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I met a traveller from an antique land,

Who said - ”Two vast and trunkless legs of stone
Stand in the desert . . . Near them, on the sand,
Half sunk, a shattered visage lies, whose frown,
And wrinkled lip, and sneer of cold command,
Tell that its sculptor well those passions read
Which yet survive, stamped on these lifeless things,
The hand that mocked them, and the heart that fed;
And on the pedestal, these words appear:

'My name is Ozymandias, King of Kings,
Look on my Works, ye Mighty, and despair!’
Nothing beside remains. Round the decay
Of that colossal Wreck, boundless and bare
The lone and level sands stretch far away.
Percy Bysshe Shelley (1792-1822)



Abstract

The K-Nearest Neighbours method was one of the first attempts to get computers to
do pattern recognition. However, the computational costs were at the time very high
and computer scientists looked for alternatives to speed up the computations.

In this thesis, we show that the K-Nearest Neighours approach is still a powerful
tool. By using some of the enhancements that have been developed by other scien-
tists and by adding a twist of our own, we take the KNN and transform it from a
classification tool into a tool that can perform regression. We show that it performs
at least as well as KNN in its original use as a pattern classification tool, and then
we go on to explore its effectiveness doing regression.

Once we are satisfied that K-Nearest Neighbors with weighted linear Regression
is effective in learning regression problems, we attempt to use it in conjunction with
ALNs to meld the accuracy of KNNR with the speed of the ALNs. We then use
KNNR on a difficult real world data set and see how well it performs.
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Chapter 1

Introduction

People learn things every day of their lives. For most of us, the learning process
occurs without conscious effort and yet, for something so simple, we have a great dga.l
of trouble understanding how this process actually works.

A number of years ago the question arose as to whether or not computers could
be “taught” to learn like humans do. The idea was (and is) that if we could get
computers to learn it would shed light on how humans learn and simultaneously
broaden the usefulness of the computer. In the past few decades many attempts have
been made to get computers to learn with varying degrees of success.

One of the key parts of the human learning process is the recognition of patterns.
Humans have an incredibly powerful ability to identify patterns in the world around
them and make use of them to predict further behavior, often only by observing
a handful of examples. People use pattern recognition to recognize faces, repair
motorcycles, spot approaching rainstorms, and identify makes and models of cars. A
lot of effort has been made to try to get computers to do the same thing, that is, learn
the patterns in the data presented to them and use them to predict future events or
determine a classification or output.

Pattern Recognition, whether human or computer, is the process of discovering
relationships in a set of data and making use of those relationships to predict missing
or unknown quantities. A simple example should illustrate some of the key ideas.

Bankers regularly have to decide who to give loans to and who not to give loans to.
The decision is a complicated one based on a number of factors. They use information

such as how much money the applicant has in the bank, how many payments the



applicant has missed or been late on, how big the loan is, what the loan is going to
be used for, how much collateral the applicant has, whether the applicant is married
or not, how old the applicant is, how much income the person makes per year or per
month, and many other such factors. Some factors are very important, other less so.
To take all of these factors into account and to exhaustively list what to do in each
possible case is impossible. Instead, the banker has some guidelines to work from.
People who miss payments are less likely to get a loan than people who make all of
their payments on time. People with little money in the bank are less likely to get a
loan than people who have more money, and so on. The banker also looks at certain
combinations, like the total income of a married couple minus their monthly expenses.
Finally, the banker has his practical experience to draw on. He knows that in certain
cases a loan was granted and it was a good decision, in others it was a bad decision,
and in others a loan application was rejected. By finding the example or examples
that are similar to the current situation and recognizing the pattern those examples
contain, he draws upon his past experience to finally decide to give the loan or not.
There are many ways to look at the different factors involved in deciding whether
to grant a loan. If there was only one way to combine the information to get the
answer we wouldn’t need to use pattern recognition to solve it, but there are many
different ways of using the information presented to us. The hard part, and the part
that makes computer pattern recognition a difficult and interesting area of study, is

to find the most effective way of using that information to draw conclusions.



Chapter 2

Pattern Recognition Background

Pattern Recognition is a large field. So large, in fact, that it is beyond the scope of
this thesis to provide an exhaustive list of all of the different tools and algorithms that
do Pattern Recognition. Instead, we will present some basic background material on
Pattern Recognition and then talk about some of the algorithms and their strengths
and weaknesses. Before we talk about particular methods of pattern recognition we

should discuss some issues that are common to all pattern recognition methods.

2.1 Common Pattern Recognition Issues

2.1.1 Classification and Regression

Pattern Recognition problems come in all shapes and sizes, but almost all of them
are looking for some sort of answer. Whether the answer is a class, like the grade of
a certain piece of beef, or a decimal number, like the magnitude of an earthquake,
determines the type of pattern recognition tools that can be applied. Pattern Recog-
nition techniques can be used for both of these problems, but they tend to break
down into two groups.

The first group of pattern recognition techniques are classification problems. Clas-
sification problems are those for which the output is one of a small range of possibil-
ities, like the bank loan question (yes and no being the classes) or the beef quality
question (which could have three classes). Classes are often numbered 0 through n-1
and are usually independent - which means that class 0 is no closer to class 1 than
class 7. Classification is often the simpler of the two problems, since the output range

is discrete and thus computationally more tractable.
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The second group of pattern recognition techniques are called regression problems.
A regression problem is a problem for which a real-valued or continuous value is
expected. Problems such as temperature prediction, speed estimation, and electrical
power load prediction are all regression questions. Regression techniques are often
more difficult to analyze than classification techniques, as the error functions are
generally more complex. We will look at both types of techniques in Section 2.2.

These two groups of methods - classification methods and regression methods - do
have some overlap. However, pattern recognition tools often concentrate on one type
of problem or the other. A tool that is good at dividing a data set into one of four
classes or sets may have very different methods and ideas than a tool that outputs a

temperature or a probability that has continuous values.

2.1.2 Speed vs Accuracy

Different pattern recognition techniques have different goals. The trade-off that has
been given the most attention in the pattern recognition literature is between speed
and accuracy.

Early on in the theory of pattern recognition it was realized that by sacrificing the
accuracy of the technique one could get a much faster tool. This speed up is usually
accomplished by sacrificing the amount of information stored by the system, since the
less information you have the faster it is to process. There is emphasis on both sides
of the issue, but a lot of the work has focused on the idea that faster is better, and
that sacrificing some accuracy is preferable if it results in greatly increased speed.

However, this author believes that the speed of the predictor is of much less
interest than accuracy. With the constant increase in speed of modern computers,
the speed of an algorithm is becoming less and less of an issue. We do not wish to say
that speed is unimportant. However, it is important to note that we see this issue of
speed vs accuracy from the viewpoint that accuracy is the most important metric of
a pattern recognition technique’s success. Only when two techniques give the same
or nearly the same accuracy is speed of importance, so long as the technique can
produce results in reasonable time. Certainly we are not ignoring speed completely
- clearly an algorithm that runs in time exponential to the size of the input space is

simply too expensive for any reasonable size of input - but for the purpose of this
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thesis, an algorithm shall be said to run in reasonable time if the time is polynomial

in the size of the input space. As long as the algorithms run in reasonable time we

shall concentrate on their predictive accuracy.

2.1.3 The Curse of Dimensionality

More is not always better. This is particularly true in the field of pattern recognition.

When we talk about the input to a pattern recognition system there are two
important size characteristics. The first is the number of data points available to
the system (let’s call this N), and the second is the number of characteristics that
each data point possesses (D). The two together determine how much information is
known about ‘the current problem - a matter of multiplying N data points times D
characteristics. One could easily make the assumption that increasing either N or D
should increase prediction accuracy - the more we know about the system, the better
we can do. This is unfortunately not the case.

Certainly having more data points is almost always better. We usually pay a small
price in processing time in exchange for an increase in information, but the increase in
processing time is usually not significant. In some cases, adding highly erroneous data
points can cause the system performance to degrade as widely inaccurate information
is handled, but generally the more data points the better.

The problem comes when we increase the number of characteristics that a single
data point has. At first glance, this should also lead to an increase in the amount of
information that we have. Let say we are trying to determine the breed of dog from
some observations we have made. We would naturally try to observe not only the
color of the coat but the size of the dog, its age, its eye color, the length of the claws,
the length of the tail, the shape of the skull, etc. And it seems true that the more
observations we make the more likely we’ll find a match.

For a human, this is probably true. For a computer system this is not always the
case. The reason is that as you increase the number of characteristics, you vastly
increase the size of the input space. In effect, for the dog classification example the
more dimensions that the input has, the more possible kinds of dog there are.

If all we know is the size of the dog, we can only break the dog into a very few

categories and the accuracy of the system is going to be very good. If we add color
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to the characteristics, the possible number of dogs jumps dramatically. Lets look at
an extremely simplified system with binary values. Lets say the first variable tells us
if the dog is bigger than a terrier or smaller. We are limited to two possible types of
dogs, big dogs and small ones. Now lets add a second binary indicator, say, whether
the eyes are blue or not. Suddenly we can have 4 types of dogs - big ones with blue
eyes, big ones without blue eyes, small ones with blue eyes and small ones without
blue eyes. If we add a third indicator value, we're up 2 possible types of dog. If we
continue adding features, we're faced with 2D possible values, where D is the number
of binary features added. And this is for binary indicator values. For B-ary indicators
we have BP possible dogs.

Why is this so bad? Because each time the dimension increases by one we double
or multiply by B the number of samples we need to effectively describe the input
space. The means that in order to maintain our current levels of accuracy we need
to drastically increase the number of data points we have each time we increase the
number of characteristics by one. This is the so-called curse of dimensionality - that
as the dimension of the input space increases, the number of data points needed to
describe the space adequately increases exponentially.

So why is the human so good at classifying dogs? Humans are good because they
know, from experience, which questions are important and lead to answers quicker.
They can discard those indicators that are irrelevant very quickly, leaving a small
handful of questions that need to be asked. In essence, they know which data to
ignore. There are many places, however, where we don’t have any idea which areas or
questions are important, and these are the areas that pattern recognition techniques
are most commonly applied. It is a difficult task for computer learning algorithms to
determine which inputs are important and which are not. For these types of problems,
the more characteristics the computer has to interpret, the harder it will be to get

the correct answers.

2.1.4 Sampling

Sampling is the process of accumulating data. In the pattern recognition field, we
make the assumption that data is accumulated fairly and with as little error as pos-

sible. Even with this assumption we have to be aware of the problems that sampling
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Figure 2.1: Initial Data Figure 2.2: Curved Data Figure 2.3: Linear Data

data can have.

