University of Alberta

RETARGETING OF VIRTUAL REALITY APPLICATIONS

by

Pablo Alejandro Figueroa

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment
of the requirements for the degree of Doctor of Philosophy.

Department of Computing Science

Edmonton, Alberta
Spring 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Direction du
Patrimoine de I'édition

Bibliothéque et
Archives Canada

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-96265-2
Our file Notre référence
ISBN: 0-612-96265-2

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque et Archives Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la these ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

[bt

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Current practices in development of Virtual Reality (VR) applications are very costly in
general and difficult to adapt to various VR platforms. This thesis solves some of the issues
related to the development of VR applications when a variety of hardware platforms is
available, as in current VR labs and development sites. We make visible at a high level
of abstraction the most important elements in the interface of a VR, application. Current
representation methods of VR are either too formal or too close to a programming language
to be understood by users, which precludes the analysis, evaluation, and improvement of
interface issues. We define a clean separation between different software components in
a VR application and its associated semantics. This separation allows us to reuse VR
components, without having to worry about unexpected side-effects. We also define a new
way to transform an application from one hardware platform to another. We call this
process retargeting, and it is based on our ability of component reuse and the high level
of abstraction language we define. We separate two important roles in the development of
VR applications. One is in charge of the overall architecture of the application. They pay
attention to interface issues, requirements coverage, and component reuse. The second one is
in charge of fine-detail development of components and its tuning to a particular deployment
environment. We consider this separation an important way to handle complexity in the
development process. It enables different people to concentrate on different issues and at

the same time collaborate on the development.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To Blanca, Claudia, and Monica.

To all people that I remember, and to all people I do not, for their contributions to this
project I call life.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1 Introduction

2 Related Work

2.1
2.2
2.3
2.4
2.5
2.6

An Overview of VR Toolkits
Domain Specific Languages
Software Architectures for VR Applications
Execution Models
Retargeting L
Users of VR Toolkitso

3 Concepts

3.1
3.2

3.3
34

3.5

3.6

An Informal Introduction to InTml oo
Execution Model of an InTmli Application
3.2.1 Implementation issues of the Execution Model
InTml Examples
InTml Ontology and XML representation
3.41 Port
342 IPort. e
343 OPort
3.4.4 Filter
345 Device
3.4.6 Physical Device L
347 Object
348 SceneGraphNode
3.49 Behavior. e
3.4.10 Connection e e
3.4.11 ObjectHolder
3.4.12 Events in the Dataflow and Types
3.4.13 Constant L e
3.4.14 ComposedFilter o
3.4.15 Application
3.4.16 Other Language Features
A Formal Description of InTml in the Z Language
351 BasicConcepts e e
352 PFiltersand Delays oL Lo
3.5.3 An Example: A One-Bit Adder
3.5.4 Applications
3.5.5 Dataflow Execution
3.5.6 Changesin the Dataflow
3.5.7 Operations Over an Application
Properties of this Architecture
3.6.1 An Example of InTml Interpretation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.6.2 Lessons Learned from the Z Language Description 55

4 Development Process based on InTml 57
4.1 Process Descriptiono L oo 57
4.1.1 Application Goal oo o 58

4.1.2 Description and Refinement of Application Requirements in InTml
Documentso 59
4.1.3 Check Correctness in InTml Documents 59
4.1.4 Completeness Test for Current Library 60
4.1.5 Structure and Reusability Test for Current Library 60
4.1.6 Implementing or Tuning of Additional Filters 60
4.1.7 Tuning or Reorganizing of Concepts in the InTml Library 60
4.1.8 Executing and Testing of a New InTml Application 61
4.1.9 Test Coverage of User Requirements 61
4.1.10 Retargeting of An InTml Application to A New Platform 61
4.2 Example: A Matching Applicationo 0L 62
4.2.1 Application Goal Lo Lo 62

4.2.2 Description and Refinement of Application Requirements in InTml
Documents e 63
4.2.3 Check Correctness in InTml Documents 65
4.2.4 Completeness Test for the Current Library 65
4.2.5 Implementing or Tuning of Additional Filters 65
4.2.6 Tuning or Reorganizing of Concepts in the InTml Library 65
4.2.7 Executing and Testing of a New InTml Application 66
4.2.8 Test Coverage of User Requirements 66
4.2.9 Retarget An InTml Application to A New Platform 66
4.3 Some Metrics e e 67
4.4 Comparison with Other Development Methodologies and 3D Technologies . . 69
5 Examples of Use 71
5.1 A Matching Application L oL 71
5.2 Performance Comparison for The Four VR Platforms 86
5.2.1 Comparison Metrics L o L 87
5.2.2 Method and Apparatus 89
523 Results 89
524 Discussion e 93
53 A Virtual Clay Application 94
6 Support Tools for InTml-Based Development 97
6.1 An InTml-Based Development Environment 97
6.2 The InTml Language i 98
6.3 Library of Interaction Techniques 100
6.4 Tools. e 102
6.4.1 InTml Browser e 102
6.4.2 InTm! Compiler 105
6.4.3 InTml Checker 106
6.5 InTml Framework Implementation 111
6.6 Library Implementation, 112
6.7 Core Frameworks 112
6.7.1 Runtime Environment L. 112
6.8 Future Work 113
7 Conclusions 114
A InTml Files for the Matching Application 117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B InTm! Files for the Virtual Clay Application
C DTD for InTml Files

D Library of Reusable Concepts in InTml

E User Study Proposal to the Ethics Committee
F A Brief Introduction to Z

Bibliography

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

159

167

171

205

217

219

List of Figures

2.1 Callback based Architecture L0 Lo 19
3.1 Select by Touching. An Example of a Filter 23
3.2 Simple Application. Touching Objects With a Virtual Hand. 24
3.3 The Go-Go interaction technique. General and detailed views. 24
3.4 Execution Model of InTml Applications between two rendering steps. 25
3.5 Extended InTml Execution Model. 26
3.6 A Simple Representation of a Mouse in InTml. 28
3.7 An InTml Representation of the InterSense Wand. 28
3.8 An InTml! Representation of the Ring Menu. 29
3.9 An InTml Representation of World-Related Movement. 29
3.10 An InTml Representation of an Interactive Object. 30
3.11 Entities and relationships in InTml. 31
3.12 Relationship between scene graph nodes and InTml objects. 34
3.13 Different states of an Object Holder during execution. 36
3.14 Internal Structure of an Filter Holder 48
3.15 A Modified Version of a Simple Application. 55
3.16 A Modified Version of SelectByTouching. 55
4.1 Collaborative development process for a particular hardware and software
platform. 58
4.2 Adapting a VR application to a new hardware and software platform. 59
4.3 Tasks covered by several testing applications. 66
4.4 Changes in Lines of Code per Hardware Platform. 68
5.1 Application running on a PC environment. 72
5.2 Application running on a SMART Board. 72
5.3 Application running on a HMD plus Joystick. 72
5.4 Application running on a PC plus 3D Mouse. 73
55 RandomPQ ports. 74
56 RandomRelativePQ ports. 74
5.7 SelectByRay ports. 76
5.8 View and Selection in the HMDJ Platform. 77
5.9 SelectByTouching ports. o 78
5.10 RotationBehavior and TranslationBehavior ports. 79
511 Log ports. e 34
5.12 Order of events throughout time. 88
5.13 Distance error over time. Lo 89
514 Phantom ports. 95
6.1 Architecture of an implementation of InTml. 98
6.2 Fileviewof InTml. 103
6.3 Category viewof InTml. oL 104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.4 Architecture of the InTml Compiler. Rounded boxes represent code genera-
tors, rectangles are classes, ellipsis are files, and we use the UML symbol and
semantics for a package of classes.o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

2.1 Coverage of Interface Elements in VR Toolkits. Short names in the first row
are as follows: programming language ease of use (LE), hardware coverage
(HQ), initialization and setup (IS), multiprocessing (MP}, device registration
(DR), detailed device configuration (DD), main execution cycle (ME), device—
related event handling (DE), drawing (DW), synchronization management
(SY), simulation task modeling (ST), connections between components (CC),
geometry details (GD), and navigation techniques (NT). A darker gray means
a better option than a lighter one, from the viewpoint of a VR developer. . . 15
2.2 Coverage of Interface Elements in VR Toolkits. A darker gray means a better
option than a lighter one, from the viewpoint of a VR developer. 17
2.3 Extension Mechanisms in VR Toolkits 18
4.1 Average number of Lines of Code (LLOC) changes per Platform. 69
5.1 InTml and Java3D Frame Rates. 90
5.2 Time per Experiment. L L 90
5.3 Time for matching. L 90
54 Number of control events. L L o 91
5.5 Distance €rror.o e 91
5.6 Orientation error. L. e e 91
5.7 Preparationtime. 91
5.8 Rankings of platforms per metric. 92
5.9 Participants’ previous experiences. L L L 92
5.10 Averages of user answers in the surveys. 92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

The field of Virtual Reality (VR) is now more than 30 years old, and in several ways is still
in its infancy. After initial overrated publicity, motivated in part by spectacular applications
envisioned by science fiction authors, and the frustration that followed when expectations
were not met fast enough, VR is finally becoming a real technology with clear solutions
in some specific industries. VR applications in car prototyping, oil exploration, military
simulators, entertainment, and fear treatment, among others, have demonstrated that VR
technology has distinct advantages in certain fields, and that more research is required to
broaden its potential use.

One problem with VR technology is that application development is still a daunting task,
partially due to the lack of mature and widely accepted development tools and methodolo-
gies. In order to achieve quality in a VR application, several novel input and output devices
should be seamlessly integrated; as well, users should be able to interact with information in
powerful ways. Such a deployment is complex due to hardware calibration issues, software
integration of frameworks and libraries, and the inherently technical and interwoven nature
of VR technology. Current practices are very costly in general and difficult to adapt to
various VR platforms.

This thesis solves some of the issues related to the development of VR applications when
a variety of hardware platforms is available, as in current VR labs and development sites.
The main contributions of this thesis are:

e We make visible at a high level of abstraction the most important elements in the
interface of a VR application. Current representation methods of VR are either too
formal or too close to a programming language to be understood by users, which
precludes the analysis, evaluation, and improvement of interface issues.

e We define a clean separation between different software components in a VR applica-
tion and its associated semantics. This separation allows us to reuse VR components,
without having to worry about unexpected side—effects.

¢ We define a new way to transform an application from one hardware platform to
another. We call this process retargeting, and it is based on our ability of component
reuse and the high level of abstraction language we define.

e We separate two important roles in the development of VR applications. One is in
charge of the overall architecture of the application. They pay attention to interface
issues, requirements coverage, and component reuse. The second one is in charge
of fine—detail development of components and its tuning to a particular deployment
environment. We consider this separation an important way to handle complexity in
the development process. It enables different people to concentrate on different issues
and at the same time collaborate on the development.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The ideas presented in this thesis evolved from a thorough study of previous results
in the area of development environments for VR applications, our development of four
environments with key ideas, and our development of an application as a proof of concept for
retargeting. Our first environment used C++ and Python as programming languages, which
allowed us to change the behavior of the application at runtime. The second environment
used C++4 and MRToolkit, a library developed here at the University of Alberta, and went
further into the complexity of a program with replaceable behavior and defined the main
concepts and structure in our representation of VR applications. We took these previous
experiences and added the important concept of separation of roles for development in
our third development environment, based on the Java programming language and XML.
Finally, a fourth development environment based on C++, XML, and Performer is under
construction, which provides developers of our CAVE-like environments with a platform
that supports the concepts in this thesis. We made some attempts to use other libraries
and domains, such as information visualization based on the VTK library, but we decided
to concentrate most of our efforts on scene—graph-based technologies such as Java3D and
Performer as a way to limit the scope of this thesis. After the second prototype, we also
started a process of refinement of our domain analysis by describing it in a formal language
(Z), and developing architectural reviews with peers based on such a description. More than
80 person—hours were spent in this review process.

The following sections give further explanation of our main contributions, which will be
treated in full detail in the rest of this document.

HCI Elements of VR Applications

In order to emphasize the main concepts in a VR application from the point of view of
its interface, we have developed a domain—specific language in which the domain is the
set of virtual reality applications. Domain—specific languages allow developers to describe
solutions to problems in a language closer to the domain than to a generic programming
language. Current programming environments for VR are limited in domain—specific con-
cepts: some of them cover a partial set of concepts or their implementation as a framework
on top of a programming language. This usually requires high level programming skills.

Current VR specific languages usually describe in great detail the geometry of the so-
lution and sometimes the behavior expected from the application. However, they usually
limit the set of input and output devices to a few, or the capabilities of available hardware
to the ones that are standard to several installations. Our novel approach describes the
architecture of an application in terms of abstractions of all important elements one can
find in a VR application interface: devices, behavior, and content. Such a novel language
gives developers the possibility of designing solutions for any VR installation that might be
available without going into excessive amount of details.

We have developed a formal description of our language in Z, a formal programming
language with a clear semantics. This description allows us to understand concepts related
to the state and dynamic behavior of a system without referring to subtle details in any
particular implementation. This language also allows developers to implement such concepts
in any VR platform available. Nevertheless, our two last implementations in Java3D and
in C++ fulfill a subset of the concepts in the Z language description and can be taken as a
functional reference.

Software Components for VR Applications

Component—based development allows the construction of applications based on reusable
components. A component should clearly state its interface !, its state information, and

1The interface of a component is the set of characteristics that define its input and output.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

possible side effects. Most of the current toolkits for VR development organize applications
in some modular way, based on particular programming language constructs, but these
modules usually have internal side-effects and rely on a fixed, non-scalable execution model,
which makes them very difficult to reuse.

We introduce a modular way to construct VR applications based on our domain specific
language and its well defined components. Components for devices, behavior, and geometry
can be defined and used, at a higher level than a programming language such as C++ or
Java. Such components can be much more relevant to developers, since they relate directly
to concepts found in the VR domain, thus applications can be structured in a way closer to
the domain. They also distance the developer from details of the execution model, so both
sequential and concurrent models are allowed in the implementation and details are hidden
inside components.

Retargeting of VR Applications

Retargeting is a term used in the compiler community that refers to the adaptation of a
particular source code to the characteristics of a particular processor, therefore an imple-
mentation uses the most of an architecture. It relates to all methods for transforming an
implementation to the most suitable structure in a target platform.

Our novel solution for VR application development makes possible the retargeting of
VR software to the particular capabilities of a VR environment. Since a VR application is
described in a high level language, it is possible to accommodate its implementation to the
particular characteristics of an installation. In addition, since domain specific components
like devices and behaviors are easily recognized, it is possible to transform an application
from one installation to another, by replacing devices and behavior while keeping support for
the same tasks. The idea of retargeting in the field of VR is novel, and it opens possibilities
for VR development where several hardware configurations can be tested and compared.

Roles in VR Application Development

One way to reduce complexity of a problem is to divide it into distinct subproblems, each
one solvable by people with certain kinds of skills. This simple idea can be used to control
the complexity of virtual reality applications, allowing developers with different skills to
attack different issues in a development effort.

Our approach differs from previous attempts to solve this problem in the definition of
different roles for developers, in such a way that responsibilities and skills can be differen-
tiated. Previous attempts could separate concerns between development groups, but they
assume similar skills in each group. In our approach we define the following roles, each one
with different skills: designers, developers, and technicians. This reflects current practice in
teams building VR applications.

A designer of a VR application concentrates on the application domain and is a user of
a domain specific language that gives her access to the technology. Designers know what
VR applications can do, their limitations, and possibilities, but do not necessarily have pro-
gramming skills to code a system using languages such as C++ or Java. A designer is also
able to analyze the application domain, and translate it into a solution based on intercon-
nected components in the VR domain. Designers are capable of defining requirements for
new components, or reuse previously defined ones, without a deep understanding of how
they work. They know about a VR specific language to express VR applications, and they
use such a language to express requirements to developers. A designer is more interested
in the overall behavior of the application and in its usability characteristics, rather than in
the nuts and bolts of the implementation. Their knowledge is platform independent, but
they know the particular characteristics of each VR installation and how to take advantage
of such differences in an application.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A developer is the role assigned to people who know how to program VR applications,
who know about the technology involved, and how to use it. Developers are proficient
in programming languages such as C+- or Java and are able to implement functionality
required by designers. Developers are interested in performance and frame rate, and they
are capable of tuning an implementation in order to get the most out of a VR, installation.

A technician in a VR installation is responsible for calibrating sensor and device perfor-
mance. They know about low level drivers, devices, equipment, and networking. They are
responsible for hardware tuning and general setup for VR applications in an installation.

In this thesis, we concentrate on the separation of concerns between designers and de-
velopers, since this division is the most difficult to address. The work of technicians is
considered highly specialized, and it is closer in skills to what developers do. For this reason
both will be considered as one role.

Organization of This Document

Chapter 2 describes previous work that is related to our thesis. Several points of view
are analyzed, one per each of our main contributions. Chapter 3 introduces our domain—
specific language, in both an informal and formal way. Chapter 4 describes the development
methodology that is related to our language, and an example on how our test application
was developed. Chapter 5 describes in more detail some of the work around our domain—
specific language, including two VR applications described in such a language, and a user
study that was made possible due to our rapid retargeting process. Chapter 6 describes
in detail the development environment we envision, the tools we have developed, and some
guidelines on how to develop further the key tools in the future. Finally, we present our
conclusions and new research directions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Related Work

Our work improves the techniques, tools, and procedures involved in the development of
VR applications. We describe in this section the current literature in VR development,
as well as how software engineering techniques apply to VR projects. We first give an
overview of the most important ideas in current toolkits for VR development, and describe
examples of applications. We then analyze the most important results in the main areas of
our contribution, i.e. domain specific languages, software architectures, execution models,
retargeting, and development roles for VR. We then compare current VR toolkits that one
can find in the literature. Along this comparison, we restate our motivations and our main
contributions.

2.1 An Overview of VR Toolkits

There are many toolkits for VR development, with different scope and complexity. Some
allow users to configure a wide spectrum of issues, while others hide some decisions from
developers in order to reduce complexity. Some environments are tailored to a particular
hardware platform, and others allow developers to use a wide range of input and output
devices. This section describes the most important features of commercial products and
research activities around VR in the last 15 years. At the end, comparison will be done in
terms of the issues developers concentrate in, and how one can deal with this wide variety
of platforms.

Initial efforts in this area were very ambitious and generic. AVIARY (86, 105] is an
example of such a system, a software architecture for a distributed, generic, virtual reality
system. AVIARY is a distributed system with time management capabilities, shared world
management among its processes, and support for multiple virtual worlds. Devices are han-
dled by input processes that are able to inform changes to other interested processes. Qutput
processes handle output devices and a Virtual Environment Manager process handles the
consistency of the application state. Not many details are available about implementation
of applications using AVIARY, or about its extension or component reuse mechanisms.

A popular system at the beginning of the nineties was the MR-Toolkit [81], a C library
for the development of VR applications. The system runs several processes, one for the
application computations, one for device polling, and a slave process for output tasks. De-
velopers needed to be proficient with configuration files for some devices. Developers could
also extend the system by adding functions for new devices, following a certain set of con-
ventions for registering callbacks at runtime. Listing 1 shows an example of a MR-Toolkit
application, described in [81]. Two programs are represented in the same source code, a
program in charge of reading devices and updating the simulation (master), and a program
that updates its state after each computation (slave). Such a configuration is able to update
two displays in a stereo setup. From the listing, one can notice the required operations for
adding devices (lines 26,27), several configuration tasks (lines 29-37), and the main loop

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(lines 39-54), which reads devices, translates input signals into gestures, and updates the
virtual representation of a hand. Extensions to this program require changes in the code,
in order to accommodate new devices, new behaviors, or new objects to be displayed.

CAVELib [100] was the first library developed for CAVE-like environments, and it has
been evolving since 1992, It helps developers isolate from issues related to the management
of several displays, several input devices, and multiprocessing capabilities of the underlying
platform. Listing 2 shows the same example described in [51], based on OpenGL 1.

The application reads configuration files (line 9), initializes information shared among all
application processes (line 10), the application environment (lines 12,13), and the rendering
function (line 14}, and the simulation cycle (line 15). Once the initialization tasks are done,
it will compute and show the next simulation cycle until the escape key is pressed (lines
17-19). Configuration files allow developers to activate hardware options, select device
or network calibration options, and turn on or off debugging capabilities. Details about
rendering on several displays, and synchronization of several processes are hidden from
developers. Support for new devices or new interaction techniques is limited to some well-
known commercial alternatives.

The Virtuality Builder II (VB2) [45] is an architecture that defines a process for each
key VR task {device input, application computation, rendering), and a constraint—based
mechanism to change propagation between entities in the application. The application code
is organized in terms of active variables, daemons interested in variable changes, constraints,
and reaction objects. Active variables and constraints can be encapsulated inside classes, and
transactions can be defined in order to group several atomic operations over active variables
in a class. Reaction objects can be called at the end of transactions for invariant checking.
A global time is maintained, and incremented every time constraints are executed. VB2
appears to be the first system to use the concept of hierarchical constraints for relationships
between elements in an application, and the concept of a virtual tool, a reusable widget that
allows users to visually handle a certain type of information. VB2 is written in Eiffel, and
uses a sophisticated algorithm for constraints resolution at every frame.

Performer [79] is a framework for manipulating scene graphs, created by SGI. It features
an architecture capable of fixed frame rates and frame synchronization between several
machines, suitable for high-end graphics applications. The application data is organized in
a scene graph, a tree-like structure that organizes geometry and other media in the virtual
space. Performer’s execution model is a pipeline of three tasks: CULL, DRAW, and APP,
that make geometric culling, scene drawing, and application computations, respectively.
User specific functions can be added as callbacks in each one of these stages, or in user
defined traversals of the entire scene graph. Listing 3 shows the general structure of a
Performer application 2.

The initialization process, which may include the execution of several threads, is done
by the framework. A scene is created (line 10), which is the root for a tree that represents
the geometry in the world. Pipes and channels, the main abstractions for the hardware
architecture, are created after (lines 13-16). At the end, the application enters the simulation
loop, in which images are produced, drawn in a second buffer, and shown in the possibly
several screens of the system (lines 16-21).

Avocado [96] is a framework for the development of distributed VR applications. Appli-
cations can be written in C++4 or Scheme, a scripting language. It is implemented on top of
Performer, and deals with the complexity of object distribution among several computers.
Its architecture uses inheritance to deal with new types of distributed objects, and a callback
mechanism from Performer for receiving changes from the world.

