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Abstract Urquhart works in several areas of logic where he has proved important
results. Our paper outlines his topological lattice representation and attempts to re-
late it to other lattice representations. We show that there are different ways to gen-
eralize Priestley’s representation of distributive lattices—Urquhart’s being one of
them, which tries to keep prime filters (or their generalizations) in the representa-
tion. Along the way, we also mention how semi-lattices and lattices figured into
Urquhart’s work.
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1 Introduction

Alasdair Urquhart has the title of “St. Alasdair” in the Logicians Liberation League.1

We have never known why. Is it because he works miracles, or because he is very
nice? We think both. We have each known Urquhart for many years, and indeed one
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aal.ltumathstats.com/curios/logicians-liberation-league.
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of us (JMD) has known him for over 50 years. JMD once thought of Alasdair as
a kind of younger brother, arriving in the Anderson–Belnap family of relevantists
just shortly after his two older brothers, Bob Meyer and JMD left the nest. Indeed,
JMD might have overlapped with Alasdair in an alternative possible world. The last
chapter of JMD’s dissertation (Dunn, 1966) was intended to show the decidability
of the two relevance logics E and R. Fortunately, his dissertation director Nuel Bel-
nap insisted that the dissertation was complete as it was, and JMD did not need to
spend another year on it. We say fortunately, because as almost every reader knows,
Urquhart (1984) showed the undecidability of these logics.

Urquhart has been very helpful to both of us (JMD and KB) in various ways,
including through reading our work and giving us helpful suggestions and criticisms
(almost all of which we have agreed with).

Urquhart has made considerable contributions to logic and the philosophy of
logic, including non-classical logics (particularly, relevance logic), lattice theory,
foundations of mathematics, history of logic, theory of computation, and computa-
tional complexity theory. In this chapter, we focus on just one of these, his topologi-
cal representation of lattices. However, we will mention some other contexts where
lattices, modular lattices and semilattices appear in Urquhart’s work—seemingly,
everywhere. Lattices had been given a number of different representations since
Birkhoff and Frink (1948) (using sets of subsets of the elements), but Urquhart’s
was the first one using topological structures.

In Section 2, we illustrate the idea of emulating abstract algebras by concrete ob-
jects, namely, groups by permutations. Then, we turn to lattices in Section 3, where
we present Urquhart’s lattice representation, and we briefly compare it to Priestley’s
representation. Section 4 explores the confluence of two trains of thought, one com-
ing from a representation of orthocomplemented lattices and the other originating
in Galois theory. This leads to another generalization of Priestley’s representation.
In Section 5, we explain the importance of the topologies on frames. Among the
various lattice representations, Urquhart’s is the first one to provide all components
for duality. In the concluding Section 6, we quickly point out the importance of all
the lattice representations for the model theory of substructural logics.

2 Representations of abstract algebras

As any schoolchild knows from personal experience, algebra is abstract, though they
may not know this word. There is the term “abstract algebra” to cover algebras that
do not just give you laws for manipulating numbers, but give you laws for various
structures that abstract out properties of various structures beyond numbers. A good
example is a monoid, and we shall quickly examine representations of monoids to
give a kind of introduction and paradigm for representations of algebras. We start
by defining a semigroup as a set S together with an associative binary operation ⋅
on S. “Associative,” of course, means that x ⋅(y ⋅ z) = (x ⋅y) ⋅ z. Additional axioms are
the usual ones for identity, x = x (reflexivity), if x = y, then y = x (symmetry), and
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if x = y and y = z, then x = z (transitivity). And, of course, we must not forget the
substitution of identicals, which in this case can be stated as if x′ = x then x′ ⋅y = x ⋅y,
and if y′ = y then x ⋅ y′ = x ⋅ y. A monoid is a semigroup with an identity element e
satisfying e ⋅x= x= x ⋅e (identity). A group is a monoid with a unary inverse operation−1 satisfying x ⋅x−1 = e = x−1 ⋅x.

Suppose you are creating a “butterfly zoo.”2 The ideal would not just to have a
couple of butterflies, but in fact, to have examples of every species in Lepidoptera.
This may be unrealistic for butterflies, but it is obtainable for groups. This may
seem surprising because the number of different kinds of groups is obviously in-
finite. However, it turns out that we can construct groups that are representatives
of every kind of group in the sense that every group is isomorphic to one of these
representatives. This gives what is called the “Cayley Representation Theorem” for
groups.

A standard example of a group is a permutation group, i.e., a collection of 1–1
functions from a set onto itself that is closed under composition. But this is much
more than just an example. Any group is isomorphic to a subgroup of a permutation
group of some set. Cayley showed that every group is isomorphic to a subgroup
of the collection of 1–1 functions on some set closed under composition, where e
is an identity function, and −1 is the converse forming operation, i.e., if f (x) = y,
then f (y) = x.3 Important and beautiful as this theorem is, we can give the idea of a
“representation” with its simpler monoid version. A transformation monoid is just
like a permutation group except the functions are not required to be 1–1, nor are
they required to be onto.

Given a monoid ⟨S, ⋅⟩, each element a ∈ S determines a function fa that maps
each element x onto the element a ⋅ x. Consider the set F = { fa ∶a ∈ S} of all such
functions. Note that F is clearly closed under composition since fa( fb(x)) = a ⋅(b ⋅
x) = (a ⋅b) ⋅ x = fa⋅b(x). Thus we can map S onto F in a way that carries each a ∈ S
to fa, namely, h(a) = fa. Moreover, h is 1–1. Now suppose a ≠ b but fa = fb. Then
a ⋅ e = b ⋅ e, and so a = b contrary to our assumption. So, h is an isomorphism of the
monoid to a submonoid of a transformation monoid.

We can easily expand the above to link groups to permutation groups. We only
need to show that fa is 1–1 and onto. But we will not expand on this here. Another
expansion would be to consider all the subgroups of a group, which form a lattice.
Indeed, Whitman (1946) showed that every lattice can be viewed as a lattice of
subgroups of some group. We will not expand on this either.

On the other hand, we can use transformation monoids to provide a kind of se-
mantics for a very simple logic. Define A ⊧a B iff ∀x ∈ S(if x ⊧A then a ⋅ x ⊧ B).
Informally, sentence A has sentence B as a consequence according to state a iff ev-
ery state x where A holds is such that when viewing a as a function, a transforms x
into a state a(x) where B holds. Where e is the identity element, note that A ⊧e B
iff, ∀a ∈ S(if e ⊧A then a ⋅e = a ⊧ B). We can define A ⊧S B iff A ⊧e B.

2 We will call it Lepidopterary to attract scientifically minded visitors. :-)
3 In other words, every group is a subgroup of the automorphism group on some set; “automor-
phism” is the taxonomical name for a permutation in the scheme of morphisms.



326 Bimbó and Dunn: St. Alasdair on lattices everywhere

We have not yet infused our sentences with any logical structure such as con-
nectives. Nonetheless, it is obvious that A ⊧S A. It is also clear that ⊧S is transitive,
that is, if A ⊧S B and B ⊧S C then A ⊧S C. Now, we may consider adding a pair of
naturally emerging connectives, which resemble the familiar conjunction and con-
ditional. A○B = {a ⋅b ∶a ∈A and b ∈ B}, A→ B = {x ∶ ∀a(if x ∈A then x ⋅a ∈ B)}.
It is worth pointing out that the definition of A→ B parallels the valuation clause
for implications in Urquhart’s (1972b), where he gave a semantics for relevant im-
plication. The latter is called semilattice semantics, because the operation ⋅ is not
functional composition, rather, it is set union, which has the additional properties
of commutativity and idempotence. This semantics fits precisely the implicational
fragment of R, as he showed in Urquhart (1972a).

