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Abstract 

This thesis work is divided into three parts. The first part presents a new local 

binocular stereo algorithm which takes into consideration plane fitting at the per-

pixel level. By dropping the fronto-parallel assumption for aggregation window 

selection, the pre-computed plane orientation for each pixel is used to guide the 

adaptive weight cost aggregation in the 3D cost volume. The second part uses 

CUDA programming language to fully harness the prowess of GPUs and achieve 

near real-time performance for the compute-intensive adaptive support weight 

cost aggregation method. The last part explores the multi-view camera setup, 

combines the adaptive support weight idea with parzen-window based photo-

consistency metric to get a local occlusion robust stereo algorithm. A simplified 

real-time GPU version is also implemented. The experimental results for all three 

parts are very encouraging. 
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Chapter 1: Introduction 

Computational stereo is generally defined as the recovery of the three dimensional 

characteristics of a scene from multiple images taken from different points of 

view. It has been an intense area of research for decades in the computer vision 

community. 

Several survey papers published along the track of stereo vision research have 

marked the developments and propelled the progress in computational stereo 

research. Barnard and Fischler [1] surveyed existing approaches and ongoing 

stereo projects at that time, which identifies functional components of the 

computational stereo paradigm and criteria for performance evaluation. Dhond 

and Aggarawal [9] published their review work in 1989 to sum up major 

developments within a decade. A collection of new matching methods, several 

popular theories that adopted in stereo vision, a hierarchical processing model, 

and the use of trinocular constraints to reduce ambiguity in stereo, are among 

things that appear in the paper. From that point on, stereo research has matured, 

and according to [3], "much of the community's focus has turned from general 

stereo matching into more specific problems". Occlusion and transparency issues 

in stereo matching, active and dynamic stereo, and real-time stereo 

implementations are some of the categories that are pursued after the 90s. 

Scharstein and Szeliski in their paper published in 2002 [34] not only summarizes 

many well-known matching methods emerged throughout the time but also 

proposes an in-depth taxonomy of all genres of methods. They also provide a 

testbed online that researchers can evaluate their methods against others easily. 
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This unified way of evaluation further intensifies the research in computational 

stereo vision. 

Stereo correspondences can be determined in a number of ways and 

constrained by a plethora of constraints. But in general, all methods attempt to 

match pixels from one image with their corresponding pixels in another image. 

Local stereo methods and global stereo methods, as categorized by Scharstein and 

Szeliski, use different models to find the correspondence [34]. Local stereo 

methods use constraints on a small number of pixels surrounding the pixel of 

interest, hence the name local. On the other hand, methods that seek to meet 

constraints from a global perspective are referred to as global methods. Local 

methods, with its limited order of constraints, are generally more efficient, but 

suffer from locally ambiguous regions like occlusions, low-textured regions, or 

other kind of image noise. These limitations are widely recognized [34] [3] [47], 

but there is still progress every year in pushing the limit of local stereo algorithms, 

either to achieve better quality or to get better speed. 

This thesis focuses on both ends of the research interests for local stereo 

matching. First a new local stereo algorithm is developed that aims for finer 

reconstruction result and achieves accuracy comparable to several complex global 

stereo algorithms. Then in the pursuit of speed, the newest tool for harnessing the 

graphics hardware power - CUDA - is exploited to implement the top-notch local 

stereo algorithm on GPU for near real time performance. Last but not least, a new 

occlusion-handling multi-view stereo algorithm is developed, which is based on 

local constraints and is implemented on GPU to achieve real-time performance at 

the trade-off of little reconstruction quality loss. 

The rest of this thesis is organized as follows. Relevant works and necessary 

background knowledge in fields of stereo matching, more details on local stereo 

algorithms and multi-view stereo algorithm, and general purpose computation on 

GPUs are discussed in Chapter 2. Chapter 3 presents a new local stereo algorithm, 
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capable of producing high quality disparity maps with subpixel accuracy. A GPU 

powered real-time implementation of the best local stereo algorithm is discussed 

in Chapter 4. A novel multi-view stereo algorithm which strives both for quality 

and speed is introduced in Chapter 5. Finally, Chapter 6 concludes the thesis and 

discusses possible venues for future improvements. 
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Chapter 2: 

Background and Related Works 

The goal of this chapter provides the background materials, which the research 

performed in this thesis is based on. The most basic questions are described in 

Section 2.1: 1) What is the stereo matching problem? and 2) What is the 

computational model adopted for stereo matching in computer vision? A brief 

summary of popular stereo matching algorithms as well as some commonly used 

representations and terminologies is also given. 

In the next section, a synopsis of existing local stereo algorithms is presented. 

The main focus of this thesis is to improve both the quality and speed of a local 

stereo algorithm. Since the adaptive support weight cost aggregation method plays 

an essential role in this work, a detailed analysis of it is also given. Section 2.3 

gives a brief overview of multi-view stereo algorithms. 

Finally, GPGPU (General Purpose Graphics Processing Unit) and CUDA 

(Compute Unified Device Architecture) are presented. The use of GPU brings 

real-time performance to many local stereo algorithms, and CUDA provides 

flexibility and ease of use to GPGPU programming. 

2.1 Overview of the Stereo Matching Problem 

The parallel alignment of the human eyes and their close proximity to each other 

ensure that the brain receives two similar pictures from two nearby viewpoints at 
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the same horizontal level. Far away objects will have small relative displacements 

while nearby objects large displacements between images observed in the left and 

right eyes. This is depicted in Figure 2.1, where the eyes are represented by a pair 

of cameras. The observed orange sphere, which is farther away from both cameras 

than the green sphere, has a smaller relative displacement than the observed green 

sphere in the two pictures. The displacement of image locations of an object seen 

by the left and right eyes is referred to as the binocular disparity. Our brain can 

use binocular disparities by looking at both images to decide their relative 

distances. 

Figure 2.1: The binocular stereo scenario. (Courtesy of Arne Nordmann.) 

The human vision system does not give accurate or complete 3D information. 

Instead, it can decide only the depth information of objects that are visible. As a 

result, information reconstructed in this way is referred to as 2 -D primal sketch 

i 
in the pioneering computer vision works by Marr and Nishihara [23]. This 2-D 

perception system gives us the sense of depth in the environment we are in, and 

hence enables us to avoid stumbling over a rock or running into a wall, to grab a 

cup of coffee knowing how far our hand has to reach out, and to do many other 

visual tasks we are capable of. When designing a robot, a vision system with 

similar features is often desired. This is where the stereo matching problem comes 

into play. 
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The goal of stereo matching is to match object surface features over two or 

more images acquired from different viewpoints. After corresponding features are 

matched, their relative distances or equivalently disparities can then be 

determined. The stereo matching problem with two input images - the counterpart 

of the human vision system - is called binocular stereo. Marr and Poggio in 

another early vision work [24] suggest three basic steps in computing binocular 

stereo disparity: 

• A particular location on a surface in the scene must be selected from one 

image; 

• The location that corresponds to the same physical point must be identified in 

the other image; 

• The disparity in the two corresponding image points can then be computed. 

The search space in step [b] can be greatly reduced by using epipolar geometry 

described in the following. General position epipolar geometry is illustrated in 

Figure 2.2. Two pin-hole cameras have their optical centers at 0L and 0R 

respectively. Each camera has an image plane coloured in light blue. The line 

connecting 0L and 0R is called the baseline. X is a scene point observed by both 

cameras at pixel location XL and XR respectively. The plane defined by X, 0L and 

0R is denoted as the epipolar plane. The intersecting line between the epipolar 

plane and either image plane is called the epipolar line. Suppose we are searching 

for the matching point of XL in the right image. With all of its possible 

corresponding scene points lining up in the direction ofOLXL (Xt, X2,X3, and the 

real scene point X, to list a few), their projected locations in the right image plane 

lie on the epipolar line eRXR. Thus, it is sufficient to search for the best match 

along the epipolar line. 
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Figure 2.2: Epipolar geometry. (Courtesy of Arne Nordmann.) 

The rectified camera setup is simpler than a general position one and is 

commonly adopted in many stereo vision researches. As depicted in Figure 2.3, 

two image planes A and B are arranged so that they are coplanar and collinear on 

every scanline. By doing that the epipolar lines are parallel to the baseline, and 

when searching for correspondences the traversal goes along the corresponding 

scanlines in both images, as depicted by lines 11 and 12 in the right illustration of 

Figure 2.3. Disparity, in this scenario, is defined as the shift of pixels of the 

corresponding pixels along the same y coordinate in the two input images. 

'—"WKr TWP l— <1 

w * 12 

Figure 2.3: Epipolar geometry with rectified cameras. (Courtesy of Arne 
Nordmann.) 

Scharstein and Szeliski use this rectified setup in their popular testbed for 

dense two-frame stereo correspondence algorithms in the Middlebury Stereo 

Vision Page [26]. Figure 2.4 is one example dataset adpoted by them. With the 

jjgSffll 

• B 

w 
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rectified left and right view inputs, for every pixel pref in the left image (or the 

reference image), it has a corresponding match on the same scanline in the right 

image(or the target image). Then at the same pixel location as pref in the 

disparity result image, the disparity value between the pair of matched pixels is 

stored with a proper scaling factor for display purposes. Researchers can evaluate 

their algorithms by comparing their own results with the provided ground truth 

and by counting the number of incorrectly labeled pixels. 

| •» Left View [• |— Right View 

p^ Ground Truth j 

Figure 2.4: The Tsukuba dataset used in Middlebury Stereo Vision Page. 

The workflow proposed by Marr and Poggio is rather abstract and does not 

address issues from the computational viewpoint. An up-to-date and detailed 

computational model for stereo computation has recently been proposed by 

Scharstein and Szeliski in their taxonomy paper [34]. Based on their taxonomy, 

most stereo algorithms perform the following four steps or at least a subset of 

them: 
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• Matching cost computation. For every pixel pref from the reference image, a 

search goes along its epipolar line in the target image and compares the pixel 

intensities between pref and Ptarget a* e a c n disparity sampling level. The 

comparison is done with a matching cost function, which decides how well 

the two pixels match; and a smaller matching cost indicates a better match. 

The sum of squared differences of intensity values in the red (R), green (G), 

and blue (B) channels of a pixel pair is one example of matching cost 

functions. The computed matching cost is then encoded in a 3D cost volume 

C{x,y,d), where (x,y) are the coordinates of the reference image and d is 

the disparity value. Costs for all the pixels at a certain disparity level d are 

stored in the same 2D slice and the whole disparity range makes up the third 

dimension of the cost volume. 

• Matching cost (support) aggregation. The quality of single pixel matching 

cost can be compromised by noise from various sources. So summing up 

costs over a neighbourhood can help improve the reliability of the matching 

cost. The set of neighbour pixels with which to compute the matching cost is 

denoted as the support. The simplest support is a square window of a fixed 

size. 

• Disparity computation/optimization. With the generated and refined cost 

volume, the best correspondences between the reference image pixels and the 

target image pixels can now be decided. In a local stereo algorithm, the 

emphasis is on the matching cost computation and the aggregation steps, and 

a simple winner-take-all disparity selection scheme is used. In contrast, a 

global approach places more importance in the disparity selection scheme, 

and many techniques can be used to seek globally optimal disparity choices. 

• Disparity refinement. The obtained disparity map then goes through post­

processing, such as smoothing, cross-checking, and localizing/refining object 

edges, to refine the final disparity map. 

On a more detailed note, most global optimization based methods minimizes 

an energy function as suggested in [34]: 
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E(dmap) = Edata{dmap) + AEsmooth(dmap) 

(2.1) 

The data term Edata(dmap) measures how well the disparity function dmap 

agrees with the input image pair. The smoothness term Esmooth (dmap) encodes 

the smoothness of the solution surface. It is usually done by measuring the 

differences between neighbour pixels' disparities. Once this global energy 

function is defined, the stereo matching problem is transformed into an energy 

minimization problem. A variety of algorithms can be used to solve equation (2.1), 

e.g., the belief propagation [20] [50] [41] based methods yield results of the best 

quality; the graph-cuts based methods are also studied heavily [21] [46]; the 

dynamic programming based methods are also very popular [6] [7] [37] [13], but 

the energy minimization is mostly achieved per scan-line rather than globally over 

the whole image. 