Lightning [13] features a dataflow—based execution model and a programming interface
in both Tcl and C++. Listing 4 shows parts of an application in Tcl, mentioned in [13], that
defines an input sensor for the head position and orientation, some frustum parameters, and

1CAVELIb can also use Performer as rendering engine.
2Complete examples can be found in a Performer installation, under the directory
/usr/share/Performer/src/pguide/libpf/C+4-/.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Listing 1 A MR-Toolkit Application

1 #include <MR/mr.h>
#define machine ‘‘tawayik’’
#define program ‘‘hello_world’’
extern Gtable gtables [1;

5
main (argc, argv)
int argc ;
char *argv [];
{

10 int quit_id, count = 0;
Program slave;
Data shared_cnt;
Hand hand ;
Gtable gst_tbl ;
15 Gesture_event usr_gst;

/* Configuration section */
MR_init (argv [0]) ;
#ifdef MASTER
20 MR_set_role (MR_MASTER);
#telse
MR_set_role (MR_SLAVE) ;
#endif MASTER
slave = MR_start_slave(machine, program) ;
25 shared_cnt = MR_shared_data (&count, sizeof (count) , slave, MR_FROM) ;
MR_add_device_set (EyePhone);
MR_add_device_set (DataGlove);
EyePhone_slave (slave) ;
MR_configure () ;
30
/* Computation section */
read_gesture_file(‘‘my.gst’’);
assign_gesture_ids () ;
gst_tbl = gtables[0];
35 quit_id = get_gesture_id(‘‘select’’)
set_room_reference(1.0, 1.5, 2.0);
map_reference_to(0.1, 0.0, 0.5);

while (1) {
40 update_hand();
hand = get_hand();
usr_gst = recognize_gesture(gst_tbl) ;
if (MR_get_role() == MR_MASTER)
if (usr_gst->id == quit_id)
45 MR_terminate(0);
MR_start_display() ;
count++ ;
if (MR_get_role() == MR_MASTER)
send_shared_data(shared_cnt);
50 else
shared_data_sync(shared_cnt);
draw_hand(hand) ;
MR_end_display ();

55 }

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Listing 2 A CAVELib Application
1 #include <cave.h>
void app_shared_init();
void app_compute_init();
void app_init_gl();
5 void app_draw();
void app_compute();

main(int argc,char **xargv) {
CAVEConfigure(&argc,argv,NULL) ;
10 app_shared_init(argc,argv);

CAVEInit () ;
CAVEInitApplication(app_init_gl,0);
CAVEDisplay (app_draw,0) ;

15 app_compute_init(argc,argv);

while (!getbutton(ESCKEY)) {
app_compute () ;
¥
20
CAVEExit () ;

connections between the head sensor and the frustum parameters.

The structure of the application looks easier to understand than in previous systems
developed in C or C++, since the scripting language shows just the high level elements and
their connections, and hides the intrinsic complexity of device drivers and application code.
Events from devices are propagated through the routes (lines starting with ltroute), in a
way that guarantees that previous nodes are executed first. Devices are read in different
processes, so different update rates are supported.

WorldToolkit (WTK) [78] is a C/C++ based library for the development of portable
VR applications. It provides fairly sophisticated visual effects and support a wide variety
of hardware and file formats (for geometry description). Listing 5 shows an example of a
program using WTK [77]. An application in WTK defines the file for the objects in the world
(line 19), devices to use (line 20), and tasks associated to objects (lines 22, 27-30). The
framework hides the complexity involved in the environment setup (line 17) and simulation
execution (line 25).

MASSIVE-2 is a framework for multi-user, VR applications. It concentrates on the “...
mechanics of managing awareness and communication among human participants in crowded
[Collaborative Virtual Environments)” {11, p. 59]. It introduces important concepts for the
management of multiple users in a VR environment, such as the concept of aura — the
volume of interest of an object —, and the concept of third~party objects — mediators that
represent groups of people. Applications are written in C or C++, and the mechanisms for
third-party objects are transparent to the programmer.

Alice [97] is a 3D programming environment with a simple user interface that allows
people with no programming experience to create their own programs. The development
process is the following {30]: Users first define the scene of their world, by selecting objects
from a rich library, included in the environment. After the scene is defined, users can add
behavior by creating scripts in an adapted version of Python. Listing 6 shows an example
of a small script in Alice, that makes a bunny beat a drum [30, p. 489].

A program in Alice is very intuitive, since its language hides the complexities of 3D

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Listing 3 A Performer Application in C++

1 int main (int argc, char *argv(])
{
// Initialize and configure OpenGL Performer
pfInit();
5 pfMultiprocess(PFMP_DEFAULT);
pfConfig();
pfFilePath(".:/usr/share/Performer/data:../../../../data");

// Create a scene, configure it and add some geometry and lights
10 pfScene *scene = new pfScene;

/o

pfPipe *pipe = pfGetPipe(0);

pfChannel *chan = new pfChannel(pipe);
15 chan->setFOV(60.0f, 0.0f);

chan->setScene(scene);

while (lexitFlag)
{

20 pfSync();
pfFrame();
UpdateView();

}

25 // Terminate parallel processes and exit.
pfExit) ;
return O;

Listing 4 A Lightning Application in Tcl

1 # definition of the trackinginput
lttrackersensor headsensor -device bird -sensor 1

definition of the cameras (origin: cave center)

5 ltcamera frontcamera -position ‘‘0 150 0’’ -orientation ‘‘0 O 0’’
ltcamera leftcamera -position ‘‘150 150 0’’ -orientation ‘‘-90 0 0’
ltcamera rightcamera -position “‘-~150 150 0’’ -orientation €90 0 0’’
ltcamera bottomcamera -position ‘0 0 -150’’ -orientation ‘‘0 -90 0’

10 # connect cameras with head tracker

ltroute ‘‘headsensor position’’ ‘‘frontcamera position’’
ltroute ¢‘headsensor orientation’’ ‘‘frontcamera orientation’’
ltroute ‘‘headsensor position’’ ‘‘leftcamera position’’
ltroute ¢ ‘headsensor orientation’’ ‘‘leftcamera orientation’’
15 1ltroute ‘‘headsensor position’’ ‘‘rightcamera position’’
ltroute f‘headsensor orientation’’ ‘‘rightcamera orientation’’
ltroute ‘‘headsensor position’’ ‘ ‘bottomcamera position’’
ltroute ¢ ‘headsensor orientation’’ ‘‘bottomcamera orientation’’
9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Listing 5 A WTK Application

1 /* SAMPLE PROGRAM */

/*
* simple.c
5 * Usage: Use the mouse buttons to fly around a spinning planet.
*/
#include "wt.h"

void spin(WTnode *);
10 #define Y_AXIS 1
void main(int argc, char *argv([])
{
WTnode *root;
WTnode *planet;
15 WTsensor *sensor; /* the Mouse */
WIviewpoint *view; /* the Viewpoint */
WTuniverse_new (WIDISPLAY_DEFAULT, WIWINDOW_DEFAULT);
root = WTuniverse_getrootnodes();
planet = WTmovnode_load(root, "PLANET.NFF", 1.0);
20 sensor = WTmouse_new();
view = WTuniverse_getviewpoints();
WIviewpoint_addsensor(view, sensor);
WTtask_new(planet, spin, 1.0);
WTuniverse_ready();

25 WTuniverse_go(); /* Starts simulation */
WTuniverse_delete(); /* All done */
}
void spin(WTnode *planet)
{
30 WTmovnode_rotateaxis(planet, Y_AXIS, 0.01);
}

Listing 6 An Alice Application

1 ArmsOut = DoTogether (
Bunny.Body.LeftArm.Turn(Left, 1/18),
Bunny.Body.RightArm.Turn(Right, 1/8))

ArmsIn = DoTogether(
5 Bunny.Body.LeftArm.Turn(Right, 1/8),
Bunny.Body.RightArm.Turn(Left, 1/8))
BangTheDrumSlowly = DoInOrder(
ArmsOut,
Armsln,
10 Bunny.PlaySound (’bang’))
BangTheDrumSlowly.Loop()

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

programming. An interesting feature is that users do not require knowledge of the ob-
ject’s absolute coordinates, since all animations can be described in terms of object—centric
directions (i.e. forward and backward), or relative to other objects in the environment.

VRJuggler [12] is an open source framework for the development of immersive environ-
ments. VRJuggler provides several features, such as operating system independence, device
abstraction, support for several graphic APIls, and hardware architecture abstraction. VR
applications in VRJuggler are written in C++, by creating subclasses of key elements in the
framework. Excerpts of cubes [33], an example in the VR Juggler distribution, is shown in
listings 7 and 8.

Listing 7 Main function in a VR Juggler Application
1 int main(int argc, char* argv(])

{
vjProjection: :setNearFar(0.01, 10000.0f);
5 vjKernel* kernel = vjKernel::instance();
cubesApp* application = new cubesApp(kernel);
for(int i=1;i<argc;i++)
kernel->loadConfigFile(argv[i]);
10
kernel->start();
kernel->setApplication(application);
while (1)
15 {
usleep (250000);
}
}

The main function in a VR application defines parameters for the display (line 3), ini-
tializes the VR Juggler kernel and the application (lines 5, 6, 11, 12), loads configuration
files with details about devices (lines 8,9), and runs the application in a different thread
than the one for the main function. Most of the application-specific code goes inside the
overridden functions of the application subclass (cubesApp, in this case), which is shown in
Listing 8.

UserData holds the navigation techniques and devices for a particular user (lines 1-13).
A subclass of vjGlApp 2 redefines common functions with application specific code: init
for device initialization, preFrame for computations after reading devices, draw for scene
drawing, intraFrame for operations while the scene is drawn, and postFrame for operations
after the scene is drawn. This class also holds data structures for the output devices in use
and the registered users. Several details about devices are hidden in configuration files, and
other details about devices, interaction techniques, and users are defined in C4++ code.

X3D [104], a rewrite of VRML with XML-based syntax, provides a common ground for
description of 3D objects and simple animations, suitable for browsing over the Internet.
Most of its definitions are related to geometry, but there are also ways to describe sound and
scripts of animation. Listing [37] shows an example in X3D that shows the letters VRML
on the screen.

The navigation technique is defined in line 3, from a predefined set of constants. The
code then defines how to position each letter in the screen 4. Absolute 3D coordinates are

3vjG1lApp is a common placeholder for all OpenGL-based applications. There are others for Performer—
based and OpenSG-based applications.
4Geometry for letters is loaded from the mentioned files.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Listing 8 An application subclass in VR Juggler
1 class UserData

{
public:
UserData(vjUser* user, std::string wandName, std::string incButton,
5 std::string decButton, std::string stopButton);
void updateNavigation();
public:
// Devices to use for the given user
vjPosInterface mWand; // the Wand
10 vjDigitalInterface mIncVelocityButton; // Button for velocity
vjDigitalInterface mDecVelocityButton;
vjDigitalInterface mStopButton; // Button to stop
I
15 class cubesApp : public vjGlApp
{
public:

virtual void initQ);
virtual void preFrame();
20 virtual void draw();
virtual void intraFrame();
virtual void postFrame();

vjGlContextData<ContextData> mDlData; // Data for display lists
25 vjGlContextData<ContextData> mD1DebugData; // Debugging display lists
std: :vector<UserDatax> mUserData; // All the users in the program

Listing 9 An Application in X3D

1 <X3D>
<Scene>
<NavigationInfo headlight="false" type="EXAMINE ANY"/>
<Group>
5 <DirectionalLight DEF="SceneLight" ambientIntensity=".7"
direction="1 -1 -1" intensity="1"/>
<Transform DEF="VRML:" translation="-5 0 0">
<TouchSensor DEF="vrmlTouch"/>
<Transform DEF="char V" translation="1.416 -.291 0">
10 <Inline url="letter_V.wrl"/>
</Transform>
<Transform DEF="char_R" translation="1.946 -.048 0">
<Inline url="letter_R.wrl"/>
</Transform>
15 <Transform translation="2.621 -.048 0">
<Inline url="letter_m.wrl"/>
</Transform>
<Transform translation="4,042 -.048 0O">
<Inline url="letter_L.wrl"/>
20 </Transform> </Transform> </Group> </Scene>
</X3D>

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

required for positioning objects, and DEF statements allow cross references in other parts
of the world, or scripts.

CONTIGRA [35] is a XML application on top of X3D that give users components for
interaction techniques and control widgets. Behavior3D {36] is a library with a set of reusable
components for behavior. Component classes and instances are written in XML documents,
which follow CONTIGRA schemas. Connections between geometry and behavior are written
as xpointers [28], the standard way to refer to parts of XML documents. Listing 10 shows
excerpts of an application in CONTIGRA [36].

Two X3D touch sensors trigger the animation of a laptop ®. A state machine node in
Behavior3D defines the order for the animations (lines 4-8), by defining which sensor triggers
which animation. Lines 10-14 define the animations that open and close the laptop. Finally,
lines 16-27 define animations to open and close the keyboard (removable in this example).
The core concepts in Behavior3D are animations, sequences of actions, and state machines.
On top of them, other behaviors can be defined. Behavior3D targets 3D applications running
over the web, in standard PCs, due the intrinsic characteristics of X3D and its interaction
model.

Massink, Duke, and Smith [61] make a proposal for structuring and formalizing the
interaction techniques behavior. Their formal proposal is based on the concept of hybrid
models, a model that contains continuous and discrete components at the same time. The
notation they chose for the representation of interaction techniques is HyNet, a hybrid
extension of Petri Nets. Developers can completely specify interaction techniques in HyNet,
analyze them, and compare them in a platform-independent manner. While this formalism
has some interesting characteristics for the specification of interaction techniques, Petri Nets
are too detailed for designers needs.

Jacob, Deligiannidis, and Morrison [53] present the PMIW management system that
describes an application with a combination of two notations: a dataflow that describes the
continuous flow of information from devices, and a state machine that describes different
modes in the execution. Transitions in the state machine are triggered by events from the
interface. Execution of each node in the dataflow depends on states in the state machine, so
it is possible to shut down parts of the dataflow by changing states. This notation provides
enough detail for representing an interaction technique, but it might be too detailed for
designers who want to use it without knowing its internal mechanism. Further research is
also required to test this notation in complex VR applications.

The Virtual-Reality Peripheral Network (VRPN) [75] is a C++ framework that handles
devices by the definition of virtual devices — abstractions for the main types of information
that devices can provide —, connected to real devices by a name and an index (the device’s
sensor number). Developers can add new devices as composition of previous ones, create
new classes of devices, and receive events in specially defined callbacks. An example of how
such devices are used is shown in listing 11 [75, p. 59]. An application in VRPN is a set of
callbacks that handle events from one or more virtual devices. These callbacks are registered
in the system (line 10) and the system will redirect the events to such a function. Events
can be time-stamped, so it is possible in theory to correlate input from several devices.

Other ideas have influenced our results in our proposal. Systems like JADE [67] and
Bamboo [103] are systems that can be reconfigurable at runtime by adding or removing
modules. Our system also defines modules for the most important elements in a VR appli-
cation, but with a more complex interface, related to the application execution, not only
to the dynamic loading behavior. Other component technologies in programming languages
such as Java have been used for 3D applications [41], but they are specific to these environ-
ments, and limited by the inherent performance characteristics of the generic component
approach. The requirement of event models more complex than the one in Windows—Icons—
Menus—Pointer (WIMP) applications have been described before, and some solutions have
been described, such as the one in [54] that manages detection of composed events at the

5Connections to the laptop geometry are not shown here.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Listing 10 A CONTIGRA Application
1 <TouchSensor DEF="LCD_Sensor"/>
<TouchSensor DEF="Keyboard_Sensor"/>

<StateMachine stateCount="3" transitions="
5 1 2 LCD_Sensor.touchTime OpenLaptop.startTime,
1 LCD_Sensor.touchTime CloselLaptop.startTime,
3 Keyboard_Sensor.touchTime OpenKeyboard.startTime,
2 Keyboard_Sensor.touchTime CloseKeyboard.startTime"/>

W NN

10 <AnimateRotation key="0 1" to="1 000, 1 00 -1.7"
cycleInterval="2" DEF="Openlaptop "/>

<AnimateRotation key="0 1" to="t1 0 0 -1.7, 1 0 O O"
cycleInterval="2" DEF="CloselLaptop"/>

15 <Sequential DEF="OpenKeyboard">
<AnimateTranslation key="0 1" to="0 0 0, 0 0.05 O"
cycleInterval="1" />
<AnimateRotation key="0 1" to="1 000, 1 0 0 -1.5"
cycleInterval="1" />
20 </Sequential>
<Sequential DEF="CloseKeyboard">
<AnimateRotation key="0 1" to="1 00 -1.5, 1 0 0 O"
cycleInterval="1" />
<AnimateTranslation key="0 1" to="0 0.05 0, 0 O O"
25 cyclelnterval="1" />
</Sequential>

Listing 11 A VRPN Application
1 #include vrpn _Tracker.h

void handle_pos(void *, const vrpn_TRACKERCB t) {
printf(‘ ‘Pos, sensor %d = %5.3f, %5.3f, %5.3f\n’’,

5 t.sensor, t.pos[0], t.pos[1], t.pos[2]);
1
main() {
vrpn_Tracker_Remote *tkr = new vrpn_Tracker_Remote(‘‘Tracker0O@myhost’’);
10 tkr->register_change_handler (NULL, handle_pos);

vhile (1) { tkr->mainloop(); ¥

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

operating system level, while the application concentrates on behavior. We consider such
a solution partial, since it does not consider relationships and event—based communica-
tion between behavioral components. Some preliminary ideas of classes, encapsulation, and
component linking applied to 3D applications appeared in [90]. The concept of dataflow
have appeared in visual programming environments for VR such as [89], or in programming
environments such as VRML, but with limited semantics for modules in the dataflow.

It is useful to compare how much information is required in order to produce a program
in each VR toolkit above. Table 2.1 shows this comparison, for the VR toolkits with listings
in the previous overview. We have added a line for InTml, the system that will be described
in this thesis. In summary, one can conclude that most environments with wide coverage
of hardware platforms require developers to take decisions on many detailed aspects, and
to know a rather complex programming language. Environments with limited hardware
coverage tend to ease the developer’s work, by hiding many issues. InTml provides a high
level solution that both eases the work of developers and allows them to use any hardware

platform.
| Toolkit | LE] HC| IS| MP [DR|DD [ME [DE |DW [SY[ST [CC [GD | NT |
MRToolkit | i Il N BB EEEE N
CAVELib]] [-
Performer I i I m ;| m e]
Lightning I B m
WTK [| | L] |
Alice B
VR Juggler [m m . |
X3D B . N
VRPN 3] [[18§18
InTm]] | .

Table 2.1: Coverage of Interface Elements in VR Toolkits. Short names in the first row are as
follows: programming language ease of use (LE), hardware coverage (HC), initialization and
setup (IS), multiprocessing (MP), device registration (DR), detailed device configuration
(DD), main execution cycle (ME), device-related event handling (DE), drawing (DW),
synchronization management (SY), simulation task modeling (ST), connections between
components (CC), geometry details (GD), and navigation techniques (NT). A darker gray
means a better option than a lighter one, from the viewpoint of a VR developer.

2.2 Domain Specific Languages

Concepts in a Domain Specific Language (DSL) are specialized to a particular field, and help
designers to concentrate on the solution space rather than both the solution space and the
intricacies of a programming language. A solution for a problem can be written in a more
succinct and clear way in a DSL than in a general purpose language. It is important that a
DSL can be extendible, so users can add their own concepts to the domain. Modularity is
also important, so different levels of specialization can be defined in the same domain {34,
p. 138]. An example of modularity and different levels of abstraction is the SimpleUniverse
class in Java3D, that facilitates the use of Java3D concepts related to display management
in the case of a standard PC platform. If the application is targeted to the standard PC
platform, the implementation can use SimpleUniverse instead of the more complicated
structure in terms of lower level classes.

From the previous analysis of VR toolkits, we notice that traditional languages for VR,
applications are C++ and Java, enriched with special-purpose frameworks. There are few
development environments that use other languages, such as Python [97], Tcl [39], Modula-3
[59], or Scheme [5]. A developer working on one of these environments should be proficient

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in the language they use and in the library or framework that gives access to VR concepts.
Extensions to the DSL are defined in terms of classes or functions in the general-purpose
language. Usually, these languages are not modular, so a developer sees just one level of
concepts.

In contrast, VRML [21] is a DSL suitable for Web-based VR applications that does
not require extra knowledge in programming languages. Its concepts are mainly related
to the geometrical characteristics of the virtual objects to be shown, and extra behavior
can be defined in JavaScript or Java. Developers who want simple animated models in the
Internet can use it without the extensions, so programming skills are not required. Also, it is
assumed that the learning curve for VRML is easier than the ones for traditional languages
in VR. However, modeling has proved to be easier with the help of tools, such as Maya [3],
3D Max [2], or Blender [14]. Hence, it is more efficient to learn to use one of these editors
than to write raw VRML. Extensions of VRML are created with the PROTO statement, so
developers can enrich the language using the same language. VRML is not modular, but
the new version of VRML, X3D [104], defines several layers of functionality in what they
call profiles. In this way, developers interested in a subset of the functionality can avoid the
concepts in other profiles.

In this thesis, we present a new DSL for the general architecture of a VR application,
where detalls are not as important as the overall relationships between devices, behavior,
and content are. Our approach gives developers a high level language in which complete VR
applications can be described, without going into details about hardware calibration and
setup, behavior algorithms, or special content details. We allow developers to concentrate
on the definition of the main elements in a VR application and their relationships. The
details are solved in the lower layers of the infrastructure. For example, our developers can
use novel devices without worrying about the details of the connection, in a similar way to
VRML developers who can create touch—sensitive geometry without knowing the particular
algorithms for collision detection. We think our DSL allows non—-programmers to design
entire VR applications, and collaborate with programmers in such a way that a design can
implement these functionality in an optimal way.

