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Abstract

Recognizing the indoor activities of people is a key functionality of smart homes, since it

is a prerequisite for any supportive action in service of the occupants. In this thesis, we

investigate the multiple occupant localization problem in indoor environments. We devel-

oped a method based on the use of inexpensive passive infrared motion sensors together

with Radio Frequency IDentification (RFID) readers. In our method, the former type of

sensors, placed throughout the space, recognize movement and RFID readers, placed se-

lectively at key locations, unambiguously recognize individuals’ locations (some or all of

the occupants are assumed to be wearing passive RFID tags) as they pass through their

coverage area. Due to their high cost and generally cumbersome placement requirements,

RFID readers must be judiciously placed. Thus, we study the placement of the readers such

that the occupants trajectory ambiguity is reduced. We rely on a heat-map representing the

frequency with which individuals visit locations as they move through the indoor space

and on models of coverage for the Passive Infra-Red (PIR) sensors and RFID readers and

develop a heuristic for the RFID reader placement.

We also revisit the problem of cost-efficient PIR sensor placement for high-quality in-

door localization, extending it for sensors with diverse coverage footprints, and the oc-

clusion effects due to obstructions typically found in indoor environments. The objective

is the placement of the smallest number of sensors with the right combination of foot-

prints. Given the vast search space of possible placement and footprint combinations, we

adopt an evolutionary technique. We demonstrate that our technique performs faster and/or

produces more accurate results when compared to previously proposed greedy methods.

Furthermore, our technique is flexible in that adding new sensor footprints can be trivially

accomplished. We evaluate the effectiveness of our method in both RFID reader and PIR

sensor placement under different occupancy conditions with simulations.
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Chapter 1

Introduction

The Smart-Condo™ [3, 4] is a comprehensive platform, targeting the delivery of improved

healthcare through a variety of services. This fully equipped one bedroom condo has func-

tional appliances, moveable counters, removable floors, and is also integrated with a Wire-

less Sensor Network (WSN) for monitoring the occupants. The setup allows the collection

of health-related events and potentially using this data to enhance the quality of life for

older adults.

One important purpose of smart homes (i.e., the Smart-Condo™ ) is to provide in-

formation regarding inhabitant activities to facilitate the task of the caregivers who are in

charge with the occupants’ well-being. Of the information collected by, a possibly large,

number of sensors, the information regarding the location of the individuals stands out as

crucial to determining the tasks performed and the disposition of the inhabitants. While

simple “anonymous” sensors can be used to localize a single individual, e.g., low-cost PIR

motion sensors, such solution is clearly inadequate when more then one individual are to

be tracked and their trajectories need to be separated and labeled. A benefit of using ex-

clusively PIR sensors is that the occupant does not need to wear any special tag or device.

However, in order to track multiple individuals, we are expanding the requirements to in-

clude RFID tag(s) worn by each individual. Technically, given the low-cost of passive

RFID tags, an individual can “wear” more than one tag, but for the sake of ease of pre-

sentation we assume that each individual corresponds to a single tag. The understanding is

that, in real settings, it is enough for at least one of the tags worn by the individual to be

read to localize the person as being close to the RFID reader.
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One concern in using PIR sensors for localization is their placement. Suboptimal place-

ment may result in inefficient usage of the equipment, and correspondingly, waste of equip-

ment cost and deployment effort. Pre-deployment simulation to evaluate the anticipated

performance of potential deployment alternatives is a useful methodology for systemati-

cally obtaining high-quality sensor placements. The question then becomes how to decide

which placements to simulate, i.e., how many sensors should the potential deployment

include, of what type, and where exactly these sensors should be placed. In principle, a

desirable placement should have the smallest number of contributing sensors (in order to

minimize equipment cost, deployment effort, and operating energy consumption) at loca-

tions such that the overall space is sufficiently covered and the target’s location can be

inferred with a desirable degree of accuracy and precision.

The PIR sensor placement optimization presented in this thesis builds on our previ-

ous work, in the context of the Smart-Condo™ project, where we examined placement of

same-type sensors, under a cardinality constraint (i.e., a limited budget of sensors) [1] for

the purpose of recognizing the location of an individual in a home environment. We adopt

a similar formulation in this thesis. Namely, the formulation includes the representation

of space as a line drawing (floorplan), and the possible locations for the sensor place are

from a set which is expressed as a (fine) grid of points over the floorplan. The placement

is assumed to take place on the ceiling (facing “down”). While alternative placements

can be accommodated, experience from practical deployments has reinforced that ceiling

placement is the most convenient for indoor deployments. Our set of motion sensors in-

cludes a variety of different volumetric shapes, namely a cone, a square based pyramid,

and a rectangular based pyramid. Considering only orthogonal placement with respect to

the floor the projection of each of these shapes becomes a disk, a square and a rectangle,

respectively. Moreover, the projection of any sensor might be effected by walls, doors or

obstacles around the house depending on where the sensor is placed (explained more in

Section 3.3).

One question addressed in this thesis is whether a combination of PIR sensor deploy-

ment in an indoor space, coupled with the judicious use of RFID readers deployed at certain

points in the space, and assuming the individuals wear passive RFID tags, is a viable solu-
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tion for multi-occupant localization. Specifically, we would like to derive figures of merit

for the combination of PIR+RFID localization and strategies for RFID reader deployment.

The latter, RFID reader deployment, is a significant component of the total cost because

RFID readers tend to radiate enough power that their deployment away from a continuous

power source is problematic, i.e., powering them from batteries is not a viable long-term

solution. Additionally, the use of relatively large RFID reader antennas to produce reliable

readings from the tags increases the per-reader cost and results in cumbersome deployment.

In short, the deployment of the readers introduces costs and constraints that are not present

in the case of the wireless PIR sensors. Hence, we are interested to reduce the number of

RFID readers and deploy them in locations that are as effective as possible, i.e., where they

can add the most in terms of improving the accuracy of localization given that a PIR-based

sensors already exist. Note that for the same reasons (power source needs, antenna sizing)

we adopt the, reasonable, model that the individuals wear passive tags and the environment

is equipped with readers, rather than the other way round (individuals carrying readers)

found typically in inventory-management applications of RFID where workers carry read-

ers.

One of the guiding assumptions is that in indoor spaces, the use of Global Positioning

System (GPS) [5] for localization is problematic due to poor signal coverage and increased

error that renders it useless when seeking localization error no more than 1-2 meters which

is generally needed for any meaningful indoor application. As noted, we forego the use

of active RFID tags, and similarly, the use of tags with wireless transmitters regardless

of wireless technology used. The primary reason is that active devices require batteries

resulting in less inconspicuous packaging than simple peel-on passive RFID tags. Battery

powered tags are also a hindrance (or even a risk) if the object on which such tags are

affixed is subjected to common abuse, e.g., when the fabric in which it is embedded is

washed. For those reasons, and given current available technologies, passive RFID tags are

still an elegant and flexible solution. Their use comes at the, asymmetrically, higher cost

and special placement considerations of the RFID readers.

Abstractly, the problem at hand is one of sensor fusion for the purposes of tracking

individual trajectories, in a mixed environment of anonymous (PIR) and identity (RFID)
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sensors. The solution advocated here is a two step process. First, the motion sensors

are used to determine paths for (possibly groups of) individuals roaming the indoor space.

Clearly, their paths mix and soon become ambiguous even if we knew the original locations

of each individual. A second stage, the RFID-based disambiguation of the paths helps

mitigate the ambiguity of the first step but is limited because the RFID readers are present

only at certain locations and have limited coverage. This leads us to develop a model that

can assist the placement of RFID readers using a “skeletal” tree of the paths of motion of

individuals in the indoor space, extending previous work that had introduced a heat-map

representation [1] of the most/less visited locations by a single individual in the space.

Throughout the thesis we assume that the floorplan of the space is known and available to

our algorithms.

1.1 Thesis Contributions

This thesis contributes in the deployment of an automated planning methodology for multi-

occupant localization in a smart house environment. More specifically, the contributions

are as follows:

� We propose an evolutionary methodology to address the problem of optimized PIR

placement for PIR sensors with diverse coverage footprints. The resulting placements

will be used to mount sensors in locations that helps gather sensing information more

efficiently. Furthermore, we consider the objective of reducing the number of sensors

in order to minimize system cost, but delivering a reasonable degree of accuracy.

