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Abstract

Predictive state representations (PSRs) are a recently proposed method of mod­

elling discrete dynamical systems using predictions about future observations. The 

strength of PSRs comes from their ability to represent system state using only ob­

servable data, such as actions and observations. Current techniques for learning 

PSRs use Monte Carlo methods to estimate prediction probabilities, but do not 

take advantage of the structure of the data to extrapolate information. In this 

work, we present the constrained gradient algorithm, a new technique for discovery 

and learning of PSRs th a t constrains its estimated predictions to augment a gradient 

descent approach. This algorithm is also the first online algorithm for PSRs capable 

of discovering core tests. We test the algorithm on a variety of standard domains, 

and show tha t it is able to build models competitive with current techniques. This 

work is an extension and elaboration of published work [McCracken and Bowling, 

2006].
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Chapter 1

Introduction

Suppose one is learning how to use a DVD player. Essentially, this involves figuring 

out which buttons to press on the player in order to produce the desired result, like 

powering it off or playing a DVD. Of course, which buttons to press depends on 

current properties of the player: Is it powered on or off? Is the DVD tray in or 

out? Is there a disc inside it? Properties like these constitute the state of the DVD 

player. Some of these properties are directly observable, like whether the tray is 

out; others are not directly observable, like whether a disc is inside the machine or 

not.

A reasonable way to learn how to use a DVD player is to press the buttons and 

observe what happens. There are many different buttons on the DVD player, and 

they can be pressed in any order, which means there are many sequences one can try: 

W hat happens if the ‘power’ button is pressed? W hat happens if it is pressed again? 

W hat happens if ‘play’ and then ‘eject’ and then ‘power’ and then ‘pause’ and then 

‘stop’ are all pressed in sequence? In fact, there are an infinite number of such 

tests one could perform. But in reality, only a relatively small number of these tests 

actually provide unique information; after all, a DVD player is a  relatively simple 

system, and certainly does not have an infinite amount of complexity. Intuitively, 

there is a small number of button combinations on a DVD player tha t are capable 

of summarizing the effect of all possible combinations of button presses.

In more technical terms, a DVD player is an example of a dynamical system. 

There has been a significant amount of work in the field of dynamical systems. 

They are relevant to computer science, engineering, mathematics, and even biology 

and psychology. Later in this work, in Section 2.1, we further explain the concept 

of dynamical systems, different types of dynamical systems, and various ways to

1
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represent the state of a system.

An im portant problem is how one represents the dynamical system. In this work 

we focus on the concept of representing the state of a  system based on predictions 

about the outcomes of tests. In the DVD player example, one can know the state 

of a DVD player by knowing how it will react to a series of button presses. This is 

the fundamental idea behind predictive state representations: the state of a system 

can be represented by a small number of questions about how the system will react 

to inputs. Predictive state representations (PSRs) are a relatively recent method 

of representing the state of a system, originating with work done by Littman, Sut­

ton, and Singh [2002]. In Section 2.3 and Section 2.4, we more formally describe 

predictive state representations and explain previous algorithms for learning these 

representations.

Our main contribution in this work is the presentation of a new algorithm to 

build PSRs from experience gained through interaction with the system. The al­

gorithm is also described in a recent paper [McCracken and Bowling, 2006]. This 

new algorithm, the constrained gradient algorithm, possesses several advantages over 

existing algorithms. First, it is capable of learning a model of a system based on 

a single long interaction with the system, without having to make multiple passes 

over the data. Furthermore, at every time step the algorithm has an estimate of the 

current state of the system. Together, these properties are known as online learning. 

Online learning algorithms are preferable because they allow a  constantly improving 

model to be generated in real time. The second advantage of the constrained gra­

dient algorithm is tha t it takes advantage of the large amount of structure inherent 

in sequential data obtained from a  dynamical system. This structure is described 

in Chapter 3. We expect tha t making use of the structure of the data  will lead to 

more efficient learning and more accurate models.

In the DVD player example, we stated that there must be a finite set of predic­

tions about button combinations th a t summarize the state of the system. In order 

to learn to use the DVD player, one must decide which predictions are included 

in tha t special set. This process is known as discovery. Chapter 5 describes the 

approach to the discovery problem taken by the constrained gradient algorithm, 

and contains empirical evidence th a t the algorithm is capable of finding appropriate 

tests with far less data than is required by other algorithms. The second aspect of 

learning how a system operates is knowing how the system responds to interaction;

2
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how should the predictions about the DVD player change as its buttons are pushed? 

This is the process of learning the PSR parameters. In Chapter 4, the constrained 

gradient algorithm’s approach to  learning is described, and empirical tests compare 

its performance with existing methods.

Further investigation of the constrained gradient algorithm is done in Chapter 6, 

including final performance results and additional tests to explore interesting results 

found during testing. Finally, in Chapter 7 we conclude this work by summarizing 

our findings and describing avenues for future work.

3
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Chapter 2

Dynam ical System s and State  
R epresentations

The purpose of this chapter is to  introduce the concept of dynamical systems and 

methods of modelling the state  of such systems. We will show tha t there exists 

many classes of dynamical systems, and tha t state representation is a complicated 

problem. In Section 2.1, we describe dynamical systems and a selection of properties 

a system might have. Section 2.2 overviews various ways of representing state in 

dynamical systems. In Section 2.3, we delve more deeply into the topic of predictive 

state representations, which will become the focus of the rest of this thesis. Finally, 

in Section 2.4 we describe existing work in PSRs and other predictive representations 

of state.

2.1 Dynam ical System s

In the most general sense, a dynamical system is any system that generates a se­

quence of observations, taken from a set O, th a t is perceived by an agent. The 

agent may, or may not, control the output of the system by taking actions from a 

set, A.  A dynamical system can be in various ‘sta tes’ th a t can change over time and 

in response to actions. The state  of a system affects the impact of actions and the 

likelihood of observations; formally, the state of a system is any sufficient statistic 

for predicting the future of a system [Littman et al., 2002]. Research in dynamical 

systems describes classes of systems which meet certain restrictions. Depending on 

the class of system, different methods of representing its state are available. In this 

section, we list and briefly describe some im portant variations of dynamical systems.

D isc re te /C o n tin u o u s  T im e. In dynamical systems, time measures the duration

4
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of the agent’s interaction with the system. In continuous time systems, time 

is measured, in units, as a real value, and system dynamics are generally gov­

erned by continuous functions. Other systems, such as discrete semi-Markov 

systems, measure time in discrete units, but state transitions may take a vari­

able number of time units [Howard, 1971]. In discrete time systems, time is 

measured in indivisible units called time steps. Each time step is long enough 

for the agent to perform a  single action and to perceive a single observation. 

The agent takes its first action and perceives its first observation at time step 

1, and in general time step i is the time when the agent takes its i lh action 

and experiences its i th observation.

D isc re te /C o n tin u o u s  O b se rv a tio n s . This property describes whether the possi­

ble observations in the system, O, are discretely valued or form a continuum. 

In a discrete system, possible observations could be things like ‘black’ and 

‘white’ or 0 and 1; a continuous system’s observations could include the full 

spectrum of grey or an interval of real numbers.

D isc re te /C o n tin u o u s  A ctions. This property describes whether the actions in 

A  are discrete or continuous. Continuous actions take a continuous param­

eter, like ‘turn x° left’ or ‘move forward for t seconds’. Discrete actions are 

parameterless actions, like ‘reset’, or parameterized actions with pre-defined 

parameters, such as ‘go forward one step’ or ‘turn 90° left’.

If a dynamical system is discrete in time, observations and actions, we call it a 

discrete dynamical system. Furthermore, if the number of discrete observations and 

actions is finite, we call the system a discrete, finite dynamical system. In this work, 

we consider only this class of systems, and all future references to dynamical systems 

will implicitly assume discrete, finite dynamical systems. Because the sets A  and O 

are discrete, we can list their elements using the notation A  =  {ai, a 2 , . . . ,  an} and 

O  =  {oi, 0 2 , • • •, om}, where a subscript indicates a particular element of the set.

Some additional properties of dynamical systems include:

U n c o n tro lle d /C o n tro lle d . This property is also known as output-only/input- 

output [Jaeger, 1998]. In an uncontrolled (output-only) system, the size of 

the set A  is one; i.e., the agent’s interaction with the system consists only of 

a sequence of observations. In a controlled (input-output) system, |A| > 1;

5
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---------> reset, p = 1.0, o =  1
--------- >■ reset, p =  1.0, o =  0
 > float, p =  0.5, o = 0

Figure 2.1: The Float-Reset dynamical system. For each line type, the correspond­
ing action, the transition probability p and the observation o are given.

the agent is able to affect the output of the system by performing actions 

from A,  and the agent’s interaction with the system consists of a sequence of 

action-observation pairs. The process by which actions are chosen is known 

as a  policy.

C o m p le te ly /P a r tia lly  O bservab le . In a completely observable system, there is 

a one-to-one mapping between states and observations; i.e., each observation 

is a sufficient statistic for representing the state of the system. In a partially 

observable system, the observations produced at each state do not uniquely 

identify the state.

D e te rm in is tic /S to c h a s tic . In a deterministic system, performing the same action 

sequence, starting at time step 1, will always generate the same observation 

sequence. In a stochastic system, observations are generated according to some 

probability distribution, and performing the same action sequence from the 

first time step always generates observations according to the same probability 

distribution.

In general, methods tha t are capable of handling controlled, partially observable 

or stochastic dynamical systems are more powerful than methods tha t restrict the 

system, respectfully, to uncontrolled, completely observable or deterministic sys­

tems.

Figure 2.1 shows an example dynamical system, called Float-Reset, th a t is con­

trolled, stochastic, and partially observable. This system was introduced by Littman

6
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et al. [2002] as an example system, and has been used in other PSR work [Singh, 

Littm an, Jong, Pardoe, and Stone, 2003; Singh, James, and Rudary, 2004]. Float- 

Reset, as depicted in Figure 2.1, has five positions, including a special ‘reset’ po­

sition. The action set in Float-Reset is A  =  { /, ?•}, where /  stands for ‘float’ and 

r  stands for ‘reset’. The observation set is O — {0,1}. The reset action takes the 

system back to the reset position. The agent observes a 1 when resetting if the 

action is taken when the system is already in the reset position, otherwise the agent 

observes a 0. The float action randomly moves the system to the left or right with 

uniform probability, except on the end positions where the system either stays in 

the same position or goes to the adjacent position. The agent always observes a  0 

when floating. The Float-Reset system is relatively simple, but provides a useful 

example system for explaining concepts related to dynamical systems and predictive 

state  representations.

The overarching problem in dynamical systems is determining a policy for opti­

mal control of the agent. In this problem, states in the system are associated with 

some scalar reward, and the goal of the agent is to maximize its reward during its 

interaction with the system. This is a very large topic, and in this work we will 

focus on a crucial subproblem: How can an agent represent the state of the system, 

and update its state when it takes actions and perceives observations? The next 

chapter discusses existing methods of state representation in dynamical systems.

2.2 State Representations

Looking at the Float-Reset diagram in Figure 2.1, one can easily label each of the 

five positions as a state of the system, because each of these positions is sufficient to 

predict future observations. However, the concept of state is not so simple. Consider 

an agent interacting with the Float-Reset system, and assume the agent knows the 

current state of the system is the reset position. If the agent takes the float action, 

it no longer knows the exact position in which the system resides. The state of 

the system can be described as “the state that has a 50% chance of being in either 

the reset position or the the position adjacent to it” or “the state tha t has a 50% 

chance of generating a 1 observation when a reset action is taken.” These types 

of descriptions are known as information states, since they are the most accurate 

description of the system possible, given the information tha t is available to the 

agent. In contrast, we refer to a specific set of states used to describe a system, such

7
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the five positions of the Float-Reset system, as nominal states. Note that nominal 

states are not necessarily a subset of reachable information states; in Float-Reset, 

for example, the system can never reach an information state tha t corresponds to 

any of the four non-reset positions. Unless otherwise specified, we use the term state 

to mean information state. A sta te  only has meaning in the context of other states, 

and how they interact with each other using the dynamics of the system. We call 

the combination of the sufficient statistic and the description of dynamics a state 

representation.

One im portant property of a state representation is whether it requires more 

knowledge about the underlying system than is available from the history, or whether 

it is based entirely on the observable quantities contained in the history. Any system 

which expresses its state  using only elements of the action and observation sets, 

A  and O, is said to be grounded in observable quantities. We prefer grounded 

representations because they can be learned entirely from experience [Littman et al., 

2002],

The most general sta te  representation possible is a complete recording of the 

agent’s interaction with the system since the first time step; i.e., the list of all 

actions and corresponding observations the agent has experienced. This is known as 

a history, and it is always a  sufficient statistic. Of course, as a  state representation 

for online learning, histories are impractical. There are an infinite number of possible 

histories for a given system, they can be infinite in length, and they do not allow 

for generalization between time steps, since each time step has a unique history.

The goal of state representation algorithms is to map these histories to more 

useful representations. There are many methods of representing the state of a sys­

tem, depending on the properties of the system as outlined in the previous section. 

Below, we briefly describe some existing methods of state representation.

Markov M ethods

Markov processes, or Markov chains, are a method of representing uncontrolled, 

fully observable dynamical systems [Russell and Norvig, 2003]. They map histories 

to states by using the previous observation as the state, and they have functions to 

map states to probability distributions over next states.

Markov decision processes [Puterman, 1994] generalize Markov processes to the 

controlled case. Transition functions use state and action pairs to map to distribu-

8
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tions over subsequent states. MDPs are based entirely on observable quantities, and 

thus grounded, but that property is trivial when the system is completely observable.

k -O rd e r  M arkov  M e th o d s

The fc-order Markov assumption is a generalization of the standard Markov as­

sumption to include a  history of k  observations [Russell and Norvig, 2003]. fc-order 

Markov models are a generalization of Markov processes for modelling systems in 

which the state is not purely dependent on the single previous observation. These 

methods consider tha t the previous k  observations form a sufficient statistic to rep­

resent the system. When k  =  1, a k-order Markov model is the same as a  Markov 

process.

/c-order Markov methods are typical of history-based methods in general: meth­

ods tha t consider state to be representable by a finite amount of history [Littman 

et al., 2002]. History-based methods can be both controlled and uncontrolled. 

History-based methods have the advantage that they are based entirely on observ­

able quantities. However, for a given fc, history-based methods are unable to  rep­

resent systems that depend on information in the history older than k  steps. For 

instance, a fc-order Markov model would be unable to represent the Float-Reset 

system, because it cannot distinguish among states in which the previous k  actions 

were all float actions. For large values of k, though, a /c-order Markov model can 

often make a good approximation of such systems.

H M M s an d  P O M D P s

Hidden Markov models [Rabiner, 1989], or HMMs, extend Markov processes to the 

partially observable case. Likewise, partially observable Markov decision processes 

[Astrom, 1965], or POM DPs, extend Markov decision processes to the partially 

observable case. HMMs and POM DPs use a given set of postulated nominal states, 

and assume that the underlying system is in exactly one of these nominal states. 

However, the current history may not contain enough information to determine in 

which of these nominal states the system is, so HMMs and POMDPs represent state 

as a probability distribution over nominal states. This distribution is known as a 

belief state.

POMDPs are the most general of the state representations listed so far, and 

they are the first representation we have described th a t can fully represent the Float-

9
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Reset system. However, they still have the disadvantage tha t they can only represent 

systems with a finite number of nominal states. Furthermore, these representations 

are not grounded in observable data, and the nominal states must be provided to the 

algorithm prior to its experience with the system. In the next section, we describe 

predictive state representations, which have been shown to be theoretically more 

powerful than POM DPs and are completely based upon observable quantities.

2.3 Predictive State Representations

A relatively new paradigm for representing state is to use predictions of the future 

to summarize the current state. Such state representations are called predictive rep­

resentations of state, which are based on ideas from diversity-based methods [Rivest 

and Schapire, 1994] and observable operator models [Jaeger, 1998]. More recently, 

predictive state representations (PSRs) [Littman et al., 2002] were introduced as 

another predictive representation of state. PSRs are grounded entirely in data ob­

servable by the agent, and require only a prior knowledge of the set of actions, A,  

and observations, O, present in the system. It has been shown that PSRs are capa­

ble of compactly modelling any system tha t can be modelled by a POMDP [Littman 

et ah, 2002], and tha t there exist systems tha t cannot be modelled by any POMDP 

that can be modelled by an OOM [Jaeger, 1998], and therefore can also be modelled 

by a PSR [Singh et ah, 2004]. Predictive state representations will be the subject 

of the rest of this thesis.

2.3.1 T ests and H istor ies

In this section, we describe histories and introduce the concept of tests and pre­

dictions. The notation used for describing these concepts has not been entirely 

consistent across the PSR literature. We use the notation from Wolfe, James, and 

Singh [2005], with some modifications.

As mentioned previously, a  history is the sequence of action-observation pairs, 

or no pairs, tha t an agent in a dynamical system has experienced beginning at the 

first time step. For instance, the history hn = a1o1a2o2 .. ,anon of length n  means 

that the agent chose action a 1 and perceived observation o1 at the first time step, 

after which the agent chose n2 and perceived o2, and so on. A superscript on an 

action or observation indicates the relevant time step. A special history, known as 

the null history, is the history a t the beginning of time before the agent has taken

10
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any actions or seen any observations. We use 0 to denote the null history.

A test is a sequence of ao pairs tha t begins immediately after a history; it 

is a potential future. The action sequence of a test t is represented by dt and the 

observation sequence is represented by o/,. A test is said to succeed if the observations 

in the sequence are observed in order, given that the actions in the sequence are 

taken in order. For instance, the test t =  0 1 0 1 0 2 0 2 . . .  a,no„ succeeds if the agent 

observes o\ followed by 0 2 , etc., given tha t it performs actions a\ followed by 0 2 , 

etc.. A test fails if the action sequence is taken but the observation sequence is not 

observed. Thus, the outcome of a test is a binary success or failure.

