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Abstract

This thesis emphasizes the application of theory of functional partial dif-
ferential equations to the dynamics of a class of diffusive population model. In
particular, we are interested in studying the dynamics of diffusive Nicholson’s
blowflies equation. We first establish two versions of attractivity of center mani-
folds for the functional partial differential equations in an abstract setting. The
attractivity theorems play a crucial role in studying Hopf bifurcation as we will
also investigate. Neumann boundary problems and Dirichlet boundary problems
are considered separately. In the case of Neumann boundary conditions, our global
attractivity results are established by using the method of a lower-upper solution
pair for functional partial differential equation. We also discuss oscillating criteria
of the solutions followed by an investigation of periodic solutions bifurcating from
a positive equilibrium. Moreover, using the center manifold reduction method and
a lengthy calculation by hand, we provide a sufficient condition of stability of the
bifurcated periodic solutions. Some numerical observations are also made before
the end of our study of Neumann boundary problems. We then switch our atten-
tion to Dirichlet boundary problems. Before the study of global attractivity of the
steady states, we give a necessary and sufficient condition for the existence and
uniqueness of a positive steady state. Under varieties of parametric ranges, global
attractivity of the zero solution and the positive steady state are studied respec-
tively. On account of non-monotonicity, we develop a new approach in order to
study the global attractivity of positive steady states and a better criterion is ob-
tained along this approach than that through the theory of monotone semiflow. In
the final chapter, we propose a numerical method to compute the positive steady
state of the diffusive Nicholson’s blowflies equation for a one dimensional space

variable. This method gets through the numerical difficulties in that there are



two solutions of the stationary equation. Finally, we present a brief description of
proving the existence of the pure imaginary eigenvalues of the characteristic equa-
tion corresponding to the linearized functional partial differential equation about

the positive steady state. Necessary conditions of such existence are also obtained.
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CHAPTER I

INTRODUCTION

1.1  BACKGROUND

Delayed differential equations sometimes are also called differential difference
equations or differential equations with deviating arguments. However nowadays,
these later two titles are seldom used; instead, the terminology of “functional differ-
ential equations” is mostly utilized. Functional differential equations are classified
as of retarded, neutral, or advance type. Such a classification, first introduced
by Myshkis (1951) in his monograph, lay the foundation for a general theory of
linear delayed systems. The simplest general delayed differential equations can be

written as the form

3(t) = f(t,2(t), 2t — 7)), (1.1)

where f is a function satisfying certain properties.

Although the first specific example of such a general class arose in the eigh-
teenth century, and from that time, many particular equations of such types have
appeared in the mathematical literature, arising from geometric, physical, engi-
neering, economic and biological sources. The first papers treating general classes
of linear functional differential equation are due to Schmidt (1911) and Polossuchin

(1910). Schmidt considers solutions which with their derivatives are O([t|*) as
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|t| = oo and find a connection betwee;n these types of solutions and the charac-
teristic equation of the linear functional differential equation. A general class of
nonlinear delayed differential equation is first discussed by Volterra (1928, 1931)
who formulates a generic nonlinear differential equation incorporating the past
states of the system so as to study predator-prey models and viscoelasticity. He
also clarifies some properties of the solutions by using an ener'gy method. How-
ever, these papers are almost completely ignored and therefore do not have much
immediate impact on the subject.

Beginning with the late 1940’s, the theory of delayed differential equations
develops rapidly and many papers have been published from that time to the
present. Besides Myshkis’ book, there also appear several monographs during
the development of the theory of functional differential equations (for example,
Bellman and Cooke (1963), El’sgol’ts and Norkin ( 1973), Hale (1977), Hale and
Verduyn Lunel (1993), Diekmann, van Gils, Verduyn Lunel and Walther (1995),
from which many valuable papers in this field can be found).

As the development of the theory of functional (ordinary) differential equa-
tions progresses, there develops an increasing interest in studying parabolic equa-
tions with time delays, because a time delay can naturally be introduced into
reaction-diffusion equations. The first example is proposed by Wang (1963) who
considers an automatically controlled furnace and studies the stability of the equi-
librium by Lyapunov’s direct method. Some systems of delayed partial differential
equations have also been arising from modelling genetic repression, climate, cou-
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pled oscillators, viscoelastic materials, and structured populations. For details,
we refer to Mahaffy and Pao (1984), Busenberg and Mahaffy (1985), Hale (1994),
Hetzer (1995), Dyson, Villella-Bressan, and Webb (1996), Rey and Mackey (1993),
and references therein.

Because of the theory of semigroups (see Pazy (1983) for details), the fun-
damental theor;' of functional partial differential equations has been set up in a
semigroup setting by the pioneer work of Travis and Webb (1974, 1976, 1978).
In their approach, functional partial differential equations are treated as abstract
functional differential equations. Thus, some of the results in functional differen-
tial equations can be technically transplanted into the theory of functional partial
differential equations. From the point of view of dynamics, however, this approach
is not all encompassing. On account of the utilization of semigroups, some of the
dynamics and geometry of the original problems are lost. An elegant remedy is
provided by the theory of infinite dimensional monotone dynamical system. The
beginnings of that theory appear in Matano (1979), which focuses on semilinear
differential equations. An important idea of a strongly order preserving semiflow is
introduced in Matano (1984). A paramount contribution in this field is attributed
to Hirsch (1988 b), who also systematically develops the theory of monotone dy-
namical systems for systems of differential equations (Hirsch (1982, 1985, 1988 a,
1989, 1990, 1991)). Hirsch's and Matano’s ideas are applied to functional partial
differential equations by Martin and Smith (1991). Travelling wave solutions of

functional partial differential equations is also an interesting topic distinguished
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from functional differential equations. The existence of travelling wave solutions
has been investigated recently by Zou and Wu (1997) and Wu (1996, chapter 10).
Wu’s monograph describes many fundamental results and methods of functional
partial differential equations, as well as provides a comprehensive bibliography
from both mathematical and biological sources. S!-degree is also applied to study
Hopf bifurcation of functional partial differential equations (Krawcewicz, Spanily,

and Wu (1994)).

1.2 MOTIVATION

As previously mentioned, the monotone method is a friendly and powerful
tool in studying dynamics, especially global dynamics of functional partial differ-
ential equations. In applications, however, one tends to encounter non-monotonic
situations. Nicholson’s adult blowfly model proposed by Gurney, Blythe and Nis-
bet (1980), for instance, is the very description of a dynamical system without
monotonicity. There are also other examples, as will be mentioned later. For the
adult fly model, some results are obtained by introducing exponential ordering
(Smith (1995, chapter 6)). Unfortunately, these results are not generalized to the
diffusive blowfly equation. Therefore, one may ask the question “Is there any new
approach tackling such non-monotonic dynamical systems of functional partial dif-

ferential equations?” To answer this question in my thesis, I will be interested in
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studying dynamical systems of functional partial differential equations as follows

Ou(t, z)
ot
Ou(t, z)
on

u(f,z) = uo(8,z) >0, in D, (1.4)

= Au(t,z) - du(t,z) + f(u(t — 7, 7)), in D (1.2)

=0 or u(t,z) =0, onT (1.3)

where 7 is the delayed time; § is a positive constant; z € 2 C R™ Q is a bounded
domain with a smooth boundary 8Q, (¢,z) € D = (0,00) x Q, T' = (0, 00) x 82,
D, =[-1,0] x ; 5‘3; denotes the exterior normal derivative to Q; and f(z) is a
nonlinear function, usually with the following hypotheses:
(i) f(0)=0
(ii) lim:oeo f(z) =0
(iii) There exists zo > 0, such that f(z) is monotone increasing for z € [0, z0] and

decreasing afterward.

This research is also motivated by models without diffusion appearing in several
areas, including physiology, ecology and optics (See Mackey and Glass (1977),
Hadeler and Tomiuk (1977), Gurney, Blythe and Nisbet (1980), May (1980),
Walther (1991), Lani-Wayda and Walther (1995), and references in Mallet-Paret
and Nussbaum (1986)). The general form of these models is described in the

following form:

i(t) = ~8u(t) + F(u(t — 7)), (1.5)
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where the function f is assumed to satisfy certain properties.

Since the 1970’, these models have been studied extensively by many au-
thors. Chow (1974) and Hadeler and Tomiuk (1977) prove the existence of periodic
solutions using Browder’s fixed point theorem. Using the (u(t), %(¢)) plane, Kaplan
and Yorke ( 1’977) show the existence of a slowly oscillating periodic solution whose
derivative is also slowly oscillating. They show that on the (u(t), 4(t)) plane there
exists an asymptotically stable annulus whose boundary consists of a pair of non-
trivial periodic orbits, and that all the aforementioned slowly oscillating solutions
tend asymptotically to this annulus. Using circulant matrices, Nussbaum (1985)
shows that equation (1.5) has no periodic solution of period 2 + L. Uniqueness of

the periodic solution is also investigated by Cao (1996).

Besides these periodic solutions, numerical studies of Wazewska-Czyzewska
and Lasota (1976), Mackey and Glass (1977), Glass, Beuter and Larocque (1988),
and Mackey and an der Heiden (1984) indicate the existence of apparently aperi-
odic (chaotic) solutions. Theoretical proof of this chaotic behavior can be found
in an der Heiden and Walther (1983) for some classes of f. Walther (1991,1995,
1996) also shows the existence and smoothness of an invariant manifold of slowly
oscillating solutions and the 2-dimensional attractor. Chaotic attractors are stud-
ied by Farmer (1982) through a computation of the spectrum of the Lyapunov

component.



The singular perturbation version of (1.5) is

eu(t) = —u(t) + f(u(t - 1),p), (1.6)

which is studied by Chow and Green (1985). Their numerical simulation shows
how small changes in € and p give rise to chaotic behavior in solutions. For
this singular perturbation model, Mallet-Paret and Nussbaum (1986) describe the
asymptotic behavior of the periodic solution as € — 0% under some assumptions
on f and the global bifurcation by using a continuation method based on degree
theory.

Moreover using Brouwer’s degree theory, Schmitt (1979), and Martelli, Schmitt
and Smith (1980) show the existence of a periodic solution even for harmonically
forced delay equation of (1.5). They claim that ”chaos” may be removed through
external forcing. They also show via the Hopf bifurcation theorem that equa-
tion (1.5) has nontrivial periodic solutions for certain values of the parameters.
Unfortunately, they cannot determine the stability of such periodic solutions.

In recent years, global attractivity of the positive equilibrium of a delay
equation has been studied by Kulenovic, Ladas and Sficas (1989, 1992), Kuang
(1992), So and Yu (1994), and Karakostas, Philos and Sficas (1992). Oscillation
theory of equation (1.5) can also be found in Kulenovic, Ladas and Meimaridou
(1987). Furthermore Mallet-Paret and Sell (1994) have developed a Poincaré-
Bendxison theorem for monotone cyclic feedback system with delay, and this result

can be applied to equation (1.5).
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The planar delayed differential equations can be written as

U(t) = —8U(t) + F(U(t — 1)), (1.7)

where U = col(u1,u2) € R?, and F = col(f1, f2) is a map from R? to itself. The
existence and global bifurcation of periodic solutions to this planar equation have
also been studied by Baptistini and T4boas (1996).

Not until the late 1980’s did diffusive delay equations get more and more
attention, since spatial inhomogeneity exists everywhere in nature. In population
dynamics, Hutchinson’s equation (sometimes called Wright’s equation) with diffu-

sion is often considered. We should mention here that the Hutchinson’s equation

y(t) = —ay(t — 1)(1 +y(2)), a>0

can be transformed into

() =c(l—e*t1)),  a>0 (1.8)

by using the transformation z(t) = In(1 + y(t)). The general form of equation

(1.8) is

(t) = f(=(t - 1)). (1.9)

This equation is simpler than (1.5). It turns out that only a few results can be
found for the delay equation (1.5) with diffusion. Murakami (1995) and Murakami

and Hamaya (1995) study the global attractivity of the steady state for a diffusive
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generalized Wazewska and Lasota’s model with Neumann boundary conditions,
in which the nonlinear term is monotone decreasing. Dirichlet boundary con-
ditions are even more scarcely considered. Some results of global dynamics are
obtained by Cooke and Huang (1992), in which the generalized diffusive Hutchin-
son equation is considered under the assumption of a non-delay term dominating
the sy'stem. Busenberg and Huang (1996) have studied Hopf bifurcation of the
diffusive Hutchinson equation. More general types of diffusive delay equations
with Dirichlet boundary conditions have also been investigated by Freitas (1997).
But the bifurcation analysis in his paper is restricted to a particular case, i.e. the
characteristic equation has nothing to do with the spatial variable. In equation
(1.2) with assumptions (i)—(iii) on f, however, the nonlinear term is not mono-
tone. This non-monotonicity may result in some difficulties in the research and
can also be expected to give rise to some additional phenomena. in its dynamics.
Furthermore, in this equation the characteristic equation of the linearized equa-
tion about the positive steady state explicitly contains the spatial variable. This
makes the bifurcation analysis considerably more complicated. Therefore in this
thesis, I will make an effort to study the diffusive functional differential equation

for the varieties of dynamics without monotonicity.

1.3 MAIN CONTRIBUTION AND ORGANIZATION

The major contribution of this thesis lies in the following three aspects.
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Firstly, we provide detailed proofs of two versions of attractivities of center
manifold. Although the idea comes from the corresponding results in differential
equations or functional differential equations, our proofs are original and nontriv-
ial.

Secondly, for Neumann boundary value problems of the diffusive Nicholson’s
blowflies equation, we obtain the existence of stable periodic solutions via Hopf
bifurcation analysis. This is also new, since up to now, even the stability analysis
of Hopf bifurcation for the non-diffusive Nicholson’s blowflies equation has not
been carried out yet.

Lastly, for Dirichlet boundary value problems of the diffusive Nicholson’s
blowflies equation, we develop a new approach to deal with the global attractiv-
ities of the positive steady state in the case of non-monotonicity. Our idea is
creative. This approach should be applicable to other Dirichlet boundary value
problems of functional partial differential equations. Therefore, we expect that
our contribution will have impact on the studies of dynamics of functional partial
differential equations.

"The thesis is organized as follows. In chapter 2 , we will first introduce some
basic results in functional partial differential equations whose proofs can be found
elsewhere. Later, we will present two versions of attractivity of center manifolds
with detailed proofs. The attractivity of the center manifold is crucial in studying
the stability of periodic solutions bifurcating from positive steady states (Hopf

bifurcation). From chapter 3 on, we will choose f(z) = Pze™%% in order to carry
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out every proof and calculation, where P and a are constants. Notice that with-
out diffusion, equation (1.2) together with such choice of f is exactly modelling
the population of adult blowflies. Although we use this specific f throughout
our proofs, we should point out that, without any difficulties, some of the proofs
are also applicable to a general f satisfying (i)—(iii), as we will remark at the
end of each chapter. Chapter 3 will focus <;n Neumann boundary problems. We
first present global attractivities of equilibria followed by a discussion of oscilla-
tion criteria and Hopf bifurcation. Criteria for stability of the bifurcated periodic
solutions are also given through a lengthy calculation. In chapter 4, we will con-
sider Dirichlet boundary problems. A new approach is introduced in dealing with
the non-monotonic dynamical system of functional partial differential equations.
Global attractivities of positive steady state will be proved via this approach. The
results are better than those derived from the theory of monotone semiflow. This
new approach should be applicable to other Dirichlet boundary problems. Chap-
ter 5 contains some numerical simulations of positive steady states. We also briefly
describe the ideas of proving the existence of pure imaginary eigenvalues of the
eigenvalue problems. Necessary conditions are also provided. Finally at the end
of the thesis, we attach an appendix where Nicholson’s blowflies experiments and
models are briefly described, together with a collection of all the mathematical re-
sults in the studies of dynamics of the Nicholson’s blowflies equation. A problem

is also addressed for further research in this field.
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1.4 DISCUSSION

Throughout this thesis, we have studied the dynamics of the diffusive Nichol-
son’s blowflies equations. In this thesis, one can see, that dynamics of Neumann
boundary value problems with large diffusion rate is very similar to those of the

corresponding non-diffusive model. This can be understood in the following way.

By making a change of variables, we get a unit space region. Then the
diffusion rate (denoted by d) is proportional to ~z, where A is the real size of the
space area. Therefore, when A is small, the diffusion d is large. Since Nicholson’s
data come from his laboratory experiments, the real size of the space area cannot
be large. The diffusion rate therefore cannot be small. In this case, we are not
strange that our results agree with Nicholson’s data. When the real size of the
space area is very large, however, the spatial patterns of our results are no longer
simple, as indicates in our numerical simulation. In this case, Nicholson’s data
disagree with our equation. Nonetheless, our studies of the diffusive Nicholson’s
blowflies equation should be still important in the ecological problems, since the

diffusive term and the time delay term in our equation are quite representative.

Besides Neumann boundary value problems, we also study Dirichlet bound-
ary value problems. Our results on the global attractivities of the positive steady
state for Dirichlet boundary value problems are stronger than those for Neumann
boundary value problems. However, unlike Neumann boundary value problems,
Hopf bifurcation analysis for Dirichlet boundary value problems is far from com-
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plete. This is due to the lack information of the positive steady state. Another
difference between the results of Dirichlet boundary value problems and those of
Neumann boundary value problems is that the results of the former problems are
related to the first eigenvalue of Laplace operator —~A.

Ecologically, the diffusive Nicholson’s blowflies equation may be referred to
as “educational” rather than “practical”. The significance of our studies lies in
the fact that this simple equation provides a process for gaining insight, expressing
ideas, and eventually extending to more complex diffusion models.

In ecology, spatial dispersion is important, because only when populations
of organisms are considered in both time and space can the ecological situation be
understood. Experimental investigation of the phenomenon of animal dispersion
develops first from insects. Since the famous experiments of Dobzhansky and
Wright (1943, 1947) on the release of Drosophila flies, a variety of excellent research
has been conducted. Nowadays, people realize that a model of dispersion must
consider the forces operating between population individuals, and it cannot be
limited to the simple random walk (simple diffusion). One method of accounting
for these forces is to include an advection in the diffusion equation (Shigesada
and Teramoto (1979)). An advection-diffusion equation models are expected to
be able to explain some particular behavior of animals, such as insect swarming
and fish schooling. Therefore, it is natural to require mathematicians to study

advection-diffusion equations with time delay.
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CHAPTER @I

ATTRACTIVITIES OF CENTER MANIFOLDS

2.1 INTRODUCTION

Center manifold theory, which plays an important role in understanding the
dynamics of nonlinear systems near an equilibrium, has been studied by many
authors. We refer to Carr (1981), Diekmann and van Gils (1991), Hale (1985),
Kelley (1967) and Lin, So and Wu (1992) and references therein for details of the
subject.

The existence of center manifolds of functional partial differential equations
has been set up by Lin, So and Wu(1992). Smoothness also has been obtained by
So, Wu and Yang (1998). In this chapter, we focus on the discussion of attractivity
of center manifolds for functional partial differential equations.

Attractivity of center manifolds, plays a vital role in studying the stability
of Hopf bifurcation, and so is of importance. In ordinary differential equations,
there are two versions of attractivities of center-unstable manifolds, see Chow and
Hale (1982, p.320-p.321). In Hale and Verduyn Lunel (1993, p.316), one version
of attractivity of center-unstable manifolds for functional differential equations of

retarded or neutral type, is stated with an outlined proof. Unfortunately, in this
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book, the set-up of equation (10.2.14) is far from easy to follow (and might have
some errors), and also the fixed point mapping in equation (10.2.19) need to be
modified by putting a negative sign in front of the integration and the matrix B.,.
The objective of this chapter is to establish two versions of attractivities of
center manifolds for reaction-diffusion equations with time delay.
The rest of this chapter is organized as follows. In Section 2.2, we recall some
basic results with some notations. The attractivity theorems and their proofs are

in Section 2.3.

2.2 PRELIMINARIES

In this section, we will recall some results on a functional partial differential
equation in the form

u(t) = T(t — s)u(s) +/ T(t — r)[Lur + g(u.)] dr, —co<s<t (21

L

where, u : R - X is a continuous function and X is a Banach space over the reals
R with a norm| - |; u, is the usual notation for the element of C := C ([-r,0]; X)
defined by u,(6) = u(r+6) for ~r < 8 < 0; C is the Banach space of all continuous
X-valued functions defined on [, 0], equipped with the supremum norm | - |.
Throughout this chapter, we need to pick up the following assumptions upon

occasion.
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(Al) r > 0is a fixed constant.

(A2) {T()}:>0 is a strongly continuous semigroup on X satisfying |T'(t)| < e**
(t > 0) for some constant w € R.

(A3) T(t) : X = X is compact for t > 0.

(Ad) g€ C(C;X), g(0)=0and

lg(¢) — g(¥)I

lglog:== sup ———"2 <oco.
swec, oxv |9 — ¥l

(A8) L:C — X is a bounded linear operator.

We denote the space of all bounded linear operators on X equipped with the
operator norm |[-| by £(X; X). For any n > 0, we will also use BC"(R; X), defined

as
BC"(R; X) := {h € C(R; X), supe "H|n(t)] < oo} .
teR

endowed with the weighted supremum norm:
[hly = sup e~"M[h(t)].
terR

Clearly, BC"(R; X) together with the norm |- |, is a Banach space. The existence
and uniqueness of functional partial differential equations have been investigated
by many authors. Theorems 2.1 and 2.2 following are due to Travis and Webb

(1974, 1978).

THEOREM 2.1. Suppose that (A1) and (A2) are satisfied, and
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(A6) F :C — X is Lipschitz continuous, i.e. there ezists a constant K > 0 such

that
|F'(¢1) — F(¢2)| < K1 — ¢2l, forall  ¢,,¢2 €C. (2.2)

Then for every ¢ € C, there ezists a unique continuous mapping u : [~r,00) = X,

’r

sometimes also denoted by u(¢), satisfying

u(t) = T(t)#(0) + /t T(t — 3)F(u,)ds, t>0 (2.3)
0
ug = ¢. (2.4)
If we further assume (A3),

then for each fized t > r, the mapping ¢ € C > us(¢) € C is compact.

Finally, if in addition to (A1), (A2) and (A6), we also assume that

(A7) F:C — X is continuously differentiable and there ezists a constant M > 0

such that the Fréchet derivative DF satisfies

IDF(¢1) —DF(¢2)I S lwhbl _¢2I7 fOT all ¢111.1]2 € c:

then for each ¢ € C satisfying
$(0) € D(Ar), $€C and ¢ (0) = Are(0) + F(¢), (2.3)

where At : D(Ar) C X — X denotes the infinitesimal generator of {T(#)}e>0,

the solution u(¢) : [0,00) = X of (2.8)-(2.4) is continuously differentiable and
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satisfies the abstract functional differential equation

du(t)

—— = Aru(t) + F(u)),  t20. (2.6)

In the literature, solutions of the integral equation (2.3) are usually referred
to as mzld solutions of the differential equation (2.6). According to Fitzgibbon
(1978) and Martin and Smith (1990), every mild solution satisfies (2.6) for t > r,
if {T(¢)}e>0 is analytic.