� We construct a skeleton representation of the existing heat-map in order to spot im-

portant travel corridors in the space. Using the formed skeleton, we propose a heuris-

tic to determine the proper location for RFID readers, and improve localization of the

occupants.

� We define a framework, and the process used to extract tracks for multiple people.

With the information retrieved form the PIR sensors we construct, possibly ambigu-

ous, trajectories for all occupants involved. We then disambiguate the trajectories by

assigning people to paths, according to RFID readings.
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� We propose a data structure that captures the sequence of events happening in an

indoor environment, i.e., collisions, identifications, etc. This so called EM Graph

provides the basis to calculate our performance metrics, namely, the ambiguity error

metric and the tracking error metric.

� We consider multiple scenarios and thoroughly evaluated with simulations, cases

where the patient or other residents in the smart house, refrain from wearing their tag.

Our PIR placement optimization is compared against a sequential methodology, and

the placement heuristic for RFID readers is compared with a random and a manual

placement.

In summary, the major contribution of this thesis, is automated sensor deployment plan-

ning for indoor environments. We organize various experiments through both a simulator

and the real-world network, to evaluate our system. The developed software is ready for

operation on the main platform in the Smart-Condo™ and was written with a focus on

modularity and scalability.

1.2 Thesis Organization

This thesis is organized as follows. Chapter 2 reviews related work. In Chapter 3 we

provide the problem formulation and present details of the mobility and coverage models.

Chapter 4 comprehensively presents and evaluates the proposed methodology to optimisti-

cally place motion sensors for the purpose of indoor localization. In Chapter 5 we focus on

a systematic approach for RFID reader placement and illustrate results for certain system

settings and scenarios. Finally we conclude with Chapter 6, reviewing the lessons learned

by carrying out this research and note of possible future directions.
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Chapter 2

Review of Indoor Localization

Technologies

2.1 Placement Strategies

According to [6], sensor placement methodologies can be categorized into static and dy-

namic. With static approaches, the optimization process is pursued before the actual net-

work deployment and it is assumed that various network parameters will remain the same.

In that way, the desired properties that were achieved (e.g. overall coverage and/or network

topology) will not change. The second type of placements are the dynamic approaches. In

some applications dynamic repositioning of the sensor nodes may be an reasonable way to

increase system performance. This is useful when the initial placement leads to undesired

usage of system resources. Although we realize the importance of dynamic placement

in network maintenance and adaptability, the thesis is concerned exclusively with static

placement.

In a static placement the deployment can be done either randomly (by scattering a large

population of low cost sensors in the target environment), or deterministically (controlled

placement for maximizing certain desired properties). Choosing which placement best suits

the application depends on the scale of the application. Randomized distribution of sensors

is acceptable for large-scale networks where controlled placement is not a viable solution,

e.g. in reconnaissance missions during combat or disaster recovery. In an accessible en-

vironment, a deterministic approach is acceptable, especially if a small number of sensors

are to be deployed in a rather small network. Such is the case of smart home applications
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and hence we do not investigate randomized and redundant sensor placement, but rather

put emphasis on deploying a small number of sensors.

2.2 Sensor Placement Optimization

2.2.1 Optimization Objectives

Typical optimization objectives for sensors include coverage, connectivity, longevity and

data fidelity [6]. The objective that has received most of the attention in the literature

is coverage which deals with maximizing the covered area under surveillance. Coverage

objectives depend on the underlying coverage model of each individual sensor. Previous

work adopts models of disk coverage of the sensors [7], whereas, more recently focus

has changed to irregular polygons caused by objects distorting the sensor’s coverage range

[1, 8, 9]. In the main framework of the Smart-Condo™ , we too, consider irregular shapes

due to sensor projections being impacted by permanent obstacles, walls and doors.

Data fidelity, is an optimization objective through which a sensor network ensures the

credibility of the gathered data, typically by fusing readings from various sensing sources.

Data fusion reduces the probability of false reports and will surely boost the overall accu-

racy of the system with the cost of increased node density.

We would like to remind that, the current sensor infrastructure that is used in the Smart-

Condo™ is a single hop model. This is mainly because: a) the area of interest that we need

to cover is relatively small (i.e. a one bed room suite, approximately 66 square meters

in area) and b) we focus on real time updates as well as off-line processes, so we desire

minimal amount of communication delays, typically introduced in a multi-hop network

topology. These two reasons makes us narrow down the focus of this thesis on coverage and

data fidelity (i.e. localization accuracy) rather than worrying about network connectivity

and longevity.

2.2.2 Optimization Techniques

Many research activities have been conducted around the Optimized Sensor Placement

(OSP) problem. The OSP problem has proven to be NP-hard for many different proposed
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formulations [6], thus computationally intractable. An extensive survey, [10], studies OSP

in Structural Health Monitoring (SHM). The authors narrow down on one problem formula-

tion and choose specific evaluation criteria for their sensor optimization and based on this,

compare various pre-existing methodologies. The methodologies compared are namely:

deterministic, sequential and combinatorial optimization methods (including GAs, simu-

lated annealing algorithm, Particle Swarm Optimization (PSO), monkey algorithm, and the

ant colony optimization algorithm). For a better understanding we focus on combinatorial

and sequential approaches in the next few paragraphs.

Various OSP solutions benefit from combinatorial methodologies (e.g. PSO in [11–14]

and GA in [15, 16]). Kang, Li, and Xu [17] use a Virus Coevolutionary Partheno-Genetic

Algorithm (VEPGA) to optimize sensor placement in large space structures (i.e., portal

frames and concrete dams) for damage identification based on data that describes the dy-

namic behavior of a structure system. They concluded that their method outperforms the

sequential reduction procedure. Poe and Schmitt adopt a GA approach to sensor placement

for worst-case communication delay minimization [18]. Comparing their results against

an exhaustive and a Monte-Carlo method, they found out that these methods serve as an

upper and lower bound, respectively. Their method is a fast and near-optimum solution

for optimized placement. Yi, Li and Gu [19] compared evolutionary methods for sensor

placement and described a Generalized Genetic Algorithm (GGA) approach for a prede-

fined number of sensors. According to them the GGA can get better results than the simple

version of the GA. They also describe a number of different exhaustive and evolutionary

methods to sensor placement. These papers show that evolutionary methods are preferred

over the exhaustive search approaches.

The sequential approach proposed in [1] (which is conceptually closest to the work done

here) is also conducted in the context of the Smart-Condo™ and aiming at inexpensive

placements for high-accuracy localization of a individual in a home environment. The

greedy (or sequential) approach of [1] identified sensor locations one at a time, resulting

in exploring a large number of potential locations and, in some cases, requiring a large

amount of time. Some of the work on PIR placement adopts evolution-based techniques to

address issues of complexity (see Chapter 4).
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An additional complexity is that in this thesis we consider two different types of tech-

nologies that collect different types of information (namely, PIR sensors and RFID readers),

to be used at different points in the localization process. While (weighted) coverage maxi-

mization appears to be a suitable objective for PIR sensor placement, the objective of RFID

readers is to disambiguate paths produced based on the output of the localization derived

from PIR data. Essentially, the input to the RFID reader disambiguation process is not

only dependent on the PIR placement but also on the (dynamic) performance of the PIR-

based localization algorithm, and hence on the performance of the PIR-based localization

scheme. Therefore, the placement of RFID readers is judged against a backdrop of both an

(off-line) PIR placement and of a (usually on-line) PIR localization algorithm. In our PIR

sensor placement, we address essentially two objectives: both covering the space with PIR

sensors for the purpose of maximized information gain, and at the same time minimizing

the number of sensors.

2.3 Indoor Localization Techniques

2.3.1 RFID-assisted Methods

Many RFID-assisted localization systems have been proposed, and some rely on a pre-

deployed grid of location-aware tags, i.e., each tag carries its own spacial coordinates and

relays that information upon request. The grid of tags does not necessarily need to follow a

conventional square arrangement pattern, as Han et. al. [20] have concluded. They suggest

that a triangular pattern will help reduce the error of positional and orientational estima-

tions. They claim that this allows inexpensive estimation of user location. Also benefitting

from the grid of tags, Yeh et. al. [21] use ultrasonic, orientation, and force sensors coupled

with an accelerometer, and an RFID reader, all embedded in a pair of sandals to perform

location determination for the wearer. Their calculation is based on Dead Reckoning (DR)

information, corrected with a location-aware passive-tag grid. Similarly, [22] use passive

tags at reference points which are read by a moving RFID-reader paired with an Internal

Measuring Unit (IMU) as a DR device. Also, [23], fuse data from an IMU with Received

Signal Strength (RSS) from multiple active RFID tags, producing highly accurate location
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estimates by eliminating the drift of an IMU-only system. Willis et al. [24] propose a sys-

tem that embeds an RFID reader in a walking cane for blind people. The cane is able to

pick up location estimates by reading information off the already deployed RFID tags.