A prediction of a test is the probability tha t the test will be successful. The 

outcome of a test t depends on the history h that preceded it, so we write predictions 

as y(t\h), to represent the probability of test t succeeding after history h. For test 

t  of length n, the value of y{t\h) is defined:

A test prediction, therefore, is the product of the probabilities of observing each 

observation in ot , given the entire history tha t preceded the observation. Note that 

the above definition of a test prediction differs from the definition used in the PSR 

literature to date. An explanation of this difference and the associated implications 

can be found in Appendix A. Essentially, our definition makes test predictions in­

dependent of policy, while previous work uses a  policy-dependent definition. The 

definitions coincide when the policy used during learning chooses actions indepen­

dent of past observations. When discussing previous work, we will make this strong 

assumption on the policy and so simply refer to test predictions using our definition 

of y(t\h). Our work, as we will show, does not require such an assumption 011 the 

policy used during learning.1

A special test, known as the null test, is the test of length zero. We use e to 

denote the null test. The outcome of the null test is defined as:

Thus, the null test is successful for any history tha t can possibly be generated by 

the system.

We require the policy to have the capability of discovering the full com plexity of the system . Thus, 
we require Pr(n |/i) >  0, for all a e  .4  and for all histories h.

n

y ( t \h ) =  I I  P r ( Oi\h,  a iO i . . . Oi—iOi—iOi)
i =  1

y{h\(t>) > 0 
y{h\4>) = 0

Our work does require a different, less strict assum ption on the policy used during learning.

11
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If T  is a set of tests and H  is a set of histories, y(t\h) is a single value, y(T\h) is a 

row vector containing y(ti\h) for all tests U E T, y(t\H)  is a column vector containing 

y{t\hj) for all histories hj E H, and y(T \H )  is a matrix containing y(ti\hj)  for all 

ti E T  and hj E H.

2.3 .2  C ore T ests

In any dynamical system there exists a (possibly infinite) set of tests, Q , whose 

predictions at any history are a sufficient statistic for computing predictions for all 

possible tests at tha t history [Singh et al., 2004]. This means tha t for any test t 

there exists a function f t  such tha t y(t\h) =  f t  (y(Q\h)). If the size of Q is finite, 

then the system can be represented by a PSR. Furthermore, if the function f t  is a 

linear function of the tests in Q , the system can be represented by a linear PSR. A 

linear PSR computes the outcome of tests using y{t\h) =  y(Q\h)mt, for some column 

vector of weights m t . As in most of the literature to date, we henceforth restrict our 

discussion of PSRs to the linear PSR case, although there has been some discussion 

of non-linear PSRs [Singh et ah, 2004; Rudary and Singh, 2004]. The set of tests 

Q is called the core tests, and determining which tests are core tests is known as 

the discovery problem. In addition to Q , it will be convenient to discuss the set 

of one-step extensions of Q. A one-step extension of a test t is a test aot, which 

prefixes the original test with a single ao pair.

X  — {aot | Va E ^4, o € O, t E Q U {&}}

The set of all one-step extensions of Q, plus all of the length one tests (i.e., the 

one-step extensions of the null test) will be called X .

2.3 .3  S ta te  U p d a te

Previously, we defined a state representation as a sufficient statistic, combined with 

a description of the system dynamics. We already know tha t at any time i, the set 

of predictions y(Q\hl) is a sufficient statistic for the state of the system. In this 

section, we describe how the system dynamics are represented and used to update 

the state  vector of the PSR.

At time i — 1, the state vector of the PSR is y(Q|/it_1). After the agent takes 

action a1 and sees observation o1, the state vector must be updated to be y(Q\hl), 

where hl =  hx~ l axox. A simple application of conditional probability is used to

12
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update the state vector’s predictions for time i  — 1 to predictions for time i:

z / ( # f) =  y i q l h ' - W )  =  V<1 €  Q

In a linear PSR, we know y(t\h) =  y(Q \h)m t for any test t. Thus, we can rewrite 

the above equality as:

, , ,n v { Q W ~ X) m ai0i

) =  V q s Q

Note tha t the fraction is w ritten in terms of the known state  vector 7j(Q\lii~1), plus 

a set of weight vectors mt . In order to update the PSR at each time step, the vector 

mi must be known for all length one tests, alol, and all one-step extensions of the 

core tests, alolq. All of these tests are in the set of extension tests, X .  The set of 

all of these update vectors, which we will call m x , are the param eters of the PSR. 

The vectors m x  are the PSR ’s representation of the system dynamics. Estimation 

of these parameters is known as the learning problem.

2.4 Related Work

In this section we describe other work related to predictive representations of state. 

In Section 2.4.1, we discuss current learning and discovery algorithms for PSRs. In 

Section 2.4.2, we briefly describe other types of predictive state  representations.

2.4 .1  C urrent L earning M eth o d s for P S R s

To date, there have been three main learning algorithms published for PSRs: a 

myopic gradient-based algorithm [Singh et al., 2003], a Monte Carlo algorithm that 

requires the presence of a reset action in the system [James and Singh, 2004], and 

a modification to the reset-based algorithm tha t removes the need for reset actions 

[Wolfe et al., 2005]. A fourth algorithm, which applies temporal difference methods 

to learning PSRs, has also been presented [Wolfe et al., 2005].

M yopic Gradient Descent M ethod

The myopic gradient descent learning algorithm [Singh et al., 2003] was the first 

algorithm for learning the parameters of a PSR. The algorithm learns a model 

online, which means that it makes only a single pass over the data, and a t every 

time step it has a best estimate of the current state vector and parameters for the

13
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system. The algorithm has no method of discovering core tests; the set Q is provided 

to the algorithm prior to learning.

The gradient descent algorithm attem pts to minimize error on the observed 

action-observation data by moving the update parameters m x  according to the gra­

dient of the error. It uses Monte Carlo updating; tests t for which the full action 

sequence is observed have their parameters mi adjusted to make them more likely 

to predict success or failure based 011 whether the full observation sequence was 

observed or not. The myopic gradient is used, which refers to the algorithm’s ap­

proximation of the gradient by the single success or failure observed in the data 

stream. Computationally, the myopic gradient algorithm is efficient, since it per­

forms only 0 ( |Q |2) computations per time step, and Q can generally be assumed to 

be small.

Singh et al. show tha t the myopic gradient algorithm was successful at learning 

reasonable models on a test suite of POMDP systems, using in the range of several 

million action-observation pairs.

R eset M ethod

The reset-based Monte Carlo algorithm [James and Singh, 2004] was the first algo­

rithm to do both param eter learning and core test discovery for PSRs. The algorithm 

works on dynamical systems which have a special reset action tha t returns the sys­

tem to its initial state. This means tha t any history whose final action is the reset 

action is equivalent to the initial history of the system, </>. The reset-based Monte 

Carlo algorithm is a batch algorithm, which means it processes a finite collection 

of data, can make multiple passes over the data, and does not maintain a  current 

estimate of the state vector.

The algorithm explicitly estimates a matrix of predictions y(T\H ), for a set 

of tests T  and histories H.  It computes maximum likelihood estimates of each 

y(t\h), by counting the number of times the sequence of actions in t was taken after 

li was observed, and also by counting the number of those times tha t the exact 

observation sequence from t was observed. Thus, the samples used to generate 

prediction estimates are all Monte Carlo samples; if the full action sequence of t is 

not observed, no change is made to the prediction for t. In order to observe multiple 

samples for test t at history h, the history h must be observed multiple times. To do 

this, the algorithm makes use of the reset action to restore the system to its original
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state, before executing history h.

The reset algorithm uses an iterative process to estimate the matrix y(T\H)  

from observed data, and then re-chooses the set of tests T.  From y(T\H),  the reset- 

based Monte Carlo algorithm computes an estimate of the number of core tests in 

the system, by computing from y(T\H)  an approximation of the rank k of y(T\H).  

In Section 3.2, we explain more about the relevance of rank when selecting core 

tests. The algorithm then chooses a set of k core tests from T  by choosing the most 

linearly unrelated columns in y(T\H) .  I t augments the set T  with the one-step 

extensions of the selected core tests, and then re-estimates y(T\H).  This iterative 

process continues until the detected number of core tests does not increase between 

two iterations.

Suffix-History M ethod

Assuming the existence of a labelled reset action is a large and generally untrue 

assumption. The suffix-history algorithm [Wolfe et al., 2005] is a modification of 

the reset-based Monte Carlo algorithm tha t removes the need for a reset action in 

the system. Like the reset-based algorithm, the suffix-history method is a batch 

algorithm for discovery and learning of PSRs.

In order to estimate the predictions y(T\H)  without experiencing any history in 

H  multiple times, the suffix-history method groups histories with identical suffixes. 

Thus, the prediction y(t\h) is the maximum likelihood estimate of the number of 

times test t succeeded at any time step with a history of the form h*h, where h* 

matches any history. The effect of grouping histories in this manner is tha t y(T\H)  

contains predictions for a modified system. In the modified system, the history (j> 

is equivalent to the stationary distribution of the original system, if the original 

system has a stationary distribution. It was shown tha t a complete set of core tests 

in this modified system is also a complete set of core tests in the original system, as 

long as the original system can be modelled by a POMDP. No guarantees are made 

if the system is not representable by a POMDP. Furthermore, the PSR parameters 

in the modified system are the same as the PSR parameters for the original system, 

because these parameters are not dependent on the initial state of the system.

Once the y(T\H)  matrix is estimated using the suffix-history method, discovery 

and learning is performed in the same manner as in the reset-based Monte Carlo 

method.

15
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T em p o ra l D ifference P S R  L ea rn in g

The above three algorithms all use Monte Carlo sampling; predictions and param­

eters related to a test t are not modified unless a sample for the entire test t is 

available. Wolfe et al. [2005] present an algorithm tha t incorporates temporal dif­

ference methods, and therefore is able to learn even if only parts of the test t are 

executed. However, in their experiments they found tha t the TD algorithm performs 

very poorly, even when it was provided with a correct set of core tests. Thus, we do 

not currently consider the TD algorithm a viable learning algorithm for PSRs.

2.4 .2  O ther P red ictive  R ep resen tation s o f S ta te

Here, we discuss some predictive representations of state other than pure PSRs. 

P S R s  w ith  M em o ry

Memory-PSRs [James, Wolfe, and Singh, 2005], or mPSRs, represent state using 

a combination of a PSR state vector and a short memory of recent actions and 

observations. They use the general idea tha t the set of all possible histories H  can 

be partitioned into subsets Hi according to some set of suffixes. Each Hi induces 

a system, and the complexity of this system cannot be greater than the complexity 

of the full system, and is often smaller. Instead of maintaining a single PSR for 

the complete system, an mPSR maintains a separate smaller PSR for each of the 

induced systems. Each smaller PSR has a separate set of core tests and update 

parameters.

The goal of mPSRs is to represent systems more efficiently than PSRs. James 

et al. show tha t the number of parameters necessary to represent a system can be 

substantially reduced by choosing a  proper set of memories, although they do not 

approach the problem of selecting memories. Fewer parameters means tha t it may 

be easier to learn mPSRs, although some experimental results do not show a large 

improvement in learning efficiency [James et al., 2005]. This is likely due to the test 

domains used, and the fact that the induced subsystems generally had the same size 

as the original system. James and Singh [2005] investigated planning with mPSRs 

using incremental pruning.
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Temporal-Difference Networks

Temporal-difFerence networks, or TD networks, were introduced by Sutton and Tan­

ner [2005]. A TD network consists of two networks: a question network and an an­

swer network. The question network contains predictive nodes. Together, the set of 

current values in the nodes of the question network form the state vector of the TD 

network. These nodes generally predict the outcome of other nodes, conditioned on 

an action sequence, or they directly predict the next observation. Using temporal 

difference methods [Sutton, 1988], the networks are able to learn without requiring 

complete Monte Carlo tests. The answer network contains the TD network’s repre­

sentation of the system dynamics; it updates the values in the predictive nodes after 

each action-observation pair is seen. For each node, the answer network linearly 

combines the values in the current state vector to generate the new value of the 

node.

Much of the power of TD networks comes from the question network. The 

simplest TD networks use trees of action-conditioned nodes to predict observations. 

However, the structure of the question network can be modified to include a variety 

of questions, such as combinations of other predictions, nodes conditioned on both 

actions and observations, and recursive nodes.

TD networks and PSRs currently are the two most fertile research areas in pre­

dictive representations. TD networks have been claimed to be generalizations of 

linear PSRs [Tanner and Sutton, 2005b]; to date, though, it is unclear how to repre­

sent a typical PSR-type test such as y (a i0 ia 2 0 2 |h) in a TD network. It is unknown 

whether non-linear PSRs are equivalent to TD networks. A major area of research 

for PSRs has been the discovery problem [Rosencrantz, Gordon, and Thrun, 2004; 

James and Singh, 2004; Wolfe et al., 2005]. TD network research, on the other hand, 

has delayed the problem of discovering networks in favour of augmentations to the 

basic TD network learning algorithm. Aside from discovery, PSRs and TD networks 

have had some parallel research paths: both have been augmented with history, with 

history-based TD networks [Tanner and Sutton, 2005b] and mPSRs, and TD net­

works have incorporated eligibility traces [Tanner and Sutton, 2005a] while PSRs 

have incorporated some TD learning [Wolfe et al., 2005]. TD networks with options 

[Sutton, Rafols, and Koop, 2005] have demonstrated temporal abstraction; it was 

also suggested that PSRs could use options for temporal abstraction [Littman et al.,
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2002]. To date, however, there has been no research tha t directly compares TD net­

works and PSRs in similar settings, so it is unknown which representation performs 

better in practice.

Transformed Predictive State Representations

Transformed predictive state representations [Rosencrantz et al., 2004], or TPSRs, 

are a variant of PSRs that use linear combinations of predictions to represent state. 

Like other approaches to PSRs, learning a TPSR involves estimating a matrix 

y(T\H),  for some set of tests T  and histories H.  The principle components of 

this m atrix are then found using singular value decomposition. An exact TPSR will 

use all non-zero principle components; however, low dimensional approximate repre­

sentations can be created by selecting only the k  most im portant components. The 

parameters of the TPSR are generated by using linear regression on the principle 

components to create weight vectors for updating the state vector for each ao pair.

The main benefit of using TPSRs over PSRs is tha t the former simplifies the 

discovery problem by making it a m atter of choosing the k  most im portant princi­

ple components of the system. These components are immediately available after 

singular value decomposition of the matrix. However, a disadvantage is tha t the 

state vector no longer has any meaningful interpretation; it is simply a collection 

of linear combinations of tests. Also, like the reset-based Monte Carlo algorithm, a 

TPSR cannot model controlled systems that do not have a reset action.

TPSRs were tested on a mapping task for a robot, which is the first example of 

using a predictive representation for learning in a real-world system. The mapping 

task was an uncontrolled system, and the matrix y(T\H)  was created by setting each 

y(t\h) to the binary sample value for t a t history h. Even with such coarse-grained 

approximations of test predictions, the SVD process was able to create reasonable 

maps of a single room setting.
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Chapter 3

The System  Dynam ics M atrix

The system dynamics matrix was introduced by Singh et al. in 2004 as an intuitive 

method for explaining linear PSRs. The system dynamics matrix is a theoretical 

construct, but approximating portions of the matrix is the key principle behind 

most current discovery and learning algorithms for PSRs. This chapter explains the 

concept of the system dynamics m atrix in Section 3.1, and how it can be used to 

generate a predictive state  representation in Section 3.2. We also describe a set of 

properties of the system dynamics matrix, formulated as constraints on the matrix, 

in Section 3.3. Except where noted, this chapter is a re-explanation of material 

presented by Singh et al. [2004], in order to make clear the necessary details required 

for understanding the PSR discovery and learning algorithm described in subsequent 

chapters.

3.1 Infinite Tests and Histories

In a discrete, finite dynamical system, there is an infinite but countable number of 

tests and histories: a  history and test for every combination of actions and observa­

tions, of any length. The set of all tests is T* and the set of all histories is H*. An 

ordering can be imposed on these infinite sets of sequences by sorting them first by 

length, and then sorting sequences of equal length lexicographically. We can now 

refer to members of the sets as ti or hi, to indicate the i th element in the set of all 

tests or histories, respectively. The first test is e, and the first history is <j)\ both 

have length zero.

Consider the infinite matrix, D  =  y{T*\H*), that has a column corresponding 

to each test in T* and a  row corresponding to each history in H*. 1 The entry d^ j) 

'in  previous work [Singh et al., 2004], the definition of test predictions differed from our definition
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to t i *2 t n
ho y(to\ho) y(U\ho) y(tn\ho)
h i y(to\hi) y(t \ \h\) y{t2\hi) y(tn \hi)
h i y(to\h2) y (h \h 2) y(t2\h2) y{t„\h2)

;
hjn y{to\hm) y { t \ |/im) y{t2\hm) y(tn\hm)

•
‘

Figure 3.1: An example system dynamics matrix.

£ /  0 / i rO r l f Of O / o / l fOrO f O r l

4> 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.5 0.5
f  o 1.0 1.0 0.0 0.5 0.5 1.0 0.0 0.5 0.5
n 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
rO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
r l 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.5 0.5

f Of O 1.0 1.0 0.0 0.5 0.5 1.0 0.0 0.375 0.375

j ; ;

Figure 3.2: The Float-Reset system dynamics matrix.

in the matrix is y{tj\hi), i.e., the probability of the test tj being successful when 

executed immediately following history hi. Since D  contains separate entries for 

the probability of any test following any history, it is capable of fully describing an 

arbitrary discrete, finite dynamical system. See Figure 3.1 for an example of how 

a system dynamics matrix is structured, and see Figure 3.2 for an example of the 

system dynamics matrix for the Float-Reset problem.