The first éroblem is that occasionally, given the best of intentions, we still end
up with a skewed data set. It can happen for a number of reasons from mechanical
malfunction to human error to sabotage. And even if everything goes right statistics
tell us that there is always a chance that we grab a misrepresentative sample from
the population we are trying to study.

Further, there is the problem that sampling doesn’t always tell us the whole story.
Take a look at Figure 2.1. It represents a sample drawn from some simple population
where the x-axis represents the input value and the y-axis represents the output at
that value and there is some error in the output. At an initial glance, it appears that
the function could be a straight line, with one point that apparently has a very large
error. This type of point, a lone point far away from the rest of the points in the data
set, is called an outlier. The question is: Is the outlier significant? That is, is the
outlier merely a gross error in the data set or does it represent some unknown feature
of the input space?

This question cannot be answered without taking more data from the same popu-
lation. Take a look at Figures 2.2 and 2.3. Figure 2.2 represents one possible result of
drawing more data from the same population as Figure 2.1. Clearly if this is what the
population looks like then the outlier in Figure 2.1 is significant. However, Figure 2.3
represents another possible result - and in this case it is clear that the outlier in Fig-
ure 2.1 is in fact the result of some sort of error. Without being able to draw more

data points from the population, we can’t determine the significance of the outlier.



In most cases, we are unable to draw more data from the population, which leaves us

with the difficult question of what to do with the outliers as they occur.

2.1.5 Error Metrics

The issue of deciding what sort of error metric to use is also an important one.

There are many approaches to handling error, and the type of classifier (regression
or classification) plays an important role in deciding what type of error metric to use.
The other factor that determines how error should be calculated comes from the data
itself.

Regression tools tend to use Root of Mean Squared Error (RMSE) as an error
metric. Other common options include absolute error and negative log density loss,
although many others exist as well. RMSE is used because it tends to accentuate
large errors while not ignoring all of the small. There is an entire family of error

metrics using p-norms of the form

P Z;A;], I Tobserved — Tactual |P

N

where N is the number of observations or attempts to classify and P is usually an
integer. With P=I1, this reduces to computing the absolute error. With P=2 it
calculates the RMSE. The higher the value of P, the more emphasis that is placed
on the larger errors. As P approaches co the result converges to the largest absolute
error.

With classification, you generally have two types of error metrics. The first and
most common is simple symmetric error, where the cost of misclassifying is the same
as the gain from classifying correctly. However, some problems require non-symmetric
error where the cost of misclassifying is more than the cost of classifying correctly.
A good example is a medical system that diagnoses a disease such as cancer. Here,
classifying someone who doesn’t have the disease is pretty bad, but telling someone
they don’t have it when they in fact do is much worse. Such a system would use an

asymmetric classification error.



2.1.6 Bayes Decision Theory

Knowing how much error there is in a given system is only one part of the problem.
In the real world, measurements can hardly be considered perfect. There is always
some error in a given system, and sometimes the data collection methods used are
inexact at best. It would be good if we could determine the lowest possible error that
a certain system can give us.

Suppose we have a conveyor belt that carries fruit from one portion of a plant to
be separated and sent to two other parts of the plant. We are interested in providing
an automatic means of determining which type of fruit it is, say apples or oranges,
and having a mechanical arm divide the fruit into two bins. We let w denote the state
of nature, with w, meaning that an apple is the next fruit and w, meaning that an
orange is the next fruit.

In the beginning, we don’t have much information. If we knew that the plant
processes as many apples as it does oranges, we would say that the next piece of
fruit on the conveyor belt is just as likely to be an apple as an orange. In statistical
parlance, this is equivalent to knowing that the a priori probability P(w,) of the next
piece of fruit being an apple is the same as the a priori probability P(w.) of the next
piece of fruit being an orange. These a priori probabilities reflect our knowledge of
how likely the oranges and apples are to appear.

Suppose that the only information that we have is these a priori probabilities.
Then our decision in every case has to be to pick that piece of fruit with the higher

a priori probability. This gives us the decision rule
Decide wy if P(w,) > P(w,), otherwise decide w,

which decides apple if there are more apples than there are oranges and decides
oranges otherwise. In effect we are minimizing the likelihood that we are wrong, and
in the long run we will minimize our error.

In most circumstances, however, we can gather more information. For instance,
perhaps we can run the conveyor belt over a scale to determine the weight of the fruit.
Lets assume we have small apples (say, Macintosh) and large oranges (large Navel
oranges perhaps). Further, lets say we know how the weight of each type of fruit is
distributed, that is, the state-conditional probability p(z|w) that the fruit has weight

9



z given that it is in state w; (ie, the fruit is an apple). Then the weight combined
with the a priori probabilities should allow us to make more informed decisions. The

new decision rule is provided by the Bayes Rule:

P(wjlz) = p———(zlﬁg(wj) (2.1)
where

2

p(z) =Y p(zlw;) P(w;)

=1

That is, the correct decision is made by looking at the weight of the fruit, and
deciding to choose apple if the product of the a priori probability of the fruit being an
apple and the conditional probability of the apple having the given weight is larger
than the product of the a priori probability of the orange being the next fruit and the
conditional probability of an orange having that weight. The Bayes Rule then gives
us the probability that the true state of nature is either an apple or an orange given
the current weight of the fruit. Clearly, choosing the higher probability once again
minimizes our risk.

Bayes proved that this decision process is optimal. There is no way to classify
anything with lower error as long as you know the a priori probabilities and the
conditional class densities. He went on to show that this method can handle discrete
or random variables with multiple classes and multiple states of nature.

Why, then, is classification even an interesting procedure? If we know the optimal
procedure, why look at anything else? The answer is simple - in the real world, we
have imperfect information. We rarely know the exact a priori distribution of the state
of the world. Nor do we commonly know the conditional class densities. Generally
all we have is a set of observations, from which we want to make predictions. Pattern
Recognition helps to fill in the gaps and lets us make some effort to create an accurate
prediction tool.

Bayes’ result is still significant, even when we don’t have perfect information,
because it provides us with a lower bound on the possible error of a classification
problem. We now have a goal - come as close as we can to the Bayes Error Rate,

since that is the theoretical minimum that we can achieve.
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2.1.7 Decision Boundaries and Discriminant Functions

There are many ways to view or represent pattern classifiers. One way is to use
a set of discriminant functions. A discriminant function is any function gi(z) that
takes the inputs of the pattern classifier and produces an output value. There is one
discriminant function per class and the classifier is said to assign a certain input to

the class w; if

gi(z) > gj(z) for all i # j

Discriminant functions are not unique. In fact, they have the property that we can
replace any gi(z) with f(gi(z)) - as long as fis a monotonically increasing function
and we apply f to all of the discriminant functions for a particular classifier, the
resulting classification remains the same. In particular, for Bayes Classification, we

can choose any of the following functions:

() = Ploslz) = —PLElw:) Plwi)
9(e) = Plale) = S alan) P(a) 22
g:(z) = plzla) P (2:3)
ai(2) = log(p(zs)) +log(P() (2.4

Depending on the application, this gives us several choices of functions to use
to do our classification. Regardless, the effect of these different decision rules is the
same. [t divides the input space into decision regions, 1 for each class. These regions
are divided by decision boundaries, which divide up the input space into the different
classes. If two regions are contiguous, then the equation of their common decision

boundary is

gi(z) = g;(z) (2.5)

Decision boundaries are a second, equivalent method of representing pattern clas-
sifiers. If we know where the boundaries are that divide the space into regions, we can
analyze exactly how different the two classifiers are. We take the decision boundaries
and determine mathematically the function differences and integrate to determine the

size of the area that is different.
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2.2 Methods

Pattern Recognition is a large field. Presented here is an overview of a number of
related pattern recognition methods. We start with the simplest of classification
methods - Linear Discrimination - and go on to discuss more complicated methods

later in this section.

2.2.1 Linear Discrimination

Linear Discrimination is a very simple pattern classification technique that works as
follows.

Let say that Figure 2.4 represents a data set that we want to classify. The dots
represent one class and the squares another. The X and Y coordinates are the two
characteristics that we are using to do our classification. We can create a simple
classifier by drawing a line that divides the output into two halves, as in Figure 2.5.
Any new input that we receive can be checked against the line. Anything less then
the line is a circle, and anything greater is a square.

This method has some obvious advantages. First, it is extremely simple to classify
new data points with this method. Second, the method is easy to visualize and explain

to people who aren’t experts in pattern classification. Third, the method adapts itself
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easily to higher dimensions - as long as the two classes are divisible by a hyperplane,
this method can be used regardless of the number of dimensions in the input space.
The main disadvantage of this method is also fairly obvious. Simply put, many
(if not most) problems are not linearly separable. Figure 2.6 is an example of one
such data set, other examples are just as easy to find. A simple trick of mapping
quadratic features to a linear space can handle this particular data set, but many
data sets are simply not mappable by this method. This limits the usefulness of
linear discrimination and makes us look for other methods of classifying our data.
Linear Discrimination presents the simplest possible decision boundary that can
differentiate classes. There are methods for creating more complex decision bound-
aries such as quadratic or cubic functions but generally the methods share the same
advantages and disadvantages of linear discrimination - the models are simple and
relatively easy to visualize, but many classes aren’t differentiable by simple functions.
The more flexible the simple decision boundary, the more data sets that can be clas-
sified, but the higher the computational costs involved. And there is still the problem
that no matter how complex the decision boundary, there are always going to be data
sets that cannot be defined adequately such as Figure 2.7, which has two areas of
class one contained inside a larger area of class two. No one boundary is going to

divide that data set. Clearly, more complex methods are going to be needed.
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Figure 2.8: Data set Figure 2.9: Regression Figure 2.10: No Good Fit

2.2.2 Linear Regression

Linear Regression is the classical regression tool used in just about every scientific
field in one form or another. It has its origins in statistics, and forms the basic
regression tool that other methods try to improve upon. Linear Regression works as
follows.

Take a data set like that of Figure 2.8, where each point represents a known piece
of data with one input (the X-axis) and one output (Y-axis). The Linear Regression
technique is to draw a line that minimizes the sum of squares distance from the line
to the data points. When inputs with unknown outputs are presented to the system,
they are plugged into the line equation to determine their outputs. Figure 2.9 shows
such a line using the data of Figure 2.9. Multiple input characteristics are handled
by using a multi-dimensional line.

The minimum distance from the line to the set of data points can be found in a
number of ways. What we want is a linear equation of the form

D
y(z) = a0+ )_aiz; (2.6)

i=1
where the z; are the inputs in each of the D dimensions, and the a; are the unknowns
that we want to find, with ag as a translation factor that allows us to draw lines that
don’t pass through the origin. The idea is to find a; that minimize the total square

distance from all of the points in the input to the line.
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Thus, what we want to minimize is the merit function
N D
MF?* =3 (yi — a0 — ) axzi)? (2.7)
=1 k=1
where N is the number of points we want to fit. Let M be the Nx(D+1) matrix

composed of each of the input vectors with an additional 1.