2.3.2 Probabilistic and State Estimation Methods

Many works in the literature focus on target tracking systems that utilize conventional state

estimation techniques. One of the more broadly used methods is various versions of the

Kalman Filter, as in [25–27]. In [28] the authors use the Extended Kalman Filter (EKF) to

estimate the position, velocity and phase off-set of the target. They track a tagged target

by installing RFID readers at fixed locations and extract localization information which is

then fed to an extended Kalman Filter and a “smoother” component to provide accurate

results. Compared to an Received Signal Strength Indication (RSSI) based method, they

claim to have reconstructed trajectories much closer to the ground truth. Within a similar

setup, Nick et. al. [29] compare two different extensions of the Kalman Filter for RFID tag

localization purposes, namely the Extended and the Unscented Kalman Filters (EKF and

UKF). They conclude that UKF performs better than EKF.

In [30] the authors propose the well known SLAM (Simultaneous Localization And

Mapping) approach, to perform 2D target tracking based on an RFID tag grid. In [31]

a laser-based FastSLAM algorithm is used to create a map of the environment which is

used to determine the locations of the 100 tags attached in different locations. Then, a

Monte-Carlo localization algorithm is used to estimate the pose (orientation and location)

of a robot or a person using the location information from the tags. The Monte-Carlo

localization method works by considering a set of random samples of the believed pose

of the robot and a weighing factor for each sample (indicating its importance). In each

iteration new samples are collected and weighted according to the observation likelihood.

Although these techniques show improved localization accuracy, most of them assume

the collection of very detailed information from their available sensor setting (i.e., RSSI)

and we do not explore that direction in this thesis.
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2.3.3 Alternative Technologies

Vision-based techniques, [32, 33], are very appealing for Multiple Target Tracking (MTT)

in indoor environments. However, they tend to suffer from (a) concerns about privacy of the

images captured (some occupants are reluctant to accept such technologies), (b) sensitiv-

ity to occlusion effected by various objects, and (c) generally higher computational and/or

bandwidth (and hence energy) needs for on-site signal processing. Techniques based on

ultrasound and WLAN fingerprinting have been proposed as well. iLoc+ [34] utilizes fixed

reference nodes to receive ultrasound pulses emitted by interactive badges attached to each

person. Although very accurate in terms of localization, it suffers from time-consuming

installation of the large number of reference nodes that are required. The LOCOSmotion

system [35], combines WLAN fingerprinting and speed information obtained from an em-

bedded accelerometer in an off-the-self smart-phone. It is easy to install and to use, but an

on-site training phase has to be carried out, by manually collecting signal fingerprints at

various locations. The training process needs to be repeated if the environment changes.

Another interesting study is the tracking system presented in [36]. The authors fuse track-

ing data from floor sensors with that of the accelerometer embedded in a cellular phone

to accurately track a known number of people. In their experimental evaluation, they only

investigate two very naive trajectory scenarios for two people. In the present thesis we do

not restrict people’s paths, and they are allowed to roam around in space, resulting in, often,

paths that are very complex and full of collisions. Apart from that, the sensor infrastruc-

ture that we have selected due to simplicity, cannot consistently sense the occupants, like

in [36]. In particular, individuals are only sensed when in the proximity of a PIR sensor or

an RFID reader.

In all of the above mentioned methods, wearing bulky equipment is often required

for the sake of accurate system operation. In contrast, our intention is to keep wearable

equipment as minimal and inconspicuous as possible, hence only requiring that users wear

lightweight passive tags, e.g., embedded in their articles of clothing.
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Chapter 3

Mobility and Coverage Models

3.1 Mobility Model

3.1.1 Trajectory Model

Within their environment, people go through their activities, moving through open spaces

from one point to another. Intuitively, there are some locations within the environment,

i.e., kitchen counter, one’s own seat at the dinner table, chairs, one’s own bed, that tend to

be destinations of the people’s movement. These destinations are potential starting/ending

point for people’s paths within the sensed environment. We call these points Areas of

Interest (AoI).

Considering the set P representing the k individuals (P = {P1,P2, . . . ,Pk}), the se-

quence of destinations chosen by each occupant, i.e, their trajectory T Pi is composed. Each

trajectory is a sequence of a person’s locations-at-time, lPi,tn = (xPi,tn ,yPi,tn) in tn order.

A collision between Pi and Pj means that there is a timestamp tcol when the distance

between (xPi,tcol
,yPi,tcol

) and (xPj,tcol
,yPj,tcol

) is less than δ. Here, the distance function is

Euclidean and δ is assumed to be two times the radius of the circle that represents a person’s

body: δ = 2×R. Collision may also occur between three or more people at the same time

if the above conditions apply for any pair of occupants among the colliding ones.
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3.1.2 Pause Model

Since individuals spend time to preform an activity, in order to make individual movement

models as realistic as possible pause times are introduced. A pause is a time period with a

duration chosen from an exponential distribution. The probability function for this random

variable (T ) is defined as follows:

ft(T ) =

{

λe−λt , t ∈ R≥0

0, otherwise
(3.1)

In Equation 3.1, the mean value for T is equal to 1
λ

.

3.2 A Heat-map Representation of Occupant Mobility

In this research, we adopt the model developed in [1]. In this model, given the floorplan

of the target smart home, relevant information is extracted from the environment: (a) loca-

tion of areas of interest (i.e. locations in the environment that form the origin/destination

of an occupant’s path), (b) movables (temporary obstacles that may be moved to another

location), (c) permanent obstacles and walls, and (d) doors. Considering that movable ob-

jects can be moved (within a confined area) if necessary, and doors can be opened to pass,

walkable points in the space are recognized.

Also, to model an occupants daily routine a sequence of different AoIs are randomly

chosen and the occupant traverses the walkable points creating trajectories (as discussed

in the previous section). The paths are chosen by a path finding algorithm (i.e., a generic

implementation of A*) with some degree of randomness to mimic a path that a human

would choose. After that, each point in space is assigned a certain color intensity based

on the frequency of visitations, resulting in a heat-map. Figures 3.1 and 3.2 show such

heat-map. The heat-map values of the covered points will be used to define the information

utility of sensors placed at the various locations.

The heat-map is produced only once, at the pre-deployment phase. It is at this phase

that all the decisions regarding sensor deployment have to be made. After the sensors

are mounted on the ceiling, redeployment is considerably expensive and time consuming.
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Thus, both the quantity of sensor we need to achieve our cost/accuracy trade-off, and the

best placement is determined.

Using the two-dimensional heat-map that contains N points, (x1, y1), . . . , (xN , yN),

where each point has an information utility of vi (i = 1,2, . . . ,N) we construct a coverage

utility map (with the same dimensions) which is the mapping of intensities from the heat-

map into numerical values, i.e., a normalization step. This is done using a configurable

application-specific parameter called cmax that indicates the upper bound of values in the

coverage utility map. Equations 3.2 and 3.3 show how the translation between heat-map

values (vi) and coverage utility values (ci) are calculated.

ci = d
vi

t(cmax)
e (3.2)

Here, cmax is the maximum desired coverage score.

t(cmax) =
maxi∈{1,...,N}vi

cmax
(3.3)

The main purpose of mapping heat-map values to coverage utility scores, is to flexibly

normalize the range of numbers as the user desires, while ensuring that the balance between

the lowest and highest values is retained. An interpretation of this mapping is that, the user

only desires a maximum number of cmax sensors covering the most visited points.

The coverage utility map will be used throughout the rest of the study, mainly during

the PIR placement.

