
University of Alberta

TOWARDS REAL-TIME ADAPTIVE SUPPORT WEIGHT STEREO ALGORITHMS

by

Yilei Zhang

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment

of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Fall 2008

©

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-47454-9
Our file Notre reference
ISBN: 978-0-494-47454-9

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

•*•

Canada

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

This thesis work is divided into three parts. The first part presents a new local

binocular stereo algorithm which takes into consideration plane fitting at the per-

pixel level. By dropping the fronto-parallel assumption for aggregation window

selection, the pre-computed plane orientation for each pixel is used to guide the

adaptive weight cost aggregation in the 3D cost volume. The second part uses

CUDA programming language to fully harness the prowess of GPUs and achieve

near real-time performance for the compute-intensive adaptive support weight

cost aggregation method. The last part explores the multi-view camera setup,

combines the adaptive support weight idea with parzen-window based photo-

consistency metric to get a local occlusion robust stereo algorithm. A simplified

real-time GPU version is also implemented. The experimental results for all three

parts are very encouraging.

Acknowledgements

I would like to extend my sincere thanks to my supervisors Dr. Yee-Hong Yang

and Dr. Minglun Gong for their academic guidance and mental support

throughout the last two years. They have been a constant source of inspirations

and ideas.

I am very grateful to the committee members, Dr. Nilanjan Ray and Dr.

Duncan Elliott, for their important comments.

I would also like to thank my current and former labmates in Computer

Graphics Lab at the University of Alberta, in particular Cheng Lei, Jason Selzer,

Danielle Sauer, Daniel Neilson, Gopinath Sankar, Omar Rodriguez-Arenas,

Xiaozhou Zhou, Xida Chen, Yufeng Shen. Their insight and company has been

very valuable.

Financial supports from NSERC, the University of Alberta, and the Memorial

University of Newfoundland are gratefully acknowledged.

Finally and most importantly, I wish to thank my parents. Every little

achievement I have gained today would not have been possible without their

support and encouragement.

Table of Contents

Chapter 1: Introduction 1

Chapter 2: Background and Related Works 4

2.1 Overview of the Stereo Matching Problem 4

2.2 Review of Local Stereo Matching Algorithms 10

2.2.1 Cost Aggregation on Rectangular Windows 11

2.2.2 Cost Aggregation with Unconstrained Shapes 12

2.2.3 Cost Aggregation with Adaptive Support Weight 13

2.3 Overview of Multi-view Stereo Matching 16

2.4 Hardware Acceleration 18

2.4.1 GPU Architecture and GPGPU 18

2.4.2 CUDA 21

Chapter 3: 3D Adaptive Cost Aggregation for Slanted Surface Modeling and Sub-pixel

Accuracy 25

3.1 Motivation 25

3.2 Proposed System 26

3.2.1 Initial Disparity Map Generation 27

3.2.2 Disparity Plane Orientation Generation 29

3.2.3 3D Adaptive Cost Aggregation with Sub-pixel Accuracy 31

3.2.4 Cross-checking and Hole-filling 32

3.3 Experimental Results 33

3.4 Summary 41

Chapter 4: Near Real-time Adaptive Support Weight Cost Aggregation with CUDA 42

4.1 Motivation 42

4.2 Simple Implementations on CUDA 43

4.2.1 Direct Porting to GPU 43

4.2.2 Improved Direct Porting to CUDA 46

4.3 Segmentation Driven Adaptation 49

4.3.1 Quadtree Segmentation 51

4.3.2 Compact Segmentation Image 53

4.3.3 Implementation 53

4.3.4 Performance and Analysis 57

4.4 Summary 59

Chapter 5: Multi-view Stereo using Adaptive Weight and Parzen Window 60

5.1 Motivation 60

5.2 Sparse Multi-view Camera Setup 61

5.3 Parzen Window driven Cost Merging 62

5.4 Proposed System 66

5.4.1 Multiple cost volume merging 68

5.4.2 Disparity selection 69

5.5 Experimental Results 69

5.5.1 Experimental setup 69

5.5.2 Disparity results 70

5.5.3 With poor cost volume inputs 71

5.5.4 GPU version results 72

5.6 Summary 78

Chapter 6: Conclusion and Future Work 79

Bibliography 82

Appendix I: 89

Appendix II: 91

List of Figures

Figure 2.1: The binocular stereo scenario. (Courtesy of Arne Nordmann.) 5

Figure 2.2: Epipolar geometry. (Courtesy of Arne Nordmann.) 7

Figure 2.3: Epipolar geometry with rectified cameras. (Courtesy of Arne Nordmann.).... 7

Figure 2.4: The Tsukuba dataset used in Middlebury Stereo Vision Page 8

Figure 2.5: Predefined window set in shiftable window method 12

Figure 2.6: An example of weight computation in ASW 14

Figure 2.7: A simplified model of a programmable graphics pipeline 19

Figure 2.8: Stream processing model with GPU architecture 21

Figure 2.9: Thread-batching model of CUD A 22

Figure 2.10: Memory programming model inCUDA 23

Figure 3.1: Workflow diagram of the proposed algorithm, with the input data,

intermediate and final results 27

Figure 3.2: Weight calculation in the simplified ASW method 28

Figure 3.3: DPO generation 31

Figure 3.4: Results for the Venus dataset 35

Figure 3.5: Results for the Venus dataset 36

Figure 3.6: Results for the Cones dataset 37

Figure 3.7: Results for the Teddy dataset 38

Figure 3.8: Ranking snapshot in Middlebury stereo vision site, with a disparity error

threshold of 1. Algorithms underlined with red are other local stereo algorithms. The

table is not complete as the list is long 39

Figure 3.9: Ranking snapshot in Middlebury stereo vision site, with a disparity error

threshold of 0.5. Algorithms underlined with red are other local stereo algorithms. The

snapshot is not complete as the list is long 40

Figure 4.1: CPU ASW result and error map for the Tsukuba dataset 44

Figure 4.2: GPU ASW result and error map for the Tsukuba dataset 44

Figure 4.3: How to use shared memory to reduce latency 47

Figure 4.4: Quadtree segmentation, UpMerge pass 52

Figure 4.5: Quadtree segmentation result, with o threshold = 10/255 52

Figure 4.6: Search for neighbour segments 56

Figure 4.7: Disparity results for segmentation driven ASW and original ASW 57

Figure 4.8: Disparity results and segmentation images when different thresholds are

adopted 58

Figure 5.1: Two different camera setups are adopted 61

Figure 5.2: How to merge multiple matching cost curves. (Courtesy of George Vogiatzis.)

64

Figure 5.3: System flow of the proposed algorithm 66

Figure 5.4: Results for the Tsukuba dataset. The top two rows show disparity results for

individual target views; the third row, in the order from left to right, shows the result

using average merging and Parzen-window merging; the last row has result from the

proposed method, and the ground truth. The same layout applies to Figure 5.4, Figure 5.5

and Figure 5.6 73

Figure 5.5: Results for the Teddy dataset 74

Figure 5.6: Results for the Cones dataset 75

Figure 5.7: Results from the Venus dataset 76

Figure 5.8: Results for the Tsukuba and SantaClaus dataset with SSD generated cost

volumes 77

Figure 5.9: Results of using the GPU implementation 77

List of Tables

Table 3.1: Error rates evaluated with threshold of 1.0. Italic numbers are ranks, 'noonocc'

column evaluates non-occluded areas, 'disc' column evaluates disparity discontinuity

areas, and 'all' column evaluates every pixel in the disparity image 35

Table 3.2: Error rates evaluated with a threshold of 0.5. Italic numbers are ranks 35

Table 3.3: Error rates evaluated with a threshold of 1.0. Italic numbers are ranks 36

Table 3.4: Error rates evaluated with a threshold of 0.5. Italic numbers are ranks 36

Table 3.5: Error rates evaluated with a threshold of 1.0. Italic numbers are ranks 37

Table 3.6: Error rates evaluated with a threshold of 0.5. Italic numbers are ranks 37

Table 3.7: Error rates evaluated with a threshold of 1.0. Italic numbers are ranks 38

Table 3.8: Error rates evaluated with a threshold of 0.5. Italic numbers are ranks 38

Table 4.1: Error rates evaluated with threshold 1.0 44

Table 4.2: Error rates evaluated with threshold 1.0 57

Table 5.1: Error rates evaluated from the Middlebury website, with the Tsukuba, Teddy,

Cones and Venus datasets. The Cen-right rows hold results for the two-frame stereo with

center and right camera. The Avg rows show results from averaging all cost volumes.

Parzen denotes the original Parzen cost volume merging technique. The results in the

rows labelled Proposed are from our proposed technique, and the numbers in italic are

ranks from the Middlebury stereo evaluation website 72

Chapter 1: Introduction

Computational stereo is generally defined as the recovery of the three dimensional

characteristics of a scene from multiple images taken from different points of

view. It has been an intense area of research for decades in the computer vision

community.

Several survey papers published along the track of stereo vision research have

marked the developments and propelled the progress in computational stereo

research. Barnard and Fischler [1] surveyed existing approaches and ongoing

stereo projects at that time, which identifies functional components of the

computational stereo paradigm and criteria for performance evaluation. Dhond

and Aggarawal [9] published their review work in 1989 to sum up major

developments within a decade. A collection of new matching methods, several

popular theories that adopted in stereo vision, a hierarchical processing model,

and the use of trinocular constraints to reduce ambiguity in stereo, are among

things that appear in the paper. From that point on, stereo research has matured,

and according to [3], "much of the community's focus has turned from general

stereo matching into more specific problems". Occlusion and transparency issues

in stereo matching, active and dynamic stereo, and real-time stereo

implementations are some of the categories that are pursued after the 90s.

Scharstein and Szeliski in their paper published in 2002 [34] not only summarizes

many well-known matching methods emerged throughout the time but also

proposes an in-depth taxonomy of all genres of methods. They also provide a

testbed online that researchers can evaluate their methods against others easily.

1

This unified way of evaluation further intensifies the research in computational

stereo vision.

Stereo correspondences can be determined in a number of ways and

constrained by a plethora of constraints. But in general, all methods attempt to

match pixels from one image with their corresponding pixels in another image.

Local stereo methods and global stereo methods, as categorized by Scharstein and

Szeliski, use different models to find the correspondence [34]. Local stereo

methods use constraints on a small number of pixels surrounding the pixel of

interest, hence the name local. On the other hand, methods that seek to meet

constraints from a global perspective are referred to as global methods. Local

methods, with its limited order of constraints, are generally more efficient, but

suffer from locally ambiguous regions like occlusions, low-textured regions, or

other kind of image noise. These limitations are widely recognized [34] [3] [47],

but there is still progress every year in pushing the limit of local stereo algorithms,

either to achieve better quality or to get better speed.

This thesis focuses on both ends of the research interests for local stereo

matching. First a new local stereo algorithm is developed that aims for finer

reconstruction result and achieves accuracy comparable to several complex global

stereo algorithms. Then in the pursuit of speed, the newest tool for harnessing the

graphics hardware power - CUDA - is exploited to implement the top-notch local

stereo algorithm on GPU for near real time performance. Last but not least, a new

occlusion-handling multi-view stereo algorithm is developed, which is based on

local constraints and is implemented on GPU to achieve real-time performance at

the trade-off of little reconstruction quality loss.

The rest of this thesis is organized as follows. Relevant works and necessary

background knowledge in fields of stereo matching, more details on local stereo

algorithms and multi-view stereo algorithm, and general purpose computation on

GPUs are discussed in Chapter 2. Chapter 3 presents a new local stereo algorithm,

2

capable of producing high quality disparity maps with subpixel accuracy. A GPU

powered real-time implementation of the best local stereo algorithm is discussed

in Chapter 4. A novel multi-view stereo algorithm which strives both for quality

and speed is introduced in Chapter 5. Finally, Chapter 6 concludes the thesis and

discusses possible venues for future improvements.

3

Chapter 2:

Background and Related Works

The goal of this chapter provides the background materials, which the research

performed in this thesis is based on. The most basic questions are described in

Section 2.1: 1) What is the stereo matching problem? and 2) What is the

computational model adopted for stereo matching in computer vision? A brief

summary of popular stereo matching algorithms as well as some commonly used

representations and terminologies is also given.

In the next section, a synopsis of existing local stereo algorithms is presented.

The main focus of this thesis is to improve both the quality and speed of a local

stereo algorithm. Since the adaptive support weight cost aggregation method plays

an essential role in this work, a detailed analysis of it is also given. Section 2.3

gives a brief overview of multi-view stereo algorithms.

Finally, GPGPU (General Purpose Graphics Processing Unit) and CUDA

(Compute Unified Device Architecture) are presented. The use of GPU brings

real-time performance to many local stereo algorithms, and CUDA provides

flexibility and ease of use to GPGPU programming.

2.1 Overview of the Stereo Matching Problem

The parallel alignment of the human eyes and their close proximity to each other

ensure that the brain receives two similar pictures from two nearby viewpoints at

4

the same horizontal level. Far away objects will have small relative displacements

while nearby objects large displacements between images observed in the left and

right eyes. This is depicted in Figure 2.1, where the eyes are represented by a pair

of cameras. The observed orange sphere, which is farther away from both cameras

than the green sphere, has a smaller relative displacement than the observed green

sphere in the two pictures. The displacement of image locations of an object seen

by the left and right eyes is referred to as the binocular disparity. Our brain can

use binocular disparities by looking at both images to decide their relative

distances.

Figure 2.1: The binocular stereo scenario. (Courtesy of Arne Nordmann.)

The human vision system does not give accurate or complete 3D information.

Instead, it can decide only the depth information of objects that are visible. As a

result, information reconstructed in this way is referred to as 2 -D primal sketch

i
in the pioneering computer vision works by Marr and Nishihara [23]. This 2-D

perception system gives us the sense of depth in the environment we are in, and

hence enables us to avoid stumbling over a rock or running into a wall, to grab a

cup of coffee knowing how far our hand has to reach out, and to do many other

visual tasks we are capable of. When designing a robot, a vision system with

similar features is often desired. This is where the stereo matching problem comes

into play.