I zu 12 - ziD

1 zyp z22 --- Zo2p
M=

I znvi TNz .- ZND

Let B be a vector of length N composed of the outputs of each of the input
points, and let A be a vector whose components are the parameters to be fitted,
4o, @1, ---,ap.

The minimum of the merit function (equation 2.7) is found where its derivative

with respect to all D41 parameters a; vanishes. We are left with D+1 equations

N D
0=Z:z:;k*(y;—ao—Zajx,-j)k=0,1,...,D (2.8)

i=1 i=1
where z;0 is treated as a 1. These are called the normal equations of the least squares
problem. They can be solved for the vector of parameters A by the standard methods
of LU decomposition and back-substitution, Cholesky decomposition or Gauss-Jordan
elimination. They can also be solved in a slightly different manner by singular-value
decomposition.

The advantages of linear regression are similar to those of linear discrimination.
The model is simple and easy to visualize, and once the regression line is known
computing unknown outputs is fast and simple.

It also shares similar disadvantages. Figure 2.10 shows a data set for which no line
is going to accurately map inputs to outputs. Once again, we turn to more complex
methods to try to expand the types of data we can adequately match.

Linear Regression can also be very sensitive to outliers. Figure 2.1 showed us a
data set with one prominent outlier. Assuming that Linear Regression is the appro-
priate tool to use (ie, the data truly is linear), an outlier can skew the line away

from the other points to a significant degree. This method doesn’t offer the ability
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to ignore outliers - all points are treated as significant - and so outliers can skew the
line away from its optimal position.

In a similar method to linear discrimination, several more complex methods of
essentially the same idea have been attempted. Quadratic functions, cubic functions,
and functions of even higher dimensions have been tried with greater and lesser suc-
cess. Once again, the function that is being described can be arbitrarily complex -
simple lines and cubics cannot possibly cover all possibilities. Any chosen function

will have data sets that it cannot learn well.

2.2.3 Neural Networks

The term Neural Networks refers to an exceedingly large group of pattern recognition
and regression tools. So large is this group in fact that there seem to be no one set of
defining characteristics that defines what a neural network actually is. Here are three

definitions of the term Neurocomputing given in a graduate-level course on Neural

Networks:

[Neurocomputing is] the technological discipline concerned with infor-
mation processing systems that autonomously develop operational capa-

bilities in adaptive response to an information environment. [HN90]

Neurocomputing is the technological discipline concerned with parallel,
distributed, adaptive information processing systems that develop infor-
mation processing capabilities in response to exposure to an information

environment. [HN90]

A neural network is a parallel distributed information processing struc-
ture consisting of processing elements (which can process local mem-
ory and can carry out localized information processing operations) inter-
connected via unidirectional signal channels called connections. Each
processing element has a single output connection that ...fans out into
branches carrying the same signal. Processing within each element must
depend only on its current inputs and values it stores - i.e. it is local

[HN90]
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Clearly, each of these definitions encompasses a different set of information pro-
cessing systems, with the third perhaps being the most restrictive. So broad a field
could easily require an entire thesis in itself merely to touch on the different methods
and explain why some were included and others not, and this work can’t even begin to
do so. Instead, we will describe the most basic of neural networks - Back Propagation
Feed-Forward Neural Networks.

A feed forward network is a directed graph with no loops. In such a graph it is
always possible to number the vertices in such a way that connections always flow
from a lower-numbered vertex to a higher-numbered one. Usually the vertices are
arranged in layers, with each successive layer feeding into the next one. There are a
lot of different network topologies that can be chosen, but generally they are of the
form shown in Figure 2.11. A layer of inputs feeds into one or more hidden layers
and then into the output layer. Each of the connections has an associated weight,
and each of the vertices of the hidden and output layers has an activation function
associated with them. The input to a hidden or output node is the sum of the product
of all of the connections to that node and the weight associated with each input. For
each hidden or output layer of the network a bias term is included to allow arbitrary
linear functions to be described by the sum of the inputs to that layer. The output
of the neural network can therefore be seen as a combination of these weights, biases

and activation functions.

Let our network have one hidden layer with H vertices, N inputs and M outputs. .-

Then, the inputs to the j-th hidden layer activation function are
N
input(j) = Z Wi Ti
i=0
where w;; is the weight of the connection from input i to hidden vertex j, z; is the
i-th input, zo is the value of the bias term and wo; is the weight of the connection
from the bias term to the j-th hidden layer activation function. At each hidden node
we apply an activation function g to give us
N
output(j) = g(D_ wijz:)
=0
These values are summed up at each node in the output layer (output node) and a

second activation function h is then applied to each output to give us the final value
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Figure 2.11: Neural Network Topology
of the k-th output as
H
output(k) = k(D g(w;j x > 1= Iywijzi)
i=0
) g and h are often in practice the same activation function, but this need not be the
case.

This model represents only a portion of the various neural network architectures
that exist, and yet it has an amazing amount of flexibility. More hidden layers can
be added, some connections between layers dropped, and the activation functions can
varied. The original activation function was called a perceptron - a function that
computes a linear combination of some inputs and returns the sign of the result. It
has its basis in biology, where it was believed neurons in the brain functioned quite
like the perceptrons in summing up a set of weights and producing a squashed or
reduced output. Most biologists no longer believe that the brain is that simple, and
the model of neural networks has likewise evolved to encompass a whole range of
architectures.

This architecture is not useful as a learning tool if there isn’t some mechanism for

determining the weights of the various connections. The original manner of “learning”
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the weights is called back-propagation [RHW85].

Initially, the weights are set to small, random values. The inputs are then pre-
sented to the system and the output(s) are computed. The total error is then com-
puted in a least squares manner. As long as the activation functions are differentiable,
we can compute the partial derivative of a given weight with respect to the error, and

the weights are updated using a form of steepest descent as

w;j — wij — nili
dwy;

Back-propagation is not the only method of error propagation, nor is least squares

the only way of computing error. Variations on the method of error calculation and

propagation create even more possible neural network architectures.

In a field as broad as this, we can only talk about the advantages and disadvantages
of neural networks in a general way.

The big advantage of neural networks is that, given enough data and enough time,
they can approximate any smooth mapping[LF98]. This give them the power to learn
a wide range of functions and make sense of a large assortment of data sets.

The big disadvantage of neural networks is their lack of any clear understanding
of how the results are obtained. Trying to learn from the results of a neural network
is very difficult, and explaining to a lay person what the results of a neural network
mean is a difficult task. In addition, it takes a considerable amount of experience to
know how many hidden layers and how many nodes in each layer are necessary to

learn a given set of data, and often the only way to do so is to try a large number of

different architectures until one is found that does the job adequately.

2.2.4 Adaptive Logic Networks

An Adaptive Logic Network is a type of feed-forward multilayer perceptron which uses
linear threshold units in a first hidden layer [TAC95], and minimum and maximum
nodes in other hidden layers and in the output layer. The computing elements form
a tree with the inputs on the bottom and the output on the top. Figure 2.12 shows
a typical topology of the network.

An ALN works by building piecewise linear functions and combining them to map

the input space. Then, by taking the minima and maxima of the various linear pieces,
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Figure 2.12: ALN Topology Figure 2.13: ALN Example

a result is obtained. Each linear piece is learned by least squares fitting of the data
points in its portion of the data space. When learning, the ALN propagates.the error
back to the linear piece responsible for that part of the function. This is done by
determining which of two functions forms a part of the active surface for the given
input vector at maximum and minimum nodes nodes all the way back to the inputs.
Figure 2.13 shows an example of what the output of an ALN could look like. ALNs
are controlled by the setting of tolerances called epsilons which define how much space
each data point can cover. The epsilon is a distance given for each dimension which
defines the width of the point along that dimension, and the linear pieces are then
maximized with respect to these hyper-rectangles. The points in the ALN are usually
jittered as well - that is, for each point in the original space new points are created
by holding the output constant and randomly adding a number < the epsilon in that
dimension to the inputs along each dimension. This creates a new point close to the
original with the same output and functions much like an error bar around the data
that allows the linear pieces of the ALN to be fitted with more flexibility.

The piecewise linear nature of ALNs makes the tool very flexible. In addition, the
system has the ability to incorporate expert knowledge into the system by applying
limits to the weights on certain input and by allowing the user to manually control

the shape of the decision tree if desired. As well, the system is fairly easy to describe
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to people not familiar with statistical methods in general, giving them confidence in
its workings.

One of the drawbacks of the system is its concentration on global information
rather than local. The tolerances and any constraints placed on the system apply in
all areas equally, and do not handle well those input sets with a combination of stable
and unstable regions or widely different densities, since all regions are treated the
same. This is compensated somewhat by the piecewise linear nature of the system
- areas of high instability will tend to have more linear pieces that stable areas -
but this does not alleviate the problem completely. As well, the epsilons which are
critical to the success of the algorithm must be set by hand. The success of the system
therefore ultimately depends on the experience of the user with setting these critical

parameters.

2.3 K-Nearest Neighbours

K-Nearest Neighbours is a pattern recognition tool that is primarily used as a pattern
classifier, at least in its raw form. The idea of K-nearest neighbours is in widespread
use throughout the literature, and in fact the idea is so widespread that in many cases

there is no explicit mention of its use.

2.3.1 The idea and the algorithm

The basic idea behind K-Nearest Neighbours is very simple. You find the nearest K
points to the current point in the input space, and simply look at their classes, setting
the class of the current point equal to the majority class in the neighbours. Typically,
Euclidian distance is used to measure closeness, although occasionally the points are
normalized first or in some other way massaged to represent some information the
user has about the data to be looked at.

In the simple two-class case, this amounts to drawing a boundary between the two
classes, but unlike linear discrimination the boundary can be very complex since it
is composed of multiple of hyperplanes. KNN is rarely used without enhancements,
as the computational costs are very high. In the simplest use of KNN, every single

point in the training set is checked for every point in the testing set to see if it is
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closer than the current K neighbours. In two or more dimensions, that amounts to a

lot of floating point multiplications as distances are calculated.

2.3.2 Early Enhancements

The KNN was first described in an unpublished report by Fix and Hodges [FH51],
and the first published results were given by Cover and Hart [CH67] a decade and a
balf later.