Having found the first use of a semilattice in Urquhart’s work—while illustrating
the idea of a representation—we go on to lattices.

3 Representations of lattices

A slightly different approach to the semantics of a logic than what we have already
mentioned may be sketched as follows. We start with sentences. Sets of sentences
describe a situation, and in turn, sets of situations characterize propositions. How-
ever, sentences are often too delicate, and they make too many distinctions. If a
logic cannot distinguish between A and B with respect to their role in reasoning,
then there is no need to distinguish A and B in their interpretations. Then it is just
as good (or better) to start with the Lindenbaum algebra of a logic as with all the
sentences.

Definition 3.1. A lattice logic (Lat) has two binary connectives ∧ (conjunction) and∨ (disjunction) with a denumerable set of sentence letters. The formulas (wff’s) are
defined as usual; they are abbreviated by A,B,C, . . . . The consequence relation (⊢)
satisfies the following axioms and rules. (The two-way turnstile ⊣⊢ indicates that ⊢
holds in both directions.)

(1) A ⊢A, A ⊢ B and B ⊢ C imply A ⊢ C;
(2) A∧B ⊢A, A∧B ⊢ B, A ⊢A∨B, A ⊢ B∨A;
(3) (A∧(B∧C)) ⊣⊢ ((A∧B)∧C), (A∨(B∨C)) ⊣⊢ ((A∨B)∨C);
(4) A ⊢ C and B ⊢ C imply A∨B ⊢ C, A ⊢ B and A ⊢ C imply A ⊢ B∧C.

A lattice logic with limits (LatL) additionally includes two zero-ary connectives T
(triviality or constant truth) and F (absurdity or constant falsity). The next axioms
hold for T and F .

(5) A ⊢ T ; F ⊢A.

REMARK 3.1. Often, it is useful to think of a lattice as two semilattices glued to-
gether. Indeed, if we would exclude ∧ or ∨ from the vocabulary, then the leftovers
would be semilattice logics. The addition of T and F is technically motivated, and
it is, by and large, harmless. T is triviality, or in a more favorable tone of voice, T is
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a formula implied by all formulas, thus, in a sense a theorem. T and F are the limits
of what a user of LatL can say—to use a Wittgensteinian metaphor.

If a logic extends Lat (or LatL), then we can define an equivalence relation,
which we denote by ≡, on the set of wff’s byA≡BBA⊣⊢B. Then the Lindenbaum
algebra of the logic contains a lattice, in which the elements are [A], where [A]B{B ∶A ⊣⊢ B}. The algebra of LatL is bounded, which is advantageous if we want
to obtain the algebra from a topology.4

Definition 3.2. A lattice L = ⟨A;∧,∨⟩ is an algebra where ∧ and ∨ are binary opera-
tions on the set A, and the following equations hold.

(1) a∧a = a, a∧b = b∧a, a∧(b∧c) = (a∧b)∧c;
(2) a∨a = a, a∨b = b∨a, a∨(b∨c) = (a∨b)∨c;
(3) a∧(b∨a) = a, a∨(b∧a) = a.

A bounded lattice L = ⟨A;∧,∨,⊺,�⟩ is a lattice with two distinguished elements of
A satisfying the equations in (4).

(4) �∨a = a, ⊺∧a = a.

NOTATION 3.2. We have assumed some commonly used notational conventions.
For instance, a,b,c, . . . are elements of A, and an equation holds in a structure when
its universal closure does. Other symbols for the least and greatest elements of an
algebraic structure that supports an order relation are 1 and 0. We do not introduce
a special label for bounded lattices—even though not all lattices are bounded—
because we almost always mean bounded lattices.

Lattices, with or without bounds, have a rich theory. For our purposes, it is inter-
esting to carve out two equational subclasses of lattices. The lattices in which (m)
holds are modular, and those in which (d) holds are distributive.

(m) a∧(b∨(a∧c)) = (a∧b)∨(a∧c);
(d) a∧(b∨c) = (a∧b)∨(a∧c).

The equation (d) implies (m) in the context of a lattice, but not the other way
around. From the point of view of the semantics of substructural logics, a divid-
ing line that is useful to draw is between lattices in which (d) holds, and the rest of
lattices. Every particular lattice is distributive or not, and in fact, the Lindenbaum al-
gebras of many logics include a lattice that is not distributive. However, we will not
rely on a lattice not being distributive; rather, we will not assume that it is distribu-
tive. Sometimes, we may call a lattice for which we have not stipulated distributivity
a general lattice for emphasis.

4 Sometimes the Lindenbaum algebra is called Lindenbaum–Tarski algebra.
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3.1 Urquhart’s lattice representation

We recall Urquhart’s lattice representation from (Urquhart, 1978). Urquhart saw
his own lattice representation as a generalization of Priestley’s representation of
distributive lattices that she published in 1970. (See Priestley, 1970, 1972.)

Definition 3.3. A doubly ordered space F = ⟨U ;⊑1,⊑2⟩ satisfies the conditions listed
in (f1)–(f3). (The u’s range over U .)

(f1) U ≠∅, ⊑1 ⊆U ×U , ⊑2 ⊆U ×U ;
(f2) for n ∈ {1,2}: u ⊑n u, u1 ⊑n u2 and u2 ⊑n u3 imply u1 ⊑n u3;
(f3) u1 ⊑1 u2 and u1 ⊑2 u2 imply u1 = u2.

REMARK 3.3. A distinctive feature of Priestley’s representation, especially, in com-
parison to Stone’s in (Stone, 1937–38), is that the space from which a distributive
lattice is defined is partially ordered. Then, Urquhart goes a step further by adding
another order relation. We may also note that the omission of anti-symmetry from
both relations is not essential, because both ⊑1 and ⊑2 are (weak) partial orders in
the doubly ordered space of a lattice. It is also useful to note that the complements
of ⊑1 and ⊑2 are irreflexive.

Definition 3.4. The left image of V (a subset of U) in a doubly ordered space is
defined by (fl); similarly, the right image of V is given by (fr).

(fl) l(V) = {u ∈U ∶∀v(u ⊑1 v⇒v ∉V)};
(fr) r(V) = {u ∈U ∶∀v(u ⊑2 v⇒v ∉V)}.

A subset of a doubly ordered space V is stable when lr(V) =V . The set of all stable
subsets of U is denoted by P(U)†.

REMARK 3.4. Subsets with the property rl(V) =V would do just as well as stable
sets. Universal instantiation in the defining conditions in (fl) and (fr) yields that
V ∩ l(V) =∅ and V ∩ r(V) =∅.

Proposition 3.5. If F = ⟨U ;⊑1,⊑2⟩ is a doubly ordered space, then the set of stable
subsets of U is a lattice with meet and join defined as ∩ and ⋓, where the latter is

(f4) V1⋓V2 = l(r(V1)∩ r(V2)).