Our DSL, the Interaction Techniques Markup Language (InTml), is defined using an
XML language with a defined schema. This allows basic type checking using standard XML
tools. InTml allows developers to define new devices, new interaction techniques, and new
content, so that the language can be enriched. Since InTml applications can be defined
in terms of elements in a library of reusable components, it is possible for a developer to
create an entire application without knowledge of traditional programming languages, or
specific details about the implementation. When new elements are desirable, a development
process defines how such elements can be implemented as a collaboration between designers
and coders . Table 2.2 shows how other development environments cover these interface
elements, and which programming language they use. In general, we think InTml provides
a higher level language with a better coverage of devices, behavior, and content references.

6The development process is defined in Section 4.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Toolkit | Lang. | Devices | Behavior [Content |

MRToolkit C
CAVELib C
VB2 Eiffel
Performer C++
Avocado C++,
Lightning C++,
WTK C++
MASSIVE-2 C++
Alice Phyton
VRJuggler C++
X3D XML
CONTIGRA XML
HyNet | Petri Nets
PMIW | Dataflows
and State
Machines
VRPN C++ |
InTml XML] . L

Table 2.2: Coverage of Interface Elements in VR Toolkits. A darker gray means a better
option than a lighter one, from the viewpoint of a VR developer.

Currently, InTml is defined as just one module. However, its XMIL-based implementation
will allow the creation of new modules in the same way that X3D does.

2.3 Software Architectures for VR Applications
Bass, Clements, and Kazman [9, p.23] define a software architecture as follows:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software components, the externally
visible properties of those components, and the relationships among them.

A software architecture helps developers, users, and other people interested in a soft-
ware product to understand its high—level design, the context of each component, and how
development work is divided among peers. It also makes clear the major system properties
[29] and helps in the reuse of components from systems with similar requirements [52].

Some general-purpose architectures, such as MVC [20, p. 125] and PAC [20, p. 145],
have been proposed for the broader field of user interfaces, in which VR is an specialization.
Although the problems they solve are also very important in VR, requirements of VR systems
such as high throughput and simultaneous use of non-conventional devices are not addressed
in these proposals.

Table 2.3 shows an overview from the software architecture viewpoint of toolkits de-
scribed in section 2.1. The table shows the main emphasis in each toolkit, which components
can be created or used, and what are the relationships between defined components.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 Toolkit | Lang. | Domain | Component Types | Relationships |
MRToolkit C Devices, Devices Control flow
3D Displays Displays Conf. files
CAVELib C Devices, Devices Control flow
3D Displays Displays Conf. files
VB2 Eiffel Int. Techniques, 3D Widgets Constraints
3D Widgets
Performer C++ 3D Graphics Content, Scene links
Callbacks Callbacks
Avocado C++, Distribution From Performer
Scheme
Lightning C++, FEvent Devices Routes
Tcl Propagation
WTK C, Geometry Content, Callbacks
C++ Devices | Simple Animations Control flow
MASSIVE-2 C, Multi—user Content Callbacks
C++
Alice Phyton Novel user Behavioral Callbacks
programming Scripts
VRJuggler C++ Devices, Devices, Control flow,
Multiplatform, Rendering Syst. Callbacks
Run—-time Control Conf. files
X3D XML 3D Graphics Content Routes
Java Behavior Scripts Callbacks
CONTIGRA XML Control Widgets Behavior Nodes Routes
Behavior Composition
From X8D
HyNet Petri Interaction States Discrete and
Nets Techniques Continuous Transitions
PMIW | Dataflows Interaction States, Conditions,
and State Techniques Variables Links
Machines Transitions
VRPN C++ Devices Devices Callbacks
InTml XML | Devices, Behavior Devices, Behavior Routes,
Content refs. Content refs. Composition

Table 2.3: Extension Mechanisms in VR Toolkits

Most of these environments concentrate on devices and content for VR applications.
They present a rather low level interface for development, based on a programming language
such as C++ or Java, or in formal languages such as Petri Nets and state machines.

An architecture for VR applications should present at the top level of abstraction all

important concepts, not only content and devices, but also object behavior and interaction
techniques. An architectural language for VR applications should represent such components
and their relationships, without going into too much detail, or into the detailed design of a
particular component.

InTml is an architectural language for VR applications. It allows the description of
content, devices, and behavior as typed components. A VR application is defined as a
set of interconnected instances of component types. InTml extends the Pipes and Filters
architecture [20, pp. 53-70] for the composition of components in an application, and a
type hierarchy for the design and reuse of types of components. Detailed design for com-
ponents is defined outside of the language, and it is possible to count with different design

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

methodologies for each type of component .

2.4 Execution Models

The execution model of a programming paradigm defines how constructs on such a paradigm
are executed by a computer, and how such an execution will affect the state of a program.
It defines the semantics of a document that represents a program.

As we have seen in section 2.1, there are several toolkits that provide support for VR
development, with different scopes and execution models. Most current VR environments
implicitly follow the execution model of traditional windows—based toolkits, as shown in
Figure 2.1. Simply, a windows application receives events from a dispatcher that selects
interesting events from a system queue. Usually, there is a fixed set of events which a
window receives, from a fixed set of input devices. Some toolkits allow the creation of
extensions for new devices or new events, but these capabilities target senior developers and

they are rarely used.
c1 Fz w

HOOOUT
{

—P Dispatcher .| C4 [CS w

Callbacks, per event type
Event Queue P P

Figure 2.1: Callback based Architecture

Application code is written in special callback functions, that are registered in the system
in some standard ways. Despite its success in standard interfaces, this architecture has the
following limitations for VR applications:

e Addition of new events from novel input devices is a difficult task, so it is usually
avoided by reusing events from standard devices that are not presently in use. This
creates problems due to usability differences between devices, and conflicts if new and
old devices want to be used.

e There are no provisions for more complex structures between callbacks. All callbacks
are just at one level from the dispatcher, without structure between them.

e Interrelationships between callbacks are difficult to model, and are usually based on
global memory, which is not a good solution from the software engineering viewpoint.

e There are limited possibilities for composition and reuse of third-party components
due to the lack of scalability in the architecture. It is difficult to compose callbacks
that were previously developed in isolation.

e Since all events are queued and serialized, there is no provision for treatment of simul-
taneous events from different devices with different generation rates.

7For example, content can be created with a special-purpose tool, while interaction techniques can be
written in a programming language.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Our proposal adapts traditional execution models for Pipes and Filters architectures,
such as Synchronous Data Flows [10], to the following characteristics of a VR application:

e Not all information from input devices should be processed. Depending on the speed
of computations and the refresh rate of output devices, some information from input
devices could be irrelevant or out of date. We allow filters to define an interval of time
where all received information is considered simultaneous, so redundant information
inside the interval can be eliminated. This information does not affect successive
intervals, so discarded information do not affect future executions.

¢ Complex VR applications require dependencies among different tasks and interaction
techniques. The callback model is difficult to scale to more complex structures, where
dependencies among callbacks are required. A model based on Pipes and Filters can
define better relationships between different behavior components in the system, and
it exposes the coupling clearly.

o New input and output devices are common in new applications. It should be simple
to add new devices to an application. Moreover, simultaneous events from different
devices should be easy to detect. Filters with several input and output ports are our
solution to this problem. They can model any type of device in an uniform way, and
it is easy to create new types of filters for new types of devices. On the other hand,
a filter interested in simultaneous events from different devices just needs to include
them as input, and read all events received in a time interval, from all its inputs.

Some intrinsic characteristics of VR applications are still not directly addressed by the
proposal presented here, such as the desirable fixed refresh rate for output devices. However,
it is straightforward to integrate previous solutions to this problem to our proposal, such as
the one presented by Shaw and Green [81], which decouples device reading from simulation
execution.

A pipes and filters architecture also allows us to consider dynamic and static schedul-
ing algorithms, in the case of a machine with several CPUs. This approach can not be
implemented in current dataflow—based solutions such as VRML and X3D, due to intrinsic
limitations on the order of execution of components in a program. Kwok and Ahmad [56]
discuss several algorithms for static scheduling, and solutions for arbitrary graph structures
with arbitrary computational costs per node such as CP/MISF and DF/IHS are promising
for high performance solutions in VR.

2.5 Retargeting

Retargeting is the name used in the field of compiler design for techniques that generate code
for different hardware architectures, without loosing performance or special features of each
platform 8. The concept of retargeting is similar to the concept of porting, most commonly
used in the software engineering community. However, traditional ways to port systems do
not accommodate to the particular features of an installation. For example, object oriented
frameworks allow developers to port applications over a variety of platforms, where the
framework has been implemented. However, a framework usually encapsulates the common
features of all its implementations, so developers can not use special features of particular
platforms. The performance of a program that uses the framework is usually lower than an
application specially tailored for such environments.
There have been several approaches to compiler retargeting [24):

e A common language can be created and interpreted at runtime for all implementations.
The runtime environment is capable of translating this common language code to
machine code in an efficient manner.

81t has also been used in computer graphics animation for the task of adapting a motion scheme of a
character to different models. We will use a definition of retargeting closer to the one in compilers.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e A compiler can generate source code suitable for several targets. Such code is then
compiled by a compiler in the target machine. It requires the compiler to know details
about target platforms, so the generation process is specially tailored.

e As a variant of the last method, a compiler can both generate code for a particular
target platform and also derive the specific features of this target.

Since VR applications are still very diverse, and interaction techniques are not stan-
dardized for 3D applications, we decided to take a basic approach to retargeting, which can
be automated later on. Since the variations from one platform to another are unknown,
the retargeting process takes place at design time, re-shaping an InTml-based application
from one platform, to the particular features of the new environment. Several compilers are
implemented, one per VR platform, in order to specially tailor executable programs from
InTm! descriptions. We define a formal model in the Z language [87] with the overall se-
mantics of an InTml program. In this way, it is possible to have a semantic reference apart
from any implementation. We selected the Z language since it has a mature user community
and it has been used in the past for the communication and understanding of static and
dynamic properties of systems Our description is based on previous work by Philipps and
Rumpe [68], and Lee and Parks [57]. Philipps and Rumpe define a method of specification
refinement of Pipe-and-Filter architectures, from which most of our concepts are taken.
There are some differences between these works: our purpose is not refinement but com-
munication of concepts, we define an execution model more suitable to the concepts of VR
we define, and concepts like objects, and object holders are novel. Lee and Parks define in
great detail the concept of dataflow networks, and its semantics. Although our description
is more similar to the one from Philipps and Rumpe, we borrowed the important concept
of delays from Lee and Parks.

There have been some attempts to define a concept like retargeting in the computer
graphics area. Scalable graphics is a field that studies methods for parallel rendering of
scenes °. Some results have been achieved in this area [49, 42, 66, 64] which basically pro-
pose algorithms for load balancing the rendering task over several computers. Application
retargeting in VR requires this type of rendering solution, in order to use the capabilities of
cluster and parallel machines. However, retargeting also involves changes in other important
elements of a VR application, such as devices, content, and interaction techniques. IBM
presented similar ideas in its interpretation of Scalable graphics [15], but few many details
are available in the paper. In summary, our proposal describes how to retarget devices and
interaction techniques in VR applications, as oppose to changes in graphic content only.

2.6 Users of VR Toolkits

The interface of a development environment defines a level of knowledge that users should
fulfill. With the exception of Alice [97] and VRML [21], all VR toolkits in Table 2.3 require
programming skills from VR developers.

We consider that the design of VR applications should not require strong programming
skills. The overall architecture of a VR program and decisions about interaction techniques,
devices, and content can be taken without writing code in C++ or Java. For this reason,
we differentiate between a VR designer, whose task is to design an application at the archi-
tectural level, and a VR developer, whose task is to design the details inside components in
the application. InTml allows us to make this distinction. Designers create types of devices,
content, or behavior in InTml and plug instances of such types together in applications.
Developers fill the details of such types, so each component does what it is designed for.
There is a separation of concerns between designers and developers, and a collaboration in
the development process.

9There is also the Scalable Vector Graphics language, but this refers to a different field.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Concepts

In this chapter, we describe from different viewpoints our model for Virtual Reality applica-
tions. We give first an informal description of the basic concepts, the execution model, and
some examples of modeling for devices, behaviors, and media content elements. Second, we
give a more in depth description of each concept, the way they are related to each other,
and their XML syntax. Finally, we present a more formal description in the Z language {87]
that clarifies the semantics of the model and generalizes some of the concepts presented in
the two previous presentations.

3.1 An Informal Introduction to InTml

We consider a VR application a data flow of interconnected filters, described in a language
called InTml, the Interaction Techniques Markup Language. Filters are the building blocks
that describe the standard connections for any of the following entities: input or output
devices, interaction techniques, object behavior, animations, geometric objects, and other
media objects. Details about gathering information from devices or about object behavior
code are described in a lower level of abstraction through the use of programming languages.
Also, geometry or other media types related to VR objects are produced in any of the
available tools for that purpose, such as Maya [3], 3D Max [2], or Blender [14]. InTml is
then an integration language for all elements involved in VR applications. It enables the
designer to concentrate on the architecture of the application, without dealing with too
many details. As an example, while dataflow-based languages such as VRML focuses on
description of geometry and animation, InTml focuses on the integration of application-
specific behavior, object behavior, and events from input devices. Geometry is something
that is described at a lower level, in a loadable format, and InTm] refers to it as a reference
to an object. The same can be applied to sound or haptic content.

A filter represents any device, interaction technique, behavior, or content in a VR ap-
plication. Its interface is defined in terms of input and output ports, which are the type of
events it can receive or produce, respectively. Some input ports can be considered param-
eters, or ports that will receive information only once at application startup. A filter can
have an internal state, which is important in order to model complex filters. However, we
do not include this description at the architectural level due to its low—level nature. Figure
3.1 shows a way to represent a filter, SelectByTouching, with input ports on the left of a
box and output ports on the right. In this particular example, its output port is a selected
object from the scene, and its input ports are the VR object used as hand representation,
the current position and orientation of such an object, the scene of objects to pick from,
and the events that inform about added or deleted objects from the scene. Note that the
input ports for the hand representation and the scene can be considered parameters of such
a filter, i.e. they will not change once they are assigned.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

position selectedObject

SelectByTouching
orientation
handRepr
scene
addObject

removeObject

Figure 3.1: Select by Touching. An Example of a Filter

The computation of a filter is divided in three main stages:

e Data collection. All information generated in a certain time interval is collected. This
stage is considered a preprocessing stage, in which filters select and manipulate the
information they have received, in order to prepare for the next stage.

e Processing. In this stage a filter executes, given the collected input information and
its internal state. Output information is generated, but not propagated

e Output propagation. Output information is propagated to all interested filters.

VR objects represent identifiable pieces of content in the virtual environment: elements
that can be seen, heard, or touched by the user. An object holder is a filter that associates
one object to a set of desired changes. It is drawn with an additional decoration for a special
input port, object, that receives objects to be hold (a small rectangle between the port and
the object holder) !. Once an object O is associated to an object holder, by sending such an
object through the port object, all information coming to the object holder is redirected to
O. In the same way, outputs from O are sent to the filters connected to the object holder.
An application is a set of interconnected filters, that meet certain user requirements. Figure
3.2 shows a simple application, which allows a user to move a virtual hand with a tracker
and touch virtual objects. In this example, a device (handTracker) gives position and
orientation information to a selection technique (SelectByTouching) and an object holder
(handRepresentation). The actual object representing the user’s hand (handRepr) is given
to SelectByTouching for collision detection, and to handRepresentation for changing the
object. Once a collision is detected, the collided object is passed to Feedback, which changes
the color of the object. Filters and applications are independent of any particular software
framework and hardware, so the designer does not have to be limited by platform specific
elements, and the developer is free to reorganize the implementation in order to improve
the performance of the application in a particular platform.

1¥or more details about object holders, see Section 3.4.11

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iti ; lectedObject
handTracker po'smon. SelectByTouching | _SeiectedObjec Feedback
orientation type
handRepr color
e — |
scene scene
addObject
removeObject
handRepresentation console
handRepr

Figure 3.2: Simple Application. Touching Objects With a Virtual Hand.

An input device is a filter with just output ports that sends events of a certain type
to the dataflow. An output device is a placeholder that describes where the output of the
application will be displayed — it is internally related to the VR objects, but the details are
hidden to the VR designer.

In order to reduce the complexity of an application, subsets of interconnected filters can
be encapsulated in a composed filter. A composed filter represents a complex behavior in
an application, that might be treated as a unit and reused in new applications. Composed
filters can be used to encapsulate all necessary details of an interaction technique. As an
example, Figure 3.3 shows two views of the Go-Go interaction technique {71] — an interaction
technique to lengthen the user’s virtual arm for reaching distant objects. The left image
shows enough detail to allow VR designers to use such an interaction technique, while the
image at the right shows all the filters and objects involved.

GoGol T

postand
gHand isVisible
. sticad
K object e
e a
qHead
D K pos N SelectBy Touching 1T
b 4 SetectByTouching
ad oGolT
posHe GoGol handRepr
qHead =
-_— addObjoct
posHand temoveObject object

qHand

handRepr FeedbackOnelT
FeedbuckOne umenObjert B current

scene] selBBCument

addObject setColorCurrent

removeObject wee previousObiect B 1 evious
f N setBBPrevious

colar
ee seiColorPrevious

color

Figure 3.3: The Go-Go interaction technique. General and detailed views.

3.2 Execution Model of an InTml Application

An InTml application is executed as a sequence of identical steps, each one composed of
four stages. The actual execution time of each step and the resulting application frame rate
are considered implementation dependant, since they vary according to the computational

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

power of the particular hardware platform and the particular method for translating InTml
to such a target environment. We assume that a minimum frame rate per device is known,
and that the translation process from InTml to code takes into account such rates in order
to provide a usable virtual experience. The semantic model of InTml defines which filters
are executed in each step, no matter their order, and which results are expected. It is up
to the InTml implementation to execute such filters fast enough to reach the target speed
of the VR application.

Figure 3.4 shows the stages in an InTm! execution step. The activities performed during
each stage are the following:

| | l

! ! !
! Read Behavior Update Output '
t input execution VR rendering t+1
devices objects

Figure 3.4: Execution Model of InTml Applications between two rendering steps.

e Device reading: Events from active devices are read during this period of time. All
events during such a period are considered simultaneous.

e Data flow execution: Events received in the previous stage are fed to the dataflow,
which propagates the events throughout reachable filters. All changes to objects re-
quested by filters are queued, and they will be executed in the following stage.

e Object updating: All changes requested in the previous stage are considered, and
the selected ones are executed. Each object type should implement its own conflict
resolution policy, when several conflicting changes are requested. For example, if an
object receives several position changes, it might decide to either execute any of the
changes at random, or execute the average of the requested changes. This objects’
feature is important due to the fact that the order of execution of filters behind
any object is unknown, since InT'ml implementations with more computational power
might execute filters in parallel, and each object might receive changes from more than
one filter. However, a selection policy defines if the dataflow is deterministic or not 2.

e Object rendering: Changes to objects are shown to users, in each one of the output
devices available. This stage is usually transparent to users of modern graphic APIs,
such as Performer and Java3D, and usually supported by dedicated hardware.

The non-deterministic feature of some object updating policies deserves one more com-
ment. While this is in general an undesirable characteristic, created by the availability of
more than one input event of a certain type, in practice it is not very noticeable. If we
assume that all input events have been generated from a certain device, or by several fil-
ters that indirectly received such events, and that filters compute “smooth” functions, the
spatial and temporal coherence of the input events will guarantee certain proximity of the
values computed from each input event. In practice, when input values are close enough,
users will not notice differences related to the chosen value.

2The average policy results in a deterministic execution, whereas a random selection policy will produce
a non-deterministic result.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Stages can be parallelized or pipelined, so it is possible to get the best performance
from each platform, with only one application description. An example is shown in Figure
3.5. Additional threads are dedicated to device event gathering, filter execution, or object
updating. There are some points where threads should be synchronized, but in general this
approach permits a better application throughput and more complex computations.

| | .

- | .
! J | ! 1 thre
I A A A Output ’
t rendering!+1

L | - thre
Read
input
devices‘ '
Ir J| l 1 thre
F . | 4 thre
Behavior
execution
: | | | thre
!] | ! thre
T T T i
Update
VR
objects

Figure 3.5: Extended InTml Execution Model.

Information in the dataflow and the state of VR objects are considered immutable in a
particular time frame. For this reason all filters will see the same state of an object inside a
computation frame. An InTml application describes the first two stages — devices to read
and data flow —, and the other two are hidden at this level from the designer. We assume
an implicit connection between media objects and output devices, in order to allow devices
to render the entire state of the world.

From the point of view of designers of VR applications, an InTml application is a set of
modules that has to be implemented on top of a foundation framework, and certain rules
of execution have to be taken into account. The designer’s work is divided between the
definition of new filters, reuse of previously defined ones, and definition of applications.
Designers collaborate with developers of VR applications, whose main job in an InTml-
based environment is to develop the inner code in the filters 3 .

3.2.1 Implementation issues of the Execution Model

As we have mentioned, the actual execution time of a particular InTml application depends
on the implementation in which the code is running on, since all concepts related to time are
abstracted from the general description we have presented. In particular, we assume that
all information generated at a particular time simultaneously arrives to interested filters.

3This separation of roles will be described in more detail in Section 4.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The purpose of this abstraction is to hide complexity to designers, whose work is to describe
a solution no matter the hardware characteristics of the platform they have available. An
implementation of InTml has to address the following issues related with time:

e Network delay. This delay is due to the physical characteristics of the network tech-
nology used between the computers of a specific platform. Once it is measured, it can
be considered constant, no matter the network load.

o Processing delay. This delay is due to the inherent time required to compute results
inside a filter. It depends on the amount of input at a particular time, and the
algorithms used in the implementation of a filter. It is possible to create models for
particular filters in order to predict this delay and take decisions regarding frame
execution.

e Latency. This time is caused by the load in the network. It is difficult to predict, but
it is possible to define a maximum waiting time, used to discard messages that arrive
late.

A simple implementation of InTml, in which there is only one computer receiving data
and processing it, does not require to handle the previous concepts. In a more complex
setup, it is possible to create a model based on the previous time definitions in order to
handle such delays. A simple way to deal with such issues, based on the framework for
multi-modal VR applications presented in [95], requires that every filter waits for a period
of time before collecting information from input ports. Such a period of time assures that all
simultaneous events are received before its processing, so a filter can execute in the normal
way without extra considerations.