The earliest enhancements to the KNN attempted to make the input set smaller by
discarding portions of the input. Hart’s Condensed Nearest Neighbour rule (CNN) [Har68]
was followed by Gates’ Reduced Nearest Neighbour Rule [Gat72| and later improved
by Tomek [Tom76]. A related idea called multiedit was developed later by Devijver
and Kittler [DK82]. '

Hart’s CNN rule worked very simply. The first step was to divide the data set
into two parts which Hart called a grabbag and a store. Step 2 was to classify each
point in the grabbag using the store. If the point was classified incorrectly, it was
transferred into the store. Step 2 was repeated until all points in the grabbag had
been examined and none were transferred to the store, or if the grabbag was empty.
The resulting store was then used as the training set and any points in the grabbag
were discarded. Gates went slightly further - once he had the store, he classified each
point in the store using the store as a training set. Any points in the store that were
not needed to classify the edited training set were discarded.

Devijver and Kittler’s MultiEdit routine worked in a slightly different manner to
get the same end. The set of input points was divided into N subsets, where N > 3.
Each pair of subsets was then chosen with one as the test set and one as the training
set. For each such pair of sets the test set was classified using the training set and all
misclassified points were deleted. If a complete run through all the pairs deleted no
points then the algorithm terminated, otherwise it continued to pair up the sets and
run them.

With each of these algorithms a corresponding loss of accuracy occurs as the
amount of information in the system decreases with each deleted point. This tradeoff
between accuracy and speed was crucial at the time as the computational complexity

of the raw KNN algorithm was prohibitively expensive.
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2.3.3 Fast KNN

In response to the high computational costs of the KNN, a second set of algorithms was
developed that attempted to keep all of the information and eliminate unneccesary
computations by using some reasonable rules. Friedman et al [FBS75] developed one
such approach, and Fukunaga and Narendra [FN75] developed a branch-and-bound
algorithm that was implemented by Kamgar-Parsi and Kanal [KPK85] and modified
by Niemann and Goppert [NG88]. The algorithms make the KNN algorithm more
attractive by reducing the overall computational costs without impacting the overall

classification accuracy.

2.3.4 Weighted KNN

A further enhancement to the KNN algorithm was developed by Dudani [Dud76].
Using a straight-line distance weighting scheme that weighted the nearest neighbour at
1 and the furthest at 0, Dudani computed the unknown class by summing up weights
of the neighbours for each represented class. The unknown sample is assigned the
class with the highest total weight. Dudani performed a Monte Carlo analysis to show
one particular case where his method outperformed the unweighted majority-rules
classification. Soon thereafter, Bailey and Jain [BJ78] proved that the asymptotic
classification error rate of the unweighted k-nearest neighbour rule is lower than any
weighted k-nearest neighbour rule. So, in the limit, the weighted K-nearest neighbour
rule will always be less accurate. However, the weighted KNN rule resurfaced as
a viable decision rule when Macleod, Luk and Titterington [MLT87] proved that
when the number of training samples is finite, the weighted classification rule can

outperform the unweighted one.

2.3.5 Modern KNN usage

Today the KNN method is used all over as a method of extracting information from
systems. The KNN is used in handwriting recognition [Yan94] and MRI (Magnetic
Resonance Imaging) classification [War96]. KNNs have been combined with genetic
algorithms [ZH96] and there has been an attempt to combine them with neural net-

works [HLS95].
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As well, the applicability of KNNs has expanded outside of the classification scope
and into regression. Attempts have been made by Rasmussen [Ras] and Hastie and
Tibshirani [HT96] to make a regression tool using KNN as a base. Rasmussen’s
approach is a weighted average of the neighbour outputs while Hastie and Tibshirani
use discriminant analysis. This has opened up an entire new range of possibilities for
the KNN tool, as more and different problems can be tackled with this same idea.

A related area of research, Locally Weighted Leaarning, is reviewed by Atkeson,
Moore and Schaal [AMS97]. This area talks about using weighted regression in a
local area to do machine learning, using a distance or radius to define the area to be
used. This fixed distance is the same regardless of where in the input space you are,
as it isn’t really KNN, but its incorporates a number of similar ideas in talking about

local regions of space and how points in a region can be combined to do regression.
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Chapter 3
The KNNR Method

KNNR stands for K-Nearest Neighbours with weighted linear Regression. But what,

exactly, does it do? And how does it do it?

3.1 Purpose

The KNNR is a regression tool that takes as input two data files. The first data
file, called the training file, provides the set of points used by the K-Nearest Neigh-
bours method. The second file, called the test file or the learning file, provides a
set of points for which we wish to find the outputs. The KNNR takes the two files
and finds the outputs of the test file using the training file as a set of valid points
in the set. We use the K-nearest neighbours idea and, in a similar manner to Ras-
mussen [Ras] and Hastie and Tibshirani [HT96], apply our own method of using those
neighbours - weighted linear regression. We are thus able to look at both regression

and classification problems.

3.2 Step 1: Normalization

We begin by reading the data from the training and test files and storing it in memory.
The KNNR first normalizes the training set, keeping track of the mean and variance,
and then uses these means and variances to normalize the test set. This is done to
eliminate any bias caused by changes of scale or transformations applied to the data
sets. Because the K-Nearest Neighbours method uses simple Euclidian distance to

determine which neighbouring points are closest to the current point, unnormalized
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data is very sensitive to the units the inputs were measured in and the magnitudes
of the quantities being measured. Normalizing the data emphasizes relative changes
in the input range as opposed to absolute changes, eliminating (or at least lessening)
the effects of a change in units (from, say, grams to kilograms) or the unbalancing
effects of large inputs vs small ones. This has both advantages and disadvantages.
This method is not perfect. By normalizing in every case, we are eliminating one
method of human interaction with the system that might produce better results. An
intelligent user of an unnormalized system can manipulate the data in such a way
as to emphasize the more important inputs and minimize the effect of unimportant
data. By normalizing we eliminate this control, but this is a small price to pay for
eliminating the two biases by normalization. An intelligent user of the system always

has control over what inputs to use and can simply eliminate unimportant ones.

3.2.1 Human Intervention when Evaluating Automated Sys-
tems

Perhaps now is a good time to talk about an important issue in automated learning
systems, specifically that of human/machine interaction.

Many (if not all) computer learning systems can benefit from the assistance of the
humans using them, in a lot of different ways. However, when evaluating the perfor-
mance of a computer learning tool, one has to be careful not to overstate the success
of a computer tool if that success is brought about by human expert knowledge. One
has to be careful to evaluate the tool on its own merits, otherwise what you are really
evaluating is the success of the human in learning the data, not the computer.

There are no clear lines drawn about what is acceptable and what is not, merely
different degrees of acceptability. This author has therefore taken the approach that
when comparing the KNNR and ALN with other computer learning systems, all
attempts have been made to ensure that no human expert knowledge is exploited by
the system. What this means is that every single data file is given to the system in
exactly the same way, unmanipulated by human hands. No attempt has been made
to tailor the data files to the KNNR by eliminating useless or misleading inputs,
adding or deleting outliers manually, replacing variables of one type with variables

of another, or in any way attempting to use the author’s knowledge of the data to
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produce good results.

Clearly, in real life, results are the most important measure of a systems usefulness.
This author is not saying that human intervention is inappropriate for a learning tool.
In fact, the opposite is true - this author believes that the incorporation of human
expert knowledge into computers is almost always going to outstrip any results we can
currently obtain through computer use alone. But the point is that when comparing
computer learning systems, one has to try to strip away the human interaction to
evaluate the computer learning.

So, what does this mean for normalization? Well, it means that we make the
decision to normalize in every case because we don’t yet have a means of letting the
computer determine whether or not to normalize the data. And since it is computer
learning that we are investigating, we simply let the computer normalize in every

case.

3.3 Step 2: Find the Nearest Neighbours-

Once we have normalized the inputs, we begin the KNN part of the KNNR process.
For each point in the test set, we look for the K-nearest neighbours, using Euclidian
distance as our distance metric. The first question might be “what value do we use
for K?” but we defer that discussion to section 3.8. At this point in the algorithm
we have a K given to us, and we need to find that many nearest points in the input
space.

This can be done exceedingly simply by looking at each point in the data set in
turn and merely comparing the distances to each one. This will eventually get the
K closest neighbours. However, a small enhancement has been made to make this
process more efficient by eliminating some of the points that are too far away.

The basic idea is to divide all of the points up into what we call buckets or bins.
Each bucket contains a subset of all of the points in the input space, and each point
is in one and only one bucket at a time. Buckets are built by randomly selecting a
subset of points (which we call the bucket heads or bucker centres) and then, for each
point in the input set we assign it to the bucket that has the closest bucket head.

At the same time, we keep track for each bucket the distance to the farthest point
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Figure 3.1: Bucket Pruning Figure 3.2: Weighting Function '

in the bucket, which we call the bucket radius. All of this involves a fair amount of
computation. Each of the N points in the data set has to be compared to each of the
B bucket heads, so there are N x B distance calculations to be made. The payoff is
that once done the subsequent searches for neighbours can be done quicker. Also, the
buckets only have to be built once since points in the input space do not move.
Once the buckets are built, we are ready to find the nearest neighbours. We do
this by finding the bucket with the nearest bucket head (the nearest bucket) and
picking K+1 points out of it, keeping track of how far the K+1th point is from the
current point. Then, we look at the other points in this bucket to see if there are
any closer than the current K41 points, discarding points that are further away,
maintaining the nearest K+1 points (it will be clear why we keep K+1 points later,
when in section 3.4 we talk about how the points are used to find our new output),
and updating the distance to the K+1th point (the neighbour radius) as necessary.
Once we have looked at all of the points in a bucket, we find the next-nearest bucket.
If the new bucket radius + the neighbour radius is less than the distance to the bucket
head, then we discard the bucket, otherwise we go through all of the points in the
bucket looking for new nearest neighbours. To help see why this works, see figure 3.1.
P is the current point under consideration. A, B, and C are the three bucket heads

for the three neighbouring buckets. In this case, we are looking at K=1, and after
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looking at our closest bucket (bucket A) we have the current situation, with Q being
the farthest point from us currently. Next we consider bucket B. The distance Q@B
is larger than the radius of bucket B + the distance PQ, which indicates that there
might yet be a point in B that is closer to P than Q, so we would look at each point
of B in turn. Once we are finished looking at B, R would be our K+1th point. The
distance QC is greater than the radius of bucket C + the distance PR, so there is no
point in C that is closer than R to Q, and we can discard bucket C and not look at

any of its points.

3.4 Using the Nearest Neighbours

So, we have o‘ur K+1 neighbours. What then? Traditionally, the K neighbours had
classes and each neighbour was looked at to determine the majority class, which was
assigned to the new point. What we do is more complex and extends KNN so it can
do both classification and regression.