Proof. First, we note that l’s type is l ∶P(U)Ð→C1 and r’s type is r ∶P(U)Ð→C2.5

To see this, let us assume that V ⊆U , u1 ∈ lV and u1 ⊑1 u2 but u2 ∉ lV . From the latter,
it follows that there is a u3 such that u2 ⊑1 u3 while u3 ∈V . However, this contradicts
u1 ∈ lV via u1 ⊑1 u2 and u2 ⊑1 u3, which imply u1 ⊑1 u3. The two orders are alike,
hence showing r’s type is alike too.

l and r form a Galois connection between C2 and C1, that is, if V ∈C1 and W ∈C2,
then V ⊆ lW iff W ⊆ rV . We show that the “only-if” conditional holds. Let us assume

5 We use the notation C as in Bimbó and Dunn (2008), that is, C ∈ C iff C is a cone (or an upset,
or an increasing set—to use other terms). Then, C1 and C2 are the sets of cones with respect to ⊑1
and ⊑2, respectively. We may omit parentheses—for readability—from r(V) and l(V).
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that V ⊆ lW and u1 ∈W . Toward a contradiction, let u1 ∉ rV be stipulated. Then, for
some u2, u1 ⊑2 u2 and u2 ∈V . But then both u2 ∈W and u2 ∈ lW , which is impossible.
The defining property of a Galois connection is symmetric in l and r; hence, the
proof is complete. �
REMARK 3.5. The proposition and its proof is not a literal quote from (Urquhart,
1978), but it is essentially in Urquhart’s paper. Our notation for the doubly ordered
space intends to suggest that such a space may be viewed as a frame, and the logic
LatL can be interpreted by mapping sentences of this logic into stable subsets of
the space.

It is pleasing that a doubly ordered frame carries a lattice, indeed, a complete
one. However, from an algebraic point of view, it is more interesting to know if
every lattice can be viewed as a set of certain subsets of a doubly ordered frame.
Since lattices come in all sizes and shapes, the usual strategy to establish that an
isomorphic set representation exists is to define a doubly ordered frame from an
arbitrary lattice and then to show that there is a suitable isomorphism.

Definition 3.6. A filter F in a lattice L is subset of the carrier set (i.e., F ⊆ A) with
properties (1)–(2).

(1) a,b ∈ F implies a∧b ∈ F ;
(2) a ∈ F and a∧b = a imply b ∈ F .

A filter is proper when F ≠ A; a filter is non-empty when F ≠∅.
Ideals, proper ideals and non-empty ideals are duals of respective filters. In par-

ticular, (3) and (4) define ideals.
(3) a,b ∈ I implies a∨b ∈ I;
(4) b ∈ I and a∨b = b imply a ∈ I.

REMARK 3.6. Filters (in the algebra of a logic) correspond to theories (in the logic).
They are sublattices, therefore, the set of filters is closed under intersection. The
intersection of a pair of filters includes the joins of the elements in those filters, that
is, intersection can represent join. However, the union of a pair of filters does not
need to be a filter. The intersection of a pair of cones of filters is a cone of filters,
and it can represent meet. Turning a lattice around, we can see that intersection on
ideals can stand for meet, and intersection on cones of ideals can represent join. To
improve on these matches, special filters and ideals may be used.

Definition 3.7. Let I be an ideal on the lattice L.
(1) I is principal when there is a b ∈ I such that a ∈ I iff a∨b = b.
(2) I is prime when a∧b ∈ I implies a ∈ I or b ∈ I.
(3) I is meet-irreducible when for no I1,I2 distinct from I, I1∩ I2 = I.
Principal, prime and join-irreducible filters are defined dually.

Stone (1936) used cones of prime ideals to represent Boolean algebras. The con-
text of a semantic interpretation for a logic motivates the equivalent view of a rep-
resentation by certain sets of ultrafilters. (“Ultrafilter” is an alternative name for a
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maximal filter, and in a Boolean algebra all of these are prime.) Unfortunately, in
a lattice that is not distributive, there are too few prime filters to anchor an isomor-
phic representation. Meet-irreducible ideals and join-irreducible filters generalize
their prime counterparts, and as Birkhoff and Frink (1948) proved, cones of join-
irreducible filters provide an isomorphic representation of a lattice with intersection
standing in for meet. They called such a representation a meet-representation, per-
haps, because they did not define an operation to represent joins.

REMARK 3.7. Prime filters are really special. Upward closed sets of prime ideals
provide a meet- and a join-representation at the same time in a distributive lattice
(including a Boolean algebra, where the upward closure trivializes). Furthermore,
the complement of a prime filter is a prime ideal in any lattice. Prime filters are
relatively maximal, that is, they are maximal with respect to not containing a partic-
ular element of a distributive lattice. Join-irreducible filters are similarly relatively
maximal in lattices. However, cones of join-irreducible filters do not provide a join-
representation (in modular but non-distributive lattices), nor is it true that the com-
plement of a join-irreducible filter is a meet-irreducible ideal. (The complement of
any filter is a prime co-cone in any lattice—see Bimbó and Dunn (2008, Ch. 4).)
The ingenuity of Urquhart’s representation relies on the observation that the com-
plement of a join-irreducible filter contains at least one meet-irreducible ideal such
that the filter and the ideal are relatively maximal with respect to each other, even
though they may not exhaust the carrier set of the lattice.

Definition 3.8. The pair ⟨F,I⟩ is a maximal disjoint filter–ideal pair (MDFIP, for
short) when (1)–(2) are satisfied.

(1) F is a non-empty, proper filter, and I is a non-empty, proper ideal;
(2) for any F ′, F ⊊ F ′ implies F ′∩ I ≠∅, and for any I′, I ⊊ I′ implies F ∩ I′ ≠∅.

Proposition 3.9. If ⟨F,I⟩ is a MDFIP, then F is a join-irreducible filter and I is a
meet-irreducible ideal.

The proof of this proposition can be pieced together from Birkhoff and Frink
(1948); see also Urquhart (1978, Lemma 3). To put it quickly, if F were the inter-
section of two other filters, then F either would not be maximal or it would have
a common element with I. It is also true that if a filter F and an ideal I are dis-
joint, then they can be extended into a MDFIP ⟨F ′,I′⟩ such that F ⊆ F ′ and I ⊆ I′. (In
general, this is a non-trivial claim that is usually proved using Zorn’s lemma. We
discuss this on page 339.)

Definition 3.10. If L is a lattice, then the doubly ordered space of L is FL = ⟨U,⊆1,⊆2⟩, where (1) and (2) describe the components.
(1) U is the set of MDFIP’s on L;
(2) ⟨F1,I1⟩ ⊆1 ⟨F2,I2⟩ iff F1 ⊆ F2, and ⟨F1,I1⟩ ⊆2 ⟨F2,I2⟩ iff I1 ⊆ I2.

REMARK 3.8. Obviously, ⊆ is a partial order, hence, ⊆1 and ⊆2 are pre-orders. If
both ⟨F1,I1⟩ ⊆1 ⟨F2,I2⟩ and ⟨F1,I1⟩ ⊆2 ⟨F2,I2⟩ hold, then both the filter and the ideal
in the first pair is, respectively, a subset of the filter and the ideal in the second pair.
But the pairs are maximally disjoint, hence, they are the same.
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Despite all the duality between operations and sets of elements in a lattice, a lat-
tice does not need to be self-dual. Further, the MDFIP’s have to be linked to elements
of a lattice, which suggests that we have to choose between filters and ideals.

Proposition 3.11. A lattice L is isomorphic to a subset of stable sets on U.