3.3 InTml Examples

InTml is useful to represent devices, interaction techniques, content behavior, and appli-
cations that combine all these elements. Let us illustrate these concepts with some simple
examples. A real design of such elements might be different in order to support a more
modular and reusable structure, but the presentation here aims at illustrating instead of
optimizing for reuse.

One can start with a common input device, a three-button mouse. A graphical rep-
resentation of a mouse with three buttons in InTml is shown in Figure 3.6. We show the
information one can get as separate output ports: x position, y position, both coordinates
together as a mouse move, and events for the actions of pressing and releasing each button?.
Other representations and events are possible. For example, buttons can be represented as
separate devices inside a mouse, and events for clicking or double clicking a button can be
generated, separate from the press and release events. Any element can have redundant
output ports. In this way, other elements can choose what is the right type of information
they are interested in.

4Types for each event are not shown in this diagram, but each port only allows events of a certain type.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GenericMouse |xPos

yPos

mouseMove
rButtonDn
mButtonDn
1ButtonDn
rButtonUp
mButtonUp
1ButtonUp

Figure 3.6: A Simple Representation of a Mouse in InTml.

A more advanced device is the 6DOF wand tracker from InterSense. It not only provides
position and orientation in 3D space, but it also has a small joystick and four buttons. Such
a wand can be represented in InTml as it is shown in Figure 3.7. In this case, buttons only
generate one type of event, when they are clicked. It is also possible to have events when a
button is pressed or released, as in the mouse example.

InterSenseWandTracker |pos
q
xPos

yPos

pos

Figure 3.7: An InTm! Representation of the InterSense Wand.

An example of a 3D selection widget is the ring menu [58]. A ring menu shows a set of
objects in a ring that can be rotated along its 3D axis. Extra geometry in the middle of the
ring makes the selected object more visible, which is between the user’s viewpoint and the
ring’s axis. An InTml representation of a ring menu is shown in Figure 3.8.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

frameObj RingMenuI'T |object
pHead
posHand
qHand
setObjs

Figure 3.8: An InTml Representation of the Ring Menu.

The geometry for the frame can be given through the frameObj port. The position of
the user’s head is also required, with the position and orientation of a hand tracker. Its
output is the selected object, if it has changed since the last selection.

Barrilleaux [8] describes several interaction techniques for 3D manipulation in standard
desktops. For example, object movements can be performed in relation to the displacement
of the mouse in the display plane, or the projetion of such a movement over the virtual
“floor”. The latest option is called world-related—movement, and it can be represented in
InTml as it is shown in Figure 3.9. The manipulation technique receives a position p in
display coordinates, the plane that represents the floor in the current scene, the object to
be moved and the current user’s viewpoint. The result is a new 3D position for the object.

P WRMMoveOffset pos

plane

object

viewpoint

Figure 3.9: An InTm! Representation of World-Related Movement.

The basic behavior for objects in the world can also be represented in InTml. Figure
3.10 shows VRObject, which encapsulates basic behavior of an interactive object. Position,
orientation, and scale can be changed, in a separate way or at once by a transformation
matrix. Parts can be added and removed, a bounding box can be drawn around the object,
and its main color can be changed. An object can also inform any interested filter of any of
the previous modifications.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

setPos VRObject |posChanged

setQ qChanged

setScale scaleChanged
setMatrix objectAdded
addObject objectRemoved
removeObject transparencyChanged
setTransparency highlight Changed
highlightState visibilityChanged

set Visible

Figure 3.10: An InTm! Representation of an Interactive Object.

Examples of applications will be given in Section 5.

3.4 InTml Ontology and XML representation

We describe in this section the concepts in InTml and their relationships, together to the
XML syntax we have created for them. Figure 3.11 shows two views of the concepts (in
rectangles) and relationships (as arrows) in InTml. A dashed box represents an abstract
concept with no instances, but useful to describe relationships of several other concepts
related to it by an isA relationship. The following paragraphs describe these concepts and
relationships in more detail ®. This description is related to the current XML implementa-
tion, according to the DTD definition presented in Appendix C. The description in Section
3.5 separates from current implementations and describes a more general approach, with
more solid semantics. XML fragments in this section use the following conventions: String
values are written as value, optional attributes or entities are enclosed in “[|”, optional
values are written as optl/opt2/opt3, where optl is the value by default.

5Zection 6 describes the coverage of this concepts in the platforms where InTml has been implemented.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o IeWin

Constant 1A
LasMany
DasMany

[CompcsedFi Iter

Scene
Graph
Node

J

oxigiy
destination
Physical {Filer |
Devico L

pults

Device

Figure 3.11: Entities and relationships in InTml.

\ Filter

3.4.1 Port

A port is a filter’s connection point. It is called an input port (iport) if receives information,
and an output port (oport) if propagates information generated from the filter.

The main purpose of a port is to transport information from one filter {origin) to another
(destination), which are connected by an oport and an iport, respectively. The type of
information flowing through a port should be compatible with the port type.

We have not designed any XML representation for this abstract entity.

3.4.2 TIPort

An input port is an entry point for information of a certain type. Its declaration inside a
filter class has the following syntax:

<IPort id="aName" type="aType" [defValue="stringRep"] [policy="aPolicyName"]
[isArray="false/true"] [typeArray="static/dynamic"]
[maxArray="aNumber"] >
<ShortDesc></ShortDesc>
[<Description></Description>]
</IPort>

An input port is identified by a name. The information received by the port should have
a compatible type with the input port’s type. An input port might have a default value,
which corresponds to the first value received. The attribute policy refers to the name of
the policy management for multiple events of the same type at the same time. It is optional,
with implementation—dependant values. It is also assumed that any implementation has one
policy by default 6. As a way to reduce the syntax of some filter classes, and also as a way
to create multiplexors and mergers, we use the following attributes to describe an array of
ports with the same basic syntax. The attribute isArray is true when the node is an array
of input ports, in which case the next two attributes can be defined: typeArray that says if
there is a fixed (static) or variable number of ports in the array, and maxArray that defines
the maximum number of ports if the array is static. For example, an IPort declaration such
as

SFor example, in the Java3D implementation described in Section 6 we use two names: ALL and ANY
to describe a policy that takes into account all events, or one at random, respectively.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<IPort id="ipl" type="int" isArray="true" typeArray="dynamic"/>
will allow references to ports ip1{2] or ip1{15], whereas
<IPort id="ipl" type="int" isArray="true" typeArray="static" maxArray="10"/>

will allow just the first one.

Any input port might have a short and a long description. It can also be associated to
an object holder, in which case it is not explicitly declared (i.e. there is no declaration of a
type for an object holder), but it is deduced from the type of the first object connected to
the object holder 7.

References to ports are used inside connections. This syntax will be described later in
this chapter.

3.4.3 OPort

An output port is a channel of information from a filter. A filter can have several output
ports, some of them redundant , with an entire set of information it can produce. Its XML
structure is similar to the one of an input port:

<0Port id="aName" type="aType"
[isArray="false/true"] [typeArray="static/dynamic"]
[maxArray="aNumber"] >
<ShortDesc></ShortDesc> [<Description></Description>]
</0Port>

The attributes id, type, isArray, typeArray, and maxArray have the same meaning
as the ones in an IPort. OQutput ports do not have a defValue, since the only information
that goes out of a filter is the one computed from the information in its input ports, at any
period of time. Neither does it have a policy, since all information generated is sent to
interested filters, and it is up to their input ports to decide a policy for several simultaneous
events. In the same way as an IPort, it may have some textual description associated and
it may be associated to an ObjectHolder.

3.4.4 Filter

A Filter is the minimum unit of computation in InTml. It defines a set of input ports that
receive events from other filters, and a set of output ports that sends computed values from
the received events at any time. It also can have an internal state, hidden from the external
definition in terms of ports ?. A filter can be part of composed filters, applications, or object
holders. It is involved in connections by binding an output port of a filter with an input
port of another. There are three concrete flavors of filters: devices, objects {or media),
and behavior (or interaction techniques). It performs the following three tasks at every
execution step: collection of events from its input ports, processing of this information, and
generation of events to be send through output ports. It does not directly have instances,
but the ones from its subclasses (Device, Object, Behavior).

3.4.5 Device

A device ' is the simplest filter class. It represents a physical unit that produces certain
type of information. It usually gets its information by pulling it from a physical device,

TMore details in Section 3.4.11.
81n some cases it is useful to count with several ports with several representations of the same information,
i.e. a matrix and a quaternion representation of a rotation.
9Such an internal state is usually documented for completeness reasons
10Sometimes is called logical device, in contrast to a physical device, defined below.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

but the relationship is not necessarily one to one, i.e. a logical device can pull information
from several physical devices, or a physical device can be associated to several logical ones.
Devices are instances of device classes, declared as follows:

<DeviceClass id="aName" >
<ShortDesc></ShortDesc>
[<Description></Description>]
{<Implements classId="aClassName"/>]
[<IPort>...</IPort>]
[<OPort>...</0Port>]

</DeviceClass>

A device class has a name as identifier, and it contains the input and output ports
of every instance of such a class. The special tag Implements allows an inheritance-like
relationship between device classes: The class contains all input and output ports of the
implemented one. An instance of a device class can be created inside an application as
follows

<IDevice id="aName" type="aType"/>
or
<0Device id="aName" type="aType"/>

The IDevice emphasizes the fact that the device will produce input information for
other filters in the application. The purpose of ODevice is to mention output devices in
the environment. If a device both produces and consumes information at the same time, it
should be considered as an IDevice.

3.4.6 Physical Device

A physical device is a physical entity that produces information to be read by the computer.
It is represented in an InTml application as one or many instances of class Device. Special
tuning of physical devices (callibration procedures, startup, alignment, particular method
for accessing information from it) are considered out of the scope of InTml. In this way,
InTml users concentrate on what type of information they can use from devices, instead of
both information and setup. There is no visibility of physical devices in InTml, appart from
a tacit correspondence with logical devices.

3.4.7 Object

An object is a filter that affects the media involved in the VR application, i.e. a piece of
geometry, a sound effect, a haptic effect, etc. In the case of geometry, media is usually
represented with a scene graph. InTml objects are built on top of scene graph nodes, and
are used inside an InTml application to make changes in particular nodes in the scene.
During an execution step, an object queues all changes that filters request. At the end
of the execution step, once all filters involved in its input have been executed, an object
executes the requested changes according to the policies of its input ports. If the object
report changes through its output ports, they will be noticed in the next execution step.
In this way it is assured that all filters can read the same state of an object during one
execution step, no matter the order of execution. An object type is defined as follows:

<ObjectClass id="aName" >
<ShortDesc></ShortDesc>
[<Description></Description>]

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[<Implements classId="aClassName"/>]
[<IPort>...</IPort>]
[<OPort>...</0Port>]

</0bjectClass>

This structure is identical to the one for device classes. An instance of an object can be
created inside an application or a composed filter as follows:

<0bject id="aName" type="aType" [fileName="aFile"]
[primitive="Box/Cone/Cylinder/E1lipse"] />

Every object has an unique identifier (aName), declares the name of its object class
(aType), can load a piece of geometry or other loadable type of content from a file (aFile),
or it can correspond to one of 4 simple shapes (Box/Cone/Cylinder/Ellipse).

Objects can also be sent to other filters as information, and in particular to object
holders. The following syntax is used for this task:

<Binding iE="_self" iP="objectName"
oE="aFilter" oP="anlPort" />

The special identifier _self refers to the current composed filter or application that con-
tains the object called objectName. The filter aFilter will receive objectName through the
port anlPort. Objects can be plugged to object holders through a special port called object.

3.4.8 Scene Graph Node

A Scene graph is the main data structure for geometry processing in modern graphic APIs,
such as Performer [79] or Java3D [63]. An object in InTml can refer to an element in
such a hierarchy, in such a way that it hides the complexity of geometry rendering inherent
to the scene graph structure but at the same time allows interaction with such elements.
Figure 3.12 shows the relationship between nodes in the scene graph and InTml objects.
There could be an implicit dependance between InTml objects, since they can refer to scene
graphs nodes that depend on each other, i.e. objects A and B in the figure. There are ways
to make this relationship explicit, for example, by allowing InTml objects to replicate such
a hierarchy. However, in the general case, we consider this relationship out of the scope of
the InTml description.

Scene Graph InTml

PN
N

]

7

Figure 3.12: Relationship between scene graph nodes and InTml objects.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4.9 Behavior

Behavior is represented by filters in InTml. A filter can represent a piece of computation
in an InTml application. It represents interaction techniques, special object behavior, ani-
mations, or application specific behavior as filters in the dataflow. In its simplest form, the
type of a filter in InTml is declared as follows:

<FilterClass id="aName" >
<ShortDesc></ShortDesc>
[<Description></Description>]
[<Implements classId="aClassName"/>]
[<IPort>...</IPort>]
[<OPort>...</0Port>]

</FilterClass>

This has the same structure of a DeviceClass or an ObjectClass. Filter instances can be
created in applications or composed filters with the following statement:

<Filter id="aName" type="aType"/>

As in devices and objects, a filter is identified by a name and a type.

3.4.10 Connection

A connection defines a relationship between devices, behavior, and media content. It is the
only way to pass information from one software component to another, and the only visible
relationship possible at runtime !!. The XML syntax of a connection is as follows:

<Binding iE="aFilter" iP="anOPort" [iI="anlndex"]
oE="aFilter" oP="anlPort" [oI="anIndex"] />

A connection is uniquely identified by an origin element (iE), an output port in such an
element (iP), an optional index in the output port declaration (iI), a destination element
(oE), an input port in such an element (oP), and an optional index for the input port (oI).
Connections appear inside applications and filter classes in order to describe the dataflow
between elements.

3.4.11 ObjectHolder

An object holder is a way to define placeholders with a certain structure of connections in
a dataflow, places where media content elements can be plugged, executed, and changed.
Section 3.5 will describe a more general concept, a filter holder, allowed to hold any type
of element. Current implementations of InTml are limited to hold just objects, but this
constraint can be avoided in the future, by following the semantics of filter holders 2.

The XML syntax for an object holder is as follows:

<ObjectHolder id="aName" />

We can notice that an object holder does not have a type in its declaration. Our current
implementation of object holders finds out its ports by “copying” the ports of the first object
it gets to hold. Additionally, an object holder will always have two additional ports: an
iport called object that allows receiving new objects, and an oport called objectChanged that
will inform interested filters about changes in the contained object. If such an object is
replaced, subsequent objects will be connected to the ports already defined at the object
holder, provided that ports are compatible 3. An example of this mechanism is shown in

HPDevices are related to physical devices and objects to scene graph nodes, but such relationships are
considered out of the scope of InTml.

12Pilter holders are defined later in this chapter.

13Currently, compatibility between ports is defined by their names.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.13. When the application starts and an object holder has not received any events,
there are only two ports declared: one for receiving object events, one to inform changes in
the contained object. Once an object A is connected, the object holder copies its definition
and adds to itself the corresponding ports. Later on, when A is replaced by an object B
of a different class, just the compatible ports are connected, i.e. ports r and s will not be
connected. If A is embedded again in the object holder, it will be conneted as it is was
before.

r objectChanged object) objectChanged
ObjectHolder ObjectHolder e

m P m P

objectChanged

object

ObjectHolder

Figure 3.13: Different states of an Object Holder during execution.

3.4.12 Events in the Dataflow and Types

Every piece of information flowing through the dataflow is an event, or Info in Figure 3.11.
Pieces of information have a type associated to it and its value could be atomic or composed.
A value is considered atomic if it is implementation—-dependant and do not have a complex
representation in InTml. Note that a complex structure such a quaternion {73] can be
treated as atomic if there is no definition of its structure in InTml. A value is composed
if they correspond to objects defined in InTml. Types can have an implicit compatibility
relationship, i.e. inheritance in object—oriented languages. However, this relationship is not
declared in the current implementation at the level of InTml, but at the implementation
level. Type declarations are either implicit, when they appear as types of ports or constants,
or explicit, when they are described as an ObjectClass.

All events are time-stamped, and all events received at the same frame from devices
and propagated through the dataflow are considered simultaneous. Events are immutable,
so their values can not be changed by filters. An event can be propagated to several filters
(fan-out), so several filters can refer to the same Info.

3.4.13 Constant

A constant is a value of a certain type. Constants are used to give a default initial value to
a filter, through a particular input port. A constant is declared as follows

<Constant id="aName" type="aType" value="aValue"/>

A constant has an identifier and a type. Its value is a string—based representation of its
value inside the InTml execution. Constants can be pushed through input ports, so its value
will be the first value received by a port. Constants can be declared inside applications and
composed filters, and sent to filters through a particular input port. The following is an
example, in which a filter f receives a constant cl through its input port ip. We use the
special identifier _self in order to refer the constant ¢l defined in the current context.

<Binding iE="_self" iP="cl" oE="f" oP="ip" />

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4.14 ComposedFilter

A composed filter is an InTml construct that allows designers to hide complexity by encap-
sulating a piece of an InTml program as a simple filter in the environment. A composed
filter describes a subset of filters, objects, object holders, constants, and connections that
execute certain tasks. We use the same XML element to declare simple and composed filters,
but a composed filter can include other elements, such as:

<FilterClass id="aName" >
<ShortDesc></ShortDesc>
[<Description></Description>]
[<Implements classId="aClassName"/>]
[<IPort>...</IPort>]
[<QPort>...</0Port>]

[<Filter>...</>]
[<Object>...</>]
[<ObjectHolder>. ..</>]
[<Constant>...</>]
[<Binding>...</>]

</FilterClass>

A composed fiter describes a dataflow with a certain interface given by its own input and
output ports. IPort and OPort elements should be connected to ports of internal entities
through Binding statements. For example:

<FilterClass id="ComposedFilterl" >
<ShortDesc>An example of composed filter</ShortDesc>
<IPort id="ipl" type="Typel"/>
<0Port id="opl" type="Typel"/>

<Filter id="fl" type="Filterl"/>

<Object id="objl" type="Objectl" fileName="fl"/>
<Binding iE="_self" iP="ipl" oE="fl" oP="ip"/>
<Binding iE="objl" iP="op" oE="_self" oP="opl"/>

</FilterClass>

Assuming that filter f1 has an input port ip, and that object objl has an output port op,
the previous example connects the input and output of the composed filter to its internal
structure. Note the use of _self to refer to the composed filter, when necessary.

An instance of a composed filter can be created inside an application or inside other
composed filters with the same syntax used for normal behavior.

3.4.15 Application

An application element in InT'ml describes a dataflow of filters that accomplish certain tasks.
The XML syntax for an application is the following:

<App id="aName" >
<ShortDesc></ShortDesc>

[<Description></Description>]

[<IDevice>...</>]
[<0Device>...</>]

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[<Filter>...</>]

[<Object>...</>]

[<ObjectHolder>...</>]

[<Constant>...</>]

[<Binding>...</>]
</App>

An application is identified by a name. It contains all the required elements for a
dataflow in InTm!: input devices, output devices, filters, objects, object holders, constants,
and connections.

Two important development tasks are involved with applications: initial definition, and
retargeting to other hardware platforms. The initial definition creates the required filter
classes and connections to satisfy certain set of user requirements in a particular platform.
A retargeting process consists of deriving new applications from a previously defined one,
by replacing elements for the more suitable ones in a new hardware platform. Such a change

starts in devices, and changes can be propagated to filters, constants, objects, object holders,
and connections.

3.4.16 Other Language Features

The XML representation of InTml has some extra constructs, which are useful at design
time or for documentation purposes. These concepts are the following: Package, Import,
Overrides, Platform, Index, and PaperRef.

Package allows the creation of name spaces in InTml. The name of a filter class can
be used without qualifiers by classes or applications of the same package. Otherwise it
should be fully qualified, or its package should be imported. The sentence Import allows
any package to refer to filter classes in a non fully—qualified form. The syntax for these two
elements is as follows:

<Package id="aName">
[<Import id="aPackageName">]

[<DeviceClass>...</DeviceClass>]

[<FilterClass>...</FilterClass>]

[<ObjectClass>...</0ObjectClass>]
</Package>

A package gives a prefix to all classes declared inside of it. Classes can be used without a
qualifier inside classes of the same package. Outside the package, classes can be named either
by its fully qualified name, or by importing its package. When an package is imported, all its
classes can be used with their simple names. Conflict names in the current implementation
are resolved by taking the first match to a filter class in the list of imported packages.

An application is not defined inside a package declaration, but instead it can be created
with its fully qualified name. For example:

<App id="a.b.c" >
</App>

defines application ¢, in the package a.b.

Overrides is a special relationship between applications. If application B overrides 4,
the resulting application is the set operation (A \ B)U B. In other words, B has all objects,

behaviors, devices, and connections in A that are not defined in B, plus all elements of B. In
this way, B replaces elements in A with new definitions. This mechanism has been used in

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

order to create default values for an application: A corresponds to the basic implementation
of an application, common to other ones, while B redefines only some elements and adds
many more.

Platform is a special construct that groups together sets of devices. It is planned to be
used for automatic retargeting of applications, but their semantics is not fully defined.

Index in an extra tag that applications and class declarations have for documentation
purposes. Index classifies an application or a class under an index name. Several indexes are
allowed, so an element can be classified under several criteria. For example, the following
declaration:

<FilterClass id="SelectByTouching">
<Indexes>
<Index id="first" value="intml.selection.details"/>
<Index id="papers" value="_hidden"/>
</Indexes>

</FilterClass>

classifies the class SelectByTouching under two criteria: first, with value intml.
selection.details, and papers with the special value _hidden, which is used to offi-
cially hide an element from a particular classification. Documentation tools described in
Section 6 will use this information to create browsers of elements.

3.5 A Formal Description of InTml in the Z Language

A Virtual Reality application is described here as a flow of messages in which input messages
or events are read from devices and propagated to all the functionality of an application,
represented in terms of filters. This dataflow might be executed in parallel or pipelined,
complex functions can be encapsulated in order to reduce complexity, information from
several simultaneous devices can be received, and all simultaneous filters are guaranteed
to see the same world state. A formal description of this architecture based on the Z lan-
guage [87] is given here, and it is shown how these special characteristics are accomplished,
independently from a particular implementation 4. Such a formal description serves as a
blueprint for new implementations of this architecture, a reference that explains the seman-
tics of InTml, independently from any particular implementation. Finally, we analyze the
differences between our presentation and theirs, and some of the lessons learned from this
specification exercise.