The basic idea is to use the K points as K points in a line by using them to
perform a weighted regression. Then we have a hyperplane that gives us the value at
the current point. The K+1th point is used by our weighting function to determine the
weights on the various points. The whole purpose to weighting the nearest neighbours
in the original weighted K-nearest neighbours tool was to emphasize the classes of
the nearer points. The same basic idea holds for the weighted regression - we want to
emphasize the nearest points in the regression by using a weighting that gives higher
weights to the closer points. The K+1th point is called the calibration point, and is
used as follows.

Lets say we are determining the weight of a point A, which is one of the neighbours

of our new point P, and lets call the calibration point K. Then

weight(A) = g(AP/AK)

where the function g is our weighting function. The calibration point defines a limiting
hypersphere where any other point on that hypersphere or further away has a weight

of 0.
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3.5 The Weighting Function

The Weighting function that determines the weights of the neighbours can be any
function that has a few special properties. The function should be monotonically
decreasing in the range [0,1] and it must pass through the point (1,0). We use the

function

f(z) = V223 —3z2 + 1

shown in in figure 3.2. The weight functions are restricted to monotonically decreasing
functions to give points progressively further away from the new point progressively
lower weights. The functions are restricted to those passing through (0,1) to make
the output values smooth.

The choice of weighting function will determine what types of inputs will be
effective. A weighting function that strongly emphasizes the near points will be
more effective for a different set of inputs than one that treats all points more or
less the same. The current function was chosen because it satisfied the weighting
function criteria, it was easy and simple to calculate, and it de-emphasized distant
points while still taking into account a wide radius of points around the current point.
Originally, the square root was not included in the evaluation. The square root was
added to offset the squared nature of the distance metric. Since the distances are
squared quantities of the input vectors, we take the sqrt of the weighting function so

that when squared, we get our original function back.

3.6 Smooth Output Values

Obtaining smooth output values is one of the chief reasons to use weighted linear
regression in the first place. The idea is that as you move through the space you pick
up new points and drop old ones off in a smooth and continuous manner.

Using normal linear regression with KNN would give discontinuities in the outputs.
Figure 3.3 represents a one-dimensional data set input in the x-axis and output ir
the y-axis. Line A is the fit produced by linear least squares using points 1, 2 and
3. Line B is drawn using points 2, 3, and 4. As your input moves away from point 2

towards point 3, there is a place where the input is equidistant to point 4 and point 1.
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This point marks the boundary between line A and line B, and is drawn as a dashed
line in the figure. Points to the left of the line use line A and points right of the line
use B. The resulting output surface is given in Figure 3.4.

Using weighted linear regression the idea is that as the algorithm moves slowly
along the x-axis, the weight of point 1 slowly decreases, reaching 0 when it is the same
distance from your x-value as point 4. Then as it moves along the x-axis some more,
point 1 has been continuously dropped and point 4 has simultaneously been picked
up. Figure 3.5 shows (roughly) the output surface given by the KNN. Note that the
surface produced has no discontinuity. The ability to create a smooth output surface
means we can use the KNN as a filtering mechanism to eliminate noise from a dataset
and gives us some confidence that the method is robust.

There is one further consequence of using weighted linear regression. There is a
possibility that two points will be equally distant. In such a case, one of the points
will be the calibration point and the other will be the outmost point and will be given
a weight of 0. In such a situation, we have to be careful to use enough neighbours that
the resulting line is completely determined. Usually, taking dimension+1 neighbours
will give us enough points that if two happen to fall on the same surface we still have

a completely determined hyperplane.

3.7 Weighted Linear Regression

Weighted linear regression uses exactly the same method as linear regression (see

section 2.2.2) except that it performs a pre-processing step to transform the points
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into weighted form. This is done very simply by taking each point and multiplying the
inputs and output by the weight calculated for that point, then sending the weighted
points to the linear regression technique. The KNNR uses svdfit as its linear regression
technique.

Svdfit is short for Singular Value Decomposition fit and is one of the many different
algorithms that do linear least squares regression. It has two primary characteristics
that define its usage - a tolerance and a number of iterations. The tolerance is a
measure of how small errors have to be before they are ignored and the number of
iterations controls how long the system looks for a solution. Solutions that take longer
than iterations attempts are likely to be ill-conditioned. A full explanation is given
in [Pre92]

The reason for choosing Singular Value Decomposition is that in the case of an
over-determined system, the SVD algorithm gives us the best linear least-squares fit,
and if the system is under-determined, svdfit gives us a line that minimizes the error.
This allows us to give output even when the system is underdetermined or in the rare
case where too many points fall on the limiting hypersphere defined by our calibration
point.

Once the weighted regression is complete, we obtain the output by plugging the
new point into the hyperplane equation. Once this is done for all of our new points,

the process is complete.

3.8 Determining K

There is, however, one last issue that has to be discussed. So far, given a K we know
how the KNNR method is applied to determine the new output values. What has
not been discussed is how to find K.

The procedure that we used is called the train and test method and is taken from
statistical literature. The algorithm begins by splitting the data set into three parts -
a training set, a validation set and a testing set. Generally these are not 3 equal parts,
although the exact proportions differ from researcher to researcher. The training set
is usually the largest, followed by the validation set and then the testing set. This

allows for a large number of training examples and a sufficient number of validation

32



Figure 3.6: Overtraining Figure 3.7: Better Genera.liza.tion.

examples to make the test worthwhile.

Once your data has been split up, you put aside the test data. You then train your
system using the training data and test its accuracy on the validation data. Once the
system is trained to your satisfaction, you try the trained system on the test data,
which tests how well your training has generalized.

The reason for this method is simple. Any learning system can be optimally
trained to a particular set of data. However, this is no indication of their accuracy
on a new data point that comes in. For example, remember how the ALN works
by breaking itself into more and more linear pieces until it has satisfied its error
requirements. If you let it train long enough and set the error bounds low enough,
what you end up with is a connect-the-dots approach that has a single line between
consecutive points in the input space. While this learns the given data perfectly,
when tested on a new data point the error will generally be large. Figure 3.6 shows
this phenomenon, called over-training, while figure 3.7 shows the same data set where
a line has been learned that will likely generalize better. Overtraining is particularly
bad when there is error in the system, since the system learns the erroneous values
correctly instead of finding a middle ground between positive and negative errors.
Hence the need for the third data set to act as a test of generalization.

Finding the correct K for the KNNR then becomes a simple procedure. The data
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to be learned is broken up into the three files - train, validate, and test. The KNNR
uses the train file and the validation file over and over again with different values of
K. The K that produces the smallest error in the validation file using the train file
is chosen. The combined validation and train files are then used as the new training

data and the test set is tried with the optimal number of neighbours to give the

algorithm’s final results.
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Chapter 4
KNNR Tests on Synthetic Data

Every new tool needs to be tested thoroughly to help understand how it works. In this
chapter we investigate the properties of the KNNR by experimenting with different
data sets that highlight its properties. The purpose of these first tests is to examine
the behavior of the KNNR by running tests that isolate a particular feature or variable
and test how the KNNR performs with our expectations about its performance.

The synthetic data used was drawn from 3 families of functions.

The first family of functions generated hyperplanes in any number of dimensions.
The inputs were real numbers generated randomly in a range of -5000.0 to 5000.0. The
output was calculated based on slopes for each of the inputs and a final translation,
and then percentage errors were introduced into the inputs of the line. Figure 4.1
shows an example of the function y=2x+4 drawn with 10% error in the overlayed
sample points. The error is created by adding a random amount of noise to the
inputs of the points in [—1 X %error x inputvalue, %error x input].

The second family of functions generated using tanh(x). The functions had ran-

eop(e)Tezp(—2)

(which calculates tanh(x) at the point x) for each input dimension. No error was in-

dom real inputs in the range of 0.0 to 3.0. The output was calculated by

troduced. Figure 4.2 shows an example of the y=tanh(x) function drawn and sample
points overlayed.

The third family of functions is generated using 1+sin(Ax) functions for various
values of A. The functions had random real inputs generated in the range of 0.0 to
10.0. The output was calculated as 1+4sin(Ax) for each input dimension. For the

error tests error was introduced in the output, otherwise no error was introduced.
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Figure 4.1: 2x+4 Figure 4.2: tanh(x) Figure 4.3: 1+sin(Ax)

Figure 4.3 shows examples of two sin curves, y=1+sin(x) and y=I1+10sin(x) used
often in the synthetic data tests.

These functions were chosen to emphasize particular challenges the KNNR will
face. The linéar data is the simplest of all possible tests and the addition of error
allows us to test how the KNNR performs in uncertain environments. The ta.r.lh
function gives a good test of how the KNNR handles a constantly changing slope,
and the sin functions are good tests of how well the KNNR handles functions with
both straight portions and highly curved areas. .

4.1 Tests Varying the Numbers of Neighbours

This test is designed to test the effect that using more neighbours has on predic-
tion accuracy. The test consists of generating synthetic data files and running the
KNNR with different numbers of neighbours. Synthetic data files consisted of dif-
ferent hyperplanes, sin functions and the tanh function. Each will be looked at in

turn.

4.1.1 Hypothesis

We predict that as you initially increase the number of neighbours the accuracy will
increase. At a certain point (which will be different for different data sets) it will

eventually reach a minimum and the error will increase beyond that point.

4.1.2 Hyperplanes

Four different sets of hyperplanar data were tested. Each test set consisted of data

randomly created along the 4 dimensional hyperplane 2z, + z, — 3 — 2z4 4 100 with
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different error percentages. The four tests had error values of 0, 1%, 10% and 50%.
2500 training points were generated for each test, and a test set of 500 points was
generated and used for all four tests. The same test set was used for all 4 tests, and
it contained no error since what we are looking for is how well the KNNR can learn
the underlying function in the presence of error. Values for the number of neighbours
went through three ranges. The first range went from 1 to 100 in increments of 1,
and the second went from 110 to 240 in increments of 10, and the third went from

250 to 1000 in increments of 50.

4.1.3 Trigonometric Functions

Four different trigonometric functions were used as well. The tanh function was tested
in one dimension. Three different one-dimensional sin functions were tested as well
- 1+sin(x), 1+sin(5x) and 1+sin(10x). 25000 data points were generated, and five
tests were run for each function. The five tests used subsets of 50, 250, 500, 2500 and
25000 training points drawn from the 25000 generated points. The same set of 500

test points was used in all 5 tests.

4.1.4 Results and Conclusion

The following graphs show how the increase in neighbours affects the overall RMSE.
The raw RMSE numbers were normalized to effectively show the overall pattern that
increased neighbours has independent of the number of sample points used or how
much error is present in the linear cases.

The results shown in Figures 4.4-4.7 confirm our hypothesis. Initially, with one
neighbour, the error is very high. As the number of neighbours increases, we see a
sharp decrease in error at the optimum number of neighbours and then an increase in
error as the number of neighbours continues to increase. It is interesting to note just
how few neighbours the KNN needs in order to minimize the error. Intuitively, this
makes sense - in areas of high curvature a large number of neighbours will quickly
drive up error as corners and peaks get cut off.