Let us now consider the linearized equation of (2.3)—(2.4) as follows:

u(t) = T(t)$(0) + /0 t T(t — s)L(us)ds, ¢>0 (2.7)

Ug = ¢@. (2.8)

Correspondingly, one defines the solution semiflow W(t) : C — C by W(t)é =
ue(9), for ¢ > 0 and ¢ € C, where u(t) is the solution of (2.7)~(2.8). Moreover for

each A € C, one can define a linear operator A()) : D(Ar) — X by
ANz = Arz — Az + L(e* 1), z € D(AT).

The equation
A(X)z =0 (2.9)

is called the characteristic equation of (2.6). The nontrivial solution pair (),z)
of (2.9), which means z # 0 in D(Ar), is called an eigen-pair, where A € C
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is called a characteristic value of (2.6). Information on the characteristic value
makes it possible to decompose the space C by applying some operator algebra.

More specifically; one has :

THEOREM 2.2. {W(t)}:>0 is a strongly continuous semigroup of bounded
linear operators on C with infinitesimal generator A : D(A) CC — C given by
(49)(8) = $(6), -r<6<0,
D(A)={peC : $C, ¢(0) € D(Ar), $7(0) = Ar¢(0) + Lg}.
Moreover, there ezist three linear subspaces U,N and S of C such that C = U &

N&S and
(i) dim(U) + dim(N) < oo;
(i) for 6 €U ® N, W(t)¢ can be eztended to all of t € R;
() WU CU, W(EN CN forallt €R and W(t)S C S for all t > 0; and
(iv) there ezist constants vy,v— > 0 such that for any 0 < € < min{vy4,7-},

there ezists a constant K(€) > 0 such that

[W(t)¢] < K(e)el™=—9%g| for t<0, ¢€U;
[W(t)¢| < K(e)e!tl|p] for teR, ¢eN; (2.10)

[W(t)p| < K(e)e O+ g|  for ¢>0, d€S.

Basically, a variation-of-constants formula is a fundamental tool for studying
a dynamical system with external forces or with a nonlinear perturbation. In order
to present a variation-of-constants formula for (2.3) due to Memory (1991), one
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needs to extend C to the metric space
C={¢:[-r,00 & X : there existsa € [—r,0] such that 4 is continuous on [-r, a),

lim &(s) € X exists if a #—r and ¢ is continuous on [a,0] if @ # 0}

s—a-
equipped with the supremum metric. Assume that L : C =+ X can be extended
to a continuous linear operator £ : ¢ - X on C. Using the same argument as
that of Travis and Webb (1978), one can show that the existence and uniqueness
of solutions to (2.3)-(2.4) on the extended space €. Moreover, for each ¢ €C, the
unique solution u(a), when restricted on [0, 00), is continuous. Furthermore, one
can also define by W(t) the solution semiflow of the linearized system (2.7)-(2.8)
for the extended space. We then have W (¢) : C—Cfort > 0 and W(t)(@) cc
for t > r. The projections Py, Py and Ps of C onto AN ; U and S respectively,
can be applied to functions ¢ € € (cf. Memory(1991)).
Now L is denoted again by L. Let Xp : [-r,0] = £(X; X) be defined by

0 -r<é<0

X°(9)={I 6 =0,

where 0 (resp. I) denotes the zero (resp. identity) operator on X. For z € X, one

denotes
X'z = PuXoz, X{z=PnXor, XSz = PsXoz,

where Xoz € C is defined by (Xoz)(6) = Xo(8)z for € [—r,0]. After the prepa-

ration above, one has a variation-of-constants formula as follows.
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THEOREM 2.3.

(1) For any continuous function h : [0,00) — X, the solution of

u(t) = T(¢)¢(0) + /o-t T(t — s)[Lus + h(s)] ds, t>0

(2.11)
Ug = ¢
can be ezpressed as
t
us = W(t) + / W(t — s)Xoh(s)ds, t3 0.
0
(31) Assume (A4). Then the solution of the initial-value problem
t
u(t) = TW(0) + [ Tt - o)Lus +g(urllds, 20
0 (2.12)
Ug = ¢ € C,
satisfies
t
Pyu, = W(t)Pyd +/ W(t — 8) XY g(u,) ds,
0
t
Pyuy = W(t)Pno +/ W(t - )X g(u,) ds, and (2.13)
0
t
Psu; = W (t)Ps¢ +/ W(t — s)X3 g(u,)ds
0
for allt > 0.
(131) For z € X,
W) X4z, W)X¥zeC for teR,
(2.14)

W) XSz ec for t>r.
() For any 0 < € < min{y4,7-}, there ezists K(e) > 0 such that for all z € X,
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one has
[W(#)X5'z| < K(e)el™ |2 for  t<0;
W)XV z| < K(e)elH|z| for teR; (2.15)
(W () X5 z| < K(e)e™ O+~ z| for  t>0.
The existence and invariance of the center manifold were established in Lin, So
and Wu (1992). A simplified proof of such existence and invariance was given in
So, Wu and Yang (1998) by applying the technique of the contraction on a Banach
space. Followed is a brief description.
Let n and € be such that 0 < € < 7 < min{v4,7-} — € and let BC"(R; X)
be the contracted Banach space over X as defined in the beginning. Let us define

a linear operator K on BC"(R; X) by

(KR)(t) := /o w(XVh(s))(t — s)ds

+/; u(X3h(s))(t — s)ds +/ u(X¥h(s))(t ~ s) ds,

o0

where u(¢)(-) is the solution of (2.3)-(2.4) with ¢ € C.

According to (2.15), one obtains that K : BC"(R; X) — BC"(R; X) is a bounded

linear operator with

1 1
I'CISK(G)( L, + ) (2.16)
N—€ Ye—€—m Y_—€—7

From now on, let us consider system (2.1) with assumptions (A1), (A2),
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(A3), (A4) holding. Define N, on BC"(R; X) by
Ny(u)(t) = g(ue), for t € R and u € BC"(R; X).

One can show that N, maps BC"(R; X) into itself and thus the mapping R :

BC"(R; X) x PNC — BC"(R; X) given by
R(u, )(t) = (W(t)$)(0) + (K(N4()))(2) (2.17)

is well-defined.

THEOREM 2.4. If0 < € <n < min{v4+,v-} — € and

1 1 1 B
K@( + + )JMM<L (2.18)
N—€ Y+—N—€ ~F-—n—c¢

then for every ¢ € PnC, the fized point equation

u = R(u,$) (2.19)

has a unigque solution u*(¢) in BC'(R;X) and the center manifold of (2.1) is
defined by M, := {(u*(¢))o : ¢ € PnyC} C C, which satisfies the following
properties:
(1) The mapping ¢ € PyC — u*(4) € BC"'(R; X) is Lipschitz continuous.
(5) u*(@) is the unique solution in BC"(R; X) of (2.1) with Pyrug = ¢
(11i) The centre manifold M, is invariant under the flow defined by (2.1), that is,
if u i3 a solution of (2.1) with uo € M, then u, € M, for all 7 € R.
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2.3 THEOREMS OF ATTRACTIVITY AND THEIR PROOFS

In this section, we suppose that the unstable subspace of C is trivial, i.e.
U = {0}. This implies C = A" @ § according to Theorem 2.2. Recall that for any
solution u(¢) of (2.1) we have by Theorem 2.3

w£(8) =Wt - ous9) + [ Wt — ) XS 9(ua(6)) ds, t3 0> —0
o (3.1)

t
uN (@) = W(t — o)u(¢) + / W(t — )XY g(us(4))ds, t>0> —oo,
where uf (¢) = Psu.(6) and u (¢) = Pyue(¢).
We first make the assumption that |glo,; can be as small as we like so that

there exists a constant A satisfying:

(A8)
v+ — 26 = 2K (€)|glo1 (A + 1) > 0;
(A9)
T+ 2 EI;&( Zgﬂmm T b end
(A10)
K2(€)lgloa (A +1) <A

T+ —2e = K(e)|gloa(A+1) =

Our first version of the attractivity of center manifolds is motivated by Hale and

Verduyn Lunel (1993), (see also Chow and Hale (1982)).
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THEOREM 3.1. Let assumptions (A8) — (A10) be satisfied. Let
My = {(u*(#))o : d€PNC}CC

be the center manifold of (2.1), where u®* is defined in Theorem 2.4{. Then there

ezists a mapping M* :C =N & S = N such that

(i) if for fized ¢ € N, we define H(¢, %) = ¢ + M*($,%), 1 €S, then the set

WS(¢), defined by
We(g) = {(H(¢,¥),¥): ¥eS}cCC,
i$ an invariant manifold in the following sense: if
¢ =H(4,9), (3.2)
then

u (- 6+ ) = H(z(t, 6), uf (- & + ¥)); (3.3)

in other words, if (¢,1) € WS(¢), then u(d + ¥) € WS(z(t, ¢)), where,
ue(-, @ + ¥) is the unique solution of (2.1) with initial condition ug(-) =

é+v €C and z(t) = 2(t, ¢) is the solution of the following equation
t
() =W+ [ Wie— ) Xo(ui((s))ds, teR, (34
0

where ug(2(s)) = (u*(2(s))o € M, is the solution of (2.1) on the center
manifold,
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(11) the following estimates
[u(6 + %) — 2(t, 6)| < AK(e)e~tr+~<K(lglos(8+Dltpy _ y25(4)|
|uf (5 +1) — ugs(z(t, $))| < K(e)e-[7+—e-K(e)lylo.x(A+1)It|,/, - USS ()|

kold for t > 0.

PROOF. First of all, we will show that there exists a mapping M* satisfying:
(P1) M*(¢,u5°(¢)) =0 for g € N.
(P2) M*(¢,¥) is uniformly Lipschitz continuous with respect to the second com-

ponent and the Lipschitz constant is bounded by A, that is,
[M*($,91) — M*($,%2)| < Alby — 2]

where ¢ € A and 9,42 € S.

(P3) Forany ¢ e N and ¢ € S, let ¢ = ¢ + M*(d,%) € N. Then
u/ (@ +9) = 2(t.8) + M*(2(t,0),u5 (-, & +¥)). (3-5)

Let F(A) be the set of all mappings from C to A" with the properties of (P1)

and (P2). Define a metric on F by

Ilwl (¢1 7[’) - Zv[?(é’ ¢)l
de(My,M,) = X
(M1, 1) ¢€N,u;s;1(§)¢¢es [ —ug®(8)|

Then with this metric, F(A) is a complete space. Now, for any M € F (A) and
PEN,YES, let dpr = ¢ + M(®,%). We denote by u$ (-, dar + ¢, M) the solution
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of
uy (- éum + ¥, M)

t _ _ (3.6)
= W(t)¢ +‘/0‘ W(t - S)ng (¢0(37 Z, usv M) + uf('y ¢M + ¢'1 M)) dS,

where,
bo(s,z,u®, M) = z(s,¢) + M (2(s, ), uS (-, fm + v, M)) .

Now for s >t > 0, we denote

Be(s,z,u’, M) = z(s, z(¢, ?))

+ M (2(s, 2(t,8)), us (-, fo(t, 2,4, M) + ug (-, dur + 9. M), M)) .

Then one can define a mapping T as follows:
(TM)(¢, %)
. /0 W)X g (Fals, 20 M) + uS(Bag + 9, M) ds g
+ [T W)X gtuiteto, o) ds.
It is sufficient to show that mapping T has a fixed point. For this purpose, we
first note that since uf(-, gas + 9, M) satisfies (3.6) and ug(2(t, ¢)) is the solution
of (2.1) on the center manifold, we have
[u (b + 9, M) = u(=(t, 9))]
< K(e)e™ 79y — u3S(4)|
+ K(¢)lglo, (A + 1) /0 e IS B+, M) — g(e(e, ) s
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which implies by Gronwall’s inequality
[uf (- nr + 9, M) — u3®(z(t, 8))|

(38)
< K(getrememKllorA 1y, _ 15,

for t > 0. Particularly when ¢ = ugS(4), one obtains
S g —_ . xS
Uy ('y oM +¢1M) =Ug (Z(t, ¢))

for any ¢ > 0. Moreover TM(¢,u3®(¢)) = 0 by (3.7). Hence, mapping T'M satisfies

(P1). Using similar calculations as above, one has

luf('v 51:\4 + 11()1: M) - uf(': $2M + ¢21 M)I
(3.9)
< K(e)e-[‘7+-e—R'(f)lglo.x(A+1)]tl¢l — sl

where ¢1ar = ¢ + M(¢, 1) and dopr = ¢ + M(, ¥2).
Next we will show that TM satisfies (P2). After some calculations, using

(3.7) and the estimate (3.9) one arrives at

(TM)(,%1) — (TM)(¢,¢2)|
S K(e)lglo.l (A + 1) ‘/(; eesluf(.’ $1M + ¢17 M) - uf(') 521\4 + d’za M)l ds

o
< K (e)lalox(A + Dl — va] [ et K(Olloatatle g
0

_ K2(e)lgloa(A +1)
T+ —2¢ — K(€)|glo,1(A + 1)

[¥1 — 2.

So by (A10), TM satisfies (P2).

Now one can show that 7' : F(A) — F(A) is a contraction. In fact by (3.7)
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one has

[(TM1)(8,%) — (TM2)(¢,9)]
< K(e)lglo /0 " (w3 (-, dar, + %, My) — u3®(2(s,9))ldr (M1, Mz)  (3.10)

+ (A + Dluf( éar, + ¥, M) —ui (-, ba; + 8, M) [ ds.
Using (3.6), (3.8), and the Gronwall inequality, one has

qu(', $M1 + ¢7 Ml) - uf(') $M2 + 1, M2)l

, ) 3.11
< KOW —uS@ldr(Ma, M) - coxoposcare. D
- A+1
Substituting (3.8) and (3.11) into (3.10) one obtains
2K?2 dr(M,, M. .
(TM)(8,8) - (TMa)(6,8)| < — (NloadrBh M) | sy,

T v+ — 26— 2K(¢)[glo1 (A + 1)

so that

2K?(e)lglo,1

dr(TM;, TMy) <
F(TM, 2)—W--2e-2K(€)lglo,1(A+1)

dr(My, M)

and hence T is a contraction by (A9). Now by the fixed point theorem of a

contraction mapping, there exists M* € F(A) such that

TM™(¢,9) = M*(¢,9),  for any (¢,%) €C. (3.12)

For such a fixed point M* and any (¢, %) € C, one need to show (3.5) holds. Using
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(3.7) and (3.12) one has

M*(¢,¢)

- / W(~)X3'g (Bo(s,2,u®, M*) +uS(, u- + 9. M) ds (313
0

i 4/0‘00 W(_S)Xé‘/g("(‘)(z(sv $))) ds.
This implies

M= (2(t, 6), ui (-, Bu- + 9, M"))
= —/Ooo W (—3)X3 g(B1(s,z,uS, M7)
+ul (-, Po(t, z,uS, M*) + u(-, dage + b, M), M*))ds
+ [ W) X o(uieto, 2t ) s (3.14)
= - /t = W(t — 8) XY g(be(s — t, z,uS, M*)
+us_ (- fo(t, z,uS, M*) +ud (-, dage + 0, M™), M*)) ds

+ /t‘°° Wi(t - S)Xavg(ua(z(s —t,2(t,9)))) ds.

Claim: For s >t > 0,
uf—t('a $O(t’ 2, usaM‘) + ‘Uf(', &M' + 1.1’1 A/I‘)aM‘) = Uf(', éﬂ’f‘ + ¢7 A/I‘) (3’15)

Proof: According to (3.6), uS_,(-, do(t, z,u®, M*) + ud (-, Pare + 0, M*), M*) sat-
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isfies

uss—t('7$0(tazausaM.) +uts('1$M' +¢,M‘).M')

= W(s _ t)uf(',éM‘ +¢1M)

s—t (3.16)
+ / W(s —t — 1) X3 g(de(r, z,us, M)
0
+ uf('a (ZO(ta 2, uS, A/I‘) + uts('t $M‘ + 9, A/It)’ M‘)) dr.
Again by (3.6) and properties of semigroup W () one has
W(s —t)us (-, due + 9, M) = W(s)o
(3.17)

t
+/ W(S - ")Xésg (50(7-7 2, usz M‘) + Uf(°, ¢M' + ¢1 M ‘)) dr.
0
Substituting (3.17) into (3.16) and carrying out a few calculations, we obtain
ug_ (- o(tsz,u®, M*) +uf (-, G- + 0, M*), M*) = W(s)p
t
+ [ Wlo = 1X5g (Bolr, 20" M%) + (-, Gaee +9,M7) dr
0
s (3.18)
+ / W(s — 1) X3 g(de(r — ¢, 2,u5, M*)
t
+ uf—t('v $O(t1 2, uS,M‘) + uf('a 5M‘ + ¢1 A/It)7 A’I‘)) dr.
On the other hand, since u3(-, ¢ar- + 9, M*) is the solution of (3.6), it satisfies
uf (s Gare + %, M*) = W(s)p
s _ _ (3.19)
+/ W(is-1)X3g (o(r,z,u®, M*) + ud (-, are + ¥, M*)) dr.
0
Combining (3.18) and (3.19) and noticing that z(s—t, z(t,¢)) = 2(s, ¢), one obtains
Iuss-t('v $O(t1 2, uS’ M‘) + u.ts('a $M‘ + ¢= M‘)a M‘) - uf(': $M' + ¢'7 JW‘)I
< K3 (e) / e Ol (- bolt, 2,4, M*) + Ul (-, Gage + 9, M*), M)
- Uf(', $M' + ¢’ M‘)I dTv

31



where K2 (€) := K(e)|glo,1(A + 1) and ~4(€) := 74 — . Hence by applying Gron-
wall’s inequality, we obtain (3.15). This completes the proof of the claim.

Using (3.4), (3.14), (3.15), and (3.13) one has
(8, 8) + M (2(t, 8), u$ (- Faae + b, M"))
=W+ [ Wt )3 oui(e(s,6)) ds
= [ W~ X0 (Bolo,2, 5, M) 405 B +,007)) s
= W) + M (6,4))

t
+/ W(t—S)Xévg ($Q(S,Z,us,Mt) +uf('v$z\l' +¢7M‘)) ds.
0

This shows that
2(t, @) + M™(2(t,¢), up (-, are + U, M*)) +uf (-, pre + b, M)
is the solution of (2.1) for ¢ > 0. By uniqueness of the solution of (2.1), one has
ug (s ne + 9, M%) = u(-, 6+ ¢)

and hence
u) (@ +¥) = 2(t,¢) + M*(2(t, 8), uS (-, ar~ + 9, M)
= 2(t,¢) + M*(2(t, ¢), us (-, 6 + ¥)).
Therefore, equation (3.5) holds.

Now for any (¢,9) €eC=N @S, €N and ¥ € S, define H : C - N by

H(¢,4) = ¢+ M*(4, ).
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We still define ¢ as in (P3). Then ¢ = H(¢,v). Moreover, by (3.5),
H (=(t,6),u; (6 +9)) = 2(t,¢) + M (2(t,¢), w7 (- 6 + ¥))
=u(~+9).
Hence, (3.3) is also proved to be true.
So far, we have shown (i) of the theorem. Further, the estimates of (ii) in
the theorem immediately follow from (3.8), (3.5) and the properties (P1) and (P2)

about mapping M*. This completes the proof.

Next, we will present another version of attractivity of the center manifold.
Basically, this part is excerpted from So, Wu, and Yang (1998). Before invoking
the proof of this version, we also need some assumptions as follows. Choose 7
such that € < 7 < 44 — 2e. This 7 satisfies the requirements of Theorem 2.4. By

taking |glo,1 sufficiently small, we can assume that there exist constants A, 3 > 0

satisfying
(Al1)
n+3K(e)lglos + € < B <74 — e~ K(€)lglo,1(A + 1);
(A12)
K2(e)|gl2 , A(A + DI + K(e) + K(Elgload
' 1+ —€—f
(A13)
2
K*(€)lglo,1(A + 1) <A and

Y+ — 26 — K(e)lglopa (A +1) ~
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(A14)

K(¢)lglo,1

o —€ + K?(€)lglo (A + I < 1;

where

I :=[v4+ — € — K(e)lglo,1(A + 1) — Bllr+ — 2¢ — K(e)lglo1 (A +1)]

Oz := [+ — 2e — K(€)lglo1 (A + L)][v+ — € — K(€)lglo, (A + 1)]

LEMMA 3.2. There ezists a continuous mapping J : Ry x C = S such that
if ue(@ +¢) (@ €N and ¢ € S) is a solution of (2.1), then uy(p + ) ezists for

allt >0 and

uf (¢ +v) = J(t, ull (¢ +¥),¥). (3.20)

Moreover, J satisfies the inequality

T (81, %1) — T (¢, b2, ¥2)| < A(|p1 — b2| + et [vhy — 2)) (3.21)
for all gy, 82 €N, 1,92 €S, and t > 0.

PROOF. It suffices to show that there exist continuous J : R4 xC — S and
v:DxC— N, where D := {(r,t) € R2 : 0 < = < t}, J satisfies (3.21) and such

that for given ¢ € M and ¢ € S, one has
Tt 8,4) = Wty
t _ _ (3.22)
+ /0 Wt — $)XSg(u(st, 8 8) + T (s, 0(s,t, 6,0, %)) ds,
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and

'U(T, t, 52 "b) = W(T - t)$

t _ _ (3.23)
= [ W~ o) X8 g(0(3,4,8,9) + T(s,(5,8, 6, 9), ) s,
for 0 < r < t. Indeed, suppose such J and v exist. We will show that
T(tu (6 +9),0) =uf(¢+9) fort>0.
Let ¢ = u{v(qﬁ + %), and denote
Ji(s,t) == u(d + %) — T (s,0(s.t, 6, 9), )
(3.24)

vl (s,8) i=v(s,t,8,9) + T (s, (s, £, 6, ¥), ).

Since
u (6 +¥) = W(typ + /0 t W(t—s)X5g(u) (6 +¥) +ul(p+¢))ds  and
W@+ 0) =W =08 [ Wr )X g6 48) +u5(6 +4)) ds
for 0 < 7 < t, we have

[uf (¢ + ¥) — T (¢, &, )|

[ W= X8 [0t (64 9) + 456 + ) — 97 (5,))] ds (3.25)

t
< K(¢)lglo A ™= [[u (4 +9) — v(s,t,6,8)| + [ T2(s,8)]] ds

and for0 <7 <t

[u (¢ +¥) — v(r, t,8,9)|

[ W(r — )X [ (& + ) + uS( +8)) - g(v7 (5,1))] ds

4
< K(é)lglos / e [[uN (6 +¥) — v(s,t, 8, 8)| + T2 (s, 1)]] ds.
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Thus

t

e 1ul (6 +¥) — v(r,t,8,9)| < K(e)lglos / e |u (¢ + ) — v(s,t, 8, %)| ds

t

+ K(€)lglox / e** | T2 (s,t)| ds.