Note that, in some dynamical systems, some histories will never be reached, be­

cause the system cannot generate some sequences of actions and observations. We 

will call such histories unreachable, and any history with a non-zero probability of 

occurring is reachable. In Float-Reset, for example, any sequence containing / I  is 

unreachable, because a 0 is always observed after the float action is taken. Recall 

tha t in the previous chapter, y(e\h) = 0, when the history h is unreachable. The 

logical extension of this is that, in the matrix D, rows corresponding to unreachable 

histories contain only zeros. Unreachable histories are not mentioned in the litera­

ture; this definition of unreachable histories and corresponding zero-filled rows are 

introduced here and are helpful for defining constraints on a valid system dynamics

o f y(t \h).  As a result o f this, the system  dynamics matrix described in previous work is defined 
differently. See Appendix A for further explanation.
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matrix.

3.2 From M atrix to  PSR

Even though the system dynamics matrix tha t describes a dynamical system is 

infinite in size, we assume most systems have finite linear complexity. For matrices, 

linear complexity is measured by Tank. The linear rank r  of D  is the number of 

linearly independent columns (or rows) in D, or equivalently, all columns in D  

can be computed with some combination of r  independent columns. Note that 

this corresponds exactly to the description of PSR core tests given in Chapter 2: 

there exists a finite set of tests (corresponding to columns in the matrix) capable 

of describing the entire system. In fact, any system dynamics matrix of rank r  

can be described by a PSR with r  core tests, and tests corresponding to linearly 

independent columns in D  can be used as core tests in the PSR. Thus, given a 

system dynamics matrix, discovering a set of core tests for a PSR is simply a m atter 

of choosing enough columns to span the space of the matrix.

Given a system dynamics m atrix and Q, a set of r  linearly independent columns, 

the parameters of a PSR can be computed using linear regression. Using the sub­

matrix y(Q\H),  and the column y(t\H),  the parameters m t for all tests t e X  can 

be computed by:

m t = (y{Q\H)Ty{Q\H))~l y{Q\H)Ty(t\H)

If \H\ =  |Q|, this can be reduced to:

m t = y - 1(Q\H)y(t\H)

The former version is used by the TPSR algorithm [Rosencrantz et al., 2004], and 

the latter form is used in the Monte Carlo algorithms [James and Singh, 2004; Wolfe 

et al., 2005].

One fact tha t falls out of viewing core tests as linearly independent columns is 

that the set of core tests for a dynamical system is not unique. The rank of a matrix 

does not specify a particular set of columns; it only specifies the number of columns. 

In truth, any  set of columns tha t are linearly independent and span the space of the 

matrix are sufficient to compute the rest of the matrix.

A second fact is tha t the null test, which has a value of 1 for every reachable 

history in the system, can be a core test for every PSR. In the POMDP to PSR
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conversion algorithm [Littman et al., 2002], the null test is used as the starting point 

for finding linearly independent tests.

3.3 Constraints on th e System  Dynam ics M atrix

A system dynamics matrix possesses a lot of structure. In this section, we describe 

four constraints on the structure of a  valid system dynamics matrix. Although some 

of the constraints are very simple, this list shows the requirements that a matrix 

must meet to be a valid system dynamics matrix or a submatrix thereof. Each of 

the constraints below must be true for all tests t € T* and all histories h 6 H*.

R an g e  C o n s tra in t.

This simple constraint restricts the test prediction values in the matrix to be 

valid probabilities, between 0 and 1. In combination with the other constraints, 

this constraint can actually be reduced to y(t\h) > 0, since the upper bound is 

taken care of by the null test constraint combined with the internal consistency 

constraint.

N u ll T est C o n s tra in t.

This constraint is used as a  base case for the normalization constraint, below. 

In [Singh et al., 2004], the null test was not considered, and this constraint 

was listed as:

seo fc

We prefer our notation, since it is simpler and is not redundant with the 

internal consistency constraint, below. In fact, the null test constraint could be

than zero the equality is enforced by the conditional probability constraint, 

below.

In te rn a l C onsis tency  C o n s tra in t.

y(h\fp) > 0 
y{h\4>) =  0

y~! y(o\h, a) = 1, VA;,Vo € A k

reduced even further to to y{e\4>) =  1, because for histories with length greater

y{t\h) =  y(tao\h) Va € A
o e O
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This constraint guarantees consistency within a single row of the matrix. It 

ensures tha t in all cases, the probability distribution over potential observa­

tions is valid. It also ensures that no test is more probable than a prefix of 

itself. See Appendix A for a short proof that all system dynamics matrices 

satisfy this constraint.

Conditional Probability Constraint.

y(t]hao) =  yfa0^ )  Va € ^1, o e  O 
y{ao\h)

This constraint ensures consistency among the prediction probabilities be­

tween related rows. In cases where y(ao\h) =  y(aot\h) = 0, we define § =  0. 

It is this constraint that is key to most of the structure in a system dynamics 

matrix. In fact, using this constraint, the entire matrix y(T*\H*) can be gen­

erated from only the row y(T*\<j)), as long as this row satisfies the first three 

constraints [Singh et al., 2004]. See Appendix A for a short proof tha t all 

system dynamics matrices satisfy this constraint.

I t is interesting to note that all of the constraints on the system dynamics matrix 

are local; they apply within a single row and each row depends on only a single other 

row, with a shorter history.

A system dynamics matrix tha t is generated directly from observed data using 

a Monte Carlo approach (as in the reset-based and suffix-history algorithms [James 

and Singh, 2004; Wolfe et al., 2005]) will automatically meet the above constraints. 

However, such approximations of the system dynamics m atrix will rarely have a low 

linear dimension, since finite sample sizes lead only to approximations of the true 

probabilities.

For any method that attem pts to extrapolate extra information from the ob­

served data  and fill in more of the matrix than exactly what is observed, these 

constraints provide a useful guideline for judging what constitutes a valid system 

dynamics matrix. We take advantage of these constraints in developing a constrained 

gradient discovery and learning algorithm in the following chapters.
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Chapter 4

Constrained Gradient Learning

In Chapter 2, the problems of discovering core tests and learning PSR parameters 

were both defined. In this chapter, we describe the constrained gradient algorithm 

[McCracken and Bowling, 2006], a new approach to learning the update parameters 

of a PSR. For now, the focus will be on learning the PSR parameters; the discovery 

portion of the algorithm will be explained in Chapter 5.

Our goal in creating a new algorithm for discovery and learning of PSRs is to 

address some of the problems inherent to existing methods. Primarily, the objective 

of this new algorithm is to create an online algorithm for both discovery and learning. 

An online algorithm is one that can process a stream of action-observation pairs, 

without making multiple passes over the stream, and at any point in the stream 

can provide a  best estimate of the current PSR state vector and parameters. Online 

algorithms are desirable because they do not require an explicit learning phase; the 

model of the system can be constantly updated throughout the algorithm’s entire 

experience with the system. Essentially, an online algorithm never stops learning. 

Of the current algorithms for learning PSRs, described in Section 2.4.1, only the 

myopic gradient descent algorithm maintains a current state vector. However, the 

myopic algorithm is not capable of discovery.

A second goal for our new algorithm is to avoid making assumptions about 

the properties of representable systems. In particular, the algorithm should not 

require the presence of a labelled reset action. Both the reset-based Monte Carlo 

algorithm [James and Singh, 2004] and the TPSR algorithm [Rosencrantz et al.,

2004] require reset actions in order to represent controlled systems. Currently, only 

the suffix-history algorithm [Wolfe et al., 2005] is capable of both discovery and 

learning without a reset action.
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Finally, the third goal of our new algorithm is to attem pt to leverage the structure 

inherent in a system dynamics m atrix to create a better representation of the system. 

Wolfe et al. [2005] state tha t current algorithms for discovery and learning of PSRs 

are in “an early stage of development” . They do not attem pt to extrapolate any 

information beyond what is present in the stream when learning the prediction 

probabilities. By using extra knowledge about the structure of a system dynamics 

matrix, we hope to be able to improve on the speed of learning, and the performance 

of the learned parameters.

At the moment, there are no algorithms for discovery and learning of PSRs that 

meet all three of these goals. In this chapter, we describe an algorithm tha t does. 

Section 4.1 describes the constrained gradient algorithm for learning a PSR, and 

Section 4.2 describes experiments on the algorithm and results.

4.1 The Constrained Gradient Algorithm

In this section, we describe the constrained gradient learning algorithm. Through­

out this section, we assume prior knowledge of Q, the set of core tests for the system. 

Section 4.1.1 explains the general approach taken by the algorithm, Section 4.1.2 ex­

plains which tests and histories are considered, and Sections 4.1.3 and 4.1.4 describe 

how the prediction probabilities and PSR parameters are actually computed. The 

entire algorithm is put together in Section 4.1.5, along with some implementation 

details.

4.1 .1  A pproach

The Monte Carlo algorithms [James and Singh, 2004; Wolfe et al., 2005] and the 

TPSR algorithm [Rosencrantz e t al., 2004] can all be summarized by the following 

description: choose a submatrix of the system dynamics m atrix by selecting a set 

of tests T  and a set of histories H,  estimate the prediction values in the matrix 

y(T\H),  and use linear regression to compute the parameters, rn\- , of the PSR. The 

constrained gradient algorithm also follows this generic formula, although it uses a 

very different method than the previously mentioned algorithms.

We will use y(T\H)  to refer to the estimate of the true submatrix, y(T\H).  One 

of the major hurdles in creating an estimate of the values in a system dynamics 

matrix is that, without a reset action, each history in the matrix is experienced 

at most once. Thus, each prediction has at most a single binary sample, and the
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majority of the test predictions in the matrix have no samples. To generate accurate 

estimates in y(T\H),  algorithms need to find some way to combine samples from 

different histories. The constrained gradient approach uses the properties of the 

system dynamics matrix to estimate the entire prediction row y(T\h l) at each time 

i, even though the number of da ta  samples at history hx is extremely limited. This is 

possible because most of the information needed to generate those values is contained 

in the information already seen.

Overall, the general approach taken by the constrained gradient algorithm is to 

compute an estimate y(T\hl) at each time i, using the known structure of the system 

dynamics matrix. Together, these row estimates form the subm atrix y(T\H)  tha t 

can be used to estimate the parameters, m x ,  of the PSR.

4 .1 .2  T ests and  H istories

In this section, we describe the subset of the system dynamics m atrix used by the 

constrained gradient algorithm. We explain the selection of tests, T, and histories, 

H,  considered by the algorithm.

Selecting Tests

The minimal set of tests required for T  is the union of the core tests and the 

extension tests, Q U X .  These are the tests necessary to compute the parameters 

m x  using linear regression. This minimal set of tests is used by the Monte Carlo 

algorithms [James and Singh, 2004; Wolfe et al., 2005]. The size of this set of tests 

is O (|Q||^4||C>|), since there is a  test for each combination of action, observation, 

and core test.

This minimal set of tests is not sufficient for the constrained gradient algorithm, 

however. The constrained gradient algorithm performs a normalization procedure on 

the prediction probabilities (explained in Section 4.1.3), which requires the following 

two properties on the set of tests, T :

1. t a o e T  = > t e T

We refer to t as the parent test of tao. We use the notation ir(tao) =  t. If a 

test is in T, its parent must also be in T.

2. taoi 6 T  =>■ taoj € T  Voj^i € O

We refer to tests which differ only in the final observation as sibling tests. If 

a test is in T, all of its siblings must also be in T.
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Properties of Domain Selection of T
Ml |0 | \Q\ d Minimal Norm Full Set

Float-Reset 2 2 5 5 23 61 1365
Tiger 3 2 2 2 13 19 43
Paint 4 2 2 2 17 25 73
Shuttle 3 5 7 2 106 241 241
4x3 Maze 4 6 10 3 241 457 14425
Cheese Maze 4 7 11 3 309 813 22765
Bridge Repair 12 5 5 2 301 961 3661
Network 4 2 7 3 57 105 585

Table 4.1: The sizes of various selections of test sets, T.  ‘Minimal’ is the set Q l ) X ,  
‘Norm’ is the normalizable set of tests, and ‘Full Set’ is the exhaustive set of all 
tests of size d or less. Some properties of each test domain are also shown.

The minimal set of tests is not guaranteed to possess either of these properties. 

The simplest way to ensure tha t the tests in T  have these properties is to include 

the exhaustive set of tests tha t have size less than or equal to the longest test in 

X .  However, even with a small number of actions and observations, this set can 

become very large if the tests in X  are of moderate length. The size of the set is 

O where d is the length of the longest test in X .

Instead of using the exhaustive set, we select T  to include the minimal set of 

tests necessary to still be able to perform the normalization step. T  is initialized to 

Q u X , and then iteratively augmented to satisfy the above properties by adding the 

parent and sibling tests for each test in T.  We refer to this set as the normalizable 

set of tests.

In general, the size of this normalizable set of tests is 0(d|<3||.4||C?|2), or no more 

than a factor of d\0\ larger than the minimal set. This is because adding all parents 

increases the size of T  by a factor no more than d, and adding all of the siblings 

increases the size by a factor no more than |0 |. In practice, the normalizable set is 

generally much lower than this bound. Table 4.1 shows a comparison of the sizes 

of T  using these three different types of sets, for the test domains used later in this 

chapter.

Selecting Histories

The set of histories, H,  required for the constrained gradient algorithm must meet 

two conditions:

1. At time i, H  must contain /i1-1.
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2. H  must contain ‘sufficient’ histories to represent the system.

A ‘sufficient’ set of histories is one that contains enough diverse rows that the full 

rank of the system dynamics matrix is represented. In general, since the complexity 

of the system is unknown, it is never possible to guarantee that the second condition 

is met. The best approximation would be for H  to include all histories experienced 

so far. However, this approach would become computationally infeasible after a 

large number of time steps. Currently, we select H  to be the previous n  histories 

encountered in the system, where n  is a parameter to the algorithm. In Section 4.2.2, 

we investigate the choice of n. This finite window method guarantees tha t the first 

condition is satisfied, as long as n  >  1. This method does not necessarily guarantee 

the second condition, but for larger values of n, the probability tha t H  is sufficient 

increases.

Using a  finite window of histories has several benefits. A main benefit of using 

the most recent histories in H  is that y(T\H)  always contains the most recent data. 

Because we expect that our row estimates become more accurate as more data is 

seen, y{T\H)  will therefore contain the most accurate rows. A second benefit of 

using a block of consecutive histories is that the states represented by histories in H  

occur proportional to the frequency that they are encountered by the system. Thus, 

in the regression step, more frequently encountered states will be proportionally 

represented and have a greater impact in computing the parameters than infrequent 

states. A third benefit of the finite window approach is tha t keeping H  a constant 

size keeps the per-time step computation constant.

The main drawback of using a finite window is tha t n  must be large enough 

such that, at all times, it contains enough histories to fully represent the system. 

The problem is essentially the same as that suffered by history-based models; it 

is possible tha t all the states of the system are not represented in the previous n  

time steps, and therefore the representation can lose track of some states of the 

system. This problem does not affect the constrained gradient algorithm as much 

as it affects history-based methods, though. The number of possible histories grows 

exponentially with the size of n, so when using history-based methods, choosing a 

large value for n is intractable. Using the constrained gradient algorithm, choosing 

a larger n  results only in a linear increase in the memory and computation require­

ments' of the algorithm. For example, it would be be infeasible to use n = 1,000 in 

a history-based method, because even in a system with two observations and no ac-
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tions, 21000 is too many histories to represent; however, in the constrained gradient 

algorithm, \H\ = 1,000 is a reasonable size.

One can imagine alternatives to a simple finite window approach. For instance, 

H  could contain the histories whose rows are the most orthogonal, and thus are most 

likely to contain information about different states. This approach is similar to the 

one used by the Monte Carlo algorithms, and has the benefit tha t H  can be very 

small and the algorithm does not suffer from the history-based method drawback. 

However, a small H  means that the linear regression is less-constrained and could 

overfit. Also, choosing linearly independent rows could suffer from preferring rows 

with higher error, since these rows may appear more orthogonal to other rows. A 

hybrid method could also be possible, which combines the advantages of storing a 

large number of recent histories with the advantages of keeping linearly independent 

rows.

4 .1 .3  C on stru ctin g  th e  P red iction  M atrix

In this section, we describe how each row y(T\hx) is estimated, after each new 

data point alox is observed. This estimation process uses the constraints listed in 

Section 3.3 to compute an estimate of each prediction probability, even though most 

of these probabilities are never sampled. Computing an estimate y(T\hx) involves 

three steps. In the first step, some of the predictions are computed directly from 

the previous row, y{T\hx~l ). In the second step, the remaining predictions are 

computed using linear regression. These first two steps are the constrained part of 

the constrained gradient algorithm. In the third step, the predictions are adjusted 

in the direction of the observed data; this is the gradient step of the algorithm.

When a new action-observation pair alox is observed, the tests in T  can be 

divided into two sets: T\ contains all the tests t G T  such tha t axoxt G T, and T2 

contains all of the remaining tests, i.e. T  — T\. Although exactly which tests are 

included in each set vary, it is always true tha t Q C Tj. This is true by definition, 

because A C T ,  and X  contains axoxq for all q € Q.

The first step in computing y(T\hx) is to compute y(T\ I/i1). All of the information 

required for this step is already contained in the previous row, y(T\hx~ l ). Using the 

conditional probability property of the matrix entries, we know that

Cj.i 1 i \  U i u i - I  i i s  vitfoHlh1- 1)y[t\h ) =  y(t\h a o ) =  ■ . .,' . ,,
1 '  v 1 '  y(axox\hx~l )
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Estimates of y(alot \ht~l ) are always available, ancl T\ was constructed such that 

estimates of y(alolt \kt~ l ) are also available for all t. G T\.  Thus, estimates of the 

values in y(Ti\h,1) can be easily computed from available data.