5

The goal of stereo matching is to match object surface features over two or

more images acquired from different viewpoints. After corresponding features are

matched, their relative distances or equivalently disparities can then be

determined. The stereo matching problem with two input images - the counterpart

of the human vision system - is called binocular stereo. Marr and Poggio in

another early vision work [24] suggest three basic steps in computing binocular

stereo disparity:

• A particular location on a surface in the scene must be selected from one

image;

• The location that corresponds to the same physical point must be identified in

the other image;

• The disparity in the two corresponding image points can then be computed.

The search space in step [b] can be greatly reduced by using epipolar geometry

described in the following. General position epipolar geometry is illustrated in

Figure 2.2. Two pin-hole cameras have their optical centers at 0L and 0R

respectively. Each camera has an image plane coloured in light blue. The line

connecting 0L and 0R is called the baseline. X is a scene point observed by both

cameras at pixel location XL and XR respectively. The plane defined by X, 0L and

0R is denoted as the epipolar plane. The intersecting line between the epipolar

plane and either image plane is called the epipolar line. Suppose we are searching

for the matching point of XL in the right image. With all of its possible

corresponding scene points lining up in the direction ofOLXL (Xt, X2,X3, and the

real scene point X, to list a few), their projected locations in the right image plane

lie on the epipolar line eRXR. Thus, it is sufficient to search for the best match

along the epipolar line.

6

X
x. ..-•

x, \<...

x >

0, «eL

Left view

Figure 2.2: Epipolar geometry. (Courtesy of Arne Nordmann.)

The rectified camera setup is simpler than a general position one and is

commonly adopted in many stereo vision researches. As depicted in Figure 2.3,

two image planes A and B are arranged so that they are coplanar and collinear on

every scanline. By doing that the epipolar lines are parallel to the baseline, and

when searching for correspondences the traversal goes along the corresponding

scanlines in both images, as depicted by lines 11 and 12 in the right illustration of

Figure 2.3. Disparity, in this scenario, is defined as the shift of pixels of the

corresponding pixels along the same y coordinate in the two input images.

'—"WKr TWP l— <1

w * 12

Figure 2.3: Epipolar geometry with rectified cameras. (Courtesy of Arne
Nordmann.)

Scharstein and Szeliski use this rectified setup in their popular testbed for

dense two-frame stereo correspondence algorithms in the Middlebury Stereo

Vision Page [26]. Figure 2.4 is one example dataset adpoted by them. With the

jjgSffll

• B

w

7

rectified left and right view inputs, for every pixel pref in the left image (or the

reference image), it has a corresponding match on the same scanline in the right

image(or the target image). Then at the same pixel location as pref in the

disparity result image, the disparity value between the pair of matched pixels is

stored with a proper scaling factor for display purposes. Researchers can evaluate

their algorithms by comparing their own results with the provided ground truth

and by counting the number of incorrectly labeled pixels.

| •» Left View [• |— Right View

p^ Ground Truth j

Figure 2.4: The Tsukuba dataset used in Middlebury Stereo Vision Page.

The workflow proposed by Marr and Poggio is rather abstract and does not

address issues from the computational viewpoint. An up-to-date and detailed

computational model for stereo computation has recently been proposed by

Scharstein and Szeliski in their taxonomy paper [34]. Based on their taxonomy,

most stereo algorithms perform the following four steps or at least a subset of

them:

8

• Matching cost computation. For every pixel pref from the reference image, a

search goes along its epipolar line in the target image and compares the pixel

intensities between pref and Ptarget a* e a c n disparity sampling level. The

comparison is done with a matching cost function, which decides how well

the two pixels match; and a smaller matching cost indicates a better match.

The sum of squared differences of intensity values in the red (R), green (G),

and blue (B) channels of a pixel pair is one example of matching cost

functions. The computed matching cost is then encoded in a 3D cost volume

C{x,y,d), where (x,y) are the coordinates of the reference image and d is

the disparity value. Costs for all the pixels at a certain disparity level d are

stored in the same 2D slice and the whole disparity range makes up the third

dimension of the cost volume.

• Matching cost (support) aggregation. The quality of single pixel matching

cost can be compromised by noise from various sources. So summing up

costs over a neighbourhood can help improve the reliability of the matching

cost. The set of neighbour pixels with which to compute the matching cost is

denoted as the support. The simplest support is a square window of a fixed

size.

• Disparity computation/optimization. With the generated and refined cost

volume, the best correspondences between the reference image pixels and the

target image pixels can now be decided. In a local stereo algorithm, the

emphasis is on the matching cost computation and the aggregation steps, and

a simple winner-take-all disparity selection scheme is used. In contrast, a

global approach places more importance in the disparity selection scheme,

and many techniques can be used to seek globally optimal disparity choices.

• Disparity refinement. The obtained disparity map then goes through post­

processing, such as smoothing, cross-checking, and localizing/refining object

edges, to refine the final disparity map.

On a more detailed note, most global optimization based methods minimizes

an energy function as suggested in [34]:

9

E(dmap) = Edata{dmap) + AEsmooth(dmap)

(2.1)

The data term Edata(dmap) measures how well the disparity function dmap

agrees with the input image pair. The smoothness term Esmooth (dmap) encodes

the smoothness of the solution surface. It is usually done by measuring the

differences between neighbour pixels' disparities. Once this global energy

function is defined, the stereo matching problem is transformed into an energy

minimization problem. A variety of algorithms can be used to solve equation (2.1),

e.g., the belief propagation [20] [50] [41] based methods yield results of the best

quality; the graph-cuts based methods are also studied heavily [21] [46]; the

dynamic programming based methods are also very popular [6] [7] [37] [13], but

the energy minimization is mostly achieved per scan-line rather than globally over

the whole image.

2.2 Review of Local Stereo Matching Algorithms

Global optimization based algorithms has been the dominant approach when the

disparity map quality is more concerned. However, the energy minimization

framework is computationally intensive and difficult to parallelize, and hence

there is room for improvements for local stereo matching algorithms. Indeed,

local algorithms are intrinsically parallel. Hence, they can be implemented on

current programmable graphics or customized hardware, and thus are widely used

in real-time vision applications. This nice feature keeps research on local stereo

approaches worthwhile and active.

Out of the four steps described in the previous section, matching cost

aggregation is the most crucial part. As for the matching cost computation step,

the squared difference is a legitimate choice that performs well under most

circumstances, according to Neilson's benchmarking paper [28] on different

matching cost functions. Since most of the local stereo algorithms use the same

10

winner-take-all disparity computation routine, the module that really sets these

algorithms apart is in the matching cost aggregation step.

The cost aggregation step basically tries to update every entry in the cost

volume based on cost values within its local support regions. How to select the

support region varies from approach to approach. The simplest idea is to assume

that the neighbourhood will hold the same disparity value with the pixel-of-

interest p and the sum over a fixed size square window at each disparity

hypothesis d is used to update the cost volume entry C(xp,yv, d). This method

adopts the smoothness assumption as stated in [24]: disparity varies smoothly

almost everywhere, since only a small fraction of the image is composed of

boundaries that are discontinuous in depth. However, this aggregation scheme

will fail to work at discontinuities. Another setback is that the window size is

always hard to decide. As noted by Barnard and Fishier [1], if the window is too

small or does not cover enough intensity variation then the disparity estimate does

not improve much. On the other hand, if the window is too large, there is a bigger

chance for depth discontinuities to present within the window, which violates the

smoothness assumption.

2.2.1 Cost Aggregation on Rectangular Windows

Knowing the disadvantages of cost aggregation with square window of a fixed

size, researchers have been working on developing more effective adaptive

support cost aggregation methods for decades. In an early attempt by Kanade and

Okutomi [18], the aggregation window is determined iteratively and has a

rectangular shape. Based on the disparity result from the previous pass, the

window grows along four directions, i.e. +x, -x, +y, and -y, to minimize the

effects of variation of intensity and disparity. Their method is highly dependent on

the initial disparity estimation and is computationally expensive.

11

Geiger et al. [15] stay away from the iterative approach by evaluating two pre­

defined windows — one finds the pixel-of-interest on the left border of the

window while the other on the right border; the candidate with a better measure is

chosen. This idea is later extended by Bobick and Intille [2] and others [5] [14]

into the shiftable window method, which considers multiple square windows

centered at different locations as depicted in Figure 2.5 and selects the one with

the smallest average cost. The pixel coloured black is the pixel of interest, so by

varying the position within the aggregation window it can adapt to different

boundary situations. However, the proper size of the pre-defined windows still

remains a problem.

^ ":

1 -
i

__*_

•

._

..

Figure 2.5: Predefined window set in shiftable window method.

The above methods all use rectangular aggregation windows. They are

computationally efficient and hence can be incorporated into any existing stereo

framework. However, since they do not adapt to local characteristics of the data

well, the performance improvement is minimal.

2.2.2 Cost Aggregation with Unconstrained Shapes

To overcome the limitations of rectangular aggregation window, aggregation

windows with unconstrained shapes are proposed to better adapt to scene data.

One idea is to employ colour segmentation because in many circumstances depth

12

discontinuity boundaries in a scene also appear as colour discontinuity boundaries

[42]. With segmentation information, the aggregation windows can be

appropriately selected so that their boundaries will not extend beyond a colour

segment. However this approach is not suitable for real-time implementations

because colour segmentation itself takes too much time.

A more efficient alternative is to use edge information instead of segmentation

information to guide the adaptive window selection [17]. For efficiency

consideration, the aggregation process is separated into a horizontal pass and a

vertical pass; and in each pass, the locations of colour discontinuities in the

horizontal or vertical ID aggregation window determine how each pixel in the

window contributes to cost aggregation.

2.2.3 Cost Aggregation with Adaptive Support Weight

The adaptive support weight (ASW) cost aggregation method addresses the

problem of window shape from a different angle. When aggregating the matching

cost for a pixel-of-interest p, no clear-cut decision of inclusion or exclusion of a

neighbour pixel p' in the support region is required. Instead, a weight is assigned

top' indicating how confident it is to integrate;?' during the aggregation process.

The concept of using weights makes the support region adapt to the data even

though the actual support region is a square window of a fixed size.

The first attempt along this direction is proposed in the paper by Xu et al. [49].

In determining the weight for a neighbour pixel within the support region, three

cues are used: 1) certainty based on the variance of the error function, 2) colour,

and 3) disparity distribution correlation.

The work done by Yoon and Kweon [52] propose a more elegant way to

construct the support weight. The support weight for each pixel in the support

region is calculated based on the Gestalt Principles, which state that the grouping

13

of pixels should be based on spatial proximity and chromatic similarity. The

original formula proposed is given as follows:

, N i i ^u,v,m,n , ^9u,v,m,r\
w(u, v, m, n) = exp — h • Ya

(2.2)

„ /w(u, v,m,ri) • w'(u, v,m,nri)\
Lm,ne[-r,r]{ • C(u + m,V + n,d)) AC{u,v,d)= * C(u + m,v + n,d)
T,m,ne[-r,r] w(u> v> m>n) 'W(u, V, m, n, d)

(2.3)

where (u, v) is the pixel of interest; (m, n) is the pixel offset within the local

aggregation window; w(u,v,m,ri) represents the weight of neighbour pixel

(u + m, v + n); d is the disparity hypothesis; ^ c u v m n is the colour difference

between pixel (u,v) and (u + m,v + ri); Aquvmn is the Euclidean distance

between pixel (u, v) and (u + m, v + n), C(u, v, d) holds the initial matching

cost between pixel (u, v) in the left image and (u — d, v) in the right image; yc

and yq are user defined parameters; AC(u,v,d) is the aggregated cost for

assigning disparity value hypothesis d to pixel (if, v). The support-weight idea is

illustrated in Figure 2.6. The image patch on the left side shows the square

support region, and the grayscale image on the right side shows the computed

weights with a larger gray level to depict a higher weight. The pixel of interest

lies in the lamp arm junction, so the weights suggest that a major part of the lamp

arm and lampshade will contribute significantly in the cost aggregation step.

Figure 2.6: An example of weight computation in ASW.

14

Even with the naive winner-take-all disparity computation module, ASW gives

results comparable to many state-of-the-art global optimization methods, as

ranked in the Middlebury stereo vision site [26]. In fact, a majority part of this

thesis work is inspired by this approach.

Nevertheless, some drawbacks are still present with ASW. Tombari et al. [44]

show that the cue of proximity cannot adapt well along depth borders, in low-

textured or high-textured regions, regions, or with repetitive patterns. They

propose to incorporate the proximity cue with segmentation information so that

colour-spatial connectivity can be more efficiently exploited. According to their

method, the full support weights are assigned to neighbour pixels lying within the

same segment. Their modified weight generation equation is given as:

{1.0, if Seg(u, v) = Seg(u + m,v + ri)
((&cu,v,m,n , ^9u,v,m,n\\ „,

exp — 1 , otherwise
V V Yc Yg J J

(2.4)

Another concern lies in the high computational cost of ASW, as the local

support window has to be large enough to effectively encode the neighbourhood

information; the suggested window is of size 35 X 35. Some efforts have been

made to accommodate this, e.g. in [16] [47], the algorithm is simplified by

separating the 2D square cost aggregation calculation into two passes, the first

pass along the vertical scan-line and the second along the horizontal scan-line.

Their formulation is as follows:

„,, ,N Yi
r
m=vw{u,v,m,Qi)-C{u + m,v,d)

T(u, v, d) = == z rr
Lm=mW{u,v,m,0)

YIn=v, w(u, v, 0, n) • T(u, v + n, d)

(2.6)

AC(u,v,d) =
lLrn=v+w(u>v'Q>n~)

(2.5)

15

The weights for pixels not on the x and y axes of the aggregation window are

approximated using the product of the weights of pixels that are on the axes. This

approximation results in a loss of accuracy in the generated cost volume.