Proof (sketch). By favoring filters, an a ∈ A is mapped by h into elements of U as
h(a) = {⟨F,I⟩ ∈ U ∶ a ∈ F }. It can be shown that lrh(a) = h(a), that is, h(a) is a
stable set. Then, h(a∧b) = h(a)∩h(b) is immediate. And also, h(a∨b) = l(rh(a)∩
rh(b)). So far, h is a lattice homomorphism. The fact that h is injective follows from
separation; if a ≰ b, then there is a ⟨F,I⟩ ∈U such that a ∈ F but b ∉ F . �

3.2 Priestley’s representation generalized

Priestley’s representation of distributive lattices was motivated by a certain dissatis-
faction she had with Stone’s representation in (Stone, 1937–38), in particular, with
features of the topological characterization of the prime ideal space.6 The set of
prime filters in a Boolean algebra forms an anti-chain, but in other distributive lat-
tices it is easy to find prime filters (or prime ideals) that are distinct, yet one is a
subset of the other. Priestley’s invention is the addition of an order relation to a
topology, which concretely will be realized by the subset relation.

Definition 3.12. An ordered space is F = ⟨U,≤⟩, where ≤ is a partial order on U .

Proposition 3.13. The set of cones on F is a distributive lattice with ∩ and ∪ as the
lattice operations.

The proof of this claim is practically obvious, hence, we do not even sketch it.

Definition 3.14. If L is a distributive lattice, then the ordered space of L is FL =⟨U,⊆⟩, where U is the set of prime filters, which is ordered by set inclusion.

Proposition 3.15. A distributive lattice L is isomorphic to a subset of the set of
cones on U.

Proof (sketch). First of all, h(a) for a ∈A, is {F ∈U ∶a ∈F }. Cones of filters provide
a meet-representation via intersection; since all the elements in the cones are prime
filters, the union of such cones is a join-representation. The injectivity of h follows
by an old and well-known result of Birkhoff, stating that distinct elements of a
distributive lattice are separable by a prime filter. �
6 A Stone space for a Boolean algebra is a compact totally disconnected topology. But for a dis-
tributive lattice, Stone gave a more complicated characterization. Namely, the topology is T0 with
a basis comprising relatively bicompact sets with a further property linking intersections of basic
sets with a closed set.
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REMARK 3.9. To see Urquhart’s representation as a generalization of Priestley’s,
we may compare the spaces first. Priestley’s partial order could be weakened to a
pre-order, or ⊑1 and ⊑2 could be strengthened to partial orders. To handle the one vs
two orders, we could set ⊑1 to be ≤ and ⊑2 to be ≤−1 (the inverse of the ≤ relation).
Moving into the other direction, ⊑2 could be simply omitted.

We have already pointed out that the complement of a prime filter is a prime
ideal, that is, the MDFIP’s are uniquely determined by either element of the pair in
a distributive lattice. This means that there is a 1–1 map between prime filters and
MDFIP’s in a distributive lattice. It may be useful to glance at rh(a). F1 ⊑2 F2 iff
F2 ⊆ F1, and the latter, iff F2 ⊑1 F1. Thus, F ′ ∈ rh(a) iff for all F , F ⊆ F ′ implies
F ∉ h(a).

Example 3.10. Let us consider some easy lattices. Z is a distributive lattice with min
and max (as binary operations). Every principal filter is prime, and h(n) = {[m) ∶m ≤
n}, where [m) = {n ∈ Z ∶m ≤ n}. rh(n) = {[ i) ∶n < i}, in other words, rh(n) is the
complement of h(n) in the set of prime filters on Z. If we take Q in place of Z, then
the definition of rh(n) looks as before; a difference between those sets in the filter
spaces of Z and Q is that the latter principal cocone is not generated by a principal
cone. Finally, if we take 4 (the four-element Boolean algebra) with a and b the
labels for the non-extremal elements, then h(a) = {[a)}, and rh(a) = h(b), that is,{[b)}. In each case, rh(a)=U−h(a), and by a similar argument, l(rh(a)∩rh(b))=
U−((U−h(a))∩(U−h(b))) = h(a)∪h(b).

4 One or two binary relations

The work of De Morgan, Boole and Frege led to a logic that was new in its time—in
the 19th century. However, challenges to 2-valued logic popped up soon after its first
formulation in linear notation. In the early 20th century, practicing logicians found
the 2-valued conditional too weak, which inspired the invention of strict implication
and modal logic by C. I. Lewis. A serious challenge from physics produced the first
example of a logic that questions the distributivity of ∧ and ∨.7

Birkhoff and von Neumann in (1936) explain certain differences between the
views of reality derived from classical mechanics and those derived from quantum
mechanics. Aspects of quantum mechanics that often attract attention are properties
of its phase-spaces, namely, their principal incompleteness in description and in
computable dependence. In other words, many observations are mutually exclusive
and predictions of the position and momentum at the same time are necessarily
imprecise. Birkhoff and von Neumann focus on the differences between reasoning
in classical mechanics and quantum mechanics.

The classical view of a phase-space allows one to consider arbitrary subsets as
experimental propositions, that is, propositions stating position and momentum of

7 At least, it is one of the earliest and best-known examples of a non-distributive logic.
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a certain kind. This classical view is classical in the sense of classical (Newtonian)
mechanics and classical in the sense of 2-valued (Boolean) logic. Propositions are
subsets of a phase-space and the operations on them correspond to intersection,
union and complementation. Birkhoff and von Neumann argue that, in contrast,
experimental propositions in quantum mechanics correspond to closed linear sub-
spaces of Hilbert space. And the operations on these propositions are intersection,
linear sum and orthogonal complementation.

The algebraic characterization of the experimental propositions in quantum me-
chanics leads to a bounded modular lattice with orthocomplementation. Birkhoff
and von Neumann (ibid., §10) pinpoint the failure of distributivity as the central
difference between the calculi of classical and quantum propositions.8

Interlude: Modular lattices and KR frames. Modularity is a tricky property.
Every distributive lattice is modular, and modularity is readily definable by a side
condition on a prototypical equation expressing distributivity. We repeat (d) from
above, which is to be compared with (m′).

(d) a∧(b∨c) = (a∧b)∨(a∧c)
(m′) a∧(b∨c) = (a∧b)∨(a∧c), provided that c ≤ a.

Dedekind was the first to characterize non-modular lattices as lattices that have a
sublattice isomorphic to a five-element lattice (which is often labeled as N5). Despite
this elegant algebraic description, modularity has not been characterized in terms of
sequent calculus rules. The proof of the sequentA∧(B∨(A∧C))⊫ (A∧B)∨(A∧C) (assuming more or less standard rules for ∧ and ∨) appears to require the same
structural rules on the left-hand side as A∧ (B ∨C)⊫ (A∧B)∨ (A∧C), that is,
distributivity does.

Urquhart used modular lattices in a crucial way in (Urquhart, 1984) to prove the
undecidability of some of the major relevance logics such as T (ticket entailment),
E (entailment) and R (relevant implication).9 He also constructed a representation
of modular lattices. We give an overview of the representation in a nutshell.

Definition 4.1. If L is a modular lattice with least element �, then its KR-frame is
FL = ⟨A;R,�⟩, where R ⊆ A3 such that

(1) R(a,b,c) iff a∨b = c∨b and a∨b = a∨c.