In the second step, estimates for y(T2 \hl) are computed. To do so, the algorithm 

uses the fact tha t y{Q\hl) was computed in the previous step. Each prediction y(£|/d) 

can be computed from y(Q\hl)mt,  for some weight vector m.t . The weight vector 

can be found by using linear regression to find the m t tha t minimizes \y(Q\H)mt —

v W ) \ 2.
Computing y(T2 \hl) using regression can create values tha t violate the range and 

internal consistency properties of the system dynamics matrix. The range constraint 

is enforced by setting any negative entries to a small positive value. The internal 

consistency constraint is enforced by a normalization step on the probability values. 

For each test taoj,

y(ta0j\hl) «- y{t \ hl) i\
y(tao\h%)

This has the effect of maintaining the ratios between siblings tests, while ensuring 

tha t they sum to the value of their parent. The normalization is performed first on 

length one tests, since in that case t =  e and y{e\hl) is always 1, then on length two 

tests, since t  is length one and thus y(t\hl) has already been normalized, etc., until 

all tests in T  have been normalized. If for any reason the value Eoec> y(tao\hl) is 

zero, then each test taoj is set to y(t\hl) / \0\ .  By construction, the set T  ensures 

tha t all tests required to perform this normalization step are present in T.

Note tha t it is this normalization step tha t ensures tha t each entry in the matrix 

approximates y{t\h), instead of Pr(ot]/i, at). The normalization update equation, 

above, is a simplified view of the actual normalization process. The samples from 

the da ta  stream  occur according to the probability Pr(ot|/i, at), which takes into 

account the policy generating the actions. Thus, before the values y(taoj\hl) are 

normalized, they contain values sampled from Pv(otOj\hl ,a ta). During normaliza­

tion, probabilities are divided by the sum of their siblings.

y{taoj\hl) Pr(otOj|/d, (qci)
E oeo  y{tao\h}) ~  £ oeo  Pr(oto|/i‘, ata)

_  Pr(ot\hl,ata)Pr(oj\hl ,ta)
Pr(o(|/i*, ata) £ oe0 Pr(o|/ii , ta)

_  Pr(oj|/P, ta)
EoeO Pr(o|/d, ta)

=  P r(oj|/iI, ta)
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Thus, the normalization procedure removes the effect of the policy on the sampled 

values. Using the above to derive the normalization step:

y( taoj \h )  <- y(t\h,)— J . , his
X/oeo y[tao\'1 )

*  ijfii/i*)— Pr(5—
EogO Fr(oto \h \ a ta)

=  y(t\hx)Pv(ojlhl ,ta)

=  y(taoj\hl)

Thus, entry in the m atrix is being changed to approximate y{t\h).

At this stage, an estimate for all of the predictions in y(T\hl) has been computed. 

The final step in computing y(T\h l ) is the gradient step; the observations tha t are 

actually encountered in the data  stream are used to adjust the estimated predic­

tions. The constrained gradient algorithm uses a Monte Carlo update for this step. 

For instance, the prediction y(al+1ol+1. . .  a1+ko1+k\hl) should have its probability 

increased, since the observation sequence ol+1. . .  oi+k is actually observed after tak­

ing the action sequence a l+1. . .  al+k. The predictions y(a1+1Oj . . .  a1+koi\h1), where 

Oj. . .ot  ^  oI+1. . .  ol+k, should have their probability decreased, since those tests 

were executed and their observations were not seen. The gradient step is as follows: 

for each test t =  a 1+1ot+1.. .a l+kol+k, we adjust the value of y(t\hl) towards the 

probability of its parent, using:

y(t|/il) *- (1 -  a)y{t\hl) +  ay{n{t)\hl)

The probability of the parent is used as the target because it is the maximum value 

of y(t\hx). The probabilities of the unobserved sibling tests of t are decreased, while 

maintaining the ratio of their probabilities. In practise, the adjustment of t and its 

siblings can be done by adding a  positive value to y(£|/d), and then re-running the 

normalization step on the row. The positive value, x, can be found by solving:

+  x  =  (1 “  +

This states tha t the ratio of the current prediction plus x  and the parent prediction 

plus x  must be equal to the desired value of y(t\hl). Solving for x  yields:

„  _  V{n{*) \h%) ~  a
1 - Q

The value of a  controls the learning rate; a high value moves the prediction very close 

to its maximum value, while a small value tweaks the prediction only slightly. The
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value of a  should be decayed during learning, so that the algorithm will eventually 

converge on a solution. Decay policies for a  are investigated in Section 4.2.2.

When learning online, the information to adjust the predictions in row ^/(Tj/i1) is 

not available at time i, since the action-observation data is available from a stream. 

In practise, the algorithm maintains a buffer of action-observation pairs of length d, 

the length of the longest test in T.  When a'o' is observed, the row y(Tj/iI_d) can be 

computed and the buffer of actions and observations al~(l+lo'~d+] . . .  a'o' is used to 

adjust the prediction values. This is the same approach tha t is used in the myopic 

gradient descent algorithm. This approach has the disadvantage that the algorithm 

does not explicitly have the estim ate of the current state vector y(Q |/i'), although 

it can be easily computed by successively generating rows for histories between hl~d 

and h1 using the buffered action-observation pairs.

4 .1 .4  E xtractin g  th e  P S R  Param eters

If the constrained gradient algorithm is being used online, extracting PSR parame­

ters is unnecessary, since the algorithm maintains up-to-date prediction probabilities 

for the core tests Q, as well as all other tests in T.  However, if a final PSR is nec­

essary, one can be easily generated from the data structure y(T\H)  used by the 

constrained gradient algorithm. The necessary parameters are a state vector and 

the weight vectors m x-

There are three options for computing the state vector of the PSR: the current 

state vector, the initial sta te  vector, and the stationary distribution state vector. 

The current state vector is y{Q\hl), for the most recent history hl. This state vector 

represents the state of the system as it was last experienced by the learning algo­

rithm. Extracting a current sta te  vector is possible because the constrained gradient 

algorithm is an online algorithm; with the exception of the myopic algorithm, previ­

ous PSR learning methods are unable to generate a current state vector. The initial 

state vector is y(Q\4>), the vector tha t represents the state in the initial distribution 

of the system. This state vector is used if the generated PSR is for a system that has 

been reset. However, only the reset-based Monte Carlo algorithm is capable of gen­

erating this state vector, because without a reset action, algorithms cannot create 

an accurate estimate of the initial distribution. Instead, the constrained gradient 

algorithm uses the stationary distribution of the system, if a stationary distribu­

tion exists. The state vector for the stationary distribution can be computed by
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}77y 10,he if y{Q\h)i where H  contains all available histories. This is also the approach 

used by the suffix-history Monte Carlo algorithm, and is the approach used by the 

constrained gradient algorithm to create a PSR that will be used offline. Of these 

three types of state vectors, the most important is the current state vector, since it 

would be used in more practical settings.

Regardless of the type of state vector used, the update parameters of the PSR 

do not change. The update parameters of the PSR, m x ,  are computed using linear 

regression on the columns of y{X\H) .  For each t E X ,  the weight vector mt  is 

computing by finding the vector that minimizes \y(Q\H)mt  — y(t\H)\2.

4.1 .5  T h e C om p lete  A lgorith m

In this section, we summarize the above description of the constrained gradient 

algorithm, and indicate any implementation details left out of the above discussion 

for simplicity. Algorithm 1 shows the constrained gradient algorithm.

The computational complexity of the constrained gradient algorithm is domi­

nated by the complexity of the regression step used to compute the parameters nit 

for each test t. In this step, mt  is computed by:

mt -  {m\H)Ty{Q\H))~l y{Q\H)Tm\H)

Note tha t the first part of this computation is not dependent 011 the test, t. Thus,

A + -  ( y{Q\ H)Ty { Q \ H ) ) ~ l y {Q\ H) T

can be computed once at each time step, and each mt  is then computed by

m t <- Ay(t\H)

Overall, computing A  has complexity 0 ( |Q |2|£f|-t-|Q |3) and computing each m t has 

complexity 0(\Q\\H\).  This gives a total per-time step complexity of 0(\Q\2\H\ +  

|<3|3 +  |T ||Q ||/I |) , or simply 0(\T\\Q\\H\)  since |T| >  \Q\ and generally \H\ »  |<2|. 

The relatively high computational complexity is one of the greatest disadvantages 

of the constrained gradient algorithm over existing algorithms, which use essentially 

constant computation per time step. One way to reduce the computation used by 

the constrained gradient algorithm could be to not re-compute mt  every time step, 

since it is not likely to change greatly between consecutive time steps. A linear 

speed-up of n times could be expected if the weights mt  are computed every n  time 

steps, but it could come at the expense of prediction quality.
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A lg o rith m  1 The constrained gradient learning algorithm. 
R eq u ire : A  I I  the se t of actions
R eq u ire : O I I  the se t of observations
R eq u ire : Q I I  the se t of core te s t s
R eq u ire : a  I I  the learning parameter
R eq u ire : n / /  the number of rows of h is to ry  kept
R eq u ire : a I I  the action stream
R eq u ire : o / /  the observation stream

1 
2
3
4
5
6
7
8 
9

10 

11 
12
13
14
15
16
17
18
19
20 
21 

22

23
24
25
26
27
28

yja'p'tlh' *) 
7/ ( a ’ o ' | / t * - 1 )

initialize T  to normalizable set of tests 
initialize y(T\h°)  to uniform probabilities 
i «- 0 
r e p e a t  

i  +— i + 1
T\  <— {t | aloH 6  T , t  € T }
T2 <- T  -  Ti
I I  compute y(T\\hl) 
fo r all t  €  T\ do  

y(t\hl) 
e n d  for 
/ /  compute y(T2 \h') 
fo r all t € T2 do  

m t <- argminm \y(Q\H)m -  y{t\H)\2 
y(t\h') <- y{Q\hl)m t 

e n d  for
run normalization step on y(T\h l)
I I  update observed en trie s  in  the row 
for all t  6 T  do 

k «— length of t
if  t — a I+1ot+1. . .  a1+kol+k th e n

y(t \h‘) -  y ( t W)  +
run normalization step on y(T\hz) 

e n d  if  
en d  for
discard the row y(T |/iI_n) from y(T\H)  
add the row y(T\h}) to y(T\H)  

u n til end of streams a, o
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Computing weight vectors m* requires a matrix inversion step in the linear re­

gression. If the core test matrix y(Q\H)  is not full rank, then this inversion cannot 

be performed. To avoid problems, we use a regularized linear regression by adding a 

small value A to the diagonal elements of the matrix that will be inverted. This en­

sures tha t the m atrix is invertible; it also has the side-effect of biasing the computed 

solution vectors m, by penalizing large weights. In this work, we used A =  10- '1.

Another problem with the algorithm can occur if the entry y(alol \hl~ l ) is ever 

zero; i.e., if the algorithm estimates zero probability for an event tha t actually 

occurs. This would result in division by zero when the entries for row ^(Tj/d) are 

computed. To avoid this, we place a lower bound of 10-5 on the probabilities in the 

matrix. The lower bound is enforced in the normalization step. The lower bound can 

affect the quality of learned PSRs, if the PSR actually does have zero probabilities, 

but with a small enough bound the effect on quality should be negligible. It may 

be desirable to remove or decrease the lower bound later in learning, when it can 

be reasonably certain that some events actually have zero probability; however, this 

was not done in our implementation or investigated in our tests.

W hen y(t\hl) is incremented in line 22 of Algorithm 1, the value 1 — a  is used 

in the denominator. Thus, we require a  < 1 to avoid division by zero errors.

In the above algorithm, the row y(T\h°)  is initialized to uniform probabilities. 

To clarify, this means tha t for each test t € T, y(t\h°) is set to \ / \ 0 \ lcn l̂\  Thus, 

the probabilities are uniform with respect to their depth. Since no information is 

known about the system at this point, a uniform distribution seems like a reasonable 

starting point for the algorithm. If additional information about the system is 

known, such as the initial distribution or the stationary distribution, the row y(T\h°)  

could be initialized appropriately.

One thing to note when adjusting the prediction values of tests to fit the data 

is to avoid adjusting a prediction value more than once for the same piece of data. 

For instance, if y(alola2o2\4>) is adjusted, then its modified value will propagate to 

subsequent rows using the conditional probability property. On the next time step, 

y{a2o2\alol ) should not be adjusted, because it would essentially be double-counting 

the a2o2 data point. Thus, we add the condition that each data point a V  can only 

be used to adjust a single prediction tha t ends in a V .
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4.2 Experim ents

In this section, we experimentally investigate the learning capabilities of the con­

strained gradient algorithm. The purpose of this section is to investigate how the 

constrained gradient algorithm performs in comparison to other PSR learning al­

gorithms. In Section 4.2.1, we describe the experimental setup and test domains 

used in these experiments. Section 4.2.2 investigates the effects of param eter selec­

tion on the algorithm. Section 4.2.3 presents offline experiments and results, and 

Section 4.2.4 presents online experiments and results.

4.2 .1  E xperim en ta l S etu p

The experiments in this section, and throughout the rest of this work, use a set 

of test domains from an online repository [Cassandra, 1999]. This set of domains 

has become an unofficial standard test set in the PSR literature, as it has been 

used in experiments in [Singh et al., 2003; James and Singh, 2004; Wolfe et al.,

2005]. The domains were all originally designed for experiments with POMDPs, 

and all are composed of a finite number of nominal states with dynamics that can 

be modelled by a POMDP. A more detailed explanation of each domain can be 

found in Appendix B. The number of actions, observations, and linear dimension 

of each domain is in Table 4.1.

In all of the experiments in this section, the constrained gradient algorithm is 

provided with a correct set of core tests for the system, because we wish to investigate 

only the learning capabilities of the constrained gradient algorithm. Each reported 

result is the mean of 10 trials. In each trial, the constrained gradient algorithm learns 

a  model of the system by processing a data stream of 1,000,000 action-observation 

pairs. The actions in these data streams were generated using a uniform policy over 

actions.

In order to determine the performance of the generated models, a PSR was 

extracted from the algorithm’s learned model at various points during learning. 

Its error was measured using the same method as described by Wolfe et al. [2005]. 

Prediction error is measured on a test stream of 10,000 action-observation pairs that 

have been annotated with the true probabilities y(alOj\hl~1) for each observation Oj 

a t each time step. At each time step, the difference between the PSR ’s prediction 

probabilities, y(alOj\ht~1), and the true probabilities, y(alOj\hl~l ), is recorded. The
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overall error is:

T
!C  {y(al°j \ki~l ) - y ( aioj\iii~1) ) 2

t=i I l Ojeo

where T  is 10,000, the length of the test stream. Note tha t this is an offline method 

of measuring error, meaning it does not make any predictions about the stream 

on which the PSR was learned. While updating the PSR to measure error, nor­

malization is performed after the state vector is updated, in order to prevent small 

errors from accumulating. The normalization involves restricting the state vector 

probabilities to the range (0,1]; a small lower bound on prediction error is enforced 

to prevent division-by-zero errors. Normalization is not performed when computing 

the observation probabilities y(alOj\ht~ i ) tha t are used to compute the error. Thus, 

recorded error can possibly be greater than 1.

4.2 .2  P aram eter  S e lectio n  E xperim en ts

The constrained gradient algorithm has several parameters tha t can be tuned, and 

in this section, we examine how the parameterization of the constrained gradient al­

gorithm affects its performance. The two parameters we appraise are n, the number 

of rows of history kept (i.e., the size of H ), and the decay of a , the learning rate that 

determines by how much the constrained gradient algorithm follows the gradient. 

We will use the results of these experiments to determine the parameterization of 

the algorithm used for the rest of the experiments.

Learning R ate Parameter

In the experiments to select a policy for decay of the learning parameter, a, we tested 

six different decay policies. In two of them, a  remained constant for the duration of 

learning. We used a  =  0.99999 «  1 as a  large constant value, which has the effect 

of setting all observed probabilities to almost 1 and not-observed probabilities to 

almost 0 (they are not exactly 0 and 1 because of the lower bound on probabilities). 

We used a  =  0.1 as a small constant learning rate. For the other policies, a  was 

initialized to 1 and decayed over time, using two types of decay. Using ‘sudden 

decay’, a  is halved every k  data points. Using ‘gradual decay’, a  is divided by \/2 

a t every time step. This has the effect of halving a  every k  data points, but does so 

gradually instead of making large changes. We tested k  =  100,000 and k  =  250,000 

for both styles of decay. The other parameter, \H\, was set to 1,000.
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Figure 4.1: The effect of changing the learning parameter, a.  The horizontal axis 
shows the number of data points used, and the vertical axis is the PSR error. Each 
line represents a different style of a  decay.
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Figure 4.1 shows the results of the cv-decay experiments. Overall, we see that 

the exact cv-decay policy can m atter a great deal when learning, and the best decay 

policy is dependent on the system. Some generalizations can be made, however. 

Using a  constant a  =  1.0 performs poorly across most domains, and tends to stop 

learning early, since the prediction adjustments are very coarse grained. Using a 

large learning rate also seems to create a more unstable representation; as can be 

seen by the “jaggedness” of the lines in the plots in Figure 4.1. This is a result of 

the values in y(T\H)  changing by a larger amount.

The algorithm performs better using a smaller constant value of a = 0.1. Like 

a  =  1.0, learning eventually stops, although generally at a more accurate model 

than with a higher learning rate. This can be best seen in the plots for the Tiger 

and Paint domains. In all cases, as expected, the early performance of a  =  0.1 is 

the worst of all cv-decay polices due to slower learning.

Of the decaying policies, the choice of k, the halving interval, matters more than 

whether gradual or sudden decay was used. For the simpler domains, Float-Reset, 

Tiger and Paint, using k = 100,000 worked best, since it allowed more fine-grained 

changes in the prediction probabilities. In the Network, 4x3 Maze, and Bridge 

domains the performance of k = 100,000 and k =  250,000 were roughly equivalent. 

Strangely, in the domains Shuttle and Cheese Maze, the models that used a smaller 

learning rate actually increased in error later in learning. This strange behaviour is 

investigated further in Section 6.2.2.