2.2 Review of Local Stereo Matching Algorithms 

Global optimization based algorithms has been the dominant approach when the 

disparity map quality is more concerned. However, the energy minimization 

framework is computationally intensive and difficult to parallelize, and hence 

there is room for improvements for local stereo matching algorithms. Indeed, 

local algorithms are intrinsically parallel. Hence, they can be implemented on 

current programmable graphics or customized hardware, and thus are widely used 

in real-time vision applications. This nice feature keeps research on local stereo 

approaches worthwhile and active. 

Out of the four steps described in the previous section, matching cost 

aggregation is the most crucial part. As for the matching cost computation step, 

the squared difference is a legitimate choice that performs well under most 

circumstances, according to Neilson's benchmarking paper [28] on different 

matching cost functions. Since most of the local stereo algorithms use the same 
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winner-take-all disparity computation routine, the module that really sets these 

algorithms apart is in the matching cost aggregation step. 

The cost aggregation step basically tries to update every entry in the cost 

volume based on cost values within its local support regions. How to select the 

support region varies from approach to approach. The simplest idea is to assume 

that the neighbourhood will hold the same disparity value with the pixel-of-

interest p and the sum over a fixed size square window at each disparity 

hypothesis d is used to update the cost volume entry C(xp,yv, d). This method 

adopts the smoothness assumption as stated in [24]: disparity varies smoothly 

almost everywhere, since only a small fraction of the image is composed of 

boundaries that are discontinuous in depth. However, this aggregation scheme 

will fail to work at discontinuities. Another setback is that the window size is 

always hard to decide. As noted by Barnard and Fishier [1], if the window is too 

small or does not cover enough intensity variation then the disparity estimate does 

not improve much. On the other hand, if the window is too large, there is a bigger 

chance for depth discontinuities to present within the window, which violates the 

smoothness assumption. 

2.2.1 Cost Aggregation on Rectangular Windows 

Knowing the disadvantages of cost aggregation with square window of a fixed 

size, researchers have been working on developing more effective adaptive 

support cost aggregation methods for decades. In an early attempt by Kanade and 

Okutomi [18], the aggregation window is determined iteratively and has a 

rectangular shape. Based on the disparity result from the previous pass, the 

window grows along four directions, i.e. +x, -x, +y, and -y, to minimize the 

effects of variation of intensity and disparity. Their method is highly dependent on 

the initial disparity estimation and is computationally expensive. 
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Geiger et al. [15] stay away from the iterative approach by evaluating two pre­

defined windows — one finds the pixel-of-interest on the left border of the 

window while the other on the right border; the candidate with a better measure is 

chosen. This idea is later extended by Bobick and Intille [2] and others [5] [14] 

into the shiftable window method, which considers multiple square windows 

centered at different locations as depicted in Figure 2.5 and selects the one with 

the smallest average cost. The pixel coloured black is the pixel of interest, so by 

varying the position within the aggregation window it can adapt to different 

boundary situations. However, the proper size of the pre-defined windows still 

remains a problem. 

^ ": 

1 -
i 

__*_ 

• 

._ 

.. 

Figure 2.5: Predefined window set in shiftable window method. 

The above methods all use rectangular aggregation windows. They are 

computationally efficient and hence can be incorporated into any existing stereo 

framework. However, since they do not adapt to local characteristics of the data 

well, the performance improvement is minimal. 

2.2.2 Cost Aggregation with Unconstrained Shapes 

To overcome the limitations of rectangular aggregation window, aggregation 

windows with unconstrained shapes are proposed to better adapt to scene data. 

One idea is to employ colour segmentation because in many circumstances depth 
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discontinuity boundaries in a scene also appear as colour discontinuity boundaries 

[42]. With segmentation information, the aggregation windows can be 

appropriately selected so that their boundaries will not extend beyond a colour 

segment. However this approach is not suitable for real-time implementations 

because colour segmentation itself takes too much time. 

A more efficient alternative is to use edge information instead of segmentation 

information to guide the adaptive window selection [17]. For efficiency 

consideration, the aggregation process is separated into a horizontal pass and a 

vertical pass; and in each pass, the locations of colour discontinuities in the 

horizontal or vertical ID aggregation window determine how each pixel in the 

window contributes to cost aggregation. 

2.2.3 Cost Aggregation with Adaptive Support Weight 

The adaptive support weight (ASW) cost aggregation method addresses the 

problem of window shape from a different angle. When aggregating the matching 

cost for a pixel-of-interest p, no clear-cut decision of inclusion or exclusion of a 

neighbour pixel p' in the support region is required. Instead, a weight is assigned 

top' indicating how confident it is to integrate;?' during the aggregation process. 

The concept of using weights makes the support region adapt to the data even 

though the actual support region is a square window of a fixed size. 

The first attempt along this direction is proposed in the paper by Xu et al. [49]. 

In determining the weight for a neighbour pixel within the support region, three 

cues are used: 1) certainty based on the variance of the error function, 2) colour, 

and 3) disparity distribution correlation. 

The work done by Yoon and Kweon [52] propose a more elegant way to 

construct the support weight. The support weight for each pixel in the support 

region is calculated based on the Gestalt Principles, which state that the grouping 
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of pixels should be based on spatial proximity and chromatic similarity. The 

original formula proposed is given as follows: 

, N i i ^u,v,m,n , ^9u,v,m,r\ 
w(u, v, m, n) = exp — h • Ya 

(2.2) 

„ /w(u, v,m,ri) • w'(u, v,m,nri)\ 
Lm,ne[-r,r]{ • C(u + m,V + n,d) ) AC{u,v,d)= * C(u + m,v + n,d) 
T,m,ne[-r,r] w(u> v> m>n) 'W(u, V, m, n, d) 

(2.3) 

where (u, v) is the pixel of interest; (m, n) is the pixel offset within the local 

aggregation window; w(u,v,m,ri) represents the weight of neighbour pixel 

(u + m, v + n); d is the disparity hypothesis; ^ c u v m n is the colour difference 

between pixel (u,v) and (u + m,v + ri); Aquvmn is the Euclidean distance 

between pixel (u, v) and (u + m, v + n), C(u, v, d) holds the initial matching 

cost between pixel (u, v) in the left image and (u — d, v) in the right image; yc 

and yq are user defined parameters; AC(u,v,d) is the aggregated cost for 

assigning disparity value hypothesis d to pixel (if, v). The support-weight idea is 

illustrated in Figure 2.6. The image patch on the left side shows the square 

support region, and the grayscale image on the right side shows the computed 

weights with a larger gray level to depict a higher weight. The pixel of interest 

lies in the lamp arm junction, so the weights suggest that a major part of the lamp 

arm and lampshade will contribute significantly in the cost aggregation step. 

Figure 2.6: An example of weight computation in ASW. 
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Even with the naive winner-take-all disparity computation module, ASW gives 

results comparable to many state-of-the-art global optimization methods, as 

ranked in the Middlebury stereo vision site [26]. In fact, a majority part of this 

thesis work is inspired by this approach. 

Nevertheless, some drawbacks are still present with ASW. Tombari et al. [44] 

show that the cue of proximity cannot adapt well along depth borders, in low-

textured or high-textured regions, regions, or with repetitive patterns. They 

propose to incorporate the proximity cue with segmentation information so that 

colour-spatial connectivity can be more efficiently exploited. According to their 

method, the full support weights are assigned to neighbour pixels lying within the 

same segment. Their modified weight generation equation is given as: 

{1.0, if Seg(u, v) = Seg(u + m,v + ri) 
( (&cu,v,m,n , ^9u,v,m,n\\ „, 

exp — 1 , otherwise 
V V Yc Yg J J 

(2.4) 

Another concern lies in the high computational cost of ASW, as the local 

support window has to be large enough to effectively encode the neighbourhood 

information; the suggested window is of size 35 X 35. Some efforts have been 

made to accommodate this, e.g. in [16] [47], the algorithm is simplified by 

separating the 2D square cost aggregation calculation into two passes, the first 

pass along the vertical scan-line and the second along the horizontal scan-line. 

Their formulation is as follows: 

„,, ,N Yi
r
m=vw{u,v,m,Qi)-C{u + m,v,d) 

T(u, v, d) = == z rr 
Lm=mW{u,v,m,0) 

YIn=v, w(u, v, 0, n) • T(u, v + n, d) 

(2.6) 

AC(u,v,d) = 
lLrn=v+w(u>v'Q>n~) 

(2.5) 
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The weights for pixels not on the x and y axes of the aggregation window are 

approximated using the product of the weights of pixels that are on the axes. This 

approximation results in a loss of accuracy in the generated cost volume. 

2.3 Overview of Multi-view Stereo Matching 

As it is generally recognized, using more cameras in stereo can substantially 

improve the quality of reconstructed depth information because more information 

is available. For example, multi-view stereo algorithms can deal with the noise 

problem better than traditional two-camera stereo algorithms and are more robust 

against occlusion. As summarized by Seitz et al. [35] in their survey, given the 

dense sampling of a scene, the best current multi-view methods use non-linear 

energy minimization along with visibility handling and silhouette constraints to 

reconstruct the 3D model. 

A major problem that multi-view stereo algorithms face is on how to handle 

visibilities using multiple images. Due to occlusion, for a certain pixel in the 

reference view, not all the cameras can see the corresponding physical point in the 

scene. Therefore, to obtain the optimal disparity map, the matching cost 

calculation should exclude the cameras that cannot see the corresponding physical 

point. Seitz et al. [35] classify multi-view stereo algorithms into two categories 

with respect to visibility handling: geometry-based and outlier-based. 

Geometry-based methods need an approximate geometry of the scene or some 

special assumptions of camera setup to estimate the visibility of a pixel. The voxel 

colouring method [36] assumes the convex-hull camera setup which means that 

the occlusion ordering of points in the scene is the same for all the cameras. By 

evaluating scene points in a near-to-far manner, farther scene points are rejected 

when they are occluded by validated nearer scene points. Therefore the visibility 

problem is automatically addressed. This approach leads to a number of plane-

sweeping algorithms. For example, techniques by Drouin [10] [11] use an 
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iterative approach to compute the approximate geometry of the scene and use it to 

guide the visibility handling in subsequent iterations. Approaches presented by 

Kutulakos and Seitz [22] along with the works by Sinha and Pollefeys [40] use 

approximate geometric reasoning (such as visual hull) to infer visibility 

relationships. This category of algorithms may not work well in a sparsely 

sampled scene as it is difficult to find a good initial estimate, so the benefits of 

geometry information may not be realized. 

The outlier-based approaches do not require information on scene geometry 

explicitly. For a particular pixel, only cameras with a better chance of seeing its 

corresponding physical point are chosen and others rejected. Another nice feature 

of these techniques is that image noise or the presence of highlight can be treated 

in a similar fashion as outliers, which are rejected before merging. An early multi-

view stereo system proposed by Nakamura et al. [27] uses some pre-defined 

visibility masks in their camera array configuration. For a pixel with a given 

disparity hypothesis, different predefined visibility masks are evaluated and the 

best mask is selected for that pixel-disparity combination. Kang et al. [19] choose 

the left or the right half reference cameras in their linear camera array setup; 

another variant they propose is to use the best half of all reference cameras based 

on the matching scores. These heuristic outlier-based approaches generally do not 

give consistently convincing results. 

Vogiatzis et al. [46] recently present a multi-view algorithm that does not 

require explicit visibility handling. Instead, an occlusion robust photo-consistency 

metric is adopted. Photo consistency checking refers to the process of comparing 

pixels in one image to pixels in other images to see how well they correlate. The 

variance of the projected pixels from the reference image into the target images is 

indicative of how well this projection reflects the real depth of the scene point. 

For any optic ray r that goes through certain camera's optic center and intersects 

with a 3D scene point x, the photo-consistency scores can be computed along r 

with all the other cameras. Then the searching for x along r is regarded as a 
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process of robust model fitting to data containing outliers, which can be caused by 

occlusion, noise, lack of textures or specular highlights. Their encouraging 

experimental results suggest the effectiveness of their methods and motivate us to 

follow their direction and develop a new sparse multi-view cost volume merging 

approach as described in Chapter 5. 