KR is a crypto-relevance logic (cf. Routley et al., 1982, Ch. 5, §5) or perhaps,
a corrupted one (cf. Anderson et al., 1992, §54 & §65). To put it quickly, KR adds(A∧∼A)→ B to R, and its relevant character is hidden in its positive fragment,
which is corrupted by negation. That is, from the point of view of relevance logic
KR degrades R, because KR lacks the variable sharing property. KR may be given a
Meyer–Routley style semantics with a ternary accessibility relation. In the previous
definition, we predicted that FL has suitable properties to be called a KR-frame.
(We do not prove here that it does.)

8 Orthocomplemented modular lattices should not be confused with orthomodular lattices. The set
of lattices in the latter category is a proper subset of those in the former.
9 We cannot go into the details here, but we mention Anderson et al. (1992, §65) too.
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Definition 4.2. If F = ⟨U ;R,�⟩ is a KR-frame, then its modular lattice with least
element is defined as L(F) = ⟨P(U)lin;∩,○,∅⟩, where (1)–(3) hold.

(1) V ∈P(U)lin iff V ∈P(U) and ∀u,v,w((R(u,v,w)∧u,v ∈V)⇒w ∈V);
(2) if V,W ⊆U , then V ○W = {u ∶ ∃v,w(v ∈V and w ∈W and R(v,w,u))};
(3) ∩ is intersection, and ∅ is the empty set.

The superscript lin abbreviates “linear.” It is true for all subsets of U that V ⊆V ○V ,
but the other inclusion does not hold, in general; on P(U)lin, ○ is idempotent.

Proposition 4.3. If L is a modular lattice with least element, then L is isomorphic
to a sublattice of L(F(L)).

The claim is proved in (Urquhart, 2017). We note that this representation uses
subsets of the carrier set rather than sets of subsets. To this extent, it does not fit the
paradigm that we sketched at the beginning of Section 3, and it is not a derivative of
the lattice representation in Section 3.1. The isomorphism establishing L≅L(F(L))
maps a ∈ A into (a] (the principal ideal generated by a). Another way to look at the
essence of this representation is to say that the ideal space of a modular lattice can
be delineated precisely as the space of linear subsets with respect to ○.10

Let us return to the logic of quantum mechanics. At the time of the writing of
(Birkhoff and von Neumann, 1936), the equivalence of fields of sets and Boolean
algebras was already known. Indeed, it is mentioned inter alia (on p. 831) about the
logic of classical mechanics. Orthocomplemented distributive lattices are Boolean
algebras, thus, the non-distributive modular lattices should be bunched together with
non-modular lattices from the point of view of their representation by sets. The al-
gebraic equations stipulated by Birkhoff and von Neumann give an ortholattice if
modularity is omitted. These lattices are of interest in themselves, but they also
played a fascinating role in the discovery of lattice representations on relational
frames—including Urquhart’s. Birkhoff and von Neumann (1936) mentions various
models of modular lattices with orthocomplementation, including projective geome-
tries and skew fields. Thus, it should not be surprising that Birkhoff abstracted out
the idea of a polarity by 1940 or so.

Definition 4.4. A polarity is a triple ⟨X ,Y,R⟩, where X and Y are sets and R ⊆X ×Y .
For V ⊆ X and W ⊆Y , their respective polars are defined by (1) and (2).

(1) r(V) = {y ∈Y ∶∀x(x ∈V⇒R(x,y))}
(2) l(W) = {x ∈ X ∶∀y(y ∈W⇒R(x,y))}
Birkhoff (1967, V.7) also proved that the composition of r and l are closure oper-

ations (lr on subsets of X , rl on subsets of Y .) Furthermore, lr[P(X)] is a complete
lattice that is dually isomorphic to rl[P(Y)]. Birkhoff observed that if R is symmet-
ric and irreflexive on a set (i.e., X = Y ), then the set of closed subsets is an ortho-
lattice. One of his examples is Cartesian n-space with R being �, the orthogonality
relation.
10 Another representation of modular lattices was obtained by Jónsson (1953). He proved that every
lattice that can be represented with join being R1;R2;R1 (where R1 and R2 are two equivalence
relations on a set) is modular.
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REMARK 4.1. Birkhoff and von Neumann in their paper of 1936 were concerned
with logic, though they invoked many algebraic and geometric ideas too. It appears
that Birkhoff went on to pursue the development of lattice theory (on which he pub-
lished a book in 1940), whereas von Neumann, after developing what he called con-
tinuous geometry, focused on more practical areas such as computing and physics,
and even game theory.

The abstraction of polarities is very useful, but in logical terms, it is the “easy
direction” in giving a semantics for a logic. That is, it shows that a set X with an
appropriate binary relation could serve as a frame for orthologic. Goldblatt (1974,
1975) showed that an isomorphic representation of ortholattices can be obtained
along the lines of orthoframes. We, in effect, already defined an orthoframe above
as a set with an irreflexive symmetric relation on it.

Definition 4.5. A lattice L = ⟨A;∧,∨, ′,�,⊺⟩ is an ortholattice when L is a lattice in
which the following quasi-equations hold.

(1) a′′ = a, a∧a′ = �, a∨a′ = ⊺, a∧b = a implies a′∨b′ = a′.
An ortholattice is quite like a Boolean algebra—except that it does not need to

be distributive. Every Boolean algebra is an ortholattice, but not vice versa.

Definition 4.6. If L is an ortholattice, then its orthoframe is F = ⟨X,�⟩, where (1)
and (2) specify the components.

(1) X is the set of proper filters on A;
(2) F1 ⊥ F2 iff ∃a ∈ A such that a′ ∈ F1 and a ∈ F2.

Ortholattices are interesting in themselves. However, we wish to emphasize their
generalization to polarities. We labeled the two functions as r and l in (1) and (2) in
Definition 4.4 to point at certain similarities with Urquhart’s functions r and l.11 (fl)
and (fr) have a similar form as the definitions in (1) and (2), except that there are
two relations ⋢1 and ⋢2. Both relations are irreflexive, but not much else seems to
be true of them. The functions r and l form a Galois pair in both cases.12

We recall some results about Galois pairs to show how the ideas about comple-
mentation, orthogonality and negation led to the lattice representation by Hartonas
and Dunn (1993, 1997).

Definition 4.7. Let U = ⟨U ;≤1⟩ and W = ⟨W ;≤2⟩ be two posets and let f be a func-
tion form U to W , and let g be a function from W to U . Then the pair ⟨ f ,g⟩ is a
Galois connection between U and W iff ∀x ∈U∀y ∈W, x ≤1 g(y) iff y ≤2 f (x).

REMARK 4.2. It is easy to show that—equivalently—we can require x1 ≤1 x2 im-
plies f (x2)≤2 f (x1), y1 ≤2 y2 implies g(y2)≤1 g(y1), x ≤1 g( f (x)) and y≤2 f (g(y)).

11 “Right” and “left” are, obviously, at hand, in particular, they are used in the theory of fields.
12 Such functions, in an abstract setting, i.e., outside of Galois theory, have been studied by Everett
(1944) and Ore (1944, 1962). Since the power set (or a set of special subsets of a set) has a natural
ordering on it, namely, the subset relation, it is immediate that Galois connections on a collection
of subsets induce a lattice (cf. Birkhoff, 1967, V.8).
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If we view the members of U as propositions, x1 ≤1 x2 may be interpreted as “x1
implies x2,” and similarly, with W and y1 ≤2 y2. You may be puzzled as to why we
have two possibly disjoint sets of propositions, but try to set that aside. It is natural
to view f and g as negations. Writing them as ∽ and ∼, we have that x implies ∽y iff
y implies ∼x. If you squint a bit (so as not to be able to distinguish the two different
negations), this looks like a familiar principle of contraposition. And the last two
inequations are double negation introductions: x ≤1 ∽∼x and y ≤2 ∼∽y.

