observable quantities, and

thus grounded, but that property is trivial when the system is completely observable.

k -O rd e r M arkov M e th o d s

The fc-order Markov assumption is a generalization of the standard Markov as

sumption to include a history of k observations [Russell and Norvig, 2003]. fc-order

Markov models are a generalization of Markov processes for modelling systems in

which the state is not purely dependent on the single previous observation. These

methods consider tha t the previous k observations form a sufficient statistic to rep

resent the system. When k = 1, a k-order Markov model is the same as a Markov

process.

/c-order Markov methods are typical of history-based methods in general: meth

ods tha t consider state to be representable by a finite amount of history [Littman

et al., 2002]. History-based methods can be both controlled and uncontrolled.

History-based methods have the advantage that they are based entirely on observ

able quantities. However, for a given fc, history-based methods are unable to rep

resent systems that depend on information in the history older than k steps. For

instance, a fc-order Markov model would be unable to represent the Float-Reset

system, because it cannot distinguish among states in which the previous k actions

were all float actions. For large values of k, though, a /c-order Markov model can

often make a good approximation of such systems.

H M M s an d P O M D P s

Hidden Markov models [Rabiner, 1989], or HMMs, extend Markov processes to the

partially observable case. Likewise, partially observable Markov decision processes

[Astrom, 1965], or POM DPs, extend Markov decision processes to the partially

observable case. HMMs and POM DPs use a given set of postulated nominal states,

and assume that the underlying system is in exactly one of these nominal states.

However, the current history may not contain enough information to determine in

which of these nominal states the system is, so HMMs and POMDPs represent state

as a probability distribution over nominal states. This distribution is known as a

belief state.

POMDPs are the most general of the state representations listed so far, and

they are the first representation we have described th a t can fully represent the Float-

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reset system. However, they still have the disadvantage tha t they can only represent

systems with a finite number of nominal states. Furthermore, these representations

are not grounded in observable data, and the nominal states must be provided to the

algorithm prior to its experience with the system. In the next section, we describe

predictive state representations, which have been shown to be theoretically more

powerful than POM DPs and are completely based upon observable quantities.

2.3 Predictive State Representations

A relatively new paradigm for representing state is to use predictions of the future

to summarize the current state. Such state representations are called predictive rep

resentations of state, which are based on ideas from diversity-based methods [Rivest

and Schapire, 1994] and observable operator models [Jaeger, 1998]. More recently,

predictive state representations (PSRs) [Littman et al., 2002] were introduced as

another predictive representation of state. PSRs are grounded entirely in data ob

servable by the agent, and require only a prior knowledge of the set of actions, A,

and observations, O, present in the system. It has been shown that PSRs are capa

ble of compactly modelling any system tha t can be modelled by a POMDP [Littman

et ah, 2002], and tha t there exist systems tha t cannot be modelled by any POMDP

that can be modelled by an OOM [Jaeger, 1998], and therefore can also be modelled

by a PSR [Singh et ah, 2004]. Predictive state representations will be the subject

of the rest of this thesis.

2.3.1 T ests and H istor ies

In this section, we describe histories and introduce the concept of tests and pre

dictions. The notation used for describing these concepts has not been entirely

consistent across the PSR literature. We use the notation from Wolfe, James, and

Singh [2005], with some modifications.

As mentioned previously, a history is the sequence of action-observation pairs,

or no pairs, tha t an agent in a dynamical system has experienced beginning at the

first time step. For instance, the history hn = a1o1a2o2 .. ,anon of length n means

that the agent chose action a 1 and perceived observation o1 at the first time step,

after which the agent chose n2 and perceived o2, and so on. A superscript on an

action or observation indicates the relevant time step. A special history, known as

the null history, is the history a t the beginning of time before the agent has taken

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

any actions or seen any observations. We use 0 to denote the null history.

A test is a sequence of ao pairs tha t begins immediately after a history; it

is a potential future. The action sequence of a test t is represented by dt and the

observation sequence is represented by o/,. A test is said to succeed if the observations

in the sequence are observed in order, given that the actions in the sequence are

taken in order. For instance, the test t = 0 1 0 1 0 2 0 2 . . . a,no„ succeeds if the agent

observes o\ followed by 0 2 , etc., given tha t it performs actions a\ followed by 0 2 ,

etc.. A test fails if the action sequence is taken but the observation sequence is not

observed. Thus, the outcome of a test is a binary success or failure.

A prediction of a test is the probability tha t the test will be successful. The

outcome of a test t depends on the history h that preceded it, so we write predictions

as y(t\h), to represent the probability of test t succeeding after history h. For test

t of length n, the value of y{t\h) is defined:

A test prediction, therefore, is the product of the probabilities of observing each

observation in ot , given the entire history tha t preceded the observation. Note that

the above definition of a test prediction differs from the definition used in the PSR

literature to date. An explanation of this difference and the associated implications

can be found in Appendix A. Essentially, our definition makes test predictions in

dependent of policy, while previous work uses a policy-dependent definition. The

definitions coincide when the policy used during learning chooses actions indepen

dent of past observations. When discussing previous work, we will make this strong

assumption on the policy and so simply refer to test predictions using our definition

of y(t\h). Our work, as we will show, does not require such an assumption 011 the

policy used during learning.1

A special test, known as the null test, is the test of length zero. We use e to

denote the null test. The outcome of the null test is defined as:

Thus, the null test is successful for any history tha t can possibly be generated by

the system.

We require the policy to have the capability of discovering the full com plexity of the system . Thus,
we require Pr(n |/i) > 0, for all a e .4 and for all histories h.

n

y (t \h) = I I P r (Oi\h, a iO i . . . Oi—iOi—iOi)
i = 1

y{h\(t>) > 0
y{h\4>) = 0

Our work does require a different, less strict assum ption on the policy used during learning.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If T is a set of tests and H is a set of histories, y(t\h) is a single value, y(T\h) is a

row vector containing y(ti\h) for all tests U E T, y(t\H) is a column vector containing

y{t\hj) for all histories hj E H, and y(T \H) is a matrix containing y(ti\hj) for all

ti E T and hj E H.

2.3 .2 C ore T ests

In any dynamical system there exists a (possibly infinite) set of tests, Q , whose

predictions at any history are a sufficient statistic for computing predictions for all

possible tests at tha t history [Singh et al., 2004]. This means tha t for any test t

there exists a function f t such tha t y(t\h) = f t (y(Q\h)). If the size of Q is finite,

then the system can be represented by a PSR. Furthermore, if the function f t is a

linear function of the tests in Q , the system can be represented by a linear PSR. A

linear PSR computes the outcome of tests using y{t\h) = y(Q\h)mt, for some column

vector of weights m t . As in most of the literature to date, we henceforth restrict our

discussion of PSRs to the linear PSR case, although there has been some discussion

of non-linear PSRs [Singh et ah, 2004; Rudary and Singh, 2004]. The set of tests

Q is called the core tests, and determining which tests are core tests is known as

the discovery problem. In addition to Q , it will be convenient to discuss the set

of one-step extensions of Q. A one-step extension of a test t is a test aot, which

prefixes the original test with a single ao pair.

X — {aot | Va E ^4, o € O, t E Q U {&}}

The set of all one-step extensions of Q, plus all of the length one tests (i.e., the

one-step extensions of the null test) will be called X .

2.3 .3 S ta te U p d a te

Previously, we defined a state representation as a sufficient statistic, combined with

a description of the system dynamics. We already know tha t at any time i, the set

of predictions y(Q\hl) is a sufficient statistic for the state of the system. In this

section, we describe how the system dynamics are represented and used to update

the state vector of the PSR.

At time i — 1, the state vector of the PSR is y(Q|/it_1). After the agent takes

action a1 and sees observation o1, the state vector must be updated to be y(Q\hl),

where hl = hx~ l axox. A simple application of conditional probability is used to

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

update the state vector’s predictions for time i — 1 to predictions for time i:

z / (# f) = y i q l h ' - W) = V<1 € Q

In a linear PSR, we know y(t\h) = y(Q \h)m t for any test t. Thus, we can rewrite

the above equality as:

, , ,n v { Q W ~ X) m ai0i

) = V q s Q

Note tha t the fraction is w ritten in terms of the known state vector 7j(Q\lii~1), plus

a set of weight vectors mt . In order to update the PSR at each time step, the vector

mi must be known for all length one tests, alol, and all one-step extensions of the

core tests, alolq. All of these tests are in the set of extension tests, X . The set of

all of these update vectors, which we will call m x , are the param eters of the PSR.

The vectors m x are the PSR ’s representation of the system dynamics. Estimation

of these parameters is known as the learning problem.

2.4 Related Work

In this section we describe other work related to predictive representations of state.

In Section 2.4.1, we discuss current learning and discovery algorithms for PSRs. In

Section 2.4.2, we briefly describe other types of predictive state representations.

2.4 .1 C urrent L earning M eth o d s for P S R s

To date, there have been three main learning algorithms published for PSRs: a

myopic gradient-based algorithm [Singh et al., 2003], a Monte Carlo algorithm that

requires the presence of a reset action in the system [James and Singh, 2004], and

a modification to the reset-based algorithm tha t removes the need for reset actions

[Wolfe et al., 2005]. A fourth algorithm, which applies temporal difference methods

to learning PSRs, has also been presented [Wolfe et al., 2005].

M yopic Gradient Descent M ethod

The myopic gradient descent learning algorithm [Singh et al., 2003] was the first

algorithm for learning the parameters of a PSR. The algorithm learns a model

online, which means that it makes only a single pass over the data, and a t every

time step it has a best estimate of the current state vector and parameters for the

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

system. The algorithm has no method of discovering core tests; the set Q is provided

to the algorithm prior to learning.

The gradient descent algorithm attem pts to minimize error on the observed

action-observation data by moving the update parameters m x according to the gra

dient of the error. It uses Monte Carlo updating; tests t for which the full action

sequence is observed have their parameters mi adjusted to make them more likely

to predict success or failure based 011 whether the full observation sequence was

observed or not. The myopic gradient is used, which refers to the algorithm’s ap

proximation of the gradient by the single success or failure observed in the data

stream. Computationally, the myopic gradient algorithm is efficient, since it per

forms only 0 (|Q |2) computations per time step, and Q can generally be assumed to

be small.

Singh et al. show tha t the myopic gradient algorithm was successful at learning

reasonable models on a test suite of POMDP systems, using in the range of several

million action-observation pairs.

R eset M ethod

The reset-based Monte Carlo algorithm [James and Singh, 2004] was the first algo

rithm to do both param eter learning and core test discovery for PSRs. The algorithm

works on dynamical systems which have a special reset action tha t returns the sys

tem to its initial state. This means tha t any history whose final action is the reset

action is equivalent to the initial history of the system, </>. The reset-based Monte

Carlo algorithm is a batch algorithm, which means it processes a finite collection

of data, can make multiple passes over the data, and does not maintain a current

estimate of the state vector.

The algorithm explicitly estimates a matrix of predictions y(T\H), for a set

of tests T and histories H. It computes maximum likelihood estimates of each

y(t\h), by counting the number of times the sequence of actions in t was taken after

li was observed, and also by counting the number of those times tha t the exact

observation sequence from t was observed. Thus, the samples used to generate

prediction estimates are all Monte Carlo samples; if the full action sequence of t is

not observed, no change is made to the prediction for t. In order to observe multiple

samples for test t at history h, the history h must be observed multiple times. To do

this, the algorithm makes use of the reset action to restore the system to its original

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

state, before executing history h.

The reset algorithm uses an iterative process to estimate the matrix y(T\H)

from observed data, and then re-chooses the set of tests T. From y(T\H), the reset-

based Monte Carlo algorithm computes an estimate of the number of core tests in

the system, by computing from y(T\H) an approximation of the rank k of y(T\H).

In Section 3.2, we explain more about the relevance of rank when selecting core

tests. The algorithm then chooses a set of k core tests from T by choosing the most

linearly unrelated columns in y(T\H) . I t augments the set T with the one-step

extensions of the selected core tests, and then re-estimates y(T\H). This iterative

process continues until the detected number of core tests does not increase between

two iterations.

Suffix-History M ethod

Assuming the existence of a labelled reset action is a large and generally untrue

assumption. The suffix-history algorithm [Wolfe et al., 2005] is a modification of

the reset-based Monte Carlo algorithm tha t removes the need for a reset action in

the system. Like the reset-based algorithm, the suffix-history method is a batch

algorithm for discovery and learning of PSRs.

In order to estimate the predictions y(T\H) without experiencing any history in

H multiple times, the suffix-history method groups histories with identical suffixes.

Thus, the prediction y(t\h) is the maximum likelihood estimate of the number of

times test t succeeded at any time step with a history of the form h*h, where h*

matches any history. The effect of grouping histories in this manner is tha t y(T\H)

contains predictions for a modified system. In the modified system, the history (j>

is equivalent to the stationary distribution of the original system, if the original

system has a stationary distribution. It was shown tha t a complete set of core tests

in this modified system is also a complete set of core tests in the original system, as

long as the original system can be modelled by a POMDP. No guarantees are made

if the system is not representable by a POMDP. Furthermore, the PSR parameters

in the modified system are the same as the PSR parameters for the original system,

because these parameters are not dependent on the initial state of the system.

Once the y(T\H) matrix is estimated using the suffix-history method, discovery

and learning is performed in the same manner as in the reset-based Monte Carlo

method.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T em p o ra l D ifference P S R L ea rn in g

The above three algorithms all use Monte Carlo sampling; predictions and param

eters related to a test t are not modified unless a sample for the entire test t is

available. Wolfe et al. [2005] present an algorithm tha t incorporates temporal dif

ference methods, and therefore is able to learn even if only parts of the test t are

executed. However, in their experiments they found tha t the TD algorithm performs

very poorly, even when it was provided with a correct set of core tests. Thus, we do

not currently consider the TD algorithm a viable learning algorithm for PSRs.

2.4 .2 O ther P red ictive R ep resen tation s o f S ta te

Here, we discuss some predictive representations of state other than pure PSRs.

P S R s w ith M em o ry

Memory-PSRs [James, Wolfe, and Singh, 2005], or mPSRs, represent state using

a combination of a PSR state vector and a short memory of recent actions and

observations. They use the general idea tha t the set of all possible histories H can

be partitioned into subsets Hi according to some set of suffixes. Each Hi induces

a system, and the complexity of this system cannot be greater than the complexity

of the full system, and is often smaller. Instead of maintaining a single PSR for

the complete system, an mPSR maintains a separate smaller PSR for each of the

induced systems. Each smaller PSR has a separate set of core tests and update

parameters.

The goal of mPSRs is to represent systems more efficiently than PSRs. James

et al. show tha t the number of parameters necessary to represent a system can be

substantially reduced by choosing a proper set of memories, although they do not

approach the problem of selecting memories. Fewer parameters means tha t it may

be easier to learn mPSRs, although some experimental results do not show a large

improvement in learning efficiency [James et al., 2005]. This is likely due to the test

domains used, and the fact that the induced subsystems generally had the same size

as the original system. James and Singh [2005] investigated planning with mPSRs

using incremental pruning.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Temporal-Difference Networks

Temporal-difFerence networks, or TD networks, were introduced by Sutton and Tan

ner [2005]. A TD network consists of two networks: a question network and an an

swer network. The question network contains predictive nodes. Together, the set of

current values in the nodes of the question network form the state vector of the TD

network. These nodes generally predict the outcome of other nodes, conditioned on

an action sequence, or they directly predict the next observation. Using temporal

difference methods [Sutton, 1988], the networks are able to learn without requiring

complete Monte Carlo tests. The answer network contains the TD network’s repre

sentation of the system dynamics; it updates the values in the predictive nodes after

each action-observation pair is seen. For each node, the answer network linearly

combines the values in the current state vector to generate the new value of the

node.

Much of the power of TD networks comes from the question network. The

simplest TD networks use trees of action-conditioned nodes to predict observations.

However, the structure of the question network can be modified to include a variety

of questions, such as combinations of other predictions, nodes conditioned on both

actions and observations, and recursive nodes.

TD networks and PSRs currently are the two most fertile research areas in pre

dictive representations. TD networks have been claimed to be generalizations of

linear PSRs [Tanner and Sutton, 2005b]; to date, though, it is unclear how to repre

sent a typical PSR-type test such as y (a i0 ia 2 0 2 |h) in a TD network. It is unknown

whether non-linear PSRs are equivalent to TD networks. A major area of research

for PSRs has been the discovery problem [Rosencrantz, Gordon, and Thrun, 2004;

James and Singh, 2004; Wolfe et al., 2005]. TD network research, on the other hand,

has delayed the problem of discovering networks in favour of augmentations to the

basic TD network learning algorithm. Aside from discovery, PSRs and TD networks

have had some parallel research paths: both have been augmented with history, with

history-based TD networks [Tanner and Sutton, 2005b] and mPSRs, and TD net

works have incorporated eligibility traces [Tanner and Sutton, 2005a] while PSRs

have incorporated some TD learning [Wolfe et al., 2005]. TD networks with options

[Sutton, Rafols, and Koop, 2005] have demonstrated temporal abstraction; it was

also suggested that PSRs could use options for temporal abstraction [Littman et al.,

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2002]. To date, however, there has been no research tha t directly compares TD net

works and PSRs in similar settings, so it is unknown which representation performs

better in practice.