Figure 4.6 show an interesting behavior for the 50 data point case. The curve
drops rapidly and climbs almost as rapidly to a maximum error, then drops down

to a minimum. This illustrates the common problem of not having enough data to
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describe the state. Figure 4.9 shows what the input data looks like - it is very difficult
to see the underlying function (see Figure 4.3) from these few data points. As a result,
the KNNR is optimal with either a small number of points, which keeps the points
relevant to the local area, or nearly all of the points, which causes the KNNR to lose
the KNN part and merely become a weighted least squares regression tool.

Figure 4.5 shows a similar oddity for the 50 data point case, although here there is
a bulge in the error that drops and begins to rise again. A similar problem is occuring
- the data is not dense enough to describe the space adequately. The drop in error
is likely caused by the KNNR picking up points on nearby crests of the sine curve,
pulling the line back up and getting closer results to the actual output value.

Figure 4.8 highlights a feature of the KNNR that we did not originally predict,
but one that in hindsight we should have expected. Each of these hyperplanes is
4-dimensional. And for 1, 2, 3 and even 4 neighbours we see the expected drop
in RMSE. However, in the 5 neighbour case we see a massive jump in RMSE. And
beyond this the RMSE drops off almost indefinitely (tests with up to 1000 neighbours
were tried, and the RMSE drops very slowly but continues to drop at that point).
Why is this the case?
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Figure 4.10: Line with Error in [nput.:s

The answer comes from examining the case where there is no error introduced.
Here, we see the expected drop all the way down, and at the 28 neighbour mark the
RMSE actually begins to rise slightly as expected. Clearly the strange rise in RMSE
at the 5 neighbour mark has something to do with the error introduced in the other
3 examples.

In fact, once the error introduced is carefully examined it is clear why we have a
jump in RMSE at the 5 neighbour mark. At the 1, 2, 3, and even 4 neighbour mark
the system is not usually completely determined. Because of the distance weighting
of the 4 neighbours in most cases the small weight of the 4th (furthest) neighbour
causes the system to effectively be underdetermined, and the svdfit algorithm thus
gives a “best guess” for the equation of the hyperplane. Once the system becomes
completely determined, however, the svdfit algorithm has no leeway and has to give
the exact hyperplane determined by the 4 effective points presented to it. Those
points have error introduced into them, and the resulting hyperplane can be very far
from the actual hyperplane, as in Figure 4.10. This figure shows what can happen
when the two nearest points (the squares) have errors in them, one a positive error
and one a negative error. The resulting dashed line is far different from the original
solid one. Once the number of neighbours starts to increase past the bare minimum,

we rapidly have enough points that errors up and down can be compensated for, and
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the RMSE drops off very rapidly again.

The fact that the RMSE never appears to climb as the number of neighbours gets
very large can also be explained. In this case, the more points you have along the
hyperplane, the closer the hyperplane gets to the original and the less impact each
individual error has. Each additional point, although it may have error itself, pushes
the average error of all of the points to 0 as the limit increases, making the hyperplane
truer to the original underlying hyperplane. Since the original surface is hyperplanar,
there are no bumps or curves that would get cut off by having too many neighbours,
so the numbers of neighbours can increase without apparent limit.

With this explanation, it is unclear why there is a slight rise in error as the number
of neighbours ‘increases past 28 in the case where there is no error introduced. Such
a problem might be explained away as a rounding problem when the number of
points (and hence the number of floating point calculations) gets very large since the

magnitude of the increase in RMSE is very small.

4.2 Error Tests

This test is designed to see what the effect of introducing error into the data has on
the prediction accuracy.

This test uses similar hyperplanar data to that used in the neighbour tests (Sec-
tion 4.1). The difference is that a finer mesh of errors has been tested - in this case
we tried errors ranging over the same 1% to 50% but looked at 2%, 3%, 4%, etc.
Here we hold the numbers of neighbours constant and look at the effect increasing
the error has on our prediction error. We also examine the minimum error that the
KNNR reaches to see how well it performs. Using linear data means that the results
should be the best possible that the KNNR can achieve, since the learning surface is
linear.

Once we have some idea what the maximum improvement shown by the system,
we then test the KNNR system using sin curves with error introduced, ranging over
the same error percentages. We predict that the improvement will be less for curved
surfaces, and the more curved the surface the less improvement we will see. In all

cases (linear and sine functions) 2500 samples are used in the training set and 500
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samples are in the test set.

4.2.1 Hypothesis

We predict that the system will be able to learn the functions to such a degree that
the error learned will be no greater than the error introduced, and in fact should be
considerably less. We expect that higher numbers of neighbours should have better
performance than lower numbers of neighbours, but in all cases the model error should

increase as input error increases.

4.2.2 Results and Conclusion

The linear tests gave us the results shown in Figure 4.11. The results were as expected
- as the amount of error introduced into the system increases, the RMSE rises. And
as we saw in Section 4.1 as the number of neighbours increases, the RMSE drops.
The following table shows the best results obtained by the KNNR. The Error
column is given as the maximum percentage error that could be introduced into the
system. The linear column gives the best RMSE of the KNNR (which in each case
was for 2499 neighbours). The other 3 columns give the best RMSE for the various
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sine functions with the given error introduced. The linear columns have a maximum

input value of 5000, and the sine columns have a maximum value of 10.

Error(%) | linear (%) | 14sin(x) 1+4sin(5x) | 1+sin(10x)
1 3.50861 0.00469811 | 0.0291294 | 0.812632
2 4.97375 0.0100247 | 0.0654452 | 0.195101
3 11.4067 0.0137404 | 0.116481 | 0.353858
4 13.9602 0.0193129 | 0.182907 | 0.491297
5 15.0481 0.0259115 | 0.273025 | 0.578855
6 12.4108 0.0335633 | 0.355528 | 0.625001
7 21.5133 0.0459740 | 0.425094 | 0.638201
8 33.2391 0.0714939 | 0.488542 | 0.640475
9 24.1338 0.0847029 | 0.581540 | 0.626845
10 18.8383 0.0980856 | 0.621076 | 0.629100
15 39.8058 0.1635120 | 0.662108 | 0.642388
20 44.4410 0.222663 0.655313 | 0.649788
25 94.8598 0.279437 0.664849 | 0.652528
30 76.3243 0.329299 0.679702 | 0.657657
35 105.025 0.382082 0.691140 | 0.667297
40 96.2274 0.429069 0.692964 | 0.682003
45 102.889 0.468736 0.679270 | 0.681922
50 118.616 0.493240 0.680413 | 0.685363

The linear results are very good - the KNNR eliminates at least 90% of the error
that was introduced. The 1+sin(x) values are also good - there is a significant reduc-
tion in error and the original function is more or less intact. Not surprisingly, as the
surface gets more and more bumpy the results are poorer and poorer. This tells us

that the system can handle error effectively.

4.3 Training Size Tests

This test is designed to see what the effect of increasing the amount of data available

to the system has on KNNR accuracy.

4.3.1 Hypothesis

We predict that as the training size increases, the accuracy for a given number of
neighbours should increase, since we have more information about the system. In
addition, the minimum achievable error should also decrease when the number of

training points increases.
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4.3.2 Test Description

This test uses hyperplanar data generated on the hyperplane 2z, +z2 —z3—2z4+ 100
with error percentages of 0, 1%, 10% and 50%. A validation set of 500 similar hyper-
planes is used for all of the hyperplane tests and contains no error in the same manner
as the neighbour tests. Various test set sizes of from 50 to 25000 training points are
used and we look at the performance with a variety of numbers of neighbours. For
these tests we hold the number of neighbours constant and look at the effect changing

the amount of training data has on the system.

4.3.3 Results and Conclusion

The results sl;own in Figure 4.12 illustrate that our hypothesis is indeed correct - as
the training size increases, the accuracy for a given number of neighbours decreases.
This graph shows the results for the case where 1% error is present in the hyperplane
generated above, other results are analogous. Although the progression is not smooth,
as the number of samples increases the accuracy increases until a maximum amount
of accuracy (a minimum amount of error) is achieved, at which point the accuracy
remains relatively constant. The roughness of the progression is merely a function
of the addition of very noisy data points to the samples - a few well-placed highly
erroneous data points can create a substantial amount of addition error that is only
compensated by the addition of later points with less error. The small rise in error at
the beginning of the larger neighbour lines comes about because there are actually less
samples than neighbours - in all cases we have an underdetermined system where the
“best match” results in better performance than the minimally-constrained systems
with error present.

Figure 4.13 shows the minimum RMSE obtained by the system for various sample
sizes. Once again we take hyperplanes with 1% error, this time looking to see how
the minimum error in the system is affected.

Clearly, as the sample size increases the error decreases. Once again, there are
abnormalities in the data since bad data points can be added as easily as good ones
when error is present, but the overall trend is clear. The KNNR is capable of handling

€rTor.
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Chapter 5

Statlog

5.1 Introduction

The Statlog project[Sta] benchmarked over 20 machine learning and classification
systems from 1991 to 1994. The systems were compared on their predictive accuracy
for each of many different sets of data.

The KNNR’s primary use is as a regression tool. However, it can be used effectively
for classification as well. The question that we wanted to answer was: How effective
a classifier is the KNNR system? While it is impossible to state how effective the
KNNR system will be over all data sets, we felt that if we met two criteria we would
have a good classifier. First, if we outperformed or performed nearly as well as the
standard KNN algorithm, that is a good indicator that the KNNR classifies well.
Second, if we perform in the top half of the classification algorithms, that is also
evidence that our method works well.

We were able to try the KNNR on five of the Statlog data sets. We now look at
the results of each experiment and discuss the performance of the KNNR.

5.2 Methodology

Each of the Statlog data sets came with a standard methodology that was used by all
of the learning tools that tried that particular set. The methodologies were mostly
the same, and the slight differences will be discussed in the upcoming sections. Those
pieces of the methodology that remain constant throughout are described below.

The tests were run on a Sun Ultra-1 workstation. A common tolerance of 1.0e-8

47



with 250 iterations was used for the svdfit algorithm. In each case, the data sets were
taken as is with no attempt at preprocessing. There were two distinct methods of
learning used for these 7 data sets - standard train and test and cross validation.

Train and test is the standard method described in Section 3.8. Cross validation
is a similar idea, and works as follows. Instead of breaking the data file into 3
distinct files, it is broken up into some number K (K-fold cross validation). K trials
of training and testing are then done, where each of the K subfiles is used as the
validation set and the other K-1 files are combined to form the training set for that
particular trial. The results of the K trials are then averaged to find the optimal
set of training characteristics. For each of the datasets that use cross-validation, the
number of subfiles to be produced is also given. For train-and-test, the original data
files provided by Statlog were already divided into a training set and a test set - the
training set was further broken up into a training set and a validation set.