There is a straightforward way to construct a Galois connection between all sub-
sets of a set X (the powerset of X) and all subsets of a set Y , where ≤1 is set inclusion
(the subset relation) restricted to P(X) and ≤2 = ⊆ ↾P(Y). First, let us think of the
members of X and Y as information states, and so their subsets can be viewed as
“U.C.L.A. propositions.” We could pick any relation R between the two sets. How-
ever, for reasons that pertain to seeing a Galois connection as involving a pair of
negations, it is common to use the symbol �—like in an orthoframe. � may be
thought of as orthogonality or perp (for perpendicularity), or more generally as a
kind of incompatibility, which may go one way but not the other.

Definition 4.8. Let X and Y be connected with �. For any V ⊆ X , V� = {y ∈Y ∶ ∀x ∈
V x ⊥ y}. Dually, for any W ⊆Y , �W = {x ∈ X ∶∀y ∈W x ⊥ y}.

REMARK 4.3. V� can be thought of as a kind of negation of V , i.e., the set of states
y ∈ Y such that every state x that verifies V is incompatible with y. And symmetri-
cally, with �W . It is worth noting that when ⊥ is a symmetric relation, that is, x ⊥ y
implies y⊥ x and X =Y —like in the orthoframe of an ortholattice in Definition 4.6—
then V� = �V . Conversely, � is symmetric if it comes from orthonegation.

Theorem 4.9. V ⊆ �W iff W ⊆V�; that is, ⟨ ⋅�, � ⋅⟩ are a Galois connection betweenP(X) and P(Y).

Proof. (⇒) Suppose that V ⊆ �W and that y ∈ W , to show that y ∈ V�, which
means ∀x ∈ V x ⊥ y. So let us suppose x ∈ V ; then x ∈ �W . Since y ∈ W , x ⊥ y.
(⇐) It is proved similarly. �

Thus perp allows us to define a “concrete” Galois connection between all the
subsets of a set X and all the subsets of a set Y . But there are other “concrete”
Galois connections that hold just between some subsets of a set X and Y —as we
saw in Proposition 3.5. Not only does perp allow us to define a Galois connection
between subsets of X and subsets of Y , but this is fully general way to obtain Galois
connections.

Theorem 4.10. Every Galois connection is generated—up to isomorphism—as in
Definition 4.8, for some sets X, Y and �.

Proof. Let us assume that U and W are Galois connected with ⟨ f ,g⟩ as in Defini-
tion 4.7. We consider the sets of cones on U and W , which we denote by C1 and C2.
We define a perp relation between two cones (C ∈ C1 and D ∈ C2) so that C ⊥ D iff∃x ∈C such that f (x) ∈ D. Note that we can define the dual perp relation ⊥′ so that
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D ⊥′ C iff ∃y ∈ D such that g(y) ∈C. It is easy to see that ⊥′ is the converse of ⊥.
Thus if C ⊥D then ∃x ∈C f (x) ∈D. We invoke x ≤1 g( f (x)) to obtain g( f (x)) ∈C. So∃y ∈ D, namely, y = f (x), such that g(y) ∈C; therefore, D ⊥′ C. The other direction
is proven “dually.”

We now define the embedding h(x) = {C ∈ C1 ∶x ∈C} and h(y) = {D ∈ C2 ∶y ∈D}.
The trick then is to show that h( f (x)) = h(x)�, i.e., f (x) ∈D iff ∀C(if x ∈C then C ⊥
D). The left-to-right direction is immediate.

For right to left, we contrapose. Thus, assume that f (x) ∉ D. We need to show
that it is not the case that ∀C(if x ∈C then C ⊥D), i.e., we need to find some cone
C so that x ∈C, and yet not C ⊥ D. Let C be the principal cone [x) = {x′ ∶ x ≤1 x′}.
Then x ∈C, and yet it is not the case that C ⊥D, for otherwise, ∃x′ ∈C and f (x′) ∈D.
That is, x ≤1 x′ and f (x′) ∈ D, but f (x′) ≤2 f (x) and f (x′) ∈ D; hence, f (x) ∈ D.
Contradiction!

That h(g(y)) = �h(y) may be shown similarly. �
This theorem is a representation of Galois connections between partially ordered

sets, which can readily be extended to a Galois connection between two semilattices.
A meet semilattice is a partially ordered set, where every pair of elements a and b
has a greatest lower bound a∧b. A join semilattice is defined dually, requiring that
every pair of elements a and b has a least upper bound a∨b. This can be done quite
elegantly by requiring the set X to be a meet semilattice ⟨S;∧⟩ and the set Y to be a
join semilattice ⟨S′;∨⟩. But a more casual way is just to let the right-hand set also
be a meet semilattice (with the order inverted). Then all one needs to do is to extend
the definition of a cone to a filter F . An advantage of this track is that one can avoid
the apparatus of “dual filters” altogether. This naturally leads to a representation of
lattices once one realizes that a lattice is just two semilattices “glued together,” one
up and the other down.

REMARK 4.4. In the case of Urquhart’s representation, the functions r and l have
to be restricted to upward closed subsets (with respect to one or the other order
relation) on the frame. That is, the Galois connected posets are ⟨C1(U),⊆⟩ and⟨C2(U),⊆⟩. Then, taking cones on each set, we can find � using Theorem 4.10.
For example, in the doubly ordered space of a lattice, if C ∈ C(C1(U)) such that
h(a) ∈C, then C ⊥D holds when D ∈C(C2(U)) and rh(a) ∈D. Of course, not all C’s
and D’s are of this form, but h(a) and rh(a) are the lr and rl stable sets in C1(U)
and C2(U), respectively. For any ⟨F,I⟩ ∈ h(a), a ∈ F and for any ⟨F,I⟩ ∈ rh(a), a ∈ I.

In comparison with ortholattices, the two orders ⊑1 and ⊑2 seem to be compli-
cated. But the ortholattices have an additional component—the orthocomplement—
that is used in the definition of � in the isomorphic representation. Now, we have
seen that from a Galois connection on a lattice (chopped into two semilattices), one
can find a polarity. Concretely, Urquhart’s representation contains a Galois connec-
tion between two posets, which are constructed from the two orders. So, we might
wonder how these observations may be put to use to construct a lattice represen-
tation. Indeed, this can be accomplished in more than one way. Next, we outline a
lattice representation due to Hartonas and Dunn (1997, 1993).
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Definition 4.11. A frame is F = ⟨X ,Y,�⟩, where X ,Y ≠∅ and � ⊆ X ×Y .

This definition simply takes a polarity for a frame. (Continuing the idea of the
previous theorem, we use the � notation.)

Definition 4.12. If L is a lattice, then its lattice frame is FL = ⟨F,I,�⟩, where the
components are specified in (1)–(3).

(1) F is the set of filters on A;
(2) I is the set of ideals on A;
(3) F � I iff for some a ∈ A, a ∈ F and a ∈ I.