3.3 Motion-Sensor Coverage Model

Based on our experience in the Smart-Condo™ project (and while alternative placements

can be accommodated), experience from practical deployments has reinforced that ceiling

placement is the most convenient for indoor deployment of PIR sensors. The set of PIR sen-

sors we use includes a variety of different volumetric shapes, namely a cone, a square based

pyramid, and a rectangular based pyramid. Considering only orthogonal placement with

respect to the floor the projection of each of these shapes becomes a disk (e.g. the “Slight
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motion detection” type from the NaPiOn series, [37]), a square (e.g. the “ATU1000C”

Series, [38]) and a rectangle (e.g. the “spot detection” type from the NaPiOn, and the

“Standard” type from the WL series VZ series [37]), respectively. Moreover, the projection

of any sensor might be affected by walls, doors or permanent obstacles around the house

depending on where the sensor is placed. Figure 3.3 presents an example where two sensors

(marked with green) with, originally, rectangular footprints (depicted with blue lines) are

restricted because of obstruction by walls (thick black lines) and doors (painted in yellow).

Some parts of the polygon fall “behind” a door and the sensor may cover these areas if the

door is open, otherwise the door restricts the sensor’s projection even further. We use the

convention of denoting the probability that a door is open by pdoor open. pdoor open translates

into probability of detection of motion in the aforementioned parts of the polygon i.e., if

the door is open. However in order to avoid complexity we set pdoor open to zero, and our

coverage model simplifies into a boolean 1 coverage model, as in Equation 3.4.

ps→o =

{

1, if o ∈ As

0, otherwise
(3.4)

In this definition o is a point in space and As is the set of points sensor s covers.

If many sensors in the set of sensors, Z, cover o, the joint sensing probability at that

specific point is [39]:

PZ
o = 1−∏

s∈Z

(1− ps→o) (3.5)

3.4 RFID Reader Coverage Model

The RFID reader coverage model we use is a directed boolean sector model (details de-

scribed in [40]). According to this model (illustrated in Figure 3.4), Φ0 is called the ori-

entational angle, ω is the angle of view, r is the sensing range and its coverage function

is given by Equation 3.6 [40]. All points lying within the sector (for example, the point

1In most cases, as in our evaluation section, this will be a “sharp” probability, i.e., either 1 or 0, but the
formulation is applicable to general coverage probabilities.
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emitted and a new unambiguous location is recognized for the person in question. In effect,

the sensing RFID reader unambiguously recognizes the person within its coverage area

and infers the corresponding person’s location. These unambiguous location inferences

will be used to disambiguate the ambiguous location inferences produced based on the PIR

sensors.

3.5 Combining PIR and RFID Localization

From the PIR motion-sensor infrastructure, the system receives a sensor event (which we

notate by SE), i.e., a binary bit-string, where each bit corresponds to a motion sensor with

value 0 when no movement is detected within the sensor’s coverage area and 1 otherwise.

Each sensor event can be translated to one (or more) active polygons, defined by the inter-

section of the coverage areas of the sensors with value 1 in the bit-string. Assuming a single

occupant, the original Smart-Condo™ location-inference method recognizes the location

of the occupant as the “center” of the smallest polygon in the overlap of the footprints of

all firing (“1”) sensors. However, when multiple different people move in the same space,

the same event may be caused by one of them moving (and the scenario is reduced to the

original single-occupant case); or all of them congregating in the same polygon; or each

of them moving in different non-overlapping areas of the active polygons causing different

subsets of sensors to fire. For a simple example, Fig. 3.5 illustrates two scenarios that

produce the same sensor event, {11}. This ambiguity can be, to some degree, resolved,

as the occupants start again moving separate from each other, adding new points to their

trajectories - some of them disambiguated by RFIDs, as we will see in the following.

Moreover, we define the possible future locations, as a circle of radius r around each

person, which covers the points that a person can reach within the next timestamp. In this

manner, the circle is a prediction of all adjacent sensors that can possibly fire because of

this individual’s movement in the next time instant, thus creating a set of plausible future

sensor readings. If the sensor readings at the next timestamp belong to the union of the

plausible next readings, the sensor event can be interpreted to recognize the locations of

all individuals based on their locations at the last timestamp; thus, for each person, the
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Algorithm 1 Extract |P | trajectories from motion sensor events

Require: |P | // number of occupants
SE = {SE j} // sensor event trace

Ensure: T // trajectories for all individuals
1: for i = 1 to |P | do

2: T i
0 ← initialTrackPoints(i)

3: end for
4: for i = 1 to |SE | do
5: r← rinit
6: f oundMatchingCombination← false
7: while ! f oundMatchingCombination do
8: for j = 1 to |P | do

9: Fi, j← f indCandidateSensorEvent(T
j

i−1,r)
10: end for

11: Ci← LogicalOR(X
|P |
k=1Fi,k)

12: for j = 1 to |Ci| do
13: if Ci, j == SEi then
14: f oundMatchingCombination← true
15: subScripts = indexToSubscript( j, |Fi,1|, |Fi,2|, . . . , |Fi,|P ||)
16: for k = 1 to |P | do

17: T k
i ← sensorEventToLocation(Fi,ksubScriptsk

)

18: end for
19: Break
20: end if
21: end for
22: if !foundMatchingCombination then
23: r← r+∆r
24: end if
25: end while
26: end for
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each individual’s actual location in space. The break statement on Line 19 considers the

first match between members of Ci and the SEi being considered, neglecting the rest of the

discovered combinations. It should be noted that this process deals with the question of

dealing with the speed of movement of the occupants in the space, assuming that we start

with a small (“conservative”) initial speed.

3.5.1 An Example

To illustrate the trajectory-extraction and error-calculation functions, consider a scenario

(see Appendix A for a detailed explanation) of two people walking in the environment.

According to Figure 3.6(a,b) occupants P1 and P2 start from two different starting points

(at t0) and walk towards each other. After they meet, each takes a separate route diverging

from each other and finally stop. Suppose that P1 is identified by an RFID reader at the

end of the path. The ground truth for the trajectories of occupant P1 and P2 is shown in

green and blue circles respectively. As they walk, they trigger a number of motion sensors

and a sequence of combined sensor events (Figure 3.7) are produced. The sensor events

are then fed to the path-extraction algorithm (described in Algorithm 1) in order to produce

unlabeled trajectories for the two individuals. The individual trajectories are shown as

connected black squares in Figure 3.6(c).

3.5.2 The Environment Model Graph

The information from RFID readers is used to annotate the occupants’ trajectories (inferred

based on PIR sensors) with the IDs of the occupants who have “likely” caused these sensors

to fire. The process is based on the directed EM Graph inspired by the “tracklet” graph of

Ivanov et al. [41]. Assume an EM Graph G(V,E); nodes in G correspond to certain events

in time: they are either (a) a starting point of an occupant (denoted as sPi,t0 , indicating the

initial position of person Pi); or (b) identifications, indicating that a person has been unam-

biguously identified through RFID events (denoted as lPi,tm showing that at time tm, Pi was

detected by the RFID that triggered the event); or (c) collisions, i.e., points not covered

by RFIDs where, based on PIR observations, a number of potential occupants may congre-
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3.5.3 Performance Metrics

The ambiguity metric indicates the extent to which a particular occupant’s trajectory has

been incorrectly inferred. It is defined as the ratio of the sum of the durations of the

collision-graph edges with non-singleton occupant sets of size `, that include the indi-

vidual’s ID, over the sum of the durations of all the edges whose occupant sets include

the individual’s ID. Therefore, each individual’s ambiguity is represented by the set APi
=

{aPi

2 ,a
Pi

3 , . . . ,a
Pi

|P |} where a
Pi

` is calculated according to Equation 3.7.

a
Pi

` =

∑e∈E,Pi∈Xe

|Xe|=`

d̄e

∑e∈E,Pi∈Xe
d̄e

∗100% (3.7)

Here d̄e is the duration of the edge e. The overall (across all occupants) ambiguity is then

calculated as the average of all individual ambiguities:

A∗ = {a∗` :
1

|P | ∑
P∈P

aP
` |`= 2,3, . . . , |P |} (3.8)

The tracking-error metric consists of a lower and an upper bound for the localization

error. Given an individual, all the segments that this individual may have traversed based on

the occupant sets of the collision-graph edges, are collected. Of those, the two paths with

largest and smallest Euclidean distance from the person’s actual path are used, respectively,

to compute the upper bound (Tracking Error Upper-bound, TEU) and the lower bound

(Tracking Error Lower-bound, TEL) error. TEU and TEL are calculated per-individual and

averaged across time.