Overall, we can see tha t different domains have different requirements of the 

learning parameter. Unsurprisingly, simpler domains benefit from a learning rate 

that decays quickly to allow for more fine-grained learning. More complicated do­

mains require a larger learning rate for a longer period of time. For our remaining 

experiments with the constrained gradient algorithm, we will use the ‘sudden decay’ 

policy with k = 100,000, since this policy works fairly well in most domains and 

does not obscure the increase in errors in the Shuttle and Cheese Maze domains.

Size o f H istory Set

The number of rows of history kept in H  is an im portant parameter. Larger sizes of 

H  mean that the algorithm takes longer to run, since more samples are used in the 

regression steps, and also tha t old data is kept longer. Small sizes of H  mean there 

is a higher probability tha t H  may not contain sufficient rows to fully represent
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the system, and also that there are fewer data samples in the regression step which 

could lead to overfitting. The tested sizes of H  were 100, 500, 1,000, 5,000, and 

10,000 .

The plots in Figure 4.2 show the results of the experiments on the size of H.  

Once again, we see that the parameterization of the constrained gradient algorithm 

has a large effect on the performance of the algorithm. One generalization tha t can 

be formed from the data is tha t keeping more histories leads to slower learning. 

This is best evidenced in the Float-Reset, Tiger and Paint domains. The reason 

is that, with more histories, each observed data point has a smaller effect on the 

model as a whole. We also see th a t the models with 5,000 and 10,000 histories stop 

learning earlier. There is a relationship between a  and the number of histories kept; 

an a  of a given size will have less effect on a model that keeps more rows. Thus, 

in the models with many histories the size of a  becomes negligible faster than in 

models with fewer histories. A related point is tha t keeping more histories creates 

a  smoother error line, since the model changes less between data  points.

Across all domains, the models tha t used 100 histories performed poorly. It 

was also quite evident in the 4x3 Maze and Cheese domains that 100 histories was 

generally not sufficient to represent the entire state. This shows in the plots by the 

extreme jaggedness of the error lines. It makes sense that the insufficiency would 

be most apparent in these domains, since they have the highest linear dimension.

In Tiger, Paint and Shuttle, more evidence is given tha t error can increase with 

more data. Notably, this process happens more in models tha t maintain fewer 

histories. This indicates, perhaps, a relation between the sufficiency of the set H  

and the likelihood of falling into a local minima.

Overall, if data is unlimited and learning will continue for a very long time, using 

more histories and a higher a  is probably better, since it will lead to a more stable 

representation. However, in general we expect that data is limited, or expensive, and 

both learning and computation speed are important. Therefore, we must choose a 

trade-off between a sufficient number of histories and a feasible number of histories. 

For the rest of our experiments, we will use \H\ — 1,000, since it performs reasonably 

well across all domains.
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4.2 .3  Offline E xp erim en ts

In this section, we examine the performance of the constrained gradient algorithm 

using the offline measure of PSR error. Its performance is compared to the suffix- 

history algorithm, with the modification tha t the suffix-history algorithm is provided 

with a correct set of core tests. Performance is also compared to the myopic gradient 

descent algorithm. Figure 4.3 shows the results for these experiments.

For the myopic gradient algorithm, the learning rate a  is initialized to 0.5 and 

halves every 100,000 data points, as was suggested in [Singh et al., 2003]. This is why 

the performance of the myopic algorithm tends to have sharp transitions. Compared 

to the myopic gradient algorithm, the constrained gradient algorithm learns an 

initial model very quickly. This gives evidence for our claim tha t the constrained 

gradient algorithm is able to use the constraints on the system dynamics matrix 

to learn more effectively. However, in many of the domains, like Bridge Repair, 

Paint and Shuttle, the performance of the constrained gradient algorithm tends to 

plateau, while the myopic gradient algorithm continues to learn a better model.

One possible explanation is tha t the constrained gradient algorithm may be more 

susceptible to local minima than the myopic algorithm. If the algorithm reached a 

local minima, it would have the same behaviour as evidenced in some of the plots 

in Figure 4.3. The reason that the constrained gradient algorithm may be more 

susceptible to minima is tha t it contains a lot of self-propagating information. After 

each data  point, only a small number of the predictions in the large matrix y(T\H)  

are changed. Because the entire matrix is used in computing each new prediction, 

the small changes made from following the gradient on the data may not be enough. 

Chapter 6 further investigates these issues with the performance of the constrained 

gradient algorithm.

The results for the suffix-history domain are also shown in Figure 4.3. The 

algorithm was implemented from the published details [Wolfe et al., 2005]. The 

performance of the suffix-history algorithm varied greatly among the domains. In 

some domains, like Tiger, Paint and Cheese Maze, it creates a very good model of 

the system and performs better than both the myopic algorithm and the constrained 

gradient algorithm. In other domains its performance is approximately competitive 

with the myopic gradient algorithm. In the 4x3 Maze domain, the model created 

by suffix-history is too poor to show on the plot. These results conflict with the
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published results for the algorithm, which show good performance in all of these 

domains. Informal experiments show that the suffix-history algorithm can be quite 

sensitive to small inaccuracies in the matrix y(T\H).  It is also very sensitive to 

the choice of suffixes; care was taken to choose a good set for each domain, based 

on likelihood of occurring and linear relatedness. We believe tha t the discrepancies 

between our results for suffix-history and the published results are due to these 

sensitivities.

4 .2 .4  O nline E xp erim en ts

These experiments are intended to determine the performance of the constrained 

gradient algorithm when used for online predictions. This performance is compared 

to the performance of the myopic gradient descent algorithm, which is currently the 

only other PSR learning algorithm capable of making online predictions.

Unlike the previous experiments, the PSR errors shown in the results for these 

experiments do not use an independent test stream to measure error. Online error 

at each time step i is measured by py Z)oJeo(y(ftl+1° jl^ 1) — 2/(«I+1oy|/iz))2, which 

computes the squared prediction error for the next time step, averaged over all 

observations. Computing this requires tha t the original data  stream is annotated 

with the true prediction probabilities. In the results presented here, the online error 

is averaged over the previous 1,000 data points, in order to smooth the values.

Figure 4.4 shows the results for testing online performance. The most striking 

feature of the online performance is tha t it matches the offline performance extremely 

closely. This means tha t the average prediction error over 10,000 steps (the offline 

error) is essentially the same as the average error for predicting only a single step 

ahead (the online error). This indicates that PSRs are not very prone to drifting. 

Drifting is when small errors in the PSR state vector accumulate over time, and 

eventually create increasingly inaccurate predictions.

4.2 .5  Sum m ary o f Learning R esu lts

Overall, the learning results for the constrained gradient algorithm are encouraging. 

They show tha t the algorithm is capable of quickly building an initial model, faster 

than the myopic gradient algorithm in all domains except Cheese Maze, and faster 

than suffix-history in several cases, although the accuracy of the suffix-history results 

is in question. In the long run, though, the performance of the constrained gradient
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algorithm tends to plateau, indicating tha t it may be prone to local minima in 

search space.
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Chapter 5

Discovery of Core Tests

In the previous chapter, we described the learning portion of the constrained gradient 

algorithm, and assumed tha t the set of core tests Q was known. In general, though, 

Q is not known prior to learning. In this chapter, we describe how the constrained 

gradient algorithm selects core tests. In Section 5.1, we describe how core tests 

can be identified in the constrained gradient algorithm and we discuss some issues 

related to the discovery problem. In Section 5.2, we show experimental results for 

this discovery algorithm on our test domains.

5.1 Core Test Discovery

Our discussion of core test discovery is divided into two sections. In Section 5.1.1, 

we discuss in general how core tests can be selected from the m atrix y(T\H).  In 

Section 5.1.2, we explain in more detail how core test discovery is used in the con­

strained gradient algorithm.

5.1.1 S e lectin g  C ore T ests

In this section we explain how to choose a set of core tests from the set of tests T.  

Because this selected set is an approximate set of core tests, we use the notation 

Q instead of Q, which denotes a true set of core tests. The constrained gradient 

algorithm uses a simple parameterized threshold algorithm to find core tests. This 

approach is more rudimentary than other PSR discovery and learning algorithms, 

namely, the rank-estimation method used by the reset-based and suffix-history meth­

ods. However, as will be seen in Section 5.2, the constrained gradient algorithm’s 

discovery method is frequently capable of selecting a correct set of core tests with 

very little data.
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The data structure available to  the constrained gradient algorithm is y(T\H),  

the current approximated submatrix of the system dynamics matrix. To begin the 

discussion, let us make three major assumptions:

1. y(T\H)  =  y(T\H)\  the values in y(T\H)  are perfectly correct.

2. Q C T; T  contains a  complete set of core tests, but the identity of these core 

tests is unknown.

3. H  is sufficient to represent the linear independence of each test; if the columns 

y(t \ \H)  and y{t2 \H) are linearly dependent, no other set H  will show them to 

be linearly independent.

Under these ideal conditions, discovering core tests is simple. Exactly \Q\ columns 

of y(T\H)  are linearly independent, and selecting Q is a m atter of selecting linearly 

independent columns until all remaining columns are linearly dependent on the 

selected set. However, conditions are rarely this ideal. In the next three sections, 

we will discuss how each of the above conditions affects discovery when using an 

approximated y(T\H).

Estim ating Linear Relatedness

Since the values in y(T\H)  are estim ated from data, they are only approximations 

of their true values. If we say tha t each value y{t\h) =  y{t\h) +  n, with some noise 

n, then the matrix y(T\H) = y{T\H)  +  N,  with a noise matrix N.  Assuming the 

noise is relatively unstructured, all of the columns of N  will be linearly independent 

with very high likelihood, and therefore all of the columns of y(T\H)  will also be 

linearly independent.

The columns of y(T\H)  still exhibit different levels of linear relatedness, though, 

and this can be used as an indication of which tests are actually linearly independent, 

and therefore which tests should be chosen as core tests. Suppose we have a partial 

set of core tests in Q, and we have two potential new core tests, t\  and 2̂ - If test 

t\  appears more linearly unrelated to Q than £2 , and there is no reason to believe 

tha t y(t i \H)  has more noise than y fa lH ) ,  then it is more likely tha t t.\ is a core 

test than to. More formally, given an incomplete set of core tests Q, we expect that 

the test tha t is most likely to be another core test is the test tha t is least linearly 

related to y(Q\H):

argminteT y(Q\H)  © y(t\H)
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where © is some measure of the linear relatedness of a matrix and a column. We 

use the condition number of a matrix to indicate relatedness, as was done in other 

discovery algorithms [James and Singh, 2004; Wolfe et al., 2005]. Other measures 

are also possible, such as the angle between the vector and the subspace formed 

by the matrix. The condition number cond(M) of a matrix M  is the ratio of the 

largest singular value to the smallest singular value, where the singular values can 

be obtained using singular value decomposition [Khuri, 2003]. A matrix with a low 

condition number contains columns that are mostly linearly unrelated. If a matrix 

has a high condition number it has at least one column that is nearly linearly 

dependent on the rest of the matrix, and if the condition number is undefined 

(or infinite), the m atrix contains at least one column th a t is completely linearly 

dependent on the other columns in the matrix. Using the condition number as a 

measure of linear relatedness, the above selection procedure becomes:

argminie r  cond(y(Q U { t} |/f))

If Q is initialized to {e}, repeatedly applying the above procedure forms a greedy 

procedure for selecting tests tha t are likely to be core tests. This procedure is the 

basic mechanism for core test selection in all current discovery methods for PSRs. 

However, the procedure lacks a stopping condition, since the number of core tests 

is not known.

The stopping condition used by the constrained gradient algorithm is simple. A 

condition threshold, c, is supplied as a parameter to the algorithm. The discovery 

algorithm stops choosing core tests when it cannot add a core test to Q without 

raising the condition of y(Q\H)  above c. Larger or smaller choices of c yield larger 

or smaller sets of tests for Q.

A threshold is a very direct approach to choosing a stopping condition for the 

constrained gradient algorithm, and other methods of deciding the size of Q are 

possible. The reset-based and suffix-history algorithms use a more sophisticated 

approach to determine how many core tests to select. They use y(T\H)  to compute 

an approximation of the rank of y(T\H)  tha t takes into account the fact tha t the 

entries in the matrix are samples. They model the noise in each of the matrix 

probabilities, using the number of data samples that contributed to the probability. 

W ith a model of the noise in the matrix and a confidence parameter, they compute a 

singular value cutoff; the rank of the matrix is estimated to be the number of singular
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values larger than the cutoff. This approach is more mathematically rigorous than 

a simple parameterization; however, this approach cannot be used easily in the 

constrained gradient algorithm since the number of data points used to create the 

prediction probabilities is not known.

Sufficiency of T

The above discussion explained how core tests can be selected from y(T\H),  despite 

it being only an approximation of the true matrix y(T\H).  The other two properties 

required to select core tests concern the sufficiency of T  and H.  We will now discuss 

how T  can be constructed to contain a complete set of core tests. Littm an et al. 

[2002] showed that if the one-step extensions of a  proposed set of core tests Q are 

all linearly dependent on Q, then all tests are linearly dependent 011 Q. However, 

Littman et al.’s proof depends on the existence of a POM DP representation of the 

system. Since a PSR is more general than a POMDP, this proof does not apply to 

PSRs in general. Below, we give a novel proof tha t is similar to Littm an et al.’s 

proof, but does not require a  POMDP representation.

Theorem 1. I f  Q contains e, and all of the one-step extensions of Q are linearly 

dependent on Q, then all possible tests are linearly dependent on Q.

Proof. We use proof by induction. For the base case, e is trivially linearly dependent 

on Q, since e G Q. For the inductive step, we show tha t if t is linearly dependent 

on Q , then aot is also linearly dependent on Q, for any action-observation pair ao.

y(aot\H)  =  diag(y(ao\H))y(t\Hao)  (5.1)

=  dmg(y(ao\H))y(Q\Hao)mt (5.2)

=  diag(y(ao|i?)) diag(y(ao|H’))_1 y(aoQ\H)mt  (5.3)

=  diag(y(ao|H’)) d iag(y(ao |i/))-1 y(Q\H)Maomt  (5.4)

=  y(Q\H )Maom t (5.5)

=  y{Q\H)maol, where m aot =  M aom t (5.G)

In the above, diag(x) is the diagonal matrix tha t has vector x  on the diagonal, 

Hao = {hao | V/i G H,ao  G A x O ) ,  and aoQ =  {aoq \ 'iao 6  A x O , q  € Q}. Steps 5.1 

and 5.3 use the conditional probability rule. Steps 5.2 and 5.4, respectively, use the 

fact tha t t  and aoQ are linearly dependent on Q. The remaining steps are algebraic 

reductions. The above proof assumes that y(ao\h.) > 0, for all h G H,  because
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otherwise dmg(y(ao\H)) is not invertible. However, in cases where y{ao\h) ~  0, and 

therefore y{aot\h) =  0, the derived linear dependence still holds.

y{aot\h) =  y(Q\h)maol (5.7)

=  y{Q\h)Maomt  (5.8)

=  °(lx |Q |)mt ^
=  0 (5.10)

where 0^1x|^q is the zero vector of size \Q\. Step 5.9 uses the fact tha t the probabil­

ities in y(aoQ|/i) must all be zero when y(ao\h) is zero, and tha t the weight m atrix 

M ao must linearly produce those zeros.

Thus, we see tha t if t is linearly dependent on Q, all one-step extensions of t are 

also dependent on Q, and by induction all tests are dependent on Q. □

Note tha t m t =  m ai0l...an_l0n_lQn0ll =  Ma,0l • • • Man_l0ri_1m an0,l is the same 

result tha t was found by Littm an et al. [2002] using POMDPs as the basis of the 

calculation.

This above theorem is useful, because it shows that it is sufficient to search for 

additional core tests among the one-step extensions of Q. If all one-step extensions 

of Q are linearly dependent on Q, then a complete set of core tests has been found. 

Otherwise, one of the extensions must be linearly independent, and therefore another 

core test has been found. This addresses the above requirement that Q C T; in 

practise, as long as T  contains the one-step extensions of Q, T  is sufficient to  find 

a t least one more core test.

Sufficiency o f  H

The remaining requirement for finding core tests is tha t H  is sufficient. This means 

that H  contains enough histories to reveal the linear independence between any 

two tests which might be linearly independent. This assumption is more difficult to 

address than the previous two assumptions. The issues related to H  and discovery 

are the same as the issues related to H  and learning, which were addressed in 

Section 4.1.2. In general, if H  is not sufficient, then some tests will be considered 

linearly dependent on Q, even if they are actually linearly independent. Because 

there are often multiple possible choices for core tests, mislabelling some tests as 

linearly dependent is not a problem. However, if H  is insufficient enough such tha t
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all potential core tests are mislabelled as linearly dependent, then a complete set of 

core tests cannot be discovered.

5.1.2 D iscovery  in th e  C on stra in ed  G radient A lgorithm

In the previous section, we described how core tests can be identified in the set T.  

In this section, we describe more specifically the procedure used by the constrained 

gradient algorithm to discover core tests. Algorithm 2 shows this procedure. The 

algorithm shows two variations on the discovery procedure: a cumulative version 

that adds new tests to the existing set Q, and a non-cumulative version that builds 

Q from scratch each time. The former is called the cumulative version because 

changes made to the set Q are cumulative; once a test is added to Q, it is never 

removed. The non-cumulative version differs in line 2, in which Q is reset to {e} 

before any core tests are found.

In line 5, the set of potential core tests S  is initialized to all of the one-step 

extensions of Q tha t are also present in T.  Because T  is updated after all of the 

core tests have been selected, initializing S  in this way prevents any tests from being 

chosen as core tests tha t have not been present in T  since at least the previous run 

of the core test selection procedure. More simply, if t g  T  at the beginning of 

the selection procedure, then t cannot be selected as a core test. These tests are 

excluded because y{t\H) is not available for these tests.

A lgorithm  2 The discovery procedure in the constrained gradient algorithm. 
Require: y(T\H)
Require: c / /  The condition threshold.