2.4 Hardware Acceleration 

GPGPU stands for General Purpose Graphics Processing Unit. While GPUs were 

originally introduced to unload rasterization-based rendering computations from 

the CPUs, the graphics hardware industry has made leaps and bounds to 

overachieve this goal. The most recent GPU chips bear over 400-Gflops 

computational power, and can be programmed to run SIMD (single instruction 

multiple data) parallel computations. Therefore they are perfect platforms to 

implement data parallel applications. 

2.4.1 GPU Architecture and GPGPU 

The older generations of GPUs were not programmable but hard-wired graphics 

pipelines. Typically, triangle vertices are transformed, lit, and rasterized into 

pixels. Then each pixel is shaded with specified lighting and effects, e.g., diffuse 

lighting, specular exponentiation, fog blending, and frame-buffer blending. 

Besides defining the scene data input and tweaking with API input parameters, 

programmers did not have much control over the rendering process. As shown in 

Figure 2.7, the pipeline is broken down into the following stages: 

• Application: This stage provides high-level control to the CPU. It is 

responsible for passing down the 3D geometry primitives in the form of 

vertex coordinates, marshalling textures, as well as other organizational 

works. 
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• Vertex Transformation: This stage does the vertex position transformation, 

lighting computations per vertex, along with generation and transformation of 

texture coordinates. 

• Rasterization: The transformed 3D primitives are rasterized into fragments 

and mapped to the image plane pixels here, with proper depth information 

computed. The interpolated values for each fragment sent down from the 

vertex transformation stage also have to be computed. 

• Fragment Processing: The final colour for each fragment or pixel is decided 

in this stage. Besides the interpolated values computed in the rasterization 

stage, texel calculation, and all other effects that contribute to the final pixel 

colour is applied here. 

• Output: All the fragments sent down the pipeline go through depth test, alpha 

test, and a series of other tests to decide the final pixel information for the 

display. 

Application 

l 
Vertex Transformation 

II -4 
Rasterization " r 

Fragment Processing 

Output 

4 -
Display 

Figure 2.7: A simplified model of a programmable graphics pipeline. 

The introduction of programmable graphics pipeline opens a new era of 

computation not only in computer graphics but also in other areas as well, in 

particular, computer vision. Each of the operations originally performed in a hard­

wired pipeline is now abstracted by its component memory access and 

mathematical operations. Programmers have the freedom to explicitly define the 
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functionality of vertex transformation and fragment processing engines based on 

their needs. The redefined engines can either perform exactly how the hardwired 

pipeline does or do much more by using customized shader programs, which are 

programs for controlling the GPUs. A simple example is to include the per-pixel 

lighting in fragment processing using a fragment shader program. 

To adopt this architecture in a general purpose computation, a GPU is often 

regarded as a stream processor [4]. In the stream processing model, a stream is a 

collection of records requiring similar computation while kernels are processing 

functions applied to each element in the stream. A stream processor executes a 

kernel over all the elements of the input stream, placing the results into an output 

stream. Hence the mapping from the GPU resource onto the stream processing 

model is intuitive: encode input streams into textures, use fragment program to 

execute kernel computations, and store the output stream in an output frame 

buffer. Figure 2.8 shows how it is done in practice. With the high level graphics 

API, the GPGPU application defines a screen sized quad as the only primitive to 

be 'drawn'; the data marshalling stage is where all input data are assembled into 

textures; then data distribution is automatically achieved by the rasterization 

hardware; the execution of kernels written in fragment programs follows; finally 

the result is written back into the frame buffer. 

GPGPU has been extensively exploited by many compute-intensive and data 

parallel projects, such as image processing [12], video encoding and decoding 

[39], as well as stereo matching [13] [16] [47] [48]. If a GPU - the parallel 

processing powerhouse - is fully harnessed, one can see tens or even hundreds of 

times of speed-up over the corresponding CPU counterparts. 
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Figure 2.8: Stream processing model with GPU architecture. 

2.4.2 CUDA 

GPGPU programming with graphics APIs like OpenGL and DirectX can simplify 

the use of GPU, but there are still limitations as noted in [30]. First, graphics APIs 

impose a high-learning curve for non-graphics users and also incur overhead 

when the application is wrapped with graphics API calls. Secondly, the device 

memory access pattern is highly constrained by a limited number of frame buffers 

available to the fragment program. Finally, some applications are constrained by 

the available device memory bandwidth. 

Researchers have made many attempts to address these problems, including 

Brook [4] and Sh [25]. CUDA, the Compute Unified Device Architecture, was 

introduced by NVIDIA [31] as another alternative and provides unprecedented 

ease and flexibility in GPGPU programming. 

CUDA programming uses a set of C-alike APIs, which means that graphics 

related knowledge is no longer required to write GPGPU programs. For example, 

previously the data marshalling is done by encoding the data into textures, 

therefore appropriate texture related APIs have to be called to initialize a copy of 

21 



data. With CUDA, it is as easy as calling malloc and memcpy for allocating 

memory and copying the data array. 

The thread-batching model adopted in CUDA has a better abstraction of the 

GPU compute architecture. The batch of threads that execute a kernel is organized 

as a grid of blocks, as illustrated in Figure 2.9. A grid includes all the kernels on 

the GPU for running a CUDA program. A thread block (or simply a block), 

coloured in yellow, consists of a number of kernels that run concurrently on one 

GPU multiprocessor and can cooperate more tightly by efficiently sharing data 

through some fast shared memory and by synchronizing their execution to 

coordinate memory accesses. This (grid ~ block ~ thread) architecture is the direct 

mapping of (GPU ~ multi-processor ~ stream-processor) structure in the GPU 

hardware. 

Host Device 

OrkM 

K?J !* • Block Block I Block 

(0.0) J2J2jLfc*L 
Block Block I Block 
(0,1) (1,1) I (2,1) 

iifciEt^ 

Figure 2.9: Thread-batching model of CUDA. 
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The memory programming model of CUDA, if carefully adopted, enables 

more versatile memory access pattern and improves memory access efficiency. 

Six types of memories are exposed and each serves its own purpose, as shown in 

Figure 2.10. Shared memory, for example, is a register-like memory that can be 

accessed in a single GPU clock cycle by all the threads within the same block. It 

enables the acceleration of spatially local operations. Arbitrary writing and 

reading of data with GPU DRAM (Dynamic Random Access Memory) - also 

denoted as device memory - is granted in the form of global memory, allowing a 

lot of data parallel algorithms previously difficult to map to or are inefficient to 

execute on GPUs to be implemented, e.g. histogram processing and frequency 

space transforms [8]. Texture memory and constant memory also reside in DRAM 

and are read-only; they are both accelerated by specific hardware and can be used 

to store input data which suits their access patterns. 

(Device) Grid 

Block (0,0) Block 11,0) 

Figure 2.10: Memory programming model in CUDA. 
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A more detailed tutorial of CUD A can be found in [30]. Our effort in achieving 

real-time performance with the proposed algorithms is motivated by CUDA, with 

more details described in Chapter 4. 

24 



Chapter 3: 

3D Adaptive Cost Aggregation for Slanted 

Surface Modeling and Sub-pixel Accuracy 

In this chapter, a new approach is proposed to further improving the accuracy of 

original ASW method [53]. 

3.1 Motivation 

According to the Middlebury stereo evaluation site, the best among all stereo 

algorithms have the feature of disparity plane fitting [20] [43] [50]. These 

approaches first over segment the image into small homogeneously-coloured 

regions, then apply plane-fitting technique to find candidate disparity planes for 

each segment. The optimal disparity plane assignment is determined using either 

local [43] or global [20] [50] optimization. Since the fitted disparity planes 

naturally provide sub-pixel disparity values, the scene can be reconstructed at a 

much finer level. 

ASW uses a large aggregation window, whose size can be as big as 33 x 33 . 

During aggregation the neighbourhood with the same disparity level is used. This 

approach can handle fronto-parallel surfaces that conform to the smoothness 

assumption suggested by Marr and Poggio [24]. Problem arises when the pixel 

actually lies on a slanted plane since the large window used in ASW means that 
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the neighbourhood has a bigger chance to include pixels of different disparity 

levels. 

Inspired by the plane-fitting idea, a new cost aggregation approach that 

combines ASW with plane-fitting is introduced here. It features per-pixel non-

fronto-parallel disparity plane modeling and performs ASW cost aggregation in 

the 3D cost volume along slanted planes. 

3.2 Proposed System 

The workflow of the system is described in Figure 3.1. Two disparity calculation 

passes are used. In the first pass, the algorithm computes an initial disparity map 

using the GPU-based ASW stereo matcher [16] [47]. Then, a disparity plane 

orientation (DPO) image which encodes the gradient of the disparity plane at each 

pixel is extracted using a simple least squares fitting approach. With estimated 

per-pixel DPO information, the newly designed 3D adaptive cost aggregation 

approach is used in the second pass for generating disparity results at sub-pixel 

accuracy. Finally, to refine the result, the disparity maps obtained for the two 

views are cross-checked to remove inconsistent disparity values, which are later 

filled in using a DPO-based hole-filling approach. A large window size (33 x 33 

for example) with ASW is used to ensure the effectiveness of the slanted surface 

modeling. The disparity search space is also quantized at sub-pixel level to 

improve the accuracy of the disparity results. Each step is discussed in detail in 

the following sections. 
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Figure 3.1: Workflow diagram of the proposed algorithm, with the input 
data, intermediate and final results. 

3.2.1 Initial Disparity Map Generation 

In this step, a raw disparity map of relatively good quality is desired at real-time 

speed. Wang et al. [47] ported several state-of-the-art local stereo algorithms onto 

GPU with proper simplification and found out that the simplified ASW gave the 

best result. Gong et al. [16] later made a more thorough survey and came up with 

a similar conclusion. 

The simplified ASW equations used in both evaluation papers mentioned 

above are already introduced in Chapter 2 and restated here: 
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w(u, v, m, n) — exp — 1 
Yc Yg , 

„ , ,. Tlm=v,w(u,v,m,0)-C(u + m,v,d) 
T(u, v, d) = ^ - JTT 

. „ , ,. I£=Vjw(u,T7,0,n)-r(u,i7 + n,d) 
AC(u,v,d) = — 

(3.1) 

(3.2) 

Xn=v+w(u,v,0,n) 

(3.3) 

The weight calculation (3.1) runs in exactly the same way as in the original ASW 

method. But instead of covering the whole aggregation window, only pixels on 

the same x or y axis with the pixel-of-interest have their weights calculated as 

shown in (3.2). Then a horizontal pass aggregates costs along the x-axis of the 

aggregation window for each pixel, and stores the results in a temporary 3D cost 

volume T(u,v,d),. Finally a vertical pass aggregates along the y-axis for each 

pixel on T(u,v,d) and stores results in the aggregated 3D cost volume 

AC(u,v,d). 

n a 

Figure 3.2: Weight calculation in the simplified ASW method. 

The neighbour pixels that are not on the same axis with the pixel-of-interest 

will have indirect impacts while aggregating. In Figure 3.2, p is the pixel-of-

interest, and n is the neighbour pixel that is not on the same axis as p. In the first 
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horizontal pass, n will exert its influence on a which shares the same axis with n 

and with/?; then in the second pass the already aggregated a will pass along all the 

costs to p. w(nx, ny, px, p y ) is computed as w(nx, ny, ax, ay) x w(ax, ay, px, py), 

which is fine when a and p have similar colours but is of poor quality when they 

differ much. 

The resulting quality of disparity of the above mentioned method is satisfactory 

as raw input to our system. More importantly, it is fast. A single run with the 

Tsukuba dataset on NVIDIA 8800 GTS 512MB graphics card takes only about 5 

ms (or 180 FPS speed), which is comparable to most of the other GPU-powered 

local stereo methods [16]. The ASW CPU implementation is claimed to take 1 

minute using an AMD 2700+ processor [52]; even with current generation of 

CPU. Thus the speed-up is quite impressive. This module is also used in the real­

time multiview stereo algorithm described in Chapter 5. 