Transformed Predictive State Representations

Transformed predictive state representations [Rosencrantz et al., 2004], or TPSRs,

are a variant of PSRs that use linear combinations of predictions to represent state.

Like other approaches to PSRs, learning a TPSR involves estimating a matrix

y(T\H), for some set of tests T and histories H. The principle components of

this m atrix are then found using singular value decomposition. An exact TPSR will

use all non-zero principle components; however, low dimensional approximate repre

sentations can be created by selecting only the k most im portant components. The

parameters of the TPSR are generated by using linear regression on the principle

components to create weight vectors for updating the state vector for each ao pair.

The main benefit of using TPSRs over PSRs is tha t the former simplifies the

discovery problem by making it a m atter of choosing the k most im portant princi

ple components of the system. These components are immediately available after

singular value decomposition of the matrix. However, a disadvantage is tha t the

state vector no longer has any meaningful interpretation; it is simply a collection

of linear combinations of tests. Also, like the reset-based Monte Carlo algorithm, a

TPSR cannot model controlled systems that do not have a reset action.

TPSRs were tested on a mapping task for a robot, which is the first example of

using a predictive representation for learning in a real-world system. The mapping

task was an uncontrolled system, and the matrix y(T\H) was created by setting each

y(t\h) to the binary sample value for t a t history h. Even with such coarse-grained

approximations of test predictions, the SVD process was able to create reasonable

maps of a single room setting.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

The System Dynam ics M atrix

The system dynamics matrix was introduced by Singh et al. in 2004 as an intuitive

method for explaining linear PSRs. The system dynamics matrix is a theoretical

construct, but approximating portions of the matrix is the key principle behind

most current discovery and learning algorithms for PSRs. This chapter explains the

concept of the system dynamics m atrix in Section 3.1, and how it can be used to

generate a predictive state representation in Section 3.2. We also describe a set of

properties of the system dynamics matrix, formulated as constraints on the matrix,

in Section 3.3. Except where noted, this chapter is a re-explanation of material

presented by Singh et al. [2004], in order to make clear the necessary details required

for understanding the PSR discovery and learning algorithm described in subsequent

chapters.

3.1 Infinite Tests and Histories

In a discrete, finite dynamical system, there is an infinite but countable number of

tests and histories: a history and test for every combination of actions and observa

tions, of any length. The set of all tests is T* and the set of all histories is H*. An

ordering can be imposed on these infinite sets of sequences by sorting them first by

length, and then sorting sequences of equal length lexicographically. We can now

refer to members of the sets as ti or hi, to indicate the i th element in the set of all

tests or histories, respectively. The first test is e, and the first history is <j)\ both

have length zero.

Consider the infinite matrix, D = y{T*\H*), that has a column corresponding

to each test in T* and a row corresponding to each history in H*. 1 The entry d^ j)

'in previous work [Singh et al., 2004], the definition of test predictions differed from our definition

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to t i *2 t n
ho y(to\ho) y(U\ho) y(tn\ho)
h i y(to\hi) y(t \ \h\) y{t2\hi) y(tn \hi)
h i y(to\h2) y (h \h 2) y(t2\h2) y{t„\h2)

;
hjn y{to\hm) y { t \ |/im) y{t2\hm) y(tn\hm)

•
‘

Figure 3.1: An example system dynamics matrix.

£ / 0 / i rO r l f Of O / o / l fOrO f O r l

4> 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.5 0.5
f o 1.0 1.0 0.0 0.5 0.5 1.0 0.0 0.5 0.5
n 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
rO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
r l 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.5 0.5

f Of O 1.0 1.0 0.0 0.5 0.5 1.0 0.0 0.375 0.375

j ; ;

Figure 3.2: The Float-Reset system dynamics matrix.

in the matrix is y{tj\hi), i.e., the probability of the test tj being successful when

executed immediately following history hi. Since D contains separate entries for

the probability of any test following any history, it is capable of fully describing an

arbitrary discrete, finite dynamical system. See Figure 3.1 for an example of how

a system dynamics matrix is structured, and see Figure 3.2 for an example of the

system dynamics matrix for the Float-Reset problem.

Note that, in some dynamical systems, some histories will never be reached, be

cause the system cannot generate some sequences of actions and observations. We

will call such histories unreachable, and any history with a non-zero probability of

occurring is reachable. In Float-Reset, for example, any sequence containing / I is

unreachable, because a 0 is always observed after the float action is taken. Recall

tha t in the previous chapter, y(e\h) = 0, when the history h is unreachable. The

logical extension of this is that, in the matrix D, rows corresponding to unreachable

histories contain only zeros. Unreachable histories are not mentioned in the litera

ture; this definition of unreachable histories and corresponding zero-filled rows are

introduced here and are helpful for defining constraints on a valid system dynamics

o f y(t \h). As a result o f this, the system dynamics matrix described in previous work is defined
differently. See Appendix A for further explanation.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

matrix.

3.2 From M atrix to PSR

Even though the system dynamics matrix tha t describes a dynamical system is

infinite in size, we assume most systems have finite linear complexity. For matrices,

linear complexity is measured by Tank. The linear rank r of D is the number of

linearly independent columns (or rows) in D, or equivalently, all columns in D

can be computed with some combination of r independent columns. Note that

this corresponds exactly to the description of PSR core tests given in Chapter 2:

there exists a finite set of tests (corresponding to columns in the matrix) capable

of describing the entire system. In fact, any system dynamics matrix of rank r

can be described by a PSR with r core tests, and tests corresponding to linearly

independent columns in D can be used as core tests in the PSR. Thus, given a

system dynamics matrix, discovering a set of core tests for a PSR is simply a m atter

of choosing enough columns to span the space of the matrix.

Given a system dynamics m atrix and Q, a set of r linearly independent columns,

the parameters of a PSR can be computed using linear regression. Using the sub

matrix y(Q\H), and the column y(t\H), the parameters m t for all tests t e X can

be computed by:

m t = (y{Q\H)Ty{Q\H))~l y{Q\H)Ty(t\H)

If \H\ = |Q|, this can be reduced to:

m t = y - 1(Q\H)y(t\H)

The former version is used by the TPSR algorithm [Rosencrantz et al., 2004], and

the latter form is used in the Monte Carlo algorithms [James and Singh, 2004; Wolfe

et al., 2005].

One fact tha t falls out of viewing core tests as linearly independent columns is

that the set of core tests for a dynamical system is not unique. The rank of a matrix

does not specify a particular set of columns; it only specifies the number of columns.

In truth, any set of columns tha t are linearly independent and span the space of the

matrix are sufficient to compute the rest of the matrix.

A second fact is tha t the null test, which has a value of 1 for every reachable

history in the system, can be a core test for every PSR. In the POMDP to PSR

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

conversion algorithm [Littman et al., 2002], the null test is used as the starting point

for finding linearly independent tests.

3.3 Constraints on th e System Dynam ics M atrix

A system dynamics matrix possesses a lot of structure. In this section, we describe

four constraints on the structure of a valid system dynamics matrix. Although some

of the constraints are very simple, this list shows the requirements that a matrix

must meet to be a valid system dynamics matrix or a submatrix thereof. Each of

the constraints below must be true for all tests t € T* and all histories h 6 H*.

R an g e C o n s tra in t.

This simple constraint restricts the test prediction values in the matrix to be

valid probabilities, between 0 and 1. In combination with the other constraints,

this constraint can actually be reduced to y(t\h) > 0, since the upper bound is

taken care of by the null test constraint combined with the internal consistency

constraint.

N u ll T est C o n s tra in t.

This constraint is used as a base case for the normalization constraint, below.

In [Singh et al., 2004], the null test was not considered, and this constraint

was listed as:

seo fc

We prefer our notation, since it is simpler and is not redundant with the

internal consistency constraint, below. In fact, the null test constraint could be

than zero the equality is enforced by the conditional probability constraint,

below.

In te rn a l C onsis tency C o n s tra in t.

y(h\fp) > 0
y{h\4>) = 0

y~! y(o\h, a) = 1, VA;,Vo € A k

reduced even further to to y{e\4>) = 1, because for histories with length greater

y{t\h) = y(tao\h) Va € A
o e O

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This constraint guarantees consistency within a single row of the matrix. It

ensures tha t in all cases, the probability distribution over potential observa

tions is valid. It also ensures that no test is more probable than a prefix of

itself. See Appendix A for a short proof that all system dynamics matrices

satisfy this constraint.

Conditional Probability Constraint.

y(t]hao) = yfa0^) Va € ^1, o e O
y{ao\h)

This constraint ensures consistency among the prediction probabilities be

tween related rows. In cases where y(ao\h) = y(aot\h) = 0, we define § = 0.

It is this constraint that is key to most of the structure in a system dynamics

matrix. In fact, using this constraint, the entire matrix y(T*\H*) can be gen

erated from only the row y(T*\<j)), as long as this row satisfies the first three

constraints [Singh et al., 2004]. See Appendix A for a short proof tha t all

system dynamics matrices satisfy this constraint.

I t is interesting to note that all of the constraints on the system dynamics matrix

are local; they apply within a single row and each row depends on only a single other

row, with a shorter history.

A system dynamics matrix tha t is generated directly from observed data using

a Monte Carlo approach (as in the reset-based and suffix-history algorithms [James

and Singh, 2004; Wolfe et al., 2005]) will automatically meet the above constraints.

However, such approximations of the system dynamics m atrix will rarely have a low

linear dimension, since finite sample sizes lead only to approximations of the true

probabilities.

For any method that attem pts to extrapolate extra information from the ob

served data and fill in more of the matrix than exactly what is observed, these

constraints provide a useful guideline for judging what constitutes a valid system

dynamics matrix. We take advantage of these constraints in developing a constrained

gradient discovery and learning algorithm in the following chapters.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Constrained Gradient Learning

In Chapter 2, the problems of discovering core tests and learning PSR parameters

were both defined. In this chapter, we describe the constrained gradient algorithm

[McCracken and Bowling, 2006], a new approach to learning the update parameters

of a PSR. For now, the focus will be on learning the PSR parameters; the discovery

portion of the algorithm will be explained in Chapter 5.

Our goal in creating a new algorithm for discovery and learning of PSRs is to

address some of the problems inherent to existing methods. Primarily, the objective

of this new algorithm is to create an online algorithm for both discovery and learning.

An online algorithm is one that can process a stream of action-observation pairs,

without making multiple passes over the stream, and at any point in the stream

can provide a best estimate of the current PSR state vector and parameters. Online

algorithms are desirable because they do not require an explicit learning phase; the

model of the system can be constantly updated throughout the algorithm’s entire

experience with the system. Essentially, an online algorithm never stops learning.

Of the current algorithms for learning PSRs, described in Section 2.4.1, only the

myopic gradient descent algorithm maintains a current state vector. However, the

myopic algorithm is not capable of discovery.

A second goal for our new algorithm is to avoid making assumptions about

the properties of representable systems. In particular, the algorithm should not

require the presence of a labelled reset action. Both the reset-based Monte Carlo

algorithm [James and Singh, 2004] and the TPSR algorithm [Rosencrantz et al.,

2004] require reset actions in order to represent controlled systems. Currently, only

the suffix-history algorithm [Wolfe et al., 2005] is capable of both discovery and

learning without a reset action.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Finally, the third goal of our new algorithm is to attem pt to leverage the structure

inherent in a system dynamics m atrix to create a better representation of the system.

Wolfe et al. [2005] state tha t current algorithms for discovery and learning of PSRs

are in “an early stage of development” . They do not attem pt to extrapolate any

information beyond what is present in the stream when learning the prediction

probabilities. By using extra knowledge about the structure of a system dynamics

matrix, we hope to be able to improve on the speed of learning, and the performance

of the learned parameters.

At the moment, there are no algorithms for discovery and learning of PSRs that

meet all three of these goals. In this chapter, we describe an algorithm tha t does.

Section 4.1 describes the constrained gradient algorithm for learning a PSR, and

Section 4.2 describes experiments on the algorithm and results.

4.1 The Constrained Gradient Algorithm

In this section, we describe the constrained gradient learning algorithm. Through

out this section, we assume prior knowledge of Q, the set of core tests for the system.

Section 4.1.1 explains the general approach taken by the algorithm, Section 4.1.2 ex

plains which tests and histories are considered, and Sections 4.1.3 and 4.1.4 describe

how the prediction probabilities and PSR parameters are actually computed. The

entire algorithm is put together in Section 4.1.5, along with some implementation

details.

4.1 .1 A pproach

The Monte Carlo algorithms [James and Singh, 2004; Wolfe et al., 2005] and the

TPSR algorithm [Rosencrantz e t al., 2004] can all be summarized by the following

description: choose a submatrix of the system dynamics m atrix by selecting a set

of tests T and a set of histories H, estimate the prediction values in the matrix

y(T\H), and use linear regression to compute the parameters, rn\- , of the PSR. The

constrained gradient algorithm also follows this generic formula, although it uses a

very different method than the previously mentioned algorithms.

We will use y(T\H) to refer to the estimate of the true submatrix, y(T\H). One

of the major hurdles in creating an estimate of the values in a system dynamics

matrix is that, without a reset action, each history in the matrix is experienced

at most once. Thus, each prediction has at most a single binary sample, and the

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

majority of the test predictions in the matrix have no samples. To generate accurate

estimates in y(T\H), algorithms need to find some way to combine samples from

different histories. The constrained gradient approach uses the properties of the

system dynamics matrix to estimate the entire prediction row y(T\h l) at each time

i, even though the number of da ta samples at history hx is extremely limited. This is

possible because most of the information needed to generate those values is contained

in the information already seen.

Overall, the general approach taken by the constrained gradient algorithm is to

compute an estimate y(T\hl) at each time i, using the known structure of the system

dynamics matrix. Together, these row estimates form the subm atrix y(T\H) tha t

can be used to estimate the parameters, m x , of the PSR.

4 .1 .2 T ests and H istories

In this section, we describe the subset of the system dynamics m atrix used by the

constrained gradient algorithm. We explain the selection of tests, T, and histories,

H, considered by the algorithm.

Selecting Tests

The minimal set of tests required for T is the union of the core tests and the

extension tests, Q U X . These are the tests necessary to compute the parameters

m x using linear regression. This minimal set of tests is used by the Monte Carlo

algorithms [James and Singh, 2004; Wolfe et al., 2005]. The size of this set of tests

is O (|Q||^4||C>|), since there is a test for each combination of action, observation,

and core test.

This minimal set of tests is not sufficient for the constrained gradient algorithm,

however. The constrained gradient algorithm performs a normalization procedure on

the prediction probabilities (explained in Section 4.1.3), which requires the following

two properties on the set of tests, T :

1. t a o e T = > t e T

We refer to t as the parent test of tao. We use the notation ir(tao) = t. If a

test is in T, its parent must also be in T.

2. taoi 6 T =>■ taoj € T Voj^i € O

We refer to tests which differ only in the final observation as sibling tests. If

a test is in T, all of its siblings must also be in T.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Properties of Domain Selection of T
Ml |0 | \Q\ d Minimal Norm Full Set

Float-Reset 2 2 5 5 23 61 1365
Tiger 3 2 2 2 13 19 43
Paint 4 2 2 2 17 25 73
Shuttle 3 5 7 2 106 241 241
4x3 Maze 4 6 10 3 241 457 14425
Cheese Maze 4 7 11 3 309 813 22765
Bridge Repair 12 5 5 2 301 961 3661
Network 4 2 7 3 57 105 585

Table 4.1: The sizes of various selections of test sets, T. ‘Minimal’ is the set Q l) X ,
‘Norm’ is the normalizable set of tests, and ‘Full Set’ is the exhaustive set of all
tests of size d or less. Some properties of each test domain are also shown.

The minimal set of tests is not guaranteed to possess either of these properties.

The simplest way to ensure tha t the tests in T have these properties is to include

the exhaustive set of tests tha t have size less than or equal to the longest test in

X . However, even with a small number of actions and observations, this set can

become very large if the tests in X are of moderate length. The size of the set is

O where d is the length of the longest test in X .

Instead of using the exhaustive set, we select T to include the minimal set of

tests necessary to still be able to perform the normalization step. T is initialized to

Q u X , and then iteratively augmented to satisfy the above properties by adding the

parent and sibling tests for each test in T. We refer to this set as the normalizable

set of tests.

In general, the size of this normalizable set of tests is 0(d|<3||.4||C?|2), or no more

than a factor of d\0\ larger than the minimal set. This is because adding all parents

increases the size of T by a factor no more than d, and adding all of the siblings

increases the size by a factor no more than |0 |. In practice, the normalizable set is

generally much lower than this bound. Table 4.1 shows a comparison of the sizes

of T using these three different types of sets, for the test domains used later in this

chapter.

Selecting Histories

The set of histories, H, required for the constrained gradient algorithm must meet

two conditions:

1. At time i, H must contain /i1-1.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. H must contain ‘sufficient’ histories to represent the system.

A ‘sufficient’ set of histories is one that contains enough diverse rows that the full

rank of the system dynamics matrix is represented. In general, since the complexity

of the system is unknown, it is never possible to guarantee that the second condition

is met. The best approximation would be for H to include all histories experienced

so far. However, this approach would become computationally infeasible after a

large number of time steps. Currently, we select H to be the previous n histories

encountered in the system, where n is a parameter to the algorithm. In Section 4.2.2,

we investigate the choice of n. This finite window method guarantees tha t the first

condition is satisfied, as long as n > 1. This method does not necessarily guarantee

the second condition, but for larger values of n, the probability tha t H is sufficient

increases.