2.3 Overview of Multi-view Stereo Matching

As it is generally recognized, using more cameras in stereo can substantially

improve the quality of reconstructed depth information because more information

is available. For example, multi-view stereo algorithms can deal with the noise

problem better than traditional two-camera stereo algorithms and are more robust

against occlusion. As summarized by Seitz et al. [35] in their survey, given the

dense sampling of a scene, the best current multi-view methods use non-linear

energy minimization along with visibility handling and silhouette constraints to

reconstruct the 3D model.

A major problem that multi-view stereo algorithms face is on how to handle

visibilities using multiple images. Due to occlusion, for a certain pixel in the

reference view, not all the cameras can see the corresponding physical point in the

scene. Therefore, to obtain the optimal disparity map, the matching cost

calculation should exclude the cameras that cannot see the corresponding physical

point. Seitz et al. [35] classify multi-view stereo algorithms into two categories

with respect to visibility handling: geometry-based and outlier-based.

Geometry-based methods need an approximate geometry of the scene or some

special assumptions of camera setup to estimate the visibility of a pixel. The voxel

colouring method [36] assumes the convex-hull camera setup which means that

the occlusion ordering of points in the scene is the same for all the cameras. By

evaluating scene points in a near-to-far manner, farther scene points are rejected

when they are occluded by validated nearer scene points. Therefore the visibility

problem is automatically addressed. This approach leads to a number of plane-

sweeping algorithms. For example, techniques by Drouin [10] [11] use an

16

iterative approach to compute the approximate geometry of the scene and use it to

guide the visibility handling in subsequent iterations. Approaches presented by

Kutulakos and Seitz [22] along with the works by Sinha and Pollefeys [40] use

approximate geometric reasoning (such as visual hull) to infer visibility

relationships. This category of algorithms may not work well in a sparsely

sampled scene as it is difficult to find a good initial estimate, so the benefits of

geometry information may not be realized.

The outlier-based approaches do not require information on scene geometry

explicitly. For a particular pixel, only cameras with a better chance of seeing its

corresponding physical point are chosen and others rejected. Another nice feature

of these techniques is that image noise or the presence of highlight can be treated

in a similar fashion as outliers, which are rejected before merging. An early multi-

view stereo system proposed by Nakamura et al. [27] uses some pre-defined

visibility masks in their camera array configuration. For a pixel with a given

disparity hypothesis, different predefined visibility masks are evaluated and the

best mask is selected for that pixel-disparity combination. Kang et al. [19] choose

the left or the right half reference cameras in their linear camera array setup;

another variant they propose is to use the best half of all reference cameras based

on the matching scores. These heuristic outlier-based approaches generally do not

give consistently convincing results.

Vogiatzis et al. [46] recently present a multi-view algorithm that does not

require explicit visibility handling. Instead, an occlusion robust photo-consistency

metric is adopted. Photo consistency checking refers to the process of comparing

pixels in one image to pixels in other images to see how well they correlate. The

variance of the projected pixels from the reference image into the target images is

indicative of how well this projection reflects the real depth of the scene point.

For any optic ray r that goes through certain camera's optic center and intersects

with a 3D scene point x, the photo-consistency scores can be computed along r

with all the other cameras. Then the searching for x along r is regarded as a

17

process of robust model fitting to data containing outliers, which can be caused by

occlusion, noise, lack of textures or specular highlights. Their encouraging

experimental results suggest the effectiveness of their methods and motivate us to

follow their direction and develop a new sparse multi-view cost volume merging

approach as described in Chapter 5.

2.4 Hardware Acceleration

GPGPU stands for General Purpose Graphics Processing Unit. While GPUs were

originally introduced to unload rasterization-based rendering computations from

the CPUs, the graphics hardware industry has made leaps and bounds to

overachieve this goal. The most recent GPU chips bear over 400-Gflops

computational power, and can be programmed to run SIMD (single instruction

multiple data) parallel computations. Therefore they are perfect platforms to

implement data parallel applications.

2.4.1 GPU Architecture and GPGPU

The older generations of GPUs were not programmable but hard-wired graphics

pipelines. Typically, triangle vertices are transformed, lit, and rasterized into

pixels. Then each pixel is shaded with specified lighting and effects, e.g., diffuse

lighting, specular exponentiation, fog blending, and frame-buffer blending.

Besides defining the scene data input and tweaking with API input parameters,

programmers did not have much control over the rendering process. As shown in

Figure 2.7, the pipeline is broken down into the following stages:

• Application: This stage provides high-level control to the CPU. It is

responsible for passing down the 3D geometry primitives in the form of

vertex coordinates, marshalling textures, as well as other organizational

works.

18

• Vertex Transformation: This stage does the vertex position transformation,

lighting computations per vertex, along with generation and transformation of

texture coordinates.

• Rasterization: The transformed 3D primitives are rasterized into fragments

and mapped to the image plane pixels here, with proper depth information

computed. The interpolated values for each fragment sent down from the

vertex transformation stage also have to be computed.

• Fragment Processing: The final colour for each fragment or pixel is decided

in this stage. Besides the interpolated values computed in the rasterization

stage, texel calculation, and all other effects that contribute to the final pixel

colour is applied here.

• Output: All the fragments sent down the pipeline go through depth test, alpha

test, and a series of other tests to decide the final pixel information for the

display.

Application

l
Vertex Transformation

II -4
Rasterization " r

Fragment Processing

Output

4 -
Display

Figure 2.7: A simplified model of a programmable graphics pipeline.

The introduction of programmable graphics pipeline opens a new era of

computation not only in computer graphics but also in other areas as well, in

particular, computer vision. Each of the operations originally performed in a hard­

wired pipeline is now abstracted by its component memory access and

mathematical operations. Programmers have the freedom to explicitly define the

19

functionality of vertex transformation and fragment processing engines based on

their needs. The redefined engines can either perform exactly how the hardwired

pipeline does or do much more by using customized shader programs, which are

programs for controlling the GPUs. A simple example is to include the per-pixel

lighting in fragment processing using a fragment shader program.

To adopt this architecture in a general purpose computation, a GPU is often

regarded as a stream processor [4]. In the stream processing model, a stream is a

collection of records requiring similar computation while kernels are processing

functions applied to each element in the stream. A stream processor executes a

kernel over all the elements of the input stream, placing the results into an output

stream. Hence the mapping from the GPU resource onto the stream processing

model is intuitive: encode input streams into textures, use fragment program to

execute kernel computations, and store the output stream in an output frame

buffer. Figure 2.8 shows how it is done in practice. With the high level graphics

API, the GPGPU application defines a screen sized quad as the only primitive to

be 'drawn'; the data marshalling stage is where all input data are assembled into

textures; then data distribution is automatically achieved by the rasterization

hardware; the execution of kernels written in fragment programs follows; finally

the result is written back into the frame buffer.

GPGPU has been extensively exploited by many compute-intensive and data

parallel projects, such as image processing [12], video encoding and decoding

[39], as well as stereo matching [13] [16] [47] [48]. If a GPU - the parallel

processing powerhouse - is fully harnessed, one can see tens or even hundreds of

times of speed-up over the corresponding CPU counterparts.

20

GPGPUapp _

' I . " . . "
Data Marshalling

1.
; Data Distribution

;TT"_.
I Compute Program j

Memory

Figure 2.8: Stream processing model with GPU architecture.

2.4.2 CUDA

GPGPU programming with graphics APIs like OpenGL and DirectX can simplify

the use of GPU, but there are still limitations as noted in [30]. First, graphics APIs

impose a high-learning curve for non-graphics users and also incur overhead

when the application is wrapped with graphics API calls. Secondly, the device

memory access pattern is highly constrained by a limited number of frame buffers

available to the fragment program. Finally, some applications are constrained by

the available device memory bandwidth.

Researchers have made many attempts to address these problems, including

Brook [4] and Sh [25]. CUDA, the Compute Unified Device Architecture, was

introduced by NVIDIA [31] as another alternative and provides unprecedented

ease and flexibility in GPGPU programming.

CUDA programming uses a set of C-alike APIs, which means that graphics

related knowledge is no longer required to write GPGPU programs. For example,

previously the data marshalling is done by encoding the data into textures,

therefore appropriate texture related APIs have to be called to initialize a copy of

21

data. With CUDA, it is as easy as calling malloc and memcpy for allocating

memory and copying the data array.

The thread-batching model adopted in CUDA has a better abstraction of the

GPU compute architecture. The batch of threads that execute a kernel is organized

as a grid of blocks, as illustrated in Figure 2.9. A grid includes all the kernels on

the GPU for running a CUDA program. A thread block (or simply a block),

coloured in yellow, consists of a number of kernels that run concurrently on one

GPU multiprocessor and can cooperate more tightly by efficiently sharing data

through some fast shared memory and by synchronizing their execution to

coordinate memory accesses. This (grid ~ block ~ thread) architecture is the direct

mapping of (GPU ~ multi-processor ~ stream-processor) structure in the GPU

hardware.

Host Device

OrkM

K?J !* • Block Block I Block

(0.0) J2J2jLfc*L
Block Block I Block
(0,1) (1,1) I (2,1)

iifciEt^

Figure 2.9: Thread-batching model of CUDA.

22

The memory programming model of CUDA, if carefully adopted, enables

more versatile memory access pattern and improves memory access efficiency.

Six types of memories are exposed and each serves its own purpose, as shown in

Figure 2.10. Shared memory, for example, is a register-like memory that can be

accessed in a single GPU clock cycle by all the threads within the same block. It

enables the acceleration of spatially local operations. Arbitrary writing and

reading of data with GPU DRAM (Dynamic Random Access Memory) - also

denoted as device memory - is granted in the form of global memory, allowing a

lot of data parallel algorithms previously difficult to map to or are inefficient to

execute on GPUs to be implemented, e.g. histogram processing and frequency

space transforms [8]. Texture memory and constant memory also reside in DRAM

and are read-only; they are both accelerated by specific hardware and can be used

to store input data which suits their access patterns.

(Device) Grid

Block (0,0) Block 11,0)

Figure 2.10: Memory programming model in CUDA.

23

A more detailed tutorial of CUD A can be found in [30]. Our effort in achieving

real-time performance with the proposed algorithms is motivated by CUDA, with

more details described in Chapter 4.

24

Chapter 3:

3D Adaptive Cost Aggregation for Slanted

Surface Modeling and Sub-pixel Accuracy

In this chapter, a new approach is proposed to further improving the accuracy of

original ASW method [53].

3.1 Motivation

According to the Middlebury stereo evaluation site, the best among all stereo

algorithms have the feature of disparity plane fitting [20] [43] [50]. These

approaches first over segment the image into small homogeneously-coloured

regions, then apply plane-fitting technique to find candidate disparity planes for

each segment. The optimal disparity plane assignment is determined using either

local [43] or global [20] [50] optimization. Since the fitted disparity planes

naturally provide sub-pixel disparity values, the scene can be reconstructed at a

much finer level.

ASW uses a large aggregation window, whose size can be as big as 33 x 33 .

During aggregation the neighbourhood with the same disparity level is used. This

approach can handle fronto-parallel surfaces that conform to the smoothness

assumption suggested by Marr and Poggio [24]. Problem arises when the pixel

actually lies on a slanted plane since the large window used in ASW means that

25

the neighbourhood has a bigger chance to include pixels of different disparity

levels.

Inspired by the plane-fitting idea, a new cost aggregation approach that

combines ASW with plane-fitting is introduced here. It features per-pixel non-

fronto-parallel disparity plane modeling and performs ASW cost aggregation in

the 3D cost volume along slanted planes.

3.2 Proposed System

The workflow of the system is described in Figure 3.1. Two disparity calculation

passes are used. In the first pass, the algorithm computes an initial disparity map

using the GPU-based ASW stereo matcher [16] [47]. Then, a disparity plane

orientation (DPO) image which encodes the gradient of the disparity plane at each

pixel is extracted using a simple least squares fitting approach. With estimated

per-pixel DPO information, the newly designed 3D adaptive cost aggregation

approach is used in the second pass for generating disparity results at sub-pixel

accuracy. Finally, to refine the result, the disparity maps obtained for the two

views are cross-checked to remove inconsistent disparity values, which are later

filled in using a DPO-based hole-filling approach. A large window size (33 x 33

for example) with ASW is used to ensure the effectiveness of the slanted surface

modeling. The disparity search space is also quantized at sub-pixel level to

improve the accuracy of the disparity results. Each step is discussed in detail in

the following sections.

26

Figure 3.1: Workflow diagram of the proposed algorithm, with the input
data, intermediate and final results.

3.2.1 Initial Disparity Map Generation

In this step, a raw disparity map of relatively good quality is desired at real-time

speed. Wang et al. [47] ported several state-of-the-art local stereo algorithms onto

GPU with proper simplification and found out that the simplified ASW gave the

best result. Gong et al. [16] later made a more thorough survey and came up with

a similar conclusion.

The simplified ASW equations used in both evaluation papers mentioned

above are already introduced in Chapter 2 and restated here:

27

w(u, v, m, n) — exp — 1
Yc Yg ,

„ , ,. Tlm=v,w(u,v,m,0)-C(u + m,v,d)
T(u, v, d) = ^ - JTT

. „ , ,. I£=Vjw(u,T7,0,n)-r(u,i7 + n,d)
AC(u,v,d) = —

(3.1)

(3.2)

Xn=v+w(u,v,0,n)

(3.3)

The weight calculation (3.1) runs in exactly the same way as in the original ASW

method. But instead of covering the whole aggregation window, only pixels on

the same x or y axis with the pixel-of-interest have their weights calculated as

shown in (3.2). Then a horizontal pass aggregates costs along the x-axis of the

aggregation window for each pixel, and stores the results in a temporary 3D cost

volume T(u,v,d),. Finally a vertical pass aggregates along the y-axis for each

pixel on T(u,v,d) and stores results in the aggregated 3D cost volume

AC(u,v,d).

n a

Figure 3.2: Weight calculation in the simplified ASW method.