1 if  not using cumulative discovery then
2 Q *- {e}
3 end if
4 loop
5 S  <— {aoq\a € A , o  € 0 , q  €  Q} ( I T
6 t <— argmini6iS cond(y(Q U {£}|U))
7 if  cond(y(Q U {f} |/f))  <  c then
8 Q *- Q U {£}
9 else

10 break from loop
11 end if
12 end loop
13 T'  «— normalizable set containing Q
14 T  <r-T' — T  •Lncw ' -1 1
15 initialize y{Tnew\H)
16 T  <— T'
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The most computationally expensive part of Algorithm 2 is finding the test 

that is least linearly related to the current set of core tests. For each potential 

test, finding the condition number of y(Q  U {t} \H ) requires computing the singular 

value decomposition of the matrix, which takes 0( \Q^\H\)  time. Since there are 

about |.4||C>||Q| potential tests, overall the time complexity of running the core 

test discovery procedure is about 0(|.4||C>||Q |3|-/7|), or about 0(|<2|3|/ / |) ,  if the 

number of actions and observations is relatively small. While this is expensive, we 

generally assume that |Q| is small. Also, the core test selection procedure is not 

run a t every time step, and thus the cost can be amortized over the number of time 

steps between successive runs of the procedure. A clever implementation of singular 

value decomposition could also reduce the time required to run the procedure. Note 

that each m atrix for which the SVD is computed varies by only a  single column. 

If an incremental SVD algorithm is used, the time complexity to  compute each 

decomposition would be 0{\Q\^ + \Q\\H\) [Brand, 2003]. Since we expect \H\ »  |Q|, 

this optimization would speed the algorithm by a factor of |Q|.

As previously mentioned, the discovery procedure is not run at every time step. 

In batch learning methods, the natural break point to run a core test detection 

procedure is after each complete pass over the data. This is what is done in the 

reset-based and suffix-history algorithms. However, in online learning methods there 

is no such natural break point, since only one pass over the data is made. We have 

chosen to simply run the core test detection algorithm after every n data points, 

where n  can be configured. A reasonable choice for n  is \H\, because this allows H  

to be completely refreshed and a whole new matrix y(T\H)  to be generated between 

each time the core test discovery algorithm is run.

After the new set of core tests is selected, a set of new tests is added to T.  This 

set includes all of the one-step extensions of the new core tests, as well as any parent 

and sibling tests tha t must be in T  to perform the normalization step. When these 

new tests are added, their columns in the matrix y(T\H)  are initialized, as in line 

15. It is possible to compute reasonable estimates of y(Tnew\H), because many of 

those tests will be of the form aot, where columns for ao and t are already in the 

matrix. Thus a prediction of y(aot\h) can be computed from y{t\hao)y(ao\h) in 

cases where the h is followed by ao. This gets complicated, however, and in practise 

simply initializing the columns to zeros tends to work well.
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5.2 Experim ental R esults

In this section, we show empirical results from running the constrained gradient 

algorithm’s core test selection procedure. We investigate the choice of the condition 

threshold, and the differences between cumulative and non-cumulative discovery.

In the experiments shown in this section, a history window of size 1,000 was 

used for H.  The learning rate, a,  was initialized to 1.0 and halved every 100,000 

data points. All values reported are the mean of 10 trials, using the same data sets 

of length 1,000,000 tha t were used in the previous chapter. Core test detection was 

performed every 1,000 data points.

When reporting on the results of discovery experiments, two values are relevant. 

The first value is |Q |, the size of the set of core tests tha t was selected by the 

algorithm. The second value is \Qtrue\, which we define to be the number of tests in 

Q tha t are linearly independent in the true system. In all cases, 1 < \QtrUc\ < |Q|> 

because {e} C Qlrue C Q and e is a core test in all systems. The size of Qtrue is 

calculated by computing the number of linearly independent vectors in y(Q\H*), 

where H* is approximated by a very large set of histories.

5.2 .1  C on d ition  T h resh old  T ests

The first experiments we describe were designed to investigate how changing the 

condition threshold parameter affects the discovery performance of the constrained 

gradient algorithm. In these trials, the condition threshold was set to values between 

1 and 20. Cumulative discovery was used. The sizes of Q and Qtrue were recorded 

after 10,000 data points, which in all cases was sufficient for discovery to choose a 

set Q. The results are shown in Figure 5.1.

The results from the condition threshold tests are not surprising. As the condi­

tion threshold is increased, the size of Q increases. The size of Qtrue also increases, 

until it reaches the true number of core tests for the system, as indicated by the 

horizontal lines in the plots. In five of the domains (Tiger, Paint, Shuttle, Network 

and Bridge Repair) the discovery algorithm successfully chooses a complete set of 

core tests for the system, and in the remaining domains the discovery algorithm 

very nearly chooses a complete set. In all domains, these set of core tests are chosen 

after very little data is observed.

In the Float-Reset domain, a seemingly anomalous result occurred. The number
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Figure 5.1: The number of core tests selected by the discovery algorithm, for different 
values of the condition threshold, c.
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Domain Constrained Gradient Suffix-History
Name \Q\ \Q\ I Qtrue | #  D ata IQI ~ \Qt.ruc\ #  D ata

Float-Reset 5 6.1 4.5 4000 - -

Tiger 2 4.0 2.0 1000 2 4000
Paint 2 2.6 2.0 4000 2 4000
Shuttle 7 8.7 7.0 2000 7 1024000
Network 7 4.7 4.5 2000 3 2048000
4x3 Maze 10 10.4 8.6 2000 9 1024000
Cheese Maze 11 12.1 9.6 1000 9 32000
Bridge Repair 5 8.8 5.0 2000 5 1024000

Table 5.1: The average number of core tests found by the constrained gradient 
algorithm, when the condition threshold was 10. The data for the suffix-history 
algorithm is shown here for comparison.

of correct core tests chosen by the algorithm actually decreases slightly with higher 

condition thresholds. This can occur mainly in domains tha t have core tests of 

length two or more; in these domains, multiple iterations of the discovery procedure 

are required to select all of the core tests. W ith a large condition threshold, earlier 

iterations of the discovery procedure can select incorrect core tests that raise the 

condition number of y(Q\H).  This essentially blocks tests from being selecting in 

subsequent iterations of the discovery procedure.

Overall, the discovery procedure used by the constrained gradient algorithm is 

quite successful at choosing core tests with very little data. However, there is no one 

condition threshold tha t works best across all domains. For domains with a small 

number of core tests, a smaller condition threshold works well; larger thresholds are 

needed for domains with many core tests. For the domains shown, a threshold of 10 

works reasonably well across all domains; this is the threshold used in the remaining 

experiments with discovery.

Table 5.1 shows the effectiveness of the constrained gradient discovery algorithm 

with a condition threshold of 10, as compared to the discovery results for the suffix- 

history algorithm reported in the literature [Wolfe et al., 2005]. The suffix-history 

algorithm is currently the only other algorithm capable of discovering core tests in 

systems without a reset action. For the constrained gradient algorithm, the number 

of data points listed is the maximum number of data points after which no further 

changes to Q occurred. For the suffix-history algorithm, the number of data points 

shown is the minimum number of data points required to find tha t number of core 

tests. Also, the suffix-history algorithm was able to make multiple passes over its
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data, while the constrained gradient algorithm uses a single pass. Overall, Table 5.1 

shows that, in general, the constrained gradient algorithm is able to find as many 

core tests as the suffix-history algorithm, but with much less data.

Comparing the discovery results for the constrained gradient algorithm and the 

suffix-history algorithm is somewhat unfair, because the two algorithms take differ­

ent approaches to the discovery problem. The suffix-history algorithm uses a very 

conservative approach to discovery; it does not add a test to Q until it is quite 

certain that the test is really linearly independent to the current set Q. For this rea­

son, when using the suffix-history algorithm Q =  Qtrue for all of the above domains, 

although this is not necessarily true in general. I t also means that the suffix-history 

algorithm requires a lot of data before it adds a core test to Q , which explains why 

the numbers of data  points for the suffix-history algorithm are so high. The con­

strained gradient algorithm, on the other hand, takes a  more liberal approach. It 

adds tests tha t look likely to be core tests, but with much less data. As a result, Q 

usually contains tests tha t are not truly linearly independent.

In theory, including extra tests in Q is not particularly harmful. As long as Q 

contains a full set of core tests, it has sufficient data to represent the system, and 

extra tests are simply redundant data. However, including extra tests can have three 

negative side effects. The first is tha t they require extra storage and computation, 

since parts of the learning algorithm are linear, quadratic and even cubic in |Q|. 

The second negative effect is tha t it could allow overfitting in the regression step 

by having too many inputs. Even though the extra inputs should theoretically be 

linearly dependent on the true core tests, small errors in the inputs can be used 

to compute weights tha t overfit the data. Finally, including extra tests can block 

true core tests from being chosen in the discovery step. We have already seen this 

happen in the Float-Reset results, above. This is potentially the most disastrous 

effect of extra core tests, since if the algorithm cannot find a complete set of core 

tests, it will never be able to fully represent the system. In general, it is desirable 

to avoid selecting incorrect core tests.

5.2.2 N on -C u m u lative  S election  o f C ore T ests

The previous section showed results for cumulative selection of core tests. It also 

gave evidence of a dilemma that cumulative discovery causes: a condition threshold 

must be high enough to allow selection of all of the true core tests, but not so high
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that incorrect core tests are chosen early and block true core tests from being chosen. 

This difficulty is mainly caused by the cumulative nature of the discovery; once a 

test has been chosen as a core test by the algorithm, there is no way to remove 

it. Furthermore, discovery happens very early; most of Q is chosen during the first 

iteration of the selection procedure, which means tha t discovery does not benefit 

from any of the data  points tha t occur after the first 1,000 data points.

In this section, we propose a solution to this discovery dilemma. Instead of 

adding tests to Q each time the discovery procedure is invoked, the algorithm re­

selects Q from scratch. This allows incorrectly selected tests to be discarded, even 

if they appeared linearly independent early during learning.

Figure 5.2 shows the discovery results when a condition threshold of 10 is used, 

and core tests are selected from scratch every 1,000 data points. The plots show 

the sizes of Q and Qtrue as the number of data points increases. Several facts are 

apparent from viewing these results. One is that, after sufficient data is seen, in all 

cases the discovery algorithm stops selecting incorrect core tests, and Q =  Qtrue- 

This is an expected result, because after more data is seen by the algorithm, its 

estimates of the prediction probabilities become more accurate, and the discovery 

procedure is better able to estimate if two tests are linearly independent.

The other clear result is tha t the size of Q decreases as more data is seen, 

even after the algorithm stops selecting incorrect core tests. Eventually, the size 

of Q settles on a value and remains relatively constant. This is because a constant 

condition threshold was used, and except for the most simple domains, this threshold 

simply was not large enough to allow all of the tests in Q to be chosen. Furthermore, 

the largest jum ps in the size of Q correspond to the time steps when the learning rate, 

a , is reduced. The explanation for this is that, as the estimates in y{Q\H) become 

more accurate, the condition number of y(Q\H)  increases. When the condition 

number becomes higher than the condition threshold, the algorithm is no longer 

able to select all of the tests in Q, and the size of Q is reduced in subsequent runs 

of the discovery procedure.

To further investigate this phenomenon, we recorded the condition number of 

y(Q\H)  during learning. We also computed the minimum condition of y (Q u{t} |F /’) 

out of all tests t 6 T. The purpose of this was to give an indication of how large 

the condition threshold would have to be to select all of the true core tests, without 

selecting any incorrect core tests. Figure 5.3 shows the results from these experi-
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ments. These results confirm the behaviour experienced in the discovery results; the 

condition number of y(Q\H)  does increase as more data is seen and the prediction 

probabilities become more accurate. The condition numbers tend to jump at tran­

sition points in a,  which correspond to the decreases in core tests selected as seen 

in Figure 5.2.

The gap between the condition of y(Q\H)  and the condition of y(Q U {t}\H)  

increases as the columns become more accurate, although the difference is more 

pronounced in some cases than in others. This is expected; theoretically, the condi­

tion of y(Q U (<}|^ ) is infinite, because t should be linearly dependent on Q. So we 

expect that as y(T\H)  becomes more accurate overall, the condition of y(QU{t} \H)  

should increase quite quickly. This ‘widening of the gap’ would be a good thing to 

take advantage of in future refinements to the constrained gradient discovery algo­

rithm. It indicates that a condition threshold can be chosen that falls in between 

these two crucial condition numbers, and that choosing such a threshold becomes 

easier as learning continues.

5.2 .3  Sum m ary o f  D iscovery  R esu lts

Overall, the discovery results for the constrained gradient algorithm show a definite 

ability to quickly select sets of tests that contain complete sets of core tests. Its 

ability to do this is heavily dependent on the choice of the condition threshold 

parameter; if the parameter is too large, too many non-core tests will be selected, 

but if the parameter is too small, insufficient true core tests will be selected. Also, the 

non-cumulative method of discovery appears to be better at selecting true core tests 

without selecting additional tests. However, the non-cumulative method requires 

an increasing threshold, to account for the increase in the condition of y(Q\H)  over 

time.
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Chapter 6

A dditional Investigation

This chapter contains additional experiments tha t further explore the constrained 

gradient algorithm. In Section 6.1, we see how the constrained gradient algorithm 

might be expected to perform in practical settings. In Section 6.2, we perform 

experiments inspired by some of the interesting results from previous sections.

6.1 Discovery and Learning

Chapter 4 presented learning results for the constrained gradient algorithm when it 

was supplied with a correct set of core tests. In this section, we show the performance 

results for the constrained gradient algorithm using discovered sets of core tests. 

These experiments are representative of how the constrained gradient algorithm 

would perform in a practical setting, when a true set of core tests is unknown.

The sets Q discovered in these experiments are sometimes incomplete, and often 

contain extra tests. A condition threshold of 10 was used for the discovery procedure, 

and both cumulative and non-cumulative discovery were tested. See the results from 

Section 5.2.1 and Section 5.2.2 for more information on the sets of tests discovered.

The results for the constrained gradient algorithm using discovery and learning 

are in Figure 6.1. The plots show average offline prediction error for cumulative 

discovery, non-cumulative discovery, and suffix-history using discovery. For compar­

ison, the constrained gradient results when provided with Q are also given (repeated 

from Figure 4.3). Overall, the results in Figure 6.1 are mixed, but are generally ex­

plainable when considering the underlying sets of core tests that were found by the 

algorithm.

As expected, the constrained gradient algorithm did not perform as well when 

using a discovered Q as when it is provided witli Q. Three exceptions are the simpler
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domains Tiger, Paint and Float-Reset, in which a discovered set performed as well 

as, but not better than, the given set. The major exception is the Shuttle domain, 

in which the performance was much better using Q found with cumulative discovery 

than when given Q. In all cases, Q contains a complete set of core tests in all trials. 

This performance difference indicates tha t some sets of core tests can be better than 

others; further experiments with different sets of core tests are done in Section 6.2.3.

In most cases, constrained gradient performed better using cumulative discovery 

than when using non-cumulative discovery. This is because non-cumulative discov­

ery, with a threshold of 10, tends to settle on sets Q tha t are much smaller than 

the true set Q, and therefore unable to create a good representation of the system. 

The exceptions to this, as seen in Figure 6.1, are the Tiger, 4x3 Maze, and Bridge 

Repair domains. In Tiger this is because non-cumulative discovery settled on an 

exactly correct set of core tests, while cumulative discovery used extra tests tha t 

interfered with learning. In 4x3 Maze and Bridge Repair, we can surmise only that 

the smaller set of core tests discovered using non-cumulative discovery provided a 

more stable set with which to create an approximate model than the large set found 

by cumulative discovery. This result is especially interesting in the Bridge Repair 

domain, because non-cumulative discovery finds about two core tests on average, 

while cumulative discovery finds a complete set of core tests, but also includes some 

extra tests. This indicates tha t finding extra core tests can actually have a large 

negative effect on performance with the constrained gradient algorithm; although 

extra core tests were generally not found to be a problem for the myopic gradient 

algorithm [Singh et ah, 2003].

The results for suffix-history shown in Figure 6.1 are obtained directly from the 

published results for the algorithm [Wolfe et ah, 2005]. Because of this, the suffix- 

history results were not trained or tested on any of the same data sets, and direct 

comparisons are therefore somewhat inappropriate. Also, because the suffix-history 

algorithm was tested as a batch algorithm, it made multiple passes over the data to 

build its model. Thus, the suffix-history algorithm was able to perform its discovery 

procedure after seeing all of the data, and then make another pass over the data to 

learn a model. However, because suffix-history is the only other algorithm capable of 

both discovery and learning of PSRs without a reset, we show the results for compar­

ison. In Figure 6.1 we see that suffix-history outperforms the constrained gradient 

algorithm in the easier domains, Tiger and Paint, and also in the 4x3 Maze domain
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because both models discovered with the constrained gradient algorithm performed 

poorly. In the Network domain, both constrained gradient models outperformed 

suffix-history, even though the non-cumulative discovery model used only two core 

tests. In the Shuttle, Cheese and Bridge Repair domains, at least one of the models 

discovered using the constrained gradient algorithm outperforms suffix-history.

Overall, the constrained gradient algorithm manages competitive performance 

in most of the domains. W ith improvements to the condition threshold used by 

the non-cumulative discovery method, we expect tha t the constrained gradient al­

gorithm’s performance will approach its performance when Q is given.

6.2 Investigative Experim ents

The results presented in previous chapters focused on the performance of the con­

strained gradient algorithm, in both discovery and learning. In this section, we 

describe the results of experiments designed investigate the inner workings of the 

constrained gradient algorithm.

6.2.1 E xam in ing  Sources o f  Error

For any gradient descent algorithm, there are at least two sources of error when 

trying to find the global minimum. One source is approximations made in computing 

the gradient, and another is the initialization of the parameters of the algorithm. 