Tests were first done at intervals of 10 neighbours over a range that starts with the
dimension of the system and goes upwards of several hundred. ‘Once a broad interval
was known to contain the minimum, tests were re-run with much tighter higher and
lower bounds at an interval of one neighbour to find the optimal choice of the number
of neighbours.

Descriptions of the individual data sets follow.

5.2.1 Australian dataset

The Australian dataset contains data on credit card applications. All of the attribute
names and values were changed to meaningless symbols to protect confidentiality of
the data. This dataset is interesting because there is a good mix of attributes —
continuous, nominal with small numbers of values, and nominal with larger numbers
of values. There were originally a few missing values, but those were replaced by
the overall median. There are 690 data points given. Each data point consists of 14
attributes (6 Continuous and 8 Categorical) and the output of the system is either a
0 (reject application) or 1 (accept). Where attributes are categorical, the categories
are given numerical labels in the order of the relative risk of class 1 (accept). This

dataset was learned by 10-fold cross-validation.
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5.2.2 Diabetes dataset

The diabetes dataset originally came from the National Institute of Diabetes and
Digestive and Kidney Diseases. It contains data on patients who were investigated to
determine if they had diabetes according to World Health Organization criteria. The
population investigated lives near Phoenix, Arizona, USA. There are 768 data points
given and the data set is tested by 12-fold cross-validation. Each data point consists

of 8 continuous attributes and the output of the system is either 0 (not diabetic) or

1 (diabetic).

5.2.3 Satimage dataset

The sa.t;image‘ dataset consists of pixels in 3x3 neighbourhoods in a satellite image
with each pixel containing information from 4 spectral bands. The aim is to predict
the type of land that the pixel image represents. The data set is learned by train-and-
test and the training set has 4435 examples and the test set 2000. Each data point
c;)nsists of the 36 spectral values (real-valued inputs) and one of six output classes. In
each data point the four spectral values for the top-left pixel are given first followed
by the four spectral values for the top-middle pixel and then those for the top-right

pixel, and so on with the pixels read out in sequence left-to-right and top-to-bottom.

5.2.4 Segment dataset

The segment dataset consists of instances that were drawn randomly from a database
of seven outdoor images. The images were hand-segmented to create a classification
for every pixel. The data is learned by 10-fold cross-validation and the data set has

2310 instances. There are 19 continuous attributes and 7 possible classes of pixel.

5.2.5 Vehicle dataset

The vehicle dataset consists of a set of features extracted from an image of the sil-
houette of a vehicle. The aim is to predict which of four types of vehicles the image
belongs to. The images come from a variety of different angles of the same four vehi-
cles. The data is learned by 9-fold cross-validation and was originally gathered at the

Turing Institute in 1986-87 by JP Siebert. The features were extracted from the sil-
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houettes by the HIPS (Hierarchical Image Processing System) extension BINATTS,
which extracts a combination of scale independent features utilising both classical
moments based measures such as scaled variance, skewness and kurtosis about the
major/minor axes and heuristic measures such as hollows, circularity, rectangularity
and compactness. The four vehicles were a double decker bus, a Chevrolet van, a Saab
9000 and an Opel Manta 400, chosen because of their vastly different profiles. There

are 846 data points consisting of 18 continuous attributes and 4 classes of output.

5.3 Results

The following table shows how well the KNNR performed in each of the tests run.
The results for the other algorithms are shown for comparison. The KNN and KNNR

results are listed on the bottom for easy comparison.
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Algorithm | Australian | Diabetes | Satimage | Segment | Vehicle
Cals 0.131 0.250 0.151 0.062 0.279
Itrule 0.137 0.245 NA 0.455 0.324
LogDisc 0.141 0.223 0.163 0.109 0.192
Discrim 0.141 0.225 0.171 0.116 0.216
Dipol92 0.141 0.224 0.111 0.039 0.151
Radial 0.145 0.243 0.121 0.069 0.307
Cart 0.145 0.255 0.138 0.040 0.235
Castle 0.148 0.258 0.194 0.112 0.505
Bayes 0.151 0.262 0.287 0.265 0.558
IndCart 0.152 0.271 0.138 0.045 0.298
BackProp 0.154 0.248 0.139 0.054 0.207
C4.5 0.155 0.270 0.150 0.040 0.266
Smart 0.158 0.232 0.159 0.052 0.217
BayTree- 0.171 0.271 0.147 0.033 0.271
KNN 0.181 0.324 0.094 0.077 0.275
Ac2 0.181 0.276 0.157 0.031 0.296
Newld 0.181 0.289 0.150 0.034 0.298
LvVQ 0.197 0.272 0.105 0.046 0.287
Alloc80 0.201 0.301 0.132 0.030 0.173
Cn2 0.204 0.289 0.150 0.043 0.314
QuaDisc 0.207 0.262 0.155 0.157 0.150
Default 0.440 0.250 0.769 0.760 0.750
Cascade NA NA 0.163 NA 0.280
Kohonen NA 0.273 0.179 0.067 0.340
KNNR 0.136 0.238 0.274 0.093 0.256
KNNR rank | 2 5 22 17 9
KNN rank 15 22 1 16 11

The performance of the KNNR highlights a couple of strengths and weaknesses.
The KNNR performed best when there were only two output classes. The more
output classes there were the worse it performed relative to the rest of the field. The
KNNR also appears to perform better in cross-validation techniques, although further
testing revealed that it performed just as well on the cross-validation techniques as
when train-and-test was used, so this may not be significant.

The KNNR clearly holds its own as a classification technique. In three of the
five tests it performed in the top 10 of all algorithms tried. In two of the top ten
it clearly outperformed the basic KNN technique while it was clearly outperformed
by the KNN only once. From this we conclude that we have met our objectives -

we outperformed or performed nearly as well as the KNN and we perform in or near
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the top half of the classification algorithms - so we can conclude that the KNNR can

effectively be used as a classification tool.
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Chapter 6

Resampling using KNNR

The purpose of resampling is to populate a data set more thoroughly by taking the
data that currently exists and creating a larger set of points that covers more of the
input space. We can then use the resampled data to train our system (or anoth;er
system) to get better results. The KNNR'’s performance on regression data was
good enough to investigate its use as a resampling technique. The basic resampling

technique follows.

6.1 The Resampling Method

The input to the system consists of a single data set (the base set), number of neigh-
bours, a radius (the resampling radius), and a constant factor (the resampling factor).
The KNNR first normalizes the input set as usual. Then, for each point in the base
set, it creates N new points, where N is the resampling factor. Each of these N points
is created by adding a random number to each of the components of the original point
and then computing the output by the application of the KNNR algorithm for deter-
mining the output of a new point. The amount added to each of the inputs falls in the
range [-resampling radius, resampling radius]. The effect of this resampling process is
to make a larger and more complete data set out of the original while avoiding filling
the whole input space. Because of dependencies among the input variables, the data

may occupy only a small part of the set of possible inputs.
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6.2 Using the ALN

The best benefits of resampling can be found if we can somehow couple the strengths
of one learning method with the strengths of another. One of the KNNR'’s strengths
is its ability to adapt to regions of varying local density through the selection of an
appropriate number of neighbours. The Adaptive Logic Network described in Sec-
tion 2.2.4 has as its primary strengths speed and the integration of global knowledge.
The way the ALN splits hyperplanes to fit data approaches the regression problem
globally, while KNNR attacks the problem locally. We hoped that by using ALNs in
combination with the KNNR we would be able to have a faster and more accurate

predictor than either method alone.

6.2.1 The ALN Training Method

It is now necessary to have a clear understanding of how the ALN is trained. The
basic ALN training method is as follows.

The ALN is used in a series of runs similarly to that of the KNNR (see Chapter 3).
A single run of the ALN takes two files - a training file and a validation file. The
training file is the file used by the ALN to create its linear pieces. It runs a number
of epochs, where in each epoch the linear parts are fitted to the training data and
linear pieces are broken into smaller pieces. The resulting collection of linear pieces
is then tested on the validation data to find the RMSE. The system runs until the
RMSE on the training data is smaller than an acceptable erro‘r rate or the maximum
number of epochs has been reached. Once either of these termination requirements
are met, the system is then tested using the validation file and the resulting RMSE
is reported.

To use the ALN, data is divided into three files - a training file, a validation file
and a test file. A certain set of ALN parameters (tolerances, min/max slopes, learning
rate, number of training runs, and acceptable error rates) are chosen and the ALN
is run with these parameters using the validation and training files. The resulting
RMSE is then recorded along with the parameters that created it. The parameters
are varied by the human user and the ALN is trained anew. Again the parameters

are recorded by the human user along with the RMSE. The process is repeated until
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an acceptable result is found on the validation set, at which time the ALN is then

run using the best parameters on the test set to obtain an unbiased estimate of the

error rate.

6.2.2 Our use of the ALN

Keeping focused on computer-only learning, we hold all of the user-adjustable param-
eters constant except the minimum acceptable error and the input tolerances. The
input tolerances are calculated by the KNNR (see below) and the minimum accept-
able error is chosen by the human by looking at the KNNR results. This is the only
input that the human user has to the system and is done to achieve the best possible
generalization of the ALN. It is done by the human because no automatic method of

determining the acceptable error has been found.

6.2.3 The Combined ALN/KNNR Method

For the method that combines ALN and KNNR we again restricted our search to
computer-only learning, keeping any human intervention to a minimum. The method
that we devised for using the KNNR and ALN in concert is as follows.

First, we took the data set and split it into three files. The first two are simple
train and validation files, and the third is a test file. The next step is to train the
KNNR in the standard way using these training, test and validation files, recording
the performance of the ALN and determining the optimal number of neighbours by
the result in the validation set. During the validation step, we measure two other
quantities - the jitter radius and the ALN radii.

The jitter radius is the maximum radius of the limiting hypersphere formed by
the optimal K+1th neighbour (see Section3.4) divided by the dimension-th root of

the number of neighbours.
JitterRadius = \/maz(R)

where d is the dimension and R is the maximum radius. This distance is a normalized
quantity and it represents the maximum amount of space that a single point in the

input set covers in one dimension. It is thus the maximum distance that a point
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should be jittered during resampling. The ALN radii are the unnormalized jitter
radii further divided by the dimension-th root of the jitterfactor,

ALNradii = UnnormalizedJitterRadius/ +/ jitterfactor

representing the maximum distance that one of the resampled points should cover in
any one dimension.