The neighbour pixels that are not on the same axis with the pixel-of-interest

will have indirect impacts while aggregating. In Figure 3.2, p is the pixel-of-

interest, and n is the neighbour pixel that is not on the same axis as p. In the first

28

horizontal pass, n will exert its influence on a which shares the same axis with n

and with/?; then in the second pass the already aggregated a will pass along all the

costs to p. w(nx, ny, px, p y) is computed as w(nx, ny, ax, ay) x w(ax, ay, px, py),

which is fine when a and p have similar colours but is of poor quality when they

differ much.

The resulting quality of disparity of the above mentioned method is satisfactory

as raw input to our system. More importantly, it is fast. A single run with the

Tsukuba dataset on NVIDIA 8800 GTS 512MB graphics card takes only about 5

ms (or 180 FPS speed), which is comparable to most of the other GPU-powered

local stereo methods [16]. The ASW CPU implementation is claimed to take 1

minute using an AMD 2700+ processor [52]; even with current generation of

CPU. Thus the speed-up is quite impressive. This module is also used in the real­

time multiview stereo algorithm described in Chapter 5.

3.2.2 Disparity Plane Orientation Generation

The DPO image is essential to our proposed method since it encodes the

gradient of the chosen disparity plane at each pixel location, which is later used in

the final disparity computation.

To simplify calculations, here we ignore the foreshortening effect and assume

that a plane in 3D world can be modeled by a plane in the 3D disparity space. The

orientation of a given disparity plane is specified using the horizontal and vertical

gradients {dx, dy) in the disparity space, where

dD(u,v) dD(u,v)
dx(u, v) = — , dy(u, v) = —

on ov

(3.4)

and D(u, v) is the unknown ground truth disparity map.

29

To estimate dx and dy from an inaccurate disparity map D (u, v) obtained, a

simple least squares fitting method is applied. For example to compute dx(u, v),

we want to find a horizontal line that passes through D(u,v) and gives the

smallest weighted squared error. The weighted squared error between the data and

the fitted straight line is defined as:

+r

E = V z\u>t7) (p(u + k, v) - {dx(u, v)k + D(u, v))j
k--r

(3.5)

where the weight function zfu ^ is used to suppress outliers. A simple step

function is used here:

z(u,v) = {
1 if\D(u + k,v)-D(u,v)\<2
0 otherwise

(3.6)

When E is the minimum, we have

dE
: r = - 2 V zfuv)k (p(u + k,v)- {dx(u, v)k + D(u, v))) = 0

(3.7)

ddx(; . ,
k=-r

So dx(u, v) can be calculated as:

dx(U,v) = k >-
Lk=-rz{u,v)K

(3.8)

The vertical gradient dy(u,v) is computed similarly. Using the Venus dataset

as input, Figure 3.3 illustrates the generated DPO image, which keeps the

horizontal and vertical gradient values in red and green channels respectively. The

30

left image is the raw disparity result; the middle image is the calculated DPO; and

the right one has the ground truth of DPO.

Figure 3.3: DPO generation.

3.2.3 3D Adaptive Cost Aggregation with Sub-pixel Accuracy

The original adaptive-weight cost aggregation approach assumes that all surfaces

in the scene are fronto-parallel and matching costs are aggregated within 2D

constant disparity planes. This assumption rarely holds in the real world,

especially due to the large support window used — even when the slant is very

small, the big neighbourhood span can still go through multiple disparity levels.

In contrast, our approach performs aggregation in 3D disparity space along with

the DPO estimated at different pixel locations.

Assume that the cost volume C holds the initial matching cost, where C [u, v, k]

gives the colour difference between pixels (u, v) in the left image and (u — k, v)

in the right image. Also assume that when d is non-integer, function C(u, v,d)

linearly interpolates between C[u,v, [d\] and C[u,v, \d]]. The formula for the 3D

adaptive-weight aggregation is as follows:

/ / u + m,v + n,d+ \ \
Im.ne[-r.r] [w(u, V,m,n) • C [md{ y} + n d (p) J

AC(u,v,d)= V

Zm,ne[-r,r]w(u ' l7 'm 'n)

(3.9)

31

_f^cu,v,m,n &<lu,v,m,n\
where (u,v) is the pixel of interest; w(u,v,m,n) = e ^ Vc ys '

represents the weight of neighbour pixel (u + m,v + n); Acuvmn and Aquvmn

are the colour difference and the Euclidean distance between pixels (u, v) and

(u + m, v + n), respectively. yc and yg are the user defined parameters.

AC(u, v, dC) is the aggregated cost for assigning disparity hypothesis d to pixel

(u, v), under the pre-computed DPO dx(u, v) and dy(u, v) at pixel (u,v). To

generate disparity maps at sub-pixel accuracy, we step through disparity

hypothesis d at 0.5 intervals.

After the aggregation process, the winner-take-all optimization is used to find

the optimal disparity map:

D(u,v) = agrmmd AC (u,v,d)

(3.10)

3.2.4 Cross-checking and Hole-filling

The above procedure is applied to both the left and right stereo images and the

obtained disparity maps are cross-checked. The left pixel is mapped to the right

image, according to the left disparity image; then the mapped right pixel is

mapped back to the left image according to the disparity value in the mapped right

pixel in the right disparity image. If the remapped left pixel is too far away from

the original left pixel, say, by more than 2 pixels, then the original left pixel is

labelled as a hole.

One interesting observation is that most of the holes are caused by occlusion. A

quick fix to fill the hole is adopted here: each horizontal line is scanned to find the

left and right immediate-neighbouring valid pixels for each hole and their

disparity values are examined. Since the occluder has a larger disparity value than

that of the occludee, the larger disparity value of the neighbours is chosen to fill

the hole.

32

When propagating the chosen disparity, the horizontal gradient from DPO

image is used to alter the chosen disparity value at a finer level so that the slanted

surface is modeled.

3.3 Experimental Results

The proposed method was evaluated using the Middlebury testbed [26]. Some of

the parameters used in the experiments follow the empirical choices in [16]. In

particular, the support window size is set equal to 51x51 and the two parameters

for support weight calculation: yc = 19.6 and yg = 40.

Figures 3.4-3.7 show results for different datasets. The original adaptive

weight method, the implemented adaptive weight method with sub-pixel accuracy,

and the new approach are all tested. Tables 3.1, 3.3, 3.5, and 3.7 give the

statistical analysis on the performance of the algorithm, while Tables 3.2, 3.4, 3.6,

and 3.8 have the statistical analysis information when sub-pixel error threshold is

adopted.

From all the presented disparity results and statistical analysis, the following

observations can be made:

1. For the Venus, Teddy and Cones datasets, where slanted surfaces are

everywhere, the proposed slanted surface modeling approach effectively

improves the results upon the original adaptive-weight stereo matcher. The

improvement upon the Tsukuba dataset is minimal, since the presence of

slanted planes appears very limited.

2. Direct incorporation of sub-pixel accuracy with the original adaptive

weight stereo matcher does not provide any noticeable improvement.

3. Combining sub-pixel accuracy with slanted plane modeling gives very

convincing results. When evaluated with a disparity error threshold of 1.0,

the new algorithm is ranked 17th among all local and global optimization

33

approaches, as depicted in Figure 3.8; when a sub-pixel disparity error

threshold of. 0.5 is used, it is ranked 4th, as illustrated by the snapshot

taken from Middlebury vision stereo site in Figure 3.9. Other local stereo

algorithms are underlined with red in both snapshots.

34

(a)ASW (b) ASW w/ sub-pixel

(c) Proposed (d) Ground Truth

Figure 3.4: Results for the Venus dataset.

Alg.
ASW

ASW.Subpixel
Proposed

Tsukuba
nonocc
1.38 77
1.85 23
1.79 23

all
1.85 75
2.3127
2.30 27

disc
6.90 77
9.06 25
8.79 24

Table 3.1: Error rates evaluated with threshold of 1.0. Italic numbers are ranks,
'noonocc' column evaluates non-occluded areas, 'disc' column evaluates disparity
discontinuity areas, and 'all' column evaluates every pixel in the disparity image.

Alg.
ASW

ASW.Subpixel
Proposed

Tsukuba
nonocc
18.1 19
9.60 10
8.86 9

all
18.8 75
10.2 10
9.52 7

disc
18.6 19
14.8 5
15.0 6

Table 3.2: Error rates evaluated with a threshold of 0.5. Italic numbers are ranks

35

(a) ASW (b) ASW with sub-pixel

(c) Proposed (d) Ground Truth
Figure 3.5: Results for the Venus dataset.

Alg.
ASW

ASW.Subpixel
Proposed

Venus
nonocc
0.71 18
0.82 27
0.30 14

all
1.19 19
1.02 18
0.54 10

Disc
6.13 19
6.11 19
3.63 17

Table 3.3: Error rates evaluated with a threshold of 1.0. Italic numbers are ranks.

.Alg,
ASW

ASW.Subpixel
Proposed

Venus
nonocc
7.77 18
8.31 21
2.99 4

Table 3.4: Error rates evaluated with a threshold of 0.5. Italic numbers are ranks

all
8.40 20
8.65 21
3.29 3

disc
15.8/9
17.8 24
8.174

36

(a)ASW (b)ASWw/ sub-pixel

(c) Proposed (d) Ground Truth
Figure 3.6: Results for the Cones dataset.

Alg.
ASW

ASW.Subpixel
Proposed

Cones
nonocc
3.97 18
5.20 26
3.72 12

all
9.79 14
11.2 23
9.27 11

Disc
8.26 6
11.6 22
9.70 14

Table 3.5: Error rates evaluated with a threshold of 1.0. Italic numbers are ranks.

Alg.

ASW

ASW.Subpixel
Proposed

Cones

nonocc
14.0 24

14.8 27
8.81 10

Table 3.6: Error rates evaluated with a threshold of 0.5. Italic numbers are ranks

all

19.7 23

21.126
15.1 12

disc

20.6 19

23 A 26
17.5 12

37

(a)ASW (b) ASW w/sub-pixel

(c) Proposed (d) Ground Truth
Figure 3.7: Results for the Teddy dataset.

Alg.
ASW

ASW.Subpixel
Proposed

Teddy
nonocc
7.88 19
10.3 29
7.11 14

all
13.3 79
15.627
8.45 5

Disc
18.6 23
22.5 31
17.5 77

Table 3.7: Error rates evaluated with a threshold of 1.0. Italic numbers are ranks.

_A&.
ASW

ASW.Subpixel
Proposed

nonocc
17.6 79
21.125
13.3 70

Table 3.8: Error rates evaluated with a thresh

Teddy
all

23.9 79
27.3 28
15.0 2

disc
34.0 27
37A 33
27.0 10

hold of 0.5. Italic numbers are ranks.

38

Figure 3.8: Ranking snapshot in Middlebury stereo vision site, with a disparity
error threshold of 1. Algorithms underlined with red are other local stereo

algorithms. The table is not complete as the list is long.

39

Figure 3.9: Ranking snapshot in Middlebury stereo vision site, with a disparity
error threshold of 0.5. Algorithms underlined with red are other local stereo

algorithms. The snapshot is not complete as the list is long.

40

3.4 Summary

In this chapter a novel local stereo algorithm combining ASW with plane fitting is

introduced. The least squares fitting method is used for robustly estimating per-

pixel DPO information, which is later used to guide cost aggregation along

slanted surfaces in 3D cost volume. The experimental results show that the new

approach produces better disparity maps than the original ASW algorithm and is

comparable with other local and global algorithms. Compared to existing plane

fitting based algorithms [20] [43] [50], the new approach does not require a priori

image segmentation and is easier to implement in current generation of GPU.

41

Chapter 4:

Near Real-time Adaptive Support Weight

Cost Aggregation with CUDA

This thesis tries to advance local stereo matching from both aspects of quality of

results and processing speed. Whereas the previous chapter presents a novel ASW

based algorithm that gives results of better quality, this chapter focuses on how to

accelerate the original ASW algorithm through implementing it on GPU using the

CUDA programming language.

4.1 Motivation

The ASW algorithm proposed in [52] has been proven to be among the best local

stereo matching algorithms [45], but the good performance comes with a high

computational cost. The CPU version, as reported by Yoon and Kweon, takes one

minute on an AMD 2700+ machine for the Tsukuba dataset when a 33 x 33

support window is used [52]. Being a local method and bearing great amount of

parallelism, it offers room for improvement of speed.

Some efforts have already been made along this direction. As described in

Section 3.2.1, Wang et al. [47]and Gong et al. [16] both use a simplified weight

equation to push the algorithm to the real-time performance boundary. In

particular, in the local window, only weights for pixels along the same vertical

and horizontal scanlines as the pixel-of-interest are calculated. The weights for the

42

rest of the pixels are approximated, as described in Section 3.2.1. The speed-up is

achieved at the cost of disparity map quality; as evaluated in both papers, the

number of bad pixels increases by 30%~400% for the four datasets compared to

the original CPU-based ASW approach.

Thus, the porting of the ASW cost aggregation method onto GPU without loss

of stereo result quality is worthwhile and is the main goal of this chapter.

4.2 Simple Implementations on CUDA

4.2.1 Direct Porting to GPU

The computations conducted for every pixel is tedious but straightforward. For

each pixel, a big square-shaped neighbourhood is examined with weights for

pixels inside generated and the weighted cost aggregated. This process is repeated

for each disparity level to give the aggregated cost volume. Then the winner-take-

all method decides the final disparity result for each pixel. The CPU code can be

directly ported onto the GPU using the CUDA language. The pseudo-code can be

found in Appendix I.

Performance and Analysis

The above straightforward code migration does bring efficiency improvement,

just as most of the implementations with enough parallelism will always benefit

from running on GPU. For example, for the Tsukuba dataset, which has a

dimension of 384 x 288, a disparity range of 12, and an aggregation window of

size 33 x 33, the running time is a little over 1 second using kernel blocks of size

16 x 16 on a single NVIDIA 8800 GTS 512MB graphics card. The speed up is

huge compared to 3 minutes using the un-optimized CPU version on the same

machine with 2.2 GHz AMD Opteron 2214 processor. Some minor loss of

accuracy is present that we believe can be attributed to the less accurate floating

point mathematical operations on GPU. Figure 4.1 has the result for CPU ASW

43

implementation running on the Tsukuba dataset, as well as the error map

evaluated in Middlebury vision site; black pixels mean bad matches. The result of

the GPU ASW implementation is presented in Figure 4.2. Table 4.1 has the

numerical comparison. Note that no pre-processing or post-processing is used in

both implementations, thus the evaluation results are not exactly the same as the

ones reported in the original ASW paper [52].