The constrained gradient algorithm experiences error from both of these sources. At 

each data point, the unknown true gradient is replaced by the myopic gradient of that 

data point, with the assumption tha t over many data points, this will approximate 

the true gradient. Also, the initial parameterization of the algorithm uses uniform 

probabilities, which may not necessarily be a good place in the search space to 

start. In this section, we will investigate both of these sources of error for the 

constrained gradient algorithm, by performing experiments tha t eliminate these 

errors. These experiments were inspired by similar experiments performed with 

the myopic gradient algorithm [Singh et al., 2003].

y(t\h) *- (1 -  a)y(t\h) + ay(ir(t)\h)

y(t\h) <- (1 -  a)y(t\h)  +  ay(t\h)

y(t\h) <- (1 -  a)y(t\h)  +  ay{n(t)\h)y(t\h,  7r(i))

(6 .1)

(6 .2)

(6.3)
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Rules 6.1, 6.2 and 6.3 are three different learning rules for the constrained gra­

dient algorithm. Rule 6.1 shows the learning rule of the constrained gradient al­

gorithm; it is the same as learning rule 6.3, with the implicit assumption tha t 

y(t\h, ir(t)) — 1 (i.e., the myopic gradient). The theoretically correct learning rule 

is given in rule 6.2; it is the same as rule 6.3 if y(Tr(t)\h) =  y(Tx(t)\h). If this equality 

is not true, however, the theoretically correct rule cannot be used, since the nor­

malization procedure would modify the value of y(t\h). In this section, we perform 

experiments using learning rule 6.3; we provide the probability y(t\h,n(t))  to the 

algorithm each time it uses the learning rule to modify test t. For these experiments, 

we used a  «  1, since the true gradient should be followed as much as possible.

Experiments were also performed to see how stable the correct solution is for each 

domain. To do this, the set H  was initialized to 1000 reachable histories, which were 

sufficient to represent the dynamics of each system. The entries in matrix y(T\H)  

were initialized to their true probabilities. For learning in this system, a  =  0.001 was 

used as a small learning rate, and learning proceeded as normal, using the myopic 

gradient. The purpose of this experiment is to see how far the learned model drifts 

from the correct initial model. We expect some drift, because learning with the 

myopic gradient and a  > 0 introduces some error into the system.

If both of the above modifications are made to the constrained gradient algo­

rithm, then in all cases the algorithm begins with a perfect model and stays a t a 

perfect model, excepting small errors caused by regularized regression and bounded 

probabilities. When used individually, the results are more interesting.

Figure 6.2 shows the results of the experiments described above, as well as the 

performance of regular learned models for comparison (results repeated from Fig­

ure 4.3). In the Float-Reset, Tiger and Paint domains, the results were exactly 

as expected. The models tha t were initialized to correct values slowly drifted to 

higher, but still very small, levels of error. The models tha t were given the true gra­

dient decreased in error very quickly, and eventually plateaued at negligible error 

levels. Although the models learned using the unaugmented constrained gradient 

algorithm do not reach the same performance as the augmented models with the 

data  given, we expect that with sufficient data and an appropriately decaying a, 

they will eventually converge to the same values.

O ther domains had more surprising results. The Shuttle domain is an appro­

priate example. All three experiments converged to models with very similar, and
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Figure 6.2: Performance of the constrained gradient algorithm when initialized when 
initialized with true probabilities and when using the true gradient.
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relatively high, levels of error. Using the true gradient does not decrease the error of 

the learned model much below that achieved when using the myopic gradient, and 

the properly initialized model drifted in error until it had the same performance 

as the other models. One possible explanation of this behaviour is that the global 

minimum might be very shallow, but there exists a hard-to-escape local minimum 

that traps the developing model.

Another surprising result is that, in the 4x3 Maze, the model using the true 

gradient learns a worse model than that using the myopic gradient. We do not have 

an explanation at this time why this would occur.

6 .2 .2  M om en tu m  in  Learning

When the learning results for the constrained gradient algorithm were first pre­

sented, in Figure 4.1, it was noted tha t in some of the domains performance degraded 

over time, despite continuing learning. This was most apparent in the Shuttle and 

Cheese Maze domains. In this section, we explore this result.

One fact tha t is apparent in Figure 4.1 is that this degrade in performance is 

delayed when a  is decayed at a slower rate. This suggests that it is not the process 

of following the gradient th a t causes the increase in error. Recall that generating a 

new row involves several steps. A t first, the row is estimated based on the existing 

matrix y(T \H ), and then it is adjusted based on the myopic gradient of the data. 

As a  decreases, the effect of the second phase becomes minimal.

Our hypothesis is tha t the m atrix y(T \H ) has a momentum  towards stable points 

in learning space, in which the matrix satisfies the properties of a system dynam­

ics matrix. This momentum is caused by enforcing the constraints on the system 

dynamics matrix, using regression and normalization. If the direction of the mo­

mentum of the m atrix is not the same as the gradient of the data, then once the 

learning rate a  becomes small enough, the momentum of the matrix becomes the 

primary force of change in the algorithm.

To explore our hypothesis, we designed experiments to see how the performance 

of the matrix changes when the learning rate is set to zero. Two experiments were 

run; in one, a  was set to zero after 250,000 data points, and in the other, a  was set 

to zero after 500,000 da ta  points.

Figure 6.3 shows the results of the experiments into matrix momentum. Once 

again, Float-Reset, Tiger and Paint are excellent examples of desired results. In
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y(T\H ) matrix.
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Figure 6.4: Performance results in the Shuttle domain using two different complete 
sets of core tests. The sets of core tests Q\ and Q 2 are shown; see Appendix B for 
more information about the Shuttle domain.

these domains, once a  is set to zero, learning stops and the generated model remains 

stable; essentially, the matrix y(T \H )  has no momentum. In fact, in the Paint 

domain, there is even a small decrease in error immediately after learning stopped; 

the m atrix must have had momentum in the direction of the gradient. In the 

other domains, however, once a  =  0, the model has a tendency to drift and produce 

higher errors. This is especially noticeable in the Shuttle and Cheese Maze domains, 

which were also the most noticeable cases of error increasing in Figure 4.1. These 

results tend to support our hypothesis tha t the momentum of the matrix y(T \H )  

can counteract the learning process of the constrained gradient algorithm.

6 .2 .3  S ets  o f  Core T ests

It is known tha t the set of true core tests Q is not unique; any set of \Q\ linearly 

independent tests are capable of representing a dynamical system. However, this 

does not mean in practise that all sets Q are equivalent. In this section, we give 

an example of how different sets Q can alter the performance of the constrained 

gradient algorithm.

Figure 6.4 shows two average performance lines for the Shuttle domain. The
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model tha t produced each line used a different, but sufficient, set of core tests. The 

set of core tests Q\ produced better results than the set Q2, despite the fact that 

they are theoretically equivalent. The set Q2 appears to have better performance 

at first, but is then more susceptible to momentum of the prediction matrix. The 

constrained gradient algorithm is sensitive to the choice of Q, because this set is 

directly used to compute many of the predictions in each new row. Thus, different 

Q create different directions of momentum for the matrix y(T \H ).

The core test selection used by the constrained gradient algorithm is biased 

towards selecting tests corresponding to columns tha t maintain a low condition 

number. This is the same bias used by other discovery algorithms, as well [James 

and Singh, 2004; Wolfe et al., 2005]. Other core test selection biases are possible; 

tests which are shorter could be preferred over longer tests, or tests which are more 

frequently encountered could be preferred over rarely executed tests. Some of these 

biases are also used in other discovery algorithms [Wolfe et al., 2005].

6.2 .4  Sum m ary o f In v estiga tive  T ests

The main result of the investigative tests is tha t the constrained gradient algo­

rithm has two forces behind its model creation: gradient descent and constraint 

satisfaction, or momentum. It was originally thought tha t these two forces would 

complement each other, but this appears to not always be the case. When the 

learning rate becomes too small to counteract the momentum of the matrix, models 

created by the constrained gradient algorithm can experience decay of prediction 

accuracy. The momentum appears to be dependent on the set of core tests used by 

the algorithm.
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Chapter 7

Conclusion

In this section, we summarize the contributions presented in this thesis, and describe 

several avenues for future work with the constrained gradient algorithm.

7.1 Contributions

Our main contribution in this work is the presentation of the constrained gradient 

algorithm for discovery and learning of predictive state representations. This algo­

rithm  is the first online algorithm capable of discovery, and also the first learning 

algorithm tha t does not use strictly Monte Carlo learning updates. Experimen­

tally, we have shown tha t the constrained gradient algorithm is capable of creating 

excellent models in some domains, and we have also shown domains in which the 

algorithm has difficulty learning correct models. Experiments were performed that 

suggest tha t the momentum of the learned submatrix can sometimes be counter­

productive in learning a predictive state representation.

This work also has several other contributions. We have given a clear explanation 

of the exact constraints on a system dynamics matrix. We have written a proof for 

the discovery procedure used by most current discovery methods tha t does not 

require a  POMDP representation of the system. We have performed the first online 

experiments with predictive state representations. Finally, we have included, as 

Appendix B, a clear description of the test domains tha t are frequently used in PSR 

research.

The goal at the outset of this work was to create an online algorithm for learning 

PSRs tha t does not require a reset action in the system, and tha t is able to extrap­

olate information based on the known structure of a system dynamics matrix. The 

constrained gradient algorithm satisfies these goals: it maintains a current state
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vector, it does not require a reset action, and it uses the normalization procedure 

to propagate changes in probabilities. The algorithm is particularly successful at 

finding core tests with very little data, and is competitive with current algorithms 

at learning PSR models.

7.2 Future Work

Although the constrained gradient algorithm satisfies our initial goals in creating 

an algorithm for discovery and learning of PSRs, there is still work to be done. 

Our experimental investigation raised some interesting phenomena which should be 

addressed. Below, we list some possible avenues of future work with the constrained 

gradient algorithm.

7.2.1 D iscovery  T h resh old

Two variations of the discovery procedure, cumulative and non-cumulative, have 

been described and tested in this work. Both versions have strengths and weak­

nesses. For practical use, though, the non-cumulative version would seem to be the 

best option, because it can base its decisions on more data  than the cumulative 

version. In our experiments, however, the performance of non-cumulative discovery 

tended to suffer because a constant condition threshold was used.

To take advantage of non-cumulative discovery, the condition threshold should 

gradually increase over the course of learning, matching the gradual increase in 

the condition of y(Q \H ). Designing an appropriate schedule of increase for the 

threshold would be an excellent area for further investigation. Preferably, such a 

schedule would not require setting an explicit parameter, but instead be based on 

properties of the system, such as number of core tests selected or the condition 

number of the previously selected tests.

7.2.2 S e lectio n  o f  H isto ry  Set

Our experiments with the constrained gradient algorithm used a finite window ap­

proach to selecting histories for H . This method has several advantages, but it 

also has two compounding disadvantages. The first is tha t H  may be insufficient 

to represent the system, if it does not contain appropriate histories. To reduce the 

likelihood of insufficient representation, the size of H  can be very large. However,
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using a large H  causes computational penalties, which is the second main disad­

vantage; the constrained gradient algorithm is currently the most computationally 

expensive algorithm for learning PSRs.

A potentially better method of selecting H  might be a hybrid approach. His­

tories selected for H  could be a relatively small set of histories whose rows are 

most linearly unrelated. This addresses both the computation and insufficient rep­

resentation issues. To ensure tha t erroneous (but linearly unrelated) rows are not 

kept permanently, a  bound could be placed on the age of any history in the set H. 

Overall, this method could ensure an up-to-date m atrix H , without suffering the 

insufficient representation and large computational costs of a plain finite-window 

approach.

7.2 .3  R eform ulation  as O p tim ization  P rob lem

Currently, each new row y{T\h) is computed in a multi-step process. The reason for 

this is because two goals are being balanced: satisfying the constraints of a system 

dynamics matrix, and matching the observed data. Furthermore, each prediction 

value is computed separately in the regression step, and the internal consistency 

constraints are enforced after all predictions have been computed. Perhaps a  better 

solution to this problem is to compute the entire row at once, as a single optimization 

problem, so tha t all values can be calculated with knowledge of their relationship 

to other values in the row. 1 This approach allows the constraints to be handled 

more naturally. However, this approach would likely also be more computationally 

expensive than the current approach.

7.2 .4  E nforcing C on stra in ts

In Chapter 6, it was discovered tha t when a  becomes very small, the momentum of 

the matrix y(T \H )  can lead to poor representations. This occurs because the use 

of the constraints generates the entire row, and those values can only be changed a 

small amount in the direction of the gradient; the impact of the matrix is therefore 

greater than the impact of the data. In order for the constrained gradient algorithm 

to be usable for practical problems, this difficulty must be overcome. Unfortunately, 

it is unclear how to accomplish such a thing. Since the basis of the constrained 

gradient algorithm is tha t better performance can be achieved by enforcing system

1 All o f the constraints are linear, and the objective is quadratic. Thus, the optim ization could 
be formulated as a quadratic program.
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dynamics m atrix constraints, reducing the impact of the constraints seems counter 

to the spirit of the algorithm. Finding a better middle ground between constraint 

satisfaction and gradient descent is still an open problem.

7 .2 .5  T h eoretica l C onvergence

Our current knowledge of the constrained gradient algorithm’s behaviour is based 

purely on empirical testing. At the moment, we do not have any statements about 

the theoretical convergence of the algorithm to a local minimum or to a stable system 

dynamics matrix. Formulation of such theoretical knowledge would be helpful for 

understanding the properties of the algorithm.

7.3 Summary

Overall, we have found tha t the constrained gradient algorithm is capable of quickly 

discovering sets of core tests and building an initial model of system dynamics. 

However, the long-term performance of the algorithm can be hindered by local 

minima. There is still much work to be done in the field of using the structure of 

data to build better predictive representations. In this area, the constrained gradient 

algorithm provides a starting point and benchmark for future work.
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A ppendix A

Defining Test Predictions

Throughout this work, we have used y(t\k) as the value of a test prediction. As 

noted previously, this deviates from the value of a test prediction used in previous 

PSR research [Littman et al., 2002; Singh et al., 2004]. In this appendix, we describe 

the previous approach to  defining test predictions, the problems with this approach, 

and how using y{t\h) as the definition of a test prediction solves these problems.

A .l  Test Predictions

The intention of a state representation is to model the dynamics of a system. In 

general, it is undesirable for the state representation to model the agent interacting 

with the system. Furthermore, the policy used by an agent when interacting with a 

system should not affect the sta te  representation of the system it generates, as long 

as the policy is sufficiently diverse to uncover the entire complexity of the system. As 

we show below, however, in previous PSR research the definition of a test prediction 

meant tha t PSRs were dependent on the policy used by the agent.

In previous work, a test prediction for a test t was defined as Pr(ot |h, at), abbre­

viated as p(t\h) [Littman et al., 2002]. In words, this is the probability of perceiving 

all of the observations in ot, given that the agent takes all of the actions in at 

immediately following history h. Expanding p(t\h), we get:

p(t\h) = Pr(ot \h ,a t)
_  P r(a tot |h)

P r(a t |/i)
_  P r(aj|h , a i o i . . .  ai_iOi_i.)Pr(oi|/i, a i o i . . .  d j-iO i-iai)

i=l
n

Pr(aj|/i,ai . . . aj _i )

T - r  _  ,  . ,  .  - i - r  Pr(aj|/i, a i o i . . .  ai_iOj_i)= n P r f e l W , .. •Oi-.o.-.a,) n
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The final step comes from the definition of y(t\h), given in Chapter 2. Thus, y{t\h) 

and p(t\h) differ due to the existence of °a~_°j~' ̂  ter,ns in P(W1)- These

terms represent probabilities of choosing actions, and show that p(t\h) is dependent 

on the policy used to generate actions; the value of p(t\h) can be different for dif­

ferent policies. However, because the terms which compose y{t\h) are probabilities 

of observations only, the value of y(t\h) is not dependent on the policy used to gen­

erate the actions.1 In the special case of policies in which all actions are generated 

independently of observations, y(t\h) = p(t\h). Also, for any policy and any length 

one test ao, y{ao\h) =  p{ao\h).

A .2 Problem s w ith  p ( t \ h )

Predictive state representations and system dynamics matrices are closely related 

topics. We will use the system dynamics matrix to explain how the definition of 

a test prediction can affect the sta te  representation. Overall, the system dynamics 

matrix p(T*\H*) has several disadvantages when compared to the system dynamics 

matrix y(T*\H*).

First, the system dynamics matrix p(T*\H*) is dependent on the policy used to 

choose actions. Thus, for a given system, there is an entire family of different system 

dynamics matrices th a t specify the system. However, there is only one y(T*\H*) 

matrix for any system. Furthermore, a p(T*\H*) corresponding to a particular 

policy is not directly applicable to a different policy; this means that the prediction 

probabilities in a  model learned using one policy cannot directly be used to ask 

questions about a  different policy. It may be possible, if both polices are known, to 

convert a prediction p(t\h) for one policy to another policy.

A second disadvantage to using p(T*\H*) as a system dynamics matrix is that it 

can have higher linear dimension than the matrix y(T*\H*). Wiewiora [2005] shows 

that the rank of p(T*\H*) is the product of the complexity of the policy and the 

complexity of the underlying system. The rank of y(T*\H*) is the linear complexity 

of the system only. A system dynamics matrix with higher linear dimension will 

cause the corresponding PSR  to have higher dimension; this means more parameters

'T he only case when y( t \h)  is dependent on policy is when the policy has zero probability of 
choosing som e action after experiencing som e history. Thus, we require P r(a|/i) >  0 for all a €  A  
and for all histories h.
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must be estimated during learning, and the resulting PSR will have larger space and 

computation requirements.

Finally, and most importantly, some of the constraints listed in Chapter 3 do 

not apply to the system dynamics matrix p(T*\H*). In particular, the internal con­

sistency constraint and the conditional probability constraint do not apply. Below, 

we explain why.