The ALN is then trained as usual (Section 6.2.1) using the combined validation
and training sets as input and the test set as the test set, with the epsilon for each
input set to the ALN radius. The results are recorded.

The train and validation files are then combined into the base set for the resam-
pling method. Using the optimal number of neighbours found by the KNNR tests
and setting the resampling radius to the jitter radius, a jitterfactor is chosen and the
KNNR is run in resampling mode with the new base set. This produces a resampled
output set. The output set is then used as the input set and the test set is tried by
the ALN. Tolerances are set as above and the output RMSE is recorded. We thus get
an output RMSE for the three different methods - KNNR, ALN and KNNR+ALN

run on the same test set, which makes comparing them simple.

6.3 Results and Conclusions

Figure 6.1 shows the resampling process at work. A random subset of the resampled
data is shown overlayed with the original data and the original function. The original
data file had 250 data points and the function resampled was 1+sin(5x). The resam-
pled points do not completely cover the entire space, since there are pockets where
points are simply too thinly spaced. This may indicate that our resampling radius is
a little small, although the results are very good.

A number of different tests were run to see how the resampled data used with the
ALN would perform. The tanh function and three sin functions (1+sin(x), 1+sin(5x)
and 1+sin(10x)) were tested under various conditions to see how best to use the
resampled data.

The results (seen in the table below) were very promising. For the tanh function

and 1+sin(x) functions the KNNR outperformed both the KNNR+ALN and the ALN
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Figure 6.1: Resampling 1+sin(5x)

itself, although in both cases the KNNR+ALN performed better than the ALN. This
represents a win for our resampling method. By sacrificing some accuracy we can get a
drastic increase in speed, which from our stand on accuracy vs. speed doesn’t impress
but from a practical standpoint is very useful. There are applications for which the
KNNR is simply too slow and while in the future this slowdown is not likely to be a

problem, for some practical modern-day problems speed is of the utmost importance.

KNNR ALN Combination
tanh 1.84742e-05 | 0.000834737 | 0.000246218
1+sin(x) 0.000383869 | 0.00342766 | 0.00350918
1+sin(5x) | 0.013745 0.0265242 0.0119124
1+4sin{10x) | 0.0329672 0.0388779 0.0316295

The results are even better for the 1+sin(5x) and 1+sin(10x) functions. In these
cases, the ALN+KNNR performed better than either method, better from both speed

and accuracy standpoints. This is an important result, since it shows that we can
merge the strengths of the two methods to get two levels of learning - the KNNR and
the ALN. Merging their two strengths creates a tool more accurate than either either

tool on its own.
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Chapter 7

Ship Icing

The final step was to use the KNNR in a real application. The problem chosen
involved predicting the rate that ice accumulated on a ship’s deck.

Ships travelling in the northern seas of the world meet up with a problem tha.t
others in warmer climes do not - ship icing. Ice forming on ships can cause severe
imbalance and, in several cases, can lead to the capsizing and sinking of vessels caught
in severe storms. Some attempts have been made to build a model to allow scientists
to predict the rate at which icing occurs, but these models are still in the development
stage. An attempt was made to use both the KNNR and ALNSs to try to predict this
crucial icing rate.

Ship icing is a difficult process to model for several reasons. The first problem is
that ships come in all shapes and sizes. The shape of the ship and its size affect the
icing rate and make it difficult to compare results taken from two different ships.

The second and more difficult problem is acquiring accurate data. Getting data
on icing rates involves putting a ship and her crew in harm’s way, and attempting
to make accurate measurements in very adverse conditions. It is difficult to measure
parameters such as the sea surface temperature, wind speed and direction, when
the winds are up and the sea is tossing water constantly onto the deck of the ship.
Measuring the icing rate itself is difficult too, as ice rarely accumulates uniformly and
usually contains pockets of trapped brine that add to the mass of the ice but are not
themselves frozen. The accuracy of these measurements is therefore poor under the

best conditions.

58



7.1 Previous Work

An attempt at collecting the data needed to build an icing model was undertaken by
the Soviet government in the late 1960s. Shipping was a very important contributer
to the Soviet economy, and when several ships were lost at sea in a major storm on
January 25, 1965, icing was supposed to have been a major factor. This brought
about an effort by the Soviet government to collect as much data as they could on
ship icing. From 1967 to 1972, the Soviet Ministry of Fisheries conducted a major
research program aimed at the collection of field data on the icing and spraying of
fishing vessels. The results of this effort were not made available to scientists in the
West until 1989, when a paper [ZL89] was released containing a description of the
Soviet’s efforts to obtain icing data, along with a listing of the 115 data sets recovered.
Two further data sets (one by Brown and Roebber (1985) and another by Roebber
and Mitten (1987) were provided as well that included 407 data points from a similar
study. This larger data set is the one that was used for our testing purposes.

The model built by Lozowski et al. [KKL94] met with some success. A preliminary
report given to this author shows how the model was built, and more importantly
shows the performance of the model, which was not as good as hoped. The mathe-
matical model tends to over-estimate the values of ship icing. This led to trying the

ALN and KNNR to see how well the computer could do.

7.2 Our Work

Both the ALN and KNNR were trained with the data provided by Dr. E. Lozowski.
The standard methods of train-and-test were used by both. The ALN was trained
by hand, that is, the parameters for the ALN were fine-tuned by a human operator
and tested. This could appear to diverge from our stated goal of minimal acceptable
human intervention, except that this is a real world problem, and we wanted the best
possible results for both tools.

The data used for this experiment is given in an appendix. The inputs to the
system are Ship Speed, Wind Speed, Air Temperature (as measured at the surface of
the ship), Sea Temperature (the temperature of the air at sea level), the Significant
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Wave Height (a measure of the height of the waves in the surrounding sea) and the

salinity of the ocean water. The output is the mean icing rate during the icing event.

7.3 Results and Conclusions

Both the KNNR and the ALN performed well on the data set, with the KNNR
performing slightly better. KNNR had an RMSE of 0.71629 with 140 neighbours and
the ALN had an RMSE of 0.730601. This is a good result for the KNNR showing
that even for difficult data sets it can perform as well as and even slightly better than
the ALN. It thus confirms that the KNNR is usable as a regression tool on difficult

real-world problems.
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Chapter 8

Conclusion and Future Work

The KNNR is a regression tool that has shown promise. Its ability to dynamically
react to the density of the learned function makes it a powerful tool for learning, and
its relative simplicity makes it easy to understand and use.

The KNNR has shown that it is a capable classification and regression tool. Its
ability to handle error and its proven performance as a classification tool make it ver-
satile and powerful. And as useful as it is, there are still promising ways of improving
the system further and making it even more accurate.

The first avenue of exploration would be to investigate the effect that different
weighting functions have on the performance of the KNNR. The choice of what shape
the weighting function has will have an impact on the types of data sets that show
good performance. A weighting function that weights the nearest points highly but
neglects most further points should have different performance than a weighting func-
tion that weights most of the points highly, dropping sharply near the limiting hy-
persphere so most points have a significant impact. Once the effects of the different
weighting functions are known, the weighting function could be explored further to
see if the KNNR. can “learn” which weighting function is best. A simple choice from
a preset group of weighting function might be one simple approach, but in the end
a system of learning the shape of the best weighting function might gain even better
results than those shown here.

A second avenue of further research would be to try the KNNR in conjunction
with other types of learning tools. It would be interesting to see if the resampling

method could used with Friedman’s Multivariate Adaptive Regression Splines [Fri91]
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to fill gaps in the input and then fit splines to it, or in combination with a standard
Neural Network technique.

A third avenue of exploration would be to explore a method for dynamically
changing the number of neighbours during execution. One of the KNNR's strengths
is its use of local information - higher density areas use points with a tighter radius
than than less-dense areas. It would be interesting to see if this idea could be expanded
to include an actual change in the number of neighbours depending on the location
in the input space. For instance, a measurement of the planarity of a region could be
used to adjust the number of neighbours, allowing for many neighbours in flat areas
and fewer neighbours in curved areas.

A fourth avenue of exploration, and one that is perhaps the furthest from realiza-
tion, would be to get the KNNR to learn which inputs are insignificant, and either
eliminate them from consideration entirely or adjust their means and variances to push
the points further apart in the less-significant dimension. For instance, doubling the
normalized values for a given input would make all of the other inputs relatively more
significant when deciding which points were nearest during the Nearest Neighbours
phase of the KNNR. A simple version might have the user set a relative weighting
scheme that sets the relative widths of the input variables. A more complex system
would have the KNNR learn the relative weightings.

Finally, a fifth avenue of exploration related to item four above would be to ex-
amine what it means to be the “Nearest Neighbour”. Other schemes that adapt the
distance metric like those of Lowe [Low95] or Hastie and Tibshirani [HT96] coupled
with the weighted regression of the KNNR might show promise.

A final enhancement that could be made to the KNN would be to incorporate the
ideas of Niemann and Goppert [NG88] to make the search for K-nearest neighbours
more efficient. This would not improve the accuracy of the system, but would make

it faster without sacrificing accuracy.
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Appendix

This appendix contains the data used in the Shiplcing problem. The seven columns
are, in order, Ship Speed, Wind Speed, Air Temperature, Sea Temperature, Signifi-

cant Wave Height, salinity, and the mean icing rate during the event.

4.6 26.000 -3.9 3.0 8.2 32.0 2.00
3.6 22.000 -13.3 2.5 4.6 32.0  1.20
5.1 20.000 -6.7 3.0 2.7 32.0 0.50
4.6 20.000 -6.7 7.0 0.9 32.0 0.20
4.0 19.033 -3.0 1.0 5.5 32.0 0.04
4.0 18.004 -5.0 2.0 11.0 32.0 0.05
4.0 12.860 -6.0 ~-1.5 3.0 32.0  0.11
4.0 23.148 -15.0 0.0 7.0 32.0  0.12
4.0 18.004 -12.0 0.5 5.5 32.0 0.13
4.0 12.860 -13.0 0.0 2.0 32.0  0.17
4.0 15.432 -5.0 3.0 4.0 32.0 0.18
4.0 18.004 -4.2 =-0.5 5.5 32.0 0.20
4.0 12.860 -3.0 ~-1.0 4.0 32.0 0.21
4.0 20.576 -5.0 0.0 6.0 32.0 0.22
4.0 10.288 -8.0 0.0 2.0 32.0 0.25
4.0 15.432 -14.0 2.0 4.0 32.0 0.25
4.0 10.288 -10.0 2.0 2.0 32.0 0.28
4.0 10.288 -8.0 2.0 2.0 32.0 0.28
4.0 12.860 -1.0 0.0 3.0 32.0 0.32
4.0 12.860 -7.0 2.0 7.0 32.0  0.32
4.0 21.605 -10.0 2.0 7.0 32.0 0.32
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