3.5.1 Basic Concepts

A filter is a processing element in the dataflow. Names for filters are unique in the system,
and belong to the set L. Filters are connected by channels, whose names are also unique
and belong to the set C. A channel uniquely describes a particular output of a filter 3.
Messages are indivisible chunks of information that go through channels and belong to the
set M. :

A stream is a function that relates a channel name with a particular sequence of messages.
Messages in a stream are ordered in bags, and each bag represents a set of messages received
in a particular interval. In this way, more than one message can be received in a particular
interval, messages of different intervals can be identified, and the order of messages in the
same interval is not relevant, a very useful property for non-synchronous, parallel execution

14 A brief introduction to the Z language and the concepts used in this specification can be found in
Appendix F.

15Channels are a concept defined by [68] which facilitates connections between filters. It replaces at the
specification level the concept of ports, which are the entry and exit points of channels.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of components. We use the property described by Philipps and Rumpe [68] that it is
impossible to distinguish between a function that computes its output given the history of
its input so far, and one that selects the current output from a sequence of precomputed
results. This gives uniformity between our presentation and theirs in order to reuse some of
their specification styles.

Stream
c: C
m : seq{bag M)

We use the operator | !¢ to refer to the messages in a stream up to a certain moment,
and it is defined in several contexts. In its simple form, st | 4 is the operation of extracting
a sequence from a stream st with only the first ¢ elements.

= [X]
l:seqX xN—seq X
Vst:seqX;7:Ne
stli=(1..9i) st

‘We also use this operator at the level of streams

— 1 _: Stream x N — Stream

Y st, stO : Stream; i : N o
(st | i=stO & stO.c = st.c A stO.m = st.m | i)

And at the level of sets of streams

_ | —: P Stream x N— P Stream

V stSet : P Stream; i : N o
stSet | 1 = {stl : stSet o stI | i}

The function stream describes the association between a channel name and its corre-
sponding stream. The function streams applies to a set of channel names and gives us a set
of streams.

stream : C — Stream
streams : P C — P Stream

Vc: Ce(3st: Stream o stream(c) = st A st.c = ¢)

Y cSet : P C o streams(cSet) = {c: cSet o stream(c)}

We use the function restr later, in the definition of a filter function. It is the selection
of a subset of streams with specific names.

restr : (P Stream x P C') - P Stream

V 1Set : P Stream; cSet : P C o
restr(iSet, cSet) = {s : Stream | s € iSet A s.c € cSet}

16The symbol | is read “downarrow”.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5.2 Filters and Delays

A primitive filter is a computation unit that receives some information in its input streams
and computes information each interval in its output streams. By definition, input and
output streams do not form cycles. We define the function inside a filter in the schema
Behavior, with the property that the output of two streams that are equal up to a interval i
is the same up to such an interval. In this way, the computation of the behavior up to this
interval does not depend on future states, just previous states. Such a function is capable
of computing the information in O, the output channels of interest.

__ Behavior
fun : P Stream — P Stream

V81,50 : P Stream o fun{SI} = SO = SINSO =&

V51,52 : P Stream; i :Ne
S1]i=282)14i= fun(S1) | i = fun(S2) | ¢

__ PrimitiveFilter
name : L
1:PC
o:PC
Behavior

restr(fun(streams([)), O) = streams(O)
IN0=0

A delay of one unit is a special type of filter, with one input and one output stream, in
which the output at interval i+1 is equal to the input at interval i. We define it as:

— Delay
PrimitiveFilter
ID: C
oD:C

{IDy=IA{OD}=0

fun(streams{ID}) = streams({OD}) A
tail ((stream{OD)).m) = (stream(ID)).m

We can simulate memory inside a filter by having a delay between a pair of input -
output streams, in which the information through the delay can be as complex as necessary:

__ Filter WithMem
PrimitiveFilter
delay : Delay

delay.ID € O A delay.OD € I

We can also define parameters, as those input channels that just receive information at
the beginning of the execution.

—_ Filter WithParams
PrimitiveFilter
params : P C

params C I

Vp:params e (Vi:Nei>1= ((stream(p)).m)(i) = @)

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We define a filter as a primitive filter that might have memory and parameters,

Filter = PrimativeFilter N\ FilterWithMem A Filter WithParams

3.5.3 An Example: A One-Bit Adder

As an example of how a PrimitiveFilter represents an operation, lets describe an adder
of the information from two streams. A one-bit adder has three input channels, two for
actual values and one for a carry value, and sends its output through two channels, one for
the actual addition and one for the possible carry value. All messages are assumed to be
either 1s or 0s. Since an input channel can receive several messages at once, we define the
functionality in terms of an appearance of at least a 1 value.

asBin : M — {0,1}
asBinBag : bag M — {0,1}

Vb:bagM e (asBinBag(b)=1< (Im: MemEbA
asBin(m) = 1))

We use the following definition of a xor function between two bits,

zor : ({0,1} x {0,1}) — {0,1}
Va,b:{0,1} e (zor(a,0) =0 (a=0Ab=0)V(a=1Ab=1))

A bit adder is then defined as follows:

— BitAdder
PrimitiveFilter
il: C
i2: C
cl:C
o:C
e0: C
I={il,i2,cI} A O = {0, cO}
Vi:Ne
#(((stream(0)).m)(2)) = 1 A #(((stream(c0)).m}(3)) = 1
Vi:Ne
asBinBag({(stream(0)).m)(i)) =
zor(zor(asBinBag(((stream(i1)).m) (%)), asBinBag({(stream(i2)).m)(z))),
asBinBag({(stream(cI)).m)(1)))
Vi : N e asBinBag(((stream(c0)).m)(z)) =1 &
[asBinBag(((stream(i1)).m)(2)), asBinBag(((stream(i2)}.m)()),
asBinBag(((stream(cI)).m)(iN]t1 > 1

Such an adder can be used as a parallel or a sequential adder. Several bit adders can
be connected in order to add several bits at once, or just one adder can sequentially receive
several bits to be added, providing some delayed feedback of the carry information.

3.5.4 Applications

We compose groups of filters to form applications. We define first two auxiliary functions:
successors, and paths. The successors of a filter f given a set of filters iSet are all those
filters in 4Set that have an input channel connected to an output channel of f,

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

succl @ (P Filter x Filter x C) — P Filter
successors : (P Filter x Filtery — P Filter

ViSet : P Filter; f : Filter o (Ve:f.0 e
succl(iSet, f,¢) = {f2: iSet | c € f2.I})

ViSet : P Filter; f : Filter o

successors(iSet, fy = {f2:iSet | (3c: Cecec f.OA
ce f2.I)}

The paths from a filter f in a set of filters is the set of all sequences of consecutive
successors, starting at f. This set might be infinite, if there are cycles.

paths : (P Filter x Filter) — P(seq Filter)

ViSet : P Filter; f : Filter o
paths(iSet, f) = {s : seq Filter | s(0) =f A (¥i:Ne
s(i + 1) € successors(iSet, 5(2)))}

Given a set of filters F, we say that there is a cycle from one of its filters if it exists a
path that name such a filter more than once. We define the function cyclic over a set F
that gives us a subset of filters with this property.

cyclic : P Filter — P Filter

ViSet : P Filter o
cyclic(iSet) = {f2 : iSet | (Ip : paths(iSet, f2) o
(itemsp § f2) > 1)}

The concept of cycles is used now for the definition of a composition of filters. A set of
interconnected filters create a composed filter 7. A composed filter is uniquely identified by
a name, its input and output channels are disjoint, its filters do not share output channels,
and filters do not have loops unless they are mediated by delays. Delays can connect two
distinct filters or delays, in any combination, so strings of delays are allowed. Objects
represent references to content in the application 8. We avoid two filters from reading
different object states in a particular execution frame by forcing objects to be followed by
delays. The behavior of a composed filter is defined as the composition of all behaviors in
its filters and delays 1°.

17 A ComposedFilter is also a Filter, when all its details are hidden,so several layers of composition are
possible.

188uch objects might be interrelated, but any conflicts between operations in different objects are treated
with application logic, which may be generic.

19The last condition in this schema is redundant, but we want to emphasize the relationship between the
composed filter’s function and the functions of each filter inside.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

__ComposedFilter
name : L

filters : P, Filter
delays : P Delay
objects : P Filter
UV :pPC
oU:PC
I1:PC

O:PC
Behavior

Wlters

IU =U{f : filters o f.I}UU{d : delays & d.T}
OU = \J{f : filters o f.O} UIJ{d : delays » d.O}
I=IU\O0OU

0=0U

Vf1,f2: filters o f1 # f2 = (fl.name # f2.name A
fl.name # name)

IN0=w

VFil,f2: filterse f1# 2= fl.ONf2.0=0
cyclic(filters) = &

Yo : objects @ (Vc:0.0ecd|J{f: filterse f.I})
restr(fun(streams(I)), O) = streams(O)

Ve:Oeo((3f: filters; L:PIU »
stream(c) € f.fun(streams(l))) Vv
(3d : delays; I : P IU o stream(c) € d.fun(streams(l))))

Our first attempt to define an application is as a composed filter with a special subset of
filters, called devices. Devices are sources or sinks of information. In general, input channels
to sources of information are parameters, and the input of a sink of information is the entire
set of objects in the application.

— Application0
ComposedFilter
devices : P, Filter

devices C filters A devices N objects = &

An application can be seen in some cases as a complex filter, by hiding the extra defini-
tion. We do that with the function app2Comp

app2Comp : Application0 — ComposedFilter

Y a : Application0; ¢ : ComposedFilter ¢ app2Comp(a) = ¢ &
a.name = c.name A a.filters = c.fillers A\ a.delays = c.delays
A a.objects = c.objects A a.fun = c.fun

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5.5 Dataflow Execution

An EzecutionStep of a filter is the process of obtaining certain information in the output
ports, given the information in the input ports at a particular interval. The operation just
shows the information in the output channels at a given interval.

. EzxecutionStep
S Filter
input? : P(bag M)
output! : P(bag M)
17 : N

Vin : input? e (Fc: I o in = ((stream(c)).m)(i7))

Y out : output! e (¢ : O e out = ({stream(c)).m)(i?))

The initialization state of a filter assigns the input and output channels of such a filter,
and executes changes related to its parameters.

__ InitFilter
Filter'

ic?:PC
oc?:PC
input? : P(bag M)
output! : P(bag M)

I'=ic? A O = oc?
Vin : input? e (Jc: I’ e in = ((stream(c)).m)(0))
Y out : output! @ (3¢ : O e out = ((stream(c)).m)(0))

An execution step for an application is given by the execution step of all filters that have
some information in their input ports in a given frame, plus delays that had information
in the previous interval. We define the functions executingFilters and executingDelays to
describe which filters and delays are activated at any given interval.

streams WithInput : (P Stream x N) — P Stream
executingFilters : (ComposedFilter x N) — P Filter
executingDelays : (ComposedFilter x N) — P Delay

ViSet : P Stream; i : N o streams WithInput(iSet, i) = {s : iSet | (s.m)(i) # B}

V[« ComposedFilter; i :N e
executingFilters(f, i) = {f2 : f.filters | streamsWithInput(streams(f2.1),1) # @}

V[: ComposedFilter; i :N e
executingDelays(f, 1) = {d2 : f.delays | streams WithInput(streams(d2.1),1) # @}

Is it possible that not all filters and delays are executed in a particular interval, but over
time, all filters and delays should be executed. The minimum number of intervals required
for the execution of a composed filter is called its minimum execution time.

In order to properly execute an application we define extra requirements. No filter
in an application generates output from information in parameters at interval 0, and the
only filters with information at interval 1 are devices or connected to devices. These two
conditions avoid problems with filters in execution separated by delays.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

__ Application
Application0

V[fillers e (Vc: f.0 e ((stream(c)).m)(0) = &)
Vd: delays e (Ve : d.O e ((stream(c)).m)(0) = &)

Y f : executingFilters(app2 Comp (8 Application0),1) o
f € devices V (3d : devices o (I p : paths(filters, d) o
p {f} #9))

3.5.6 Changes in the Dataflow

We will consider three types of changes in the dataflow: One that changes channels in a
filter, without changing the structure of its output connections, another one that changes a
filter in a connection scheme by replacing it for a compatible one and connecting it to the
previous scheme, and a last one when filters are removed or added to the dataflow.

Channel Changes in a Filter

We assume that a filter function can compute the new output channels from the new input
ones, since we have assumed that in general we see just a subset of possible results 2°.
The operation is defined in a way that each old channel keeps the same, or has only one
replacement. We also define the function isCompatible, which says if two channels can be
replaced one by the other.

isCompatible : (C x C) — {0,1}

Vel, c2,e3: C e (isCompatible(cl, cl) =1 A
1sCompatible(cl, ¢2) = isCompatible(c2, c1) A
(isCompatible(cl, c2} = 1 A isCompatible(c2, c3) = 1) =
isCompatible(cl, c3) = 1)

For a filter, a channel change is straightforward: the new channels replace the old ones,
providing that they are only pairs between these sets that are compatible.

— ChangeChannels
f - Filter
f' . Filter
newlC? : P C
newQOC?:PC
oldIC? :PC
oldOC?:PC

f'.name = f.name
oldIC? C f.I A oldOC? C f.0

f'. T = newIC? A #newIC? = #0ldIC?T A
(V' :newlC? e (3 c: oldIC? o ¢/ = ¢ V isCompatible(c, ¢') = 1))

1.0 = newOC? A #newOC? = #0ldOC? A
(V' newOC? o (3 c: oldOC? o ¢ = ¢V isCompatible(c, ¢') = 1))

ChangeChannelsCF defines a change of channels in a composed filter. All references to
old channels are replaced by the new ones, and the structure of the composed channel is
kept, since there is only one possible replacement for each channel.

205ee the textitBehavior schema.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

_ ChangeChannelsCF
A ComposedFilter
newlC?:PC
newOC? . P C
oldIC?: P C
oldOC?: P C

name’ = name A
#filters = #filters' N #tdelays = #delays’ A
#objects = #objects’ N #delays = #delays’

V[filters o (3, f': filters' o

((oldICT A f.I =@ A oldOCTAF.0 =D A f = f')

V ((oldICT N .1 # @V aldOC? N f.0 # D)

A (3, ic, 0c,ic’, oc' : P C o dic C oldIC? A oc C oldOC? A

ic! C newlC? A oc' C newOC?T A

ChangeChannels[ic/ oldIC?, oc/ 0ldOC?, ic' [newIC?, oc’' [newOC))))

Vf: filters @ (3, f' : filters' o

(Fy¢:f.0;¢:f.Oe

(f.name = f'.name A {f2 : succl(filters, f, c) ® f2.name} =
{f2": succl(filters’, ', c') @ f2'.name})))

Change a Filter in a Connection Scheme

Let’s now define a way to replace a filter by another in the dataflow, while connections are
kept as much as possible. A filter holder allows us to replace a filter f by another, while
keeping as much as possible previous connections of f. Part of the definition of a filter
holder are a merge filter, a duplicator filter, and a compability function between channels
similar to isCompatible, defined as follows:

— Merge2
Filter
i1:C
i2:C
0o:C

I={il,i2} AO={o} Atl#i2A4il# 0
Vi : N e ((stream(0)).m)(i) = ((stream(il)).m)(i) W ((stream(i2)).m)(%)

— Duplicate
Filter
i:C
ol: C
02:C

I={i} A O ={ol, 02}

Vn: N e ((stream(i)).m)(n) = ((stream(ol)).m)(n) A
((stream(2)).m)(n) = ({stream(02)).m)(n)

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

JfhCompatible : (C x C) — {0,1}

Vel,e2,¢3: C o (fhCompatible(cl, cl) =1 A
JhCompatible(cl, ¢2) = fhCompatible(c2, c1) A
(fhCompatible(cl, ¢2) = 1 A fhCompatible(c2, c3) = 1) =
fhCompatible(cl, ¢3) = 1)

Ycl, c2: C o (fhCompatible(cl, ¢2) = 1 = isCompatible(cl, ¢2) = 1)

Mergers and duplicators can be seen as filters with the following functions:

m2f . Merge2 — Filter
d2f : Duplicate — Filter

Y'm: Merge2; f : Filter @ (m2f(m) = f =
m.name = f.name Am.I =f I Am.O=fO0ANm.fun = [fun A
m.delay = f.delay A m.params = f.params)

YV d : Duplicate; f : Filter o (d2f(d) =f =
d.name = fname ANd.I=fIANd.O=f.0ANdfun=7ffun A
d.delay = f.delay A d.params = f.params)

A filter holder surrounds its contained filter by a structure of filters shown in Figure 3.14.
We assume the imposed structure is given by the channels with numbers and the contained
filter f originally had the channels with letters.

Filter Holder

Figure 3.14: Internal Structure of an Filter Holder

The schema for a filter holder is as follows:

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

__ FilterHolder
nameFH : L
IFH : P C
OFH :P C
predecessors : P Filter
successors : P Filter
fSet : P Filter
mrgs : P Merge2
dels : P Delay

dups : P Duplicate

#fSet < 2

YV p : predecessors ¢ p.O N IFH #+ &
Vs : successors ¢ .1 N OFH # &
Vifh : IFH @ 3, m : mrgs e ifh = m.il

YVofh : OFH e 3, del : dels; dup : dups e

(del.OD = dup.i A dup.ol = ofh)

fSet £ @ A (Af : fSet o

((Vic: f.I o (Vifh : IFH o fhCompatible(ic, ifh) = 0) V
(3, ifh - IFH o fhCompatible(ic, ifh) = 1))))

Once a new filter f2 is assigned to an object holder, it disconnects the previous f con-
tained, restores its original connections, and connects f2 inside the structure. Such a struc-
ture keeps the original connections of any filter, and avoids cycle problems, due the delays
in the outputs.

__ NewFilterFH
AFilterHolder
f7: Filter
f!: Filter

nameFH = nameFH' N IFH = IFH' N OFH = OFH' A
predecessors = predecessors’ A successors = successors’

fSet £ @ A (3, fOld : fSet »

fOld.name = fl.name A

I = fOld.I\ {mrg : mrgs | mrg.o € fOld.I ® mrg.o}U

{mrg : mrgs | mrg.o € fOld.I @ mrg.i2} A

fl.O = fOld.O \ {del : dels | del.ID € fOld.O e del.ID}U

{dup : dups | (Foc: fOId.O e fhCompatible(dup.02, oc) = 1) e dup.02})

Af7 : fSet’; ic,ic’, oc,0c (P C e

(ic={c: f2.1|(3,ifh: IFH e fhCompatible(c,ifh) = 1)} A

oc={c: f1.0| (3, ofh : OFH e faCompatible(c, ofh) = 1)} A

i/ ={m:mrgs| (I,ifh: IFH; c: f1.] e

(fhCompatible(c, ifh) = 1) A ifh = m.il) e m.o} A

oc’ = {del : dels | (3, ofh : OFH; dup : dups; ¢ : f7.0 »

(fhCompatible(c, ofh) = 1) A ofh = dup.ol A dup.i = del.OD) e del.ID} A
ChangeChannels[f?/f,f?/f’,ic/oldIC?, oc/0ldOC?, ic' [newlC?, oc' [newOC?))

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Add and Remove Filters

The addition and removal of filters — or delays — in a composed filter is straightforward:
The new filter is added or removed from the set of filters 2.

— AddFilter
A Application
newkF? : Filter

name = name’ A delays = delays’ N objects = objects’ A
devices = devices’
newF?.name ¢ {f : filters o f.name} U {name} A

newF?.0NU{S : filters e f.O} =D A
(Vo : objects ® 0.0 N newF?.I = @) A

filters” = filters U {newF 7} A cyclic(filters’y = @

__RemoveFilter
A Application
oldF? : Filter

name = name’ A delays = delays’ A objects = objects’ A
devices = devices’

filters’ = filters \ {oldF'?}

In the same way, modifications of delays can be defined as follows:

—AddDelay
A Application
newD? : Delay

name = name’ A filters = filters’ A\ objects = objects’ A
devices = devices’

newD?.name ¢ {d : delays ® d.name} U {name} A
newD?.0 N{{d : delays » d.0} = &

delays’ = delays U {newD?}

— RemoveDelay
AApplication
oldD? : Delay

name = name’ A filters = filters’ A objects = objects’ A
devices = devices’

delays’ = delays \ {oldD?}

3.5.7 Operations Over an Application

The operations over an application are based on the previous schemas. An InTml application
is a well defined application with object holders:

21Tt is important to notice that these two operations have to fulfill all previous requirements for composed
filters; in particular, cycles without delays are not allowed.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

__InTmlApp
Application
fhs : P FilterHolder

Vfh: fhs e fhIFH C IU A fh.OFH C OU
A fh.predecessors C filters
A fh.successors C filters
A fh.fSet C filters A fh.dels C delays
A {mrg : fh.mrgs @ m2f(mrg)} C filters
A {dup : fh.dups & d2f(dup)} C filters

The execution of an InTml application is either the normal flow of messages, or one of
the following special changes: channel changes, object holder executions, addition of filters,
removal of filters, addition of delays, and removal of delays. The normal dataflow execution
is similar to the execution of any filter:

__ InTmliEzecuteDataflow
ZInTmlApp

inputD? : P(bag M)
output! : P(bag M)
i7:N

Vin : inputD? ¢ (¢ : I o in = ((stream(c)).m)(i?))
Y out : output! @ (Fc: O & out = ((stream(c)).m){(i?))