3.2.2 Disparity Plane Orientation Generation 

The DPO image is essential to our proposed method since it encodes the 

gradient of the chosen disparity plane at each pixel location, which is later used in 

the final disparity computation. 

To simplify calculations, here we ignore the foreshortening effect and assume 

that a plane in 3D world can be modeled by a plane in the 3D disparity space. The 

orientation of a given disparity plane is specified using the horizontal and vertical 

gradients {dx, dy) in the disparity space, where 

dD(u,v) dD(u,v) 
dx(u, v) = — , dy(u, v) = — 

on ov 

(3.4) 

and D(u, v) is the unknown ground truth disparity map. 
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To estimate dx and dy from an inaccurate disparity map D (u, v) obtained, a 

simple least squares fitting method is applied. For example to compute dx(u, v), 

we want to find a horizontal line that passes through D(u,v) and gives the 

smallest weighted squared error. The weighted squared error between the data and 

the fitted straight line is defined as: 

+r 

E = V z\u>t7) (p(u + k, v) - {dx(u, v)k + D(u, v))j 
k--r 

(3.5) 

where the weight function zfu ^ is used to suppress outliers. A simple step 

function is used here: 

z(u,v) = { 
1 if\D(u + k,v)-D(u,v)\<2 
0 otherwise 

(3.6) 

When E is the minimum, we have 

dE 
: r = - 2 V zfuv)k (p(u + k,v)- {dx(u, v)k + D(u, v))) = 0 

(3.7) 

ddx(; . , 
k=-r 

So dx(u, v) can be calculated as: 

dx(U,v) = k >-
Lk=-rz{u,v)K 

(3.8) 

The vertical gradient dy(u,v) is computed similarly. Using the Venus dataset 

as input, Figure 3.3 illustrates the generated DPO image, which keeps the 

horizontal and vertical gradient values in red and green channels respectively. The 
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left image is the raw disparity result; the middle image is the calculated DPO; and 

the right one has the ground truth of DPO. 

Figure 3.3: DPO generation. 

3.2.3 3D Adaptive Cost Aggregation with Sub-pixel Accuracy 

The original adaptive-weight cost aggregation approach assumes that all surfaces 

in the scene are fronto-parallel and matching costs are aggregated within 2D 

constant disparity planes. This assumption rarely holds in the real world, 

especially due to the large support window used — even when the slant is very 

small, the big neighbourhood span can still go through multiple disparity levels. 

In contrast, our approach performs aggregation in 3D disparity space along with 

the DPO estimated at different pixel locations. 

Assume that the cost volume C holds the initial matching cost, where C [u, v, k] 

gives the colour difference between pixels (u, v) in the left image and (u — k, v) 

in the right image. Also assume that when d is non-integer, function C(u, v,d) 

linearly interpolates between C[u,v, [d\] and C[u,v, \d]]. The formula for the 3D 

adaptive-weight aggregation is as follows: 

/ / u + m,v + n,d+ \ \ 
Im.ne[-r.r] [w(u, V,m,n) • C [md{ y} + n d ( p) J 

AC(u,v,d)= V 

Zm,ne[-r,r]w(u ' l7 'm 'n) 

(3.9) 
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_f^cu,v,m,n &<lu,v,m,n\ 
where (u,v) is the pixel of interest; w(u,v,m,n) = e ^ Vc ys ' 

represents the weight of neighbour pixel (u + m,v + n); Acuvmn and Aquvmn 

are the colour difference and the Euclidean distance between pixels (u, v) and 

(u + m, v + n), respectively. yc and yg are the user defined parameters. 

AC(u, v, dC) is the aggregated cost for assigning disparity hypothesis d to pixel 

(u, v), under the pre-computed DPO dx(u, v) and dy(u, v) at pixel (u,v). To 

generate disparity maps at sub-pixel accuracy, we step through disparity 

hypothesis d at 0.5 intervals. 

After the aggregation process, the winner-take-all optimization is used to find 

the optimal disparity map: 

D(u,v) = agrmmd AC (u,v,d) 

(3.10) 

3.2.4 Cross-checking and Hole-filling 

The above procedure is applied to both the left and right stereo images and the 

obtained disparity maps are cross-checked. The left pixel is mapped to the right 

image, according to the left disparity image; then the mapped right pixel is 

mapped back to the left image according to the disparity value in the mapped right 

pixel in the right disparity image. If the remapped left pixel is too far away from 

the original left pixel, say, by more than 2 pixels, then the original left pixel is 

labelled as a hole. 

One interesting observation is that most of the holes are caused by occlusion. A 

quick fix to fill the hole is adopted here: each horizontal line is scanned to find the 

left and right immediate-neighbouring valid pixels for each hole and their 

disparity values are examined. Since the occluder has a larger disparity value than 

that of the occludee, the larger disparity value of the neighbours is chosen to fill 

the hole. 
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When propagating the chosen disparity, the horizontal gradient from DPO 

image is used to alter the chosen disparity value at a finer level so that the slanted 

surface is modeled. 

3.3 Experimental Results 

The proposed method was evaluated using the Middlebury testbed [26]. Some of 

the parameters used in the experiments follow the empirical choices in [16]. In 

particular, the support window size is set equal to 51x51 and the two parameters 

for support weight calculation: yc = 19.6 and yg = 40. 

Figures 3.4-3.7 show results for different datasets. The original adaptive 

weight method, the implemented adaptive weight method with sub-pixel accuracy, 

and the new approach are all tested. Tables 3.1, 3.3, 3.5, and 3.7 give the 

statistical analysis on the performance of the algorithm, while Tables 3.2, 3.4, 3.6, 

and 3.8 have the statistical analysis information when sub-pixel error threshold is 

adopted. 

From all the presented disparity results and statistical analysis, the following 

observations can be made: 

1. For the Venus, Teddy and Cones datasets, where slanted surfaces are 

everywhere, the proposed slanted surface modeling approach effectively 

improves the results upon the original adaptive-weight stereo matcher. The 

improvement upon the Tsukuba dataset is minimal, since the presence of 

slanted planes appears very limited. 

2. Direct incorporation of sub-pixel accuracy with the original adaptive 

weight stereo matcher does not provide any noticeable improvement. 

3. Combining sub-pixel accuracy with slanted plane modeling gives very 

convincing results. When evaluated with a disparity error threshold of 1.0, 

the new algorithm is ranked 17th among all local and global optimization 
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approaches, as depicted in Figure 3.8; when a sub-pixel disparity error 

threshold of. 0.5 is used, it is ranked 4th, as illustrated by the snapshot 

taken from Middlebury vision stereo site in Figure 3.9. Other local stereo 

algorithms are underlined with red in both snapshots. 
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(a)ASW (b) ASW w/ sub-pixel 

(c) Proposed (d) Ground Truth 

Figure 3.4: Results for the Venus dataset. 

Alg. 
ASW 

ASW.Subpixel 
Proposed 

Tsukuba 
nonocc 
1.38 77 
1.85 23 
1.79 23 

all 
1.85 75 
2.3127 
2.30 27 

disc 
6.90 77 
9.06 25 
8.79 24 

Table 3.1: Error rates evaluated with threshold of 1.0. Italic numbers are ranks, 
'noonocc' column evaluates non-occluded areas, 'disc' column evaluates disparity 
discontinuity areas, and 'all' column evaluates every pixel in the disparity image. 

Alg. 
ASW 

ASW.Subpixel 
Proposed 

Tsukuba 
nonocc 
18.1 19 
9.60 10 
8.86 9 

all 
18.8 75 
10.2 10 
9.52 7 

disc 
18.6 19 
14.8 5 
15.0 6 

Table 3.2: Error rates evaluated with a threshold of 0.5. Italic numbers are ranks 
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(a) ASW (b) ASW with sub-pixel 

(c) Proposed (d) Ground Truth 
Figure 3.5: Results for the Venus dataset. 

Alg. 
ASW 

ASW.Subpixel 
Proposed 

Venus 
nonocc 
0.71 18 
0.82 27 
0.30 14 

all 
1.19 19 
1.02 18 
0.54 10 

Disc 
6.13 19 
6.11 19 
3.63 17 

Table 3.3: Error rates evaluated with a threshold of 1.0. Italic numbers are ranks. 

.Alg, 
ASW 

ASW.Subpixel 
Proposed 

Venus 
nonocc 
7.77 18 
8.31 21 
2.99 4 

Table 3.4: Error rates evaluated with a threshold of 0.5. Italic numbers are ranks 

all 
8.40 20 
8.65 21 
3.29 3 

disc 
15.8/9 
17.8 24 
8.174 
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(a)ASW (b)ASWw/ sub-pixel 

(c) Proposed (d) Ground Truth 
Figure 3.6: Results for the Cones dataset. 

Alg. 
ASW 

ASW.Subpixel 
Proposed 

Cones 
nonocc 
3.97 18 
5.20 26 
3.72 12 

all 
9.79 14 
11.2 23 
9.27 11 

Disc 
8.26 6 
11.6 22 
9.70 14 

Table 3.5: Error rates evaluated with a threshold of 1.0. Italic numbers are ranks. 

Alg. 

ASW 

ASW.Subpixel 
Proposed 

Cones 

nonocc 
14.0 24 

14.8 27 
8.81 10 

Table 3.6: Error rates evaluated with a threshold of 0.5. Italic numbers are ranks 

all 

19.7 23 

21.126 
15.1 12 

disc 

20.6 19 

23 A 26 
17.5 12 
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(a)ASW (b) ASW w/sub-pixel 

(c) Proposed (d) Ground Truth 
Figure 3.7: Results for the Teddy dataset. 

Alg. 
ASW 

ASW.Subpixel 
Proposed 

Teddy 
nonocc 
7.88 19 
10.3 29 
7.11 14 

all 
13.3 79 
15.627 
8.45 5 

Disc 
18.6 23 
22.5 31 
17.5 77 

Table 3.7: Error rates evaluated with a threshold of 1.0. Italic numbers are ranks. 

_A&. 
ASW 

ASW.Subpixel 
Proposed 

nonocc 
17.6 79 
21.125 
13.3 70 

Table 3.8: Error rates evaluated with a thresh 

Teddy 
all 

23.9 79 
27.3 28 
15.0 2 

disc 
34.0 27 
37A 33 
27.0 10 

hold of 0.5. Italic numbers are ranks. 
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Figure 3.8: Ranking snapshot in Middlebury stereo vision site, with a disparity 
error threshold of 1. Algorithms underlined with red are other local stereo 

algorithms. The table is not complete as the list is long. 
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Figure 3.9: Ranking snapshot in Middlebury stereo vision site, with a disparity 
error threshold of 0.5. Algorithms underlined with red are other local stereo 

algorithms. The snapshot is not complete as the list is long. 
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3.4 Summary 

In this chapter a novel local stereo algorithm combining ASW with plane fitting is 

introduced. The least squares fitting method is used for robustly estimating per-

pixel DPO information, which is later used to guide cost aggregation along 

slanted surfaces in 3D cost volume. The experimental results show that the new 

approach produces better disparity maps than the original ASW algorithm and is 

comparable with other local and global algorithms. Compared to existing plane 

fitting based algorithms [20] [43] [50], the new approach does not require a priori 

image segmentation and is easier to implement in current generation of GPU. 
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Chapter 4: 

Near Real-time Adaptive Support Weight 

Cost Aggregation with CUDA 

This thesis tries to advance local stereo matching from both aspects of quality of 

results and processing speed. Whereas the previous chapter presents a novel ASW 

based algorithm that gives results of better quality, this chapter focuses on how to 

accelerate the original ASW algorithm through implementing it on GPU using the 

CUDA programming language. 

4.1 Motivation 

The ASW algorithm proposed in [52] has been proven to be among the best local 

stereo matching algorithms [45], but the good performance comes with a high 

computational cost. The CPU version, as reported by Yoon and Kweon, takes one 

minute on an AMD 2700+ machine for the Tsukuba dataset when a 33 x 33 

support window is used [52]. Being a local method and bearing great amount of 

parallelism, it offers room for improvement of speed. 