T

Using Gronwall’s inequality, we have

el (¢ +¥) — v(r,t, 8, %)

t

< K(€)lglo 1eX(lolos(t=r) / e |72 (s, )| ds.

r

This implies, for 0 < s < ¢,

[ (6 +¢) —v(s, t,6,9)|

t
< K(e)lglo,1e"(gloa(t=2) / =) |70 (€, 1)) de.

s

Substituting (3.26) into (3.25), we obtain

[uf (6 +9) — T (¢, &,9)|

t t
=K(€)2|9l3,1/0 e-(7+—e)(t-S)eK(e)lylo.x(t—s)/ e€(§—9) |T2(€,8)| dEds

s

t
+ K()lglo.s / e~ (T =9=9) | 79(5 4)] ds.
0
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By interchanging the order of integration in the first term, we have

[uf (6 + ¥) — T (¢, &, )]

K 2 2 t
_ (fg l9l6.1 / e~ (T4 —e=K()lglo,1)(t—) [l_e-ﬂ(f)f] |T2(€,t)] de
74 (€) 0

t
+ K(e)lglo. / e (1+=90=) | 73(5. 1)] ds
0

K(€)*|gl3
71 (e)

t
+ K(6)lglos / e~(T=9(t=0) | 75 (g 1)] ds
0

t
/ e_(.,+_e-l((£)|910.1)(t—€) [J:(Ea t)l dE
1)

t
<Ky [ e | 735, 1)] ds
0
for some constants Ky, Kz > 0, where v (€) := v4+ — 2¢ — K(¢)|g|o.1- Thus

luf (6 +9) — T (¢, v(t, t, &, %), ¥)]

t
<K / K= |uS (6 + ) — T (s, 0(s,t,8,), ¥)| ds,
0

since, according to (3.23), v(¢,t,0,¢) = ¢ = u{v (¢ + ). Using Gronwall’s inequal-
ity again, we have, u (¢ + ) — J(¢,v(t,t,$,%), %) = 0. This implies u¥(¢ + ¢) =
J (¢, “Jt\r(‘?6 +¥),¥).

We will now establish the existence of J and v. Let

F=F(AB):={T : Ry xC— S;T is a continuous mapping and

lJ(t, 511 d)l) - J(t’ 521 ¢2)I S A(I‘;l - $2| + e_ﬁt|¢1 —11’2,)}-

Clearly, F is a complete metric space under the metric

p(J1, T2) = [ — Ja| 7 := sup |1(t, ,%) — Ta(t, &, ¥)|.
t,0,¢
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Now for any J € F and ¢ > 0, let v(r,¢,8,%; J) denote the solution of (3.23) for

0<r<t e
_ _ t
(1,5, %;T) =W(r—t)d - / W(r — )Xy g(v7 (s,;.7)) ds, (3.27)
where

vJ(s’ t; J) = v(s,t, &1 l/);J) +J(S,U(S,t, &7 ¢§J)7 w)‘

Such a solution does exist and is continuous in (r,¢, é. ) since (3.23) is a (finite

dimensional) ODE in v. Let J € F be given. We define T.7 by
_ t
(TT)(E, 6, ) = W(t)p + / W(t—s)X5g(v7(s,t;7))ds, t>0.
0

We will show that T : F — F has a fixed point by using the contraction mapping

principle. First we will show T(F) C F. In fact, let J € F. Then

(TT)(t, 61, 91) = (TT)(t, b2, 2)]|

K(e)lglo,Ae~?"
+
T+—€—0

< <K(e)e’(7+")t ) %1 — 2|

t
+ K_(]A(e)e-(7+-€)t/ 6(7+—€)3[v(8,t, élyzﬁl;j) - ‘U(S,t, 527 ‘(bz;j)ldS,
0

where K2(e) := K(€)|glo,1(A + 1). On the other hand, from (3.27) and by using
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Gronwall’s inequality

IU(S,t,$13¢1;j) —U(S,t,$2,¢2;.7)l

K(e)lglopAlbr — %2 [ _(g—e)s  _—(p—e)
a2l (=00 8 ))]

eK(f)|!I|o.1(A+1)te-[K(€)|9|o.x(A+1)+€]~’, for 0<s<t.

< [K(e)eﬂ&l — &+

After a few simple calculations, one has

'(Tj)(ta 51: ¢1) - (TJ)(ta 527 ¢2)[

2
< (K00 + ZAIZ ¢ 00 5)) et — ol + B2 D55,

where,
C(A,8) = K*(&)|gB, AA + )T,
Using (A12)—(A13), one obtains

(TT)E, é1,%1) — (TT)(¢, b2, %2)| < Ay — $2| + 7Py — o))

and hence TJ € F. Next one will show that T is a contraction on F. In fact, using

arguments similar to the above, one could show that

(TT) 8. 9) — (TT) (.3, 8)| < (ﬂ"i— + C(A)) \Ti = Jal

where,

C(A) = K*(e)lglos (A + 1)I; .
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Thus,
T, - Thls < ( (gl +C(A)) i - Tl

According to assumptions (A11)—(A14), T is a contraction mapping. This com-

pletes the proof of the lemma.

The following theorem shows that the centre manifold is attracting.

‘THEOREM 3.3. Suppose assumptions (A11)—(A14) hold. Let u(d + ¥)
be the solution of (2.1) with initial condition ¢+ € N @ S. Then there ezist

constants Ky > 0 and B; > 0 with K; depending on ¢ and v, such that
[wf (6 +9) —ug* (¥ (8 + )| < Kie ™!, ¢>0 (3.28)

where u§S(-) = Ps(u()) and ug(-) was introduced in Theorem 2.4.

PROOF. Fixanyt > 0. The solution of (2.1) through u (¢+4)+ug S (uN (o+
¥)) is defined for all time and lies on the centre manifold M,, since M, is invariant.

Therefore, we can find a point ug(4*) € My, where ¢* € N, such that

ue(ug(8%)) = u (¢ + ¥) + ugS W (6 + v)).
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By Lemma 3.2,

[uf (B + ) — ugS(u (¢ + )|
=T uM (6 +9),9) ~ Tt ul (6 +9), utS(6%)]

<A™y —uzS(4%) < AP [y + [u3S(¢))-
On the other hand, since & = {0}, by (2.17) and (2.19), u%(@) satisfies, for ¢ € N,
ul(o) = W(r)¢_>+/ W(r—s)X&sg(u:(5))+/; W(r—s)X¥ g(u2(4))ds, T€R.

If we take ¢ = uY(¢ + 1), then u* ,(§) = u3(¢*). Using the fact that any solution

ue(¢p + ) of (2.1) satisfies the estimate
[t (6 + )| + [u(6 +9)| < K(e)(|8] + [15])el2K@lslo.n et

and using Theorem 2.4, a few simple calculations show that [ugS(9*)]| satisfies the

estimate
[4g%(6")| < (K (€) + C(n,m)) K (e)(|9] + [6]) el 3E©lslo.s+elt

where

K2(€)|glo,1e™

C(n,r) = 1 L B
(e = =) [1 = K@llgl (2 + 7=y

Hence by assumptions (A11)~(A14), there exist constants K. 1 >0and 5, € (0,8)
such that (3.28) holds. This completes the proof of the theorem.
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REMARK. Both estimates (ii) in Theorem 3.1 and (3.27) in Theorem 3.3 imply
that dist(u.(4 + 1), My) — 0 as t — oo, since ug(ud (¢ + ¥)) € M,. Throughout
this chapter, one can see that the center manifold actually is a local feature of
dynamical systems since assumptions (A8)—(A14) are based on the cut-off trick,
see for example Hale and Verduyn Lunel (1993, p-314-p.315). Locally, the center
manifold theorem allows us to reduce an infinite dimensional dynamical system
into a finite dimensional system on the center manifold. The attractivity theorem
therefore implies that stability of the equilibrium (or the periodic solution) of this
finite dynamical system guarantees the stability of the infinite dynamical system.
In the next chapter, we will make use of the center manifold reduction method to

study the stability of periodic solutions bifurcating from a positive equilibrium.
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CHAPTER I

NEUMANN BOUNDARY VALUE PROBLEMS

3.1 INTRODUCTION

In this chapter, our aim is to study the global dynamics of functional partial
differential equations with Neumann boundary conditions. More specifically, we

will restrict our attention to

Ou(t,z)

5 = Au(t,z) — du(t,z) + flu(t — T, z)), inD
Ou(t,z)
S = 0, onl
u(9, 1‘) = UQ(G, .’B) 2 0, in Dr

where, 7 is the delayed time; 4 is a positive constant; z € 2 C R™, Q is a bounded
domain with a smooth boundary 89, (¢,z) € D = (0,00) x Q, T' = (0,00) x 89,
D: = [-7,0] x Q; £ denotes the exterior normal derivative to 8Q; ug(6,z) is
Holder continuous in D, with uo(0,z) € C*(Q); and f(z) is a nonlinear function
satisfying the following hypotheses:

(i) f(0)=0

(i) lim:e f(2) =0
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(iii) there exists zo > 0, such that f(z) is monotone increasing for z € [0, o] and

decreasing afterwards.

As we mentioned in chapter 1, we will choose f(z) = Pze™®* as the carrier in
all the proofs and calculations. For this particular choice of a nonlinear term, the
above equation without diffusion is known for modelling a population of adult flies.
As a model to describe th’e dynamics of Nicholson’s blowflies experiments (1954),
the non diffusive delay equation was first proposed by Gurney, Blythe and Nisbet

(1980) in the form of:
N(t) = —6N(#) + PN(t — r)e=N¢=D 15 (1.1)
together with the initial condition
N(6) =4(6) 20, 6¢€[-r,0], (1.2)

where N(t) is the size of the (adult) blowflies population at time t; P is the
maximum per capita daily egg production rate; 1 is the size at which the blowflies
population reproduces at its maximum rate; 4 is the per capita daily adult death
rate; and T is the generation time. For this equation, global attractivity and
oscillation of solutions have been investigated by several authors, with the following
results.

(i) So and Yu (1994): If0 < % < 1, then every solution N(t) tends to zero as

t — co.



(ii) So and Yu (1994) and Karakostas, Philos and Sficas (1992): If 1 < % < e,
or if % > 1 and (7 — 1)In-§ < 1, the positive equilibrium N* = %ln-? is
a global attractor.

(iii) Kulenovic and Ladas (1987): ¥ % > e and dTe’"(In % -1)> %, then every

non-trivial solution N (%) oscillates about the positive equilibrium N*.

In addition, Kuang (1992) proves the global attractivity of the positive equilibrium
under the condition 1 < % < €2, with no restriction on the delay. He also illustrates
the global existence of periodic solution in a generalized setting. We also should
mention Li (1996) and Luo and Liu (1996) for recent progress in the studies of
Nicholson’s blowflies equation.

Recently there has been an increasing interest in studying parabolic equa-
tions with time delays. It is the object of this chapter to extend the above results
to the case where spatial diffusion is taken into consideration, i.e. we consider the

equation

N
NG z) _ AN(t,z) —=6N(t,z) + PN(t — r,z)e™ N2 in D (1.3)

ot
%’—Q =0, on' (1.4)
N(8,z) = 4(6,z) >0, in D,. (1.5)

It appears that only a few papers have been published concerning the os-
cillatory behavior of solutions for diffusive functional differential equations. We

mention here the work of Erbe, Kong, and Zhang (1993), Fu and Zhuang (1995),
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Kreith and Ladas (1985), Yoshida (1986, 1992) and the references therein. The
earliest work seems to be Bykov and Kultaev (1983). In most of these papers, the
nonlinear term f(u) is assumed to be odd and convex. As a result their methods
cannot be directly applied to (1.3)~(1.5). In this chapter, we will develop an os-
cillation theory for (1.3)-(1.5) parallel to the one in Kulenovic and Ladas (1987)

and Kulenovic, Ladas and Meimaridou (1987) for d;ela.y differential equations.

Our global attractivity results are established by using the method of lower—
upper solutions pair for functional partial differential equations. We refer the
interested reader to Bebernes and Ely (1983), Redlinger (1984) and the references
therein for details. This method has been used by Gourley and Britton (1993) and

Redlinger (1985) for a similar purpose.

As to periodic solutions, we obtain the existence of periodic solutions bifur-
cating from a positive equilibrium. Through a lengthy calculation by hand, we
show that these periodic solutions are stable. The center manifold theorem and

the attractivity of the center manifold play an essential role.

The rest of the chapter is organized as follows. First, the attractivity of
equilibria will be considered in Section 2. In Section 3, we discuss the oscillatory
behavior of solutions (about the positive equilibrium N*). A Hopf bifurcation
analysis is carried out in Section 4. Finally in Section 5, some numerical observa-

tions are made.
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3.2 GLOBAL ATTRACTIVITY OF EQUILIBRIA

In this section, we will first show the global attractivity of the zero solution
for equations (1.3)—(1.5) when 0 < %’- < 1. Next, we will show that the positive
equilibrium is a global attractor when 1 < %’- < e. We begin with the following

lemma:

LEMMA 2.1. The solution N(t,z) of (1.8)-(1.5) satisfies N(t,z) > 0 for

(¢, z) € (0,00) x Q.

PROOF. We first show that N(t,z) > 0 on (0, ] x . Suppose not. Then
there exists (¢o,zq) € (0, 7] x  such that N(to,z9) < 0. We can find (t*,z*) €

(0,7] x Q such that

N(t*,z")= min _N(t,z) <0.
(t,x)€l0,r]xQ

Since N(6,z) >0 for (4,z) € [-,0] x &, by (1.3) we have

AN—JN—%VSO, on (0,7] x Q.

Therefore if (t*,z*) € (0,7] x Q, then the minimum principle shows that for 0 <
t <t%, N(t,z) = N(t*,z*) < 0, which is impossible since N(0,z) = ¢(0,z) > 0.
Hence we must have (t*,2*) € (0, 7] x Q. However in this case, the strong mini-
mum principle of Hopf implies that -‘3%[(,- ,z+) < 0. This contradicts the boundary
condition %‘M = 0 on 8Q. Therefore, N(t,z) > 0 for (0,7] x Q.
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Applying this argument repeatedly (the method of steps), one can easily

show that N(t,z) > 0 on (0, 00) x Q. This completes the proof.

Next we will introduce the concept of a lower—upper solutions pair due to

Redlinger as adapted to (1.3)-(1.5).

DEFINITION 2.2. A lower-upper solutions pair for (1.8)-(1.5) is a pair of

suitably smooth functions v and w such that:
(i) v<w in D;

(11) v and w satisfy

ov

Fry < Av — dv + Py(t — 7, z)e 2¥(t—m2) in D

gn—v <0, onT
and

%t—:- > Aw — dw + Pyp(t — 7, z)e 0¥ (t-72) in D

_gi:. >0, onT

forally e C(D,ND) withv <y <w in D UD =[~7,00) x Q; and

(i2) v(6,z) < $(6,z) < w(6,z) on D,.

The following lemma is a special case of Redlinger (1984, Theorem 3.4).
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LEMMA 2.3. Let (v,w) be a lower~upper solution pair for the initial bound-
ary value problem (1.8)-(1.5). Then there ezists a unique regular solution N(t,z)

of (1.8)~(1.5) such that v< N < w on D, U D.

The next lemma gives us boundedness of the solution N (¢, z).

LEMMA 2.4. There ezists a constant K = K(¢) > 0 such that N(t,z) <K

on DU D.

PROOF. Let w(t) be the solution of the ordinary differential equation (ode)

dw P
—_— = — . 2.1
7 dw + ot t >0, (2.1)

satisfying the initial condition

w(0) = oo #(0, z). (2.2)

Define w(t) by:

_v_ [ w(0), forte[-7,0]
w(t) = { w(t), fort>0.

Then (0,5) is a lower-upper solution pair of (1.3)—(1.5) since 0 < ¢ < ¥ and for
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all y € C(D- N D) with 0 < ¢ <@ in D, U D we have

o5 _ AT + 6@ — Py(t — 1, z)e~o¥(t—72)

®

0w _ _ P
Zja—t--Aw-{wa—;
-8 e E
T odt ae
=0.

Hence by Lemma 2.3, 0 < N(¢,z) < w(t) for all (¢,z) € D, U D. Now since
im0 w(t) = %, there exists a constant K > 0 such that #(t) < K for ¢ €
[~7,00). This in turn implies 0 < N(t,z) < K for (t,z) € [-7,00) x Q. This

completes the proof.

LEMMA 2.5. If ¢(6,z) # 0 on D, then N(t,z) > 0 for (t,z) € (1,00) x Q.

PROOF. It was shown in Lemma 2.1 that N(t,z) > 0for (t,z) € (0,00) x .
There are two cases to consider.

Case 1: ¢(0,z) # 0. Then (1.3)-(1.5) implies

AN-sv = -0, in D
ot
%Jnv—=0, onl and

N(0,z) = ¢(0,z) >0, for all z € Q.

We now show that N(t,z) > 0 for all (t,z) € (0,00) x Q. Suppose not, then there
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exists (¢,Z) € (0,00) x Q such that N(£,z) = 0. But this is impossible according
to the minimum principle and the strong minimum principle of Hopf.

Case 2: ¢(0,z) = 0 for ¢ € Q. We first show that N (t,z) #£0 for (¢,z) €
(0, 7] Q2. Suppose not. From (1.3)-(1.5), we have ¢(6,z) = 0 for (6, z) € D,, which
contradicts the assumption ¢(6,z) # 0 on D,. Therefore there exists t; € (0,7]
such that N(t,z) # 0 for z € Q. Now follc;wing the same argument as in Case 1

one shows that N(t,z) > 0 for (t,z) € (to,00) x §. This completes the proof.

We are now ready to state the main result of this section.

THEOREM 2.6.

(i) If 0 < £ < 1, then the solution N(t,z) of (1.8)-(1.5) tends to zero (uni-
formly in z) as t - co.

(i) If 1 < % < e, then any non-trivial solution N(t,z) of (1.8)~(1.5) satisfies

lim N(t,z) = N*, uniformly in z,
t—oo

where N* = Lin £ is the positive equilibrium.

PROOF. Let w(t) be the solution of the delay equation

dw
Eﬁ—--&w-i—Pw(t—r), t>0
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with initial condition
w(b) = m;5c¢(0, z), 8 € [-r,0]

Then (0, %(2)) is a lower-upper solution pair since for all ¥ € C (D-N D) such that

0 <% <won D,UD, we have

%’:-’ = —6 + Pt —7),
> —0w + P‘lb(t - 7’,.’8),

> —0% + Py(t — r,z)e"2¥(t—"2),

Hence by Lemma 2.3, 0 < N(t,z) < w(t). Consider the case when 0 < £ <1
Then lim; o w(t) = 0 (c.f. El’sgol’ts and Norkin (1973, p.131)). Consequently
im0 N(t, ) = 0 uniformly in z. Next we consider the case when 1 < % <eln
this case we have a positive equilibrium N* = iln -35. Let N(t) = min g N(¢,z),
N(t) = max,¢q N(t,z), N = lim, | N(t),and N = lim,—,cc N(t). Then [N, N| C
[0, %] c [o, <], according to the proof of Lemma 2.4. We would like to improve
the upper solution so that we have a better upper bound for N (t,z). Let v = %E'
Since the function f(z) = £ —Inz is decreasing for 1 < z < e and f(e) = 0, we

have HPE >l % forl < % <'e, that is 4, > N*. For any sufficiently small € > 0,

there exists ¢g > 0 such that

F(t)§i+e<l for all ¢t > .
dae a
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This implies N(¢,z) < % + € < L on [tg,0) x Q. Define w to be the solution of

the ode
dwi € —a(m1+e)
d—t="6w1+P(‘Yl+5)e v, t>t+T
satisfying
willo+7) =7 +e€
and set
() max{max,e(_r,¢,) W(t), 71 + €} =: Ko, for - <t < tp,
w =
' Ko + nte=Kop _ 4y, forto <t <tg+r.

Clearly (0,wf) is a lower-upper solution pair. Consequently,
0< N(t,2) < wi(2)
and
O0KN<NK< lim w‘(t) = 5(71 + 6)6—0(71+€)
- = ~ ft9o0 1 J

Since € can be made arbitrarily small, we have

0SNLKNK —?vle-“l.

Let v, = %3716"”1. Then v2 < 74, since vy > N* implies %e“”‘ < 1. By
considering the function f(z) = -f;—ze"“ — N*, we find that 4, > N*. Repeating
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the above procedure, we obtain a sequence {7n} satisfying
T+l = Frme

and
OSNSN<Ya1 <P <o <71
In the limit we have
0SN<NZ limy, =N

Next we would like to improve on the lower solution. For € > 0 sufficiently small,

there exists ¢; > 7 such that N(t) < N*+e< % for t > t;. Let

rmn{ min N(t,z),N’}.
(t,z)E[t1, t1+7]x0

Let vi(t) be the solution of the ode

% = —dv; + P(Soe-aso, t>Hh 4T

satisfying
v1(t1 + 7) = do,

and set

0, for —r <t<t,
Bt —t,), fort) <t <t +r.

vi(t) = {
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Define w*(t) by

max{maxee[_r¢,] B(t), N* + €} =: K, for -7 <t < t,
wi(t) =4 K + XtemKa(p ¢, fort; <t <t +r,
N* +e fort >t + 7.

It is easy to verify that (vf,w®) is a lower-upper solution pair. Thus Loe% <
N<N<N*+eLetd = %’-506‘“5". Then N* > é; > dy. As before we obtain an
increasing sequence {d,} satisfying limn_yc0 0 = N*. Hence N =N = N*. The
above approach can also be applied to the case when ’oI: =1 or when % = e. This

completes the proof.

3.3 OSCILLATION ABOUT THE POSITIVE EQUILIBRIUM

In this section we will consider the case % > e. We will show that under
some additional restrictions on the time delay , all non—trivial solutions of (1.3)-
(1.5) oscillate about the positive equilibrium N*. First we introduce the change of

variables N(t,z) = N* + Lu(t,z). Then equation (1.3)—(1.5) can be rewritten as

au(at; z) _ Au(t,z) — du(t,z) —SF(u(t — r,z)), inD (3.1)
% =0, onT (3.2)
u(é, z) = (¢(0, z) — N%a, in D, (3.3)

where F(z) = aN*(1 — e~%) — ze~*. Note that we are only interested in those
solutions u(t,z) of (3.1)~(3.3) such that u(¢,z) > —aN*.
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DEFINITION 3.1. The solution u of (3.1)-(3.8) is said to oscillate in the
domain Ry x Q if for each r > 0, there ezists a point (to, zo) € [r,00) x Q such

that u(to,z9) = 0.

DEFINITION 3.2. System (3.1)-(3.2) is said to be an oscillatory system if

every solution of this system oscillates.

Clearly the solution N(t,z) of (1.3)—(1.5) oscillates about N* if and only
if the solution u(t,z) of (3.1)~(3.3) oscillates about zero. In order to show the
oscillation of solutions of (3.1)—(3.3), we need to consider a linear partial differential

equation with time delay of the form

Qu—gtl—ﬂ = Au(t,z) — du(t,z) — vu(t — 7, z), in D (3.4)
-g% =0, onT (3.5)
u(0,z) = (4(6,z) — N*)a. in D, (3.6)

For system (3.4)—(3.5), we have the following lemma.