A change of channels is defined on top of the changes in a composed filter, with extra
conditions for filter holders that assures that if the change involves a filter connected to a
filter holder, the change will keep the structure of the dataflow as it was before:

__InTmlExecuteChangeChannels
AInTmlApp

newlC?:P C

newQOC?:P C

oldIC? : P C

oldOC?:PC

ChangeChannelsCF

Vfh:fhse (3, fh': fhs' e

(fh . IFH NnewlC? = @ A fh.OFH N newOC? =& A

fh=fn'y v

((fhIFH N newIC? # @ V fh.OFH N newOC? # Q)

A (fh.nameFH = fh' . nameFH A fh.predecessors = fh' .predecessors N
fh.successors = fh’.successors A fh.fSet = fh'.fSet A

W IFH = fh.IFH \ oldICTU{m : fb' . mrgs ® m.i1} A

W .OFH = fh.OFH \ oldOC? U {d : fi’.dups e d.ol1})))

The execution of filter holders in an InTml application is based on the previous schema
NewFilterFH, with an additional condition to assure that nothing else changes:

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

__InTmlEzecuteFHs
AInTmlApp

f7: Filter

fl: Filter

f7 € filters A f! € filters

name = name’ A delays = delays’ N objects = objects’ A
devices = devices’

3, fh s fhs; fb': fhs’; NewFilterFH o

(fh.nameFH = nameFH N fh.IFH = IFH A fh.OFH = OFH A
Jh.predecessors = predecessors N fh.successors = successors N\
fh.fSet = fSet A fh.mrgs = mrgs A fh.dels = dels A

fh.dups = dups A fh'.nameFH = nameFH' A fb/ IFH = IFH' A
fh' . OFH = OFH' A fh'.predecessors = predecessors’ A

fh' .successors = successors’ A

fh' fSet = fSet’ A fh'.mrgs = mrgs’ A fh'.dels = dels’ A
fh! . dups = dups”)

Adding and removing filters are directly defined over the previous schemas AddFilter
and RemoveFilter, respectively:

__InTmlEzecuteAddFilter
AInTmlApp
newkF? : Filter

fhs = fhs'
AddFilter

__InTmlEzecuteRemoveFilter
AInTmlApp
oldF? : Filter

fhs = fhs’

RemoveFilter

Similarly changes in delays are defined as follows:

__InTmlEzecuteAddDelay
AInTmlApp
newD? . Delay
fhs = fhs'
AddDelay

__InTmlEzecuteRemoveDelay
AInTmlApp
oldD? : Delay

fhs = fhs'

RemoveDelay

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Finally, an InTmiStep is the execution of any of the tasks that change the state of the
dataflow, followed by the execution of the dataflow.

InTmiStep = (InTmlEzecuteChangeChannels V InTmlEzecuteFHs V
InTmlEzecute AddFilter V InTmlEzecuteRemoveFilter V
InTmlEzecuteAddDelay V InTmlEzecute RemoveDelay) A
InTmlEzecuteDataflow

3.6 Properties of this Architecture

This

architecture has the following features:

Filters can run in different processors. There are no restrictions on the simultaneous
execution of filters, and how they send information to followers. This allows parallel
implementations and also sequential ones, with the same semantics.

A filter "knows” all events that are originated in the same time frame and received
through its input channels. This allows specific implementations to filter unnecessary
information.

The state of the world, reflected in terms of the state of the objects in the application,
is consistent for all filters during the execution of a time frame. This avoids side effects,
as in other dataflow—based implementations such as VRML, related to the order of
execution of filters.

Composed filters have clear recursive semantics and allow complexity management,
by hiding unnecessary details.

An application can have as many devices as required, all treated in a uniform way.

The particular implementation of the behavior of a filter is hidden from the dataflow
point of view. In this way, we can separate the high level design of the dataflow and
the low level design of behaviors and interaction techniques.

Object holders define a mechanism similar to pointers in common programming lan-
guages, and they are very useful for the definition of dynamic changes.

The semantics described here can be implemented in several platforms from a simple
desktop computer to a massively parallel computer. In this way, a VR application is
scalable to a wide variety of hardware platforms, while it keeps the same semantics.

A designer can easily identify which filters in a dataflow are specific to a particular
hardware platform. This allows designers to perform a process of reaccomodation of
VR applications to different hardware platforms and interaction styles. We call such
a process retargeting, and it will be part of the methodology we define later in this
thesis.

There are also some issues that require further research, such as:

Actual comparative results between a parallel and a sequential implementation of
InTml have to be performed. Ideally, we should be able to create some analytical
methods for measuring performance advantages in a parallel implementation of a spe-~
cific application, but we have to explore this possibility in more in detail.

InTml is a new component technology that takes into account the specific quality
attributes required in VR applications. However, we require more applications imple-
mented in this technology to validate more thoroughly its advantages and features.
Such experimental tests will require a community of users and an active developer
community to support them.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

¢ Exact time management and synchronization are issues not directly visible in InTml.
This allows designers to worry about requirements without taking care of synchroniza-
tion issues. However, such issues should be addressed in a succesful VR application.
Our current approach forces designers to hide synchronization issues under filters that
transparently handle several streams into a synchronized one. This approach has to
be tested in more detail to understand its implications.

e More development tools are necessary in order to provide a true professional environ-
ment for VR designers.

e As InTml libraries grow, tools for finding and organizing them will be required in
order to make them usable and avoid work repetition.

3.6.1 An Example of InTml Interpretation

This specification allows us to understand the semantics behind an InTml application rep-
resentation. For example, if we analyze again Figure 3.2 one can infer the following charac-
teristics:

o All filters in the application can be executed in one step, since all filters are reachable
from the device handTracker without delays in the middle 2. The handTracker sends
changes to both the object and the selection technique. The selection technique takes
the new coordinates and the current object state and decides if the object will collide
any other object in the scene, once the new coordinates are set. If this is the case, the
collided object is sent to the feedback technique. All these operations are executed at
the same interval. Once the dataflow execution has finalized, changes in objects are
executed (In this case, new position and orientation for handRepr from the tracker).

e Since InTmlExecuteFHs is executed before In TmlEzrecute Dataflow, the object handRepr
is assigned to the object holder handRepresentation before events from the tracker
arrive (i.e., position and orientation).

e Another representation of the same application is shown in Figure 3.15, with a slightly
different meaning but with the same results. In this case, changes in position and
orientation are propagated after they are executed in the object. This representa-
tion executes the entire dataflow in two steps: the first one with {handTracker,
handRepresentation} and the second with {SelectByTouching, Feedback}. This
approach might be preferred if the object can decide if it can do the requested oper-
ation. In this case, the processing is executed first, and if the object decides that the
change can be done, it will propagate the changes to the selection technique. Also note
that when the selection technique executes, handRepr actually has the same position
and orientation as the ones received in the input ports position and orientation.
We allow then SelectByTouching to operate in two slightly different modes, since it
does not take into account the actual position and orientation of the object.

e The actual description of the function executed by a filter is hidden from the diagram,
and in the current InTml implementation, it is defined in a textual description at-
tached to each filter class. For example, the function SelectByTouching is described
as follows: It is a selection technique that takes an object and checks if it will collide
with another object in a scene after moving to a new position and orientation, received
as parameters. Addition and removals of objects in the scene are allowed, but those
changes have to be explicitly informed. It is possible to design this selection technique
in a different way, and Figure 3.16 shows a different one, with the following inter-
pretation: it is a selection technique that takes the current position of an object and
checks if it collides with another object in the scene. Changes in the scene or in the

22G8ee definition of ezecutingFilters in Section 3.5.5

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

object are implicitly taken into account. This definition might be preferred, since it
allows less modes of operation and avoids possible misinterpretations of its execution.
It might also be defined in terms of the previous one. However, it takes two intervals
to be totally executed, due the inner object holders.

o If the first representation of SelectByTouching is used, handRepr will receive two
copies of the events from handTracker: one from the object holder inside the selection
technique, one from handRepresentation. While this might be redundant it does not
affect the semantics of the application in any way, and compiler techniques can be
used to avoid this redundancy.

. position SelectByTouchin, selectedObject Feedbuck
handTracker handRepresentation orientation d ¢ type
handRepr color
scene
handRepr addObject
scene removeObject

console

Figure 3.15: A Modified Version of a Simple Application.

NewSelectbyTouching
hand
pos
q SelectByTouching
handRepr
scene
addObject
sceneOH
removeObject object

Figure 3.16: A Modified Version of SelectByTouching.

3.6.2 Lessons Learned from the Z Language Description

Our attempt to formally describe the semantics of InTml gave us a better understanding of
what our model is, and what are its capabilities. We started our first implementation after
prototyping three environments for VR development, which gave us a good understanding
of the requirements of such an endeavour. However, the description in the Z language
that we started after the first implementation gave us a more generic, clean, and scalable
description than the one that we implemented. We extended the concept of object holders
to allow any type of filter, which makes InTml a second-order language (filters can have
filters as arguments).

Formalization allowed us to better understand the meaning of an InTml application than
from just a drawing, since the inner semantics of each element and the overall execution

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

model is clearer. The formalism allowed us to cleanly separate the meaning of a filter from
the concept of a filter holder, and what could be the type of a holder. It also allowed us to
make clearer the differences and similarities between applications and composed filters.

The concept of a delay emerged from the work Lee and Parks [57] as a very useful
addition to the set of concepts in InTml. Despite the fact that it does not yet appear in
the XML syntax, a delay is a very useful abstract concept that allows us to understand the
execution model, how cycles are executed, and how object holders work.

An important concept in the Z description is the one of dynamic changes in the structure
of the dataflow, that will allow us in the future to offer a richer language, i.e. with support
for adding or deleting filters, changes in connections, delays at the XML level, and filter
holders.

Finally, the description in the Z language also allowed us to compare the semantics of
our dataflow proposal with other dataflow proposals, and reuse part of their notation and
their semantics. The differences of our proposal with previous ones in the area of dataflow
based computation are clearer, and new questions have emerged for future work.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Development Process based on
InTml

In this chapter, we describe an InT'ml-based development process for 3D interactive applica-
tions. The process establishes a collaboration between two types of people with complemen-
tary skills and different viewpoints. We show how our test application was developed, how
our methodology differs from other methodologies for 3D applications. We also show some
metrics about development of multi-platform VR applications from the CVS repository of
our example application.

4.1 Process Description

Our development process divides tasks between two groups of people: designers and devel-
opers. Designers are in charge of the overall design of the application. They know about
InTml, its semantics, and the components in the InTml library. Developers are in charge of
the fine—grain details inside components, and know how components can be implemented on
top of available frameworks and libraries. Each role develops complementary tasks: design-
ers are closer to end—users of the application, while developers are closer to the programming
and hardware details of the solution.

The first version of a VR application, targeted to a particular hardware platform, is
created by pursuing the tasks in Figure 4.1. Such a process guarantees a clear division
between the architecture of the solution and the implementation of each component in the
architecture. Once a first version is completed, new versions can be created by retargeting
this application to other hardware platforms. Figure 4.2 shows the process for retargeting an
existing VR application, with general references to the processes in Figure 4.1. Collaboration
in Figure 4.2 refers to the relationships between designer and developer tasks in Figure 4.1.

There are other methodologies for the development of VR applications, such as the one by
Tanriverdi and Jacob [93]. While such alternatives have similarities with the one presented
here, ours extend them with the concept of retargeting and the concept of separation of
roles. Further comparison can be found in Section 4.4.

Content components, such as geometric models for objects, special graphic effects, sound,
or haptics, are designed with the aid of third party tools. It is necessary that all created
media types can be understood by the foundation framework where the InTml application
will run.

Since InTml can be implemented on top of several foundation frameworks, it is possible to
discover platform limitations in the process of developing new applications. Such limitations
can be detected by developers while trying to create new components. In this case developers
and designers can compromise in a solution that both satisfies requirements and minimizes
changes in the foundation framework. However, the more mature an InTml implementation

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is, the less these changes will be required.
The following sections describe the tasks in our methodology in more detail.

i Designer E Developer
z s ; |
Can library be
| P ! reorganized for ',
: Application : reuse? :
: goal ! No !
| Describe application Are current Yes
' reaus : libraries '
! || requirements in P : !
: InTm! documents sufficient? No Tune/Reorganize :
: concepts in the '
é Yes InTml library |
! Check correctness ‘],
| in InTm! documents| | Execute / Test Implement/Tune
E InTml application additional filters
| Develop media ;
No Are the user requirements No
! met? I '
Yes
1 Designer Development Tasks Developer Development Tasks :

Tigure 4.1: Collaborative development process for a particular hardware and software plat-
form.

4.1.1 Application Goal

This is the task of eliciting user’s requirements. Designers identify main tasks in the appli-
cation, and main InTm! components in the solution. Techniques borrowed from requirement
gathering in traditional development methodologies, such as the ones in Kulak and Guiney
[55] or Mayhew [62], can be applied here.

The result of this task is a description of user requirements, the tasks to be imple-
mented in the VR application, the quality attributes of the desired implementation, and an
understanding of the hardware platform to be used.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Collaboration

Designer Developer
development : : development
for platform A : for platform A
Retarget an InTml
application to a
new platform : :
‘l({ Collaboration '
Check correctness Deveioper
in [nTml documents : development

for platform B
Designer reﬁnemeﬂt --
for platform B

Figure 4.2: Adapting a VR application to a new hardware and software platform.

4.1.2 Description and Refinement of Application Requirements in
InTml Documents

With information about user’s requirements and desired quality attributes, designers work
on the required InTml components and relationships. The mapping between requirements
and InTml concepts can be influenced by usability rules and techniques described elsewhere
(85, 88].

Designers should balance several forces in this task. Components may or may not be
dependant on the hardware platform on which they will run, or the specific application
domain. Platform—dependent components are easier and faster to describe, but usually more
difficult to reuse in other applications. In the same way, application— dependant components
can be specifically tailored to solve user requirements, but they have less value for a general—
purpose library. Since our objective is to facilitate the process of application retargeting, we
encourage designers to develop platform—independent components, since they can be more
easily reused in other environments. They could be application—dependant, since these types
of components do not affect the ability of retargeting.

An application can be divided in several files, some of them with reusable classes, some
with generic descriptions of applications, and some with the actual application as it will
be deployed to the users. Such a division facilitates future reuse and support for other
applications in a particular platform.

4.1.8 Check Correctness in InTml Documents

InTml documents can be validated in two ways: by checking XML syntactic rules and by
revising its semantics. There are several XML tools to validate document syntax, by ana-
lyzing the document’s conformance to its schema [98, 27, 38]. This validation assures that
documents can be parsed by XML tools, but this does not guarantee that the semantic of
the document is correct. For a more thorough checking, InTml documents can be validated
against the InTml semantics in the 7 specification language, presented in Section 3.5. Such
a process is similar to a design peer review, with the difference that the reference semantic
model is described in Z. However, this task is not necessary in most cases, since it is equiva-
lent to a process of revising an application against its functional semantics. For example, it

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is equivalent to check a VRML program against the VRML specification. This task is not
performed everytime a new application is created, and usually the execution of a program is
enough to understand its meaning. Designers with a general knowledge of InTml, given by
an understanding of the more informal descriptions in Section 3, should be able to develop
medium size VR applications .

Section 6 will present a simple tool for checking InTml documents. This is an inter-
mediate step between basic XML syntax checking and a peer review against the formal
description. We think this will be the more efficient way to check InTml documents, once
the checker has enough functionality.

4.1.4 Completeness Test for Current Library

Designers create new applications by reusing filters in the InTml library 2 and by defining
new filter classes, to be created by developers. In this stage designers check if the available
components in the library are enough to describe the new application. If not, designers
create new InTml classes and ask developers to implement them.

Developers can also decide to improve the coverage of the library by adding new application—
independent components. This is a way to improve the library, but since we concentrate
here on retargeting, we will not describe this task in more detail.

4.1.5 Structure and Reusability Test for Current Library

Once designers request new components by defining new InTml classes, developers should
create the code behind them. At this moment they should consider to reorganize the current
implementation scheme of the library, since it may be worth to reuse parts of other classes
already in the library.

4.1.6 Implementing or Tuning of Additional Filters

InTml can be implemented on top of several foundation frameworks or libraries, such as
Performer, Java3D, VRJuggler, VRPN, and so on. Once an InTml application has been
defined, developers should translate this representation to the core frameworks. Ideally, code
generators should be available to aid in such a process, in order to keep general restrictions
and characteristics of the underlying implementation. In this way, the work of a developer
consists of generating “templates” of code for new components, and filling the blanks for
the particular behavior of such components.

A developer has to take into account the semantics of In'T'ml components when doing an
implementation. In particular, filters can not directly change the scene graph, and objects
can only apply changes for the next interval in time 3.

Developers should integrate new code to the InTml runtime environment, so designers
can use the new filters and test them in InTml applications. A good practice is to create a
simple test application for any new filter.

4.1.7 Tuning or Reorganizing of Concepts in the InTml Library

If new filter classes are requested, developers should create such new classes either from
scratch, or by reusing other implemented classes. The purpose of this task is to reorganize
class implementations when new classes can be integrated in a better way to the rest of
the library. The relationships in implementation does not necessarily have to be reflected
at the InTml code, i.e. it is possible to reuse code of a class that is not related in InTml.

n the same way that VRML programs can be developed without understanding the fine details of its
specification.

2The InTml library is defined in Section 6.3.

30ur current implementation fulfills this condition by executing filters before any object at any time
frame.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This task assures an organized evolution of the InTml library implementation, since code
reorganization is considered when new classes are required.

4.1.8 Executing and Testing of a New InTml Application

Designers and developers test the new classes and the new application that uses them. Tests
can be done separate for each class, or as a subset of the application. Developers should
care about the performance of the implementation and overall quality of the algorithms in
the solution. Designers should care about conformance to the given specification in InTml,
and other possible uses, i.e. when not all input ports are connected.

4.1.9 Test Coverage of User Requirements

Designers check if the current application covers user requirements stated before. If users
do not agree about the coverage, or if new requirements should be included, designers can
start a new cycle over these development tasks. Iteration over the previous tasks also allows
for evolutionary development of a VR application.

4.1.10 Retargeting of An InTm! Application to A New Platform

This task retargets an existing VR application to a new platform. The process involves
changes in devices, interaction techniques, and content elements, according to the availability
and common practices in the new platform. Our purpose is to change the mechanisms used
to implement the application tasks in the current platform to the more suitable ones in the
new platform, while keeping the overall application functionality similar.

This adaptation process includes the following steps:

e Change of devices to the ones available in platform B.

e Creation of adapters in order to simulate the type of information that was received
from devices in platform A. For example, if we move from a tracker-based system to a
mouse and keyboard based system, an adapter can be created to simulate the tracker
output by mouse and keyboard events. This is the process of porting an application
to new hardware, without changing interaction techniques.

e Replacement of behaviors, interaction techniques, and widgets, for the ones that are
more suitable in platform B. For example, if the selection technique in platform A is
based on collision with a virtual hand, we can decide to change this in platform B to
selection by intersection with a ray. This replacement might propagate changes to the
entire application.

e Addition or removal of tasks, behaviors, interaction techniques, and widgets that are
platform—dependent. For example, the coordination of movement of the image and
the head in a HMD based environment should be removed in other platforms.

Developers repeat the development process in platform B, reusing code or designs from
platform A when possible, and interacting with designers until user requirements have been
met. In this way, the application keeps the same functionality in both platforms, while also
taking into account the particular advantages of each one of them. More iterations of the
entire process can create evolved versions of the application in each platform, with improved
functionality.

Development time for new versions is reduced for two reasons: Components from previous
versions of the application can be reused in new applications, and components in the InTml
library can also be reused. Since InTml components are self-contained and independent
from the environment, reusing them is straightforward. Also, since the semantics of InTml
helps designers to understand what a component does without knowing the implementation
details, the apparent complexity of the application is reduced.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Example: A Matching Application

As an example, we describe here our experience with an application to measure performance
for tasks such as selection, translation, and rotation of 3D objects. This application was
developed as a proof of concept of the retargeting process, and also as a study of user
performance in different hardware setups *. The application shows three objects in the
user’s visible area, with positions and orientations chosen at random. Three replicas are
shown in different positions and orientations, and the user’s goal is to select, move, and
rotate the objects to match their replicas.

We decided to test retargeting in different hardware platforms for these tasks. The
hardware platforms that we have available are:

¢ A standard PC environment (standard-PC).

* An environment with a head-mounted display (HMD) and a joystick (HMDJ).
e A commercially available SMART Board 5.

e A PC environment with a Space Mouse (3D Desktop) ©.

e The Visroom, a CAVE-like environment with three stereo projectors .

The standard-PC, HMDJ, SMART Board, and 3D Desktop platforms use Microsoft
Windows and Java3D as the foundation framework, with some specific drivers in the case
of the latter two, while the Visroom uses IRIX, Performer and VRPN. Since the input
and output devices of these hardware platforms have different characteristics, interaction
techniques have to accomodate and use the available resources. Users will be able to execute
the same tasks in all platforms, but in a way that devices afford.

The following sections describe some details for each task in the development process.

4.2.1 Application Goal

The following are the application tasks we are interested in. We give here an informal
description, since the application is very simple.

e Load objects’ geometry. Java3D and VR-Juggler allow us to load objects in different
formats, such as 3D Max or OBJ, so we use files in these formats.

o Localize and orient objects at random.
e Create copies of objects and localize them at random.

e Define the set of objects that will be selectable (the original ones) and the ones which
are not (the replicas).

o Give user’s feedback when an object is selected. We change the object’s color to green.

e Grab and release an object. These actions are usually joint with the rotation and
translation of an object.

e Rotate and translate an object.

e Compute matching function. This function defines when an object and its replica are
close enough, in position and in orientation to be considered “matched”.

4We will discuss the user study later in this document

53MART Board is a trademark of SMART Technologies Inc.

6Space Mouse is a trademark of 3Dconnexion

7 Although the design for this platform is already described in InTml, its complete implementation is not
finished yet.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e Delete objects once they match. We decided to eliminate objects once they match in
order to provide feedback.

e Log start and stop times, the user’s identifier, and other important events of the
experiment: user’s movements, information about the objects’ selection, movement,
orientation, and matching.

e Finish the application.

4.2.2 Description and Refinement of Application Requirements in
InTml Documents

The entire InTml files for these application are shown in Appendix A, and we show here
some excerpts. Some of these files are defined by the developers according to the available
functionality in the foundation frameworks, and some by the designers, according to the
particular requirements of the users.

The files defined by developers are:

o library.intml: Initial set of filters, objects, and devices. Examples of elements defined
here are the standard input devices — mouse, keyboard, joystick —, 3DOF and 6DOF
trackers, available selection techniques, and an object in the scene.

genericPC.intml: Generic functionality for any PC-based application.

genericHMDJ.intml: Generic functionality for any HMDJ-based application.
e genericSMARTBoard.intml: Base application in the SMART Board.
e genericVisroom.intml: Base application in the Visroom.

For example, Listing 12 shows the description of a generic HMDJ application as the
definition of devices in such a platform (keyboard, joystick, tracker, and hmd in lines 5-
11), the expected objects (the current viewpoint and the rendered scene in lines 12-13),
and the standard connection between the orientation of the head and the orientation of the
viewpoint (lines 15-16). id stands for identifier, iE for input element, iP for input port, oE
for outputElement, and oP for output port 2.