H i ,

'} »
^

Figure 4.1: CPU ASW result and error map for the Tsukuba dataset.

r -•

1.

V * " -

..'#

Figure 4.2: GPU ASW result and error map for the Tsukuba dataset.

Alg.
CPU ASW
GPU ASW

Tsukuba
nonocc

1.91
2.04

all
2.29
3.11

Disc
8.75
7.66

Table 4.1: Error rates evaluated with threshold 1.0.

44

The problem with this simple migration is obvious. There are too many texture

accesses in a single kernel run, 2 x szAggrWin2 + 2 to be exact. As noted in

[30], one key to achieve the efficient use of GPU using CUDA code is to have a

high computation to memory access ratio. GPU devotes more of its transistors in

data processing than to data caching and flow control. Thus the memory access

latency is high — 400~600 clock cycles of latency for a single memory read

compared to 4 clock cycles for a floating point addition [30]. The way GPU works

around this is by saturating the GPU with thousands of kernels so that when some

kernels are idling waiting for the completion of memory accesses, other kernels

can be switched in to keep the GPU busy. In the above code, however, the

computation to memory access ratio is nearly 1 as almost every step of the

calculation needs to read something new from the device memory. To increase

this access ratio, either the number of memory accesses has to be lowered or the

number of computations in each kernel has to be increased.

One side note on the memory access pattern with CUDA is that, the global

memory accesses have to be coalesced to improve on speed. When the kernel is

running on the GPU, there are always 16 kernels that run physically together on

each multi-processor which has 16 stream processors. These 16 kernels are

regarded as a kernel half-warp, or a kernel batch. For a line of code that performs

memory operation, if these 16 kernels are accessing consecutive blocks of device

memory, their accesses can be grouped into one single memory read, i.e.

coalesced; otherwise these 16 memory accesses have to line up and proceed

sequentially, which obviously increase the overall access time. With the above

code, memory coalescing is automatically achieved as the 16 x 16 kernel block

setup ensures that the kernel batch always access 16 consecutive addresses in

cv[][]. Texture targetlm also resides in GPU DRAM, and its coalescing is

automatically achieved through the texture buffering hardware if locality in

texture accessing pattern is satisfied.

45

4.2.2 Improved Direct Porting to CUDA

CUDA exposes the nice features of the shared memory architecture of the G80

and later graphics cards to programmers. Shared memory is a register type

memory which has single clock cycle latency, and can be accessed by all kernels

within the same block with proper synchronization. Every multi-processor chip

has 16K Bytes of shared memory. Thus, the size is limited and no abuse is

possible; but a clever use of shared memory can almost always make the program

run faster.

One straightforward improvement is to process through all disparity levels in a

single kernel. The weights calculated are identical for all disparity levels for all

pixels, and when the processing of different disparity levels is done in separate

passes, these weights have to be re-calculated. By processing all disparity levels

in one single kernel, many memory accesses and calculations can be saved. To

achieve the above, in each kernel an array of matching costs of size szRangeDisp

is allocated to sum up the weighted costs when walking through the

neighbourhood. This array cannot reside in the register memory, as the register

memory is scarce meaning that every kernel has only a handful of registers to use.

There are 8K bytes of registers on each multiprocessor to be exact, thus to fit at

least one kernel block of size 16 x 16 onto the multiprocessor at most 32 registers

can be used. If this limit is exceeded, CUDA will resort to DRAM memory, which

is hundreds of times slower than register memory and results in a major drop in

performance. Hence, these arrays must be explicitly allocated in shared memory,

which is as fast as register memory and bigger in size.

Another possible improvement uses the fact that neighbour kernels often scan

through a similar neighbourhood when aggregating. Thus, for a block of pixels, if

a superset of all neighbours for every pixel is pre-fetched into the shared memory,

later on the weight calculations can get pixel information from the shared memory

pool instead of from the GPU DRAM. Figure 4.3 depicts how this pre-fetching is

46

done. Suppose a 5 X 5 aggregation window is used, (a) shows pixel a and its

neighbourhood (the red square). The CUD A kernel block is of size 4 x 4 , as

shown in (b) with the green square, with pixel a and all the other pixels belonging

to the same block. The pre-fetched region into the shared memory is shown in (b)

as the black square; it has a size of 8 x 8 and contains all the pixels needed to

process the aggregation for the whole block containing a. Without the pre­

fetching scheme and shared memory utilization, pixel a needs to look into 25

pixel positions as the red square embraces in (a). When the pre-fetching scheme is

used, the whole block shares the load of reading in the 8 x 8 patch. Thus each

pixel of the block only needs to read 4 memory positions. As depicted in (c), each

pixel in the block is responsible for prefetching a 2 x 2 red squares, with the

corresponding kernels and 2 x 2 squares connected by blue lines (only a few of

which are drawn for the purpose of illustration). Thus the high-latency DRAM

accesses in each kernel decrease from 25 to 4 in this specific scenario. In fact, a

combination of an aggregation window size (2W + 1) X (ZW + 1) and a kernel

block size K x K sees the DRAM access count change from (2W + 1) x

(2W + 1) to - — Y \ with this scheme. In the setup we adopt (window size

33 x 33 and kernel block size 8 x 8) , the high-latency DRAM access number

each kernel decreases from 33 x 33 to just 25, thus a speed-up in performance is

expected.

a

(a) (b) (c)

Figure 4.3: How to use shared memory to reduce latency.

47

Performance and Analysis

The pseudo-codes can be found in Appendix II. Due to the improved memory

access pattern, an increase in performance was expected. The running time for

both algorithms are improved to 300 ms as compareed to the Is performance from

the direct porting implementation.

But there are still some hardware limitations that deny a better performance for

both algorithms. First of all, the number of kernels within each block has to be big

enough to achieve the best latency hiding and GPU saturation. The recommended

configuration is 256 kernels or more for each block. Let's assume a 16 x 16

block setup is used along with a 33 X 33 aggregation window in algorithm AII.2.

Then targetlmPatch and cvPatch[] both need a size of 48 x 48 . With

targetlmPatch being 32 bit RGBA colour type and cvPatch holding 32bit floating

point values, the total amount of shared memory required is 48 x 48 x 4 x 2 =

18432 bytes, which is too big to fit in the 16K byte shared memory, not to

mention that part of the shared memory is reserved for other uses like storing

kernel function parameters. So either the size of the aggregation window or the

kernel block has to decrease. Unfortunately, both methods have their stumbling

blocks: if the size of the aggregation window is smaller, the quality of the final

disparity result will suffer; on the other hand, if the kernel block size is shrunk,

the memory loading burden for each kernel is increased and also the saturation of

GPU is reduced.

Secondly, several blocks have to be resident concurrently on a GPU

multiprocessor if a higher saturation of GPU resource is intended. The same

reason explains why a big block size is preferred. The contexts and resources are

pre-allocated for every block, so that when some blocks are idling, other blocks

can be switched in without much overhead. This scheme of using CUDA means

that resources like register and shared memory have to be split among several

blocks. In fact, given the kernel block size, number of registers each kernel uses,

48

and the consumption of shared memory for each kernel block, the GPU saturation

level can be calculated using the CUDA occupancy calculator [29]. Since it is

already hard for both algorithms to fit one single block of kernels into a GPU

multi-processor, this programming pattern for better GPU utilization is again not

met.

Thirdly, no matter how good the memory access scheme is, the actual number

of computations is still intact provided that the aggregation window of the same

size is used. Each kernel still needs to scan through the neighbourhood, compute

all the weights, and aggregate all the costs over the neighbourhood.

4.3 Segmentation Driven Adaptation

Direct porting the adaptive weight cost aggregation method onto GPU poses

problems that cannot be easily addressed using current generation of GPUs. Thus

a better method has to be developed.

The segmentation based ASW aggregation method [44] achieves a great

improvement over the original ASW aggregation approach. Given the

segmentation information, weights for neighbour pixels that are in the same

segment as the pixel-of-interest are set to 1.0, as indicated in equation (4.1). This

simple change is demonstrated to be effective in dealing with depth borders, low-

textured regions, high-textured regions, and repetitive patterns. The actual

aggregation, however, is still performed on a pixel by pixel basis as shown in

equation (2.5).

{ 1.0, if Seg(u, v) = Seg(u + m,v + n)
,v,m,n , u,v,m,n \ \ . ,

exp — 1 , otherwise
\ V Yc Yg J J

(4.1)

49

If segments are the primitives to be processed in the segmentation based

approach, all the weight calculation and cost aggregation can be done in a similar

manner as the pixel primitive implementation. Since a segment is effectively

represented by a single pixel colour, the segment-to-segment weights can be

calculated as pixel-to-pixel weights with the proximity term being the Euclidean

distance between segment centroids. Equation (4.2) has the idea demonstrated.

seg is the segment-of-interest while nseg is a segment within neighbourhood.

seg.cen denotes the centroid of segment seg. Equation (4.3) shows how the cost

aggregation is done: for the segment-of-interest seg, a search within its

neighbourhood N(seg) proceeds and finds all the segments within this

neighbourhood; then with the segment-to-segment weight of seg and some

neighbour segment nseg, the collective matching costs over area nseg at disparity

d is summed into the final cost. Following this fashion, the pixel representation is

completely replaced with the segment representation. Later on the winner-take-all

disparity selection also chooses the best disparity on a per segment basis.

r •. i | nLse.q.color,nse.q.color , .cen,nseg.cen
w(seg, nseg) = exp - - - 1 -••- -yB

(4.2)

(w(seg,nseg)\

Lnseg£N(seg) w{seg, nseg)
(4.3)

Since the number of segments is smaller than the number of pixels by a big

margin, the computations needed to get the weights and aggregate costs are

reduced significantly, which cannot be achieved by implementations mentioned in

Section 4.2. This speed-up is achieved by sacrificing a bit of accuracy in the

support weight, as the distance between segment centroids may not fully capture

the various distances between different pixel-to-pixel pairs.

50

The nicest thing about this new proposed approach is that it can be fully ported

onto GPU. Although the current generation of GPUs is not designed to support

complex data structures, the quad-tree data structure is simple and efficient

enough to be implemented on GPUs. The quadtree-based segmentation, though

not as good in segmentation quality as other alternatives like watershed

segmentation or mean-shift segmentation, has the perfect square shape of

segments that is crucial for efficient GPU implementation, since operations like

summing over a square segment is much easier to perform in a kernel than an

arbitrarily shaped segment.

4.3.1 Quadtree Segmentation

Quadtree segmentation adopted here has two passes. The first pass, UpMerge,

progresses in a bottom up fashion building a pyramid structure. Each level of the

pyramid is half of the previous level in both dimensions. When building the

current level, the corresponding four pixels of the previous level are evaluated to

determine whether merging them is possible or not. Every pixel is associated with

a flag: validSeg. If any of these pixels is flagged as not validSeg, then no merging

occurs; if all four pixels can be merged, but their standard deviation is larger than

a certain threshold c0 meaning that they are too different to be included in the

same segment, then merging again fails. Otherwise, merging succeeds and the

average colour value is stored in the merged pixel position, with the validSeg flag

set to true while the validSeg flags for the four lower level pixels are set to false.

This is illustrated in Figure 4.4. The four pink pixels correspond to children of the

red pixel in the upper level, while the four pale green pixels are merged into the

green pixel if possible.

51

: • '
;_^j ' •

Figure 4.4: Quadtree segmentation, UpMerge pass.

The next pass is called Output, in which each level of the pyramid is examined

and those pixels with a true validSeg flag are output into the segmentation image.

In the segmentation image, only those pixels that are at the center of a valid

segment contain meaningful RGBA values, in which the RGB channels store the

segment average colour and the Alpha channel keeps the size of the segment.

These pixels are denoted as segment pixels. The segmentation result is illustrated

in Figure 4.5, where (a) shows the original image, (b) only shows segment pixels,

and (c) add proper borders to segments.

(b) (c)
Figure 4.5: Quadtree segmentation result, with o threshold = 10/255.

52

The neighbourhood traversal of a segment, as included in equation (4.3), is

done by scanning through the neighbourhood window in the segmentation image

and identifying those valid segment pixels within the neighbourhood.

4.3.2 Compact Segmentation Image

To search neighbour segments, scanning in the segmentation image is the better

option. But launching kernels for every pixel of the segmentation image is a

wasteful move, since only a small percent of kernels are created for valid segment

pixels. The rest of the kernel will be completely idling during execution.

This waste of resources can be avoided by compressing the original sparse

segmentation image into a compact segmentation image. Every single pixel in the

compact segmentation image is a valid segment; therefore launching kernels for

every pixel in the compact segmentation image will make all kernels busy. One of

the scan primitives on GPU [38] named compact does exactly what is needed here,

and fortunately most of the scan primitives have been efficiently implemented and

exposed in CUDPP library [8].

4.3.3 Implementation

Algorithms 4.1, 4.2 and 4.3 have routines for the quadtree segmentation.

Algorithm 4.1

procedure UpMerge
in: uchar4 pyramidLevel[n], float threshold
out: uchar4 pyramidLevel[n+l]

begin
for each node position onpyramidLevel[n+l] in parallel

a, b, c, d4- four corresponding nodes in pyramidLevel[n]
if a (a, b, c, d) < threshold && validSeg flags for a, b, c, d are true then

nodeValue.RGB = avg(a.RGB, b.RGB, c.RGB, d.RGB)
nodeValue.segValid'— true
set node entry at pyramidLevel[n] to nodeValue
set validSeg flags of a, b, c, dto false

53

else then
node Value.segValid = false

set node entry atpyramidLevel[n] to nodeValue
end

In procedure UpMerge defined in Algorithm 4.1, the standard deviation a is

computed over three colour channels by equation (4.5).