REMARK 4.5. The definitions of the � relation in Definition 4.6 and in the proof
of Theorem 4.10 and the definition of � above are remarkably similar. A lattice
does not need to be complemented, and so there is no unary operation that could
be applied to a. However, a lattice with its natural order relation ≤ and its converse≤−1 can be seen to have a Galois connection ⟨Id,Id⟩, where Id(x) = x. Of course,
F1 ∩F2 ≠ ∅ would give the total relation on non-empty filters. But ≤−1 turns filters
into ideals and vice versa. It seems to us that using the above frame is also in the
spirit of Birkhoff and Frink (1948), since cones of filters give a meet-representation
and cones of ideals give a join-representation—both with intersection. The role of� is to create a dual isomorphism between the complete lattices of closed subsets
of the set of filters and closed subsets of the set of ideals.

The remaining piece is to ensure that the elements of a lattice can be mapped
into appropriate collections of filters (or ideals). Of course, if we take as a hint the
usual definition of h that uses ∈, then we get that h(a) = [[a)). That is, each lattice
element is mapped into the principal cone of filters generated by the principal filter
generated by the lattice element.

REMARK 4.6. Triples ⟨G,M,I⟩, which have the structure of a polarity or of a frame
in the sense of Definition 4.11 have been termed contexts by Wille (1982). A sub-
set of G is an extension of a concept, whereas a subset of M is its intension (in
Church’s terminology). A hierarchy of concepts (in the Aristotelian sense) pertain-
ing to a context can be constructed based on the observation that “The more specific
a concept is, the fewer exemplars it has.” Thus, a pair of an extension and inten-
sion fits into a lattice of concepts given a context.13 Although Wille does construct
a lattice from a formal context, his interest lies with concepts and their relation-
ships (cf. Wille, 1985). His representation of a lattice diverges markedly from that
of (Hartonas and Dunn, 1997 and Hartonas and Dunn, 1993), because his context of
a lattice L = ⟨L;∧,∨⟩ is ⟨L,L,≤⟩. Hartung (1992) uses topological contexts to give
an isomorphic representation for formal concept lattices.

We may quickly compare (or even contrast) Urquhart’s and Hartonas and Dunn’s
representations. The most striking difference is the disjointness of the MDFIP’s and

13 Wille’s notions of (formal) context and (formal) concept, which he designed for computer sci-
ence applications should not be confused with philosophical investigations of concepts following
Wittgenstein or with the use of the term “concept” in cognitive science.
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the overlap that defines �. In the spirit of reverse mathematics (or of concerns about
uses of equivalents of the axiom of choice), we should point out that Hartonas and
Dunn do not rely on prime filters, prime ideals, join-irreducible filters or meet-
irreducible ideals. To prove that such objects exist, or that a disjoint pair of a filter
and an ideal can be extended into a MDFIP (Urquhart, 1978, Lemma 3), one ap-
parently has to appeal to the axiom of choice (or to Zorn’s lemma, etc.). The two
representations appear not to be equivalent in the sense that Hartonas and Dunn’s
resides in ZF, but Urquhart’s seems to require ZFC. On the side of similarities, we
may point out that in both representations the ideals play second fiddle to filters (of
a certain kind).

Three more lattice representations. The differences may inspire us to consider
variations on either representation that would make them more similar.
1. For example, it may seem that the “dual” of maximally disjoint filter–ideal pairs
should be minimally overlapping filter–ideal pairs (MOFIP’s, for short). Since there
are no “subatomic particles” in a lattice, minimal overlap implies that there is exactly
one element that is common to the filter and the ideal in the pair. Furthermore, the
shared element must be the least element of the filter and the greatest element of
the ideal. Then, we are talking about filter–ideal pairs, in which both the filter and
the ideal are principal, and they are generated by the same element. Principal filters
have some pleasant properties. For example, a meet-representation of the lattice by
sets of filters that contain a particular element preserves arbitrary meets iff all the
filters are complete filters (which principal filters are).14 However, not all lattices
are complete, and in a lattice that is not complete, there are non-principal filters.
Perhaps, the best-known example of a non-complete distributive lattice is Q, the set
of rationals with min and max for meet and join. If we set aside the problems caused
by non-complete lattices, then the minimally overlapping filter–ideal pairs provide
a relatively simple representation.15 If h(a) = {⟨F,I⟩ ∶a ∈F } is the embedding of the
lattice into its MOFIP space, then set of the first projection is generated by [a). Using
the same relation as in the Hartonas–Dunn representation, rh(a) = {⟨F,I⟩ ∶ a ∈ I}.
This obviously suffices to model ∨.
2. Allwein and Dunn (1993, p. 522) point out that a representation may be had
without insisting upon maximality in MDFIP’s. Indeed, this improves the represen-
tation in the sense of duality theory, which we briefly touch upon in the next section.
This representation has been worked out in Allwein and Hartonas (1993), where the
focus is on duality theory, and in Gehrke and Harding (2001), with an emphasis
on canonical extensions. Dually, a representation can be constructed from arbitrary
overlapping filter–ideal pairs. This representation is worked out in Bimbó and Dunn
(2008, Ch. 9), where we called the frames centered spaces. We could argue that
this is the most balanced representation in the sense that there is no need to choose
between a filter and an ideal as the preferred object. A pair of a filter and ideal both
of which contain an element a, carve out a sublattice of a lattice (by their common

14 See Birkhoff and Frink (1948, §11).
15 Bimbó (1999, 2001) used such a representation of lattices as a component of a semantics.
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elements). So a is mapped into the sublattices that contain a with two “tentacles,”
so to speak, which are the rest of the filter and that of the ideal.
3. We started this section by considering the number of binary relations that each
representation stipulates. Priestley added order to the space, and the general lattice
representations all added further elements—so far. The preference for filters sug-
gests that we may consider another generalization of the Priestley space. F = ⟨U ;≤⟩
is an inclusion space when U ≠∅ and ≤ is a partial order on U . Of course, ∪ cannot
stand for ∨, if ∧ is ∩. However, r and l can be defined as usual in a polarity, and⋓ can
represent ∨. For an isomorphic copy of a lattice L, we simply take the filter space of
L with set inclusion as the partial order. This representation does not coincide with
Priestley’s on a distributive lattice if the filters are restricted to prime filters, because
the concrete ⋓ which is a closure of ∪ relies on filters that are not join-irreducible.
On the other hand, this representation coincides with Priestley’s in the definition
of the topology on ⟨U,⊆⟩. Namely, the subbasis is defined as {h(a),−h(a) ∶a ∈ A},
where h(a) = {F ∈U ∶a ∈ F }. For more details, see Bimbó and Dunn (2008, Ch. 9).

REMARK 4.7. For certain purposes, it is satisfactory to have a lattice that emerges
from a frame. Indeed, in the area of modal logic, some researchers prefer to weaken
a topological frame to a general frame. (Retaining a set of propositions confers
benefits without the burden of imposing additional conditions on a Stone space with
a binary relation.) We mention a couple of recent papers, Orłowska and Rewitzky
(2005), Hartonas (2019), and Düntsch and Orłowska (2019), which advocate for
lattice representations without topologies within the “discrete duality” program.

5 Topological structures

The previous sections showed how to obtain a lattice from a relational structure,
moreover, how to define a relational structure from any lattice, so that an isomorphic
copy of the lattice can be found in the set algebra on its relational structure. However,
in general, it would be unreasonable to expect that the isomorphism is surjective. For
instance, every element of a lattice generates a filter, but an infinite lattice may have
non-principal filters too. And the power set of the set of filters has a strictly greater
cardinality, which may be inherited by a subset of the power set, which perhaps,
allows only for cones.