Using a finite window of histories has several benefits. A main benefit of using

the most recent histories in H is that y(T\H) always contains the most recent data.

Because we expect that our row estimates become more accurate as more data is

seen, y{T\H) will therefore contain the most accurate rows. A second benefit of

using a block of consecutive histories is that the states represented by histories in H

occur proportional to the frequency that they are encountered by the system. Thus,

in the regression step, more frequently encountered states will be proportionally

represented and have a greater impact in computing the parameters than infrequent

states. A third benefit of the finite window approach is tha t keeping H a constant

size keeps the per-time step computation constant.

The main drawback of using a finite window is tha t n must be large enough

such that, at all times, it contains enough histories to fully represent the system.

The problem is essentially the same as that suffered by history-based models; it

is possible tha t all the states of the system are not represented in the previous n

time steps, and therefore the representation can lose track of some states of the

system. This problem does not affect the constrained gradient algorithm as much

as it affects history-based methods, though. The number of possible histories grows

exponentially with the size of n, so when using history-based methods, choosing a

large value for n is intractable. Using the constrained gradient algorithm, choosing

a larger n results only in a linear increase in the memory and computation require

ments' of the algorithm. For example, it would be be infeasible to use n = 1,000 in

a history-based method, because even in a system with two observations and no ac-

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tions, 21000 is too many histories to represent; however, in the constrained gradient

algorithm, \H\ = 1,000 is a reasonable size.

One can imagine alternatives to a simple finite window approach. For instance,

H could contain the histories whose rows are the most orthogonal, and thus are most

likely to contain information about different states. This approach is similar to the

one used by the Monte Carlo algorithms, and has the benefit tha t H can be very

small and the algorithm does not suffer from the history-based method drawback.

However, a small H means that the linear regression is less-constrained and could

overfit. Also, choosing linearly independent rows could suffer from preferring rows

with higher error, since these rows may appear more orthogonal to other rows. A

hybrid method could also be possible, which combines the advantages of storing a

large number of recent histories with the advantages of keeping linearly independent

rows.

4 .1 .3 C on stru ctin g th e P red iction M atrix

In this section, we describe how each row y(T\hx) is estimated, after each new

data point alox is observed. This estimation process uses the constraints listed in

Section 3.3 to compute an estimate of each prediction probability, even though most

of these probabilities are never sampled. Computing an estimate y(T\hx) involves

three steps. In the first step, some of the predictions are computed directly from

the previous row, y{T\hx~l). In the second step, the remaining predictions are

computed using linear regression. These first two steps are the constrained part of

the constrained gradient algorithm. In the third step, the predictions are adjusted

in the direction of the observed data; this is the gradient step of the algorithm.

When a new action-observation pair alox is observed, the tests in T can be

divided into two sets: T\ contains all the tests t G T such tha t axoxt G T, and T2

contains all of the remaining tests, i.e. T — T\. Although exactly which tests are

included in each set vary, it is always true tha t Q C Tj. This is true by definition,

because A C T , and X contains axoxq for all q € Q.

The first step in computing y(T\hx) is to compute y(T\ I/i1). All of the information

required for this step is already contained in the previous row, y(T\hx~ l). Using the

conditional probability property of the matrix entries, we know that

Cj.i 1 i \ U i u i - I i i s vitfoHlh1- 1)y[t\h) = y(t\h a o) = ■ . .,' . ,,
1 ' v 1 ' y(axox\hx~l)

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Estimates of y(alot \ht~l) are always available, ancl T\ was constructed such that

estimates of y(alolt \kt~ l) are also available for all t. G T\. Thus, estimates of the

values in y(Ti\h,1) can be easily computed from available data.

In the second step, estimates for y(T2 \hl) are computed. To do so, the algorithm

uses the fact tha t y{Q\hl) was computed in the previous step. Each prediction y(£|/d)

can be computed from y(Q\hl)mt, for some weight vector m.t . The weight vector

can be found by using linear regression to find the m t tha t minimizes \y(Q\H)mt —

v W) \ 2.
Computing y(T2 \hl) using regression can create values tha t violate the range and

internal consistency properties of the system dynamics matrix. The range constraint

is enforced by setting any negative entries to a small positive value. The internal

consistency constraint is enforced by a normalization step on the probability values.

For each test taoj,

y(ta0j\hl) «- y{t \ hl) i\
y(tao\h%)

This has the effect of maintaining the ratios between siblings tests, while ensuring

tha t they sum to the value of their parent. The normalization is performed first on

length one tests, since in that case t = e and y{e\hl) is always 1, then on length two

tests, since t is length one and thus y(t\hl) has already been normalized, etc., until

all tests in T have been normalized. If for any reason the value Eoec> y(tao\hl) is

zero, then each test taoj is set to y(t\hl) / \0\ . By construction, the set T ensures

tha t all tests required to perform this normalization step are present in T.

Note tha t it is this normalization step tha t ensures tha t each entry in the matrix

approximates y{t\h), instead of Pr(ot]/i, at). The normalization update equation,

above, is a simplified view of the actual normalization process. The samples from

the da ta stream occur according to the probability Pr(ot|/i, at), which takes into

account the policy generating the actions. Thus, before the values y(taoj\hl) are

normalized, they contain values sampled from Pv(otOj\hl ,a ta). During normaliza

tion, probabilities are divided by the sum of their siblings.

y{taoj\hl) Pr(otOj|/d, (qci)
E oeo y{tao\h}) ~ £ oeo Pr(oto|/i‘, ata)

_ Pr(ot\hl,ata)Pr(oj\hl ,ta)
Pr(o(|/i*, ata) £ oe0 Pr(o|/ii , ta)

_ Pr(oj|/P, ta)
EoeO Pr(o|/d, ta)

= P r(oj|/iI, ta)

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Thus, the normalization procedure removes the effect of the policy on the sampled

values. Using the above to derive the normalization step:

y(taoj \h) <- y(t\h,)— J . , his
X/oeo y[tao\'1)

* ijfii/i*)— Pr(5—
EogO Fr(oto \h \ a ta)

= y(t\hx)Pv(ojlhl ,ta)

= y(taoj\hl)

Thus, entry in the m atrix is being changed to approximate y{t\h).

At this stage, an estimate for all of the predictions in y(T\hl) has been computed.

The final step in computing y(T\h l) is the gradient step; the observations tha t are

actually encountered in the data stream are used to adjust the estimated predic

tions. The constrained gradient algorithm uses a Monte Carlo update for this step.

For instance, the prediction y(al+1ol+1. . . a1+ko1+k\hl) should have its probability

increased, since the observation sequence ol+1. . . oi+k is actually observed after tak

ing the action sequence a l+1. . . al+k. The predictions y(a1+1Oj . . . a1+koi\h1), where

Oj. . .ot ^ oI+1. . . ol+k, should have their probability decreased, since those tests

were executed and their observations were not seen. The gradient step is as follows:

for each test t = a 1+1ot+1.. .a l+kol+k, we adjust the value of y(t\hl) towards the

probability of its parent, using:

y(t|/il) *- (1 - a)y{t\hl) + ay{n{t)\hl)

The probability of the parent is used as the target because it is the maximum value

of y(t\hx). The probabilities of the unobserved sibling tests of t are decreased, while

maintaining the ratio of their probabilities. In practise, the adjustment of t and its

siblings can be done by adding a positive value to y(£|/d), and then re-running the

normalization step on the row. The positive value, x, can be found by solving:

+ x = (1 “ +

This states tha t the ratio of the current prediction plus x and the parent prediction

plus x must be equal to the desired value of y(t\hl). Solving for x yields:

„ _ V{n{*) \h%) ~ a
1 - Q

The value of a controls the learning rate; a high value moves the prediction very close

to its maximum value, while a small value tweaks the prediction only slightly. The

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

value of a should be decayed during learning, so that the algorithm will eventually

converge on a solution. Decay policies for a are investigated in Section 4.2.2.

When learning online, the information to adjust the predictions in row ^/(Tj/i1) is

not available at time i, since the action-observation data is available from a stream.

In practise, the algorithm maintains a buffer of action-observation pairs of length d,

the length of the longest test in T. When a'o' is observed, the row y(Tj/iI_d) can be

computed and the buffer of actions and observations al~(l+lo'~d+] . . . a'o' is used to

adjust the prediction values. This is the same approach tha t is used in the myopic

gradient descent algorithm. This approach has the disadvantage that the algorithm

does not explicitly have the estim ate of the current state vector y(Q |/i'), although

it can be easily computed by successively generating rows for histories between hl~d

and h1 using the buffered action-observation pairs.

4 .1 .4 E xtractin g th e P S R Param eters

If the constrained gradient algorithm is being used online, extracting PSR parame

ters is unnecessary, since the algorithm maintains up-to-date prediction probabilities

for the core tests Q, as well as all other tests in T. However, if a final PSR is nec

essary, one can be easily generated from the data structure y(T\H) used by the

constrained gradient algorithm. The necessary parameters are a state vector and

the weight vectors m x-

There are three options for computing the state vector of the PSR: the current

state vector, the initial sta te vector, and the stationary distribution state vector.

The current state vector is y{Q\hl), for the most recent history hl. This state vector

represents the state of the system as it was last experienced by the learning algo

rithm. Extracting a current sta te vector is possible because the constrained gradient

algorithm is an online algorithm; with the exception of the myopic algorithm, previ

ous PSR learning methods are unable to generate a current state vector. The initial

state vector is y(Q\4>), the vector tha t represents the state in the initial distribution

of the system. This state vector is used if the generated PSR is for a system that has

been reset. However, only the reset-based Monte Carlo algorithm is capable of gen

erating this state vector, because without a reset action, algorithms cannot create

an accurate estimate of the initial distribution. Instead, the constrained gradient

algorithm uses the stationary distribution of the system, if a stationary distribu

tion exists. The state vector for the stationary distribution can be computed by

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}77y 10,he if y{Q\h)i where H contains all available histories. This is also the approach

used by the suffix-history Monte Carlo algorithm, and is the approach used by the

constrained gradient algorithm to create a PSR that will be used offline. Of these

three types of state vectors, the most important is the current state vector, since it

would be used in more practical settings.

Regardless of the type of state vector used, the update parameters of the PSR

do not change. The update parameters of the PSR, m x , are computed using linear

regression on the columns of y{X\H) . For each t E X , the weight vector mt is

computing by finding the vector that minimizes \y(Q\H)mt — y(t\H)\2.

4.1 .5 T h e C om p lete A lgorith m

In this section, we summarize the above description of the constrained gradient

algorithm, and indicate any implementation details left out of the above discussion

for simplicity. Algorithm 1 shows the constrained gradient algorithm.

The computational complexity of the constrained gradient algorithm is domi

nated by the complexity of the regression step used to compute the parameters nit

for each test t. In this step, mt is computed by:

mt - {m\H)Ty{Q\H))~l y{Q\H)Tm\H)

Note tha t the first part of this computation is not dependent 011 the test, t. Thus,

A + - (y{Q\ H)Ty { Q \ H)) ~ l y {Q\ H) T

can be computed once at each time step, and each mt is then computed by

m t <- Ay(t\H)

Overall, computing A has complexity 0 (|Q |2|£f|-t-|Q |3) and computing each m t has

complexity 0(\Q\\H\). This gives a total per-time step complexity of 0(\Q\2\H\ +

|<3|3 + |T ||Q ||/I |) , or simply 0(\T\\Q\\H\) since |T| > \Q\ and generally \H\ » |<2|.

The relatively high computational complexity is one of the greatest disadvantages

of the constrained gradient algorithm over existing algorithms, which use essentially

constant computation per time step. One way to reduce the computation used by

the constrained gradient algorithm could be to not re-compute mt every time step,

since it is not likely to change greatly between consecutive time steps. A linear

speed-up of n times could be expected if the weights mt are computed every n time

steps, but it could come at the expense of prediction quality.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lg o rith m 1 The constrained gradient learning algorithm.
R eq u ire : A I I the se t of actions
R eq u ire : O I I the se t of observations
R eq u ire : Q I I the se t of core te s t s
R eq u ire : a I I the learning parameter
R eq u ire : n / / the number of rows of h is to ry kept
R eq u ire : a I I the action stream
R eq u ire : o / / the observation stream

1
2
3
4
5
6
7
8
9

10

11
12
13
14
15
16
17
18
19
20
21

22

23
24
25
26
27
28

yja'p'tlh' *)
7/ (a ’ o ' | / t * - 1)

initialize T to normalizable set of tests
initialize y(T\h°) to uniform probabilities
i «- 0
r e p e a t

i +— i + 1
T\ <— {t | aloH 6 T , t € T }
T2 <- T - Ti
I I compute y(T\\hl)
fo r all t € T\ do

y(t\hl)
e n d for
/ / compute y(T2 \h')
fo r all t € T2 do

m t <- argminm \y(Q\H)m - y{t\H)\2
y(t\h') <- y{Q\hl)m t

e n d for
run normalization step on y(T\h l)
I I update observed en trie s in the row
for all t 6 T do

k «— length of t
if t — a I+1ot+1. . . a1+kol+k th e n

y(t \h‘) - y (t W) +
run normalization step on y(T\hz)

e n d if
en d for
discard the row y(T |/iI_n) from y(T\H)
add the row y(T\h}) to y(T\H)

u n til end of streams a, o

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Computing weight vectors m* requires a matrix inversion step in the linear re

gression. If the core test matrix y(Q\H) is not full rank, then this inversion cannot

be performed. To avoid problems, we use a regularized linear regression by adding a

small value A to the diagonal elements of the matrix that will be inverted. This en

sures tha t the m atrix is invertible; it also has the side-effect of biasing the computed

solution vectors m, by penalizing large weights. In this work, we used A = 10- '1.

Another problem with the algorithm can occur if the entry y(alol \hl~ l) is ever

zero; i.e., if the algorithm estimates zero probability for an event tha t actually

occurs. This would result in division by zero when the entries for row ^(Tj/d) are

computed. To avoid this, we place a lower bound of 10-5 on the probabilities in the

matrix. The lower bound is enforced in the normalization step. The lower bound can

affect the quality of learned PSRs, if the PSR actually does have zero probabilities,

but with a small enough bound the effect on quality should be negligible. It may

be desirable to remove or decrease the lower bound later in learning, when it can

be reasonably certain that some events actually have zero probability; however, this

was not done in our implementation or investigated in our tests.

W hen y(t\hl) is incremented in line 22 of Algorithm 1, the value 1 — a is used

in the denominator. Thus, we require a < 1 to avoid division by zero errors.

In the above algorithm, the row y(T\h°) is initialized to uniform probabilities.

To clarify, this means tha t for each test t € T, y(t\h°) is set to \ / \ 0 \ lcn l̂\ Thus,

the probabilities are uniform with respect to their depth. Since no information is

known about the system at this point, a uniform distribution seems like a reasonable

starting point for the algorithm. If additional information about the system is

known, such as the initial distribution or the stationary distribution, the row y(T\h°)

could be initialized appropriately.

One thing to note when adjusting the prediction values of tests to fit the data

is to avoid adjusting a prediction value more than once for the same piece of data.

For instance, if y(alola2o2\4>) is adjusted, then its modified value will propagate to

subsequent rows using the conditional probability property. On the next time step,

y{a2o2\alol) should not be adjusted, because it would essentially be double-counting

the a2o2 data point. Thus, we add the condition that each data point a V can only

be used to adjust a single prediction tha t ends in a V .

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Experim ents

In this section, we experimentally investigate the learning capabilities of the con

strained gradient algorithm. The purpose of this section is to investigate how the

constrained gradient algorithm performs in comparison to other PSR learning al

gorithms. In Section 4.2.1, we describe the experimental setup and test domains

used in these experiments. Section 4.2.2 investigates the effects of param eter selec

tion on the algorithm. Section 4.2.3 presents offline experiments and results, and

Section 4.2.4 presents online experiments and results.

4.2 .1 E xperim en ta l S etu p

The experiments in this section, and throughout the rest of this work, use a set

of test domains from an online repository [Cassandra, 1999]. This set of domains

has become an unofficial standard test set in the PSR literature, as it has been

used in experiments in [Singh et al., 2003; James and Singh, 2004; Wolfe et al.,

2005]. The domains were all originally designed for experiments with POMDPs,

and all are composed of a finite number of nominal states with dynamics that can

be modelled by a POMDP. A more detailed explanation of each domain can be

found in Appendix B. The number of actions, observations, and linear dimension

of each domain is in Table 4.1.

In all of the experiments in this section, the constrained gradient algorithm is

provided with a correct set of core tests for the system, because we wish to investigate

only the learning capabilities of the constrained gradient algorithm. Each reported

result is the mean of 10 trials. In each trial, the constrained gradient algorithm learns

a model of the system by processing a data stream of 1,000,000 action-observation

pairs. The actions in these data streams were generated using a uniform policy over

actions.

In order to determine the performance of the generated models, a PSR was

extracted from the algorithm’s learned model at various points during learning.

Its error was measured using the same method as described by Wolfe et al. [2005].