Some efforts have already been made along this direction. As described in 

Section 3.2.1, Wang et al. [47]and Gong et al. [16] both use a simplified weight 

equation to push the algorithm to the real-time performance boundary. In 

particular, in the local window, only weights for pixels along the same vertical 

and horizontal scanlines as the pixel-of-interest are calculated. The weights for the 
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rest of the pixels are approximated, as described in Section 3.2.1. The speed-up is 

achieved at the cost of disparity map quality; as evaluated in both papers, the 

number of bad pixels increases by 30%~400% for the four datasets compared to 

the original CPU-based ASW approach. 

Thus, the porting of the ASW cost aggregation method onto GPU without loss 

of stereo result quality is worthwhile and is the main goal of this chapter. 

4.2 Simple Implementations on CUDA 

4.2.1 Direct Porting to GPU 

The computations conducted for every pixel is tedious but straightforward. For 

each pixel, a big square-shaped neighbourhood is examined with weights for 

pixels inside generated and the weighted cost aggregated. This process is repeated 

for each disparity level to give the aggregated cost volume. Then the winner-take-

all method decides the final disparity result for each pixel. The CPU code can be 

directly ported onto the GPU using the CUDA language. The pseudo-code can be 

found in Appendix I. 

Performance and Analysis 

The above straightforward code migration does bring efficiency improvement, 

just as most of the implementations with enough parallelism will always benefit 

from running on GPU. For example, for the Tsukuba dataset, which has a 

dimension of 384 x 288, a disparity range of 12, and an aggregation window of 

size 33 x 33, the running time is a little over 1 second using kernel blocks of size 

16 x 16 on a single NVIDIA 8800 GTS 512MB graphics card. The speed up is 

huge compared to 3 minutes using the un-optimized CPU version on the same 

machine with 2.2 GHz AMD Opteron 2214 processor. Some minor loss of 

accuracy is present that we believe can be attributed to the less accurate floating 

point mathematical operations on GPU. Figure 4.1 has the result for CPU ASW 
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implementation running on the Tsukuba dataset, as well as the error map 

evaluated in Middlebury vision site; black pixels mean bad matches. The result of 

the GPU ASW implementation is presented in Figure 4.2. Table 4.1 has the 

numerical comparison. Note that no pre-processing or post-processing is used in 

both implementations, thus the evaluation results are not exactly the same as the 

ones reported in the original ASW paper [52]. 

H i , 

'} » 
^ 

Figure 4.1: CPU ASW result and error map for the Tsukuba dataset. 
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Figure 4.2: GPU ASW result and error map for the Tsukuba dataset. 

Alg. 
CPU ASW 
GPU ASW 

Tsukuba 
nonocc 

1.91 
2.04 

all 
2.29 
3.11 

Disc 
8.75 
7.66 

Table 4.1: Error rates evaluated with threshold 1.0. 
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The problem with this simple migration is obvious. There are too many texture 

accesses in a single kernel run, 2 x szAggrWin2 + 2 to be exact. As noted in 

[30], one key to achieve the efficient use of GPU using CUDA code is to have a 

high computation to memory access ratio. GPU devotes more of its transistors in 

data processing than to data caching and flow control. Thus the memory access 

latency is high — 400~600 clock cycles of latency for a single memory read 

compared to 4 clock cycles for a floating point addition [30]. The way GPU works 

around this is by saturating the GPU with thousands of kernels so that when some 

kernels are idling waiting for the completion of memory accesses, other kernels 

can be switched in to keep the GPU busy. In the above code, however, the 

computation to memory access ratio is nearly 1 as almost every step of the 

calculation needs to read something new from the device memory. To increase 

this access ratio, either the number of memory accesses has to be lowered or the 

number of computations in each kernel has to be increased. 

One side note on the memory access pattern with CUDA is that, the global 

memory accesses have to be coalesced to improve on speed. When the kernel is 

running on the GPU, there are always 16 kernels that run physically together on 

each multi-processor which has 16 stream processors. These 16 kernels are 

regarded as a kernel half-warp, or a kernel batch. For a line of code that performs 

memory operation, if these 16 kernels are accessing consecutive blocks of device 

memory, their accesses can be grouped into one single memory read, i.e. 

coalesced; otherwise these 16 memory accesses have to line up and proceed 

sequentially, which obviously increase the overall access time. With the above 

code, memory coalescing is automatically achieved as the 16 x 16 kernel block 

setup ensures that the kernel batch always access 16 consecutive addresses in 

cv[][]. Texture targetlm also resides in GPU DRAM, and its coalescing is 

automatically achieved through the texture buffering hardware if locality in 

texture accessing pattern is satisfied. 
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4.2.2 Improved Direct Porting to CUDA 

CUDA exposes the nice features of the shared memory architecture of the G80 

and later graphics cards to programmers. Shared memory is a register type 

memory which has single clock cycle latency, and can be accessed by all kernels 

within the same block with proper synchronization. Every multi-processor chip 

has 16K Bytes of shared memory. Thus, the size is limited and no abuse is 

possible; but a clever use of shared memory can almost always make the program 

run faster. 

One straightforward improvement is to process through all disparity levels in a 

single kernel. The weights calculated are identical for all disparity levels for all 

pixels, and when the processing of different disparity levels is done in separate 

passes, these weights have to be re-calculated. By processing all disparity levels 

in one single kernel, many memory accesses and calculations can be saved. To 

achieve the above, in each kernel an array of matching costs of size szRangeDisp 

is allocated to sum up the weighted costs when walking through the 

neighbourhood. This array cannot reside in the register memory, as the register 

memory is scarce meaning that every kernel has only a handful of registers to use. 

There are 8K bytes of registers on each multiprocessor to be exact, thus to fit at 

least one kernel block of size 16 x 16 onto the multiprocessor at most 32 registers 

can be used. If this limit is exceeded, CUDA will resort to DRAM memory, which 

is hundreds of times slower than register memory and results in a major drop in 

performance. Hence, these arrays must be explicitly allocated in shared memory, 

which is as fast as register memory and bigger in size. 

Another possible improvement uses the fact that neighbour kernels often scan 

through a similar neighbourhood when aggregating. Thus, for a block of pixels, if 

a superset of all neighbours for every pixel is pre-fetched into the shared memory, 

later on the weight calculations can get pixel information from the shared memory 

pool instead of from the GPU DRAM. Figure 4.3 depicts how this pre-fetching is 
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done. Suppose a 5 X 5 aggregation window is used, (a) shows pixel a and its 

neighbourhood (the red square). The CUD A kernel block is of size 4 x 4 , as 

shown in (b) with the green square, with pixel a and all the other pixels belonging 

to the same block. The pre-fetched region into the shared memory is shown in (b) 

as the black square; it has a size of 8 x 8 and contains all the pixels needed to 

process the aggregation for the whole block containing a. Without the pre­

fetching scheme and shared memory utilization, pixel a needs to look into 25 

pixel positions as the red square embraces in (a). When the pre-fetching scheme is 

used, the whole block shares the load of reading in the 8 x 8 patch. Thus each 

pixel of the block only needs to read 4 memory positions. As depicted in (c), each 

pixel in the block is responsible for prefetching a 2 x 2 red squares, with the 

corresponding kernels and 2 x 2 squares connected by blue lines (only a few of 

which are drawn for the purpose of illustration). Thus the high-latency DRAM 

accesses in each kernel decrease from 25 to 4 in this specific scenario. In fact, a 

combination of an aggregation window size (2W + 1) X (ZW + 1) and a kernel 

block size K x K sees the DRAM access count change from (2W + 1) x 

(2W + 1) to - — Y \ with this scheme. In the setup we adopt (window size 

33 x 33 and kernel block size 8 x 8 ) , the high-latency DRAM access number 

each kernel decreases from 33 x 33 to just 25, thus a speed-up in performance is 

expected. 

a 

(a) (b) (c) 

Figure 4.3: How to use shared memory to reduce latency. 
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Performance and Analysis 

The pseudo-codes can be found in Appendix II. Due to the improved memory 

access pattern, an increase in performance was expected. The running time for 

both algorithms are improved to 300 ms as compareed to the Is performance from 

the direct porting implementation. 

But there are still some hardware limitations that deny a better performance for 

both algorithms. First of all, the number of kernels within each block has to be big 

enough to achieve the best latency hiding and GPU saturation. The recommended 

configuration is 256 kernels or more for each block. Let's assume a 16 x 16 

block setup is used along with a 33 X 33 aggregation window in algorithm AII.2. 

Then targetlmPatch and cvPatch[] both need a size of 48 x 48 . With 

targetlmPatch being 32 bit RGBA colour type and cvPatch holding 32bit floating 

point values, the total amount of shared memory required is 48 x 48 x 4 x 2 = 

18432 bytes, which is too big to fit in the 16K byte shared memory, not to 

mention that part of the shared memory is reserved for other uses like storing 

kernel function parameters. So either the size of the aggregation window or the 

kernel block has to decrease. Unfortunately, both methods have their stumbling 

blocks: if the size of the aggregation window is smaller, the quality of the final 

disparity result will suffer; on the other hand, if the kernel block size is shrunk, 

the memory loading burden for each kernel is increased and also the saturation of 

GPU is reduced. 

Secondly, several blocks have to be resident concurrently on a GPU 

multiprocessor if a higher saturation of GPU resource is intended. The same 

reason explains why a big block size is preferred. The contexts and resources are 

pre-allocated for every block, so that when some blocks are idling, other blocks 

can be switched in without much overhead. This scheme of using CUDA means 

that resources like register and shared memory have to be split among several 

blocks. In fact, given the kernel block size, number of registers each kernel uses, 
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and the consumption of shared memory for each kernel block, the GPU saturation 

level can be calculated using the CUDA occupancy calculator [29]. Since it is 

already hard for both algorithms to fit one single block of kernels into a GPU 

multi-processor, this programming pattern for better GPU utilization is again not 

met. 

Thirdly, no matter how good the memory access scheme is, the actual number 

of computations is still intact provided that the aggregation window of the same 

size is used. Each kernel still needs to scan through the neighbourhood, compute 

all the weights, and aggregate all the costs over the neighbourhood. 

4.3 Segmentation Driven Adaptation 

Direct porting the adaptive weight cost aggregation method onto GPU poses 

problems that cannot be easily addressed using current generation of GPUs. Thus 

a better method has to be developed. 

The segmentation based ASW aggregation method [44] achieves a great 

improvement over the original ASW aggregation approach. Given the 

segmentation information, weights for neighbour pixels that are in the same 

segment as the pixel-of-interest are set to 1.0, as indicated in equation (4.1). This 

simple change is demonstrated to be effective in dealing with depth borders, low-

textured regions, high-textured regions, and repetitive patterns. The actual 

aggregation, however, is still performed on a pixel by pixel basis as shown in 

equation (2.5). 

{ 1.0, if Seg(u, v) = Seg(u + m,v + n) 
,v,m,n , u,v,m,n \ \ . , 

exp — 1 , otherwise 
\ V Yc Yg J J 

(4.1) 
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If segments are the primitives to be processed in the segmentation based 

approach, all the weight calculation and cost aggregation can be done in a similar 

manner as the pixel primitive implementation. Since a segment is effectively 

represented by a single pixel colour, the segment-to-segment weights can be 

calculated as pixel-to-pixel weights with the proximity term being the Euclidean 

distance between segment centroids. Equation (4.2) has the idea demonstrated. 

seg is the segment-of-interest while nseg is a segment within neighbourhood. 

seg.cen denotes the centroid of segment seg. Equation (4.3) shows how the cost 

aggregation is done: for the segment-of-interest seg, a search within its 

neighbourhood N(seg) proceeds and finds all the segments within this 

neighbourhood; then with the segment-to-segment weight of seg and some 

neighbour segment nseg, the collective matching costs over area nseg at disparity 

d is summed into the final cost. Following this fashion, the pixel representation is 

completely replaced with the segment representation. Later on the winner-take-all 

disparity selection also chooses the best disparity on a per segment basis. 

r •. i | nLse.q.color,nse.q.color , .cen,nseg.cen 
w(seg, nseg) = exp - - - 1 -••- -yB 

(4.2) 

(w(seg,nseg)\ 

Lnseg£N(seg) w{seg, nseg) 
(4.3) 

Since the number of segments is smaller than the number of pixels by a big 

margin, the computations needed to get the weights and aggregate costs are 

reduced significantly, which cannot be achieved by implementations mentioned in 

Section 4.2. This speed-up is achieved by sacrificing a bit of accuracy in the 

support weight, as the distance between segment centroids may not fully capture 

the various distances between different pixel-to-pixel pairs. 
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The nicest thing about this new proposed approach is that it can be fully ported 

onto GPU. Although the current generation of GPUs is not designed to support 

complex data structures, the quad-tree data structure is simple and efficient 

enough to be implemented on GPUs. The quadtree-based segmentation, though 

not as good in segmentation quality as other alternatives like watershed 

segmentation or mean-shift segmentation, has the perfect square shape of 

segments that is crucial for efficient GPU implementation, since operations like 

summing over a square segment is much easier to perform in a kernel than an 

arbitrarily shaped segment. 