Stone’s representation of Boolean algebras by sets in (Stone, 1936) is acclaimed,
because he found an elegant way to characterize the image of a Boolean algebra
under the intended isomorphism. A Stone space is simply a compact totally discon-
nected topology, in which a Boolean algebra emerges as the set of clopen sets. That
is, the elements of the Boolean algebra are those open sets in the topology that are
also closed (i.e., their complements are open). Sets of prime filters of the form h(a)
constitute a basis for the Stone space of a Boolean algebra. Indeed, h[A] is the set
of clopen sets of the topology in which the basis comprises the sets h(a), for a ∈ A.

Priestley’s representation added an order, hence, her space is a compact, totally
order disconnected topology. A distributive lattice arises as the clopen cones of the
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topology, that is, increasing sets that are both open and closed. Given a distributive
lattice, sets of the form h(a) together with their complements form a subbasis of a
topology, which is the Priestley space of a distributive lattice.

Urquhart’s representation requires additions in its topological component, be-
cause it has two order relations on a set.

Definition 5.1. A doubly ordered topological space is F as in Definition 3.3 with a
compact topology on U that satisfies (1)–(5).

(1) ∁∁ ⊆P(U) such that, if X ∈∁∁ then both −X and −rX are open;
(2) x ⋢1 y implies that for some X ∈∁∁ such that X ∈P(U)† both x ∈ X and y ∉ X ;
(3) x ⋢2 y implies that for some X ∈∁∁ such that X ∈P(U)† both x ∈ rX and y ∉ rX ;
(4) if X ,Y ∈∁∁ , then both −r(X ∩Y) and −l(rX ∩ rY) are open;
(5) the set {−X ∶X ∈∁∁ ∧ X ∈P(U)†}∪{−rX ∶X ∈∁∁ ∧ X ∈P(U)†} is a subbasis

for the topology.

Given a doubly ordered topological space F, {X ∶X ∈∁∁ ∧X ∈P(U)†} is a lattice.

Definition 5.2. If L is a lattice, then the subbasis of the topology of its doubly or-
dered topological space is {h(a) ∶a ∈ A}∪{−rh(a) ∶a ∈ A}.

The definition of the subbasis is quite simple and it closely resembles the defini-
tion of the subbasis in the Priestley representation.

Dualities. Having outlined examples of topological frames for lattices (and ortho-
lattices), now we mention another role that topologies can play in a lattice represen-
tation. Topologies may lead to dualities between a class of algebras and a class of
relational structures. We fix both the class of algebras (as lattices) and the class of
relational structures (e.g., doubly ordered topological spaces). Then, given any F,
we can construct a lattice, that is, L(F) is a lattice, where L is a map from frames to
lattices. This step gives a semantics for our LatL with soundness guaranteed. In or-
der to get an isomorphic copy of a lattice L, we define its frame F(L) and show that
L ≅L(F(L)). Here F is a map from lattices to frames. This step gives completeness
for LatL with respect to the class of relational structures.

Isomorphisms are special homomorphisms, and the latter are maps that are natu-
ral companions of algebras. If F is a relational structure, then the counterpart notion
is relational isomorphism between a pair of frames. If, in addition, F is equipped
with a topology, then relational isomorphisms should be homeomorphisms (in both
direction). In other words, we would like to have that F⇌ F(L(F)). Once we have
both correspondences, we have object duality, because we can match frames and
lattices to each other.

However, we can go a step or two further. Homomorphisms between algebras
are of interest in themselves. They are the maps between algebras the properties of
which tell us a lot about the particular algebras in question. We can define maps
between frames too so that the map turns a frame of a certain kind into a frame of
the same kind. If the homomorphisms (on the side of algebras) and the frame mor-
phisms (on the side of frames) compose and certain maps can function as identities
for composition, then we may talk about a duality between categories of lattices and



342 Bimbó and Dunn: St. Alasdair on lattices everywhere

frames (cf. Awodey 2010). Pulling back from full categorical duality (i.e., functo-
rial duality), we could simply consider full duality, that is, a 1–1 correspondence
between frame morphisms and homomorphisms on top of object duality.

For the sake of comparison, we outline two representations that we already
mentioned—now outfitted with topologies.

Definition 5.3. An ordered topological orthospace is F = ⟨X ;≤,�,O⟩, where ⟨X ,≤⟩
with O is a poset with a compact topology, and � ⊆ X2 is an orthogonality relation
(irreflexive and symmetric). Also, (1)–(4) hold. (OC is the set of clopens and OC†

denotes the set of clopen stable sets.)
(1) x ≰ y implies ∃O ∈OC†(x ∈O∧y ∉O);
(2) x ⊥ y and x ≤ z imply z ⊥ y;
(3) O ∈OC† implies O� ∈OC;
(4) x�y implies ∃O ∈OC†(x ∈O∧y ∈O�).

A frame morphism f is a continuous function with properties (5)–(6).
(5) f x ⊥ f y implies x ⊥ y;
(6) ¬z ⊥ f y implies ∃x(¬x ⊥ y∧ z ≤ f x).

The above definition (from Bimbó, 2007), which enriches an orthoframe with not
only a topology but also with an order relation, allows us to prove full duality (i.e.,
duality for both objects and maps) between ortholattices and orthoscapes.

We argued that inclusion spaces provide an alternative generalization of Priestley
spaces.

Definition 5.4. A topological inclusion space is F = ⟨X ;≤,O⟩, where ⟨X ;≤⟩ is a
poset, and O is a compact topology with (1)–(2) true.

(1) x ≰ y implies ∃O ∈OC†(x ∈O∧y ∉O);
(2) U,V ∈OC† implies U ⋓V ∈OC, that is, l(rU ∩ rV) is clopen.

A frame morphism f is a continuous order preserving map satisfying (3).
(3) O ∈OC† implies f −1[O] ∈P(X)†, that is, the inverse image of a clopen stable

set is stable.

The enriched inclusion spaces support full duality, including a duality between
homomorphisms and frame morphisms (see Bimbó and Dunn, 2008, Ch. 9).

REMARK 5.1. We may note that both of these representations rely on mere filters,
and do not require the use of Zorn’s lemma or some other equivalent of the axiom of
choice to prove maximality of any kind. Also, both frames include an order, which is
the only relation in an inclusion space, and it makes orthospaces smoother. Allwein
and Hartonas (1993) discuss the question of full duality in Urquhart’s representation,
and in its relaxed version—where maximality is omitted.
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6 Conclusions

The logic of quantum logic isolated by Birkhoff and von Neumann may be the
first but surely not the last example of a logic that does not stipulate distributivity
for ∧ and ∨. Such logics were developed for technical reasons (like lattice-R, by
Meyer, 1966), for the sake of simplicity (like full Lambek calculus, by Ono, 2003)
and to capture resource-minded reasoning (like linear logic, by Girard, 1987). Non-
distributive logics arise naturally as “substructural logics,” since Gentzen’s struc-
tural rules of permutation, thinning and contraction are essential for a proof of dis-
tribution.16 The various lattice representations differ on how easily they can be ex-
tended to semantics for logics. We only mention Allwein and Dunn (1993), Bimbó
and Dunn (2008) and Düntsch et al. (2004) as examples that provide semantics for
a wide range of logics starting from Urquhart’s lattice representation.

We close by mentioning once more Alasdair Urquhart’s Sainthood. He was the
first to give a topological representation for lattices. Thus, we think that he should
become the “Patron Saint of Lattices” for doing this, and for all of the miracles he
has performed with all kinds of (semi)lattices.
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