J N N N

- { Y (x t . R - x. R)2 + Y(xt. G-x. G)2 + V(XJ . B-x. B)2}
i = l i-l 1=1

(4.5)

Algorithm 4.2

procedure Output
in: uchar4 pyramidLevel[n]
out: uchar segmentationlmage

begin
for each node position onpyramidLevel[n+\] in parallel

if validSeg of current node is true then
value.KGB = RGB value of current node
value.A = window size at current pyramid level
Set the corresponding pixel in segmentationlmage to value

end

Procedure Output in algorithm 4.2 generates partial segmentation image by

examining current level of the pyramid. Carrying out this procedure for every

level of the pyramid gives the complete segmentation image. The window size at

the current pyramid level is decided by n 2 . The corresponding segment pixel

position in segmentation image of the current node is decided by both its node

position within the current pyramid p(x,y) and the current pyramid level n,

making sure it sits right in the middle of the segment. The segmentation image

generated this way can ensure that the correct Euclidean distance between two

54

segments can be calculated by calculating the distance between their

corresponding segment pixels.

Algorithm 4.3

procedure ProcessQuadTree
in: texture targetlm, float threshold
out: uchar segmentationlmage

begin
copy targetlm into pyramidLevel[0] with padding
for i=0 to k

UpMerge(pyramidLevel[i-l], threshold,pyramidLevel[i])
for i=0 to k

Output(pyramidLevel[i], segmentationlmage)
end

In procedure ProcessQuadTree of algorithm 4.3, the padding is to make sure

that at the base level of the pyramid, the size of the image is a power-of-2 so that

the even splitting on each level of the quad tree can be achieved. And k is decided

by the size of the biggest segment allowed, which is equal to 2k to be exact. The

output is a segmentation image described in Section 4.4.1.

Algorithm 4.4

procedure ProcessCostAggregationQuadTree
in: float cv[][], float threshold, int dispRange, texture targetlm
out: float cv[][]

begin

ProcessQuadTree(torg-e//m, threshold, segmentationlmage)
for i=0 to dispRange

for each pixel position/? of segmentationlmage in parallel
if p is a valid segment then

sum costs in cv[i] over its segment pixels and store the summed value
into acv[i]

Compact(segmentationlmage, compactSegmentationlmage)

55

for i=0 to dispRange
for each pixel position of compactSegmentaionlmage in parallel

cost 4r 0
seg ^- current pixel in compactSegmentationlmage
for each neighbour segment nseg of current segment

wt <- calculate weight with seg and nseg information
cost <r w/*acv[i] [position of nseg]

set cv[i] [position of seg] to cost
end

Procedure ProcessCostAggregationQuadTree in Algorithm 4.4 makes use of

the quadtree segmentation routine and carries out actual cost aggregation.

Note that when the segmentation image is used instead of the compact

segmentation image, the search of neighbour segments can be coordinated for the

whole thread block so that memory coalescing is achieved and code branching is

avoided. Figure 4.6 illustrates the detailed traversal scheme. Pixels in pink

comprise of a kernel block of size 4x4, while green pixels are neighbourhood

that are pre-fetched into the shared memory. A spiral route is used in the search,

ordered by the numeric labels of the pixels. Each pink pixel follow the exact same

route, thus in every step of the kernel code they will take the same branch. In a

compact segmentation image, the above mentioned locality within the thread

blocks is damaged. Therefore, every kernel has to follow its own spiral path.

mo •
18 d r fi "
17 •> 1 ? ID

30 t i l l
lM>14 1-t]/

Figure 4.6: Search for neighbour segments.

56

4.3.4 Performance and Analysis

With the help of quadtree segmentation, the running speed now settles at around

100ms per frame for the Tsukuba dataset on a single NVIDIA 8800 GTS 512MB

graphics card, with a disparity level of 12 and aggregation window of size 33 x 33.

The kernel block is of size 16x16. The standard deviation threshold used in

quadtree segmentation is set at 10. The comparison of results between

segmentation driven ASW and the original ASW is given in Figure 4.7. The left

image is the result from the segmentation driven ASW method, and the right one

comes from the original ASW method. As you can see, some block shaped pixel

patches are present throughout the disparity map, since the disparity choices are

uniform within a segment. A numerical evaluation is given in Table 4.2,

suggesting that not much change in disparity result quality happens. Therefore, a

near real-time performance for ASW on GPU is achieved, without much loss of

accuracy.

Figure 4.7: Disparity results for segmentation driven ASW and original ASW.

Alg.
QT GPU ASW

GPU ASW
CPU

Tsukuba
nonocc

2.00
2.04
1.91

all
3.01
3.11
2.29

disc
7.36
7.66
8.75

Table 4.2: Error rates evaluated with threshold 1.0.

57

With the standard deviation threshold of quadtree segmentation set lower, the

segmentation image contains fewer segment pixels, thus the speed of the whole

algorithm can improve even more. For a threshold of 30, the speed of the

algorithm can reach 20 FPS. But the quality of the final result suffers as less

accurate segmentation result is used to assist the aggregation. Figure 4.9 gives the

comparison of results when different standard deviation threshold is applied. The

first row has the disparity result and the segmentation image when threshold =10,

the second row uses threshold of 20, and the last row 30. The deterioration of

quality is obvious when a lower threshold is used.

Figure 4.8: Disparity results and segmentation images when different thresholds
are adopted.

58

4.4 Summary

This chapter presents several attempts on porting the original ASW onto GPU

without loss of quality. The first one ports CPU code line-by-line directly into

CUDA GPU implementation, the second one tries to optimize the directly GPU

implementation with the help of CUDA features like shared memory. Both have

hardware hindrance and cannot quite achieve good performance. Finally, the new

quadtree driven ASW stereo algorithm improves performance by incorporating

segmentation information into cost aggregation. As a result, near real-time speed

is achieved without much loss of accuracy in the results.

59

Chapter 5:

Multi-view Stereo using Adaptive Weight and

Parzen Window

The previous two chapters dedicate on improving quality or speed for binocular

stereo matching. The occlusion problem however is not addressed due to its well-

known limitation to binocular stereo. In this chapter, a novel real-time sparse

multi-view algorithm is presented for better handling occlusions [54].

5.1 Motivation

Dense multi-view stereo algorithms can reconstruct the 3D model of a scene with

high accuracy. But they are not yet suitable for real-time vision applications

because of the time required to obtain the scene sampling and the high

computational cost.

Sparse multi-view stereo matching algorithms seek to balance between speed

and quality. They have more input views than binocular stereo and thus have a

better chance to produce more accurate depth information. On the other hand,

sparse multi-view stereo matching is more likely to be achieved in real-time as

compared to dense multi-view counterpart and it is a better candidate as a module

in real-time vision applications.

60

5.2 Sparse Multi-view Camera Setup

Two specific types of camera setups are adopted in the proposed sparse multi-

view stereo system. One type of setup is a linear camera array with 5 uniformly

spaced cameras, and the other is a cross camera set up with four target cameras

positioned to the top, bottom, left, and right of the reference camera with the same

separation, i.e, baseline. Figure 5.1 shows both setups. They are chosen because

1) Middlebury vision site [26] provides the standard datasets that are captured

using these two setups; and 2) it is easy to use these setups to sample real scenes.

3

Linear Cross

Figure 5.1: Two different camera setups are adopted.

The first linear camera setup is also adopted in other multiple baseline stereo

research [32]. The baseline is the distance between the optical centers of two

cameras, one of which is referred to as the reference camera and the other the

target camera. For a scene point P, its projected pixels onto the reference and

target images are separated by disparity d, and its distance with the image plane is

denoted as z. The relation between d and z is defined by:

1
d = BF-

z

(5.1)

61

where B and F are the baseline and focal length, respectively. Thus, the disparity

value is proportional to the baseline length for the same depth value. For example,

in the linear camera setup in Figure 5.2, if a scene point is projected to camera 1

at the pixel location (xi,yi), to camera 2 at the pixel location (x2,y2), and to

camera 3 at the pixel location (x3 ,y3), then (^ — x3) = 2(x2 — x3) (Note that

Vi= yi= y-i a s aH images are rectified). With camera 3 as the reference camera,

if the disparity values to be evaluated against camera 2 is (1,2,3, .. . ,n), then the

corresponding disparity values for camera 3 is doubled, i.e. (2,4,6, ...,2n). This

guarantees that the cost volume generated for every reference view has the same

depth tessellation pattern and can be later on merged together in the cost merging

stage.

In the second cross camera setup, the baselines for every reference-target

camera pair have the same length, but with different orientations. It is labelled

"Cross" in Figure 5.2. Thus the disparity shift happens in the -x direction in the

image plane for camera pair (1,4), in the +x direction for camera pair (1,5), in the

-y direction for camera pair (1,2), and in the +y direction for camera pair (1,3).

The cost volumes generated with the proper disparity shift direction again has the

same depth tessellation pattern and can be later on merged together in the cost

merging stage.

5.3 Parzen Window driven Cost Merging

In this section, the detail of the Parzen-window driven cost merging proposed by

Vogiatzis et al. [46] is discussed.

Given a reference camera and N target cameras, N cost volumes can be

generated using any two-frame stereo algorithms. Vogiatzis et al. use normalized

cross correlation with a square window to compute and aggregate the cost. Let

ACi denote the cost volume calculated using reference camera i, and ACi(p, d) the

62

cost of projecting a center view pixel p with depth/disparity d to the reference

camera i. The cost merging step needs to combine ACi(p, d) from all the N

reference cameras into a single merged cost MAC(p, d). By assigning each depth

level with a matching cost, a new merged cost volume MAC is obtained and ready

to be used by a disparity selection algorithm.

The simplest way to do merging is by sum/average, i.e.:

MAC(p,d) = \^CVi(p,d)]/N
ieN

(5.2)

Or a slightly better way proposed in [19] is to use the best half of the target

cameras,

MAC(p,d)= T ACt(p,d)
iEBHd,v{N)

where

BHdtP(N) = [j\ACj(p,d) > mediankeN(ACk(p,d))}.
(5.3)

The aforementioned merging approaches are heuristic and not robust enough

against noise, occlusions, or the lack of texture. For some pixels, faulty good

matches and noise on the cost-depth curves for all reference cameras can easily

disturb the final merged cost-depth curve so that the simple winner-take-all

algorithm will fail to assign the correct depth.

Figure 5.2(a) shows all the reversed matching cost curves to be merged, each

associated with a reference-target camera pair. Note that the matching cost curves

have to be reversed because of the maxima-clustering nature of Parzen window

process applied later, thus a bigger value along the reversed matching cost curve

indicates a better match. d0 is the true disparity that some of the curves agree but

63

others disagree due to occlusion or image noise. The average matching cost curve,

which is the dotted curve in (b), apparently misses d0.

%

§0.5

&
s

I
g>0.5

V h
Disparitv

(a)

» 0.5
3
&.

Si o

I

11 h

iir*

^ • f " , > « » * *

Disparity
(b)

1

8?
§0.5

1

1 °

pas

-t

.J*

*

—h- .

m.

,

•

•
9 0

i

.
Disparity

(C)

-1-—t
Disparity

(d)

Figure 5.2: How to merge multiple matching cost curves. (Courtesy of
George Vogiatzis.)

It is clear that the global maximum of a single cost-depth curve may not

correspond to the correct depth. However, at the correct depth, the visible cameras

still can give local maximum scores, even if it is not a global one. It is more often

than not that more local maxima can be found around the correct depth, while the

error due to occlusion can cause only a small number of the curves not to reach

their corresponding local maxima. So, detecting all local maxima and finding a

64

way to reinforce those local maxima that are close to each other can give a more

robust and noise-free merged curve.

This reinforcement is achieved by applying the probability model coined by

Parzen [33]. The Parzen-window density estimation, or kernel density estimation,

is essentially a data interpolation technique. Given some observations of a random

variable, Parzen window can reconstruct any data point by aggregating over the

known observations with a kernel (Gaussian-kernel is one example). Thus the

entire population can be interpolated.

To apply Parzen window in the multiview stereo scenario, the observation data

points are not randomly chosen but local maxima dk in all the reversed matching

cost curves, as depicted by the brown dots in Figure 5.2(c). They are detected by:

SCVi ,
- ^ (p . d k) = 0

and

A2ACt ,

(5.4)

Then the merging is conducted with Parzen window:

MCV{V, V^YJYJ
 CVi(~P'dk) ' G(d " dfe)

iEN k

(5.5)

where G is a Gaussian kernel that makes sure that local optima contribute more to

nearby depth candidates. The Parzen window process achieves mutual

reinforcement of local maxima as Gaussian kernel applies a bigger weight to a

nearby than a farther maximum. If a data point is close to more local maxima, it

will have a bigger reconstructed value. Thus, the merging process is robust

65

against occlusions and image noise. The merged costs are illustrated in 5.2(d) as

the solid curve.

5.4 Proposed System

The proposed algorithm performs four steps: cost volume generation, cost volume

aggregation, cost volume merging, and disparity selection, as depicted in Figure

5.3.

With the reference view and several target views, the cost volume generation

step calculates one cost volume for each reference-target camera pair using any

matching cost function. The method to select disparity levels for each reference-

target image pair is discussed in the next section. And the matching cost function

used here is a simple squared difference of image intensities.

Cost aggregation

i — >

,i""n"nr'jj(i,r

1 sst ' sws " ^ -fl
Cost volume generation Cost volume merging

Figure 5.3: System flow of the proposed algorithm.

Then cost aggregation is applied to every single cost volume. The GPU ASW

cost aggregation [16] is again used here due to its speed and relative good

performance. SSD (sum of squared differences) is also implemented for

comparison.

66

Then the multiple cost volumes are merged into a single cost volume in the

second step. A novel way to merge cost volumes combining the occlusion robust

photo-consistency metric proposed by Vogiatzis et al. [46] and the ASW idea [52]

is presented.