In the example with two individuals of Figure 3.6, the EM Graph produced (Figure

3.6(d)) captures the fact that the two occupants collide with each other between t5 and

t7. Using the disambiguation based on the RFID reader information, some parts of the

trajectories are disambiguated and some remain ambiguous. Specifically, the trajectory

between times t0 and t7 is ambiguous for both individuals. The ambiguity error for each

person is (according to Equation 3.7): AP1
= AP2

= { t7−t0
t11−t0

∗ 100%}. A∗, which is the

average ambiguity and is also equal to AP1
(see Equation 3.8). According to the definition
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in Section 3.1.1, TEL and TEU are the sum of the Euclidean distances (orange lines in

Figure 3.12(a) and Figure 3.12(b), respectively) averaged across time and divided by the

number of individuals.

3.6 Problem Formulation

Our work is driven by the geometry of the indoor space and the geometry of the areas

covered by each sensor variety. We assume the existence of (and use) a heat-map of the

visitation frequency of each point in the sensed environment, as in Vlasenko et al [1].

This two-dimensional map, includes the location of the walls (W ) and obstacles (O). The

remaining points (I) have an information utility which is the probability of a person being

present at that point. Overall, the heat-map contains N points, (x1, y1, l1), . . . , (xN , yN , lN).

li indicates which group, W , O or I the point belongs to.

The objective of our method is, given k (k > 1) individuals present in and moving

around the environment, to reduce the error in inferring the location of each individual in

the space at any point in time. The error we aim to minimize is TEU (details described in

Section 3.5.3), or in mathematical terms:

min E(T EU) (3.9)

Although minimizing the overall ambiguity error (i.e., min E(A∗)) could also be pur-

sued as an objective function, we do not think that it is an explicit expression for RFID+PIR

placement determination. This is because, E(A∗) (unlike E(T EU) which is expressed as

Euclidean distance) is sensitive to the number of tracked individuals (as will be shown in

Section 5.3) and even if it is large it could respond to a small, practically speaking, error in

terms of locations.
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Chapter 4

PIR Sensor Placement

4.1 Introductory Background

In this chapter we focus on an orthogonal aspect of the problem, expanding the problem

formulation presented in [1] to include the various sensor footprints (from a finite set of

footprints) and to determine the optimal number of sensors (not just their placement). The

immediate implication of this more general problem formulation is a significantly enlarged

search space, due to increased number of possible combinations of placements and foot-

prints. We address the increase in complexity using GAs. Evolutionary methods, based on

GAs, are frequently employed to explore large problem spaces in order to identify high-

quality solutions. Our sensor placement problem naturally belongs to this category. The

main reasons behind choosing the GA over other traditional search methods are: (a) in

this problem formulation there are multiple local optima, (b) the number of parameters is

large and (c) it supports multiple objectives. The GA technique elaborated in this thesis

outperforms the greedy algorithm in [1] in two different aspects. First it efficiently delivers

placements with acceptable coverage accuracy. For example, we have noted that it reaches

94% coverage after just 50 seconds of execution on an off-the-shelf personal computer.

Second, it delivers placements with higher-accuracy when efficiency is not a factor. It is

able to eventually reach coverage of 100, whereas the greedy algorithm can do no better

that 98%.

31



4.2 PIR Sensor Placement Methodology

GA solutions are represented as a population of chromosomes, where each chromosome

consists of genes. In our model, the genes are a sensor’s type and its (x, y) location. In each

evolution, new, and hopefully improved, solutions are developed by applying a number

of different operators on the population. The criterion for deciding whether a particular

chromosome is better than another is defined through a fitness function, also known as the

cost function. The classical GA methodology that we use defines the following steps:

– Start: Generate an initial random population of chromosomes representing potential

problem solutions, which in our case is sensor combinations. Section 4.2.1 discusses

the encoding of sensor placements as chromosomes and the construction of the initial

population.

– Loop: Create a new population by:

– selecting a percentage of the current population as parents, and performing

crossover to produce new offsprings,

– performing mutation of the new offsprings,

– applying elitism, i.e., including the new offsprings in the new population but

reducing the population to its original size, keeping only the best solutions for

the next iteration.

Section 4.2.2 discusses the process of population renewal.

– Termination Check: If an end condition has been reached,

– return the best solution in the current population,

– else, go to Loop.

Section 4.2.3 discusses the termination conditions of our method.

We note that the GA methodology requires a number of parameters for its configuration,

which must be designed taking into account the specifics of the problem domain. A list of

these parameters is given in Table 4.1.
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Table 4.1: GA parameters.

Parameter Description

m Population size

u Number of children produced
in each iteration

n Number of sensors in each
initial chromosome

max Maximum number of sensors
that each solution can have (‖
K ‖)

pc The probability of crossover
for the parents

pm The probability of mutation
on each child

l Number of iterations for the
whole process

4.2.1 Chromosome Encoding

Each chromosome in the population contains a number of genes. In the context of our

sensor placement problem, genes are sensors with coverage models introduced in Section

3.3. Each gene also carries information about the corresponding sensor’s type (thus its

footprint) and its location in space. Upon initialization, the type of the gene is selected ran-

domly, with a uniform distribution, between all available sensor types (i.e., circle, square

or rectangle) considering various orientations as different types. The location of each gene

is also chosen according to a uniform distribution amongst all points in space.

A chromosome can be represented by a set of sensors as follows:

C : {s1,s2, . . . ,s‖C‖} (4.1)

By combining equation 3.5 and 3.4, we can conclude that PC
o = 1 whenever there is at

least one sensor in C that covers o.

In order to evaluate the performance of a solution found by the genetic algorithm, we

divide the chromosome’s collective information gain (calculated according to Equation 4.2)

by the summation of positive coverage utility values. This will give a metric that we call
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the coverage percentage metric, formulated as follows:

λC =
∑N

i=1(P
C
i .ci)

∑N
i=1
ci≥0

(ci)
∗100% (4.2)

In the Start step, we have to create the initial population for the algorithm to use as its

first evolution. This is done by randomly creating m chromosomes, i.e., sensor placements.

The initial length of the chromosomes must be set to a value less than or equal to a user-

specified upper bound called max i.e., (n≤ max).

4.2.2 Selection, Crossover, Mutation and Elitism

To produce children two parents must be selected for a crossover procedure. The parents

are chosen randomly from the population, according to a selection percentage also known

as the crossover probability, (pc). For example, if the population consists of 100 chromo-

somes, and pc = 0.2, then approximately 20 parents are randomly chosen to participate.

From the chosen parents, two parents are randomly selected to create two children. A

second parameter, u, decides the total number of children that will be produced in each

iteration. We continue the procedure until we have all u children.

We use the “cut and splice” crossover method [42]. In this method, the crossover point

for each parent is chosen separately and randomly. As shown in Figure 4.1, the first part of

the first parent and the second part of the second parent are used to construct the genes in

the first child, and the rest construct the second child. Figure 4.1 shows how cut and splice

is performed to produce two children from two parents. This crossover method leads to

offsprings with different chromosome lengths, which in our case implies different numbers

of sensors placed. As we are seeking the number of sensors to use, as well as the sensor

locations, this method helps achieve this. In addition, throughout the whole process of the

GA, chromosome lengths must remain less than or equal to max.

Once u children chromosomes have been produced through the parent-population crossover,

according to the mutation probability (pm), they might be mutated. The chromosome mu-

tation operation that we use in our experiments is called a uniform mutation [42], which
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4.2.3 The Termination Criterion

In principle, the evolutionary process terminates if (a) the maximum number of iterations

or execution time has been reached, or (b) the average fitness of the population does not

change over a certain number of evolutions, or (c) 100% accuracy is achieved. When the

genetic algorithm terminates, the best solution in the current population is returned as the

final solution.

4.3 PIR Sensor Placement Evaluation

The evolutionary process described above is controlled by the parameters listed in Table

4.1. As it is a convention for users of evolutionary algorithms, parameter tuning needs

to be performed based on experimental comparisons on a limited scale [43]. We follow

this requirement by fine-tuning the GA model parameters on a simple artificial scenario.

In the heat-map of Figure 4.2, the overlapping footprints of four sensor types are shown.