The files defined by designers are the following:

e newClasses.intml: New types of filters defined by the designers and used in the ap-
plications. For example, there are filters for moving objects to random positions, for
replicating objects, for rotation and translation of objects, for computing the matching
function.

e matching-pc.intml: The matching application in the PC environment.

¢ matching-hmdj.intml: The matching application in the HMDJ environment.
o matching-smartboard.intml: Matching application, SMART Board based

e matching-visroom.intml: Matching application, Visroom based.

For example, Listing 13 shows the InTml code for selection in a PC environment. A
selection filter (selection, in lines 4-5) two objects (obj1l, obj2 in lines 6-9) and a scene
(selectableObjs in line 10) are created. Objects are included in the scene by sending
them to the addObject port of the scene (lines 11-14) °. Finally, the selection technique is
connected to its input, the position of the selection ray in the image plane mousePos, and
the current set of selectable objects (lines 15-19).

8Rilters for reduction of noise from the tracker might be necessary, but they are not described here for
simplicity.
9Currently, the InTml syntax uses Binding to simulate Send.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Listing 12 Generic HMDJ application. HMDJ Code

1 <App id="matchingTest.genericHMDJApp">
<ShortDesc>Generic app for an
I-glasses HMD and a Joystick
</ShortDesc>
5 <Import id="matchingTest"/>
<IDevice id="keyboard"
type="GenericKeyboard"/>
<IDevice id="joystick"
type="GenericJoystick"/>
10 <IDevice id="tracker"
type="Generic3DOFTracker"/>
<0Device id="hmd" type="IGlasses"/>
<0ObjectHolder
id="theCurrentViewpoint"/>
15 <ObjectHolder
id="theRenderedScene"/>

<Binding iE="tracker" iP="g"
oE="theCurrentViewpoint"
20 oP="setQ"/>
</App>

Listing 13 Selection in the PC environment. InTml code

1 <App id="matchingTest.matchingAppPC">

<!-- selectableObjs selectable —-—>
<Filter id="selection"
5 type="SelectByRay"/>
<Object id="objl"
filename="filel.3ds"
type="VRObject"/>
<0Object id="selectableObjs"
10 type="Scene"/>
<Send info="obji"
oE="selectablelObjs"
oP="addObject"/>
<Binding iE="mouse"
15 iP="mousePos"
oE="selection" oP="pos"/>
<Send info="selectablelbjs"
oE="selection" oP="scene"/>

20 </App>

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.3 Check Correctness in InTml Documents

We checked our documents with the stand-alone application described in section 6.4.3. The
tool checks the existence of filter types, type correspondences, and name validity. The use of
this tool allows designers to detect problems in the InTml description before its compilation.

4.2.4 Completeness Test for the Current Library

During development, designers evaluated the completeness and relevance of the InTml li-
brary '° for the matching application. In general, device descriptions were found in the
library, whereas application dependant behavioral components were added . It is possible
to extract some of the filter classes in the application—dependent file to the general library,
such as interaction techniques for rotation and ways to create transparent copies of objects.
However, work concentrated on retargeting, not building the library, and this task was left
out of the scope of this development.

4.2.5 Implementing or Tuning of Additional Filters

Developers implemented new filter classes for the application. The process was aided by a
code generator, that takes InT'ml class descriptions and transform them into Java code 2.
Once the initial version of the Java code is generated, developers complete the required code
for the general behavior of the new filter class. In our implementation, a developer had to
complete three pieces of code: how to read parameters from a text file, how to process input
data before execution, and how to execute in a certain frame.

Once code for a new filter class was compiled and tested, it was added to the runtime
environment, by adding a line in a configuration file that specifies the file name for the
object code of a particular InTml class, identified by its full name (package name and class
name).

Many parameters have to be defined in the implementation, sometimes with negotiation
between designers and developers, since the InTml description defines only how components
can be connected to others in an application. We consider such details to be generally out
of the scope of what a designer needs to know, and more related to the job and skills of
developers. For example, developers should define the near and far clipping planes for the
view, taking into account the requirements of this application. However, developers should
be able to express technical limitations to designers, in order to achieve the best performance
of a particular implementation.

4.2.6 Tuning or Reorganizing of Concepts in the InTml Library

Developers created the code in Java for all InTml classes defined by designers. During
development, several components reused previous classes due to similarities in the task they
developed. Some examples are the following:

o Classes for system management were organized in an inheritance hierarchy. Such
components are implicit in each platform’s InTml execution environment.

e The way we orient and localize objects at random changed during development. The
new class reused code from the previous implementation.

e The way we create copies of objects changed during development. The new alternative
is implemented on top of the previous one, by adding a parameter for the required
changes.

10The InTml library is contained in the file library.intml.
11 Application—dependent classes are defined in the file newClasses.intml.
12The code generator is described in Section 6.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.7 Executing and Testing of a New InTml Application

Once components are ready to be integrated in an application, we tested them together. Our
approach was to incrementally test components and tasks in the application, so we created
several applications with partial functionality. Figure 4.3 shows the separation of tasks
we had in the seven testing applications we created, from the overall set of requirements
previously given.

Load objects

Create Viewpoint

testl

Localize objects at random
test2

. ect
Create copies of objects test3

Make objects selectable
Give feedback of selection
Rotate an object

Translate an object

Coordinate interaction techniques test4

Compute matching function tests

Delete objects when they match test6

Quit the application

Log user’s experience test7

Figure 4.3: Tasks covered by several testing applications.

4.2.8 Test Coverage of User Requirements

We evaluated the coverage of user requirements once the application was in testing. This
evaluation resulted in extra functionality, i.e. extra log functionality to save user and plat-
form identifications. In this case there was no need for extra filter classes, just extra ports
in already existing ones.

4.2.9 Retarget An InTml Application to A New Platform

We produce a new InTml file for the matching application in other platforms by chang-
ing devices, interaction techniques, and objects in the PC version. Generic tasks stay the
same, such as how to find positions for objects, or how to decide when two objects match.
However, some tasks change, since different input and output devices afford different inter-
action techniques. For example, we show the code for the selection interaction technique
in both the HMDJ and the Visroom platforms. Listing 14 shows the selection technique
in the HMDJ platform, which is based on a full 3D ray defined by the user’s eye position,
the joystick position, and the current center of the field of view (eyePos, in lines 8-9) 3.
Listing 15 shows the selection technique code for the Visroom platform. In this case we
use the Go-Go selection technique by Poupyrev [71], and we connect it to the hand repre-
sentation (lines 6-7, 16), and the position and orientation of both head and hand trackers
(lines 8-15). Despite the fact the task is the same, the type of information expected for the
selection technique and the type of information gathered by devices are totally different.

13The computation for the 3D ray is done inside HMDJRay.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Nevertheless the application has many similarities with the one for a PC environment, so
much of the code in them is the same. Note that different implementations of the same
task can be compared at the InTml level by designers. We consider this is one of the key
advantages provided by our methodology.

Listing 14 Selection in the HMDJ environment. InTml code
1 <App id="matchingTest.mAppHMDJ">

<!-- selectable0bjs selectable -->

<Filter id="selection"
5 type="SelectBy3DRay"/>

<Filter id="hmdj2Ray"
type="HMDJ2Ray" />
<Constant id="eyePos"
value="0 0 0"/>
10 <Send info="eyePos"
oE="hmdj2Ray" oP="headPos"/>
<Binding iE="tracker" iP="q"
oE="hmdj2Ray" oP="headQ"/>
<Binding iE="joystick" iP="pos"
15 oE="hmdj2Ray" oP="jPos"/>
<Binding iE="hmdj2Ray" iP="posRay"
oE="selection" oP="pos"/>
<Binding iE="hmdj2Ray" iP="qRay"
oE="selection" oP="q"/>
20 <Send info="selectableObjs"
oE="selection” oP="scene'/>

</App>

4.3 Some Metrics

Although we do not have information about time spent in each task during the development
of our example application, we can extract some information from the CVS repository used
by developers. In general, the development of the first four versions mentioned in Section
4.2 took partial time during 6 months for two developers, with some interruptions during
that time. At the end of this process the applications were extensively used for a user study
that is described in Section 5.2.

One way to describe the amount of work per application version is to see changes in
files registered in our CVS-based repository (addition and removal of lines). Although this
information is limited since the initial file size is not recorded in the CVS reporting tool and
some classes are more important than others in the application, such changes give a good
idea of the amount of effort dedicated per hardware platform. Figure 4.4 shows changes
in number of lines of code during time, in files grouped by hardware platforms (All refers
to files that were common to all versions). Each point in the graph of each platform is

computed as the addition of all insertions plus deletions in all files related to such platform
14

14A file was classified in only one category of the 5 options.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Listing 15 Selection in the Visroom environment. InTml code
1 <App id="matchingTest.mAppVisroom">

<!-- selectableObjs selectable -->

<Filter id="selection"
5 type="GoGoSelection"/>

<Object id="handRepr"
filename="hand.3ds"
type="VRObject"/>
<Binding iE="head" iP="pos"
10 oE="selection"
oP="posHead"/>
<Binding iE="head" iP="q"
oE="selection"
: oP="qHead"/>
15 <Send info="handRepr"
oE="selection"
oP="handRepr"/>
<Send info="handRepr"
oE="visibleObjs"
20 oP="add0bject"/>

</App>

LOC Changes During Time. MatchingApp

1800

1600 +-
1400
1200
1000
800
600
400
200

LOC.

2002/12/09

2002/05/31 ©
2002/08/09 g
2002/10110 3

2002/06/14
2002/07/18
2002/09/11

Time

Figure 4.4: Changes in Lines &8 Code per Hardware Platform.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We can notice that general files dominate changes during time which means that most
of the effort in development can be shared among several versions of the application. Peaks
show some deadlines for deliverables in each platform, starting with the PC and SB plat-
forms, followed by HMDJ and 3DD. We can also notice that the later versions required less
changes (or less time) to complete than the previous ones. This indicates that the cost of
producing new versions is reduced during time.

The last peaks in the All/Common curve are related to the log mechanism of the appli-
cations. All versions log information about the user’s experience in a centralized database,
and this functionality required several changes, during time.

Table 4.1 shows the average of changes per platform, during the total period of time
considered in Figure 4.4 (190 days). Although one can not compare such numbers due
to the diminishing effort given by the succession of development cycles, we can see that
the HMDJ and 3DD versions have a higher change average than the other two platforms.
Analyzing such a result we have found that this effect is due to the several versions of
InTml files we created for testing such environments, and due to the special classes we
created to deal with the special devices that these platforms required. We can also see that
the SMARTBoard environment was really easy to integrate, despite the special hardware it
involved. Again, we can notice that most of the effort was concentrated on common files to
all platforms.

| Platform | Average in LOC changes |

PC 9.6

SB 7.3
HMDJ 20.5
3DD 16.2
All 98.2

Table 4.1: Average number of Lines of Code (LOC) changes per Platform.

4.4 Comparison with Other Development Methodolo-
gies and 3D Technologies

Other methodologies for the development of 3D applications have been proposed in the
last decade. The methodology described in this section differs from previous proposals in
the level of abstraction that designers handle, and the special management that retargeting
requires. Our methodology works at the architectural level of the development cycle, and
that the details in other methodologies can be used in order to achieve the expected results.

The work by Tanriverdi and Jacob [93] divides a 3D application in the following com-
ponents: graphics, behavior, interaction, mediator, and communication. They define a
two—level design process, by dividing high level and low level decisions in each component.
Our methodology deals mostly with the high level decisions mentioned in this paper. Our
methodology can be enriched with the low level design process for media elements (which
corresponds to their graphics component), behavior (which is subdivided in their behavior,
interaction, and mediator components), and application connectivity (which corresponds to
their communication component).

Smith, Duke, and Massink [84] define a formal method to compare interaction techniques
in different platforms, in a way independent from the actual code. While this notation is
very useful to understand the inner behavior of an interaction technique, a development
methodology based on such a notation can be too detailed for our designers. We believe
that such a notation can be used for detailed design of complex interaction filters in our
methodology, provided some mapping between their concept of continuous devices and our
strictly discrete modeling.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Stanney et al. [88] define a set of usability guides for the design of VR, applications. We
believe that such guidelines can be easily used and integrated to our proposal, in the task
of describing applications in InTml documents. At this stage designers should take into
consideration not only user requirements but also usability guidelines that can be applied
to the targeted hardware platforms.

There are also some differences between the InTml-based development versus devel-
opment based on other technologies, such as VRML or VRJuggler. We think that our
methodology and division of tasks between roles can be applied with other implementation
environments, but there are some limitations.

First, an architectural language is required for designers, in order to allow them to
develop the same tasks at a higher level of abstraction than code. There are no other archi-
tectural languages specially targeted to VR applications, and general-purpose architectural
languages can not show the important issues in a 3D application.

Second, environment capabilities can be an issue in a general interactive application.
For example, VRML is an environment for 3D applications where users can navigate envi-
ronments, but their interactive capabilities are limited: i.e. it is not possible to allow an
object to be translated in the three axes and rotated at the same time; several independent
modes have to be created. Such limitations are very important when an implementation
environment is chosen « priori, without any consideration to the application requirements.

Third, since current VR environments do not provide a clear description of behavioral
components and their interrelationships 1%, developers can decide any subdivision as they
wish, precluding our support for retargeting. For example, code for reading devices is usually
intermingled with the expected response to it, so it is difficult to replace such devices without
going to the level of code.

Fourth, retargeting is a new development tasks defined in our methodology, and depends
heavily in our division of components. Without this clear separation is not possible to
retarget an application by changing components, and more detail changes at the code level
are required.

As one can see, our methodology separates from particular implementation mechanisms
in order to create more portable, retargetable applications. It is also heavily supported by
our language, InTml.

15 Java3D does have clearly defined behavioral components, but interrelationships are not so clear since
all behaviors have to be awaken by the system.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Examples of Use

In this chapter we demonstrate with three examples how the concepts presented in this thesis
can be used. The first is a simple application that we developed as a proof of concept for
our retargeting process. The second is a comparative user interface study between several
hardware platforms, based on the simple application of our example in the previous chapter.
This user study shows how different implementations in different hardware platforms can be
compared, and how our development techniques help in the comparison and development
processes of multi-platform VR applications. The final example is a partial design, that was
developed with Pauline Jepp, a PhD student at the University of Calgary, that shows how
designers can start the development of a complex application for several hardware platforms
by using InT'ml.

5.1 A Matching Application

We have already mentioned this application in Section 4.2, as an example of the development
methodology for InTml applications. We will describe in detail the components behind the
application’s tasks, and their interrelationships. The InTml files of the four implementations
of this application are in Appendix A.

The application runs on different hardware platforms:

e The PC aplication uses a standard PC interface (Figure 5.1), with a CRT monitor, a
mouse and a keyboard.

e The SMART Board based (SB) application uses a SMART Board [94] (Figure 5.2).
Our SMART Board is a front projected system with touch—sensible screen, four pens,
and an eraser. There are also two buttons beside the pen holders, but we did not use
them in this application.

o The HMDJ application uses a Virtual I-O Glasses head mounted display [50] and a
Microsoft Sidewinder force—feedback joystick [31] (Figure 5.3). The I-O Glasses is a
low resolution HMD with a 3 degrees—of-freedom (DOF) tracker for head orientation.
The SideWinder has many capabilities, but we only use its positioning device and four
buttons.

e The Space Mouse based PC (3DD) application uses a CRT monitor, a keyboard, and
a SpaceMouse input device {1] (Figure 5.4). The SpaceMouse is a 6 DOF device that
allows users to change the position and orientation of a given object. It also has some
buttons integrated in the device, but we use the keyboard instead for implementation
reasons.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.1: Application running on a PC environment.

Figure 5.2: Application running on a SMART Board.

Figure 5.3: Application running on a HMD plus Joystick.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.4: Application running on a PC plus 3D Mouse.

The Matching application was designed as a self-contained set of InTml files, without
references to external libraries, since InTml general libraries of devices and interaction tech-
niques were also under development. For this reason, the application defines all devices and
interaction techniques required by its implementation.

The following sections describe the InTml implementation of each task in the application.
Such tasks were previously mentioned in Section 4.2.

Object’s Geometry Loader

Object’s geometry is loaded from external files, in OBJ and 3ds formats. The InTml code
for loading the three objects in the application is in the Listing 16*.

Listing 16 Load objects in an InTml Application.
1 <Object id="objl" filename="media/car.3ds" type="VRObject"/>
<Object id="obj2" filename="media/Dodge32.3ds" type="VRObject"/>
<0Object id="obj3" filename="media/beethoven.obj" type="VRObject"/>

Each object is named by an unique identifier. Geometry is loaded from a file, given here
by a path relative to the application location. The object’s type defines what functionality
is expected. In this case, we use the VRObject, which was described in Section 3.3. The
code in Java loads each file into memory, without making them visible. The implementation
of this task is platform independent.

Localizing and Orienting Objects at Random

The filter RandomPQ assigns a random position and orientation to the objects it receives. Its
interface is shown in Figure 5.5.

iThe XML notation in this section’s listings was described in Section 3.4.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

objs RandomPQ

gridDimension

viewpoint

outputDevice

Figure 5.5: RandomPQ ports.

The filter divides the space in front of the viewpoint in a grid of size gridDimension.
The outputDevice parameter is used to change the distance at which the objects are shown,
according to the type of display (HMD or a normal monitor). Consecutive objects received
through the port objs are set to a random position in the grid. Extra parameters are
available from the Java implementation of the class, to define a near and far clipping planes
for the random position generation, and a random seed. In general, such parameters are
interesting to developers only, not to designers, and we will not discuss this further.

During initial testing of the application, we noticed that some objects were closer to
their copies than others, and that some objects occlude others since they were closer in
our perspective projection. This is because RandomPQ does not take into consideration the
relative distances (euclidean and angular) between an object and its copy, and the way the
screen is divided. We decided to create a more specialized class, RandomRelativeP(Q. This
new class gets an object and its copy at the same time, divides the screen in 6 disjoint areas,
assigns a random position to the object in one of these areas, and assigns a random position
to the object’s copy such that the angular and euclidean distance between an object and
its copy are constant. The new class is shown in Figure 5.6. Fach object and its copy are
received in different ports, so they can be distinguished. Two parameters are necessary, the
output device to use, and the viewpoint position and orientation.

objl RandomRelativePQ
copyl
obj2
copy?2
obj3
copy3

outputDevice

viewPoint

Figure 5.6: RandomRelativePQ ports.

Listing 17 shows the InTml code that creates the filter of class RandomRelativePq,
and connects the objects and parameters to it. The previous code for RandomPQ was sim-
ilar, with the difference that all objects were received in just one port. This code can be
considered platform independent, providing that the output device is called screen in all

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

implementations.

Listing 17 Localize objects at random.
1 <Filter id="randomRelativePQ" type="RandomRelativePQ"/>

<Binding iE="_self" iP="objl1" oE="randomRelativePQ" oP="obj1"/>
<Binding iE="_self" iP="obj2" oE="randomRelativePQ" oP="obj2"/>
5 <Binding iE="_self" iP="o0bj3" oE="randomRelativePQ" oP="obj3"/>
<!-- Bind the current output display -->
<Binding iE="_self" iP="screen" oE="randomRelativePQ" oP="outputDevice"/>

<!-- Bind the current viewpoint -->
10 <Binding iE="_self" iP="viewpoint" oE="randomRelativePQ" oP="viewPoint"/>

Creating Copies of Objects and Localizing Them at Random

Copies of objects are created by the filter TransparentCopy. It has one input port that
receives objects and one output port that produces transparent copies of the received objects.
Listing 18 shows the InT'ml code that creates the copies, and send them to the interested
filters. We create three instances of TransparentCopy since we want to distinguish each
object’s copy. Copies of objects are sent to randomRelativePQ in order to change their
initial position and orientation to the one required by the application. This task is platform
independent.

Listing 18 Create copies of objects and localize them.
1 <Filter id="tCopyl" type="TransparentCopy"/>
<Filter id="tCopy2" type="TransparentCopy"/>
<Filter id="tCopy3" type="TransparentCopy"/>
<Binding iE="_self" iP="obj1" oE="tCopyl" oP="obj"/>
5 <Binding iE="_self" iP="0bj2" oE="tCopy2" oP="obj"/>
<Binding iE="_self" iP="0bj3" oE="tCopy3" oP="obj"/>
<Binding iE="tCopyl" iP="objCopied" oE="randomRelativePQ" oP="copyl"/>
<Binding iE="tCopy2" iP="objCopied" oE="randomRelativePQ" oP="copy2"/>
<Binding iE="tCopy3" iP="objCopied" oE="randomRelativePQ" oP="copy3"/>

Defining Selectable Objects

We designed filters for the different selection techniques that we used. The PC, HMDJ, and
SB versions use SelectByRay in different ways, while 3DD uses SelectByTouching. The
simplest selection technique is SelectByRay. This technique selects an object from a 2D
position in the screen, which defines a ray perpendicular to the user’s plane of view. In its
simplest form, it has two input ports for the 2D position and the scene of selectable objects,
and an output port for the current selected object (Figure 5.7). It also has extra ports for
control purposes, inherited from ControlableFilter, but they are not shown in the figure
since they are not relevant for the actual selection technique.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pos SelectByRay object

scene

Figure 5.7: SelectByRay ports.

The PC version of the selection task is straightforward (Listing 19): Objects are added

to the set selectableObjs, the selection technique is created and its input is plugged into

the set of selectable objects and the 2D position from the mouse 2.

Listing 19 Define selectable objects, PC version.

1 <0Object id="selectableObjs" type="Scene"/>
<Binding iE="_self" iP="objl" oE="selectablelbjs" oP="addObject"/>
<Binding iE="_self" iP="obj2" oE="selectablelbjs" oP="addObject"/>
<Binding iE="_self" iP="obj3" oE="selectableObjs" oP="add0Object"/>

<Filter id="selection" type="SelectByRay"/>
<Binding iE="_self" iP="selectableObjs" oE="selection" oP="scene"/>
<Binding iE="mouse" iP="mousePos" oE="selection" oP="pos"/>

The SB version uses the same interaction technique, but instead of receiving a 2D position
from the mouse, it receives information from the touch-sensitive whiteboard. Listing 20
shows the new code %, with the connection of the SMARTBoard output to the selection
technique. There is a difference with the PC example that is worth mentioning: The
SMARTBoard allows users to detach from the input device, to jump from one position in
the screen to another, which is different from the mouse that always computes a position as
a relative displacement from the previous position. For this reason, we added functionality
to allow the interaction technique to know when users are not touching the screen, so the
selected object can be de-selected. Without this functionality, users select an object, leave
the screen, and see the object still in selected mode. It is also important to remember that
filters react to any user input in their input ports, but not to absence of input. A selection
technique can not react to absence of a position for selection, since without an input it does
not have to be executed at all.