LEMMA 3.3. The following statements are equivalent.

(i) The first characteristic equation of (3.4)-(3.5)

A+8+7e" =0 (3.7)
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has no real roots.

(i¢) System (8.4)-(3.5) is oscillatory.

PROOF. (i) = (ii). Integrating (3.4) over 2, we have

d

— [ u(t, z)dz =/ Au(t, z)dz —-5/ u(t,z)dz -7/ u(t — 1, z)dz.
dt Jo Q Q Q

Let U(t) = J, u(t,z)dz. Since [, Au = S50 22 =0, we have

L8 L U) +40( ) =0. (38)

The characteristic equation of (3.8) is exactly (3.7), which has no real roots. Thus
every solution of (3.8) oscillates (cf. Ladas, Sficas, and Stavroulakis (1983)). This
implies that every solution u(t, z) of (3.4)-(3.6) oscillates.

(i) = (i). If Xo is a real root of equation (3.7), then u(t,z) = et is a

solution of (3.4)~(3.5) which does not oscillate. This completes the proof.

REMARK. For equation (3.4) with Dirichlet boundary condition, the first charac-

teristic equation is
A+ AL+ d+9e72" =0, (3.9)

where A; is the smallest eigenvalue corresponding to the operator —A with Dirich-
let boundary condition. The conclusion in Lemma 3.3 still holds if we replace (1)
by “equation (3.9) has no real roots”. The proof is similar to the Neumann case by
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multiplying (3.4) by n(z), the eigenfunction corresponding to the smallest eigen-

value A1, and integrating over Q and noting that

/nAu:/uAn:-Alfun.
Q Q Q

To study oscillation of system (3.1)-(3.2) we need to consider the relationship

between the following two equations

%(at;*z)’ = Au(ta .’B) - Q(ta z)u(t -7 $), (3'10)
and
augt,z) — Au(t, .’1:) —qu(t-—‘r,z), (3.11)

under Neumann boundary conditions, where

lim Q(t,z) = gq, uniformly in z. (3.12)

t—rc0

The following lemma is analogous to Theorem 2 in Kulenovic, Ladas, and Meimari-

dou (1987). Note that the first characteristic equation of (3.11) is

A+ge " =0. (3.13)

LEMMA 3.4. Assume that (3.13) has no real roots. Then equation (3.10) is
oscillatory.
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PROOF. By (3.12) there exists o > 0 such that Q(t,z) — 3¢ > 0 for (t,z) €
[to, 0) x Q. Suppose that (3.10) has an eventually positive solution. Then for
sufficiently large ¢, we have

du(t,z)
ot

= Aut,z) — Q(t, z)ult - ,2)
= Bu(t,) ~ Lqu(t —7,2) - (Q(t, z) - éq) u(t = 7, 2)

< Au(t,z) — %qu(t —7,z).
Integrating the above inequality over Q and letting U(t) = [, u(t, z)dz, we get
U(t) + %qU(t -r)<0. (3.14)

Let A be the set of all A > 0 for which there exists to > 0 such that U(t)+AU(¢) < 0
for all ¢ > t5. By following the idea in Kulenovic, Ladas, and Meimaridou (1987),
we get two contradictory properties for A: one of which is that A is bounded above
and the other is that A € A = () + %) € A, where m = minyegr{) + ge™*7} > 0.

This completes the proof.

REMARK. Consider the equation

aug:t, z) = Au(t,z) — Su(t,z) — Q(t, z)u(t — r,z), in D (3.13)
% =0, onT  (3.16)
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where Q(,z) satisfies (3.12). Let u(t,z) = e~*v(t, z). Then

Bv(t,z) _ T vit—T,T
—5 = Av(t,z) — e’ Q(t, z)v(t — T, z).

Since the change of variables preserves the oscillatory property of solutions, we

have :

COROLLARY 3.5. If the equation

W = Au(t, z) — du(t,z) — qu(t — 7, z), in D
% =0, onT

is oscillatory, so is (3.15)-(5.16).

We are now ready to prove our main result of this section.

THEOREM 3.6. If £ > ¢ and 67’ (In § — 1) > L hold, then system (3.1)-
(3.2) is oscillatory or equivalently, every solution N(t,z) of (1.8)-(1.5) oscillates

about the positive equilibrium N*.

PROOF. Suppose for the purpose of contradiction that (3.1)—(3.2) has an
eventually positive solution u(t,z). Then F(u(t - r,z)) > 0 eventually because
the function F(z) = aN*(1 — e~%) — ze~* is increasing for z > 0 and F(0) = 0.
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Therefore we have eventually

Q"_g*t’_z) = Au(t,z) — Su(t, z) — SF(u(t — T, 2))

< Au(t, z) — du(t, z),
which implies, by the maximum principle, that
tlim u(t,z) =0 uniformly in z. (3.17)

Next we assume (3.1) has an eventually negative solution u(t, z). Without
loss of generality we assume —aN* < u(t,z) <0 for all (¢,z) € (1,00) x Q. Since
F(-aN®) = aN* > 0 and since F(1 —aN*) = In£ — 12 < 0, which is the
minimum, there exists A < 0 such that F(A) = 0. Note that A is the unique zero
of F(z) for z < 0 because the function F(z) is decreasingon z < 1 —aiN* < 0.

Consider the delay equation

du(t)
dt

= ~bu(t) — SF*(u(t — 7))
satisfying the initial condition

0) = minu(6,
v(6) = minu(f, z)

where

F(z), for z € [-aN*, A]

Fiz) = { 0, for z € (4,0].
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We will show that v(¢) < u(¢,z) for all (¢,z) € [~7,00) x . This can be done in
steps. First we consider (¢,z) € [0, 7] x 0. Let w(?,z) = u(t,z) — v(t). Then

ouw(t, z)

5 = Au(t,z) - duw(t,z) - §(F(u(t — 7,2)) — F*(u(t — 7))).

We claim that
F(u(t —T,z)) — F*(v(t — 1)) <0.

Indeed, since u(t — 7,z) > v(t — ) for (¢,z) € [0, 7] x O we have altogether three
cases: (i) A > u(t —r,z) > vt — 1), (ii) u(t — 7,z) > A > v(¢t — 7) and (iii)
u(t—1,z) 2v(t-71)> A

In Case (i) the claim is true because F*(v(t — ) = F(v(t — 7)) and F(z) is
decreasing. In Case (i) the claim also holds since F*(v(¢t — 7)) = F(v(t—1)) >0,
while F(u(t—r,z)) <0. In Case (iii) the claim is again valid since F*(v(t—7)) =0
and F(u(t—r,z)) <0.

From this we have a—“:.g-:'—’)- > Aw(t,z) — dw(t, z). Since w(0,z) > 0, one can
show by the minimum principle that w(t,z) > 0, that is, u(t, z) > v(¢). We will now
show v(t) — 0 as t — co. Note that —aN* < v(t) < 0 and lim, o0 v(¢) # —aN*.
There are two cases to consider.

Case 1: limy, o, v(t) = o exists. We claim that a = 0. In fact if « <A<O,

then eventually

—da —daN*(1 — e~ %) —ae™® =,
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which implies @ = 0. Therefore a > A. f o = A, then we have —dA = 0 which
implies A = 0, which is a contradiction. So & > A, in which case —da = 0.
Case 2: 0 > imyyouv(t) =1 > = lim, , v(t). If l > A then eventually
dv(t)

v(t) > | —€ > A for sufficiently small € and hence eventually = —dv(t). This

implies v(¢) — 0. Consequently [ < A < 0 and eventually

v(t) = —dvu(t) — SF(v(t —7)).

Applying Lemma 3.2 in So and Yu (1994), we have v(t) — 0.

Hence for an eventually negative solution u(t, z), we also obtain

lim u(t,z) =0 uniformly in z.
t—oo

Rewriting (3.1)-(3.2) as

Bugft, z) = Au(t, z) — du(t,z) — Q(¢, z)u(t — 7, z), inD (3.18)
% =0, onT  (3.19)
where
T e
u(t —r, T)
and

tl_ifgo Q(t,z) =adN* - § = §(aN* - 1)>0 uniformly in z.

63



The first characteristic equation of the equation

Ou(t,z)

pramd Au(t, z) — du(t,z) — 8(aN* — L)u(t — T, z),

with Neumann boundary condition

onTl

I
I

is

A+6+68(aN* —1)e™ =0,

in D (3.20)

(3.21)

which has no real solution since §7e7(In -ﬁ—’ -1)> % Hence system (3.20)—(3.21)

oscillates. This implies by Corollary 3.5 that (3.18)—(3.19) is oscillatory and thus

it contradicts the assumption that (3.18)—(3.19) has an eventually positive (or

negative) solution. This completes the proof.

3.4 HOPF BIFURCATION AND STABLE PERIODIC SOLUTIONS

In this section, we will restrict our attention to the case when Q C R and

P

becomes

ou
ot
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5 > €% After an appropriate change of variable in space and time, the equation

7 = Qugz — Fu — FB(1 — e (1D gy — 1, z)e ut=1.2) (4.1)



with @ = (0,1), where 8 =1n % and ¥ = 79 and d is treated as a parameter inde-
pendent of ¥ and 3. P and ¢ are parameters from (3.1). Note that the equilibrium
u = 0 of (4.1) corresponds to the positive equilibrium N* of ( 1.3). The linearized

equation (of (4.1)) about u =0 is
B ) ) .
5= duzr — Tu — F(8 — Lju(t - 1,z). (4.2)
Moreover, the characteristic equation of (4.2) is

A+dk? + 7+ 7(8—1)e ™ =0. (4.3.k)

We know that for fixed d, (4.3.0) has a pair of simple characteristic values A =

+i(m —arccos z17) at F =19 := \/ﬂ(ITE)'(W —arccos z17) for 8 > 2. Let (o be the
unique real solution of 7 — arccos /—31?1- =+/B(B—2). Then o > 1,for 2< 8 < Bo.-
Note that g ~ 3.26 > 3. To apply the Hopf bifurcation theorem as developed for
abstract functional differential equations in Wu (1996), we need to show that all
the other characteristic values of (4.3.k) have negative real parts. First of all, we

will consider the case when k& > 1. This can be done by employing the following

well-known lemma whose proof can be found in Hale and Verduyn Lunel (1993).

LEMMA 4.1. All roots of the equation (z + a)e* + £ = 0, where a and & are
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real numbers, have negative real parts if and only if

a> -1,
a+§>0,

psinp —acosp > €,

’

where p= F if « =0 and p is the root of p = —atanp in (0,7) tof x #0.

Therefore we just need to verify that for k > 1, psinp — (dk? + 1) cosp >
To(B8 — 1), where p is the root of p = —(dk?® + 7o) tanp in (0, 7). Note that since
a=dk?+1 >0,p€ (%:7)- Let us consider the function f(z} = z+(ro+dk?) tan z

which is continuous and increasing for z € (F,7). Since psinp ~ (dk? + 1g) cos p =

dE3+ T

_dk?+7, - isi dk24ry
=20 it suffices to show cos p> —;o(_ﬁ—_lof‘ Clearly this is true for To( 5—1’1) > 1.

cosp !

For the case when ‘"‘T""'IQ)- <1, we have ¥ < 7 — arccos %ﬁ% < m and

f (Tl’ — arccos ———— :,k(:ﬁi?)) — arccos To(,23+ i \/7(ﬂ — (10 + dk2)?
> 7 — arccos m — /7868 —2)
=0

which implies © — arccos ,'f‘;—ﬂ"":f)- > p since f(p) =0 and f(z) is increasing. Con-

sequently,

dk? + 10 ) dk? + 79
(B-1)) rw@B-1)
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Secondly, we will show that at # = 7y all the roots of (4.3.0), except i(mr —
arccos z-7), have negative real parts. Let A = p + qi, where p,q are real and

g > 0. Then (4.3.0) can be rewritten as

P+ 70+ 70(8—1)e P cosq =0, (4.4)

qg—T10(8~1)e Psing =0. (4.3)

Suppose (p, q) is a solution of (4.4)-(4.5) with p > 0. Then sing > 0 and cosq <0
which imply that the angle g is in the second quadrant. Let us consider the
functions f(z) = 2 — 79(8 ~ 1)e Psinz and g(z) = p+ 10 + 70 (B — 1)e~P cos z.
Clearly, f(z) is increasing and g(z) decreasing for z in the second quadrant. Note

that for wp = 7 — arccos Fl-—l’

flwo) =wo —10(B — 1)e Psinwy > wg — 10(8 — 1) sinwy = 0 = f(q)
and that
g(wo) =p+ 10+ 7(B—1)e Pcoswo > p+7 + T0(8 — 1)coswp =p > 0 = g(q)

which is impossible. Lastly we need to verify the transversality condition p'(mg) #

0. In fact, according to the implicit function theorem

P’(To) - TO(:B —2):8

L4 2n+ 128 - 1)2 > 0.

Therefore the Hopf bifurcation theorem in Wu (1996, p.189) (see also Hassard,
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Kazarinoff, and Wan (1981)) is applicable and the system has a family of periodic

solutions bifurcating from u = 0 when 7 is near .

One can also consider the stability of these (bifurcated) periodic solutions by
calculating the normal form on the center manifold. Let Aq (¥) be the infinitesimal

generator of the semiflow of the following delay equation
— = ~Fu — F(f — L)u(t — 1). (4.6)
Let A5(70) denote the formal adjoint of Ao(7o) under the bilinear pairing

0 8
(%, 8)o = $(0)(0) — /_ 1 /0 (¢ — 0)dn(8)(C)dC,
where
dn(8) = [~08(8) — (B — 1)8(8 + 1)]d6.

Let @ = (¢1,42) € C([—1,0]; R?) be such that

Ao(o)® =<15( 0 “50) :

Then we have & = (coswg¥, sinwgf) where wy = 7 — arccos ngl Similarly, let
" = (y7,93)T € C*([0,1}; R?) be such that
* «T _ 52T 0 &o
AO(TO)\p e ‘P (_wO 0 ) ]
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which gives ¥} = sinwps and Y3 = coswgs. Then

o = ¥ d1)o (Tﬁf,fﬁz)o) - (-%‘Vﬁ(ﬂ ~2)  3(ro+1) ) _
(¥3,41)0 (¥3,62)0 2(mo +1) 2VB(B —-2)

Now define ¥ = (¢1,%2)T = (¥*®)~1(4?,3)T. Then

2 T
20 = (50, O) = g (o + LoV/BB-2)) -

We also define an inner product on X = C([0, 1]; R)

1
(fyg)=/0‘ f97 forf,QGX-

Now consider the “suspended” system

(59)-(% §)(3)» (o)
+ ((—‘F +1o)u + (—F +0fo)(ﬂ — Lu(t — 1,1:))

+ (—1'-(1— S)u?(t — 1,z) —g(g -3t -1,z)+ - ) _

By applying the center manifold theorem, we conclude that the flow on the center

manifold is given as follows:

(zl(t)’ z2(t))T = (‘Ily (uh 1))01

ue = ®(z1(t),22(t))T - 1 + h(F,21(2),22(2)) € C = C([-1,0]; X),
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and

(z’u(t)> _ ( 0 060) ( zl(t)) +O(O)F(F 21(t),22()), (A7)

Ta(t) —wp z2(2)

where
F(7,z1,z,)
= (=7 + T)(2(0) + &(~1))(z1,22)7 - 11
+2(—7 + 10)(R(F, 71,22 )(~1), 1) (4.8)
— F(L = DO(-Ve1,22)7 -1+ h(F, 21, 22)(- 1),

S I @(=1)(e1,22)T - 1+ h(F 21, 2)(=1) 4 - 1)

AP

The existence, smoothness, and attractivity of the center manifolds for functional
partial differential equations were discussed in Lin, So and Wu (1992) and So, Wu
and Yang (1998). See also chapter 2 for the attractivity of the center manifold.

Now let z = z; — iz and A(F) be the eigenvalue of matrix M(7) defined by

M(7) = ( 0 wo) + (=7 + 70) ¥(0)(®(0) + &(—1)).

—&g 0

Then system (4.7)—(4.8) can be rewritten as

2= MF)z +2(~7 +70)(%1(0) — igh2(0))(w(F, 2, £)(—1), 1)
= 7(1(0) — i%2(0)) SD()

— #(11(0) — i%2(0))TD(#),
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where

SD(7) :=((1 - -ﬁ-)(éo(-n(z +2,i(z — )7 - 1+ w(F,2,2)(-1))%, 1),

TD(7) := ((-g- - %)(%@(-1)(2 +5i(z - 2))T -1+ w(7,2,5)(-1)) +---,1),

and

. z2+z i(z—2)

w(r,z,f):h(‘r, 55 )

At 7 = 19, the above equation becomes

2" = iwoz - To(‘(bl(O) — l’lbz(O))SD(To)
(4.9)
— 70(1(0) — i%2(0))TD(7o),

where

SD(o) == (1 = GHGE(-1(z + Z,i(= = )T - L+ u(z, 2)-1)%, 1),

TD(ro) := «% - %)(é(p(—l)(z +2i(z - 2)" - 14wz (-1 +--- 1),

and

2 22

w(z,2) = w(r0,2,2) = ‘wzo% +wy12Z + woz? +---. (4.10)

Note that w;; € PsC.
Since the center manifold is invariant under the semiflow, w(z(t), 2(2)) sat-
isfies
% = Ayw ~ 1o X$[(1 - D) B(-1)(z + 2,i(z — )T -1+ (e, 5)(-1))?
5 11 (4.11)
+(§ — )G +5i(z - 2)T - 1+ w(z, 5)(-1))° +---],
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for all t € R, where Ay denotes the infinitesimal generator of the solution semi-

group of (4.2), X§ is defined as
Xos = Xog - Q(\Fs (Xogv l))O -1

for any g € X and Xp : [-1,0] = £(C([0,1]),C([0,1])) is given by

0, for @€ [-1,0)
I, for6=0.

Xo(8) = {
Let
~ XS[(1 ~ S)GR(-1)(z + 2,i(z = )T - 1+ w(z, (1))
+ (g - %)(%Q(—l)(z +2,i(z - 2)T -1 +w(z,2)(-1))° +--+] (4.12)
2 2

=Hzo:2—+H1135+302%+--- ,

where H;; € PsC. Note that on the center manifold, we have

SQI

w =

@;.i.@
oz~ 0z

This equation together with (4.11)—(4.12) gives

(2iwg — Ay)wao = Hyg

—AUwu = Hu

from which w;; can be solved through H, ij- Using a near identity transformation

72



of the form

£? = &2
z=f+¢120?+011§§+002‘2—+"’ ’

where ajq, @11, and ags are appropriately chosen, we arrive at the normal form

-

€ = iwo€ + c1(7o0)EIE[? + o(J€1?),

where

» 2
i
c1(70) = ‘270(920911 —2|gu|* ~ L%TZ,I) + g,)ﬁ

<

Let g() = €%, Then $(4) = (Re ¢(6),Im q(f)) and g;; can be expressed as

g0 = =21~ D) (1(0) - Wa(0)*(-1),
T J£] .

gu = = (1= 5)($1(0) ~ it (0)),

o2 = =21~ 2)((0) ~ iva(0))g?(-1),

5 = —o($1(0) — i%5(0))dn,

where

wgo(—l)

o= (1= £)(@-0 220 | g nyuny )1+ 38 -

1
8(6 3J)a(=1).

73



After a lengthy calculation, we finally obtain

Re ¢1(70)

_ _m(l- £)2D%(1 + (8 — 1))
- (B-1)2
_ 2rDDs (1 + mo(8 — 1)2)
(B —~1)2
. _ B\2n2
~ P D D a5 12— 1) fro(8 — 1)(82 — 3) + (26 + 1)(3 — )]

m(l — 822
- (8 - 96~ 26~ 2],

where

G =(28-3)(1+7(1+26(8-2))(1 —n(8—1))
+8%(r0 +2)(1 + 10(8 — 1)),
K =(28-3)B(8 —2)(m0 +2)(1 — 70(8 — 1))

—B(1+7B-1)1+ To(1 +268(8 - 2))),

D 1
T 1+ 20+ 72(B-1)2°

Dy =(1- 5P (8~ 1) ~ D(ro(B — 1 +1+9) 4 B=DE =1

16 ’
H = (B—1)2
B(B? —3)2 +4B2(8 — 2)3°
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and where

(82 —3)G -2(8 ~ 2)K
= (8% - 3)(26° + 28 - 3) + 2(8 — 2)8°
+ 70 {(28 — 1)(8% - 3)[(26 - 3)(8 — 2) + 4%] + 26°(8 — 2)(28 - 3)}
+75(8 — 1) {(8* - 3)[(B - 1)* +2] + 28(8 - 2)[(B - 2)(5 - B) + 1]}
+2(8 — 2)*(28 — 3)B(r0 +2)(r0 (B — 1) — 1)

>0.

Here we have used the fact that 79(8 — 1) — 1 > 0, since (B -1) = - > 1.

Hence for 2 < 8 < 3, we have Re ¢;(7) < 0.

Summarizing the above discussion, we have the result :

THEOREM 4.2. Assume -? > e?. Then there ezists 1 at which spatial homo-
geneous periodic solutions of (4.1) bifurcate from the positive equilibrium. More-
P

over, there ezists cg > € such that for e < 5 < co, the bifurcated periodic

solutions are stable.

3.5 SECONDARY BIFURCATION AND EFFECT OF DIFFUSION

It is well-known that for the Hutchinson’s equation with diffusion, reducing
the diffusion rate can drive the instability of the spatial homogeneous periodic so-
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lutions which bifurcated from the positive equilibrium thrcugh a Hopf bifurcation.
We refer the interested reader to Yoshida (1982) and Morita (1984) for details.
Such a destabilization effect also occurs in our model. In fact, for small enough
d, a second bifurcation occurs by fixing ¥ > 7 and using d as the bifurcation

parameter. Let us consider equation (4.3.1). Set A = bi, where b > 0. Then

b = 7B~ 1) — (d + 7)?

so that b can be solved for provided #(8 — 1) > d + 7, that is, (8 —-2) > d.