The different footprint shapes correspond to different sensor types; the first type projects a

square footprint (edge = 175 points); the second type projects a disk (radius = 100 points);

and the third and fourth type are two different oriental (0◦ and 90◦) footprints of a rectangle

(length = 200 and width = 150 points). The darker the colour, the higher the significance

of the area, i.e., the higher the utility of the area. The environment shown in this simple

heat-map consists of 6 different regions to be covered by the sensors, and the ideal solution

should place exactly 6 sensors of the right types in exactly the right locations. Given this

desired solution, we proceeded to identify the parameter configuration that results in the

solution at hand.

Because of the implicit randomness of the evolutionary GA process, we cannot predict

the exact resulting amounts for coverage percentage. So, the experiments 1 conducted in

this section are tested multiple times (i.e., 50 times), and the average is taken.

To configure the algorithm parameters, we started by optimizing pc, with the following

initial settings: m = 50, n = 10, u = 50, l = 50 and pm = 0.2. Figure 4.3 shows how the

coverage percentage changes for different values of pc. Lower pc values result in lower

1All experiments are run on Mac OS X, Processor: 1.7 GHz Intel Core i5, Memory: 4 GB 1600 MHz
DDR3, platform: Java.
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heat-map is 629×1060 points and for the ILS it is 573×651 points. Moreover, the value

of cmax is set to 4 while producing these heat-maps. It is noteworthy that the data reported

throughout the remainder of this section for the GA is the average of 10 runs.

The comparison methodology here is to first see how the greedy method is preforming

with a designated budget of sensors and mark its coverage percentage (calculated using

equation 4.2) for that budget as the “desired accuracy”. After that, we give the GA the

same budget and see how fast we can achieve coverage percentages higher than or equal to

the desired accuracy.

In the first experiment conducted, we only use one type of sensor footprint, the rectan-

gle. Say the budget for covering the ILS is 15 sensors, we would like to know how much

coverage each method achieves having this budget. It turns out that greedy can get 81.48%

coverage percentage in 466.7 seconds. This value becomes our desired value, that the GA

aims to reach. The GA can achieve this accuracy in just 41.5 seconds on average.

Now, let us use a sensor set consisting of more than one type of sensor. In the second

experiment we will use a budget of 5 squares, 5 disks, and 5 rectangles (all with the same

sizes as before). The same procedure as in the first experiment is adopted to fill tables 4.2

and 4.3 which show the results for both methods when dealing with heat-maps 3.1 and 3.2,

respectively. In addition, we record the fitness (calculated according to Equation 4.3) of

the solution as well as the average and standard deviation of chromosome fitness in the

population in which that solution was found (namely solution cost, average cost, and cost

STD).

Table 4.2: Comparison of different methods in the Smart-Condo™ layout.

Desired Greedy GA

Accuracy(%) nos2 time(s) nos time(s) Average Cost Best Cost σ of Cost

74.29 10 3725 10 185 11933.41 12104.76 49.73

76.82 11 4231 11 275 12744.75 12873.20 44.36

79.93 12 4622 12 391 13313.95 13450.34 53.05

83.69 13 5023 13 387 14401.83 14488.54 47.51

84.50 14 5380 14 372 14389.32 14467.30 45.90

85.25 15 5572 15 348 14453.41 14595.90 51.05
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Table 4.3: Comparison of different methods in the ILS layout.

Desired Greedy GA

Accuracy(%) nos time(s) nos time(s) Average Cost Best Cost σ of Cost

72.45 10 643 10 56 2442.19 2487.82 16.55

73.77 11 741 11 35 2313.08 2432.68 34.65

76.80 12 837 12 52 2433.45 2504.76 22.44

77.60 13 912 13 62 2461.45 2529.08 26.86

79.43 14 967 14 58 2442.21 2557.78 31.65

80.80 15 996 15 50 2406.02 2524.48 28.05

According to these tables, the GA reached the desired accuracy checkpoint with the

same budget of sensors in considerably less time. Comparing the results from experiments

one and two, we notice that increasing sensor types affects the greedy’s time consumption

substantially, while increasing the GA’s only slightly.

The GA can continue beyond this point and find even better solutions which brings us

to our third and final experiment. In this experiment, again we get back to only having 15

rectangles and want to see how much accuracy we can achieve if we let the GA consume

the same amount of time that the greedy has used. The GA reaches an average coverage

percentage of 83.55% and shows its superiority when it comes to hitting high accuracy, too.

2Number of sensors.
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Chapter 5

RFID Reader Placement

In the previous chapter we have explained the work in [1] via a GA formulation to general-

ize the placement for PIR sensors with a variety of footprints. Next we determine the RFID

placement driven by our min E(T EU) objective introduced in Chapter 3.

5.1 The Skeletonization Process

The RFID readers have to be judiciously placed in order to provide ample (frequent) op-

portunities for RFID reader data to be acquired. At the same time, the number of RFID

readers is typically limited due to their cost and awkward placement requirements. Poor

placements may lead to undesirably high ambiguity (defined in 3.1.1). To avoid this situa-

tion, we use the skeleton of the heat-map (Figure 5.1(c)). The heat-map skeleton is derived

through a two-step process, involving (a) thresholding, and (b) iteratively thinning the bi-

nary values created by the thresholding process. The first step uses a configurable threshold

value τhm to separate significant intensities (i.e., really frequently traversed areas) from less

important information in the heat-map (0 for less than τhm, and 1 otherwise). The newly

created binary map is subsequently iteratively run though a thinning process until thinning

no longer changes the result (more details on the algorithm can be found in [44–47]). The

output of this skeletonization process represents a useful insight about the most likely paths

chosen by the occupants in a long run. It is a means of capturing the “thoroughfares” of the

occupants’ movement through the space.

Having the skeleton, a pruning step is performed to remove short branches and cy-
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In the score function, parameters α and β are user specified parameters showing pref-

erence between the volume and distance factors. Larger values of α in comparison to β

puts emphasis on the volume factor rather than the distance factor, and vice versa. We

conducted simulation experiments to determine the right mix of α and β exponents, which

we report in the simulations section.

If h is the number of RFID readers available for placement, our process iterates h times,

placing one reader at a time on the basis of the highest value of F . For the first location to

be selected, the score function is considered to only be Hv.

A technicality of the solution derived is that it selects points that can be “unnatural” for

mounting an RFID reader; i.e. far from a power source or not on a wall. Hence a post-

processing step is used to satisfy such practical constraints. Namely, the mounting point

for each RFID reader is a point in W that is closest to the point chosen by the score-based

heuristic (considering normal orientation against the wall). Based on the distance between

the mounting point and the chosen location, the reader’s minimum transmission power may

have to be adjusted to ensure proper coverage.

5.3 RFID Reader Placement Evaluation

We produced a number of test cases simulating different numbers of occupants moving in

the Smart-Condo™ . Different activities in the environment can be taken into account as

daily routines. Using the oven, going to the bathroom, sleeping on the bed etc. are exam-

ples of daily routines that can be performed by any of the occupants involving movement

to particular AoIs. In total, we considered 14 such activities, and we simulated the move-

ment of the occupants assuming that each occupant randomly chooses three activities out

of the 14 possible. Upon reaching a destination the occupant pauses by an average time of

10 seconds and then continues moving towards the next destination. On average, for each

occupant to complete their tasks, a time span of approximately 45 seconds is considered.

It is note worthy that the initial location of the occupants are completely random and there

may be cases where multiple occupants start from the same starting point. Although deter-

mining a fixed destination (i.e., the entrance door) as every occupant’s starting point can
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be accommodated in our system (a realistic scenario where all occupants enter the house at

the same time and then the rest of their activities are pursued), we decided to look at events

happening during a specific period of time while all occupants are present and active in

the environment. Also, we do not have any control over the number of collisions that may

occur, and this too, is random in nature.

Within the simulated Smart-Condo™ we conducted experiments for k = 2, k = 3 and

k = 5 occupants. First, the motion sensors were placed according to [1], which provided an

optimal solution consisting of 11 PIR sensors. Using PIR sensors alone results in ambigu-

ous trajectories when used for more than one inhabitant. Over all the generated test cases,

20%, 3%, 0% and 0% included no collisions when, respectively, 2, 3, 4 and 5 occupants

were simulated. The small fraction of collision free tracks for 2 (and to a lesser extent for

3) individuals is because in small enough groups, even though the paths of the individu-

als intersect, they are not necessarily at the same point at the same time (what we term a

“collision”) hence the problem is less complicated, but this fraction quickly diminishes as

k increases.