Prediction error is measured on a test stream of 10,000 action-observation pairs that

have been annotated with the true probabilities y(alOj\hl~1) for each observation Oj

a t each time step. At each time step, the difference between the PSR ’s prediction

probabilities, y(alOj\ht~1), and the true probabilities, y(alOj\hl~l), is recorded. The

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

overall error is:

T
!C {y(al°j \ki~l) - y (aioj\iii~1)) 2

t=i I l Ojeo

where T is 10,000, the length of the test stream. Note tha t this is an offline method

of measuring error, meaning it does not make any predictions about the stream

on which the PSR was learned. While updating the PSR to measure error, nor

malization is performed after the state vector is updated, in order to prevent small

errors from accumulating. The normalization involves restricting the state vector

probabilities to the range (0,1]; a small lower bound on prediction error is enforced

to prevent division-by-zero errors. Normalization is not performed when computing

the observation probabilities y(alOj\ht~ i) tha t are used to compute the error. Thus,

recorded error can possibly be greater than 1.

4.2 .2 P aram eter S e lectio n E xperim en ts

The constrained gradient algorithm has several parameters tha t can be tuned, and

in this section, we examine how the parameterization of the constrained gradient al

gorithm affects its performance. The two parameters we appraise are n, the number

of rows of history kept (i.e., the size of H), and the decay of a , the learning rate that

determines by how much the constrained gradient algorithm follows the gradient.

We will use the results of these experiments to determine the parameterization of

the algorithm used for the rest of the experiments.

Learning R ate Parameter

In the experiments to select a policy for decay of the learning parameter, a, we tested

six different decay policies. In two of them, a remained constant for the duration of

learning. We used a = 0.99999 « 1 as a large constant value, which has the effect

of setting all observed probabilities to almost 1 and not-observed probabilities to

almost 0 (they are not exactly 0 and 1 because of the lower bound on probabilities).

We used a = 0.1 as a small constant learning rate. For the other policies, a was

initialized to 1 and decayed over time, using two types of decay. Using ‘sudden

decay’, a is halved every k data points. Using ‘gradual decay’, a is divided by \/2

a t every time step. This has the effect of halving a every k data points, but does so

gradually instead of making large changes. We tested k = 100,000 and k = 250,000

for both styles of decay. The other parameter, \H\, was set to 1,000.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10 1

COOKIK 750K

(a) Float-Reset

S m ld r tt D ic av . 100K
(m u tu a l l> xny . IOOK
S ikMch IV eav . 27)1%

(Ir;wluaJ IV* w . 27)1%'

I7‘

m-•

IK 27)K 71)1% 77) K 10)01%

(b) Tiger

500K

(c) Paint

io-‘

IK

(d) Shuttle

SOOKIK 2501%

(e) Network
IK 77)1% 1000K

(f) 4x3 Maze

io-*

I

IK 750K 10)01% IK 1000K

(g) Cheese Maze (h) Bridge Repair

Figure 4.1: The effect of changing the learning parameter, a. The horizontal axis
shows the number of data points used, and the vertical axis is the PSR error. Each
line represents a different style of a decay.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.1 shows the results of the cv-decay experiments. Overall, we see that

the exact cv-decay policy can m atter a great deal when learning, and the best decay

policy is dependent on the system. Some generalizations can be made, however.

Using a constant a = 1.0 performs poorly across most domains, and tends to stop

learning early, since the prediction adjustments are very coarse grained. Using a

large learning rate also seems to create a more unstable representation; as can be

seen by the “jaggedness” of the lines in the plots in Figure 4.1. This is a result of

the values in y(T\H) changing by a larger amount.

The algorithm performs better using a smaller constant value of a = 0.1. Like

a = 1.0, learning eventually stops, although generally at a more accurate model

than with a higher learning rate. This can be best seen in the plots for the Tiger

and Paint domains. In all cases, as expected, the early performance of a = 0.1 is

the worst of all cv-decay polices due to slower learning.

Of the decaying policies, the choice of k, the halving interval, matters more than

whether gradual or sudden decay was used. For the simpler domains, Float-Reset,

Tiger and Paint, using k = 100,000 worked best, since it allowed more fine-grained

changes in the prediction probabilities. In the Network, 4x3 Maze, and Bridge

domains the performance of k = 100,000 and k = 250,000 were roughly equivalent.

Strangely, in the domains Shuttle and Cheese Maze, the models that used a smaller

learning rate actually increased in error later in learning. This strange behaviour is

investigated further in Section 6.2.2.

Overall, we can see tha t different domains have different requirements of the

learning parameter. Unsurprisingly, simpler domains benefit from a learning rate

that decays quickly to allow for more fine-grained learning. More complicated do

mains require a larger learning rate for a longer period of time. For our remaining

experiments with the constrained gradient algorithm, we will use the ‘sudden decay’

policy with k = 100,000, since this policy works fairly well in most domains and

does not obscure the increase in errors in the Shuttle and Cheese Maze domains.

Size o f H istory Set

The number of rows of history kept in H is an im portant parameter. Larger sizes of

H mean that the algorithm takes longer to run, since more samples are used in the

regression steps, and also tha t old data is kept longer. Small sizes of H mean there

is a higher probability tha t H may not contain sufficient rows to fully represent

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the system, and also that there are fewer data samples in the regression step which

could lead to overfitting. The tested sizes of H were 100, 500, 1,000, 5,000, and

10,000 .

The plots in Figure 4.2 show the results of the experiments on the size of H.

Once again, we see that the parameterization of the constrained gradient algorithm

has a large effect on the performance of the algorithm. One generalization tha t can

be formed from the data is tha t keeping more histories leads to slower learning.

This is best evidenced in the Float-Reset, Tiger and Paint domains. The reason

is that, with more histories, each observed data point has a smaller effect on the

model as a whole. We also see th a t the models with 5,000 and 10,000 histories stop

learning earlier. There is a relationship between a and the number of histories kept;

an a of a given size will have less effect on a model that keeps more rows. Thus,

in the models with many histories the size of a becomes negligible faster than in

models with fewer histories. A related point is tha t keeping more histories creates

a smoother error line, since the model changes less between data points.

Across all domains, the models tha t used 100 histories performed poorly. It

was also quite evident in the 4x3 Maze and Cheese domains that 100 histories was

generally not sufficient to represent the entire state. This shows in the plots by the

extreme jaggedness of the error lines. It makes sense that the insufficiency would

be most apparent in these domains, since they have the highest linear dimension.

In Tiger, Paint and Shuttle, more evidence is given tha t error can increase with

more data. Notably, this process happens more in models tha t maintain fewer

histories. This indicates, perhaps, a relation between the sufficiency of the set H

and the likelihood of falling into a local minima.

Overall, if data is unlimited and learning will continue for a very long time, using

more histories and a higher a is probably better, since it will lead to a more stable

representation. However, in general we expect that data is limited, or expensive, and

both learning and computation speed are important. Therefore, we must choose a

trade-off between a sufficient number of histories and a feasible number of histories.

For the rest of our experiments, we will use \H\ — 1,000, since it performs reasonably

well across all domains.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

H)'

IK 250K IOOUK

(a) F loat-R eset

| / / f « MX) _
|//| - aw _

| / / j •- J(KI) _
{//(--- ami

| / / | ̂ IttJrt)

10 1

I I) 1

nr‘

IK

(b) Tiger

10-*

IK IOOQK

(c) Paint

ur'

IK

(d) Shuttle

IK
(e) Network

10-'

to
I

*S_

I0*;
500K

(f) 4x3 Maze
IOOOK

£

10 - ’IK

£

10-'

IK
(g) Cheese Maze (h) Bridge Repair

Figure 4.2: The effect of changing the number of histories in H. The horizontal axis
shows the number of data points used, and the vertical axis is the PSR error. Each
line represents a different number of histories in H.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 .3 Offline E xp erim en ts

In this section, we examine the performance of the constrained gradient algorithm

using the offline measure of PSR error. Its performance is compared to the suffix-

history algorithm, with the modification tha t the suffix-history algorithm is provided

with a correct set of core tests. Performance is also compared to the myopic gradient

descent algorithm. Figure 4.3 shows the results for these experiments.

For the myopic gradient algorithm, the learning rate a is initialized to 0.5 and

halves every 100,000 data points, as was suggested in [Singh et al., 2003]. This is why

the performance of the myopic algorithm tends to have sharp transitions. Compared

to the myopic gradient algorithm, the constrained gradient algorithm learns an

initial model very quickly. This gives evidence for our claim tha t the constrained

gradient algorithm is able to use the constraints on the system dynamics matrix

to learn more effectively. However, in many of the domains, like Bridge Repair,

Paint and Shuttle, the performance of the constrained gradient algorithm tends to

plateau, while the myopic gradient algorithm continues to learn a better model.

One possible explanation is tha t the constrained gradient algorithm may be more

susceptible to local minima than the myopic algorithm. If the algorithm reached a

local minima, it would have the same behaviour as evidenced in some of the plots

in Figure 4.3. The reason that the constrained gradient algorithm may be more

susceptible to minima is tha t it contains a lot of self-propagating information. After

each data point, only a small number of the predictions in the large matrix y(T\H)

are changed. Because the entire matrix is used in computing each new prediction,

the small changes made from following the gradient on the data may not be enough.

Chapter 6 further investigates these issues with the performance of the constrained

gradient algorithm.

The results for the suffix-history domain are also shown in Figure 4.3. The

algorithm was implemented from the published details [Wolfe et al., 2005]. The

performance of the suffix-history algorithm varied greatly among the domains. In

some domains, like Tiger, Paint and Cheese Maze, it creates a very good model of

the system and performs better than both the myopic algorithm and the constrained

gradient algorithm. In other domains its performance is approximately competitive

with the myopic gradient algorithm. In the 4x3 Maze domain, the model created

by suffix-history is too poor to show on the plot. These results conflict with the

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CS
R

Er
ro

r
PS

R
Er

ro
r

PS
R

Er
ro

r
rS

R
Er

ro
r

I0 '1

IK 250K 7.WK irnoK

(a) F loat-R eset

(c) Paint

10-*

10 s
IK 1000K

stok

(e) Network
7COK inooK

I0‘J

MM)K

I
c:£

10 ‘
IK 7MK l(IM)K

(b) Tiger

mi •

10-*
IK IOOOK

(d) Shuttle

(f) 4x3 Maze

£

IK 750K

IK 750K KJXIK

(h) Bridge Repair

Figure 4.3: PSR error in offline tests. The horizontal axis shows the number of data
points used, and the vertical axis is the PSR error.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

published results for the algorithm, which show good performance in all of these

domains. Informal experiments show that the suffix-history algorithm can be quite

sensitive to small inaccuracies in the matrix y(T\H). It is also very sensitive to

the choice of suffixes; care was taken to choose a good set for each domain, based

on likelihood of occurring and linear relatedness. We believe tha t the discrepancies

between our results for suffix-history and the published results are due to these

sensitivities.

4 .2 .4 O nline E xp erim en ts

These experiments are intended to determine the performance of the constrained

gradient algorithm when used for online predictions. This performance is compared

to the performance of the myopic gradient descent algorithm, which is currently the

only other PSR learning algorithm capable of making online predictions.

Unlike the previous experiments, the PSR errors shown in the results for these

experiments do not use an independent test stream to measure error. Online error

at each time step i is measured by py Z)oJeo(y(ftl+1° jl^ 1) — 2/(«I+1oy|/iz))2, which

computes the squared prediction error for the next time step, averaged over all

observations. Computing this requires tha t the original data stream is annotated

with the true prediction probabilities. In the results presented here, the online error

is averaged over the previous 1,000 data points, in order to smooth the values.

Figure 4.4 shows the results for testing online performance. The most striking

feature of the online performance is tha t it matches the offline performance extremely

closely. This means tha t the average prediction error over 10,000 steps (the offline

error) is essentially the same as the average error for predicting only a single step

ahead (the online error). This indicates that PSRs are not very prone to drifting.

Drifting is when small errors in the PSR state vector accumulate over time, and

eventually create increasingly inaccurate predictions.

4.2 .5 Sum m ary o f Learning R esu lts

Overall, the learning results for the constrained gradient algorithm are encouraging.

They show tha t the algorithm is capable of quickly building an initial model, faster

than the myopic gradient algorithm in all domains except Cheese Maze, and faster

than suffix-history in several cases, although the accuracy of the suffix-history results

is in question. In the long run, though, the performance of the constrained gradient

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PS
R

Er
ro

r
PS

R
Er

ro
r

rS
R

Er
ro

r
PS

R
E

rr
or

10 '

10' *

10 •
IK 7MIK

(a) Float-R eset

W l

IK 2M K .7IIK

(c) Paint
7.VIK IOOOK

IK 250K 500K 750K IOOOK

(e) Network

IK IUJOK

1 0 '*

10 *

IK

(b) Tiger

10- '

IK

(d) Shuttle

10- '

I H I- 1
22

IK IOUIK

(f) 4x3 Maze

£

io-'IK
(g) C heese Maze (h) Bridge Repair

Figure 4.4: PSR error in online tests. The horizontal axis shows the number of data
points used, and the vertical axis is the PSR error.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithm tends to plateau, indicating tha t it may be prone to local minima in

search space.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Discovery of Core Tests

In the previous chapter, we described the learning portion of the constrained gradient

algorithm, and assumed tha t the set of core tests Q was known. In general, though,

Q is not known prior to learning. In this chapter, we describe how the constrained

gradient algorithm selects core tests. In Section 5.1, we describe how core tests

can be identified in the constrained gradient algorithm and we discuss some issues

related to the discovery problem. In Section 5.2, we show experimental results for

this discovery algorithm on our test domains.

5.1 Core Test Discovery

Our discussion of core test discovery is divided into two sections. In Section 5.1.1,

we discuss in general how core tests can be selected from the m atrix y(T\H). In

Section 5.1.2, we explain in more detail how core test discovery is used in the con

strained gradient algorithm.

5.1.1 S e lectin g C ore T ests

In this section we explain how to choose a set of core tests from the set of tests T.

Because this selected set is an approximate set of core tests, we use the notation

Q instead of Q, which denotes a true set of core tests. The constrained gradient

algorithm uses a simple parameterized threshold algorithm to find core tests. This

approach is more rudimentary than other PSR discovery and learning algorithms,

namely, the rank-estimation method used by the reset-based and suffix-history meth

ods. However, as will be seen in Section 5.2, the constrained gradient algorithm’s

discovery method is frequently capable of selecting a correct set of core tests with

very little data.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The data structure available to the constrained gradient algorithm is y(T\H),

the current approximated submatrix of the system dynamics matrix. To begin the

discussion, let us make three major assumptions:

1. y(T\H) = y(T\H)\ the values in y(T\H) are perfectly correct.

2. Q C T; T contains a complete set of core tests, but the identity of these core

tests is unknown.

3. H is sufficient to represent the linear independence of each test; if the columns

y(t \ \H) and y{t2 \H) are linearly dependent, no other set H will show them to

be linearly independent.

Under these ideal conditions, discovering core tests is simple. Exactly \Q\ columns

of y(T\H) are linearly independent, and selecting Q is a m atter of selecting linearly

independent columns until all remaining columns are linearly dependent on the

selected set. However, conditions are rarely this ideal. In the next three sections,

we will discuss how each of the above conditions affects discovery when using an

approximated y(T\H).

Estim ating Linear Relatedness

Since the values in y(T\H) are estim ated from data, they are only approximations

of their true values. If we say tha t each value y{t\h) = y{t\h) + n, with some noise

n, then the matrix y(T\H) = y{T\H) + N, with a noise matrix N. Assuming the

noise is relatively unstructured, all of the columns of N will be linearly independent

with very high likelihood, and therefore all of the columns of y(T\H) will also be

linearly independent.

The columns of y(T\H) still exhibit different levels of linear relatedness, though,

and this can be used as an indication of which tests are actually linearly independent,

and therefore which tests should be chosen as core tests. Suppose we have a partial

set of core tests in Q, and we have two potential new core tests, t\ and 2̂ - If test

t\ appears more linearly unrelated to Q than £2 , and there is no reason to believe

tha t y(t i \H) has more noise than y fa lH) , then it is more likely tha t t.\ is a core

test than to. More formally, given an incomplete set of core tests Q, we expect that

the test tha t is most likely to be another core test is the test tha t is least linearly

related to y(Q\H):

argminteT y(Q\H) © y(t\H)

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where © is some measure of the linear relatedness of a matrix and a column. We

use the condition number of a matrix to indicate relatedness, as was done in other

discovery algorithms [James and Singh, 2004; Wolfe et al., 2005]. Other measures

are also possible, such as the angle between the vector and the subspace formed

by the matrix. The condition number cond(M) of a matrix M is the ratio of the

largest singular value to the smallest singular value, where the singular values can

be obtained using singular value decomposition [Khuri, 2003]. A matrix with a low

condition number contains columns that are mostly linearly unrelated. If a matrix

has a high condition number it has at least one column that is nearly linearly

dependent on the rest of the matrix, and if the condition number is undefined

(or infinite), the m atrix contains at least one column th a t is completely linearly

dependent on the other columns in the matrix. Using the condition number as a

measure of linear relatedness, the above selection procedure becomes:

argminie r cond(y(Q U { t} |/f))

If Q is initialized to {e}, repeatedly applying the above procedure forms a greedy

procedure for selecting tests tha t are likely to be core tests. This procedure is the

basic mechanism for core test selection in all current discovery methods for PSRs.