4.3.1 Quadtree Segmentation 

Quadtree segmentation adopted here has two passes. The first pass, UpMerge, 

progresses in a bottom up fashion building a pyramid structure. Each level of the 

pyramid is half of the previous level in both dimensions. When building the 

current level, the corresponding four pixels of the previous level are evaluated to 

determine whether merging them is possible or not. Every pixel is associated with 

a flag: validSeg. If any of these pixels is flagged as not validSeg, then no merging 

occurs; if all four pixels can be merged, but their standard deviation is larger than 

a certain threshold c0 meaning that they are too different to be included in the 

same segment, then merging again fails. Otherwise, merging succeeds and the 

average colour value is stored in the merged pixel position, with the validSeg flag 

set to true while the validSeg flags for the four lower level pixels are set to false. 

This is illustrated in Figure 4.4. The four pink pixels correspond to children of the 

red pixel in the upper level, while the four pale green pixels are merged into the 

green pixel if possible. 
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Figure 4.4: Quadtree segmentation, UpMerge pass. 

The next pass is called Output, in which each level of the pyramid is examined 

and those pixels with a true validSeg flag are output into the segmentation image. 

In the segmentation image, only those pixels that are at the center of a valid 

segment contain meaningful RGBA values, in which the RGB channels store the 

segment average colour and the Alpha channel keeps the size of the segment. 

These pixels are denoted as segment pixels. The segmentation result is illustrated 

in Figure 4.5, where (a) shows the original image, (b) only shows segment pixels, 

and (c) add proper borders to segments. 

(b) (c) 
Figure 4.5: Quadtree segmentation result, with o threshold = 10/255. 
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The neighbourhood traversal of a segment, as included in equation (4.3), is 

done by scanning through the neighbourhood window in the segmentation image 

and identifying those valid segment pixels within the neighbourhood. 

4.3.2 Compact Segmentation Image 

To search neighbour segments, scanning in the segmentation image is the better 

option. But launching kernels for every pixel of the segmentation image is a 

wasteful move, since only a small percent of kernels are created for valid segment 

pixels. The rest of the kernel will be completely idling during execution. 

This waste of resources can be avoided by compressing the original sparse 

segmentation image into a compact segmentation image. Every single pixel in the 

compact segmentation image is a valid segment; therefore launching kernels for 

every pixel in the compact segmentation image will make all kernels busy. One of 

the scan primitives on GPU [38] named compact does exactly what is needed here, 

and fortunately most of the scan primitives have been efficiently implemented and 

exposed in CUDPP library [8]. 

4.3.3 Implementation 

Algorithms 4.1, 4.2 and 4.3 have routines for the quadtree segmentation. 

Algorithm 4.1 

procedure UpMerge 
in: uchar4 pyramidLevel[n], float threshold 
out: uchar4 pyramidLevel[n+l] 

begin 
for each node position onpyramidLevel[n+l] in parallel 

a, b, c, d4- four corresponding nodes in pyramidLevel[n] 
if a (a, b, c, d ) < threshold && validSeg flags for a, b, c, d are true then 

nodeValue.RGB = avg( a.RGB, b.RGB, c.RGB, d.RGB) 
nodeValue.segValid'— true 
set node entry at pyramidLevel[n] to nodeValue 
set validSeg flags of a, b, c, dto false 
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else then 
node Value.segValid = false 

set node entry atpyramidLevel[n] to nodeValue 
end 

In procedure UpMerge defined in Algorithm 4.1, the standard deviation a is 

computed over three colour channels by equation (4.5). 

J N N N 

- { Y ( x t . R - x. R)2 + Y(xt. G-x. G)2 + V(XJ . B-x. B)2} 
i = l i-l 1=1 

(4.5) 

Algorithm 4.2 

procedure Output 
in: uchar4 pyramidLevel[n] 
out: uchar segmentationlmage 

begin 
for each node position onpyramidLevel[n+\] in parallel 

if validSeg of current node is true then 
value.KGB = RGB value of current node 
value.A = window size at current pyramid level 
Set the corresponding pixel in segmentationlmage to value 

end 

Procedure Output in algorithm 4.2 generates partial segmentation image by 

examining current level of the pyramid. Carrying out this procedure for every 

level of the pyramid gives the complete segmentation image. The window size at 

the current pyramid level is decided by n 2 . The corresponding segment pixel 

position in segmentation image of the current node is decided by both its node 

position within the current pyramid p(x,y) and the current pyramid level n, 

making sure it sits right in the middle of the segment. The segmentation image 

generated this way can ensure that the correct Euclidean distance between two 
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segments can be calculated by calculating the distance between their 

corresponding segment pixels. 

Algorithm 4.3 

procedure ProcessQuadTree 
in: texture targetlm, float threshold 
out: uchar segmentationlmage 

begin 
copy targetlm into pyramidLevel[0] with padding 
for i=0 to k 

UpMerge(pyramidLevel[i-l], threshold,pyramidLevel[i] ) 
for i=0 to k 

Output(pyramidLevel[i], segmentationlmage) 
end 

In procedure ProcessQuadTree of algorithm 4.3, the padding is to make sure 

that at the base level of the pyramid, the size of the image is a power-of-2 so that 

the even splitting on each level of the quad tree can be achieved. And k is decided 

by the size of the biggest segment allowed, which is equal to 2k to be exact. The 

output is a segmentation image described in Section 4.4.1. 

Algorithm 4.4 

procedure ProcessCostAggregationQuadTree 
in: float cv[][], float threshold, int dispRange, texture targetlm 
out: float cv[][] 

begin 

ProcessQuadTree(torg-e//m, threshold, segmentationlmage) 
for i=0 to dispRange 

for each pixel position/? of segmentationlmage in parallel 
if p is a valid segment then 

sum costs in cv[i] over its segment pixels and store the summed value 
into acv[i] 

Compact( segmentationlmage, compactSegmentationlmage) 
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for i=0 to dispRange 
for each pixel position of compactSegmentaionlmage in parallel 

cost 4r 0 
seg ^- current pixel in compactSegmentationlmage 
for each neighbour segment nseg of current segment 

wt <- calculate weight with seg and nseg information 
cost <r w/*acv[i] [position of nseg] 

set cv[i] [position of seg] to cost 
end 

Procedure ProcessCostAggregationQuadTree in Algorithm 4.4 makes use of 

the quadtree segmentation routine and carries out actual cost aggregation. 

Note that when the segmentation image is used instead of the compact 

segmentation image, the search of neighbour segments can be coordinated for the 

whole thread block so that memory coalescing is achieved and code branching is 

avoided. Figure 4.6 illustrates the detailed traversal scheme. Pixels in pink 

comprise of a kernel block of size 4x4, while green pixels are neighbourhood 

that are pre-fetched into the shared memory. A spiral route is used in the search, 

ordered by the numeric labels of the pixels. Each pink pixel follow the exact same 

route, thus in every step of the kernel code they will take the same branch. In a 

compact segmentation image, the above mentioned locality within the thread 

blocks is damaged. Therefore, every kernel has to follow its own spiral path. 

mo • 
18 d r fi " 
17 •> 1 ? ID 

30 t i l l 
lM>14 1-t]/ 

Figure 4.6: Search for neighbour segments. 
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4.3.4 Performance and Analysis 

With the help of quadtree segmentation, the running speed now settles at around 

100ms per frame for the Tsukuba dataset on a single NVIDIA 8800 GTS 512MB 

graphics card, with a disparity level of 12 and aggregation window of size 33 x 33. 

The kernel block is of size 16x16. The standard deviation threshold used in 

quadtree segmentation is set at 10. The comparison of results between 

segmentation driven ASW and the original ASW is given in Figure 4.7. The left 

image is the result from the segmentation driven ASW method, and the right one 

comes from the original ASW method. As you can see, some block shaped pixel 

patches are present throughout the disparity map, since the disparity choices are 

uniform within a segment. A numerical evaluation is given in Table 4.2, 

suggesting that not much change in disparity result quality happens. Therefore, a 

near real-time performance for ASW on GPU is achieved, without much loss of 

accuracy. 

Figure 4.7: Disparity results for segmentation driven ASW and original ASW. 

Alg. 
QT GPU ASW 

GPU ASW 
CPU 

Tsukuba 
nonocc 

2.00 
2.04 
1.91 

all 
3.01 
3.11 
2.29 

disc 
7.36 
7.66 
8.75 

Table 4.2: Error rates evaluated with threshold 1.0. 
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With the standard deviation threshold of quadtree segmentation set lower, the 

segmentation image contains fewer segment pixels, thus the speed of the whole 

algorithm can improve even more. For a threshold of 30, the speed of the 

algorithm can reach 20 FPS. But the quality of the final result suffers as less 

accurate segmentation result is used to assist the aggregation. Figure 4.9 gives the 

comparison of results when different standard deviation threshold is applied. The 

first row has the disparity result and the segmentation image when threshold =10, 

the second row uses threshold of 20, and the last row 30. The deterioration of 

quality is obvious when a lower threshold is used. 

Figure 4.8: Disparity results and segmentation images when different thresholds 
are adopted. 
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4.4 Summary 

This chapter presents several attempts on porting the original ASW onto GPU 

without loss of quality. The first one ports CPU code line-by-line directly into 

CUDA GPU implementation, the second one tries to optimize the directly GPU 

implementation with the help of CUDA features like shared memory. Both have 

hardware hindrance and cannot quite achieve good performance. Finally, the new 

quadtree driven ASW stereo algorithm improves performance by incorporating 

segmentation information into cost aggregation. As a result, near real-time speed 

is achieved without much loss of accuracy in the results. 
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Chapter 5: 

Multi-view Stereo using Adaptive Weight and 

Parzen Window 

The previous two chapters dedicate on improving quality or speed for binocular 

stereo matching. The occlusion problem however is not addressed due to its well-

known limitation to binocular stereo. In this chapter, a novel real-time sparse 

multi-view algorithm is presented for better handling occlusions [54]. 

5.1 Motivation 

Dense multi-view stereo algorithms can reconstruct the 3D model of a scene with 

high accuracy. But they are not yet suitable for real-time vision applications 

because of the time required to obtain the scene sampling and the high 

computational cost. 

Sparse multi-view stereo matching algorithms seek to balance between speed 

and quality. They have more input views than binocular stereo and thus have a 

better chance to produce more accurate depth information. On the other hand, 

sparse multi-view stereo matching is more likely to be achieved in real-time as 

compared to dense multi-view counterpart and it is a better candidate as a module 

in real-time vision applications. 
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5.2 Sparse Multi-view Camera Setup 

Two specific types of camera setups are adopted in the proposed sparse multi-

view stereo system. One type of setup is a linear camera array with 5 uniformly 

spaced cameras, and the other is a cross camera set up with four target cameras 

positioned to the top, bottom, left, and right of the reference camera with the same 

separation, i.e, baseline. Figure 5.1 shows both setups. They are chosen because 

1) Middlebury vision site [26] provides the standard datasets that are captured 

using these two setups; and 2) it is easy to use these setups to sample real scenes. 

3 

Linear Cross 

Figure 5.1: Two different camera setups are adopted. 