Next, and in order to evaluate our RFID reader-placement method, we compare it

against an “expert” manual placement and a random one. The manual placement could

be the product of someone with basic knowledge on how RFID sensors work and their role

in location inference, but designed “naively” aiming to cover (to the degree possible) the

entire space with readers. With a limited budget of RFID readers, the manual placement

will first try to place at least one reader in every room (although the point of attachment can

be random as long as it’s facing “inside” the area it covers). The placement for the manual

placement is depicted in Figure 5.4. For the randomized placement for the number of RFID

readers in budget, points within with a non-zero utility score in the heat-map were randomly

chosen. Then, the closest wall to each point is found and the RFID reader’s mounting point

is determined (similar to finding mounting points for the tree-based method). We simulated

and report on the average of 10 randomized placements.

We compare all three methods in terms of their tracking and ambiguity errors. We set

τhm = 2, α = 1, β = 2, and r = 100cm (∆r = 1cm). In the first set of results the num-

ber of RFID readers is set to 5. The results are averages of 100 simulation runs for each
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that arise then.

Table 5.1: Comparison of RFID-placement methods (h = 5)

Tree-based Manual Random

k=2

a∗2(%) 2.959 3.127 3.302

TEU(m) 0.610 0.611 0.614

TEL(m) 0.608 0.608 0.608

k=3

a∗2(%) 7.224 7.540 8.155

a∗3(%) 0.379 0.681 0.836

TEU(m) 0.755 0.780 0.825

TEL(m) 0.702 0.706 0.715

k=5

a∗2 (%) 9.144 9.382 10.015

a∗3 (%) 5.048 6.234 9.860

a∗4 (%) 3.206 3.039 3.599

a∗5 (%) 1.186 1.516 1.643

TEU(m) 1.691 1.769 2.202

TEL(m) 0.847 0.882 0.920

Table 5.2: Impact of different number of readers (h) in the presence of 3 people.

h
Tree-Based Manual Random

TEU(m) TEL(m) TEU(m) TEL(m) TEU(m) TEL(m)

3 1.098 0.763 0.865 0.720 1.228 0.780

4 0.795 0.709 0.818 0.712 0.922 0.728

5 0.755 0.702 0.780 0.706 0.825 0.715

6 0.732 0.698 0.732 0.698 0.769 0.706

7 0.731 0.698 0.697 0.695 0.734 0.699

5.4 Tagging and Marking

Depending on the user’s requirements, tracking information for one person (usually the

patient) or all individuals in the environment may be needed. In the former case we say

that the patient is marked, and in the latter everybody is marked. Based on who is marked
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and who is tagged we will consider four interesting scenarios that are most likely to happen

in an assistive ambient living setting.

All individuals are tagged and the patient is marked: In this case, everybody in

the smart environment is wearing their tag and tracking information for the patient is

desired. Here, the RFID reading from all tags contribute in resolving ambiguity and

reducing tracking error.

The patient is the only person un-tagged and marked: This case may happen

when the patient is reluctant to wear his/her tag (because of personal reasons). In

order to achieve a decent amount of tracking information about the patient, care

providers (or other individuals present in the environment except the patient) are

asked to ensure they carry their own tag.

The patient is the only person tagged and marked: In this scenario, for practical

reasons people coming in and going out for the smart space may not be able to wear

tags. This means that only the patient’s tag reading are used for tracking purposes.

No one tagged or marked: For comparison, we also consider a case where no in-

formation is provided from the RFID infrastructure. In the event of a system failure

(i.e., tags not communicating with the readers) an estimate of the best case and worst

case tracking errors are reported. In this case it is trivial that the ambiguity for all

paths at any time remains equal to the maximum value possible (which is k).

In the experiment regarding different tagging scenarios we utilize a similar setting but

fix the number of RFID readers to 5.

Table 5.3: Comparison of different tagging scenarios.

k
No one Everyone Only Patient All but Patient

TEU(m) TEL(m) TEU(m) TEL(m) TEU(m) TEL(m) TEU(m) TEL(m)

2 3.650 0.579 0.580 0.579 0.624 0.579 0.619 0.579

3 4.809 1.217 0.769 0.710 1.882 0.846 2.236 0.938

5 5.737 1.217 2.226 0.932 5.230 1.171 4.534 1.213

53



It is noteworthy that in Table 5.3 the only marked person is the patient since most of

the time only the patient’s tracking information in needed. As expected, the case where all

occupants are wearing their tags results in much less error than any other scenario. On the

contrary, if the occupants do not wear their tags the amount of error will increase rapidly to

the point that localization is useless. The result for cases where only the patient is wearing

their tag, and when all but the patient are tagged are close to each other for the number

of occupants we have chosen here, but we suspect as this number increases, tracking error

would be more in the former case. This is because the number of collisions with un-tagged

people increases rapidly in the former causes increased confusion, whereas in the latter, the

abundance of useful information coming from the tagged k−1 occupants helps reduce the

tracking error.

5.5 Effect of Realistic RFID Coverage Models

Although the coverage model presented in Equation 3.6, is a standard coverage model

for RFIDs used in the literature, in reality this shape is quite different. Practically, when

using and RFID reader, coverage patterns similar to Figure 5.5 is expected. Because of this

dissimilarity in shape, false negatives (presence in the ideal, i.e., excepted, coverage region

and not being detected due to a non-ideal coverage pattern) and false positives (presence

outside of the ideal coverage area and unexpectedly begin detected), may occur. We would

like to investigate how non-ideal coverages can affect the localization and ambiguity error.

In order to accommodate this in our simulations we will replace the Boolean Sector

model presented in Section 3.4 with a model that has a main lobe, two side lobes and a

back lobe, ensuring that the overall area of the two models are equal. In the form of an

experiment we study the difference in TEL and TEU when this replacement is done. The

realistic coverage model is depicted in Figure 5.6.

In our experimental setup we use the discussed tree-based method and set k = 2 and

h = 5. For the Realistic model the r is set to the same radius as the Boolean Sector, and

ω = 40◦.

According to Table 5.4, since the Realistic model has lost some coverage area in the
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Table 5.4: Comparing the Boolean Sector and Realistic coverage models

Model a∗2(%) TEU(m) TLU(m)

Boolean Sector Model 3.002 0.580 0.579

Realistic Model 3.068 0.611 0.608

side and back lobes, the average localization error for this model has increased, but by little.

The reason for this is because useful coverage which normally is expected in front of the

RFID reader, is diminished, and is being replaced by areas that are less likely to cover a

person and benefit the localization process (i.e., occupants do not tend to walk too close to

the walls). We expect that as the number of side-lobes increases and the area of the main

lobe is reduced, the localization error with increase.
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Chapter 6

Conclusions and Future Work

6.1 Conclusion

In this thesis we described, simulated, and evaluated an indoor multiple-person tracking

system. Using passive infra-red motion sensors and RFID based technology we were able

to improve localization accuracy for a number of occupants in a smart environment.

In order to get the most out of the PIR sensor, we first discovered the best placement

for a subset of the available sensors through an optimization process. Because of the vast

searching space introduced by multiple shapes, and a numerous possible locations, we

adopted a genetic algorithm. Compared to a sequential design with a similar problem

formulation, we showed that the proposed method works more efficiently and considers

minimal number of sensors used. After that, PIR sensors are utilized to infer the locations

(and trajectories over time) where the occupants are likely to be, but the inevitable collision

of two or more people does not allow proper disambiguation of these paths. For that, we

have used RFID readers along with tags that are worn by the occupants indicating their

unique ID. As soon as an occupant is identified by a reader, our knowledge of “who-is-

where” is improved, and path labelling (indicating which resident is currently on which

path) is performed.

We also, proposed a heuristic for RFID reader placement aiming to cover areas of the

space that are frequently visited, central and therefore likely to be the locations of multiple

individuals’ colliding - resulting in ambiguous location inferences. Our simulations demon-

strate that our RFID placement method favorably compares against random placements as
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well naive manual placements aiming to simply cover the whole space. Furthermore, con-

ducting simulations for scenarios with certain practical limitations reveals the flexibility of

our method upon implementation.

Overall, experimental results suggest that our placement methodology and localization

algorithm may eventually replace the time consuming and hard work of manually selecting

locations for sensors (and selecting their appropriate type) in an indoor environment setting.