However, the procedure lacks a stopping condition, since the number of core tests

is not known.

The stopping condition used by the constrained gradient algorithm is simple. A

condition threshold, c, is supplied as a parameter to the algorithm. The discovery

algorithm stops choosing core tests when it cannot add a core test to Q without

raising the condition of y(Q\H) above c. Larger or smaller choices of c yield larger

or smaller sets of tests for Q.

A threshold is a very direct approach to choosing a stopping condition for the

constrained gradient algorithm, and other methods of deciding the size of Q are

possible. The reset-based and suffix-history algorithms use a more sophisticated

approach to determine how many core tests to select. They use y(T\H) to compute

an approximation of the rank of y(T\H) tha t takes into account the fact tha t the

entries in the matrix are samples. They model the noise in each of the matrix

probabilities, using the number of data samples that contributed to the probability.

W ith a model of the noise in the matrix and a confidence parameter, they compute a

singular value cutoff; the rank of the matrix is estimated to be the number of singular

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

values larger than the cutoff. This approach is more mathematically rigorous than

a simple parameterization; however, this approach cannot be used easily in the

constrained gradient algorithm since the number of data points used to create the

prediction probabilities is not known.

Sufficiency of T

The above discussion explained how core tests can be selected from y(T\H), despite

it being only an approximation of the true matrix y(T\H). The other two properties

required to select core tests concern the sufficiency of T and H. We will now discuss

how T can be constructed to contain a complete set of core tests. Littm an et al.

[2002] showed that if the one-step extensions of a proposed set of core tests Q are

all linearly dependent on Q, then all tests are linearly dependent 011 Q. However,

Littman et al.’s proof depends on the existence of a POM DP representation of the

system. Since a PSR is more general than a POMDP, this proof does not apply to

PSRs in general. Below, we give a novel proof tha t is similar to Littm an et al.’s

proof, but does not require a POMDP representation.

Theorem 1. I f Q contains e, and all of the one-step extensions of Q are linearly

dependent on Q, then all possible tests are linearly dependent on Q.

Proof. We use proof by induction. For the base case, e is trivially linearly dependent

on Q, since e G Q. For the inductive step, we show tha t if t is linearly dependent

on Q , then aot is also linearly dependent on Q, for any action-observation pair ao.

y(aot\H) = diag(y(ao\H))y(t\Hao) (5.1)

= dmg(y(ao\H))y(Q\Hao)mt (5.2)

= diag(y(ao|i?)) diag(y(ao|H’))_1 y(aoQ\H)mt (5.3)

= diag(y(ao|H’)) d iag(y(ao |i/))-1 y(Q\H)Maomt (5.4)

= y(Q\H)Maom t (5.5)

= y{Q\H)maol, where m aot = M aom t (5.G)

In the above, diag(x) is the diagonal matrix tha t has vector x on the diagonal,

Hao = {hao | V/i G H,ao G A x O) , and aoQ = {aoq \ 'iao 6 A x O , q € Q}. Steps 5.1

and 5.3 use the conditional probability rule. Steps 5.2 and 5.4, respectively, use the

fact tha t t and aoQ are linearly dependent on Q. The remaining steps are algebraic

reductions. The above proof assumes that y(ao\h.) > 0, for all h G H, because

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

otherwise dmg(y(ao\H)) is not invertible. However, in cases where y{ao\h) ~ 0, and

therefore y{aot\h) = 0, the derived linear dependence still holds.

y{aot\h) = y(Q\h)maol (5.7)

= y{Q\h)Maomt (5.8)

= °(lx |Q |)mt ^
= 0 (5.10)

where 0^1x|^q is the zero vector of size \Q\. Step 5.9 uses the fact tha t the probabil

ities in y(aoQ|/i) must all be zero when y(ao\h) is zero, and tha t the weight m atrix

M ao must linearly produce those zeros.

Thus, we see tha t if t is linearly dependent on Q, all one-step extensions of t are

also dependent on Q, and by induction all tests are dependent on Q. □

Note tha t m t = m ai0l...an_l0n_lQn0ll = Ma,0l • • • Man_l0ri_1m an0,l is the same

result tha t was found by Littm an et al. [2002] using POMDPs as the basis of the

calculation.

This above theorem is useful, because it shows that it is sufficient to search for

additional core tests among the one-step extensions of Q. If all one-step extensions

of Q are linearly dependent on Q, then a complete set of core tests has been found.

Otherwise, one of the extensions must be linearly independent, and therefore another

core test has been found. This addresses the above requirement that Q C T; in

practise, as long as T contains the one-step extensions of Q, T is sufficient to find

a t least one more core test.

Sufficiency o f H

The remaining requirement for finding core tests is tha t H is sufficient. This means

that H contains enough histories to reveal the linear independence between any

two tests which might be linearly independent. This assumption is more difficult to

address than the previous two assumptions. The issues related to H and discovery

are the same as the issues related to H and learning, which were addressed in

Section 4.1.2. In general, if H is not sufficient, then some tests will be considered

linearly dependent on Q, even if they are actually linearly independent. Because

there are often multiple possible choices for core tests, mislabelling some tests as

linearly dependent is not a problem. However, if H is insufficient enough such tha t

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

all potential core tests are mislabelled as linearly dependent, then a complete set of

core tests cannot be discovered.

5.1.2 D iscovery in th e C on stra in ed G radient A lgorithm

In the previous section, we described how core tests can be identified in the set T.

In this section, we describe more specifically the procedure used by the constrained

gradient algorithm to discover core tests. Algorithm 2 shows this procedure. The

algorithm shows two variations on the discovery procedure: a cumulative version

that adds new tests to the existing set Q, and a non-cumulative version that builds

Q from scratch each time. The former is called the cumulative version because

changes made to the set Q are cumulative; once a test is added to Q, it is never

removed. The non-cumulative version differs in line 2, in which Q is reset to {e}

before any core tests are found.

In line 5, the set of potential core tests S is initialized to all of the one-step

extensions of Q tha t are also present in T. Because T is updated after all of the

core tests have been selected, initializing S in this way prevents any tests from being

chosen as core tests tha t have not been present in T since at least the previous run

of the core test selection procedure. More simply, if t g T at the beginning of

the selection procedure, then t cannot be selected as a core test. These tests are

excluded because y{t\H) is not available for these tests.

A lgorithm 2 The discovery procedure in the constrained gradient algorithm.
Require: y(T\H)
Require: c / / The condition threshold.

1 if not using cumulative discovery then
2 Q *- {e}
3 end if
4 loop
5 S <— {aoq\a € A , o € 0 , q € Q} (I T
6 t <— argmini6iS cond(y(Q U {£}|U))
7 if cond(y(Q U {f} |/f)) < c then
8 Q *- Q U {£}
9 else

10 break from loop
11 end if
12 end loop
13 T' «— normalizable set containing Q
14 T <r-T' — T •Lncw ' -1 1
15 initialize y{Tnew\H)
16 T <— T'

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The most computationally expensive part of Algorithm 2 is finding the test

that is least linearly related to the current set of core tests. For each potential

test, finding the condition number of y(Q U {t} \H) requires computing the singular

value decomposition of the matrix, which takes 0(\Q^\H\) time. Since there are

about |.4||C>||Q| potential tests, overall the time complexity of running the core

test discovery procedure is about 0(|.4||C>||Q |3|-/7|), or about 0(|<2|3|/ / |) , if the

number of actions and observations is relatively small. While this is expensive, we

generally assume that |Q| is small. Also, the core test selection procedure is not

run a t every time step, and thus the cost can be amortized over the number of time

steps between successive runs of the procedure. A clever implementation of singular

value decomposition could also reduce the time required to run the procedure. Note

that each m atrix for which the SVD is computed varies by only a single column.

If an incremental SVD algorithm is used, the time complexity to compute each

decomposition would be 0{\Q\^ + \Q\\H\) [Brand, 2003]. Since we expect \H\ » |Q|,

this optimization would speed the algorithm by a factor of |Q|.

As previously mentioned, the discovery procedure is not run at every time step.

In batch learning methods, the natural break point to run a core test detection

procedure is after each complete pass over the data. This is what is done in the

reset-based and suffix-history algorithms. However, in online learning methods there

is no such natural break point, since only one pass over the data is made. We have

chosen to simply run the core test detection algorithm after every n data points,

where n can be configured. A reasonable choice for n is \H\, because this allows H

to be completely refreshed and a whole new matrix y(T\H) to be generated between

each time the core test discovery algorithm is run.

After the new set of core tests is selected, a set of new tests is added to T. This

set includes all of the one-step extensions of the new core tests, as well as any parent

and sibling tests tha t must be in T to perform the normalization step. When these

new tests are added, their columns in the matrix y(T\H) are initialized, as in line

15. It is possible to compute reasonable estimates of y(Tnew\H), because many of

those tests will be of the form aot, where columns for ao and t are already in the

matrix. Thus a prediction of y(aot\h) can be computed from y{t\hao)y(ao\h) in

cases where the h is followed by ao. This gets complicated, however, and in practise

simply initializing the columns to zeros tends to work well.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Experim ental R esults

In this section, we show empirical results from running the constrained gradient

algorithm’s core test selection procedure. We investigate the choice of the condition

threshold, and the differences between cumulative and non-cumulative discovery.

In the experiments shown in this section, a history window of size 1,000 was

used for H. The learning rate, a, was initialized to 1.0 and halved every 100,000

data points. All values reported are the mean of 10 trials, using the same data sets

of length 1,000,000 tha t were used in the previous chapter. Core test detection was

performed every 1,000 data points.

When reporting on the results of discovery experiments, two values are relevant.

The first value is |Q |, the size of the set of core tests tha t was selected by the

algorithm. The second value is \Qtrue\, which we define to be the number of tests in

Q tha t are linearly independent in the true system. In all cases, 1 < \QtrUc\ < |Q|>

because {e} C Qlrue C Q and e is a core test in all systems. The size of Qtrue is

calculated by computing the number of linearly independent vectors in y(Q\H*),

where H* is approximated by a very large set of histories.

5.2 .1 C on d ition T h resh old T ests

The first experiments we describe were designed to investigate how changing the

condition threshold parameter affects the discovery performance of the constrained

gradient algorithm. In these trials, the condition threshold was set to values between

1 and 20. Cumulative discovery was used. The sizes of Q and Qtrue were recorded

after 10,000 data points, which in all cases was sufficient for discovery to choose a

set Q. The results are shown in Figure 5.1.

The results from the condition threshold tests are not surprising. As the condi

tion threshold is increased, the size of Q increases. The size of Qtrue also increases,

until it reaches the true number of core tests for the system, as indicated by the

horizontal lines in the plots. In five of the domains (Tiger, Paint, Shuttle, Network

and Bridge Repair) the discovery algorithm successfully chooses a complete set of

core tests for the system, and in the remaining domains the discovery algorithm

very nearly chooses a complete set. In all domains, these set of core tests are chosen

after very little data is observed.

In the Float-Reset domain, a seemingly anomalous result occurred. The number

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N
u

id
In

t
of

 T
«s

U
N

tim
lx

T
of

Te

st
s

N
um

be
r

of
T

at
*

N
ttm

lw
r

of
T

es
ts

IG

12
10

8

G

2
0

2 1 G 8 HI 12 11 10 18 3)

(a) F loat-R eset

12

10

8

G

2

0
2 4 6 8 10 12 11 10 18 20

(c) Paint

u
12

10

8

G

2

0
2 I G 8 10 12 11 IG tS 20

(e) Network

25

20

15

10

5

0
1 6 8 10 12 II IG 18 20

(g) Cheese Maze

!G

II
12

10

G

2

0
2 I 6 8 10 12 11 IG 18 20

(b) Tiger

25

20

15

10

0
2 1 6 8 10 12 14 IG 18 20

(d) Shuttle

25

15

10

5

0
2 4 6 8 10 12 14 16 IS 20

(f) 4x3 Maze

20

15

10

5

0
G 8 10 t2 11 IG 18 20

(h) Bridge Repair

Figure 5.1: The number of core tests selected by the discovery algorithm, for different
values of the condition threshold, c.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Domain Constrained Gradient Suffix-History
Name \Q\ \Q\ I Qtrue | # D ata IQI ~ \Qt.ruc\ # D ata

Float-Reset 5 6.1 4.5 4000 - -

Tiger 2 4.0 2.0 1000 2 4000
Paint 2 2.6 2.0 4000 2 4000
Shuttle 7 8.7 7.0 2000 7 1024000
Network 7 4.7 4.5 2000 3 2048000
4x3 Maze 10 10.4 8.6 2000 9 1024000
Cheese Maze 11 12.1 9.6 1000 9 32000
Bridge Repair 5 8.8 5.0 2000 5 1024000

Table 5.1: The average number of core tests found by the constrained gradient
algorithm, when the condition threshold was 10. The data for the suffix-history
algorithm is shown here for comparison.

of correct core tests chosen by the algorithm actually decreases slightly with higher

condition thresholds. This can occur mainly in domains tha t have core tests of

length two or more; in these domains, multiple iterations of the discovery procedure

are required to select all of the core tests. W ith a large condition threshold, earlier

iterations of the discovery procedure can select incorrect core tests that raise the

condition number of y(Q\H). This essentially blocks tests from being selecting in

subsequent iterations of the discovery procedure.

Overall, the discovery procedure used by the constrained gradient algorithm is

quite successful at choosing core tests with very little data. However, there is no one

condition threshold tha t works best across all domains. For domains with a small

number of core tests, a smaller condition threshold works well; larger thresholds are

needed for domains with many core tests. For the domains shown, a threshold of 10

works reasonably well across all domains; this is the threshold used in the remaining

experiments with discovery.

Table 5.1 shows the effectiveness of the constrained gradient discovery algorithm

with a condition threshold of 10, as compared to the discovery results for the suffix-

history algorithm reported in the literature [Wolfe et al., 2005]. The suffix-history

algorithm is currently the only other algorithm capable of discovering core tests in

systems without a reset action. For the constrained gradient algorithm, the number

of data points listed is the maximum number of data points after which no further

changes to Q occurred. For the suffix-history algorithm, the number of data points

shown is the minimum number of data points required to find tha t number of core

tests. Also, the suffix-history algorithm was able to make multiple passes over its

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

data, while the constrained gradient algorithm uses a single pass. Overall, Table 5.1

shows that, in general, the constrained gradient algorithm is able to find as many

core tests as the suffix-history algorithm, but with much less data.

Comparing the discovery results for the constrained gradient algorithm and the

suffix-history algorithm is somewhat unfair, because the two algorithms take differ

ent approaches to the discovery problem. The suffix-history algorithm uses a very

conservative approach to discovery; it does not add a test to Q until it is quite

certain that the test is really linearly independent to the current set Q. For this rea

son, when using the suffix-history algorithm Q = Qtrue for all of the above domains,

although this is not necessarily true in general. I t also means that the suffix-history

algorithm requires a lot of data before it adds a core test to Q , which explains why

the numbers of data points for the suffix-history algorithm are so high. The con

strained gradient algorithm, on the other hand, takes a more liberal approach. It

adds tests tha t look likely to be core tests, but with much less data. As a result, Q

usually contains tests tha t are not truly linearly independent.

In theory, including extra tests in Q is not particularly harmful. As long as Q

contains a full set of core tests, it has sufficient data to represent the system, and

extra tests are simply redundant data. However, including extra tests can have three

negative side effects. The first is tha t they require extra storage and computation,

since parts of the learning algorithm are linear, quadratic and even cubic in |Q|.

The second negative effect is tha t it could allow overfitting in the regression step

by having too many inputs. Even though the extra inputs should theoretically be

linearly dependent on the true core tests, small errors in the inputs can be used

to compute weights tha t overfit the data. Finally, including extra tests can block

true core tests from being chosen in the discovery step. We have already seen this

happen in the Float-Reset results, above. This is potentially the most disastrous

effect of extra core tests, since if the algorithm cannot find a complete set of core

tests, it will never be able to fully represent the system. In general, it is desirable

to avoid selecting incorrect core tests.

5.2.2 N on -C u m u lative S election o f C ore T ests

The previous section showed results for cumulative selection of core tests. It also

gave evidence of a dilemma that cumulative discovery causes: a condition threshold

must be high enough to allow selection of all of the true core tests, but not so high

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that incorrect core tests are chosen early and block true core tests from being chosen.

This difficulty is mainly caused by the cumulative nature of the discovery; once a

test has been chosen as a core test by the algorithm, there is no way to remove

it. Furthermore, discovery happens very early; most of Q is chosen during the first

iteration of the selection procedure, which means tha t discovery does not benefit

from any of the data points tha t occur after the first 1,000 data points.

In this section, we propose a solution to this discovery dilemma. Instead of

adding tests to Q each time the discovery procedure is invoked, the algorithm re

selects Q from scratch. This allows incorrectly selected tests to be discarded, even

if they appeared linearly independent early during learning.