The first linear camera setup is also adopted in other multiple baseline stereo 

research [32]. The baseline is the distance between the optical centers of two 

cameras, one of which is referred to as the reference camera and the other the 

target camera. For a scene point P, its projected pixels onto the reference and 

target images are separated by disparity d, and its distance with the image plane is 

denoted as z. The relation between d and z is defined by: 

1 
d = BF-

z 

(5.1) 
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where B and F are the baseline and focal length, respectively. Thus, the disparity 

value is proportional to the baseline length for the same depth value. For example, 

in the linear camera setup in Figure 5.2, if a scene point is projected to camera 1 

at the pixel location (xi,yi), to camera 2 at the pixel location (x2,y2), and to 

camera 3 at the pixel location (x3 ,y3), then ( ^ — x3) = 2(x2 — x3) (Note that 

Vi= yi= y-i a s aH images are rectified). With camera 3 as the reference camera, 

if the disparity values to be evaluated against camera 2 is (1,2,3, .. . ,n), then the 

corresponding disparity values for camera 3 is doubled, i.e. (2,4,6, ...,2n). This 

guarantees that the cost volume generated for every reference view has the same 

depth tessellation pattern and can be later on merged together in the cost merging 

stage. 

In the second cross camera setup, the baselines for every reference-target 

camera pair have the same length, but with different orientations. It is labelled 

"Cross" in Figure 5.2. Thus the disparity shift happens in the -x direction in the 

image plane for camera pair (1,4), in the +x direction for camera pair (1,5), in the 

-y direction for camera pair (1,2), and in the +y direction for camera pair (1,3). 

The cost volumes generated with the proper disparity shift direction again has the 

same depth tessellation pattern and can be later on merged together in the cost 

merging stage. 

5.3 Parzen Window driven Cost Merging 

In this section, the detail of the Parzen-window driven cost merging proposed by 

Vogiatzis et al. [46] is discussed. 

Given a reference camera and N target cameras, N cost volumes can be 

generated using any two-frame stereo algorithms. Vogiatzis et al. use normalized 

cross correlation with a square window to compute and aggregate the cost. Let 

ACi denote the cost volume calculated using reference camera i, and ACi(p, d) the 
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cost of projecting a center view pixel p with depth/disparity d to the reference 

camera i. The cost merging step needs to combine ACi(p, d) from all the N 

reference cameras into a single merged cost MAC(p, d). By assigning each depth 

level with a matching cost, a new merged cost volume MAC is obtained and ready 

to be used by a disparity selection algorithm. 

The simplest way to do merging is by sum/average, i.e.: 

MAC(p,d) = \^CVi(p,d)]/N 
ieN 

(5.2) 

Or a slightly better way proposed in [19] is to use the best half of the target 

cameras, 

MAC(p,d)= T ACt(p,d) 
iEBHd,v{N) 

where 

BHdtP(N) = [j\ACj(p,d) > mediankeN(ACk(p,d))}. 
(5.3) 

The aforementioned merging approaches are heuristic and not robust enough 

against noise, occlusions, or the lack of texture. For some pixels, faulty good 

matches and noise on the cost-depth curves for all reference cameras can easily 

disturb the final merged cost-depth curve so that the simple winner-take-all 

algorithm will fail to assign the correct depth. 

Figure 5.2(a) shows all the reversed matching cost curves to be merged, each 

associated with a reference-target camera pair. Note that the matching cost curves 

have to be reversed because of the maxima-clustering nature of Parzen window 

process applied later, thus a bigger value along the reversed matching cost curve 

indicates a better match. d0 is the true disparity that some of the curves agree but 
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others disagree due to occlusion or image noise. The average matching cost curve, 

which is the dotted curve in (b), apparently misses d0. 
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Figure 5.2: How to merge multiple matching cost curves. (Courtesy of 
George Vogiatzis.) 

It is clear that the global maximum of a single cost-depth curve may not 

correspond to the correct depth. However, at the correct depth, the visible cameras 

still can give local maximum scores, even if it is not a global one. It is more often 

than not that more local maxima can be found around the correct depth, while the 

error due to occlusion can cause only a small number of the curves not to reach 

their corresponding local maxima. So, detecting all local maxima and finding a 
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way to reinforce those local maxima that are close to each other can give a more 

robust and noise-free merged curve. 

This reinforcement is achieved by applying the probability model coined by 

Parzen [33]. The Parzen-window density estimation, or kernel density estimation, 

is essentially a data interpolation technique. Given some observations of a random 

variable, Parzen window can reconstruct any data point by aggregating over the 

known observations with a kernel (Gaussian-kernel is one example). Thus the 

entire population can be interpolated. 

To apply Parzen window in the multiview stereo scenario, the observation data 

points are not randomly chosen but local maxima dk in all the reversed matching 

cost curves, as depicted by the brown dots in Figure 5.2(c). They are detected by: 

SCVi , 
- ^ ( p . d k ) = 0 

and 

A2ACt , 

(5.4) 

Then the merging is conducted with Parzen window: 

MCV{V, V^YJYJ
 CVi(~P'dk) ' G(d " dfe) 

iEN k 

(5.5) 

where G is a Gaussian kernel that makes sure that local optima contribute more to 

nearby depth candidates. The Parzen window process achieves mutual 

reinforcement of local maxima as Gaussian kernel applies a bigger weight to a 

nearby than a farther maximum. If a data point is close to more local maxima, it 

will have a bigger reconstructed value. Thus, the merging process is robust 
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against occlusions and image noise. The merged costs are illustrated in 5.2(d) as 

the solid curve. 

5.4 Proposed System 

The proposed algorithm performs four steps: cost volume generation, cost volume 

aggregation, cost volume merging, and disparity selection, as depicted in Figure 

5.3. 

With the reference view and several target views, the cost volume generation 

step calculates one cost volume for each reference-target camera pair using any 

matching cost function. The method to select disparity levels for each reference-

target image pair is discussed in the next section. And the matching cost function 

used here is a simple squared difference of image intensities. 

Cost aggregation 

i — > 

,i""n"nr'jj(i,r 

1 sst ' sws " ^ -fl 
Cost volume generation Cost volume merging 

Figure 5.3: System flow of the proposed algorithm. 

Then cost aggregation is applied to every single cost volume. The GPU ASW 

cost aggregation [16] is again used here due to its speed and relative good 

performance. SSD (sum of squared differences) is also implemented for 

comparison. 
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Then the multiple cost volumes are merged into a single cost volume in the 

second step. A novel way to merge cost volumes combining the occlusion robust 

photo-consistency metric proposed by Vogiatzis et al. [46] and the ASW idea [52] 

is presented. 

Finally the disparity selection step uses winner-take-all to locally decide the 

best disparity for every single pixel in the center view. These three parts are 

seamlessly and independently joined together. 

The number of matching cost curves used in the Parzen window approach 

depends on the number of reference images. With a sparse camera array setup, the 

number of curves may be too few to guarantee the effectiveness of the Parzen 

window technique. When one bad pixel sample out of a small number of 

reference views is present, the disturbance can be big and the Parzen window 

technique may fail to recover the correct depth. 

To minimize the effects from noisy input or occlusion, we can use curves from 

neighbour pixels. This approach is valid since neighbour pixels usually have 

similar disparity values and hence their curves can help to reinforce the local 

optima at the correct depth. It is also more effective because using all pixels 

within a small 3x3 neighbourhood gives 9 times more curves to work with, which 

can effectively reduce the effects of noisy input and occlusion. 

When using curves from neighbour pixels, we should try to use only pixels that 

have the same depth as the center pixel. Hence, the question of which 

neighbouring pixels we should use is similar to the one we face in the cost 

aggregation step. Therefore, the best cost aggregation technique - ASW - is the 

perfect solution. With proper weights assigned to the neighbouring pixels within a 

big square neighbourhood, tens, or even hundreds of curves are made available to 

merge for a single pixel, and those neighbouring pixels with a better chance of 

having the same depth value will have higher weights and hence contribute more 

in the merging process. 
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5.4.1 Multiple cost volume merging 

CPU version. 

The formula we use for merging in the CPU version is: 

MCV(p,d)= ^ ^ ^ C l / i ( p , d ) - C y i ( q , d f e ) - G ( d - d f c ) - w ( p , c ? ) 
q£win(p) i£N k 

(5.6) 

where win(p) is the neighbourhood of pixel p where adaptive support-weight 

applies, and w(p,q) is the weight calculated using (2.2). <4 is a local maximum 

from the reversed cost matching curve for q. 

Notice that there is a slight difference between the original equation (5.5) and 

equation (5.6). An extra term Ad(p.d) is introduced. Consider a pixel-depth 

combination, where the matching scores for all reference cameras, i.e. Ad(p.d), 

are low. There is very little chance for the true depth to fall on depth d. But if J is 

close to many local optima on the cost-depth curves, there is a possibility that 

MAC(p, d) is merged as the global optimum. These false global optima can be 

reduced by taking into considerations the actual matching scores at depth d. The 

experimental results show a 2%-20% reduction in error rates in all tested datasets 

by replacing equation (5.6) with equation (5.5). 

The CPU version following equation (5.6) is implemented and tested to fully 

demonstrate the effectiveness of the proposed technique. 

GPU version 

In order to achieve real-time performance, we have to simplify the equation to 

make it more efficient for GPU implementation. 

Notice that, if we replace Ad(p,d) by AQ(q,d) in equation (5.6), the formulation 

can be rewritten as: 
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MAC(p,d)= ^ ^^ i4C t (q f ,d ) - i4C £ (q r ,d f c ) -G(d-d f c ) -w(p ,g ) 
qewin{p) ieN k 

= £ w(p,q)(^^C^d)-4Q(^dJ-G(d-d fe)j 
qewin(p) View k / 

(5.7) 

The replacement will not have a big impact to the result since neighbour pixels 

with high support weight have a good chance of having a similar curve with the 

pixel of interest. And this modification enables us to separate the computation into 

2 passes. The first pass is the Parzen-window cost volume merging without 

adaptive support-weight. This pass is parallel and is adapted to the GPU 

implementation easily. The second pass applies the GPU ASW onto the merged 

cost volume to complete the cost merging process. 

5.4.2 Disparity selection 

After cost volume merging, MAC now holds a single cost volume, to which the 

winner-take-all optimization can be applied for finding the best disparity value for 

each pixelp, the same as equation (3.10).That is: 

Disp(p) = argmindJVL4C(p, d) 

(5.8) 

5.5 Experimental Results 

5.5.1 Experimental setup 

Five datasets are tested. The Tsukuba and Santa_ Doll datasets are from the 

Multi-view Image Database of the University of Tsukuba. The four reference 

cameras and the center camera follow the cross configuration. The other three 

datasets are from the Middlebury stereo evaluation website, namely Teddy, Cones 

and Venus. For these three datasets, 10 images are taken from a linear camera 
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setup. Camera 2 and 6 are used for the standard two-frame stereo evaluation, 

where 2 is the center camera. We use camera 0, 1,2, 4, 6, with 2 still being the 

reference camera. In order to achieve the same disparity range in the two-frame 

setup, sub-pixel disparity is required for camera 0, 1, and 4. By doing this, we can 

use the Middlebury stereo website to evaluate our results. 

Experiments are performed on a machine running Windows XP Professional 

with 4GB of system memory, with two AMD 2.21 GHz dual-core Opteron CPUs, 

and two NVIDIA 8800 GTS 512MB GTS graphics cards, only one of which is 

used in the GPU implementation. 

The parameters used in the experiments follow the empirical choices suggested 

in the original papers. In the GPU ASW algorithm, yc=19.6 and yg=40, as adopted 

in [16]. The adaptive support-weight window size is 33 in the cost aggregation 

step and 17 in the cost volume merging step. It is noteworthy that the original 

Parzen-window technique deals with NCC matching score, where a larger score 

means a better match. Since we use the difference based cost matching and cost 

aggregation, where a smaller value means a better match, so we reverse the 

normalized value before the cost volume merging step so that a bigger score 

indicates a better match. 