Moreover, we have

d+7+7(8 —1)cos /7?(B—1)2 ~(d +7)2 = 0. (5.1)
Solve (5.1) for d = d(¥) with d(m9) = 0 and we get

d'(r0) = %ﬂ_;—z) > 0. (5.2)

Equations (5.1)-(5.2) imply that for fixed ¥ > 7, there exists d = d(7) > 0 such

that (4.3.1) has a pair of simple roots A = i\/72(8 — 1) — (d+ 7)2. In this
case, one could also use the center manifold reduction method to show that Hopf
bifurcation occurs resulting in the existence of spatial inhomogeneous periodic
solutions. However, these periodic solutions would be unstable (at least for 7 > 74
and sufficiently close to 7g) for in this case equation (4.3.0) has a root with positive

real parts.
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Using the semi-discrete scheme
. d - - —ui(t— —ui(t~ .
u; = h—z(u,»_l —2ui+uip1)—~Fui =7 [ﬂ(l — e %) gyt — 1)e%i 1)] (5.3)

where ¢ = 1,2,--- ,n — 1, coupled with

%o = -;?g(ul —ug) — Fug — 7 [,8(1 — e u(t=1)y _ 4ot — 1)e"‘°(‘"1)]

(54)

. 2d . - —un(t— —~un(t—
Up = h—z(u"“l —Up) —FTup — 7 [ﬂ(l —e (D) gy (8 — 1)eun(t 1)}

together with a standard routine for solving systems of delayed differential equa-
tions, we performed some numerical simulations. Here, n is the number of (equal)
partitions of the interval [0,1], A = 1, and u; = u(¢t,ih). The results indicate the
possibility of complicated dynamics (besides spatially inhomogeneous periodic so-
lutions). By choosing 8 = 3 and # = 10.25 (away from 1g), Fig 3.1 shows that for
d = 0.00015 (small), chaotic behavior takes place both in time and space; while
for larger d, say d = 0.015 and d = 0.15 as in Fig 3.2 and Fig 3.3 resp., chaotic
behavior seems deduced and finally for d = 8.5 (c.f. Fig 3.4), chaotic behavior is

replaced by periodic behavior (spatial homogeneity).



tau=10.25 beta=3. d=0.00015 tau=10.25 beta=3. d=0.015

tau=10.25 beta=3. d=0.15 tau=10.25 beta=3. d=8.5
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REMARK. Basically, the lower-upper solution method rests on the maximum
principle of parabolic inequality. To my understanding, the maximum principal
gives rise to a comparison principle, which is also true in parabolic equation with
time delay, provided that the time-delay term is a monotone function in some
sense. Therefore the approach of this chapter can also be applied to our general
type diffusive delayed equation. We can also study the oscillation behavior in
a similar manner, since these oscillation analyses of nonlinear diffusive delayed
equations are dominated by the oscillation behavior of the linearized counterparts.

Combining Theorems 4.2 and 2.5, one may see a gap of the parametric range
since there is no assertion on the case of e < % < €2. To fill out this gap, we may
need an alternative approach which will be introduced in the next chapter. By
a slight modification, we can still conclude the global attractivity of a positive
equilibrium in this case.

It is important to realize that there are still many problems unsolved for
Neumann boundary value problems. Besides the complicated dynamics resulting
from time delays, interactions between diffusion and time delays are believed to
produce more complicated dynamics. But this is far from clear nowadays. Hale
(1986) claimed that the solutions of systems of delayed reaction-diffusion equations
with Neumann boundary conditions are asymptotic to the solutions of delayed
differential equations if the diffusivity is large (see also, Conway, Hoff and Smoller
(1978)). By no means does this imply the insignificance of the research on the

dynamics of Neumann boundary value problems. How the diffusion impacts on
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the structure of the chaotic attractors, for example, is a huge interesting project.
As observed in our numerical simulation, spatial pattern is no longer simple when

the diffusion rate is small. Further research is needed to in this area.
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CHAPTER IV

DIRICHLET BOUNDARY VALUE PROBLEMS

4.1 INTRODUCTION

We have studied some dynamics of functional partial differential equations
with Neumann boundary condition. In particular, criteria for the global attrac-
tivity of the nonnegative equilibria were obtained. In addition, the existence and
stability of periodic solution were studied by using a Hopf bifurcation analysis. In
this chapter, we will switch our attention to Dirichlet boundary value problems.
We still choose the diffusive Nicholson’s blowflies equation as the representative of
our general type delayed reaction-diffusion equations. More specifically, by rescal-
ing the temporal and spatial variable, we will consider the diffusive Nicholson'’s

blowflies equation as follows:

t
%(a—t’—z—) = dAu(t,z) — ru(t, z) + Bru(t — 1,z)e *(¢-13) in D
u(t,z) =0, onT
u(8,z) = ug(8,z) >0, in Dy

where, z € 2 C R"®, Q is a bounded domain with a smooth boundary 99, (t,z) €
D =(0,00) xQ, ' =(0,00) x Q, and Dy =[~1,0] x .
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Apparently, there are only a handful of papers treating the long time be-
havior of solutions for a reaction diffusion equation with delay under Dirichlet
boundary conditions. Among those, the nonlinear term containing the delay is
often assumed to satisfy a monotonicity or quasi-monotonicity condition. Un-
fortunately, this is not the case here. Friesecke's (1993) results require severe
restrictions on the delay due to the use of a Lyapunov function for a correspond-
ing reaction-diffusion equation (without delay). Inoue, Miyakawa, and Yoshida’s
(1977) approach, on the other hand, can only give local attractivity. Although
convergence results could be found for a large number of semilinear parabolic
Volterra integro—differential equations (c.f. Engler (1981), Schiaffina and Tesei
(1981), Heard and Rankin (1988), Yamada (1993), and the references therein),
those approaches cannot be applied to our equation either. One should also men-
tion Cooke and Huang (1992), who investigated the global dynamics of the gen-
eralized diffusive Hutchinson’s equation with Dirichlet boundary conditions. But
the idea in their paper is essentially similar to that of Yamada (1993). In this
chapter, we will develop a new approach to studying the global attractivity of
the positive steady state for a reaction diffusion equation with time delays under
Dirichlet boundary conditions. Roughly speaking, the idea is to divide the spatial
domain according to the information given by the positive steady state and treat
the subdomains separately. Qur approach should be applicable to other Dirichlet
problems, although our analysis is specialized to the diffusive Nicholson’s blowflies
equation.
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The rest of this chapter is organized as follows. In section 2, we give some
preliminary results on the solutions of the diffusive Nicholson’s blowflies equation,
followed by existence and uniqueness of the positive steady state. The global
attractivity of the zero solution is presented in section 3. In section 4, the local
stability of the positive steady state is studied by analyzing the spectrum of the
associated linear operator, a procedure used in Green and Stech ’(1981) and Huang
(1991). Finally, in section 5, we discuss the global attractivity of the positive steady
state. Here, a new approach is introduced and a better criterion is obtained along
this approach than that via the theory of monotone semiflow. At the end of this
paper, we also improve the attractivity results in the sense of C!(Q) by using an
interpolation inequality (the so-called Nirenberg—Gagliardo inequality) and an a

priori estimate.

4.2 PRELIMINARIES

We consider the diffusive Nicholson’s blowflies equation

Ou(t,z)

Framde dAu(t,z) — Tu(t,z) + Bru(t — 1,z)e 13 (2.1)

where (t,z) € D = (0,00) x Q, with (homogeneous) Dirichlet boundary condition

u=0, on I' = (0,00) x 3Q (2.2)
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and initial condition
u(8,z) = uo(4,z) >0, in D; =[-1,0] x Q, (2.3)

where @ C R™(n > 1) is a bounded domain with smooth boundary 8. Here 3, r,d

are positive constants. The steady states ¢ of (2.1)—(2.2) satisfy:

dAS(z) — T¢(z) + Bré(z)e ?) =0, forz € Q
(2:4)
#(z) =0, for z € 92
Let n < p < oo and put X = LP(Q). Let C := C([—1,0]; X) and define the operator
A:D(A) - X by
(Au)(z) = —dAu(t,z) + Tu(t, z),
D(A) = W2P(Q) n W5 ?(Q).

It is well-known that —A generates an analytic, compact semigroup T'(¢) (¢ > 0)

on X. For any a > 0, we define

1 o
A-a = _/ ta—le—At dt
() Jo

and let A* = (A~™*)"1. Let X; = D(A) and X, = D(A®), where :+ 7y <a<l,
and equip these spaces with their corresponding graph norms. Then X; C X, C

C*(Q). Furthermore,

K e vt (2.5)

|14°T ()]} < pr
for some positive constants K; and w. For details, we refer to Pazy (1983, p.243),

Henry (1980, p.39) and Friedman (1976, p.160). Moreover, let us define F' : C — X
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[F(uo)] (z) = Bruo(—1,z)e o ("1:3),

Then (2.1)-(2.3) can be written in an integral form (the variation of constants

formula)
u(t) = T(t)uo(0) + /: T(t — s)F(u,)ds. (2.6)

It is clear that F is Lipschitz continuous and hence the existence and the uniqueness
of a solution of (2.6) (called “mild solution” of (2.1)—(2.3)) follow from Travis and
Webb (1974, 1978). Furthermore, global continuation of the solution of (2.6) is

due to the following proposition.

PROPOSITION 2.1. Assume that there ezist locally integrable functions k;
and ka such that |F(t,uo)| < k1(t)|uo| + k2(2) for ug € C and t > 0. Then equation

(2.6) admits global solutions.

PROOF. See Wu (1996, p.49-50).

One should also note that according to Fitzgibbon (1978) and Martin and
Smith (1990), every mild solution is a classical solution of (2.1)-(2.3) for ¢ > 1

since T'(t) (¢ > 0) is analytic. Furthermore, one has :
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PROPOSITION 2.2. Let u(t) be a solution of (2.6} with ug(0,-) € LP(R).

Then there ezists a constant K independent of t such that
[lu(t, Hlcr+r@) < K

forallt > 1, where 0 < p < 1.

PROOF. Multiplying (2.6) by A® and using (2.5), one has
[[A%u(t, )| Le (o)
< |[A%T(t)uo(0, -)|lLr(a)

t
+ ﬂ‘r/ [|JAST(t — s)u(s — 1, -)e-“(’—l")llu(g) ds

Ke
<= Huo(0, )|l L7 ()
K —w(t—s) —u(sm].-
+B87 | = lu(s — 1,-)e ™| gy ds
o (t—s)e
Kle

[120(0, )| Lo () +K1.37'6-1|Q|%w°_11‘(1 - a).

(2.7)

(2.8)

Now recall (c.f. Amann (1978)) that forp>nand 0<u<1— %, there exists a

constant K3 independent of u and ¢ such that

ult, Wlcr+nia) < K2||A%u(t, -)||Lo(0)

(2.9)

for all u € Xq, where, +E£+ £ 5 < @ < 1. Therefore, one obtains from (2.8) a

constant K3 independent of ¢ such that

[[A%u(t,-)|lzon) < K3 forall ¢>1.

86

(2.10)



Thus, (2.7) follows by substituting (2.10) into (2.9) with K = K;Kj3. This com-

pletes the proof.

The following result is due to Hess (1977).

LEMMA 2.3. Consider the Dirichlet problem

Lu+h(z,u)u=0 in Q, (2.11)

u=0 on 0%, (2.12)

where @ C R™(n > 1) is a bounded domain with smooth boundary Q. L =
— Z:j=1 a;:{ (a,-j(z) %j—) , with smooth real-valued coefficient functions a;j = a;i,
15 a uniformly elliptic, formally self-adjoint linear differential operator. Assume
h:Q x RY — R is continuous. Suppose there ezists a constant M > 0 such that
(i) h(z,u) >0 forallu> M,z € Q;
(3t) h(z,u) is strictly increasing in u for u € [0, M], for all z € Q.
Then (2.11)-(2.12) admits at most one non-trivial, non-negative solution u. If,
in addition,
(3i) h(z,0) < —Ay, for all z € Q, where A, is the principal eigenvalue of £ with
(homogeneous) Dirichlet boundary condition,

then (2.11)-(2.12) has a unique positive solution.

PROOF. See Hess’s (1977) theorem and the remark following it.
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Using Lemma 2.3, we have following existence and uniqueness result on the

positive solution of (2.4).

COROLLARY 2.4. The boundary value problem (2.4) possesses a unique pos-

itwve solution if and only if
(8- 1)1 >dAq, (2.13)

where \; is the principal eigenvalue of —A with Dirichlet boundary conditions.

PROOF. Let £L = —A, h(z,u) = 3(1 ~ fe™™) and M = InB. Then (i)-(ii) in
Lemma 2.3 are satisfied. Suppose (2.13) holds. The existence and uniqueness of a
positive solution for (2.4) follows immediately from Lemma 2.3. Conversely, sup-
pose ¢(z) is a positive solution of (2.4). Then ¢ is unique according to Lemma 2.3.
Multiplying (2.4) by ¢(z) and integrating over {2, we obtain (using the variational

characterization of A1, i.e. Poincaré’s inequality)
T , - T
MlBll3agq)y < 7 (—Hq’”iz(n) + Bl|ge "/2“2},2(9)) <z(B- 1)|[8l|Z2¢q)-

This implies (2.13).

REMARK 2.5. One easily shows, by means of the maximum principle, that ||¢||e <
In B for any positive solution ¢ of (2.4). Indeed, suppose there exists z* € Q2 such
that In8 < ¢(z*) = max{¢(z) : z € Q}. Then A¢(z*) <0 but 1 — fe~%=") > 0,
which is a contradiction.
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4.3 GLOBAL ATTRACTIVITY OF THE ZERO SOLUTION

In this section, we will consider the global attractivity of the trivial solution

by using the method of steps. First we have

LEMMA 3.1. Suppose y(t) > 0 satisfies the differential inequality
y(t) < —ay(t) +yy(t —1).

Fa>~2>0, then lim, o0 y(t) = 0.

PROOF. Let M = max{y(t) : t € [-1,0]} and fo(t) =1 for t € [-1,0]. For

t €0, 1], we have
y(t) < —ay(t) +vfo(t —1)M

which gives y(t) < fi(¢)M for t € [0,1], where fi(t) = e™** + (1 — e™°*) for

t € [0, 1]. Similarly, for ¢ € [1,2] we have
y(t) < —ay(t) +1f1(t - 1)M
and
y(t) < fa(t)M,

where

fa(t) = e*A=0 £, (1) 4 / fuls — 1)e26=0 g,
1
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Inductively, we get
y(t) < fera(t)M  for t € [k, k+1], (3.1)
where
. t
fe1(t) = e*ED fi (k) + 4 / fi(s —De?C9ds,  telkk+1. (3.2
k

Note that fr41(t) > 0 on [k, k+ 1] and fit+1(k) = fi(k). In order to show y(¢) — 0
as t — oo, it suffices to show that max;efz k+1] fe+1(2) = 0 as k — oo.

Now consider the recurrence relation (3.2), where fo(t) = 1 fort € [—1,0]. We
will show by induction that fi(t) is decreasing on [k —1, k] and —a fi(k) + 7 fe(k —
1) <0, for k=0,1,.... Clearly fo(t) =1 is decreasing and —a f5(0) +vfo(—1) =
—a+v < 0. Assume fi(t) is decreasing for t € [k—1,k] and —a fi(k)+vfe(k—1) <

0. Then for t € [k, k + 1],

frar(t) € a9 f(k) + v feoi(t — 1) — vafe(t — 1)/,c e~ ds
< (—afk(k) +'Yfk(t - 1))eoz(k—t) < (—afk(k) + “/fk(k _ 1))ea(k—t) <0.

Moreover,

— afr1(k + 1) + v feqa (k)

k41
S— [e-m(k) +7 " s - 1)e°<"*-1>ds] + ¥ fera (k)
< —ae™* fulk) = 1fe(k)(L ~ €) + 1 frra (k)

= (—e+7)e™* fi(k) < 0.
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Therefore fi41(t) is decreasing for ¢ € [k, k + 1] and hence by (3.2)
y(t) < fi(k) M  for t € [k, k + 1].
Next, we will show that fi(k) — 0 as k — oco. Let ax = fi(k). Then
ar = fi(k) < fi(k — 1) = fa—1(k — 1) = a1,

so that {ai} is a monotone decreasing sequence. Since a; > 0 for k£ > 1, the limit

limg o0 @ = A exists. According to (3.2),
ar+1 < € %ar + %ak—l(l ~e™ %)
which implies
A<e®A+ gA(l — ).
Since A > 0 and
1>e ™+ %(1 —e™ %),

therefore A = 0. The proof is complete.

We have the following theorem.

THEOREM 3.2. Suppose

(B—-1)r <d)\;. (3.3)
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Then the solutions of (2.1)-(2.2) satisfy ||u(t,-)||L2(q) — 0 as t — oo.

PROOF. First we multiply (2.1) by u(¢,z) and integrate it over Q. Using

integration by parts, the Poincaré inequality and the Holder inequality, one obtains
d
il Nizza) < —(dAs +7)l[uE, lza) + Brilu(t — 1, -)llL2@)-

The conclusion then follows immediately from Lemma 3.1. The proof is complete.

4.4 LOCAL STABILITY OF THE POSITIVE STEADY STATE

From now on, we assume that (2.13) holds. Hence there exists a unique
positive steady state ¢(z) according to Corollary 2.4. Linearizing (2.1) about this

steady state, we get

O2) _ gav(t,z) ~ rolt, ) + re 1 —g(x)o(t~1,2) inD
5 (4.1)
o(t,z) = 0 onT.

The corresponding eigenvalue problem is

—dAY + (‘r + A= fre—?@[1 — ¢(z)]e-*) v=0 inQ
(4.2)

Yv=0 on 99Q.

The following lemma is an analogue of the Sturm comparison theorem in one

dimension.
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LEMMA 4.1. Let
—dAy + P(z)y =0 n O

=0 on 01,

and

-dAd+Q(z)d =0 in Q
¢ = 0 on BQ.

Suppose ¢ > 0 in Q and P(z) > Q(z) in Q. Then 3 =0.

PROOF. Suppose 2+ = ¥~1(0, 00) is non—empty and let ; be a connected
component of Q4. Multiplying the first differential equation by ¢ and the second

by %, subtracting and integrating over Q;, we get

O a¢)
—d 2 _ 32V 4 [ (P-Q)év=0.
a0 <¢6n wan Ql( )¢

This contradicts the fact that ¢ = 0 and g—f < 0 on 09, and hence the proof is

complete.

Let us compare
—dAY + (r — Bre~*®)[1 — ¢(z)]) b=0 inQ
»=0 ondQ,
with
~dA¢+ (r—fre @) =0 mQ

=0 on 09.
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We introduce the notation
AN %) := dA% + (-r — A fre—*@[1 - qS(z)]e"'\) V.

Since T — Bre=#(®) [1 — ¢(z)] > r — fre~%(*), by Lemma 4.1, we have, 0 ¢ o(A),

where
a(A) = {,\ € C: there exists ¢ # 0 with ¢ = 0 on 89 such that A(),¢) = 0} -

Let £ :=dA — 1+ Bre~%(®), Since L is (formally) self-adjoint, the eigenvalues of

L are real. Since
-7+ ﬂ‘re‘“"("’) >-A—T1+ ,B're""("),

it follows from Lemma 4.1 that all the eigenvalues of £ are non-positive. Therefore
(£¥,9) <0 for all ¥ € HY(Q) N H?(RR). Let ¥ be a solution of (4.2). Multiplying

(4.2) by ¥ and integrating the result over Q, we get

~ (L, %) + /Q (A—Bre=¥@[1 - g(a)le™ +Bre#D) [ =0.  (43)

THEOREM 4.2. Suppose 1 < 8 < 2. Then all the eigenvalues of (4.2) have

negative real parts.

PROOF. Let A = a + b and let ¥ be a non—trivial solution of (4.2). Then
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(4.3) can be rewritten as
— (@80 + [ (a=Bre ¥t — gla)le= cosb + fre4) pi? =0, (44
Q

and
/ (b + Bre~* 1 — ¢(z)]e® sinb) ]2 = 0. (4.5)
Q

Note that |1 — ¢(z)| < 1forall z € Q, since 0 < ¢(z) < InfB < 2, according to
Remark 2.5. We now show that a < 0. Suppose a > 0. Then
a — Bre )1 — §(z)]e™® cos b + fre~*)
> a — Bre |1 — ¢(z)]e™* cos b| + fre~¢()
>a—fBre?@) 4 gre=%=) = a > 0.
This contradicts (4.4) since — (L1, %) > 0. Next we will show that a # 0. Suppose
a = 0. Then b # 0, since 0 ¢ o(A). Equation (4.5) implies that b cannot be an

integer multiple of 7 and hence | cosb| < 1. Moreover, by (4.4)
0=—(£6,9) + [ (~Bre~#[1 — g(a)]cosb + bre=4)) [y "
Q
> B7(1—]cos bl)/ e~ @2 > 0,
Q

which is a contradiction. This completes the proof.

It follows from Theorem 4.2 that the positive steady state is locally stable
without any restriction on the time delay in the case where 1 < 8 < €2. Thus,
the time delay is harmless in this case. When 3 > e?, however, the local stability
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of the positive steady state can be guaranteed only for small delay. We have the

following theorem.

THEOREM 4.3. Suppose 3 > €2. Then all the eigenvalues of (4.2) have neg-

ative real parts provided T € [0, 1,], where

1
T — arccos —s—
- mpT (4.6)

By/eI(lnp —2)

PROOF. Let A = a+bi (b > 0) be an eigenvalue of (4.2) with a corresponding
eigenfunction ¥ such that |[1||;2¢) = 1. Suppose a > 0. There are two possibilities

to consider.

(i) cosb > 0. By (4.4),
0= —(Lp,¥) + / [(a + Bre~?¢e® cosb) + Bre ?(1 — e~ cosb)] [4]* > 0,
Q

which is a contradiction.

(i) cosb < 0 and sinb < 0. By (4.5), [, e~%(1 — &)[[*> > 0 so that by (4.4)

0=—(Ly,%) +,/s; (a +ﬂ‘re—¢) [6[2 — Brcosbe™® /s; e (1 - ¢)[¥* >0,

which is also a contradiction.

Hence cosb < 0 and sinb > 0. Let L(y) = — [, e=%) (1 — #(z)) [42. By
(4.5) and the fact that b is a second quadrant angle, we have I;(y¥») > 0. Let
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L(Y) = [, e ®@ |2 > 0. Then by (4.4), we have

a4+ ﬂf[z(¢) <

0< GEE <L
Also, by (4.4)
which leads to
b > — arccos 2XATR(A).
- Bre~2L1(¥)

Since z ++ 7= is increasing for T < z < =, therefore we have

a+8rlx(¥)
b T — arccos F.=af.(y)

— 2
sinb _ { a+BrIx(v) ) 2
Bre—aI ()

It follows immediately from (4.7) and (4.5) that

(4.7)

a + Bl () >

V(Bre=sL(w))? - (a + BrLx(v))* TS Bremafy() <

However, the following Lemma 4.4 shows that this is impossible. Hence a < 0 and

the proof is complete.

LEMMA 4.4. Suppose 8 > € and 7 € [0,7,). Let a > 0 and ¥ € HY(Q) N
H?(Q), with 1¥lle2ce) = 1 and a + BrL(v) < Pre I (¢). Then F(i,a) < =,
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where,

F($,a) := /(Bre=L($))* — (a + BrL(1))* +arccos -——‘;fﬁfff%ﬂ '

PROOF. Note that I)(¢) < I;(¥). By differentiating F with respect to a, it

is easy to show that F(3,a) is decreasing in a. Therefore,

F(,a) < F(4,0) = ﬁr\/Ilz(gb) — I2(¥) + arccos 2%; .