6.2 Future Work

In future work we will focus on more comprehensive disambiguation objectives. More

specifically, we will emphasis on the coverage of AoIs; since these locations are where

occupants spend most of their time.

An interesting direction for future could be to study scenarios where one or more sensor

simply stop working. This failure may be due to battery outage, disconnection, chip mal-

function, etc. and although very rare, but might happen. We would like to investigate how

well our system performs under such circumstances, and whether it is possible to improve

fault-tolerance by considering it as a factor in our placement optimization.

A known limitation of our system is that the deployment planning for PIR sensors and

RFID readers are two consecutive steps. Ideally, our system should be able to optimize both

placements at the same time. In that way, RFID reader footprints can be placed to cover

high traffic areas (where they prove to be more efficient for disambiguation and localization

purposes), allowing the PIR sensors to focus more on the blind spots outside of the daily

routines, rather than overlapping redundantly.

In future we will further expand our experiments to include real-life trails over a short-

period of time. We would like to compare our simulator localization error with that of the

real network when a real patient is using the smart house. Apart from testing and comparing

the localization error we may look into differences between the developed system and the

real world: are the mobility models similar? Have we correctly simulated pause times? Are

there any problems associated with mounting the sensors; do we have to consider them in

future placement solutions?
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Chapter 7

Glossary and Acronyms
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Acronyms

DR Dead Reckoning. 9

EM Graph Environment Model Graph. 5, 10, 11, 21–23, 28, 72, 73

GA Genetic Algorithm. 8, 11, 12, 31–34, 36, 40–45

GGA Generalized Genetic Algorithm. 8

GPS Global Positioning System. 3

IMU Internal Measuring Unit. 9

OSP Optimized Sensor Placement. 7, 8

PIR Passive Infra-Red. 1–6, 8–11, 15, 18, 19, 22, 23, 30–32, 36, 45, 50, 58, 59

PSO Particle Swarm Optimization. 8

RFID Radio Frequency IDentification. 1–6, 8–12, 16–18, 22, 23, 28, 30, 45, 47, 49–55,

57–59, 62, 63

RSS Received Signal Strength. 9

SHM Structural Health Monitoring. 8

WSN Wireless Sensor Network. 1
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Glossary

ci Coverage utility value at point i. 15

cmax Maximum desired overage score. 15

δ Minimum distance to consider two occupants collided. 12

d(o,z) Euclidean distance between RFID reader o and point z. 17

go→z Coverage function of RFID reader o at point z. 17

Hv Sum of the weights of the edges that are attached to v, where an edge weight represents

the traversal frequency of that edge and is calculated as the cumulative heat within a

certain proximity with all spatial points on that edge. 47

I Points in the heat-map that are not walls or permanent obstacles. 28, 30

k Number of occupants. 12

N Number of spacial points in the heat-map. 15, 30

O Points in the heat-map representing permanent obstacles. 28, 30

P The set containing all occupants. 12

Φ0 Orientational angle of an RFID reader. 16, 17

Φz Orientational angle between the spacial point z and an RFID reader that is covering it.

17
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pdoor open Probability of a door begin open. 16

PZ
o Probability of detecting an individual at point o by the motion sensors in the set Z. 16

ps→o Coverage function of motion sensor s at point o. 16

r Sensing range of an RFID reader. 16

T Pi Trajectory of person Pi, which is a sequence of lPi,tm . 12

vi Heat-map value at point i. 15

W Points in the heat-map representing walls. 28, 30, 49

ω Angle of view of an RFID reader. 16, 17, 55

Z A set of motion sensors. 16
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Appendix A

Extended Example

In this section we will explain the details of the example brought in Section 3.5.1. As the

two occupants in this example move in the environment they are detected by the PIR sen-

sors and sensor events are generated. During system runtime a sequence of these sensor

events are produced, and as a post-processing step the extraction algorithm (Algorithm 1)

attempts to derive exactly |P | = 2 trajectories for the two present individuals. Let us go

through each timestamp in the system and present important parameters: (we consider one-

based indexing for the sets)

At time t0 (see Figure A.1):

At the beginning of the process the known locations of each occupant is added to their

trajectory: T 1
0 = locP1,t0 and T 2

0 = locP2,t0 . Where loc contains the ground truth locations.

At time t1 (see Figure A.2):

sensor event: SE1 = 100100000

candidate sensor events: F1,1 = {000000000,100000000}, F1,2 = {000000000,000100000}

logical OR of the Cartesian product: C1 = {000000000,000100000,100000000,100100000}

matching combination: C1,4, subScripts : {2,2}

point added to trajectory: T 1
1 = centerO f Mass(100000000),

T 2
1 = centerO f Mass(000100000). The centerO f Mass function returns the central coordi-

nates of the smallest intersecting polygon driven from the sensor event.
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At time t2 (see Figure A.3):

sensor event: SE2 = 100100000

candidate sensor events: F2,1 = {100000000}, F2,2 = {000000000,000100000}

logical OR of the Cartesian product: C2 = {100000000,100100000}

matching combination: C2,2, subScripts : {1,2}

point added to trajectory: T 1
2 = centerO f Mass(100000000),

T 2
2 = centerO f Mass(000100000).

At time t3 (see Figure A.4):

sensor event: SE3 = 110100000

candidate sensor events: F3,1 = {110000000}, F3,2 = {000100000}

logical OR of the Cartesian product: C3 = {110100000}

matching combination: C3,1, subScripts : {1,1}

point added to trajectory: T 1
3 = centerO f Mass(110000000),

T 2
3 = centerO f Mass(000100000).

At time t4 (see Figure A.5):

sensor event: SE4 = 011100000

candidate sensor events: F4,1 = {010000000,110000000},

F4,2 = {001000000,001100000}

logical OR of the Cartesian product: C4 = {011000000,011100000,111000000,111100000}

matching combination: C4,2, subScripts : {1,2}

point added to trajectory: T 1
4 = centerO f Mass(010000000),

T 2
4 = centerO f Mass(001100000).
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At time t5 (see Figure A.6):

sensor event: SE5 = 011000000

candidate sensor events: F5,1 = {011000000},

F5,2 = {001000000,011000000}

logical OR of the Cartesian product: C5 = {011000000,011000000}

matching combination: C5,1, subScripts : {1,1}

point added to trajectory: T 1
5 = centerO f Mass(011000000),

T 2
5 = centerO f Mass(001000000).

At time t6 (see Figure A.7):

sensor event: SE6 = 001010000

candidate sensor events: F6,1 = {001000000},

F6,2 = {001000000,001010000}

logical OR of the Cartesian product: C6 = {001000000,001010000}

matching combination: C6,2, subScripts : {1,2}

point added to trajectory: T 1
6 = centerO f Mass(001000000),

T 2
6 = centerO f Mass(001010000).

At time t7 (see Figure A.8):

sensor event: SE7 = 001010000

candidate sensor events: F7,1 = {001010000},

F7,2 = {000010000,001010000}

logical OR of the Cartesian product: C7 = {001010000,001010000}

matching combination: C7,1, subScripts : {1,1}

point added to trajectory: T 1
7 = centerO f Mass(001010000),

T 2
7 = centerO f Mass(001010000).

73







At time t8 (see Figure A.9):

sensor event: SE8 = 000010100

candidate sensor events: F8,1 = {000010000,000010100},

F8,2 = {000010000}

logical OR of the Cartesian product: C8 = {000010000,000010100}

matching combination: C8,2, subScripts : {2,1}

point added to trajectory: T 1
8 = centerO f Mass(000010100),

T 2
8 = centerO f Mass(000010000).

At time t9 (see Figure A.10):

sensor event: SE9 = 000001100

candidate sensor events: F9,1 = {000000100},

F9,2 = {000001000,000011000}

logical OR of the Cartesian product: C9 = {000001100,000011100}

matching combination: C9,1, subScripts : {1,1}

point added to trajectory: T 1
9 = centerO f Mass(000000100),

T 2
9 = centerO f Mass(000001000).

At time t10 (see Figure A.11):

sensor event: SE10 = 000001110

candidate sensor events: F10,1 = {000000010,000000110},

F10,2 = {000001000}

logical OR of the Cartesian product: C10 = {000001010,000001110}

matching combination: C10,2, subScripts : {2,1}

point added to trajectory: T 1
10 = centerO f Mass(000000110),

T 2
10 = centerO f Mass(000001000).
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