Finally the disparity selection step uses winner-take-all to locally decide the

best disparity for every single pixel in the center view. These three parts are

seamlessly and independently joined together.

The number of matching cost curves used in the Parzen window approach

depends on the number of reference images. With a sparse camera array setup, the

number of curves may be too few to guarantee the effectiveness of the Parzen

window technique. When one bad pixel sample out of a small number of

reference views is present, the disturbance can be big and the Parzen window

technique may fail to recover the correct depth.

To minimize the effects from noisy input or occlusion, we can use curves from

neighbour pixels. This approach is valid since neighbour pixels usually have

similar disparity values and hence their curves can help to reinforce the local

optima at the correct depth. It is also more effective because using all pixels

within a small 3x3 neighbourhood gives 9 times more curves to work with, which

can effectively reduce the effects of noisy input and occlusion.

When using curves from neighbour pixels, we should try to use only pixels that

have the same depth as the center pixel. Hence, the question of which

neighbouring pixels we should use is similar to the one we face in the cost

aggregation step. Therefore, the best cost aggregation technique - ASW - is the

perfect solution. With proper weights assigned to the neighbouring pixels within a

big square neighbourhood, tens, or even hundreds of curves are made available to

merge for a single pixel, and those neighbouring pixels with a better chance of

having the same depth value will have higher weights and hence contribute more

in the merging process.

67

5.4.1 Multiple cost volume merging

CPU version.

The formula we use for merging in the CPU version is:

MCV(p,d)= ^ ^ ^ C l / i (p , d) - C y i (q , d f e) - G (d - d f c) - w (p , c ?)
q£win(p) i£N k

(5.6)

where win(p) is the neighbourhood of pixel p where adaptive support-weight

applies, and w(p,q) is the weight calculated using (2.2). <4 is a local maximum

from the reversed cost matching curve for q.

Notice that there is a slight difference between the original equation (5.5) and

equation (5.6). An extra term Ad(p.d) is introduced. Consider a pixel-depth

combination, where the matching scores for all reference cameras, i.e. Ad(p.d),

are low. There is very little chance for the true depth to fall on depth d. But if J is

close to many local optima on the cost-depth curves, there is a possibility that

MAC(p, d) is merged as the global optimum. These false global optima can be

reduced by taking into considerations the actual matching scores at depth d. The

experimental results show a 2%-20% reduction in error rates in all tested datasets

by replacing equation (5.6) with equation (5.5).

The CPU version following equation (5.6) is implemented and tested to fully

demonstrate the effectiveness of the proposed technique.

GPU version

In order to achieve real-time performance, we have to simplify the equation to

make it more efficient for GPU implementation.

Notice that, if we replace Ad(p,d) by AQ(q,d) in equation (5.6), the formulation

can be rewritten as:

68

MAC(p,d)= ^ ^^ i4C t (q f ,d) - i4C £ (q r ,d f c) -G(d-d f c) -w(p ,g)
qewin{p) ieN k

= £ w(p,q)(^^C^d)-4Q(^dJ-G(d-d fe)j
qewin(p) View k /

(5.7)

The replacement will not have a big impact to the result since neighbour pixels

with high support weight have a good chance of having a similar curve with the

pixel of interest. And this modification enables us to separate the computation into

2 passes. The first pass is the Parzen-window cost volume merging without

adaptive support-weight. This pass is parallel and is adapted to the GPU

implementation easily. The second pass applies the GPU ASW onto the merged

cost volume to complete the cost merging process.

5.4.2 Disparity selection

After cost volume merging, MAC now holds a single cost volume, to which the

winner-take-all optimization can be applied for finding the best disparity value for

each pixelp, the same as equation (3.10).That is:

Disp(p) = argmindJVL4C(p, d)

(5.8)

5.5 Experimental Results

5.5.1 Experimental setup

Five datasets are tested. The Tsukuba and Santa_ Doll datasets are from the

Multi-view Image Database of the University of Tsukuba. The four reference

cameras and the center camera follow the cross configuration. The other three

datasets are from the Middlebury stereo evaluation website, namely Teddy, Cones

and Venus. For these three datasets, 10 images are taken from a linear camera

69

setup. Camera 2 and 6 are used for the standard two-frame stereo evaluation,

where 2 is the center camera. We use camera 0, 1,2, 4, 6, with 2 still being the

reference camera. In order to achieve the same disparity range in the two-frame

setup, sub-pixel disparity is required for camera 0, 1, and 4. By doing this, we can

use the Middlebury stereo website to evaluate our results.

Experiments are performed on a machine running Windows XP Professional

with 4GB of system memory, with two AMD 2.21 GHz dual-core Opteron CPUs,

and two NVIDIA 8800 GTS 512MB GTS graphics cards, only one of which is

used in the GPU implementation.

The parameters used in the experiments follow the empirical choices suggested

in the original papers. In the GPU ASW algorithm, yc=19.6 and yg=40, as adopted

in [16]. The adaptive support-weight window size is 33 in the cost aggregation

step and 17 in the cost volume merging step. It is noteworthy that the original

Parzen-window technique deals with NCC matching score, where a larger score

means a better match. Since we use the difference based cost matching and cost

aggregation, where a smaller value means a better match, so we reverse the

normalized value before the cost volume merging step so that a bigger score

indicates a better match.

5.5.2 Disparity results

Figures 5.3-5.6 show the results of running different cost volume merging

algorithms on the Tsukuba, Teddy, Cones and Venus datasets. Of all the four

groups of figures, the top rows show four disparity results from four single

reference view cost volumes. Due to the visibility problem, these disparity maps

all have errors in the occluded regions. In the bottom rows, the first ones from the

left are from the averaging cost volume merging technique; the second ones use

the original Parzen-window technique; the third ones are obtained from the

proposed technique; and the last ones are the ground truth. Though all three

70

approaches produce better disparity maps than the two-frame results, the ones

generated using the new technique are the most visually appealing.

Table 5.1 gives the statistical comparison of different techniques implemented

on CPU. All of the error rates are evaluated by the Middlebury stereo vision

website. Averaging cost volume merging and Parzen-window cost volume

merging definitely improve upon the two-frame results, since more cameras are

used. Parzen-window performs arguably better than averaging, mainly because

the sparse camera set-up does not give enough cost-disparity curves for Parzen

window to work on. The new technique performs well for most of the datasets.

With more cameras, it easily outperforms all two-frame local stereo algorithms,

but is still behind some of the best global optimization methods.

A special note on the Venus dataset is that, due to the rich texture and the use of

simple sub-pixel linear interpolation, the cost volumes generated with camera 0, 1,

4 are very poor, producing around 10% error rate. Thus the effectiveness of the

merging techniques is not significant. As well, there is a sharp drop of disparity

result quality for average merging and simple Parzen window merging. We plan

to investigate this problem further in future research.

5.5.3 With poor cost volume inputs

When the aggregated costs are generated using the sum-of-squared-differences,

instead of the simplified adaptive support-weight approach, the cost volumes (AG)

can be of poor quality. Here we use a 5x5 SSD window to generate the cost

volumes for the Tsukuba and SantaDoll datasets, and then apply different cost

volume merging techniques for comparison.

The results, shown in Figure 5.7, demonstrate that even with poor cost volume

inputs, our technique is still robust enough to obtain acceptable results. From the

left, the first, middle and right are obtained respectively using the averaging cost

71

volume merging technique, the original merging technique, and our proposed

method.

5.5.4 GPU version results

The GPU version provides real-time performance. Indeed, it runs at around 70

FPS for the Tsukuba dataset, 45 FPS for the Venus dataset and 15 FPS for the

Cones and the Teddy datasets on one NVIDIA 8800 GTS 512MB graphics card.

The disparity results are shown in Figure 5.8. Despite some loss in accuracy

because of the simplified formula and GPU tailored implementation, the disparity

results are still quite acceptable and can definitely be used as a module in real­

time vision applications.

Cen-right
Avg

Parzen
Proposed

Cen-right
Avg

Parzen
Proposed

nocc all disc
TSKUKUBA

2.27
1.56
1.41

1.08 5

3.61
1.85
1.76

1.39 3

11.20
8.37
7.57

5.79 6
CONES

12.6
5.76
5.83

3.05 5

18.9
7.94
8.00

4.31 /

19.4
12.5
12.6

7.48 2

nocc all Disc
TEDDY

12.0
9.42
11.1

7.74 77

19.5

11.7
12.8

9.95 5

23.8
18.8
19.1

17.1 16
VENUS

3.45
4.59
8.90

2.30 30

4.28
5.26
9.42

2.90 27

16.7
13.8
18.7

10.7 25

Table 5.1: Error rates evaluated from the Middlebury website, with the Tsukuba,
Teddy, Cones and Venus datasets. The Cen-right rows hold results for the two-

frame stereo with center and right camera. The Avg rows show results from
averaging all cost volumes. Parzen denotes the original Parzen cost volume
merging technique. The results in the rows labelled Proposed are from our

proposed technique, and the numbers in italic are ranks from the Middlebury
stereo evaluation website.

72

Figure 5.4: Results for the Tsukuba dataset. The top two rows show disparity
results for individual target views; the third row, in the order from left to right,

shows the result using average merging and Parzen-window merging; the last row
has result from the proposed method, and the ground truth. The same layout

applies to Figure 5.4, Figure 5.5 and Figure 5.6.

73

Figure 5.5: Results for the Teddy dataset

74

Figure 5.6: Results for the Cones dataset.

75

Figure 5.7: Results from the Venus dataset.

76

Figure 5.8: Results for the Tsukuba and SantaClaus dataset with SSD
generated cost volumes.

Figure 5.9: Results of using the GPU implementation.

77

5.6 Summary

A new local multi-view stereo algorithm is presented in this chapter. The

algorithm is designed for highly parallel systems and can achieve real-time

performance. The adaptive support-weight cost aggregation idea and Parzen-

window cost volume merging idea are combined to achieve a robust cost volume

merging module. Our encouraging results show the effectiveness of the proposed

method. A simplified real-time GPU version is implemented as well.

78

Chapter 6:

Conclusion and Future Work

To extend the usefulness of the ASW cost aggregation method, three new

algorithms are developed in this thesis.

A new local stereo matching algorithm is presented in Chapter 3, which

combines adaptive-weight cost aggregation with slanted surface modeling. In

order to achieve superior disparity result, the plane fitting idea is used to extend

aggregation into the 3rd dimension and expands through multiple disparity levels.

Such an extension is essential to better model slanted surfaces. The results

demonstrate the effectiveness of the new algorithm. Some extension works can be

done along this direction. First, the raw disparity map used to generate DPO has a

direct impact on the accuracy of extracted slanted surfaces and later can influence

the disparity result. In fact, the experimental results presented in this thesis show

that DPO generated from ground truth improves the final result by 10% to 50% on

four datasets. Hence, a better DPO generation approach may improve the input

disparity result. Another possible avenue to pursue is to get a better initial

estimate by incorporating range images [51]. Along the direction of using GPU,

the parallel characteristic of this algorithm can be fully exploited by porting to

GPU.

Chapter 4 presents the endeavour of using CUDA to fully implement the ASW

algorithm onto GPU without much loss of quality. The quadtree based approach

replaces pixel primitives in stereo matching by square-shaped segments, reduces

79

the number of primitives to be processed, and improves the inner-segment

smoothness by assigning uniform disparity values for every segment. Although

challenges still remain, improvements in both quality and speed are still feasible.

First of all, the cue of Euclidean distance in segment-to-segment weight is

approximated by the distance of their segment centers. This reduces the credibility

of the weights. Also, square-shaped segments, although efficient to process in

GPU, are quite restrictive and render the segmentation quality vulnerable to high-

textured areas and image noise as a single heterogeneous pixel in a large

homogenous area, which will lead to more segments than desired. A more general

segmentation method which allows non-rectangular shaped segments may be

more effective. Thirdly, the neighbourhood to be aggregated is still of a fixed size,

which may not adapt to low-textured areas and high-textured areas well. Using a

fixed number of segments that bear the biggest weights within the neighbourhood

of the segment-of-interest is one possible solution. A better structure has to be

used in order to find the nearest neighbours in weights rather than just in spatial

distance. Using a KD-tree is one option, and a CUDA based real time photon

mapping application has already been proposed by Zhou et al. [55], which

features efficient construction of KD-tree of photons and KNN searches of any

photon.

The new multi-view stereo algorithm based on Parzen-window and ASW

discussed in Chapter 5 shows promising results and robustness against occlusions.

One possible avenue of improvement is to refine the cost volume results for every

view by merging other views using the new method, and then iteratively update

each cost volume to get even better results. Also, a complete system that can

process multiview images in real-time to produce high quality disparity results is

worthy to be developed to fully demonstrate the effectiveness of the new methods

presented in this thesis..

Finally, the three algorithms discussed in this thesis try to enhance local stereo

matching from three perspectives, namely subpixel disparity accuracy, real-time

80

speed under ASW aggregation, and occlusion handling. How to integrate the

presented algorithms to achieve all three objectives will be worth investigating.

81

Bibliography

[1] Barnard, S.; Fishier, M. "Computational stereo." ACM Computing

Surverys, vol.14, pp. 553-572, 1982.

[2] Bobick, A. F.; Intille, S. "Large occlusion stereo." International Journal of

Computer Vision, vol.33, pp.181-200, 1999.

[3] Brown, M. Z.; Burschka, D.; Hager, G. D. "Adcances in computational

stereo." IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol.25, pp.993-1008, 2003.

[4] Buck, I.; Foley, T.; Hron, D.; Sugerman, J.; Fatahalian, K.; Houston, M.;

Hanrahan, P. "For GPUs: stream computing on graphics hardware." ACM

Transactions on Graphics, vol.23, pp.777-786, 2004.

[5] Chan, S.; Wong, Y.-P.; Daniel, J. "Dense stereo correspondence based on

recursive adaptive size muti-windowing." Proceedings of Image and

Vision Computing New Zealand. Pp.256-259, 2003.

[6] Criminisi, A.; Blake, A.; Rother, C. "Efficient dense stereo with

occlusions for new view-synthesis by four-state dynamic programming."