Now, ¢(z) < InfB and I; > 0, and therefore

L(y) — fQ e |2 > fa e ?ly[? — 1
L(¥) foe?(o-DR2P = (Inf—1) fpe?¥]? mp-1
Also
IF) — %) = (L(¥) + L(¥))(L(¥) — k(%))
<([eeoor) ([ - 2mwp).
Thus
F(¢,a) < fry/e~1(InB — 2) + arccos ln,@l— 7 <,

since 0 < [, e7%4[¥|2 < [, e [|? = ¢! and r < 7,. The proof is complete.

4.5 GLOBAL ATTRACTIVITY OF THE POSITIVE STEADY STATE
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In this section, we will consider the global dynamics of the diffusive blowflies
equation. For the case 1 < 8 < e, the well-known monotone method is applicable.
We will develop a new approach to handle the case where e < 8 < €2. The first
lemma below provides an appropriate bound for the solutions to (2.1)-(2.2) as

t — oo.

LEMMA 5.1. Let u(t,z) be the solution of (2.1)-(2.8). Then u(t,z) >0 for
all z € Q and t > 0. Moreover, u(t,z) >0 forallz € QL and t > 1 if ug # 0.

Furthermore, limsup,_,  u(t,z) < Be~ 1.

PROOF. It is easy to show that u(t,z) > 0 for all z € Q and ¢ > 0. Since

ug # 0, we have

{t>0, u(t,z)=0,vzeQ}3[0,1].

Therefore there exists ¢y € [0, 1) such that for any given t > t9, we can find z €
satisfying u(t,z) # 0. Moreover, according to the minimum principle and the
strong minimum principle (c.f. Protter and Weinberger (1984)), we have u(t,z) >
0 for (¢,z) € (to,0) x R, and g—:[ag < 0 for t > to. Let w(t,z) = u(t,z) — Be L.

Then

— < dAw — rw.
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Therefore w is a lower solution of the parabolic equation

=dAv —T1v

®|®

together with Dirichlet boundary conditions and an initial condition which domi-

nate those of w. By the comparison theorem, we have

w(t, z) < v(t, z).

It follows from Friedman (1964, p.158 Theorem 1) that lim; oo v(¢,z) = 0 uni-
formly in 2. Consequently, limsup,_, ., w(¢,z) < lim¢noo v(t,z) = 0. This com-

pletes the proof.

Subsequently, one has the following convergence theorem whose proof will be
carried out using the monotone method which is originally used by Sattinger (1972)
for reaction diffusion equations (without time delay). Of course, a modification is

needed to apply this method to the time delayed reaction diffusion equations.

THEOREM 5.2. Suppose 1 < 8 < e. Then the solutions of (2.1)-(2.2) con-

verge to the positive solution of (2.4).

PROOF. Lemma 5.1 implies that for sufficiently large ¢, 0 < u(¢,z) < 1
for all z € Q. On the other hand, since the function u — ue™* is increasing for
0 < u < 1, the monotone method can be applied. Consider the eigenvalue problem
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in H}(Q) N H2(Q) :
dAG — ¢ + Bré = ¢

which has a positive solution (\*,¢*) since (8 — 1)r > d);. Then for e small

enough such that e=¢¢" > 1 — €* is a lower solution of (2.4). Let u(t,z) be

Fe

the solution of (2.1)~(2.2) with initial condition e¢*. Claim: 2% > 0. Consider the

set S={t>0 : 3;

IV

0,Vz € Q}. Clearly, 0 € S since

dA(eg®) — T(eg™) + Br(eg™)e (4"

We will show (0,1) C S. For t € (0, 1), let wa(t,z) = u(t + h,z) — u(t, z), where
h is sufficiently small such that ¢ + k € (0,1] and u(h,z) — »(0,z) > 0. Then we

have

17,
% = dAwy, — Twh + Pru(t +h — 1)e 2 A=Y _ gry(p — 1)es(t-D

= dAwp — Twy,

and
wi(0,z) = u(h,z) — u(0,z) > 0.

The maximum principle implies that wi(t,z) > 0 and hence %% > 0. Therefore
[0,1) € S holds. Moreover since S is a closed set, [0,1] € S holds as well.
Noting that the nonlinear term (delay term) is a monotone increasing function for
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0 < u < 1, we obtain by induction that [0,n] C S for any integer n > 0. Hence
[0,00) = S, that is a_% 2 0 for all £ > 0. Therefore u(t,z) — ¢(z) as ¢ — oo.
Similarly, we can show that ¢ = 1 is an upper solution of (2.4). Let %(t,z) be the
solution of (2.1)—(2.2) with initial data ¢. Then we use the same approach as above,

with a slight modification if necessary, to obtain g—f < 0. Hence %(t,z) — ¢(z) as

t — oo. This completes the proof.

Next, we will consider the case e < 3 < €2. To prove the convergence theorem
in this case, we propose a new approach. We expect that this new method is
applicable to other non-monotone Dirichlet boundary problems as well. Our idea

is as follows.

First we decompose the space 2 into two parts, i.e.,
Q={zeQ, ¢(z)<1}u{zeQ, o(z)>1},

where ¢(z) is the positive solution of (2.4). Let u(t,z) be a positive solution
of (2.1)~(2.2). We will prove that u(¢,z) — ¢(z) for z € {z €Q, ¢(z) < 1}.
This can be done by the monotone method together with an extension trick (see
Lemma 5.6). Asfor z € {z €Q, &(z) > 1}, we will show that the difference
u(t,z) — ¢(z) is either a decreasing oscillating function dominated by the boundary
value of the function itself (see Lemma 5.10 and Corollary 5.11) or an eventually

positive (negative) function (see Lemmas 5.7 and 5.9). In either case, it follows
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that u(¢,z) — ¢(z). Based on Lemma 5.5, Lemma 5.8 is an auxiliary result to
Lemmas 5.9 and 5.10. Also, Lemma 5.4 is used in the proofs of Lemma 5.7 and
5.9. Combination of Lemmas 5.4-5.11 gives rise to the following global attractivity

result.

THEOREM 5.3. Suppose e < 8 < 2. Then the solutions of (2.1)-(2.2) con-

verge to the positive solution of (2.4).

PROOF. The proof will be carried out in a number of lemmas.

LEMMA 5.4. Consider

WY < 1) - cuto) (5.1

where ¢ > 0, y(¢) > 0,and r(t) > 0. Suppose r(t) — 0 as t — oco. Then y(t) — 0 as

t — oo.

PROOF. The proof is straightforward.

Lemma 5.4 and the following Lemma 5.5 are helpful in the proof of Lemmas

9.7-5.9. They are also the bases of our approach to spatial decomposition.

LEMMA 5.5. Assume e < 8 < €. Let u(t,z) be a solution of (2.1)-(2.2)
and let Q; be an open subset of Q satisfying Q1 C Q. Suppose that there ez-
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ists To > 1, for all t > Ty, there ezists (£(t),n(t)) € [t — 1,t] x @1, such that
u(€(t),n(t)) = MR o) ere—1,xa; Y(E: ). Then there ezists T. > To sufficiently

large so that u(t,z) > 1 for (t,z) € [T.,00) x Q;.

PROOF. We define

9(e) = B(Be™ +€) — (1 +€)efe T +e.

Note that g(0) = 82¢™! —ef¢™" > 0 for e < 8 < €2. Then there exists ; > 0, such
that g(e) > 0 for all 0 < € < ¢;. Hence,

B(Be~! + e)e‘(ﬁ‘-l‘*") >1l+4e for0<e<e¢.

Now for any 0 < € < €, by Lemma 5.1, there exists T} > Ty, such that

u(t—1,z) < Be”! +¢, forallt > T and z € Q. (5.2)
To complete our proof, we divide our discussion into three parts.
Part A.

Suppose that for any given t > Ti, £(¢) > t — 1. Then, we have
du

at (€(t);m(t)) <0 and Au(£(t),n(¢)) > 0. By (2.1), this implies

u(€(2),n(t) 2 Bu(&(t) — L, n(t))e (EO 1), (5.3)

We will complete Part A by discussing the following two cases.

Case 1. There exists T > T} such that u(§(T2) — 1,n(T2)) > 1. Since u > ue™*
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is decreasing for u > 1, we use (5.2) and (5.3) to get

u(E(T2), n(T2)) > B(Be~! + e)e~(Fe™ +9)

21+e>1.

Consequently, u(§,z) > u(é(Tz),n(T2)) 2 1 for all (§,2) € [T —1,Th] x Q1.

Therefore, by induction, we conclude that u(t,z) > 1 for all (¢,z) € [Tz, o0) x ;.

Case 2. u(§(t) — 1,n(t)) < 1for all ¢ > T;. Denote

m(t) := min __ u(&, z).
(&,.x)€t—1,t] xQ,

Then by (5.3) we have

m(t) = u(£(t),n(t))
> Bu(€(t) — 1,n(t))e *EB-La(®)
> Bu(E(t) — 1,n(t))e™

> u((t) — 1,n(t)) =2 m(t —1).

for all ¢ > T;. Next we show that the function m(t) is monotone increasing for
t 2 T;. For s > T3, suppose that t — 1 < s < ¢. Firstly, if t — 1 < (s) and £(¢) < s,
then clearly m(s) = m(t). Secondly, if s — 1 < &(s) <t —1and t —1 < £(t) < s,
one concludes that m(s) < m(t) since u(£(s),n(s)) is the minimum of u(¢, z) on
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[s—1,s] x ;. Thirdly, if s < £(¢) < ¢, then s—1 < §(t) =1 <t —1 < s and hence

m(t) = u(§(t), (%)
> Bu(E(t) — 1, n(t))e~E®-1.n(9)
> Bu(E(s), n(s))e (€D
> Bu(£(s), n(s))e™"

> u(§(s),n(s)) = m(s).

On the other hand, suppose T7 < s < t — 1. Then there exists an integer [ > 1

such that s€ [t—[—1, ¢~—1], so that we have
m(s) < m(t 1) < m(2).
Therefore we conclude that m(t) is monotone increasing for ¢ > 7. Let
mg = tl_i_glo m(t) > 0.

We will show mq > 1. In fact, since
m(t) = u(§(t),n(t))
> Bu(§(t) ~ 1,m(t))e " EO~ L)
> fm(t — 1)e~m¢=),

we take the limits as ¢ — 0o to obtain

mg > Bmge™ ™0,
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This implies e™® > 3 and hence mg > 1 since 8 > e. Therefore, there exists
T; > T; such that m(T;) > 1. Then one concludes that, by repeating Case 1,
u(t,z) > 1 for all (¢,z) € [T3,00) x Q. This completes the proof of Part A.

Part B.  Suppose that for any given ¢ > T, £(t) = t — 1. Let m(t) be
defined as in Part A. Clearly, m(t) is monotone increasing for t > T;. Now, for
0 < |h| < 1, we have ’

m(t+1+h)—m(t+1)

k
_u(t+h,n(t+1+h)) —u(t,n(t+1))
h
_u(t+hn(t+1+h) —ult+hn(t+1)) 4 e+ hn(t+1)) —ult,nt+1))
h A ’

Noting that u(t +h,n(t + 1+ h)) < u(t + h,n(t + 1)), we obtain

mE+1l+h)—mE+1) u(t+hn+1))—uln(t+1)
h - h

. for0 < h < 1.

and

mt+l+h)—mE+1)  ut+h,nt+1)) —utn(t+1))
h - h

, for -1<h<0.

Therefore

Qu(t,n(t+1))
ot

D™m(t+1) > D_m(t+1) > > D m(t+1) > Dym(t + 1),

where D=, D_, D% D, are the Dini derivatives. Note that monotone function is

differentiable almost everywhere. Therefore, we have

dm(t+1) _ du(t,n(t +1))

7 % , a.e. fort>Ty. (5.4)
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Next, we will show that for any 0 < € < ¢, there exists a sequence {t;} satisfying
thTl, 0<tk+1—-tk<1, fora.llkZl;

ty 00, ask — oo0; and (

(]
(41}
p

< dm(te + 1) <e

0 dt ?

for all k£ > 1.

If this’is not the case, then one can find 0 < ¢ < ¢, and a sequence of intervals

dm(t + 1)
dt

k — oo, and moreover, |I;| > 1. Therefore, for any k& > 1, we have

{Ix := (ak,bx)}=,, on which > €, where ax < bp < ag41, b = o0 as

bk dmi(t + 1) £ dm(t +1)
- —_— —_
m(be + 1) —m(a; +1) > /;1 g7 > ,_E 1 /I‘. = > keo

This contradicts the boundedness of the function m(t). Hence the aforementioned
sequence {t;} exists. Now, for & > 1, since u(t¢,n(tx + 1)) is the minimum of

u(€, z) on [te, te + 1] x ©; and n(tx + 1) € Q1, we use (2.1) and (5.4) to get,

dm(ty +1
_—m(;t+ L > —rmte 1) + Brults — Ln(te + 1))e=sCemtmteas1). (5.6)
Using (5.5) and (5.6) instead of (5.3), one can follow in a similar manner to the
proof of Part A to complete the proof of Part B.
Part C. This is the complement of Parts A and B. Suppose that there
exists an increasing sequence {t;}, where ¢y > T for all £ > 1 and tx — oo as

n — oo, such that {(tx) > tx — 1 and n(tx) € Q;. Therefore, we have

m(te) > Bu(€(te) — 1,n(te))e " EEI-1a(t))  for o]l k> 1. (5.7)
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Without loss of generality, we assume g —tx > 1.
Claim: There exists T; > t;, such that m(T3) > 1.

Using the arguments similar to Case 1 of Part A, one can show that, if there
exists ko > 1, satisfying u(é(tk,) — 1,m(f,)) > 1, then m(ty,) > 1. Therefore, the
claim is true for this case.

Next, we assume that m(t) < 1 for all £ > ¢;, and that u(£(2x) — 1,7(tx)) < 1
for all £ > 1. We show that {m(t¢)}$2, is a monotone increasing sequence. For
any k > 1, we choose an integer | > 2, such that tx € [teq1 — I, tr+1 — 1+ 1].

According to (5.7), we have
M(tet1) > Bu(E(trsr) — 1, (teer))eE eI =1altn))
> fm(tesr — 1)e ™+ =) (5.8)
> m(teyr — 1)
We now consider [tg41 —2, tgg1— 1] x Q1. Clearly, if £(fgq1 — 1) = thqr — 2, we
have

m(te+1 — 1) 2> m(te41 —2) (5.9)

On the other hand, suppose £(tx41 — 1) > tit1 — 2. According to (5.7), we have

m(te+r — 1) = Bu(€(tesr — 1) — 1, n(tr4r — 1))e 21D =Laltis1=1))

Clearly, u(£(¢k+1—1)—1,n(tk+1—1)) < 1. Otherwise, we can get m(tg+1—1) > 1 by
following the same arguments as Case 1 of Part A. This contradicts our assumption.
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Now, using the same discussion as Case 2 of Part A, we obtain (5.9) as well.

Invoking the above arguments (I — 2) times, we eventually get
m(tk.H - 1) _>_ m(tk+1 ~l+ 1)- (5-10)

Subclaim: m(tg41 — I+ 1) > m(te).
Clea.rly, on [tk-i-l - l, tk+1 -1 + 1] X Q_l, this is true if E(tk+1 -1 + 1) (S
[tk+1 — I, t&]. Now we consider the case where £(tg+1 —{ + 1) > . According to

(5.7), we have

m(tk+1 _ l <+ 1)
(5.11)
> Bu(E(trsr —1+1) — Ln(tesr — 1+ 1))6—"(5(‘&-{»1-H-l)‘lﬂl(‘k-{-l—l‘i‘l)).

Obviously, u(&(te41 — I+ 1) — 1,9(te+1 — [ + 1)) < 1. Otherwise we use the same

discussion as Case 1 of Part A to get m(tg+; — ! + 1) > 1. This contradicts our

assumption. Noting that é(tg+1 — [+ 1) € (&, te+1 — [ + 1], we have

m(te) < u(€(tetr —1+1) ~ Ll -1 +1)) <1 (5.12)

Since u + ue™™ is monotone increasing for u < 1, we use (5.11) and (5.12) to
obtain
m(tk+1 -1 + 1)

> ,Bu(f(tk+1 -1+ 1) -1, n(tk-f-l -1+ 1))e-u(E(tk+1 ={+1)—=1,n(te g1 —1+1))
(5.13)
> ,Bm(tk)e_m(t")

> Be " Im(te) > m(ts).
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Hence, the subclaim holds.
Now we combine (5.8), (5.10), and (5.13) to get m(tg+;) > m(te), and

moreover
m(tks1) > Bm(te)e” ™),

Then we take the limit as £ — oo to obtain

mqg > Bmge” ™0,

where mg = limioo m(tk) > 0. Hence mg > 1 since 8 > e. Therefore, there
exists ko 2> 1, such that m(tx,) > 1. Again, this contradicts our assumption. The
proof of the Claim is complete.

Finally, one can easily show u(¢,z) > 1 for (t,z) € [T2,00) x Q;. For that
we just need to consider [T3,T» + 1] x Q;. Obviously, if £(T; + 1) = T3, we have
m(T2 + 1) > m(T2) > 1. On the other hand, if §(T; + 1) > T5, then we use the
same discussion as Case 1 of Part A to get m(T: + 1) > 1. This completes the

proof of Part C.

We introduce the following notations
Q. ={ze o) <1},
Q. ={ze? ¢ >1},

Qu)={reQ, u(tz) <1}
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If 8 = e, it follows from Remark 2.5 that Qéo is empty. Therefore, for this
case, the global attractivity of the positive steady state can be concluded by the

following lemma.

LEMMA 5.6. Let u(t,z) be a solution of (2.1)-(2.2). Then, for z € QL

u(t, z) = ¢(z) (pointwise) as t — co.

PrOOF. Without loss of generality, we assume that ug(8,z) > 0for allz € Q2
and § € [—1,0]. We also assume that 2%2|50 < 0 for all 6 € [—1,0], and that u(¢, )
satisfies (2.7) for all £ > 0. Let u(t, z) be the solution of (2.1)-(2.2) with the initial
condition e¢*(z), where € is chosen small enough such that ug(6,z) > e¢*(z) for
all z € Q and 6 € [~1,0], and ¢*(z) is defined as Theorem 5.2. Then one can
use the same arguments as the proof of Theorem 5.2 to show u(t,z) < ¢(z) and

3—1:- > 0 for all z € QL and ¢ > 0. Therefore, we have that
i - & QL
tliglog(t,x) =¢(z) <1, forallze QL.

Let %(t,z) be the solution of (2.1)—(2.2) with the initial condition (é(z), where

¢ > 1 is large enough so that (¢(z) > ug(,z) for all z € Q and 6 € [-1,0]. Let
QL ={zeQ, (4= <1}
As before, we can show that g—f <0forall z € Q! and hence

lim u(t,z) = #(z), forzeQl,.

t—oo
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We denote

Q) = [ 2w
t>0
It is easy to see that, according to (2.7) and the (homogeneous) Dirichlet boundary

conditions, 2§ (u) is a nonempty open set. Moreover, Q5(u) NQL, is nonempty and

u(t,z) > u(t, z) for all z € Qf(u) N QL,. Hence
liminfu(t,z) > lim u(t,z) = é(z), for all z € Qh(u) N QL.

On the other hand, for z € Q}(u)N QL NQL,, one has (¢, z) > u(¢, z). This leads
0 co 1

to
limsupu(,z) < lim %(t,z) = ¢(z), forallz € Q(u)NQL NQL,.
t—oo t—co
Therefore,

lim u(t,z) =¢(z), forallz e QFu)NQL NQL,.

t—o0

Next, we extend the region of convergence to the entire Q1 . We denote

So:=Qu)N QL NnQl,.

Suppose So G QL. Let Q. be an open subset of QL such that

SO CQg CQ;.
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For any given § > 0, we define a subset of Sy as follows:
S5(89) :={z € Ty : dist(z,0Q) < 8},

where dist(z, Q) means the distance from z to the boundary of Q. Let é be chosen

small enough such that 55(3Q) G So. It is clear that S5(8Q) D 8Q. We denote

Clearly, 0 < K < K < 1. Now for any given 0 < e <1 — K, one can use the
compactness of Q, := 3';\55(69) and the continuity of ¢(z) to find 77 > 0, only

depending on €, such that
u(t,z) < (L +¢€)p(z), forall z € Q, and t > T;. (5.14)

Indeed, since lim;—, o u(t,z) = ¢(z) for all z € Sp, we conclude that, for the above

chosen € and any Z € Q,, there exists #(Z, €) > 0, such that
- - Ke 2~
lu(t, ) — &(2)| < 5 for all t > ¢(Z,€). (5.15)

Moreover, since ¢(z) is continuous and since u(t, z) satisfies (2.7), we can find an

open neighborhood N (%, €) of # such that

[6(z) — ¢(2)| < -‘I% (5.16)
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and

. =\ n i, Ou(t,n@ Ke
Iu(t, .‘B) - u(t,z)l = Zl(z(J) - z(-’))% < —3—, (5.17)
1=

for all z € N(Z,¢€), where nUU), the j** component of 7, is an intermediate value
between z() and £(9). Since (J;cq, N(%,€) D 2, and that , is compact, there
exist N'(%i,¢€), t=1,2,---,] < oo, such that U:-=1 N(Z;,€) D Q,, and for each
Z;, 1=12,---,1,(5.15)—(5.17) hold. Then for any z € §2,, there exists 1 < 15 <

! such that z € N(Z;,,¢€). Let
T, = g?%cl{t(zi,e)}.

Then, for all ¢ > T;, we have
u(t, z) — ¢(z)
< [t z) — ult, i)l + [u(t, £i,) — D(Zio)| +16(Zi0) — ¢(=)]
< Ke.
Note K < ¢(z) for z € §2,. This implies (5.14).
For B, := 89, N (R5,\So), we can follow the same discussion as above to

choose finite number of open balls, B(Z¢,5), k =1,2,---,l', satisfying

U B(&ke) D B..
i‘k,aGB-

We denote

I'
S = (U B(.’Ek’a)ﬂﬂe) USO.
k=1
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Clearly, So G S1. Furthermore, for all ¢ > T} and z € $;\So, we have
u(t,z) < (1 + €)é(z).
Noting that 0 < e < 1 — K and that ¢(z) < 1 for z € S, we get
ed(z) <e<1-K<1 —-qS(:z:):

Now, we choose v(z) = (1+€)¢(z). Then, for all z € Sy, v(z) satisfies the following
properties
u(t,z) <v(z) <1, forallte[T1,T1 +1],and
dAv(z) — Tv(z) + frv(z)e " <0.
By redefining %(t, z) with the initial function v(z) for ¢ € [T}, T} + 1], we can show
as before that lims e u(t,z) = @(z) for all z € S1. We can keep repeating the

above extension to obtain a sequence of open sets {Sk},k=1,2,---, satisfying
Sk C Ske1 CQL, forallk>0.