5.5.2 Disparity results 

Figures 5.3-5.6 show the results of running different cost volume merging 

algorithms on the Tsukuba, Teddy, Cones and Venus datasets. Of all the four 

groups of figures, the top rows show four disparity results from four single 

reference view cost volumes. Due to the visibility problem, these disparity maps 

all have errors in the occluded regions. In the bottom rows, the first ones from the 

left are from the averaging cost volume merging technique; the second ones use 

the original Parzen-window technique; the third ones are obtained from the 

proposed technique; and the last ones are the ground truth. Though all three 
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approaches produce better disparity maps than the two-frame results, the ones 

generated using the new technique are the most visually appealing. 

Table 5.1 gives the statistical comparison of different techniques implemented 

on CPU. All of the error rates are evaluated by the Middlebury stereo vision 

website. Averaging cost volume merging and Parzen-window cost volume 

merging definitely improve upon the two-frame results, since more cameras are 

used. Parzen-window performs arguably better than averaging, mainly because 

the sparse camera set-up does not give enough cost-disparity curves for Parzen 

window to work on. The new technique performs well for most of the datasets. 

With more cameras, it easily outperforms all two-frame local stereo algorithms, 

but is still behind some of the best global optimization methods. 

A special note on the Venus dataset is that, due to the rich texture and the use of 

simple sub-pixel linear interpolation, the cost volumes generated with camera 0, 1, 

4 are very poor, producing around 10% error rate. Thus the effectiveness of the 

merging techniques is not significant. As well, there is a sharp drop of disparity 

result quality for average merging and simple Parzen window merging. We plan 

to investigate this problem further in future research. 

5.5.3 With poor cost volume inputs 

When the aggregated costs are generated using the sum-of-squared-differences, 

instead of the simplified adaptive support-weight approach, the cost volumes (AG) 

can be of poor quality. Here we use a 5x5 SSD window to generate the cost 

volumes for the Tsukuba and SantaDoll datasets, and then apply different cost 

volume merging techniques for comparison. 

The results, shown in Figure 5.7, demonstrate that even with poor cost volume 

inputs, our technique is still robust enough to obtain acceptable results. From the 

left, the first, middle and right are obtained respectively using the averaging cost 
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volume merging technique, the original merging technique, and our proposed 

method. 

5.5.4 GPU version results 

The GPU version provides real-time performance. Indeed, it runs at around 70 

FPS for the Tsukuba dataset, 45 FPS for the Venus dataset and 15 FPS for the 

Cones and the Teddy datasets on one NVIDIA 8800 GTS 512MB graphics card. 

The disparity results are shown in Figure 5.8. Despite some loss in accuracy 

because of the simplified formula and GPU tailored implementation, the disparity 

results are still quite acceptable and can definitely be used as a module in real­

time vision applications. 

Cen-right 
Avg 

Parzen 
Proposed 

Cen-right 
Avg 

Parzen 
Proposed 

nocc all disc 
TSKUKUBA 

2.27 
1.56 
1.41 

1.08 5 

3.61 
1.85 
1.76 

1.39 3 

11.20 
8.37 
7.57 

5.79 6 
CONES 

12.6 
5.76 
5.83 

3.05 5 

18.9 
7.94 
8.00 

4.31 / 

19.4 
12.5 
12.6 

7.48 2 

nocc all Disc 
TEDDY 

12.0 
9.42 
11.1 

7.74 77 

19.5 

11.7 
12.8 

9.95 5 

23.8 
18.8 
19.1 

17.1 16 
VENUS 

3.45 
4.59 
8.90 

2.30 30 

4.28 
5.26 
9.42 

2.90 27 

16.7 
13.8 
18.7 

10.7 25 

Table 5.1: Error rates evaluated from the Middlebury website, with the Tsukuba, 
Teddy, Cones and Venus datasets. The Cen-right rows hold results for the two-

frame stereo with center and right camera. The Avg rows show results from 
averaging all cost volumes. Parzen denotes the original Parzen cost volume 
merging technique. The results in the rows labelled Proposed are from our 

proposed technique, and the numbers in italic are ranks from the Middlebury 
stereo evaluation website. 
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Figure 5.4: Results for the Tsukuba dataset. The top two rows show disparity 
results for individual target views; the third row, in the order from left to right, 

shows the result using average merging and Parzen-window merging; the last row 
has result from the proposed method, and the ground truth. The same layout 

applies to Figure 5.4, Figure 5.5 and Figure 5.6. 
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Figure 5.5: Results for the Teddy dataset 
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Figure 5.6: Results for the Cones dataset. 
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Figure 5.7: Results from the Venus dataset. 
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Figure 5.8: Results for the Tsukuba and SantaClaus dataset with SSD 
generated cost volumes. 

Figure 5.9: Results of using the GPU implementation. 
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5.6 Summary 

A new local multi-view stereo algorithm is presented in this chapter. The 

algorithm is designed for highly parallel systems and can achieve real-time 

performance. The adaptive support-weight cost aggregation idea and Parzen-

window cost volume merging idea are combined to achieve a robust cost volume 

merging module. Our encouraging results show the effectiveness of the proposed 

method. A simplified real-time GPU version is implemented as well. 
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Chapter 6: 

Conclusion and Future Work 

To extend the usefulness of the ASW cost aggregation method, three new 

algorithms are developed in this thesis. 

A new local stereo matching algorithm is presented in Chapter 3, which 

combines adaptive-weight cost aggregation with slanted surface modeling. In 

order to achieve superior disparity result, the plane fitting idea is used to extend 

aggregation into the 3rd dimension and expands through multiple disparity levels. 

Such an extension is essential to better model slanted surfaces. The results 

demonstrate the effectiveness of the new algorithm. Some extension works can be 

done along this direction. First, the raw disparity map used to generate DPO has a 

direct impact on the accuracy of extracted slanted surfaces and later can influence 

the disparity result. In fact, the experimental results presented in this thesis show 

that DPO generated from ground truth improves the final result by 10% to 50% on 

four datasets. Hence, a better DPO generation approach may improve the input 

disparity result. Another possible avenue to pursue is to get a better initial 

estimate by incorporating range images [51]. Along the direction of using GPU, 

the parallel characteristic of this algorithm can be fully exploited by porting to 

GPU. 

Chapter 4 presents the endeavour of using CUDA to fully implement the ASW 

algorithm onto GPU without much loss of quality. The quadtree based approach 

replaces pixel primitives in stereo matching by square-shaped segments, reduces 
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the number of primitives to be processed, and improves the inner-segment 

smoothness by assigning uniform disparity values for every segment. Although 

challenges still remain, improvements in both quality and speed are still feasible. 

First of all, the cue of Euclidean distance in segment-to-segment weight is 

approximated by the distance of their segment centers. This reduces the credibility 

of the weights. Also, square-shaped segments, although efficient to process in 

GPU, are quite restrictive and render the segmentation quality vulnerable to high-

textured areas and image noise as a single heterogeneous pixel in a large 

homogenous area, which will lead to more segments than desired. A more general 

segmentation method which allows non-rectangular shaped segments may be 

more effective. Thirdly, the neighbourhood to be aggregated is still of a fixed size, 

which may not adapt to low-textured areas and high-textured areas well. Using a 

fixed number of segments that bear the biggest weights within the neighbourhood 

of the segment-of-interest is one possible solution. A better structure has to be 

used in order to find the nearest neighbours in weights rather than just in spatial 

distance. Using a KD-tree is one option, and a CUDA based real time photon 

mapping application has already been proposed by Zhou et al. [55], which 

features efficient construction of KD-tree of photons and KNN searches of any 

photon. 

The new multi-view stereo algorithm based on Parzen-window and ASW 

discussed in Chapter 5 shows promising results and robustness against occlusions. 

One possible avenue of improvement is to refine the cost volume results for every 

view by merging other views using the new method, and then iteratively update 

each cost volume to get even better results. Also, a complete system that can 

process multiview images in real-time to produce high quality disparity results is 

worthy to be developed to fully demonstrate the effectiveness of the new methods 

presented in this thesis.. 

Finally, the three algorithms discussed in this thesis try to enhance local stereo 

matching from three perspectives, namely subpixel disparity accuracy, real-time 
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speed under ASW aggregation, and occlusion handling. How to integrate the 

presented algorithms to achieve all three objectives will be worth investigating. 
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Appendix I: 

The pseudo code for direct porting ASW onto GPU runs like this: 

Algorithm AI.l 

procedure AdaptiveSupportWeightCostAggregation 
in: float cv[][], int dispRange, int szAggrWin, texture targetlm 
out: float cv[][] 

begin 
for i = 0 to dispRange-1 

for each pixel position in parallel 
aggrCost <- 0 
po 4r the colour value for the pixel position from targetlm 
for each neighbour pixel in the aggregation window restricted by szAggrWin 

pn 4- the colour value for the neighbour pixel from targetlm 
wt <- calculate the weight using po, pn, and neighbour pixel offset 
cost 4- the matching cost for neighbour pixel position from cv[i] 
aggrCost <- aggrCost + cost*wt 

end 
update cv at with aggrCost at the corresponding pixel position and disparity i 

end 

Note that in the code, cv is a two-dimensional array. Thus cv[i] means a one-

dimensional array of size imageWidth x imageHeight that stores all the costs 

for disparity level i. dispRange is the number of disparity levels for the dataset. 

targetlm is the texture reference that stores the target image. The reference image 

is not needed here because the weight calculation uses the pixel-of-interest and its 

neighbour pixels in the target image. szAggrWin denotes the size of the local 

aggregation window, wt is calculated using equation (AI.l). Code fraction 
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described as in parallel runs as CUDA kernels on GPU. The most inner for loop 

performs the aggregation described in equation (AI.2). 

, N i i ^Cu,v,m,n , ^§u,v,m,n 
w(u, v, m, n) = exp — h 

(AI.1) 

y / w(u,v,m,n) \ 

AC(u, v, a) = -
Zm,ne[-r,r]W(u,V,m,n) 

(AI.2) 
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Appendix II: 

Pseudo codes for two improved ways of direct poring ASW to GPU are listed 

below: 

Algorithm All. 1 

procedure AdaptiveSupportWeightCostAggregationlmprovedl 
in: float cv[][], int dispRange, int szAggrWin, texture targetlm 
out: float cv[][] 

begin 
for each pixel position in parallel 

aggrCost[dispRange] 4r 0, and aggrCost is allocated on shared memory 
po 4- the colour value for the pixel-of-interest from targetlm 
for each neighbour pixel in the aggregation window restricted by szAggrWin 

pn 4- the colour value for the neighbour pixel from targetlm 
wt 4- calculate the weight using po, pn, and neighbour pixel offset 
for i = 0 to dispRange-l 

cost <r the matching cost for neighbour pixel position from cv[i] 

aggrCost[i] <- aggrCost + cost*wt 

end 

update cv at with aggrCost at the corresponding pixel position 

end 

Algorithm AII.2 

procedure AdaptiveSupportWeightCostAggregationImproved2 
in: float cv[][], int dispRange, int szAggrWin, texture targetlm 
out: float cv[][] 

begin 
for each pixel position in parallel 

allocate targetImPatch[] on shared memory, with proper size 
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allocate cvPatch[] on shared memory, with proper size 
read in portion of targetImPatch[] from targetlm 
read in portion of cvPatch]} from cv 
synchronize^) 
po 4- the colour value for the pixel-of-interest from targetlmPatch 
for each neighbour pixel in the aggregation window restricted by szAggrWin 

pn 4- the colour value for the neighbour pixel from targetlmPatch 
wt <- calculate the weight using po, pn, and neighbour pixel offset 
for i = 0 to dispRange-1 

cost <- the matching cost for neighbour pixel position from cvPatch 
aggrCost\i] <- aggrCost + cost*wt 

end 
update cv with aggrCost at the corresponding pixel position 

end 

Algorithm AII.l shows how to process all disparity levels in one kernel; and AII.2 

how to cooperate between kernels to achieve better memory access scheme. Note 

that targetlmPatch and cvPatch are the supersets of all neighbourhoods for every 

pixel in the block, synchronize () is necessary to make sure all kernels in the block 

have finished initializing their share of the shared memory, as no dirty region in 

the shared memory is acceptable. The size of targetlmPatch/cvPatch equals 

(2W + K)X (2W + K) under the setup of a (2W + 1) x (2W + 1) aggregation 

window size and &K X K kernel block size, as described in Section 4.2.2. 
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