International Journal of Computer Vision, vol.71, pp. 89-110, 2007.

[7] Criminisi, A.; Shotton, J.; Blake, A.; Torr, P. H. S. "Gaze manipulation for

one-to-one teleconferencing." Proceedings of IEEE Conference on

Computer Vision and Pattern Recognition, pp. 191-198, 2003.

82

[8] CUDPP: CUDA Data Parallel Primitives Library, http://www.gpgpu.org/

developer /cudpp

[9] Dhond, U. R.; Aggarwal, J. K. "Structure from stereo - a review." IEEE

Transactions on Systems, Man and Cybernetics, vol.19, pp.1489-1510,

1989.

[10] Drouin, M. A.; Trudeau, M.; Roy, S. "Fast multi-baseline stereo with

occlusion." Proceedings of International Confererence on 3-D Digital

Imaging and Modeling, pp.540-547, 2005.

[11] Drouin, M. A.; Trudeau, M.; Roy, S. "Geo-consistency for wide multi-

camera steero." Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition, pp.885-891, 2005.

[12] Farrugia, J.-P.; Horain, P.; Guehenneux, E.; Alusse, Y. "GPUCV: A

Framework for Image Processing Acceleration with Graphics Processors."

IEEE Conference on Multimedia and Expo, pp.585-588, 2006.

[13] Forstmann, S.; Kanou, Y.; Ohya, J.; Thuering, S.; Schmitt, A. "Real-time

stereo by using dynamic programming." Computer Vision and Pattern

Recognition Workshop, p.29, 2004.

[14] Fusiello, A.; Roberto, V. ; E. Trucco. "Efficient stereo with multiple

windowing." Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition, pp.858-863, 1997.

[15] Geiger, D.; Ladendorf, B.; Yuille, A. "Occlusions and binocular stereo."

InternationalJournal of Computer Vision, vol.14, pp.211-226, 1995.

[16] Gong, M.-L.; Yang, R.-G.; Wang, L.; Gong, M.-W. "A performance study

on different cost aggregation approaches used in real-time stereo

83

http://www.gpgpu.org/

matching." InternationalJournal of Computer Vision, vol.75, pp.283-296,

2007.

[17] Gong, M.-L.; Yang, Y.-H. "Image-gradient guided real-time stereo on

graphics hardware." Proceedings of International Conference on 3-D

Digital Imaging and Modeling, pp.548-555, 2005.

[18] Kanada, T.; Okutomi, M. "A stereo matching algorithm with an adaptive

window: theory and experiment." IEEE Transactions on Pattern Analysis

and Machine Intelligence, pp.920-932, 1994.

[19] Kang, S.-B.; Szeliski, R.; Chai, J. "Handling occlusions in dense multi-

view stereo." Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition, pp. 103-110, 2001.

[20] Klaus, A.; Sormann, M.; Karner, K. "Segment-based stereo matching

using belief propagation and a self-adapting dissimilarity measure."

Proceedings of International Conference on Pattern Recognition, pp. 15-

18,2006.

[21] Kolmogorov, V.; Zabih, R. "Computing visual correspondence with

occlusions via graph cuts." Proceedings of IEEE International Conference

on Computer Vision, pp.508-515, 2001.

[22] Kutulakos, K.; Seitz, S. M. "A theory of shape by space carving."

InternationalJournal of Computer Vision, vol.38, pp.199-218, 2000.

[23] Marr, D.; Nishihara, H. K. "Representation and recognition of the spatial

organization of three-dimensional shapes." Proceedings of the Royal

Society of London, vol.200, pp.269-294, 1978.

[24] Marr, D.; Poggio, T. "A computational theory of human stereo vision."

Proceedings of the Royal Society of London, vol.204, pp.301-328, 1979.

84

[25] McCool, M.; Qin, Z.; Popa, S. T. "Shader Meteprogramming."

Proceedings of SIGGRAPH/EUROGRAPHICS Graphics Hardware

Workshop, pp.57-68, 2002.

[26] Middlebury Stereo Vision Page, http://vision.middlebury.edu/stereo/

[27] Nakamura, Y.; Matsuura, T.; Satoh, K.; Ohta, Y. "Occlusion detectable

stereo - occlusion patterns in camera matrix." Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition, pp.371-378,

1996.

[28] Nelson, D.; Yang, Y.-H. "Evaluation of Constructable Match Cost

Measures for Stereo Correspondence Using Cluster Ranking."

Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition, 2008.

[29] NVIDIA CUDA Occupancy Calculator, http://news.developer.nvidia.com/

200 7/0 3Zcuda_occupancy_.html

[30] NVIDIA CUDA Programming Guide, http://developer.download.nvidia

.com/compute/cuda/2_0/docs/NVIDIA_CUDA_Programming_Guide_2.0.p

df

[31] NVIDIA CUDA Zone, http://www. nvidia. com/object/cudajaome. html

[32] Okutomi, M.; Kanade, T. "A multiple baseline stereo." IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol.15, pp.371-348, 1993.

[33] Parzen, E. "On estimation of a probability density function and the mode."

Annals of Mathematical Statistics, vol.33, pp.1065-1076, 1962.

[34] Scharstein, D.; Szeliski, R. "A taxonomy and evaluation of dense two-

frame stereo correspondence algorithms." International Journal of

Computer Vision, vol.47, pp.7-42, 2002.

85

http://vision.middlebury.edu/stereo/
http://news.developer.nvidia.com/
http://developer.download.nvidia
http://www

[35] Seitz, S. M ; Curless, B.; Diebel, J.; Scharstein, D.; Szeliski, R. "A

comparison and evaluation of multi-view stereo reconstruction

algorithms." Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition, pp.519-528, 2006.

[36] Seitz, S. M.; Dyer, R. C. "Photorealistic scene reconstruction by voxel

coloring." Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition, vol. 1067-1073, 1997.

[37] Seltzer, J. Desktop image-based rendering. Master Thesis. University of

Alberta Library, 2006.

[38] Sengupta, S.; Harris, M.; Zhang, Y.; Owens, J. D. "Scan primitives for

GPU computing." Proceedings of the 22nd ACM

SIGGRAPH/EUROGRAPHICS symposium on Grpahics Hardware, pp.97-

106,2007.

[39] Shen, G.-B.; Gao, G.-P.; Li, S.-P.; Shum, H.-Y.; Zhang, Y.-Q.

"Accelerated video decoding with generic GPU." IEEE Transactions on

Circuits and Systems for Video Technology, vol.15, pp.685-693, 2005.

[40] Sinha, S.; Pollefeys, M. "Multi-view reconstruction using photo-

consistency and exact silhouette constraints: a maximum-flow

formulation." Proceedings of IEEE International Conference on Computer

Vision, pp.349-356, 2005.

[41] Sun, J.; Li, Y.; Kang, S.-B.; Shum, H.-Y. "Symmetric stereo matching for

occlusion handling." Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition, vol.399-406, 2005.

[42] Tao, H.; Sawhney, H. S. "Global matching criterion and color

segmentation based stereo." Proceedings of IEEE Workshop on

Applications of Computer Vision, pp.246-253, 2000.

86

[43] Tao, H.; Sawhney, H. S.; Kumar, R. "A global matching for stereo

computation." Proceedings of IEEE International Conference on

Computer Vision, pp.532-539, 2001.

[44] Tombari, F.; Mattoccia, S.; Di Stefano, L. "Segmentation-based adaptive

support for accurate stereo correspondence." Proceedings of Pacific-Rim

Symposium on Image and Video Technology, pp.427-438, 2007.

[45] Tombari, F.; Mattoccia, S.; Di Stefano, L.; Addimanda, E. "Classification

and evaluation of cost aggregation methods for stereo correspondence."

Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition, 2008.

[46] Vogiatzis, G.; Esteban, C. H.; Torr, P. H. S.; Cipolla, R. "Multi-view

stereo via volumetric graph-cuts and occlusion robust photo-consistency."

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.29,

pp.2241-2246, 2007.

[47] Wang, L.; Gong, M.-W.; Gong, M.-L.; Yang, R.-G. "How far can we go

with local optimization in real-time stereo matching." Proceedings of

International Symposium on 3D Data Processing, Visualization, and

Transmission, pp.129-136, 2006.

[48] Wang, L.; Liao, M.; Gong, M.-L.; Nister, D. "High quality real-time stereo

using adaptive cost aggregation and dynamic programming." Proceedings

of International Symposium on 3D Data Processing, Visualization, and

Transmission, pp.798-805, 2006.

[49] Xu, Y.; Wang, D.; Feng, T.; Shum, H.-Y. "Stereo computation using radial

adaptive windows." Proceedings of International Conference on Pattern

Recognition, pp.595-598, 2002.

87

[50] Yang, Q.; Wang, L.; Yang, R.-G.; Nister, D. "Stereo matching with color-

weighted correlation, hierarchical belief propagation and occlusion

handling." Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition, pp.2347-2354, 2006.

[51] Yang, Q.-X.; Yang, R.-G.; Davis, J.; Nister, D. "Spatial-depth super

resolution for range images." Proceedings of IEEE Conference on

Computer Vision and Pattern Recognition, pp.1-8, 2007.

[52] Yoon, K.-J.; Kweon, I.-S. "Adaptive support-weight approach for

correspondence search." IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol.28, pp.650-656, 2005.

[53] Zhang, Y.-L.; Gong, M.-L.; Yang, Y.-H. "Local stereo matching with 3D

adaptive cost aggregation for slanted surface and sub-pixel accuracy."

Proceedings of International Conference on Pattern Recognition, 2008.

[54] Zhang, Y.-L.; Gong, M.-L.; Yang, Y.-H. "Real-time multi-view stereo

using adaptive-weight parzen-window and local winner-take-all

optimization." Proceedings of Fifth Canadian Conference on Computer

and Robot Vision, pp.113-120, 2008.

[55] Zhou, K.; Hou, Q.-M.; Wang, R.; Guo, B.-N. Real-time KD-tree
construction on graphics hardware. Technical Report, Microsoft Research
Asia, 2008.

88

Appendix I:

The pseudo code for direct porting ASW onto GPU runs like this:

Algorithm AI.l

procedure AdaptiveSupportWeightCostAggregation
in: float cv[][], int dispRange, int szAggrWin, texture targetlm
out: float cv[][]

begin
for i = 0 to dispRange-1

for each pixel position in parallel
aggrCost <- 0
po 4r the colour value for the pixel position from targetlm
for each neighbour pixel in the aggregation window restricted by szAggrWin

pn 4- the colour value for the neighbour pixel from targetlm
wt <- calculate the weight using po, pn, and neighbour pixel offset
cost 4- the matching cost for neighbour pixel position from cv[i]
aggrCost <- aggrCost + cost*wt

end
update cv at with aggrCost at the corresponding pixel position and disparity i

end

Note that in the code, cv is a two-dimensional array. Thus cv[i] means a one-

dimensional array of size imageWidth x imageHeight that stores all the costs

for disparity level i. dispRange is the number of disparity levels for the dataset.

targetlm is the texture reference that stores the target image. The reference image

is not needed here because the weight calculation uses the pixel-of-interest and its

neighbour pixels in the target image. szAggrWin denotes the size of the local

aggregation window, wt is calculated using equation (AI.l). Code fraction

89

described as in parallel runs as CUDA kernels on GPU. The most inner for loop

performs the aggregation described in equation (AI.2).

, N i i ^Cu,v,m,n , ^§u,v,m,n
w(u, v, m, n) = exp — h

(AI.1)

y / w(u,v,m,n) \

AC(u, v, a) = -
Zm,ne[-r,r]W(u,V,m,n)

(AI.2)

90

Appendix II:

Pseudo codes for two improved ways of direct poring ASW to GPU are listed

below:

Algorithm All. 1

procedure AdaptiveSupportWeightCostAggregationlmprovedl
in: float cv[][], int dispRange, int szAggrWin, texture targetlm
out: float cv[][]

begin
for each pixel position in parallel

aggrCost[dispRange] 4r 0, and aggrCost is allocated on shared memory
po 4- the colour value for the pixel-of-interest from targetlm
for each neighbour pixel in the aggregation window restricted by szAggrWin

pn 4- the colour value for the neighbour pixel from targetlm
wt 4- calculate the weight using po, pn, and neighbour pixel offset
for i = 0 to dispRange-l

cost <r the matching cost for neighbour pixel position from cv[i]

aggrCost[i] <- aggrCost + cost*wt

end

update cv at with aggrCost at the corresponding pixel position

end

Algorithm AII.2

procedure AdaptiveSupportWeightCostAggregationImproved2
in: float cv[][], int dispRange, int szAggrWin, texture targetlm
out: float cv[][]

begin
for each pixel position in parallel

allocate targetImPatch[] on shared memory, with proper size

91

allocate cvPatch[] on shared memory, with proper size
read in portion of targetImPatch[] from targetlm
read in portion of cvPatch]} from cv
synchronize^)
po 4- the colour value for the pixel-of-interest from targetlmPatch
for each neighbour pixel in the aggregation window restricted by szAggrWin

pn 4- the colour value for the neighbour pixel from targetlmPatch
wt <- calculate the weight using po, pn, and neighbour pixel offset
for i = 0 to dispRange-1

cost <- the matching cost for neighbour pixel position from cvPatch
aggrCost\i] <- aggrCost + cost*wt

end
update cv with aggrCost at the corresponding pixel position

end

Algorithm AII.l shows how to process all disparity levels in one kernel; and AII.2

how to cooperate between kernels to achieve better memory access scheme. Note

that targetlmPatch and cvPatch are the supersets of all neighbourhoods for every

pixel in the block, synchronize () is necessary to make sure all kernels in the block

have finished initializing their share of the shared memory, as no dirty region in

the shared memory is acceptable. The size of targetlmPatch/cvPatch equals

(2W + K)X (2W + K) under the setup of a (2W + 1) x (2W + 1) aggregation

window size and &K X K kernel block size, as described in Section 4.2.2.

92