Obviously, limg—eo Sk = QL. Therefore, we have lim; o u(t,z) = ¢(z) for all
z € QL. The convergence of u(t,z) to ¢(z) on QL follows immediately from the

continuity of u(¢,z) and ¢(z). This completes the proof.

LEMMA 5.7. Suppose e < B < €. If eventually u(t,z) > ¢(z) for z € Qéo,
then u(t,z) — ¢(z) in L%(Q) as t - oo.
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PROOF. Recall that

‘%‘T‘d’l =dA(u — @) ~ T(u—¢) + O [u(t —1)e (= _ qse-é] . (5.18)

Multiplying (5.18) by (u — ¢) and taking integral over 2, we get

1'd
s~ $lI}2q) < —(dh + 7)llu — &|[22q)

+Br / (u(t = etV — ge™*) (u - ¢)dz
Q
Therefore,

1d ,
55”" — llZ200) < —(dA1 + 7)|[u — &l[32(qy

+B7 | (u(t—1)e7*7D —ge ?)(u — ¢)dz
QL
487 [ (ule =0 — ge)(u - g)de
ay,
< —(d\ + 7)llu — @liZ2a)

+ 87 /bl_(u(t —1)e D — ge~®)(u — ¢)dz.

Then we apply Lemma 5.4 to get the conclusion. This completes the proof.

The following lemma implies that for any given € > 0, there exists T such

that u(t,z), a solution of (2.1)~(2.2), is bounded below from 1 — ¢ for all t > T

a.ndzé@.
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LEMMA 5.8. Suppose e < 8 < € and let u(t,z) is a solution of (2.1)-(2.2).

Then
liminfu(t,z) > 1, (5.19)
t—oo
uniformly for z € E
PROOF. We denote
m(t) := min __ u(§,z),

(&,x)€[t—1,t] xQL,

and

ma(t) := min _ u(§, z).
(&,z)€[t—1,] xIQL,

Clearly, if there exists Ty > 1 such that
m(t) <ms(t),

for all ¢ > Tp, then, by Lemma 5.5, we have u(t,z) > 1 forall z € Q_}; and all
sufficiently large ¢. Hence, (5.19) holds. Next, we consider the case where there
exists an increasing sequence {t;}$2, satisfying
1<t <tgyy, foralk>1;
tr — 00, as k — oo;
m(ty) =ma(tg), forallk > 1.

By Lemma 5.6, lim;yoou(t,z) = ¢(z) = 1 for all z € QL. Hence, for any
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sufficiently small € > 0, there exists kg > 1 such that
ma(t) >1—¢, forallt>tg,. (5.20)
Claim: For any integer [ > 1, we have
m(te, + 1) = min{ma(ts, +1), ma(te, +1 1), yMa(tk, ) 1} (5.21)

Proof of the Claim. Clearly, (5.21) holds if m(tx, + 1) = ms(tk, + ). Now suppose
m(tk, +1) < ma(te, +1). On [tk +1 — 1,tk, + 1] x QL,, if the minimum of u(£, z)
is obtained at tx, 4+ I — 1, then, m(tx, + ) > m(tg, + ! — 1). On the other hand,
suppose the minimum of u(§, z) is obtained in (¢k, + — 1,5, + 1] x QL. We follow

the proof of Part A of Lemma 5.5 to obtain
m(tk, + 1) > min{m(tg, +{ —1),1}.

Note that m(ti,) = ma(tr,). We get (5.21) after invoking the same procedure as

above for at most (I — 1) times. This completes the proof of the Claim.
For any t > tx,, we find an integer { > 1 such that tg, +1 —1 < ¢ < #, + 1.
From (5.20) and (5.21), we get
u(t,z) > m(te, +1)
2> min{ma(tr, +1),ma(te, +1 —1),--- ,ma(ts,), 1}

>l-—e
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Therefore,

liminfu(t,z) > 1 —¢,
t—»oo

uniformly for z € Q},o Since e is arbitrary, (5.19) follows. This completes the

proof.

With the help of Lemma 5.8, we are ready to prove the following lemma.

LEMMA 5.9. Suppose e < B < e2. If eventually u(t,z) < ¢(z) for z € QL

then u(t, z) — ¢(z) in L*(Q) as t - co.

PROOF. Using the calculation similar to the proof of Lemma 5.7, we have

%%”u — #ll3acq) < —(dA1 + 7)|Ju — B|[32q)
+07 [ (ult = 1)) ~ g\ — e
£8r [ (ule = DeD — g4y —
< —(dh + 7)|[u — (2200
+ Br / u(t ~ 1)e™*~D — ge=*|ju — ¢ldz
QL NQL_, (u)

Noticing that from Lemma 5.8, lim inf, o0 u(#,z) > 1 uniformly for z € QL and
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that u(t, z) satisfies (2.7), we have

lim [u(t — 1)e™ =D _ ge?||lu — ¢|dz = 0.

t=o0 J1 nal_, (u)

Now we apply Lemma 5.4 to obtain the conclusion. The proof is complete.

LEMMA 5.10. Suppose e < 3 < €* and there ezist Ty > 1, cg > O such that

M(t) = max __ [u(§,z) — é(z)| = |u(to, z0) ~ $(z0)| > co,
(&,x)€lt~1,¢xQL,

where (to,zo) € [t — 1,¢] x Qéo and t > Ty. Then, there extsts Ty > Ty such that

M(t) is monotone decreasing for t > T.

PROOF. According to Lemma 5.8, for any given 0 < € < 5%, we can find
T, > To,such that u(t —1,z)+e>1forallt > T, and z € (:Zz In the rest of the
proof, we assume ¢t > T;. We consider [t—1,¢ x E Clearly, if the maximum of

[u(§,z) — #(z)| is obtained at t — 1, then we have
M(t) < M((t-1). (5.22)

On the other hand, suppose (tg,z9) € (¢ — 1,£] x QL. We will show (5.22) still
holds. Suppose

M(t) = max _ [u(§,z) — é(z)| = u(to, o) — #(z0)
(&,z)€[t~1,4xQL,
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is the positive maximum in (¢ — 1,¢] x Q},o, where to € (t — 1,t] and zg € fz;,

Then, we have -a(—';?i 2 0 and dA(u — ¢) < 0 at (%o, z0). By (5.18), this leads to
u(to, zo) — ¢(z0) < B [“(to —1,z9)e *(fo~1i%o) _ ¢(30)6-¢(z°)] . (5.23)

Clearly, u(to — 1,z0) < ¢(zo). Otherwise, since z ++ ze~* is decreasing for z > 1

we have

u(t07'7:0) - ¢($0) S 07

which is a contradiction. Moreover, there exists £ € [u(¢o — 1, 20 ), #(z0)] such that
u(tg — 1’zo)e—u(to-1,zo) - ¢>(zo)e‘¢(’°)
= (1 —¢&)e™* (u(to — 1,z0) — $(z0)) (5.24)
< €7 (¢(z0) —ulto —1,20)),
Substituting (5.24) into (5.23) gives rise to
M(t) = u(to, z0) — ¢(z0)
< Be™?(¢(z0) — u(to — 1,z0)) (5.25)
<Be*M(t —1) < M(t-1).

On the other hand, suppose

M(t) = max __|u(,z) — ¢(z)| = —[u(te, zo) — é(z0)],
(&, z)€[t—1,4xQL,

Le. u(to,z0) —¢(zo) is the negative minimum in (¢t —1,¢] x QL , where t; € (t—1,1]
and zo € L. We divide our discussion into two cases.
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Case 1. u(to — 1,z0) > &(zo). We use the same arguments as above to get
u(to, Zo) ~ ¢(z0) > ~Be™? (u(to — 1, Z0) — é(z0)) - (5.26)

Case 2. u(to — 1,z0) < ¢(z0). Note that u(to — 1,z0) + € > 1. Therefore we obtain
u(to, o) — (o)
>p [(U(to —-1,z0) + e)e—(u(to—l,zo)+e) — (¢(zo) + e)e—(é(zo)-i-e)]

+8 [u(to — 1,z0)e~*(to—1m0) _ (y(ty —1,20) + e)e-(utto-l,zo)+e)]

(5.27)
.y [¢(z0)e-¢(=o) ~ (¢(z0) + e)e-(¢($o)+€)]
> —20¢
> —Be 2 M(t ~ 1).
We combine (5.26)—(5.27) to obtain
M(t) < Be™2M(t—1) < M(t —1). (5.28)

Now for any s > Ty and ¢t — 1 < s <t,iftg € (s —1,s] and t; € (s — 1, 5], then

[u(to,zo) - ¢($0)I < M(s)z

and
Iu(tlvzl) - ¢(zl)l < M(s)s

which imply M(t) < M(s). Ifto ¢ (s—1,s] ort, ¢ (s—1,s], then (tg—1) € (s—1, 3]
or (¢; — 1) € (s — 1, s], we still get the same conclusion. Now if T} < s < (t-1),
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then there exists a positive integer [ > 1 such that s € [t —{ — 1, —[]. According

to (5.20), (5.25), and (5.28), we have

M(s) > M(t — k) > M(¢).

This completes the proof.

COROLLARY 5.11. Suppose e < 8 < €2. If u(t,z) — ¢(z) oscillates for z €

QL, and t > 1, then u(t,z) — ¢(z) in C(QL) as t = oo.

PROOF. Let

M(t) == [u(£(t),n(2)) — (n(t))| = max __ [u(§,z) - ¢(z)],

(&,z)E[t—1,t] xQL,

and
Ma(t) == max [u(€. z) — &(z)|.

(&,x)€[t—1,t]xaQL,

Claim: For any sufficiently small € > 0, there exists ¢ such that

M(te) <e.

Proof of the Claim. Suppose the Claim fails, i.e. there exist ¢¢ > 0 and Ty > 1

such that

M(t) > e, forallt> To. (5.29)
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We will show that there exists an increasing sequence {t;}$2, satisfying

To <tp <tgy1, forallk>1;
tr — 00, as k — o0; and
M(tg) = Mp(tx), forallk>1.
Indeed, if this is not the case, i.e. for all ¢ > Tp, the maximum of |u(£, z) — #(z)|
on [t —1,¢] x @ is obtained in [t — 1,2] x QL, th;an, according to Lemma 5.10,
M(t) is monotone decreasing for ¢ > T;. We denote My := lim;—yoc M(t). We will
discuss two cases to show My = 0.
Case 1. Suppose that £(t) = ¢ — 1 and n(t) € QL, for all ¢ > T. For any
0 < € <min{7(1 — Be~?)en, %}, we use the arguments similar to Part B of the
proof of Lemma 5.5 to find a sequence {fx}$2, such that
te>Ti, O0<fgqr—fr <1, forallk>1;
tk > o0 ask — oo; and (5.30)

—e<dﬂtdk7ﬂ50, for all £ > 1.

For any k > 1, we consider
Mt + 1) = u(te,n(E + 1)) — o(n(fx + 1)),

ie. u(fk,n(fe + 1)) — ¢(n(fx + 1)) is the positive maximum. Without loss of
generality, we may assume, by using the continuity of u(t,z) and ¢(z), that there

exists a sequence {h;}2, satisfying 0 < |hj| < 1 and h; — 0 as j — oo, such that

M(Ex + 1+ hyj) = u(@ie + hj,n(fe + 1 + k) — (n(fe + 1 + hy)).
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Now we follow Part B of the proof of Lemma 5.5 to obtain

dM(# +1) _ Bu(fe,n(f + 1))
dt - ot ) (5:31)

On the other hand, suppose
M(Ex + 1) = ~[u(Fe, n(fe + 1)) — d(n(Ee +1))],

i.e. u(tk,n(fk + 1)) — &(n(fk + 1)) is the negative minimum. Proceeding as before,

we get

dM(E +1) _  Bu(f, (i +1))

. 5.32
dt ot (5:32)

Using (5.30)~(5.32) and following a similar argument as in the proof of Lemma

5.10, we obtain
TM(te + 1) < e+ 78e 2 M(f1), (5.33)

Therefore, we take the limit as k — oo to get
™o < e+ T8 M,

that is

€
Yo Ay

This implies My = 0 since € can be arbitrarily small.

126



Case 2. Next we assume that there exists an increasing sequence, still denoted by

{£x}2.,, such that on [fi,fx + 1] x QL , we have £(f¢ +1) > £x and n(f +1) € QL.

In this case, we follow the proof of Lemma 5.10 to get
M(te +1) < Be 2 M(&).
Then we take the limit as k£ — co to obtain
Mo < Be™2 My,

which implies My = 0 since fe~2 < 1.

Therefore, the aforementioned sequence {t;} exists. By Lemma 3.6,
Jlim u(t,z) = §(z), forze a0l
Hence, for any 0 < € < ¢, there exists kg > 1 such that
M5(t) <e, forall t>tg,. (5.34)
Next, we show

M(tx, +1) < max{Ma(tx, + 1), Ma(t,)}- (5-35)

Clearly, (5.35) is true if M(tg, + 1) = Ma(tk, + 1). Now suppose M(tx, + 1) >
Mp(tky +1). On [try, te, +1] x QL if E(tk, +1) = t,, then, M (tr, +1) < Ma(tx,).
On the other hand, suppose £(tk, + 1) > ti,. We follow the proof of Lemma 5.10
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to obtain M(ti, + 1) < M(tg,) = Ms(tk,)- Therefore (5.35) is true. We combine
(5.34) and (5.35) to get M(ts, + 1) < € < €. This contradicts (5.29) as well. The
proof of the Claim is complete.

Now that the claim holds, we conclude lim¢_, o u(t,z) = ¢(z) according to
the local asymptotic stability of the positive steady state (Theorem 4.2). This

completes the proof.

So far, we have shown the global attractivity in the sense of L2(Q2). Next, we
claim that the convergence theorems can be enhanced by using an a priori estimate

and an interpolation inequality. More precisely, we have the following theorem.

THEOREM 5.12. Let u(t,z) be a solution of (2.1)-(2.2) and U(z) be the
corresponding steady state, i.e. the zero solution or the positive steady state ¢(z).

Then, there ezists a constant K, independent of time t, such that
lu(t) = UOlerca < Kllu(t,) — UC)iady,  forallt>1,

where 0 < a < 1 i3 a constant decided by (5.41).

PROOF. Throughout the proof, we use K to denote various constants inde-
pendent of £. For any n < p < oo, let operator A : D(A) — L?(2) be defined as in

section 2. Clearly, A~! is bounded in LP(£2). Therefore we have

llu(t, ) = U()llzeey < KllAlu(t, ) — UG o cays (5.36)
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for some positive constant K. Now since u(t,z) is a solution of (2.1)—(2.2) with
u(0,-) € LP(Q) we have u(t,-) € W2?(Q) N Wy?(Q) for t > 1. Using (5.36) and
an a priori estimate (c.f. Pazy (1983, p.242)), we get, for £ > 1,
(2, -) — U(-Nlw=r (o)
< K(|[Afu(t,-) = UC)lzecay + [lut.-) = U)o () (5.37)
< Kl[Afu(t,-) = UC)H e ca)-

Following an argument similar to that in section 2, we have

lAR(t, ) ~ U llgreey <K, fort>1. (5.38)

Hence combining (5.37) and (5.38), we obtain

[fu(t,-) = U()lwar @) < K. (5.39)

Now using Theorem 10.1 in Friedman (1976, p.27), we have

|[e(t,-) = U(Mler )

(5.40)
< Kllu(t,-) = UC) ISz @y lluts ) = UG 20y
where p > n, 0 < a < 1, and moreover, p and o satisfy
n n -
—l=(>=2a+(1-a). (5.41)

Substituting (5.39) into (5.40) gives rise to our conclusion. This completes the
proof.
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REMARK. As we mentioned, the same approach with a slight modification can
be applied to our general type of delayed reaction diffusion equations. Oscillation
analysis can be carried out by following the very similar procedure as in Chapter
3. Unfortunately, Hopf bifurcation analysis for the Dirichlet boundary problem is
far from easy and computer aid may be required. We will discuss this in a separate

chapter.
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CHAPTER V

NUMERICAL INVESTIGATION AND HOPF BIFURCATION

5.1 INTRODUCTION

We continue studying Dirichlet boundary problems of the diffusive Nichol-
son’s blowflies equation. For simplicity, we confine the spatial variable to be in

one dimension. More precisely, we will consider the modified equation as follows:

aug;, 2) = dg:; (t,z) — Tu(t,z) + Bru(t — 1, z)e 212, (1.1)
u(t,0) = u(t,1) =0, (1.2)

u(f, ) = uo(4, z).

where z € (0,1), t > 0, and § € [—1,0]. Then the steady state of this system

will be the two-point boundary problem

dbzz — 7O+ froe™® =0,
(1.3)
$(0) = ¢(1) = 0.
As we have shown in chapter 4, the boundary value problem (1.3) has a unique

positive solution if and only if

(B— 1)1 >d)\, (1.4)
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where ); is the principle eigenvalue of "ai:f with a (homogeneous) two-point
boundary condition. One also observes that {|¢|| < In/ for any positive solution
é of (1.3).

Our motivation to study (1.3) numerically derives from the studies of Hopf
bifurcation. Recall that the linearized equation of (1.1)—(1.2) about the positive

s'teady state is

202) — aZ(t2) - rolt, @) + Bre=¥)(1 - gleNo(t — 1,5), w5

v(t,0) = v(¢,1) = 0.

The corresponding eigenvalue problem is

~dipez + (7 + A= fre=* (1 ~ §(z))e ) ¥ =0,
(1.6)
¥(0) =y(1) =0.
Numerical investigation of Hopf bifurcation requires us to compute the steady
state first.

Throughout this chapter, we assume inequality (1.4). Under such assump-
tion, system (1.3) has two solutions. There are several papers concerning the
numerical solutions to nonlinear two-point boundary value problems with multi-
ple solutions. Jin’s (1992) paper is the only one that can be found with such a
title. One should also mention Allgower (1975), and Allgower and McCormick
(1978) in this subject.

In this chapter, we propose a new approach which proves to be applicable
to system (1.3). We will not compare our approach with others, even though we
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had tried with other methods to solve our problem.

The rest of this chapter is organized as follows. In section 2, we present
the numerical methods applied to equations (1.3). Based on this approach, some
numerical simulations are provided in section 3. Following in section 4 is the out-
lined idea of proving the existence of pure imaginary eigenvalues of the eigenvalue

problem (1.6). Necessary conditions are also obtained in this section.

5.2 METHODS

In this section we will describe the approach as follows. Note that ¢(z)
is a smooth function and that ¢(0) = ¢(1) = 0, there exists at least one point
zo € (0,1) such that ¢'(zo) = 0 and m := &(zo) = max;efo,1] 9(z). Multiplying

—@z in (1.3) and then integrating, we obtain

é(z) é(z)
d
~-2'¢f_-+'r/ wdw—ﬂr/ we™ dw = 0.

m m

Evaluate the integrals to get
d o T,4 2 -é —-m
-§¢,_. = §(¢ —m®) + 81 [(¢ +1)e7® ~(m+1)e ] . (2.1)

Rewrite (2.1) into

dg _

dr

_.-‘:\/ =67 +28(8 + 1)e?] - 5 [m? +268(m + 1)e~m). (2.2)
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Let us suppose zo is a maximal point such that positive sign is chosen in (2.2) for

z € [0,zp). Define
flw) := 5 [w? + 28(w + 1)e™¥] . (2.3)

Then, solving (2.2) over [0, 2], we have

’

é(z) 1
dw = z. (2.4)
o Vf(w)—f(m)
Now let z = z¢ and note that ¢(zo) = m we have from (2.4)
/ 1 dw = Zo.
o Vf(w)— f(m)
Making the substitution w = m¢ we then write the above equation as
[ 7=
——=—=dt = zy, (2.5)
o Vg(m,t)
where,
—st __ -3
9(s,t) = 5 [(t2 _1y4 Blsttbe = 26(s + 1)e ] . (2.6)

Next, we will show that the steady state ¢ has only one maximal point. In fact,

let us consider the function F(s) defined by

|
F(s) .=‘/(; —mdt
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Note that

| 1-t o
| 7= i &
and that by Taylor’s expansion
T8 T [a(ge= — 1)+ (B(s — Ve + 1)1 — 1) + 26R(s,8)],  (29)
where,

R(s,t) :==— ;)1-86"(1 —t)2 +s(s+1)e"*(1 —¢t)? i s*(1 —t)*

prd (k + 3)!
2 e 3 S (l—t
(1—¢) }: N
Clearly, for 0 <t <1 and 0 < s <Inpg, we have
[R(s,t)] < K1(1 —t)* + (InB)*(1 —t)%, (2.10)

where, K1 = ;¢! +InB(Inf + 1). Hence, for any 0 < so < In/3, there exists

a constant K, depending on sg, such that < Kforalte [0,1]]and 0 <

s < so. Therefore, the improper integral fo ‘/-_ —~—=dt is uniformly convergent for

0 < s < so. This implies that the function F(s) is continuous for 0 < s < Inf.
9g(e.t

By the same token, we can show that the improper integral _];)1 ‘/% dt is also

uniformly convergent for 0 < s < so, where again, so € [0,1n 3). Hence by Leibniz’s

rule,



Moreover, we have the following.

PROPOSITION 2.1. Let g(s,t) be defined by (2.6). Then

g(s,t)
o5 =0

for any t € [0, 1].
PROOF. In fact, by direct calculation one has

9g(s,t) _ 26T T(s,t)
s ~ d s

where T(s,t) := [—(st+1)2 — et + [(s +1)% + 1] e~*. So it is sufficient to
show that T'(s,t) < 0 for any ¢ € [0, 1]. Note that T(s,1) = 0 and that 2T —

s*t?¢™* > 0, and so we have T(s,t) <0 for ¢ € [0,1]. The proof is complete.

Thus, F(s) is an increasing and continuously differentiable function. Fur-

thermore, one can show the following.

THEOREM 2.2. Let F(s) be defined by (2.7). Then F(s) is increasing and

continuously differentiable for s € [0,1n3). Moreover,

lim F(s) = +oco. (2.11)

s—In 8

PROOF. We just need to show that (2.11) holds. In practice, for any M > 0,

we choose




where, K = ‘/g\/ﬂ+z+zﬂ(§1+un gy5y- Let § =1 ~2(Be™** —1). Then, 0 < 51 <
Inf and 0 < ¢ < 1. Now for any s; < s < Inf, since F(s) is monotone increasing,
we obtain by using (2.8)—(2.10)

F(s) 2 F(s1)

1
=/o \/g(-lﬁat) “

1
:/0 (1 —lt)% V gt‘;i) “

5
2 \/g./c; V1—t/[IB(s1 — 1)e=* +1] i- 1+28(K1 + (InB)?)] (1 ~¢t) “
> [ iy
1

=K21n(m) > M.

Therefore F(s) — +oc as s — In 8. This completes the proof.

The above theorem together with equation (2.5) rules out that the steady
state has more than one maximal point. If on the contrary, there are two maximal
points, say zo and zp, then it is easy to show that ¢(zo) = #(z1) = InB. This
is impossible according to equations (2.5) and (2.11). Therefore, we have the

following corollary.
COROLLARY 2.3. The steady state has only one mazimal point.