The internal consistency constraint, using p(t\h), would be:

p(t\h) = Y  p{tao\h) 
oeo

However, the above is not necessarily true. Expanding the summation in the con­

straint, we get:

Y  p(tao\h) 
oeo

= Y Pr(°t°\h >nta)
oeo

~  Y  P r(°il^> «ta)Pr(o|/i, ta)
oeo

=  Pr(ot\h,atd) Y ,  Pr(o|/i, ta) 
oeo

=  Pr(of|/i,a (a)
r> /— i, _  xPr(a|/i,afOi)=  Pr(ot / t , a i - y  '

Pr(a|/i, at)

-  p m ‘p F h W

In the above, we see tha t the summation portion of the internal consistency con­

straint is not necessarily equal to p{t\h). The internal consistency constraint is only 

true for p(T*\H*) when the probability of choosing the action a is independent of the 

observations already seen; essentially, the constraint only holds in the cases where 

P(t\h) =  y(t\h).

The conditional probability constraint, using p(t\h),  states:

p(t\hao) = Va G A , o € O
p(ao\h)

The rule appears to be a simple application of the conditional probability rule. 

However, when not using shorthand form, the rule becomes:

Pr(ot\hao, at) =  Va € A , o e  O
Pr(o|/i, a)
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Two of the terms in the equation are conditioned on at, but the denominator is 

not. Thus, this attem pt to use conditional probability is incorrect. Corrected, the 

conditional probability rule should be:

Vv{ot\hao, at) = Va € A , o 6 O
Pr(o|/i, aat)

This version of the rule is less useful, however, because the value Pr(o|/i, aat) is not 

generally available as an entry in the system dynamics matrix.

The conditional probability property is very important, because the PSR state 

update rule is based on this property. Therefore, using p(T*\H*) restricts the use 

of PSRs to policies where:

Pr(o|/i, a) =  Pr(o|h, aa)
Pr(ao|h) _  Pr(aoa|/i)
Pr(a|/i) Pr(aa|/i)

Pr(aojh) _  Pr(ao|/i) Pr(a|/iao)
P r(a |h) P r(a |h ) P r(a |ha)

_  Pr(a|/iao)
Pr(a|/ia)

Pr(a|hao) =  P r(a |ha)

More simply, using p(T*\H*) restricts the use of PSRs to policies tha t choose actions 

independently of observations.

A.3 Redefining Test Predictions

As shown above, using p(t\h) restricts the use of PSRs to the special case of blind 

policies tha t do not depend on the observations. I t is our belief that the intent 

behind system dynamics matrices and PSRs is more aptly represented by using 

y(t\h), rather than p{t\h). This redefinition of test predictions means th a t PSRs are 

independent of policy. In this section, we show tha t the internal consistency and 

conditional probability constraints are correct when test predictions are defined by 

y(t\h).

The following theorem shows tha t the internal consistency constraint is correct.

T h e o re m  2.

y{t\h) =  ^ 2  y(tao\h) Va € A  
oeo
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Proof.

y(t\h) =  y(t\h) x 1

=  y(t\h) x ^  Pr(o|h, ta) Va 6 A
o<=o

=  ^ 2  y(t\h ) x Pr(a|/i, ta) Va € A  
oeo

=  ^ 2  y (tao\h) Va 6 A  
oeo

□
The following theorem shows tha t the conditional probability constraint is cor­

rect.

Theorem  3.

Proof.

y(t\hao) =  1 x y(t\hao) Va € A ,o  € O 
_  y(ao\h)

y(ao\h)
y(aot\h)

x y(t|/iao) Va 6 A , o € O 

V a e A , o e O
y(ao\h)

□

Thus, we see tha t using y(t\h) is appropriate for creating policy-independent PSRs.
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A ppendix B

Test Dom ains

The purpose of this appendix is to explain the dynamics of the eight domains used 

in the experiments in this work. For each domain, we list the action and observation 

sets, and describe the dynamics of the system. We also show the sets of core tests, 

Q , th a t were used in the learning experiments in Chapter 4. Note that, with the 

exception of Float-Reset, the original purpose of these domains was for POMDP 

research; because of this, some domains have features which only make sense in 

the context of reward. Except for Float-Reset, all domains were obtained from an 

online POM DP repository [Cassandra, 1999]. Also, all domains in this appendix are 

representable by POMDPs, and therefore have a small number of specific nominal 

states; when describing the domains, state refers to these nominal states.

B .l  Float-R eset

A  =  {float, reset)

O =  {0,1}

Q =  {e, (reset, 0), (float, 0, reset, 0), (float, 0, float, 0, reset, 0),

(float, 0, float, 0, float, 0, reset, 0)}

The Float-Reset domain [Littman et al., 2002] is pictured in Figure B .l. There 

are five nominal states, including a special reset state, which is shaded in the di­

agram. The ‘reset’ action always moves the system to the reset state. The ‘float’ 

action moves the system to the left or right state with uniform probability, except 

in the end states where it either moves or stays in the same state. The only way 

to produce a 1 observation is to perform the reset action while the system is in the
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----------- >• reset, p = 1.0, o =  1
------------> reset, p = 1.0, o = 0
------------float, p =  0.5, o = 0

Figure B .l: The Float-Reset domain. (Repeated from Figure 2.1)

reset state. Reseting from any other state produces a 0, as does floating in any 

state.

B.2 Tiger

A  =  {listen, open-left, open-right}

O  =  {tiger-left, tiger-right}

Q =  {e, (listen, tiger-right)}

In the Tiger domain [Cassandra, Kaelbling, and Littm an, 1994], an agent begins

in a room with two doors, and a tiger is behind one of the doors with uniform

probability. If the agent listens, it can hear the tiger, and correctly observes whether 

the tiger is to the left or the right 85% of the time (and misidentifies 15% of the 

time). Listening does not change which door the tiger is behind. Taking either 

door opening action causes a  random observation and brings the agent to a new 

room, identical to the previous room, where the location of the tiger is once again 

uniformly randomly chosen.

Note tha t for purposes of representing the system, the actions ‘open-left’ and 

‘open-right’ are identical. They are included for the control version of the Tiger 

domain, in which reward is applicable.
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—  <EI < 3  < 3  —
MRV [T >  LRV

  Q >  E >  E >  1--------------

Figure B.2: The Shuttle domain.

B.3 Paint

A  — {inspect, paint, ship, reject}

O  =  {blemished, not-blemished}

Q — {e, (inspect, blemished)}

The Paint domain [Kushmerick, Hanks, and Weld, 1995] describes a widget 

painting operation. Widgets are either blemished or not-blemished with uniform 

probability, and blemished widgets can be transformed to non-blemished widgets 

by painting them. Painting is successful 90% of the time, and the widget remains 

blemished 10% of the time. Inspecting a widget reveals with 75% accuracy whether 

it is blemished or not, without changing the state. Shipping or rejecting the widget 

both present the agent with a new widget. The ‘paint’, ‘ship’ and ‘reject’ actions 

all produce the ‘not-blemished’ observation.

In the representation version of the Paint problem, the ‘ship’ and ‘reject’ actions 

are identical. They exist to differentiate states in the control problem.

B.4 Shuttle

A  = {forward, backup, turn}

O =  {nothing, see-MRV, see-LRV, docked-MRV, docked-LRV}

Q = {e, (turn, see-LRV), (turn, nothing), (forward, see-MRV), (forward, nothing),

(backup, nothing), (backup, docked-LRV)}

The Shuttle domain [Chrisman, 1992] describes a shuttle that ferries goods be­

tween two identical space stations, tha t are distinguished by recognizing which was 

the last one visited by the the shuttle. They are called MRV (most recently visited) 

and LRV (least recently visited). Figure B.2 shows the seven different positions
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of the space shuttle. There is no position for being docked in LRV, because once 

the shuttle docks in the least recently visited station, it becomes the most recently 

visited.

Turning and going forward always have the expected effect, with the special 

cases that going forward while directly in front of a station (positions 3 and 6) does 

not change the position, and turning while docked moves the shuttle to be facing 

the station. Backing up is a noisy action. When directly in front of a station, facing 

the station, backing up launches into space 30% of the time, turns the ship around 

30% of the time, and has no effect 40% of the time. When the ship is in front of 

a station with the rear towards the station, backup up docks 70% of the time and 

has no effect 30% of the time. In space, backing up moves closer to the station 80% 

of the time, turns the shuttle around 10% of the time, and has no effect 10% of the 

time. Backing up has no effect when docked.

When the shuttle is directly in front of a station, and facing it (positions 3 and 

6), it can see the station. If a shuttle is directly in front of a station and facing 

away from it (positions 2 and 7), it sees nothing. The shuttle can also detect when 

it is docked (position 1). When the shuttle is in space between the two stations, its 

sensors are noisy; 70% of the time it sees the station it is facing, and 30% of the 

time it sees nothing.

B.5 Network

A  =  {unrestrict, steady, restrict, reboot}

O =  {up, down}

Q =  {e, (unrestrict, up), (steady, up), (restrict, up), (unrestrict, up, unrestrict, up), 

(unrestrict, down, unrestrict, up), (unrestrict, up, steady, up)}

The Network domain [Littman, 1996] simulates a network with six levels of 

stability, plus a crashed state. The agent controls the stability of the network by 

letting network flow be unrestricted, steady, or restricted, and can also reboot the 

network. Because the dynamics of the domain are fairly complicated, we present 

the effects of the four actions in Table B .l.

The general summary of the actions in the Network domain is tha t unrestricted 

flow tends to increase instability, steady flow tends to maintain the current stability
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(a) unrestrict

1 2 3 4 5 6 C
1 0.5 0.3 0.1 0.1 0.0 0.0 0.0
2 0.2 0.3 0.3 0.1 0.1 0.0 0.0
3 0.1 0.1 0.3 0.3 0.1 0.1 0.0
4 0.0 0.1 0.1 0.3 0.3 0.1 0.1
5 0.0 0.0 0.1 0.1 0.3 0.3 0.2
6 0.0 0.0 0.0 0.1 0.1 0.3 0.5
C 0.0 0.0 0.0 0.0 0.0 0.0 1.0

(c) restrict

1 2 3 4 5 6 C
1 0.8 0.1 0.1 0.0 0.0 0.0 0.0
2 0.5 0.3 0.1 0.1 0.0 0.0 0.0
3 0.2 0.3 0.3 0.1 0.1 0.0 0.0
4 0.1 0.1 0.3 0.3 0.1 0.1 0.0
5 0.1 0.0 0.1 0.3 0.3 0.1 0.1
6 0.0 0.1 0.0 0.1 0.3 0.3 0.2
C 0.0 0.0 0.0 0.0 0.0 0.0 1.0

(b) steady

1 2 3 4 5 6 C
1 0.7 0.2 0.1 0.0 0.0 0.0 0.0
2 0.3 0.4 0.3 0.1 0.0 0.0 0.0
3 0.1 0.2 0.4 0.2 0.1 0.0 0.0
4 0.0 0.1 0.2 0.4 0.2 0.1 0.0
5 0.0 0.0 0.1 0.2 0.4 0.2 0.1
6 0.0 0.0 0.0 0.1 0.2 0.4 0.3
C 0.0 0.0 0.0 0.0 0.0 0.0 1.0

(d) reboot

1 2 3 4 5 6 c
1 1.0 0.0 0.0 0.0 0.0 0.0 0.0
2 1.0 0.0 0.0 0.0 0.0 0.0 0.0
3 1.0 0.0 0.0 0.0 0.0 0.0 0.0
4 1.0 0.0 0.0 0.0 0.0 0.0 0.0
5 1.0 0.0 0.0 0.0 0.0 0.0 0.0
6 1.0 0.0 0.0 0.0 0.0 0.0 0.0
C 1.0 0.0 0.0 0.0 0.0 0.0 0.0

Table B .l: The state transitions for the Network domain. Numbers 1 to 6 are 
stability levels, and C is the crashed state. Each row is a probability distribution 
over states for the corresponding starting state.

level, and restricted flow tends to make the network more stable. Rebooting the 

system always makes it completely stable. Nothing changes the crashed state except 

for a reboot.

The observations in the Network domain are noisy. The network is seen as up 

or down, depending on how stable it is. At stability levels 1, 2 and 3, the network 

is always seen as up. At stability level 4, there is a 90% chance of observing the 

network up, at level 5, 70%, and a t level 6, 50%. A crashed network is always down.

B.6 4x3 Maze

A  = {north, south, east, west}

O  =  {neither, left, right, both, good, bad}

Q =  {e, (north, left), (north, right), (north, neither), (north, both), (north, good),

(south, left), (south, right), (south, neither), (north, left, north, left)}

The 4x3 Maze [Parr and Russell, 1995] is a grid world pictured in Figure B.3. 

The agent can move in the four compass directions, and can perceive whether there
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Figure B.3: The 4x3 Maze domain.

Figure B.4: The Cheese domain.

is a wall to its left, to its right, both, or neither. There are two special grid locations, 

in which the agent perceives special observations; it perceives the position with a 

'+ ’ to be ‘good’, and the position with a to be ‘bad’. Moving is noisy; 80% of 

the time, the agent moves in its intended direction, and 10% of the time it moves 

in one of the directions perpendicular to its intended direction. Moving into a wall 

does not change the position of the agent. When the agent is in either of the special 

locations, its next action will randomly transport the agent to any of the non-special 

locations.

B.7 Cheese Maze

A  — {north, south, east, west}

O =  {1, 2 , 3 , 4 , 5, 6 , 7}
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(a) no-repair

1 2 3 4 5
1 0.80 0.13 0.02 0.00 0.05
2 0.00 0.70 0.17 0.05 0.08
3 0.00 0.00 0.75 0.15 0.10
4 0.00 0.00 0.00 0.60 0.40
5 0.00 0.00 0.00 0.00 1.00

(c) strcngthen-paint

1 2 3 4 5
1 0.80 0.13 0.02 0.00 0.05
2 0.19 0.65 0.08 0.02 0.06
3 0.10 0.20 0.56 0.08 0.06
4 0.00 0.10 0.25 0.55 0.10
5 0.00 0.00 0.00 0.00 1.00

(b) clean-paint

1 2 3 4 5
1 0.80 0.13 0.02 0.00 0.05
2 0.00 0.80 0.10 0.02 0.08
3 0.00 0.00 0.80 0.10 0.10
4 0.00 0.00 0.00 0.60 0.40
5 0.00 0.00 0.00 0.00 1.00

(d) structural-repair

1 2 3 4 5
1 0.80 0.13 0.02 0.00 0.05
2 0.80 0.13 0.02 0.00 0.05
3 0.80 0.13 0.02 0.00 0.05
4 0.80 0.13 0.02 0.00 0.05
5 0.80 0.13 0.02 0.00 0.05

Table B.2: The effect of the repair actions on the structural stability of the bridges. 
Each row represents the starting stability of the bridge, and each column represents 
the stability after the repair action is taken.

Q =  {e, (north, 1), (north, 2), (north, 3), (north, 4), (north, 5), (south, 5), 

(south, 6), (east, 2), (east, 3), (north, 5, north, 1)}

The Cheese Maze [McCallum, 1993] is a grid world pictured in Figure B.4. The 

agent can move in the four compass directions, and actions are never noisy. The 

agent perceives the four walls around it; the state-observation mappings are shown 

in the diagram. The shaded location has a piece of cheese, and has a special obser­

vation. Taking any action in the cheese location causes the agent to be randomly 

transported to any of the other locations.

B .8 Bridge Repair

A  =  (no-repair, clean-paint, paint-strengthen, structural-repair} x 

(no-inspect, visual-inspect, ut-inspect}

O  =  (less-than-5, between-5-and-15, between-15-and-25, greater-than-25, failed} 

Q =  (e, (no-repair-and-ut-inspect, less-than-5),

(clean-paint-and-ut-inspect, between-5-and-15),

(clean-paint-and-ut-inspect, between- 15-and-25), 

(paint-strengthen-and-ut-inspect, failed)}
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(a) no-inspect

1 2 3 4 5
1 1.00 0.00 0.00 0.00 0.00
2 1.00 0.00 0.00 0.00 0.00
3 1.00 0.00 0.00 0.00 0.00
4 1.00 0.00 0.00 0.00 0.00
5 1.00 0.00 0.00 0.00 0.00

(b) visual-inspect

1 2 3 4 5
1 0.80 0.20 0.00 0.00 0.00
2 0.20 0.60 0.20 0.00 0.00
3 0.05 0.70 0.25 0.00 0.00
4 0.00 0.30 0.70 0.00 0.00
5 0.00 0.00 1.00 0.00 0.00

(c) ut-inspect

1 2 3 4 5
1 0.90 0.10 0.00 0.00 0.00
2 0.05 0.90 0.05 0.00 0.00
3 0.00 0.05 0.90 0.05 0.00
4 0.00 0.00 0.05 0.90 0.05
5 0.00 0.00 0.00 0.00 1.00

Table B.3: The probability distributions over observations generated by each in­
spection action taken in each state, for the Bridge domain.

The Bridge Repair domain [Ellis, Jiang, and Corotis, 1995] simulates a bridge 

tha t has five different degrees of structural strength. It is formulated somewhat 

differently than other systems. At each time step, the agent takes both a repair 

action and an inspect action, so the action set is the cross product of these sets. 

The change in state is dependent only on the repair action taken, and the observation 

is dependent only on the inspect action. We summarize the effect of these actions on 

the state and observation in Tables B.2 and B.3. To summarize the repair actions, 

no-repair tends to maintain the state of the bridge, but has a trend toward worse 

stability. The action clean-paint is similar to no-repair, but maintains the state 

slightly more. The action strengthen-paint has a trend toward making the bridge 

stronger, and structural-repair resets the state of the bridge. Of the inspection 

actions, no-inspect provides no information, visual inspect tends to report that the 

bridge is stronger than it is, and ut-inspect provides fairly accurate information 

about the strength of the bridge.
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