Figure 5.2 shows the discovery results when a condition threshold of 10 is used,

and core tests are selected from scratch every 1,000 data points. The plots show

the sizes of Q and Qtrue as the number of data points increases. Several facts are

apparent from viewing these results. One is that, after sufficient data is seen, in all

cases the discovery algorithm stops selecting incorrect core tests, and Q = Qtrue-

This is an expected result, because after more data is seen by the algorithm, its

estimates of the prediction probabilities become more accurate, and the discovery

procedure is better able to estimate if two tests are linearly independent.

The other clear result is tha t the size of Q decreases as more data is seen,

even after the algorithm stops selecting incorrect core tests. Eventually, the size

of Q settles on a value and remains relatively constant. This is because a constant

condition threshold was used, and except for the most simple domains, this threshold

simply was not large enough to allow all of the tests in Q to be chosen. Furthermore,

the largest jum ps in the size of Q correspond to the time steps when the learning rate,

a , is reduced. The explanation for this is that, as the estimates in y{Q\H) become

more accurate, the condition number of y(Q\H) increases. When the condition

number becomes higher than the condition threshold, the algorithm is no longer

able to select all of the tests in Q, and the size of Q is reduced in subsequent runs

of the discovery procedure.

To further investigate this phenomenon, we recorded the condition number of

y(Q\H) during learning. We also computed the minimum condition of y (Q u{t} |F /’)

out of all tests t 6 T. The purpose of this was to give an indication of how large

the condition threshold would have to be to select all of the true core tests, without

selecting any incorrect core tests. Figure 5.3 shows the results from these experi-

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

n

t

3

2

0
IK IOOOK

(a) Float-Reset

(c) Paint

(e) Network

c

5

2

i

0
750K

8

6
5
I
3

2

0
IK 250K 750K

12

10

8

G

2

0
IK 750K

3

0

(d) Shuttle

(f) 4x3 Maze

(g) Cheese Maze
250K 500 K 7S0K

(h) Bridge Repair

IK 250K fiOOK 730K 1000K

(b) Tiger

9
8

G

5
I
3

2

0
IK 1000K

12

10

8

6

2

0
IK 750K

14

12
10
8

G

4

o

0

Figure 5.2: Number of core tests selected using non-cumulative discovery. The
horizontal axis is the number of da ta points. Core tests were reselected every 1,000
data points.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ments. These results confirm the behaviour experienced in the discovery results; the

condition number of y(Q\H) does increase as more data is seen and the prediction

probabilities become more accurate. The condition numbers tend to jump at tran

sition points in a, which correspond to the decreases in core tests selected as seen

in Figure 5.2.

The gap between the condition of y(Q\H) and the condition of y(Q U {t}\H)

increases as the columns become more accurate, although the difference is more

pronounced in some cases than in others. This is expected; theoretically, the condi

tion of y(Q U (<}|^) is infinite, because t should be linearly dependent on Q. So we

expect that as y(T\H) becomes more accurate overall, the condition of y(QU{t} \H)

should increase quite quickly. This ‘widening of the gap’ would be a good thing to

take advantage of in future refinements to the constrained gradient discovery algo

rithm. It indicates that a condition threshold can be chosen that falls in between

these two crucial condition numbers, and that choosing such a threshold becomes

easier as learning continues.

5.2 .3 Sum m ary o f D iscovery R esu lts

Overall, the discovery results for the constrained gradient algorithm show a definite

ability to quickly select sets of tests that contain complete sets of core tests. Its

ability to do this is heavily dependent on the choice of the condition threshold

parameter; if the parameter is too large, too many non-core tests will be selected,

but if the parameter is too small, insufficient true core tests will be selected. Also, the

non-cumulative method of discovery appears to be better at selecting true core tests

without selecting additional tests. However, the non-cumulative method requires

an increasing threshold, to account for the increase in the condition of y(Q\H) over

time.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IIXJO

C

250KIK

(a) Float-Reset

| •woo
3/ .

I
1o

1000

IK 500K 750K

(c) Paint

25000

k
3 15000

250K

(e) Network
500K 750K

•100

*
2503

s 150

IK 250K KJOOK

niin„r«nn'l|&{yu {/)[//)) ----
i\r

3

IK wooK

(b) Tiger

80

70
GO

10
30

20

10

IK
(d) Shuttle

I
200z

too

IK 250K 750K

(f) 4x3 Maze

15

•10

35

30

20

15

10

0IK
(g) Cheese Maze (h) Bridge Repair

Figure 5.3: The condition of the m atrix y(Q\H) as the number of data points
increases. Also shown is the condition of minteT cond(y(Q U

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

A dditional Investigation

This chapter contains additional experiments tha t further explore the constrained

gradient algorithm. In Section 6.1, we see how the constrained gradient algorithm

might be expected to perform in practical settings. In Section 6.2, we perform

experiments inspired by some of the interesting results from previous sections.

6.1 Discovery and Learning

Chapter 4 presented learning results for the constrained gradient algorithm when it

was supplied with a correct set of core tests. In this section, we show the performance

results for the constrained gradient algorithm using discovered sets of core tests.

These experiments are representative of how the constrained gradient algorithm

would perform in a practical setting, when a true set of core tests is unknown.

The sets Q discovered in these experiments are sometimes incomplete, and often

contain extra tests. A condition threshold of 10 was used for the discovery procedure,

and both cumulative and non-cumulative discovery were tested. See the results from

Section 5.2.1 and Section 5.2.2 for more information on the sets of tests discovered.

The results for the constrained gradient algorithm using discovery and learning

are in Figure 6.1. The plots show average offline prediction error for cumulative

discovery, non-cumulative discovery, and suffix-history using discovery. For compar

ison, the constrained gradient results when provided with Q are also given (repeated

from Figure 4.3). Overall, the results in Figure 6.1 are mixed, but are generally ex

plainable when considering the underlying sets of core tests that were found by the

algorithm.

As expected, the constrained gradient algorithm did not perform as well when

using a discovered Q as when it is provided witli Q. Three exceptions are the simpler

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i
i

10 *
2V)K

(a) F loat-R eset

Q P im ii l o l
C iiim iloli\t* l) i » m r r y

N W C iim u ln tiv r D ixrrivrry
Snlhx-lliM ory

Wl
Sr
&

£

i n - '

anK
(b) Tiger

StS
I »■*

10-*
(c) Paint

wooK 250K; sunK

(cl) Shuttle

10- '

OS£

io-(
500K

(e) Network
750K

I
i

250K SOlK

(f) 4x3 Maze
750K wool;

■5

2J0K

(h) Bridge Repair

Figure 6.1: The PSR error of the constrained gradient algorithm when learning
using discovered sets of core tests.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

domains Tiger, Paint and Float-Reset, in which a discovered set performed as well

as, but not better than, the given set. The major exception is the Shuttle domain,

in which the performance was much better using Q found with cumulative discovery

than when given Q. In all cases, Q contains a complete set of core tests in all trials.

This performance difference indicates tha t some sets of core tests can be better than

others; further experiments with different sets of core tests are done in Section 6.2.3.

In most cases, constrained gradient performed better using cumulative discovery

than when using non-cumulative discovery. This is because non-cumulative discov

ery, with a threshold of 10, tends to settle on sets Q tha t are much smaller than

the true set Q, and therefore unable to create a good representation of the system.

The exceptions to this, as seen in Figure 6.1, are the Tiger, 4x3 Maze, and Bridge

Repair domains. In Tiger this is because non-cumulative discovery settled on an

exactly correct set of core tests, while cumulative discovery used extra tests tha t

interfered with learning. In 4x3 Maze and Bridge Repair, we can surmise only that

the smaller set of core tests discovered using non-cumulative discovery provided a

more stable set with which to create an approximate model than the large set found

by cumulative discovery. This result is especially interesting in the Bridge Repair

domain, because non-cumulative discovery finds about two core tests on average,

while cumulative discovery finds a complete set of core tests, but also includes some

extra tests. This indicates tha t finding extra core tests can actually have a large

negative effect on performance with the constrained gradient algorithm; although

extra core tests were generally not found to be a problem for the myopic gradient

algorithm [Singh et ah, 2003].

The results for suffix-history shown in Figure 6.1 are obtained directly from the

published results for the algorithm [Wolfe et ah, 2005]. Because of this, the suffix-

history results were not trained or tested on any of the same data sets, and direct

comparisons are therefore somewhat inappropriate. Also, because the suffix-history

algorithm was tested as a batch algorithm, it made multiple passes over the data to

build its model. Thus, the suffix-history algorithm was able to perform its discovery

procedure after seeing all of the data, and then make another pass over the data to

learn a model. However, because suffix-history is the only other algorithm capable of

both discovery and learning of PSRs without a reset, we show the results for compar

ison. In Figure 6.1 we see that suffix-history outperforms the constrained gradient

algorithm in the easier domains, Tiger and Paint, and also in the 4x3 Maze domain

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

because both models discovered with the constrained gradient algorithm performed

poorly. In the Network domain, both constrained gradient models outperformed

suffix-history, even though the non-cumulative discovery model used only two core

tests. In the Shuttle, Cheese and Bridge Repair domains, at least one of the models

discovered using the constrained gradient algorithm outperforms suffix-history.

Overall, the constrained gradient algorithm manages competitive performance

in most of the domains. W ith improvements to the condition threshold used by

the non-cumulative discovery method, we expect tha t the constrained gradient al

gorithm’s performance will approach its performance when Q is given.

6.2 Investigative Experim ents

The results presented in previous chapters focused on the performance of the con

strained gradient algorithm, in both discovery and learning. In this section, we

describe the results of experiments designed investigate the inner workings of the

constrained gradient algorithm.

6.2.1 E xam in ing Sources o f Error

For any gradient descent algorithm, there are at least two sources of error when

trying to find the global minimum. One source is approximations made in computing

the gradient, and another is the initialization of the parameters of the algorithm.

The constrained gradient algorithm experiences error from both of these sources. At

each data point, the unknown true gradient is replaced by the myopic gradient of that

data point, with the assumption tha t over many data points, this will approximate

the true gradient. Also, the initial parameterization of the algorithm uses uniform

probabilities, which may not necessarily be a good place in the search space to

start. In this section, we will investigate both of these sources of error for the

constrained gradient algorithm, by performing experiments tha t eliminate these

errors. These experiments were inspired by similar experiments performed with

the myopic gradient algorithm [Singh et al., 2003].

y(t\h) *- (1 - a)y(t\h) + ay(ir(t)\h)

y(t\h) <- (1 - a)y(t\h) + ay(t\h)

y(t\h) <- (1 - a)y(t\h) + ay{n(t)\h)y(t\h, 7r(i))

(6 .1)

(6 .2)

(6.3)

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Rules 6.1, 6.2 and 6.3 are three different learning rules for the constrained gra

dient algorithm. Rule 6.1 shows the learning rule of the constrained gradient al

gorithm; it is the same as learning rule 6.3, with the implicit assumption tha t

y(t\h, ir(t)) — 1 (i.e., the myopic gradient). The theoretically correct learning rule

is given in rule 6.2; it is the same as rule 6.3 if y(Tr(t)\h) = y(Tx(t)\h). If this equality

is not true, however, the theoretically correct rule cannot be used, since the nor

malization procedure would modify the value of y(t\h). In this section, we perform

experiments using learning rule 6.3; we provide the probability y(t\h,n(t)) to the

algorithm each time it uses the learning rule to modify test t. For these experiments,

we used a « 1, since the true gradient should be followed as much as possible.

Experiments were also performed to see how stable the correct solution is for each

domain. To do this, the set H was initialized to 1000 reachable histories, which were

sufficient to represent the dynamics of each system. The entries in matrix y(T\H)

were initialized to their true probabilities. For learning in this system, a = 0.001 was

used as a small learning rate, and learning proceeded as normal, using the myopic

gradient. The purpose of this experiment is to see how far the learned model drifts

from the correct initial model. We expect some drift, because learning with the

myopic gradient and a > 0 introduces some error into the system.

If both of the above modifications are made to the constrained gradient algo

rithm, then in all cases the algorithm begins with a perfect model and stays a t a

perfect model, excepting small errors caused by regularized regression and bounded

probabilities. When used individually, the results are more interesting.

Figure 6.2 shows the results of the experiments described above, as well as the

performance of regular learned models for comparison (results repeated from Fig

ure 4.3). In the Float-Reset, Tiger and Paint domains, the results were exactly

as expected. The models tha t were initialized to correct values slowly drifted to

higher, but still very small, levels of error. The models tha t were given the true gra

dient decreased in error very quickly, and eventually plateaued at negligible error

levels. Although the models learned using the unaugmented constrained gradient

algorithm do not reach the same performance as the augmented models with the

data given, we expect that with sufficient data and an appropriately decaying a,

they will eventually converge to the same values.

O ther domains had more surprising results. The Shuttle domain is an appro

priate example. All three experiments converged to models with very similar, and

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IK 2MK 5C10K 750K

(a) Float-R eset
IK c t k rniK TTiOK iuook

(b) Tiger

(c) Paint

(e) Network

io-'

IO-‘

10 •
IK

10- '

I
10- '

500KIK 250K 7S0K 1000K

it

Ies
IS

io - ‘

io-■

10 -*
250K

(g) Cheese Maze
750 K 1000K

io - '

10-*

IO-‘

250K; 5(X)K

(d) Shuttle
750K 1000K

500K

(f) 4x3 Maze

1a II)-'2

IK IOOOK

(h) Bridge Repair

Figure 6.2: Performance of the constrained gradient algorithm when initialized when
initialized with true probabilities and when using the true gradient.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

relatively high, levels of error. Using the true gradient does not decrease the error of

the learned model much below that achieved when using the myopic gradient, and

the properly initialized model drifted in error until it had the same performance

as the other models. One possible explanation of this behaviour is that the global

minimum might be very shallow, but there exists a hard-to-escape local minimum

that traps the developing model.

Another surprising result is that, in the 4x3 Maze, the model using the true

gradient learns a worse model than that using the myopic gradient. We do not have

an explanation at this time why this would occur.

6 .2 .2 M om en tu m in Learning

When the learning results for the constrained gradient algorithm were first pre

sented, in Figure 4.1, it was noted tha t in some of the domains performance degraded

over time, despite continuing learning. This was most apparent in the Shuttle and

Cheese Maze domains. In this section, we explore this result.

One fact tha t is apparent in Figure 4.1 is that this degrade in performance is

delayed when a is decayed at a slower rate. This suggests that it is not the process

of following the gradient th a t causes the increase in error. Recall that generating a

new row involves several steps. A t first, the row is estimated based on the existing

matrix y(T \H), and then it is adjusted based on the myopic gradient of the data.

As a decreases, the effect of the second phase becomes minimal.

Our hypothesis is tha t the m atrix y(T \H) has a momentum towards stable points

in learning space, in which the matrix satisfies the properties of a system dynam

ics matrix. This momentum is caused by enforcing the constraints on the system

dynamics matrix, using regression and normalization. If the direction of the mo

mentum of the m atrix is not the same as the gradient of the data, then once the

learning rate a becomes small enough, the momentum of the matrix becomes the

primary force of change in the algorithm.

To explore our hypothesis, we designed experiments to see how the performance

of the matrix changes when the learning rate is set to zero. Two experiments were

run; in one, a was set to zero after 250,000 data points, and in the other, a was set

to zero after 500,000 da ta points.

Figure 6.3 shows the results of the experiments into matrix momentum. Once

again, Float-Reset, Tiger and Paint are excellent examples of desired results. In

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10 1

10 1

IK 500K KWOK

(a) Float-R eset

(c) Paint

(e) Network

i o - ■

£

io-‘IK 730K KWOK

i
I

IK 250K 500K 7S0K KWOK

io-'

IO'1
750K KWOK

9 io-3

IK

(b) Tiger

(d) Shuttle

10*'

5
£a.£

IK 7S0K

10* '

MXIK

(f) 4x3 Maze
750K

IK SIVK 750K IIIXIK

(h) Bridge Repair

Figure 6.3: PSR error for the constrained gradient algorithm, when a is set to zero
after 250,000 time steps and 500,000 time steps. This shows the momentum of the
y(T\H) matrix.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10-

250K oOOK 750K 1000K

Q i = (e, (turn, see-LRV), (turn, nothing), (forward, see-MRV), (forward, nothing),
(backup, nothing), (backup, docked-LRV)}

Q 2 = {£) (turn,see-LRV), (turn, see-MRV), (forward, see-LRV), (forward, see-MRV),
(backup, see-LRV), (backup, see-LRV)}

Figure 6.4: Performance results in the Shuttle domain using two different complete
sets of core tests. The sets of core tests Q\ and Q 2 are shown; see Appendix B for
more information about the Shuttle domain.

these domains, once a is set to zero, learning stops and the generated model remains

stable; essentially, the matrix y(T \H) has no momentum. In fact, in the Paint

domain, there is even a small decrease in error immediately after learning stopped;

the m atrix must have had momentum in the direction of the gradient. In the

other domains, however, once a = 0, the model has a tendency to drift and produce

higher errors. This is especially noticeable in the Shuttle and Cheese Maze domains,

which were also the most noticeable cases of error increasing in Figure 4.1. These

results tend to support our hypothesis tha t the momentum of the matrix y(T \H)

can counteract the learning process of the constrained gradient algorithm.

6 .2 .3 S ets o f Core T ests

It is known tha t the set of true core tests Q is not unique; any set of \Q\ linearly

independent tests are capable of representing a dynamical system. However, this

does not mean in practise that all sets Q are equivalent. In this section, we give

an example of how different sets Q can alter the performance of the constrained

gradient algorithm.