So far, we have made it clear that there is a unique maximum satisfying
equation (2.5). Let us still denote by z¢ the unique maximal point. Then, zg = 3
(cf. Allgower (1975)). Therefore according to equation (2.5), one can solve F(s) =
% for the maximum value m. Newton iteration is applied here and the convergence
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of this method is guaranteed since F(s) is monotone increasing for 0 < s < In .
An initial guess is chosen slightly less than In 8. Note that In 8 cannot be an initial
guess.
Since the expression of F(s) is an integration, one needs to evaluate the
integral before engaging in Newton iteration. Note that g(s,1) = 0 and hence
= 1 is a singular point for the integration. Therefore we choose a formula of

Gauss type (c.f. Davis and Rabinowitz (1984), p.179):

' k) 247+ [(2n)1]° oy
/o (1-z)% do = zw"h( =e) + (4n+1)[(4n)!]2h ©-

Here, 0 < £ <1, zp = 1— €2, & is the k** positive zero of the Legendre
polynomial P;,(z) and w?™ is the weight corresponding to & in the rule Gq,, i.e.
a 2n-point interpolation by Gauss rule (c.f. Davis and Rabinowitz (1984), p.97).
To apply this formula we need to rewrite F(s) into (2.8). By using the same

scheme as above, one can also compute

oy = 1 R | 1—t Og(s,t)
Pl = /c;(l-t)i\/ Fen 8
[ 1=t 8g(s,t) _ d 3 _2r__,
t-lirln— g3(s,t) Os —\/[27([%-’—1)] ( d )’

is finite for 0 < s < Ing.

where,

Now for any z € (0,20), let @ = ¢(z). Viewed as a function of a with fixed
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m, equation (2.4) can be rewritten as

G(a) :=

/1 adt —
oV flat) — f(m)

One can also show that for 0 < @ < m, G’(a) > 0. Therefore again, Newton
iteration will be applied. In order to get an ideal initial guess of o, we usually
start with £ < ro near z¢ and hence o is closer to m. On the other hand, since
a < m, the integral has no singular point for ¢ € [0, 1]. Thus we choose Simpson’s

formula (c.f. Davis and Rabinowitz (1984), p.57-p.58) to evaluate the integral.

5.3 NUMERICAL RESULTS

We have proposed an approach to solve two-point boundary problem (1.3).
Although there are many numerical methods in treating two-point boundary prob-
lems together with a well-developed computer solver (see for instance, Allgower
and McCormick (1978), Cash (1986, 1988), Cash and Wright (1990, 1991, 1995),
Duvallet (1990), Jacobs (1990), Jankowski (1991), Kalaba and Spingarn (1977),
Watson and Scott (1987)), however, very few of them are successful in solving
our problems. The difficulties lie in that two solutions (the zero solution and the
positive solution) exist in equation (1.3). We had tried solver TWPBVP, which is
a Fortran program based on the mono-implicit Runge-Kutta formula and an adap-

tive mesh refinement for solving two-point boundary problems (see Cash (1986,
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1988), Cash and Wright (1990, 1991, 1995), and the references therein for details).
Unfortunately, when applied to our equation, this software always ends up with
the zero solution, no matter what ranges of parameters are chosen. We also ap-
plied other methods, for example more straightforward methods like a difference
scheme, but the results are still unsatisfactory. Surprisingly, the proposed methods
in section 2 always work. One should mention the well-known shooting method,
which is expected to be applicable to our problem. It might be a good idea to
compare the shooting method with the proposed methods in section 2. But for
the time being, we just present some numerical examples based on our methods
without comparing with any other methods. Fig 5.1 and Fig 5.2 illustrate that,
for larger B and T, the top of the curves looks like a flat roof. As B and 7 decrease,
the flat roof gradually disappears (see Fig 5.3 and Fig 5.4). Nevertheless, in each

of the figures, there is only one maximum contained within the interval.
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5.4 DISCUSSION ON HOPF BIFURCATION

As we mentioned in section 1, our motivation to study the numerical simu-
lation of a positive steady state is that we desire to determine periodic solutions
bifurcating from that positive steady state. There are very few papers dealing with
the Hopf bifurcation analysis for Dirichlet boundary problems. For the diffusive
Hutchinson equation with Dirichlet boundary conditions, Busenberg and Huang
(1996) prove the existence of a Hopf bifurcation by using perturbation methods
together with the implicit function theorem. Unfortunately, their approach can
not be applied to our case. In what follows, a new idea is presented to solve the
eigenvalue problem.

Recall equations (1.6), the characteristic equation of the linearized equation

about a positive steady state is,

—dthg + (r + A — fre~$=)(1 - qb(x))e"\) % =0,

(4.1)
$(0) = %(1) = 0.
For any A € C, let G(z,y,\) be defined by
sinf(—r=X) ¥ o] sin[(=r-A) 2 (1—y)] for0<z<y<l
_ (—r=A) sin(~r-A) % =Tsi=
G(z,y,)) = (4.2)

sin[(—r~2) % y]sin[(—r—\) 3 (1-2)] for0<y<z<l
(=r=A) sin(—r—2) 3 T T

The function G is known as Green’s function of equations (4.1) (see Coddington

and Levinson (1955), p.192) and equations (4.1) can be rewritten as

1
() = Bre=> /0 G(z,y, \)e=%0 (1 ~ $(y))%(y) dy. (43)
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We are interested in finding non-zero ¥(z) with ¥(0) = ¥(1) = 0, such that (4.3)
possesses pure imaginary eigenvalue A = bi, where b € R¥. Let’s consider (4.3)

together with the constraint

1
1150, = / 2 = 1. (4.4)

We intend to look for b and 4 such that (b,%) £ 0, ie. b % 0 and 0 £ ¥ €

H$(0,1) N H?(0,1). Here is the idea. Let
o == {¢ € H3(0,1) N H*(0,1), |[#llL20,1) =1}-

Choose ¥ € Uy, and then find by € [¥. 7], such that ¢y € Uy, where %, is defined

by (4.3),
¥1(z) = Bre~tof /0 Gz, boi)e =¥ (1 — $(y))bo(y) d.

Following this procedure, one can produce sequences {¢,} and {b,}, where ¢,, €
Uo and b, € [F,n] for each nonnegative integer n. Applying the weak compact
theorem of bounded sequence in reflexive Banach space (see Zeidler (1990), p.255),
we can pick up convergent subsequences and still use {¢,} and {b,} for simplicity,
such that ¥, — ¢ weakly and b,, — b for some ¥ € Uy and b € [5,7]. Moreover in
our case, one can show that this weak convergence results in strong convergence.
Therefore (b,%) is the nontrivial solution to (4.3). Obviously, the key step of
realizing this idea is to prove the existence of {ba}- We will accomplish this task
in the near future.
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Before we end our discussion, let’s derive necessary conditions for the exis-
tence of non-zero solutions of equations (4.3)-(4.4). That is equivalent to finding

necessary conditions for non-zero solutions of

! b
—-%(1 — 2 —_—
or [ - ol + 25 =0, (43)
d| [1[);,,.”2[‘3(0,1) +7+bcoth=0, (4.6)

for ¥ € H3(0,1) N H?(0,1). Notice that [¥zl32¢0,1) = Mll#llE20,1) = A1- Then

equation (4.6) implies
0<7< —bcoth—d)\;. (4.7)
On the other hand, equation (4.5) gives,

b 1
5= [ -

— 3r e~ (b — )wl? e=(é — 1)wl2
=8 [/m G-+ [ e 1)|¢|]

1 1

<pr [ et@-Diwp

<pre® [ 1f

< PBre73,

where, 0° := {z € (0,1), &(z) < 1} and Q° is the complement of 2 in (0,1).

Therefore we have

1 b
T2 GeZsmb (4.8)
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A combination of (4.7) and (4.8) gives

,Bel-2 £5 <1< —bcoth—d\. (4.9)

Here we perceive that >+ b > 0 and that cot b < 0 (see chapter 4 for details). Now

sin

we can conclude following.

THEOREM 4.1. Necessary conditions in order that equation (4.3) has non-

trivial solutions are that fe™2 > 1 and T > 7., where,
Te = —be cot b — d)\q, (4.10)

and b. is the unique solution of

b

m —bcot b —d)\; forbe [1;-,11') . (4.11)

PROOF. Let’s consider two functions

b
) = g

and
g(b) := —bcot b — dA;.

Both functions are monotone increasing for b € [§,x). Notice that

AB) = £(8) = 9(8) = ( oz +cosb) g +
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The existence of nontrivial solutions of (4.3) implies there exists b € [3:7), such
that f(b) < g(b). This implies Be—l_f + cosb < 0. In other words, 8e~2 > 1. Conse-

quently, there always exists b. € [F,n), such that f(b.) — g(b.) = 0, because
T T
and

Jlim (£(b) — g(b)) = —oo.

Moreover, we can show that b. is the unique root of h(b) = 0 in [Z, ). In fact,
without loss of generality, we suppose b, is the smallest one of the zeros of k(b) in
(5, 7), that is, if there is another b;, such that h(b1) =0, then b. < b;. Now, since

h(b.) = 0, we have

1 sin b, 1
—ﬂe—z - b d\; < —‘38—2'

cosb. =

Claim: h(b) is monotone decreasing for b € [r — arccos 3e=7, 7). In fact, since

-ﬂe%f-f—cosb<0 and Lngﬁg.?ﬂ >0forbe [7r-a.rccos-ﬂ71_—5,7r), we have,

sinb — bcos b

h'(b) = —~b + ( + cos b)

sin® b

1
Be~?

Therefore, k() < 0 for b € [b, 7). This implies that b, is the unique zero of h(b)
in [F,7) and also f(b) < g(b) for b € [b., 7). Furthermore, since both f(b) and g(b)
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are increasing, (4.8) implies that

> b be

~ Be~2sinb ~ Be~2sinb. =Te

This completes the proof.

REMARK. This section gives a brief description of solving eigenvalue problems.
Our idea also provides a procedure for a computer to search for pure imaginary
eigenvalues. Hopefully, with aid of a computer, one can investigate Hopf bifurca-
tions. Fortran program BIFDD developed by Hassard (1986) might be applicable
to locate Hopf bifurcation points and to analyze their stabilities, provided that

relatively accurate parameters, such as T and b are available to run the program.
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APPENDIX

SUMMARY OF NICHOLSON’S EXPERIMENTS AND MODELS

A.1 NICHOLSON’S BLOWFLIES EXPERIMENTS

In this section, we will summarize Nicholson’s experiments on the Australian

sheep blowfly Lucilia cuprina (see Nicholson (1954) for details).

EXPERIMENT ONE: Intraspecific Competition

The details of this experiment are described in Nicholson (1948). In the fol-
lowing, we sketch the general ideas and conclusions. In this experiment, Nicholson
uses a number of glass tubes, each of which contains a different number of freshly
hatched Lucilia cuprina larvae, with one gram of homogenized bullock’s brain as
food. Such series of cultures are replicated many times. The number of emerging
adults is then plotted against the number of larvae from which they have been
derived. Let us now look at the figure ( Fig A.1) adopted from Nicholson (1954).

This figure shows that, above a certain critical density, a further increase
in larval density causes not only an increase in the percentage mortality but also

an actual reduction in the number of adults produced from the gram of food
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Fic A.1. Graph from Nicholson (1954, p.18)

consumed. This is because increasing quantities of food are consumed by the in-
creasing number of larvae which fail to mature. Starting at a low density, the
tendency is for a population to grow progressively as long as the percentage of
offspring destroyed by competition equals the percentage which is surplus to that
necessary for the replacement of mature animals when they die. Consequently, the
greater the power of increase (i.e. the ratio of offspring to parents in the absence
of competition effects) the smaller is the number of adults produced from a given
quantity of food at equilibrium. This is clearly shown in the figure, in which the
points indicated by number preceded by the multiplication sign show the equilib-
rium levels of larvae and adults at each power of increase represented by these

numbers. Inspection shows that any departure of density from the equilibrium
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level for any given power of increase (which is assumed to remain constant) leads
to an oscillation about this level; unless the power of increase is less than 2 (in the
example given), when an asymptotic approach to this level results.

This experiment demonstrates the important part played by the wide scatter
in the properties of animals upon the reaction of populations to depletion of their
requisites. Were there no such scatter of properties and opportunit;ies, increasing
density would produce no mortality until the point is passed at which the amount
of food obtained by each individual falls below that necessary for the production

of viable pupae.
EXPERIMENT TWO: Mechanism of Balance

In this experiment, a population is maintained under as nearly constant
conditions as possible. The culture room is held at 25°C, water and sugar for
the adults, and also larval food (to which the adults does not have access), being
provided in excess of requirements at all times. The governing requisite is ground
liver, which is available to the adults alone, and each day 0.5g of this is placed in
the breeding cage. The results of the experiment are graphed (Fig A.2) as follows.

From this figure, Nicholson reads that the outstanding characteristic of the
culture is the maintenance of violent and fairly regular oscillations in the density of
the adult population. It is also observed that significant egg generation occurs only
when the adult population is very low. At higher densities competition amongst
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FiG A.2. Graph from Nicholson (1954, p.21)

the adults for the ground liver is so severe that few or no individuals secure suf-
ficient food to enable them to develop eggs. Normal mortality, therefore, cause
the population to dwindle until the consequent reduced severity of competition
permits some individuals to secure adequate liver and so to lay eggs. The eggs
then generated in due time give rise to new adults, which lead to a rapid increase
in the adult population, and the resultant overcrowding causes virtual cessation
of egg production. A new cycle of oscillation then begins.

The system of balance is often highly oscillatory, simply because animals
commonly take a significant time to grow up, so causing a time lag between stim-
ulus and reaction. During this lag period the stimulus continues to generate more
and more reaction, and this continues to come into operation for a similar lag pe-
riod after reaction has removed the stimulus. As Nicholson explains, if increased
acquisition of food are to cause fully mature adults to come into being immediately
(instead of merely initiating the subsequent production of eggs and the still later
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development of adults ) this prompt reaction will cause the system to be non-
oscillatory. This is because reaction will cause the population first to approach,
and then to maintain the equilibrium density of the species under the prevailing
conditions, this being the density at which production of offspring precisely com-
pensates for the loss of adults by death; for any departure from this level would
immediately bring compensating reaction into play, and this will cease as soon as
the equilibrium density is attained again. This is the balancing mechanism which

holds population density in general relation to the prevailing conditions.

To show that the general density level has relation to the environment,
Nicholson does many other experiments. By adjusting supplies of ground liver,
he finds that average density is almost precisely proportional to the supply of the
governing requisite. Furthermore, by a series of experiments testing other gov-
erning factors, Nicholson concludes that the governing reaction does not merely
operate to oppose any departures of population from its equilibrium density, but
also enables populations to adjust themselves to withstand very great environmen-
tal stresses (particularly when their inherent reproductive capacity is high), and
to maintain themselves in a state of balance under widely different environmental
conditions. Moreover, the reduction in density which adverse factors produced as
a primary effect is always opposed by compensatory reaction, being lessened, or
even converted into an increase in density, when the population adjusts itself to

the continued operation of the adverse factor.
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A.2 BLOWFLIES MODELLING

Based on Nicholson’s experimental data, several models have been proposed
so as to fit these data. For example, May (1976) simulate one of Nicholson’s

experiments using a form of the Nicholson-Bailey equation with time delay,

dN(t)
dt

=TN[1_M]

K

(see also Readshaw and Cuff (1980) for an alternative modelling). Here, we are only
interested in presenting the mathematical model developed by Gurney, Blythe, and
Nisbet (1980). Their model agrees with Nicholson’s data better than that of May

(1976) and Readshaw and Cuff (1980). They start with the Malthusian law

%]t! =R-D, (A.2.1)
where R is the rate of recruitment to the adult population and D the total adult
death rate. Usually, D = §N where § is a constant independent of N. Before
depicting R further, they assume the following.

(H1) The rate at which eggs are produced depends only on the current size of the
adult population.

(H2) All eggs which develop into sexually mature adults take exactly Ty time units
to do so.

(H3) The probability of a given egg maturing into a viable adult depends only on

the number of competitors of the same age.
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These assumptions imply that the rate of recruitment at time ¢ can only be a

function of the size of the adult population at time ¢ — T}, i.e.
R =R(N(t -Tu))

Moreover, they explain the appropriate choice of an algebraic form of R(N). Ac-
cording to Nicholson;s experiments, egg to adult survival may reasonably be ex-
pected to be density independent, so that the rate of adult recruitment at time ¢
will be directly proportional to the rate at which eggs were being laid at time t—7T}.
Secondly, it seems to suppose that, in the presence of excess food, the total rate at
which eggs are produced by a population of N adults will be directly proportional
to V. However, when food is supplied at a limited rate, intraspecific competition
will clearly act to reduce the average per capital fecundity of the members of large
populations to well below its physiological saturation value. Therefore, any plau-
sible functional form for R(/V) must go to zero as N becomes either very large or
very small. In addition, it seems likely that most recruitment curves will display
a single maximum (see Fig A.1) at an intermediate population whose size is de-
termined by the available resources. They therefore chose to represent R(N) by a

simple function which displays all these properties
R(N) = PNe~N/No

where, P is the maximum possible per capita egg production rate (corrected for
egg to adult survival) and Ny is the population size at which the population as a
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whole achieves maximum reproductive success.

Equation (A.2.1) therefore becomes into

dN(t)
dt

= PN(t — Ty)e~N¢-Ta)/No _ sN(2) (A.2.2)

This model is in fact conceals a wealth of complexity as well as provides a clear un-
derstanding of Nicholson'’s observation. Comparing the following graph (Fig A.3)
based on the numerical simulation of the equation (A.2.2) with the experimental
results (Fig A.2), one sees that this model provides a satisfying qualitative fit to

Nicholson’s blowflies data.

A.3 COLLECTION OF MATHEMATICAL RESULTS

In this section, we will collect, to the extent of availability, those mathemat-

ical results about the Nicholson’s blowflies equation in the form of

N(t) = —6N(t) + PN(t ~1)e~*Nt=7)  fort >0,
(A.3.1)

N(6) = Ny(6), for § € [—,0].
There are three categories of theoretical results in this equation: attractivity (or
stability); oscillation; and periodicity. It is well-known that periodic solutions of
delayed differential equation are well considered by mathematicians in the studies
of dynamical systems, but there are no specific contribution to (A.3.1). Kulenovic

and Ladas (1987) give a sufficient condition for which the solutions of (A.3.1)
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Fic A.3. Graph from Gurney et al (1980, p.21).

oscillate. More precisely,
THEOREM A.3.1. Assume that

and that



Then the solution N(t) of (A.3.1) oscillates about its positive equilibrium state

N*:=Lin(£). Furthermore, If (A.8.2) is replaced by the condition

2>, (A3.4)

then N(t) oscillates about N* if and only if (A.3.8) holds.

Global attractivities of the nonnegative equilibria have been attracting more
researchers who provide varieties of conditions when this simple global dynamics
takes place. The following theorem is due to So and Yu (1994), giving a condition

under which the zero solution is a global attractor.

THEOREM A.3.2. Assume

0< ? <1, (A.3.5)
then the solution N(t) of (A.8.1) tends to zero as t — oc.
As So and Yu (1994) point out, when
-? > 1, (A.3.6)

then the zero solution no longer attracts any nontrivial solution. Instead, the

positive equilibrium should be considered.

THEOREM A.3.3. Assume that (A.5.6) holds and that

(e’ — 1)(%3- -1)<1. (A.3.7)
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Let No € C([-7O0];R*) with No(0) > 0 and let N(t) be the unique solution of

equation (A.3.1). Then lim¢, oo N(t) = N*.

THEOREM A.3.4. Assume that (A.3.6) holds and that

(e®" - 1)In (-?) <1 (A.3.8)

Then any non-trivial solution N(t) of (A.3.1) satisfies lim;—,oo N(t) = N*.

Theorem A.3.3 is due to Kulenovic, Ladas, and Sficas (1992), while Theorem
A.3.4 is one of the contributions from So and Yu (1994) . Evidently, condition
(A.3.8) is an improvement over condition (A.3.7) since In (%) <Ef_1for 7? > 1.

Along the same vein, further progress is made recently by Li (1996).

THEOREM A.3.5. Assume that (A.3.6) holds and that one of the following

three conditions is satisfied :

(8T —1)In (?) <1, (A.3.8)
P 1 vV5—-1
sr __ il _ *
(e l)ln(J)<1+aN" and aN* > 5 (A.3.9)
(e"—l)ln(%i)ﬁl-{-%, and aN* > 1+t\/§—1.
¢ < (A.3.10)

Then, the positive equilibrium N* of (A.8.1) is a global attractor.

For these three theorems of attractivity, the general idea of the proofs is
similar. Distinguished from this approach, geometrical (or topological) methods
and monotone method provide us different way. Using the limiting equation theory,

Karakostas, Philos, and Sficas (1992) obtain the following theorem.

166



THEOREM A.3.6. If the condition

1< -?— <e? (A.3.11)

is satisfied, then N* is uniformly stable. Also, if

1< ? <e, ’ (A.3.12)

then N* is uniformly asymptotically stable.
More than that, Kuang (1992) claims that the following conclusion.

THEOREM A.3.7. Assume that (A.8.11) holds. Then the unique positive

steady state of (A.8.1) is absolutely globally asymptotically stable.

As we know in the case of (A.3.12), equation (A.3.1) is a monotone dynamical

system. Smith (1995) therefore concludes as follows:

THEOREM A.3.8. If % < 1, then the trivial solution of (A.3.1) attracts all
other solutions. If1 < % < e, the nontrivial equilibrium N* attracts all nontrivial

solutions of (A.5.1).

In the case of (A.3.2), however, the system (A.3.1) is not quasimonotone any
longer. Exponential ordering is introduced by Smith and Thieme (1990). Along

this approach, another criterion is followed (see Smith (1995) for the proof).

THEOREM A.3.9. If (A.3.2), Pr < €? and Pr < €'¥97 then the positive
equilibrium attracts all nontrivial solutions of (A.8.1) .
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REMARK. We have presented all the results related to the Nicholson’s blowflies
equation, from Nicholson’s creative experiments to the modelling equation by Gur-
ney et al, and then to the mathematical analysis of this equation for the varieties
of dynamics by many researchers. Mathematically, the above listed theorems con-
clude that the zero solution and the positive equilibrium are global attractors in
the cases of (A35) and (A.3.11) respectively, without any restriction imposed on
the time delay. In the case of (A.3.4), one may ask what is the sharpest condition
for 7 such that global attractivity of the positive equilibrium is guaranteed? This
condition should exist. In fact, it follows from Theorem A.3.3, for example, that
the positive steady state is a global attractor at least for small time delay 7. On
the other hand, one can claim stable periodic solutions for large T, following a sim-
ilar procedure as in chapter 3 in this thesis. Therefore, the positive equilibrium
loses its attractivity and hence there exists a critical condition for = which drives
the positive equilibrium to change from global attractivity to local stability or to

instability (and then stable periodic solutions arise).
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