Figure 6.4 shows two average performance lines for the Shuttle domain. The

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

model tha t produced each line used a different, but sufficient, set of core tests. The

set of core tests Q\ produced better results than the set Q2, despite the fact that

they are theoretically equivalent. The set Q2 appears to have better performance

at first, but is then more susceptible to momentum of the prediction matrix. The

constrained gradient algorithm is sensitive to the choice of Q, because this set is

directly used to compute many of the predictions in each new row. Thus, different

Q create different directions of momentum for the matrix y(T \H).

The core test selection used by the constrained gradient algorithm is biased

towards selecting tests corresponding to columns tha t maintain a low condition

number. This is the same bias used by other discovery algorithms, as well [James

and Singh, 2004; Wolfe et al., 2005]. Other core test selection biases are possible;

tests which are shorter could be preferred over longer tests, or tests which are more

frequently encountered could be preferred over rarely executed tests. Some of these

biases are also used in other discovery algorithms [Wolfe et al., 2005].

6.2 .4 Sum m ary o f In v estiga tive T ests

The main result of the investigative tests is tha t the constrained gradient algo

rithm has two forces behind its model creation: gradient descent and constraint

satisfaction, or momentum. It was originally thought tha t these two forces would

complement each other, but this appears to not always be the case. When the

learning rate becomes too small to counteract the momentum of the matrix, models

created by the constrained gradient algorithm can experience decay of prediction

accuracy. The momentum appears to be dependent on the set of core tests used by

the algorithm.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Conclusion

In this section, we summarize the contributions presented in this thesis, and describe

several avenues for future work with the constrained gradient algorithm.

7.1 Contributions

Our main contribution in this work is the presentation of the constrained gradient

algorithm for discovery and learning of predictive state representations. This algo

rithm is the first online algorithm capable of discovery, and also the first learning

algorithm tha t does not use strictly Monte Carlo learning updates. Experimen

tally, we have shown tha t the constrained gradient algorithm is capable of creating

excellent models in some domains, and we have also shown domains in which the

algorithm has difficulty learning correct models. Experiments were performed that

suggest tha t the momentum of the learned submatrix can sometimes be counter

productive in learning a predictive state representation.

This work also has several other contributions. We have given a clear explanation

of the exact constraints on a system dynamics matrix. We have written a proof for

the discovery procedure used by most current discovery methods tha t does not

require a POMDP representation of the system. We have performed the first online

experiments with predictive state representations. Finally, we have included, as

Appendix B, a clear description of the test domains tha t are frequently used in PSR

research.

The goal at the outset of this work was to create an online algorithm for learning

PSRs tha t does not require a reset action in the system, and tha t is able to extrap

olate information based on the known structure of a system dynamics matrix. The

constrained gradient algorithm satisfies these goals: it maintains a current state

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vector, it does not require a reset action, and it uses the normalization procedure

to propagate changes in probabilities. The algorithm is particularly successful at

finding core tests with very little data, and is competitive with current algorithms

at learning PSR models.

7.2 Future Work

Although the constrained gradient algorithm satisfies our initial goals in creating

an algorithm for discovery and learning of PSRs, there is still work to be done.

Our experimental investigation raised some interesting phenomena which should be

addressed. Below, we list some possible avenues of future work with the constrained

gradient algorithm.

7.2.1 D iscovery T h resh old

Two variations of the discovery procedure, cumulative and non-cumulative, have

been described and tested in this work. Both versions have strengths and weak

nesses. For practical use, though, the non-cumulative version would seem to be the

best option, because it can base its decisions on more data than the cumulative

version. In our experiments, however, the performance of non-cumulative discovery

tended to suffer because a constant condition threshold was used.

To take advantage of non-cumulative discovery, the condition threshold should

gradually increase over the course of learning, matching the gradual increase in

the condition of y(Q \H). Designing an appropriate schedule of increase for the

threshold would be an excellent area for further investigation. Preferably, such a

schedule would not require setting an explicit parameter, but instead be based on

properties of the system, such as number of core tests selected or the condition

number of the previously selected tests.

7.2.2 S e lectio n o f H isto ry Set

Our experiments with the constrained gradient algorithm used a finite window ap

proach to selecting histories for H . This method has several advantages, but it

also has two compounding disadvantages. The first is tha t H may be insufficient

to represent the system, if it does not contain appropriate histories. To reduce the

likelihood of insufficient representation, the size of H can be very large. However,

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

using a large H causes computational penalties, which is the second main disad

vantage; the constrained gradient algorithm is currently the most computationally

expensive algorithm for learning PSRs.

A potentially better method of selecting H might be a hybrid approach. His

tories selected for H could be a relatively small set of histories whose rows are

most linearly unrelated. This addresses both the computation and insufficient rep

resentation issues. To ensure tha t erroneous (but linearly unrelated) rows are not

kept permanently, a bound could be placed on the age of any history in the set H.

Overall, this method could ensure an up-to-date m atrix H , without suffering the

insufficient representation and large computational costs of a plain finite-window

approach.

7.2 .3 R eform ulation as O p tim ization P rob lem

Currently, each new row y{T\h) is computed in a multi-step process. The reason for

this is because two goals are being balanced: satisfying the constraints of a system

dynamics matrix, and matching the observed data. Furthermore, each prediction

value is computed separately in the regression step, and the internal consistency

constraints are enforced after all predictions have been computed. Perhaps a better

solution to this problem is to compute the entire row at once, as a single optimization

problem, so tha t all values can be calculated with knowledge of their relationship

to other values in the row. 1 This approach allows the constraints to be handled

more naturally. However, this approach would likely also be more computationally

expensive than the current approach.

7.2 .4 E nforcing C on stra in ts

In Chapter 6, it was discovered tha t when a becomes very small, the momentum of

the matrix y(T \H) can lead to poor representations. This occurs because the use

of the constraints generates the entire row, and those values can only be changed a

small amount in the direction of the gradient; the impact of the matrix is therefore

greater than the impact of the data. In order for the constrained gradient algorithm

to be usable for practical problems, this difficulty must be overcome. Unfortunately,

it is unclear how to accomplish such a thing. Since the basis of the constrained

gradient algorithm is tha t better performance can be achieved by enforcing system

1 All o f the constraints are linear, and the objective is quadratic. Thus, the optim ization could
be formulated as a quadratic program.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dynamics m atrix constraints, reducing the impact of the constraints seems counter

to the spirit of the algorithm. Finding a better middle ground between constraint

satisfaction and gradient descent is still an open problem.

7 .2 .5 T h eoretica l C onvergence

Our current knowledge of the constrained gradient algorithm’s behaviour is based

purely on empirical testing. At the moment, we do not have any statements about

the theoretical convergence of the algorithm to a local minimum or to a stable system

dynamics matrix. Formulation of such theoretical knowledge would be helpful for

understanding the properties of the algorithm.

7.3 Summary

Overall, we have found tha t the constrained gradient algorithm is capable of quickly

discovering sets of core tests and building an initial model of system dynamics.

However, the long-term performance of the algorithm can be hindered by local

minima. There is still much work to be done in the field of using the structure of

data to build better predictive representations. In this area, the constrained gradient

algorithm provides a starting point and benchmark for future work.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

K. J. Astrom. Optimal control of Markov decision processes with incomplete state
estimation. Journal of Mathematical Analysis and Applications, pages 10:174-205,
1965.

M atthew Brand. Fast online SVD revisions for lightweight recommender systems.
In SIA M International Conference on Data Mining, 2003.

Anthony Cassandra. Tony’s POM DP file repository page. URL
h t t p : / / www. c s .brown. ed u /re sea rch /a i/p o m d p /ex am p les /in d ex .h tm l.
h ttp :/ /www.cs.brown.edu/research/ai / pomdp / examples/index.html, 1999.

Anthony Cassandra, Leslie Kaelbling, and Michael Littman. Acting optimally in
partially observable stochastic domains. In Proceedings o f the Twelfth National
Conference on Artificial Intelligence (AAAI), 1994.

Lonnie Chrisman. Reinforcement learning with perceptual aliasing: The percep
tual distinctions approach. In Proceedings of the Tenth National Conference on
Artificial Intelligence (AAA I), 1992.

Hugh Ellis, Mingxiang Jiang, and Ross B. Corotis. Inspection, maintenance, and
repair with partial observability. Infrastructure Systems, 1(2):92—99, 1995.

Ronald A. Howard. Dynamic Probabilistic Systems: Volume II: Semi-Markov and
Decision Processes. John Wiley & Sons, Inc., 1971.

Herbert Jaeger. Discrete-time, discrete-valued observable operator models: a tu to
rial. Technical report, German National Research Center for Information Tech
nology, 1998.

Michael R. James and Satinder Singh. Learning and discovery of predictive state
representations in dynamical systems with reset. In Proceedings of the 21st Inter
national Conference on Machine Learning (ICML), pages 719-726, 2004.

Michael R. James and Satinder Singh. Planning in models tha t combine memory
with predictive representations of state. In Proceedings o f the Twentieth National
Conference on Artificial Intelligence (AAAI), 2005.

Michael R. James, Britton Wolfe, and Satinder Singh. Combining memory and
landmarks with predictive representations. In Proceedings o f the Nineteenth In
ternational Joint Conference on Artificial Intelligence (IJCAI), 2005.

Andre I. Khuri. Advanced Calculus with Applications in Statistics. John Wiley &
Sons, Inc., 2nd edition, 2003.

N. Kushmerick, S. Hanks, and D. Weld. An algorithm for probabilistic planning.
Artificial Intelligence, 76(l-2):239-286, 1995.

Michael Littman. Network domain, January 1996.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.brown.edu/research/ai/pomdp/examples/index.html
http://www.cs.brown.edu/research/ai

Michael Littm an, Richard S. Sutton, and Satinder Singh. Predictive representations
of state. In Advances in Neuval Information Processing Systems 1J, (NIPS), pages
1555-1561. MIT Press, 2002.

R. Andrew McCallum. Overcoming incomplete perception with utile distinction
memory. In Proceedings of the Tenth International Conference on Machine Learn
ing (ICML), 1993.

Peter McCracken and Michael Bowling. Online learning of predictive state repre
sentations. In Advances in Neural Information Processing Systems 18 (NIPS).

- M IT Press, 2006. To appear.

Ronald Parr and Stuart Russell. Approximating optimal policies for partially ob
servable stochastic domains. In Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence (IJCAI), 1995.

Martin L. Puterm an. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley & Sons, New York, NY, 1994.

Lawrence R. Rabiner. A tutorial on hidden Markov models and selected applications
in speech recognition. Proceedings o f the IEEE, 77(2):257-286, 1989.

Ronald L. Rivest and Robert E. Schapire. Diversity-based inference of finite au
tom ata. Journal of the Association for Computing Machinery, 41(3):555-589,
1994.

M atthew Rosencrantz, Geoff Gordon, and Sebastian Thrun. Learning low dimen
sional predictive representations. In Proceedings of the 21st International Confer
ence on Machine Learning (ICML), 2004.

M atthew R. Rudary and Satinder Singh. A nonlinear predictive state representation.
In Advances in Neural Information Processing Systems 16 (NIPS). M IT Press,
2004.

Stuart Russell and Peter Norvig. Artificial Intelligence: A M odem Approach. Pren
tice Hall, 2nd edition, 2003.

Satinder Singh, Michael Littman, Nicholas Jong, David Pardoe, and Peter Stone.
Learning predictive state representations. In Proceedings of the Twentieth Inter
national Conference on Machine Learning (ICML), pages 712-719, 2003.

Satinder Singh, Michael R. James, and Matthew R. Rudary. Predictive state rep
resentations: A new theory for modeling dynamical systems. In Uncertainty
in Artificial Intelligence: Proceedings of the Twentieth Conference (UAI), pages
512-519, 2004.

Richard S. Sutton. Learning to predict by the methods of temporal differences.
Machine Learning, 3(l):9-44, 1988.

Richard S. Sutton and Brian Tanner. Temporal-difference networks. In Advances in
Neural Information Processing Systems 17 (NIPS), pages 1377-1384. M IT Press,
2005.

Richard S. Sutton, Eddie J. Rafols, and Anna Koop. Temporal abstraction in TD
networks. Technical report, University of Alberta, 2005.

Brian Tanner and Richard S. Sutton. Temporal-difference networks eligibility traces:
TD(lambda) networks. In Proceedings of the 22nd International Conference on
Machine Learning (ICML), 2005a.

Brian Tanner and Richard S. Sutton. Temporal-difference networks with history. In
Proceedings of the Nineteenth International Joint Conference on Artificial Intel
ligence (IJCAI), 2005b.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Eric Wiewiora. Learning predictive representations from a history. In Proceedings
of the 22nd International Conference on Machine Learning (ICML), 2005.

Britton Wolfe, Michael R. James, and Satinder Singh. Learning predictive state
representations in dynamical systems without reset. In Proceedings o f the 22nd
International Conference on Machine Learning (ICML), 2005.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix A

Defining Test Predictions

Throughout this work, we have used y(t\k) as the value of a test prediction. As

noted previously, this deviates from the value of a test prediction used in previous

PSR research [Littman et al., 2002; Singh et al., 2004]. In this appendix, we describe

the previous approach to defining test predictions, the problems with this approach,

and how using y{t\h) as the definition of a test prediction solves these problems.

A .l Test Predictions

The intention of a state representation is to model the dynamics of a system. In

general, it is undesirable for the state representation to model the agent interacting

with the system. Furthermore, the policy used by an agent when interacting with a

system should not affect the sta te representation of the system it generates, as long

as the policy is sufficiently diverse to uncover the entire complexity of the system. As

we show below, however, in previous PSR research the definition of a test prediction

meant tha t PSRs were dependent on the policy used by the agent.

In previous work, a test prediction for a test t was defined as Pr(ot |h, at), abbre

viated as p(t\h) [Littman et al., 2002]. In words, this is the probability of perceiving

all of the observations in ot, given that the agent takes all of the actions in at

immediately following history h. Expanding p(t\h), we get:

p(t\h) = Pr(ot \h ,a t)
_ P r(a tot |h)

P r(a t |/i)
_ P r(aj|h , a i o i . . . ai_iOi_i.)Pr(oi|/i, a i o i . . . d j-iO i-iai)

i=l
n

Pr(aj|/i,ai . . . aj _i)

T - r _ , . , . - i - r Pr(aj|/i, a i o i . . . ai_iOj_i)= n P r f e l W , .. •Oi-.o.-.a,) n

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

— i,(tIM TT P r (n iK?) a l ° l • • • Qi - l ° i - l)
A 1 j Al Pr(ai|/?., «i ... af_i)

The final step comes from the definition of y(t\h), given in Chapter 2. Thus, y{t\h)

and p(t\h) differ due to the existence of °a~_°j~' ̂ ter,ns in P(W1)- These

terms represent probabilities of choosing actions, and show that p(t\h) is dependent

on the policy used to generate actions; the value of p(t\h) can be different for dif

ferent policies. However, because the terms which compose y{t\h) are probabilities

of observations only, the value of y(t\h) is not dependent on the policy used to gen

erate the actions.1 In the special case of policies in which all actions are generated

independently of observations, y(t\h) = p(t\h). Also, for any policy and any length

one test ao, y{ao\h) = p{ao\h).

A .2 Problem s w ith p (t \ h)

Predictive state representations and system dynamics matrices are closely related

topics. We will use the system dynamics matrix to explain how the definition of

a test prediction can affect the sta te representation. Overall, the system dynamics

matrix p(T*\H*) has several disadvantages when compared to the system dynamics

matrix y(T*\H*).

First, the system dynamics matrix p(T*\H*) is dependent on the policy used to

choose actions. Thus, for a given system, there is an entire family of different system

dynamics matrices th a t specify the system. However, there is only one y(T*\H*)

matrix for any system. Furthermore, a p(T*\H*) corresponding to a particular

policy is not directly applicable to a different policy; this means that the prediction

probabilities in a model learned using one policy cannot directly be used to ask

questions about a different policy. It may be possible, if both polices are known, to

convert a prediction p(t\h) for one policy to another policy.

A second disadvantage to using p(T*\H*) as a system dynamics matrix is that it

can have higher linear dimension than the matrix y(T*\H*). Wiewiora [2005] shows

that the rank of p(T*\H*) is the product of the complexity of the policy and the

complexity of the underlying system. The rank of y(T*\H*) is the linear complexity

of the system only. A system dynamics matrix with higher linear dimension will

cause the corresponding PSR to have higher dimension; this means more parameters

'T he only case when y(t \h) is dependent on policy is when the policy has zero probability of
choosing som e action after experiencing som e history. Thus, we require P r(a|/i) > 0 for all a € A
and for all histories h.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

must be estimated during learning, and the resulting PSR will have larger space and

computation requirements.

Finally, and most importantly, some of the constraints listed in Chapter 3 do

not apply to the system dynamics matrix p(T*\H*). In particular, the internal con

sistency constraint and the conditional probability constraint do not apply. Below,

we explain why.

The internal consistency constraint, using p(t\h), would be:

p(t\h) = Y p{tao\h)
oeo

However, the above is not necessarily true. Expanding the summation in the con

straint, we get:

Y p(tao\h)
oeo

= Y Pr(°t°\h >nta)
oeo

~ Y P r(°il^> «ta)Pr(o|/i, ta)
oeo

= Pr(ot\h,atd) Y , Pr(o|/i, ta)
oeo

= Pr(of|/i,a (a)
r> /— i, _ xPr(a|/i,afOi)= Pr(ot / t , a i - y '

Pr(a|/i, at)

- p m ‘p F h W

In the above, we see tha t the summation portion of the internal consistency con

straint is not necessarily equal to p{t\h). The internal consistency constraint is only

true for p(T*\H*) when the probability of choosing the action a is independent of the

observations already seen; essentially, the constraint only holds in the cases where

P(t\h) = y(t\h).

The conditional probability constraint, using p(t\h), states:

p(t\hao) = Va G A , o € O
p(ao\h)

The rule appears to be a simple application of the conditional probability rule.

However, when not using shorthand form, the rule becomes:

Pr(ot\hao, at) = Va € A , o e O
Pr(o|/i, a)

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Two of the terms in the equation are conditioned on at, but the denominator is

not. Thus, this attem pt to use conditional probability is incorrect. Corrected, the

conditional probability rule should be:

Vv{ot\hao, at) = Va € A , o 6 O
Pr(o|/i, aat)

This version of the rule is less useful, however, because the value Pr(o|/i, aat) is not

generally available as an entry in the system dynamics matrix.

The conditional probability property is very important, because the PSR state

update rule is based on this property. Therefore, using p(T*\H*) restricts the use

of PSRs to policies where:

Pr(o|/i, a) = Pr(o|h, aa)
Pr(ao|h) _ Pr(aoa|/i)
Pr(a|/i) Pr(aa|/i)

Pr(aojh) _ Pr(ao|/i) Pr(a|/iao)
P r(a |h) P r(a |h) P r(a |ha)

_ Pr(a|/iao)
Pr(a|/ia)

Pr(a|hao) = P r(a |ha)

More simply, using p(T*\H*) restricts the use of PSRs to policies tha t choose actions

independently of observations.

A.3 Redefining Test Predictions

As shown above, using p(t\h) restricts the use of PSRs to the special case of blind

policies tha t do not depend on the observations. I t is our belief that the intent

behind system dynamics matrices and PSRs is more aptly represented by using

y(t\h), rather than p{t\h). This redefinition of test predictions means th a t PSRs are

independent of policy. In this section, we show tha t the internal consistency and

conditional probability constraints are correct when test predictions are defined by

y(t\h).

The following theorem shows tha t the internal consistency constraint is correct.

T h e o re m 2.

y{t\h) = ^ 2 y(tao\h) Va € A
oeo

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proof.

y(t\h) = y(t\h) x 1

= y(t\h) x ^ Pr(o|h, ta) Va 6 A
o<=o

= ^ 2 y(t\h) x Pr(a|/i, ta) Va € A
oeo

= ^ 2 y (tao\h) Va 6 A
oeo

□
The following theorem shows tha t the conditional probability constraint is cor

rect.

Theorem 3.

Proof.

y(t\hao) = 1 x y(t\hao) Va € A ,o € O
_ y(ao\h)

y(ao\h)
y(aot\h)

x y(t|/iao) Va 6 A , o € O

V a e A , o e O
y(ao\h)

□

Thus, we see tha t using y(t\h) is appropriate for creating policy-independent PSRs.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix B

Test Dom ains

The purpose of this appendix is to explain the dynamics of the eight domains used

in the experiments in this work. For each domain, we list the action and observation

sets, and describe the dynamics of the system. We also show the sets of core tests,

Q , th a t were used in the learning experiments in Chapter 4. Note that, with the

exception of Float-Reset, the original purpose of these domains was for POMDP

research; because of this, some domains have features which only make sense in

the context of reward. Except for Float-Reset, all domains were obtained from an

online POM DP repository [Cassandra, 1999]. Also, all domains in this appendix are

representable by POMDPs, and therefore have a small number of specific nominal

states; when describing the domains, state refers to these nominal states.

B .l Float-R eset

A = {float, reset)

O = {0,1}

Q = {e, (reset, 0), (float, 0, reset, 0), (float, 0, float, 0, reset, 0),

(float, 0, float, 0, float, 0, reset, 0)}

The Float-Reset domain [Littman et al., 2002] is pictured in Figure B .l. There

are five nominal states, including a special reset state, which is shaded in the di

agram. The ‘reset’ action always moves the system to the reset state. The ‘float’

action moves the system to the left or right state with uniform probability, except

in the end states where it either moves or stays in the same state. The only way

to produce a 1 observation is to perform the reset action while the system is in the

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

----------- >• reset, p = 1.0, o = 1
------------> reset, p = 1.0, o = 0
------------float, p = 0.5, o = 0

Figure B .l: The Float-Reset domain. (Repeated from Figure 2.1)

reset state. Reseting from any other state produces a 0, as does floating in any

state.

B.2 Tiger

A = {listen, open-left, open-right}

O = {tiger-left, tiger-right}

Q = {e, (listen, tiger-right)}

In the Tiger domain [Cassandra, Kaelbling, and Littm an, 1994], an agent begins

in a room with two doors, and a tiger is behind one of the doors with uniform

probability. If the agent listens, it can hear the tiger, and correctly observes whether

the tiger is to the left or the right 85% of the time (and misidentifies 15% of the

time). Listening does not change which door the tiger is behind. Taking either

door opening action causes a random observation and brings the agent to a new

room, identical to the previous room, where the location of the tiger is once again

uniformly randomly chosen.

Note tha t for purposes of representing the system, the actions ‘open-left’ and

‘open-right’ are identical. They are included for the control version of the Tiger

domain, in which reward is applicable.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

— <EI < 3 < 3 —
MRV [T > LRV

 Q > E > E > 1--------------

Figure B.2: The Shuttle domain.

B.3 Paint

A — {inspect, paint, ship, reject}

O = {blemished, not-blemished}

Q — {e, (inspect, blemished)}

The Paint domain [Kushmerick, Hanks, and Weld, 1995] describes a widget

painting operation. Widgets are either blemished or not-blemished with uniform

probability, and blemished widgets can be transformed to non-blemished widgets

by painting them. Painting is successful 90% of the time, and the widget remains

blemished 10% of the time. Inspecting a widget reveals with 75% accuracy whether

it is blemished or not, without changing the state. Shipping or rejecting the widget

both present the agent with a new widget. The ‘paint’, ‘ship’ and ‘reject’ actions

all produce the ‘not-blemished’ observation.

In the representation version of the Paint problem, the ‘ship’ and ‘reject’ actions

are identical. They exist to differentiate states in the control problem.

B.4 Shuttle

A = {forward, backup, turn}

O = {nothing, see-MRV, see-LRV, docked-MRV, docked-LRV}

Q = {e, (turn, see-LRV), (turn, nothing), (forward, see-MRV), (forward, nothing),

(backup, nothing), (backup, docked-LRV)}

The Shuttle domain [Chrisman, 1992] describes a shuttle that ferries goods be

tween two identical space stations, tha t are distinguished by recognizing which was

the last one visited by the the shuttle. They are called MRV (most recently visited)

and LRV (least recently visited). Figure B.2 shows the seven different positions

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the space shuttle. There is no position for being docked in LRV, because once

the shuttle docks in the least recently visited station, it becomes the most recently

visited.

Turning and going forward always have the expected effect, with the special

cases that going forward while directly in front of a station (positions 3 and 6) does

not change the position, and turning while docked moves the shuttle to be facing

the station. Backing up is a noisy action. When directly in front of a station, facing

the station, backing up launches into space 30% of the time, turns the ship around

30% of the time, and has no effect 40% of the time. When the ship is in front of

a station with the rear towards the station, backup up docks 70% of the time and

has no effect 30% of the time. In space, backing up moves closer to the station 80%

of the time, turns the shuttle around 10% of the time, and has no effect 10% of the

time. Backing up has no effect when docked.

When the shuttle is directly in front of a station, and facing it (positions 3 and

6), it can see the station. If a shuttle is directly in front of a station and facing

away from it (positions 2 and 7), it sees nothing. The shuttle can also detect when

it is docked (position 1). When the shuttle is in space between the two stations, its

sensors are noisy; 70% of the time it sees the station it is facing, and 30% of the

time it sees nothing.

B.5 Network

A = {unrestrict, steady, restrict, reboot}

O = {up, down}

Q = {e, (unrestrict, up), (steady, up), (restrict, up), (unrestrict, up, unrestrict, up),

(unrestrict, down, unrestrict, up), (unrestrict, up, steady, up)}

The Network domain [Littman, 1996] simulates a network with six levels of

stability, plus a crashed state. The agent controls the stability of the network by

letting network flow be unrestricted, steady, or restricted, and can also reboot the

network. Because the dynamics of the domain are fairly complicated, we present

the effects of the four actions in Table B .l.

The general summary of the actions in the Network domain is tha t unrestricted

flow tends to increase instability, steady flow tends to maintain the current stability

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) unrestrict

1 2 3 4 5 6 C
1 0.5 0.3 0.1 0.1 0.0 0.0 0.0
2 0.2 0.3 0.3 0.1 0.1 0.0 0.0
3 0.1 0.1 0.3 0.3 0.1 0.1 0.0
4 0.0 0.1 0.1 0.3 0.3 0.1 0.1
5 0.0 0.0 0.1 0.1 0.3 0.3 0.2
6 0.0 0.0 0.0 0.1 0.1 0.3 0.5
C 0.0 0.0 0.0 0.0 0.0 0.0 1.0

(c) restrict

1 2 3 4 5 6 C
1 0.8 0.1 0.1 0.0 0.0 0.0 0.0
2 0.5 0.3 0.1 0.1 0.0 0.0 0.0
3 0.2 0.3 0.3 0.1 0.1 0.0 0.0
4 0.1 0.1 0.3 0.3 0.1 0.1 0.0
5 0.1 0.0 0.1 0.3 0.3 0.1 0.1
6 0.0 0.1 0.0 0.1 0.3 0.3 0.2
C 0.0 0.0 0.0 0.0 0.0 0.0 1.0

(b) steady

1 2 3 4 5 6 C
1 0.7 0.2 0.1 0.0 0.0 0.0 0.0
2 0.3 0.4 0.3 0.1 0.0 0.0 0.0
3 0.1 0.2 0.4 0.2 0.1 0.0 0.0
4 0.0 0.1 0.2 0.4 0.2 0.1 0.0
5 0.0 0.0 0.1 0.2 0.4 0.2 0.1
6 0.0 0.0 0.0 0.1 0.2 0.4 0.3
C 0.0 0.0 0.0 0.0 0.0 0.0 1.0

(d) reboot

1 2 3 4 5 6 c
1 1.0 0.0 0.0 0.0 0.0 0.0 0.0
2 1.0 0.0 0.0 0.0 0.0 0.0 0.0
3 1.0 0.0 0.0 0.0 0.0 0.0 0.0
4 1.0 0.0 0.0 0.0 0.0 0.0 0.0
5 1.0 0.0 0.0 0.0 0.0 0.0 0.0
6 1.0 0.0 0.0 0.0 0.0 0.0 0.0
C 1.0 0.0 0.0 0.0 0.0 0.0 0.0

Table B .l: The state transitions for the Network domain. Numbers 1 to 6 are
stability levels, and C is the crashed state. Each row is a probability distribution
over states for the corresponding starting state.

level, and restricted flow tends to make the network more stable. Rebooting the

system always makes it completely stable. Nothing changes the crashed state except

for a reboot.

The observations in the Network domain are noisy. The network is seen as up

or down, depending on how stable it is. At stability levels 1, 2 and 3, the network

is always seen as up. At stability level 4, there is a 90% chance of observing the

network up, at level 5, 70%, and a t level 6, 50%. A crashed network is always down.

B.6 4x3 Maze

A = {north, south, east, west}

O = {neither, left, right, both, good, bad}

Q = {e, (north, left), (north, right), (north, neither), (north, both), (north, good),

(south, left), (south, right), (south, neither), (north, left, north, left)}

The 4x3 Maze [Parr and Russell, 1995] is a grid world pictured in Figure B.3.

The agent can move in the four compass directions, and can perceive whether there

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

L N N +

B L -

L N N R

Figure B.3: The 4x3 Maze domain.

Figure B.4: The Cheese domain.

is a wall to its left, to its right, both, or neither. There are two special grid locations,

in which the agent perceives special observations; it perceives the position with a

'+ ’ to be ‘good’, and the position with a to be ‘bad’. Moving is noisy; 80% of

the time, the agent moves in its intended direction, and 10% of the time it moves

in one of the directions perpendicular to its intended direction. Moving into a wall

does not change the position of the agent. When the agent is in either of the special

locations, its next action will randomly transport the agent to any of the non-special

locations.

B.7 Cheese Maze

A — {north, south, east, west}

O = {1, 2 , 3 , 4 , 5, 6 , 7}

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) no-repair

1 2 3 4 5
1 0.80 0.13 0.02 0.00 0.05
2 0.00 0.70 0.17 0.05 0.08
3 0.00 0.00 0.75 0.15 0.10
4 0.00 0.00 0.00 0.60 0.40
5 0.00 0.00 0.00 0.00 1.00

(c) strcngthen-paint

1 2 3 4 5
1 0.80 0.13 0.02 0.00 0.05
2 0.19 0.65 0.08 0.02 0.06
3 0.10 0.20 0.56 0.08 0.06
4 0.00 0.10 0.25 0.55 0.10
5 0.00 0.00 0.00 0.00 1.00

(b) clean-paint

1 2 3 4 5
1 0.80 0.13 0.02 0.00 0.05
2 0.00 0.80 0.10 0.02 0.08
3 0.00 0.00 0.80 0.10 0.10
4 0.00 0.00 0.00 0.60 0.40
5 0.00 0.00 0.00 0.00 1.00

(d) structural-repair

1 2 3 4 5
1 0.80 0.13 0.02 0.00 0.05
2 0.80 0.13 0.02 0.00 0.05
3 0.80 0.13 0.02 0.00 0.05
4 0.80 0.13 0.02 0.00 0.05
5 0.80 0.13 0.02 0.00 0.05

Table B.2: The effect of the repair actions on the structural stability of the bridges.
Each row represents the starting stability of the bridge, and each column represents
the stability after the repair action is taken.

Q = {e, (north, 1), (north, 2), (north, 3), (north, 4), (north, 5), (south, 5),

(south, 6), (east, 2), (east, 3), (north, 5, north, 1)}

The Cheese Maze [McCallum, 1993] is a grid world pictured in Figure B.4. The

agent can move in the four compass directions, and actions are never noisy. The

agent perceives the four walls around it; the state-observation mappings are shown

in the diagram. The shaded location has a piece of cheese, and has a special obser

vation. Taking any action in the cheese location causes the agent to be randomly

transported to any of the other locations.

B .8 Bridge Repair

A = (no-repair, clean-paint, paint-strengthen, structural-repair} x

(no-inspect, visual-inspect, ut-inspect}

O = (less-than-5, between-5-and-15, between-15-and-25, greater-than-25, failed}

Q = (e, (no-repair-and-ut-inspect, less-than-5),

(clean-paint-and-ut-inspect, between-5-and-15),

(clean-paint-and-ut-inspect, between- 15-and-25),

(paint-strengthen-and-ut-inspect, failed)}

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) no-inspect

1 2 3 4 5
1 1.00 0.00 0.00 0.00 0.00
2 1.00 0.00 0.00 0.00 0.00
3 1.00 0.00 0.00 0.00 0.00
4 1.00 0.00 0.00 0.00 0.00
5 1.00 0.00 0.00 0.00 0.00

(b) visual-inspect

1 2 3 4 5
1 0.80 0.20 0.00 0.00 0.00
2 0.20 0.60 0.20 0.00 0.00
3 0.05 0.70 0.25 0.00 0.00
4 0.00 0.30 0.70 0.00 0.00
5 0.00 0.00 1.00 0.00 0.00

(c) ut-inspect

1 2 3 4 5
1 0.90 0.10 0.00 0.00 0.00
2 0.05 0.90 0.05 0.00 0.00
3 0.00 0.05 0.90 0.05 0.00
4 0.00 0.00 0.05 0.90 0.05
5 0.00 0.00 0.00 0.00 1.00

Table B.3: The probability distributions over observations generated by each in
spection action taken in each state, for the Bridge domain.

The Bridge Repair domain [Ellis, Jiang, and Corotis, 1995] simulates a bridge

tha t has five different degrees of structural strength. It is formulated somewhat

differently than other systems. At each time step, the agent takes both a repair

action and an inspect action, so the action set is the cross product of these sets.

The change in state is dependent only on the repair action taken, and the observation

is dependent only on the inspect action. We summarize the effect of these actions on

the state and observation in Tables B.2 and B.3. To summarize the repair actions,

no-repair tends to maintain the state of the bridge, but has a trend toward worse

stability. The action clean-paint is similar to no-repair, but maintains the state

slightly more. The action strengthen-paint has a trend toward making the bridge

stronger, and structural-repair resets the state of the bridge. Of the inspection

actions, no-inspect provides no information, visual inspect tends to report that the

bridge is stronger than it is, and ut-inspect provides fairly accurate information

about the strength of the bridge.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