Listing 20 Define selectable objects, SB version.
1 <Filter id="selection" type="SelectByRay"/>
<Binding iE="smartboard" iP="touchPos" oE="selection" oP="pos"/>
<Binding iE="smartboard" iP="screenReleased"
oE="selection" oP="flushState"/>
5 <Binding iE="_self" iP="selectableObjs" oE="selection" oP="scene"/>

The HMDJ version takes into account two more input devices available: A simple orien-
tation tracker attached to the HMD and a joystick. The interaction technique created takes

2The class Scene allows us to create sets of objects that are not objects themselves, so they can not be
selectable.

3Since the creation of the set of selectable objects is the same, the code is not repeated here and in the
following listings.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

into consideration both devices as it is shown in Figure 5.8. The user’s head movements
define the current viewpoint and view plane as a displacement of the real one. Since we
do not use the mouse pointer for interaction, a new visual representation is created. Also,
since we do not want to lose the pointer once the user’s head moves, the pointer position is
defined in terms of the current view plane center and the actual joystick displacement. In
this way, the pointer is always visible, and it can be moved by the joystick movements or
indirectly by head movements 4.

L
iJoystick offset

Virtual
head
position

View direction

- Virtual view plane
Head position P

Figure 5.8: View and Selection in the HMDJ Platform.

The HMDJ version of the selection technique, illustrated in Listing 21, has a filter to
compute the center of the view plane (center, of type OrientationCenter) °, a filter to
compute the joystick pointer position (pointerPos, of type HMDJPointer), and a visual
representation of the pointer (pointer). The center filter requires the head’s position
(a constant in this case), the head’s orientation, and the current output device in order
to compute the view plane center. The most important input ports for pointerPos are
the current view plane center and the joystick position. The final step in this setup is to
change the actual position of the pointer representation with the 3D position computed by
pointerPos. The selection technique takes the 2D position computed by pointerPos and
the scene. We can see that we do not actually change the code for the selection technique,
but the actual setup.

Finally, the selection in the 3DD environment is based on collision with a hand repre-
sentation, as shown in Listing 22. The filter class SelectByTouching (Figure 5.9) performs
this task, which requires the selectable objects, the hand representation object, and a signal
when to compute such a collision (everytime the hand representation is moved or rotated).

The hand position and orientation comes from the mouse3D device 6.

4The joystick might appear fixed relative to the user’s view plane, but it is moving in absolute coordinates.

5We can notice that the view is an approximation of the real view. It can be improved in order to
compute the frustrum from the real head position.

SThe position actually comes from the resetPosition filter, that allows users to move the cursor back
to the center of the screen, but this functionality is out of this scope of this description.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Listing 21 Define selectable objects, HMDJ version.

1 <!-- Show selection pointer from the head tracker plus joystick —->
<Filter id="center" type="OrientationCenter"/>
<Filter id="pointerPos" type="HMDJPointer"/>
<Constant id="shift" type="float" value="0.01"/>

5 <Object id="pointer" filename="media/pointer.obj" type="VRObject"/>
<Binding iE="_self" iP="pV" oE="center" oP="p"/>
<Binding iE="tracker" iP="q" oE="center" oP="q"/>
<Binding iE="_self" iP="hmd" oE="center" oP="screen"/>
<Binding iE="center" iP="pos" oE="pointerPos" oP="headCenter"/>

10 <Binding iE="joystick" iP="pos" oE="pointerPos" oP="jPos"/>
<Binding iE="_self" iP="hmd" oE="pointerPos" oP="gcreen"/>
<Binding iE="_self" iP="shift" oE="pointerPos" oP="shiftAmount"/>
<Binding iE="pointerPos" iP="pos3D" oE='"pointer" oP="setPos"/>

15 <!-- Create selection technique and bind it as necessary -->
<Filter id="selection" type="SelectByRay"/>
<Binding iE="_self" iP="selectableObjs" oE="selection" oP="scene"/>
<Binding iE="pointerPos" iP="pos" oE="selection" oP="pos"/>

compute SelectByTouching ()bj ect
handRepr deselected
scene

Figure 5.9: SelectByTouching ports.

Listing 22 Define selectable objects, 3DD version.

1 <Filter id="selection" type="SelectByTouching"/>
<Object id="vHand" filename="media/pointer.obj" type="VRObject"/>
<Binding iE="_self" iP="selectableObjs" oE="selection" oP="scene"/>
<Binding iE="mouse3D" iP="pos" oE="selection" oP="compute"/>

5 <Binding iE="mouse3D" iP="q" oE="selection" oP="compute"/>
<Binding iE="_self" iP="vHand" oE="selection" oP="handRepr"/>
<Binding iE="resetPosition" iP="pos" oE="vHand" oP="setPos"/>
<Binding iE="mouse3D" iP="q" oE="vHand" oP="setQ"/>

Feedback for The User Selection

Objects are shown in green when they are selected, in all platforms. The InTml code for
this functionality is shown in Listing 23. The filter highlight changes the color of an object
to the selected color and back to the normal one, once an event by the deselected port is
received or a new object is selected.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Listing 23 Define selectable objects, 3DD version.
1 <Filter id="highlight" type="HighlightedFeedback"/>
<Binding iE="selection" iP="object" oE="highlight" oP="obj"/>
<Binding iE="selection" iP="deselected" oE="highlight" oP="deselected"/>

Grabing and Releasing an Object

Objects are grabbed in order to start a manipulation by translations or rotations. Each
platform uses different devices and interaction techniques for this functionality, as follows.

The PC version implements object rotation and translation with mouse dragging op-
erations, left and right buttons. In this case, the grabbing operation is different either
for rotation or translation. The SB version uses also separate dragging controls with four
different pens (one for rotation, three for translation). The HMDJ based implementation
uses four buttons in the joystick for grabbing an object, either for rotation or translation.
The 3DD platform takes a different approach since it is possible to rotate and translate an
object at the same time, with the same device. In addition, we decided to offer a toggle
functionality for both rotation and translation. In this way, it is possible to just move or
just rotate by pressing a key. Users found this very useful in order to divide the task in a
succession of rotations and translations.

The code related to this functionality is shown in the following section, including the
code for rotations and translations.

Rotating and Translating an Object

An object can be rotated or translated in several ways, given a certain set of input devices.
We decided to implement simple interaction techniques that could be reused among plat-
forms. In the future, these interaction techniques can be replaced by more standard ones,
especially for rotations [47).

The PC, SB, and HMDJ versions use the RotationBehavior and TranslationBehavior
classes for rotating and moving objects, shown in Figure 5.10. RotationBehavior takes the
unit of rotation per pointer movement, starting events, ending events, the current pointer
position, the object to be rotated, and an indication that the object is not selected anymore.
TranslationBehavior takes a movement scale, starting events, ending events, the current
pointer position, the object, and an indication of when an object is deselected. It also takes
input events that define in which plane the movement will be applied (XY/XZ/YZ), from
the user’s viewpoint.

scaleMov TranslationBehavior
buttonPressed
buttonReleased

scaleMov RotationBehavior| | pointerPos

buttonPressed movXY

buttonReleased movXZ

pointerPos movYZ

obj obj

deselected deselected

Figure 5.10: RotationBehavior and TranslationBehavior ports.

The PC version of these manipulation techniques shown in Listing 24 7, connects the

"In the following Listings, we replace translateObj for tObj and joystick for j for space reasons

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

rotation technique to left—button dragging in the mouse, and translation to right—button
dragging. In order to switch between the three axes of movement, we use the keys z, x, and
c. We thought of using the standard letters for coordinate axes, but we decided to choose
three consecutive letters instead, since users can just leave their fingers on top of them and
select them, without looking at the keyboard.

Listing 24 Rotate and translate objects, PC version.
1 <!-- Rotate an object -->
<Filter id="rotate(bj" type="RotationBehavior"/>
<Binding iE="mouse" iP="lButtonPressed"
oE="rotateObj" oP="buttonPressed"/>
5 <Binding iE="mouse" iP="lButtonReleased"
oE="rotateObj" oP="buttonReleased"/>
<Binding iE="mouse" iP="mousePos" oE="rotatelObj" oP="pointerPos"/>
<Binding iE="selection" iP="object" oE="rotatelbj" oP="obj"/>
<Binding iE="selection" iP="deselected" oE="rotateObj" oP="deselected"/>

10
<!-- Translate an object -->
<Filter id="t(0bj" type="TranslationBehavior"/>
<Binding iE="mouse" iP="rButtonPressed"
oE="t0bj" oP="buttonPressed"/>
15 <Binding iE="mouse" iP="rButtonReleased"
oE="t0bj" oP="buttonReleased"/>
<Binding iE="mouse" iP="mousePos" oE="t0Obj" oP="pointerPos"/>
<Binding iE="keyboard" iP="z" oE="t0bj" oP="movXY"/>
<Binding iE="keyboard" iP="x" oE="t0Obj" oP="movXZ"/>
20 <Binding iE="keyboard" iP="c" oE="t0bj" oP="movYZ"/>
<Binding iE="selection" iP="object" oE="tObj" oP="obj"/>
<Binding iE="selection" iP="deselected" oE="tObj" oP="deselected"/>

The SB version connects rotation to the first pen in the SMARTBoard, and each trans-
lation axis to pens 2, 3, and 4, for planes XY, X7, and YZ, respectively. The code is shown
in Listing 25. We can see how the selection of a pen for translation both activates the
translation technique and selects the particular plane of movement.

Listing 26 shows the code for rotation and translation in the HMDJ platform. This code
is similar to the one of in the SB platform, except that four buttons in the joystick are used
for movements and rotations.

Our last platform, 3DD uses a different class for rotation and translation, due to the fact
that the space mouse allows users to perform both operations at the same time. Listing 27
shows the corresponding code, in which keys z and x are used for grabbing and releasing
the selected object, and keys a and s are used to switch on and off translation and rotation,
respectively. Another difference between this implementation and the previous ones is that
it is possible to get a 3D rotation and translation directly from the device. RotTrans takes
this into account and maps more naturally events from the device into object movements.

Computing Matching Function

The matching between an object and its copy is a platform—independent operation that
measures their angular and euclidean distances and generate an event when both distances
are under certain thresholds. The class MatchFunction takes an object, its copy, and an
event of when it has to be computed. It generates an event when both objects are close
enough.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Listing 25 Rotate and translate objects, SB version.

1 <!-- Rotate an object ——>
<Filter id="rotate0Obj" type="RotationBehavior"/>
<Binding iE="smartboard" iP="penlSelected"
oE="rotateObj" oP="buttonPressed"/>
5 <Binding iE="smartboard" iP="penlReleased"
oE="rotate(Obj" oP="buttonReleased"/>
<Binding iE="smartboard" iP="touchPos" oE="rotatelbj" oP="pointerPos"/>
<Binding iE="selection" iP="object" oE="rotateObj" oP="obj"/>
<Binding iE="selection" iP="deselected" oE="rotateObj" oP="deselected"/>
10
<!-- Translate an object —-->
<Filter id="tObj" type="TranslationBehavior"/>
<Binding iE="smartboard" iP="pen2Selected"
oE="t0bj" oP="buttonPressed"/>
15 <Binding iE="smartboard" iP="pen2Released"
OoE="t0bj" oP="buttonReleased"/>
<Binding iE="smartboard" iP='"pen2Selected" oE="t0Obj" oP="movXy"/>
<Binding iE="smartboard" iP="pen3Selected" oE="t0bj" oP="movXZ"/>
<Binding iE="smartboard" iP="pen3Selected"
20 oE="t0bj" oP="buttonPressed"/>
<Binding iE="smartboard" iP="pen3Released"
oE="t0bj" oP="buttonReleased"/>
<Binding iE="smartboard" iP="pen4Selected" oE="t0bj" oP="movYZ"/>
<Binding iE="smartboard" iP="pendSelected"
25 oE="t0bj" oP="buttonPressed"/>
<Binding iE="smartboard" iP="pen4Released"
oE="t0bj" oP="buttonReleased"/>
<Binding iE="smartboard" iP="touchPos" oE="t0Obj" oP="pointerPos"/>
<Binding iE="selection" iP="object" oE="tObj" oP="obj"/>
30 <Binding iE="selection" iP="deselected" oE="t0Obj" oP="deselected"/>

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Listing 26 Rotate and translate objects, HMDJ version.

1

10

15

20

25

30

<!{-- Rotate an object -->
<Filter id="rotateObj" type="RotationBehavior"/>

<Binding iE="j"
<Binding iE="j"
<Binding iE="j"
<Binding iE="j"

iP="buttonlPressed" oE="rotateObj" oP="buttonPressed"/>
iP="buttonlReleased" oE="rotateObj" oP="buttonReleased"/>
iP="buttoniPressed" oE="pointerPos" oP="buttonPressed"/>
iP="buttonlReleased" oE="pointerPos" oP="buttonReleased"/>

<Binding iE="pointerPos" iP="pos" oE="rotate0bj" oP="pointerPos"/>
<Binding iE="selection" iP="object" oE="rotateObj" oP="obj"/>
<Binding iE="selection" iP="deselected" oE="rotateObj" oP="deselected"/>

<!-- Translate an object -->
<Filter id="tObj" type="TranslationBehavior"/>

<Binding iE="j"
<Binding iE="j"
<Binding iE="3j"
<Binding iE="j"
<Binding iE="j"
<Binding iE="j"
<Binding iE="j"
<Binding iE="j"
<Binding iE="j"
<Binding iE="j"
<Binding iE="j"

<Binding iE="j

iP="button2Pressed" oE="t0bj" oP="buttonPressed"/>
iP="button2Released" oE="t0Obj" oP="buttonReleased"/>
iP="button2Pressed" oE="pointerPos" oP="buttonPressed"/>
iP="button2Released" oE="pointerPos" oP="buttonReleased"/>
iP="button3Pressed" oE="t0bj" oP="buttonPressed"/>
iP="button3Released" oE="t0Obj" oP="buttonReleased"/>
iP="button3Pressed" oE="pointerPos" oP="buttonPressed"/>
iP="button3Released" oE="pointerPos" oP="buttonReleased"/>
iP="button4Pressed" oE="t0Obj" oP="buttonPressed"/>
iP="button4Released" oE="t0bj" oP="buttonReleased"/>
iP="button4Pressed" oE="pointerPos" oP="buttonPressed"/>
iP="button4Released" oE="pointerPos" oP="buttonReleased"/>

<Binding iE="pointerPos" iP="pos" oE="t0bj" oP="pointerPos"/>

<Binding iE="j"
<Binding iE="j"

<Binding iE="j"

iP="button2Pressed" oE="t0bj" oP="movXY"/>
iP="button3Pressed" oE="t(Obj" oP="movXZ"/>
iP="button4Pressed" oE="t0bj" oP="movYZ"/>

<Binding iE="selection" iP="object" oE="t0bj" oP="obj"/>
<Binding iE="selection" iP="deselected" oE="t(Obj" oP="deselected"/>

1

10

Listing 27 Rotate and translate objects, 3DD version.

<!-- Rotate and Tramnslate an object -->

<Filter id="rotTrans" type="RotTrans"/>

<Binding iE="selection" iP="object" oE="rotTrans" oP="obj"/>

<Binding iE="selection" iP="deselected" oE="rotTrans" oP="deselected"/>
<Binding iE="keyboard" iP="z" oE="rotTrans" oP="buttonPressed"/>
<Binding iE="keyboard" iP="x" oE="rotTrans" oP="buttonReleased"/>
<Binding iE="keyboard" iP="a" oE="rotTrans" oP="toggleTranslation"/>
<Binding iE="keyboard" iP="s" oE="rotTrans" oP="toggleRotation"/>
<Binding iE="mouse3D" iP="q" oE="rotTrans" oP="setQ"/>

<Binding iE="mouse3D" iP="pos" oE="rotTrans" oP="setPos"/>

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Listing 28 Matching function.
1 <Filter id="matchFunctionl" type="MatchFunction"/>
<Filter id="matchFunction2" type="MatchFunction"/>
<Filter id="matchFunction3" type="MatchFunction"/>
<Binding iE="_self" iP="objl1" oE="matchFunctionl" oP="obj"/>
5 <Binding iE="tCopyl" iP="objCopied" oE="matchFunctionl" oP="copyDbj"/>
<Binding iE="_self" iP="obj2" oE="matchFunction2" oP="obj"/>
<Binding iE="tCopy2" iP="objCopied" oE="matchFunction2" oP="copyObj"/>
<Binding iE="_self" iP="0bj3" oE="matchFunction3" oP="obj"/>
<Binding iE="tCopy3" iP="objCopied" oE="matchFunction3" oP="copyObj"/>
10 <Binding iE="obj1" iP="posChanged" oE="matchFunctionl" oP="compute"/>
<Binding iE="objl" iP="qChanged" oE="matchFunctionl" oP="compute"/>
<Binding iE="obj2" iP="posChanged" oE="matchFunction2" oP="compute"/>
<Binding iE="obj2" iP="qChanged" oE="matchFunction2" oP="compute"/>
<Binding iE="0bj3" iP="posChanged" oE="matchFunction3" oP="compute"/>
15 <Binding iE="obj3" iP="qChanged" oE="matchFunction3" oP="compute"/>

Deleting Objects Once They are Matched

We make objects invisible in order to simulate the operation of deleting. The filter
DeleteWhenSignal sends a signal to the object and its copy received through its input port
obj, once an event through its signal port is received. As illustrated in Listing 29, we
create three instances of this filter in order to delete each tuple object—copy.

Listing 29 Deleting objects function.

1 <Filter id="deleteObjsl" type="DeleteWhenSignal"/>
<Filter id="deleteObjs2" type="DeleteWhenSignal"/>
<Filter id="deleteObjs3" type="DeleteWhenSignal/>
<Binding iE="_self" iP="objl" oE="deletelbjsl" oP="obj"/>

5 <Binding iE="tCopyl" iP="objCopied" oE="deleteObjsl" oP="obj"/>
<Binding iE="matchFunctionl" iP="match" oE="deleteObjsl" oP="signal"/>
<Binding iE="_self" iP="obj2" oE="deleteObjs2" oP="obj"/>
<Binding iE="tCopy2" iP="objCopied" oE="deleteObjs2" oP="obj"/>
<Binding iE="matchFunction2" iP="match" oE="deleteObjs2" oP="signal"/>

10 <Binding iE="_self" iP="0bj3" oE="deleteObjs3" oP="obj"/>
<Binding iE="tCopy3" iP="objCopied" oE="deletelObjs3" oP="obj"/>
<Binding iE="matchFunction3" iP="match" oE="deleteObjs3" oP="signal"/>

Logging Application Events

We logged all events that result of the interaction with the application, in all four im-
plementations. Figure 5.11 shows the input ports for the Log filter class, which basically
registers all possible output events: time associated with each execution frame, user and
platform identifications, matching signals, end or abort signals, changes in positions and
orientations for objects and object copies, selection signals, change of plane of movemement
(XY /XZ/YZ), starting and ending signals for rotation and translation, and toggle signals for
rotation and translation. Not all events can be generated in just one system; instead, each
implementation connects ports to an instance of the Log class according to the information
available.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

curTime Log
userld

matchSignal

platformId

endSignal

abortSignal
posObjl
posReplical
posObj2
posReplica2
posObj3
posReplica3
qObjl
qReplical
qObj2
qReplica2
qObj3
qReplica3
selectedObj
deselectedObj
movXY
movX7Z
movYZ
pointerPos
rotateStart
rotateStop
translateStart
translateStop
toggleTranslation
toggleRotation

Figure 5.11: Log ports.

Listing 30 shows the connections for logging on the PC platform. The frame time is
taken from the timer device. The user id and platform id are initialized with constant
values. With the aid of a program written in XSLT {108], the user id was replaced by a
different value each time the program was run. Events from the mouse, keyboard, matching
filters, selection filter, and objects are sent to the log accordingly. Copies of objects are
wrapped in object holders, and their position and orientation changes are routed to the log.

The SB version of the log functionality is similar to the PC version, with the differences
that the devices generate from information. Listing 31 shows such differences. At a difference
of the PC version, we can notice that there are several ways to start a translation, since
there are different devices for each translation plane.

The version for the HMDJ version is similar to the SB one, and it can be found in
Appendix A. Listing 32 shows the differences in the 3DD version. In this case, keys are
associated to the task of grabbing an object for rotation and translation. There are also
keys for toggling rotation and translation behavior, which is not present in the previous
versions.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Listing 30 Logging functionality on the PC platform.

1

10

15

20

25

30

35

40

45

<Filter id="log" type="Log"/>

<IDevice id="timer" type="Timer"/>

<Binding iE="timer" iP="curTime" oE="log" oP="curTime"/>
<Binding iE="quit" iP="endInfo" oE="log" oP="endSignal"/>

<!-- Identify user and platform -->

<!-- Change this constant to an id for a particular user -->
<Constant id="userId" type="String" value="Test user"/>
<Constant id="platformId" type="String" value="PC"/>

<Binding iE="_self" iP="userId" oE="log" oP="userId"/>
<Binding iE="_self" iP="platformId" oE="log" oP="platformId"/>

<t{-- initial transformations, selected objects, position and orientation
while moving, match times -->

<Binding iE="matchFunctionl" iP="match" oE="log" oP="matchSignal"/>

<Binding iE="matchFunction2" iP="match" oE="log" oP="matchSignal"/>

<Binding iE="matchFunction3" iP="match" oE="log" oP="matchSignal"/>

<Binding iE="mouse" iP="mousePos" oE="log" oP="pointerPos"/>

<Binding iE="mouse" iP="1ButtonPressed" oE="log" oP="rotateStart"/>

<Binding iE="mouse" iP="1ButtonReleased" oE="log" oP='"rotateStop"/>

<Binding iE="mouse" iP="rButtonPressed" oE="log" oP="translateStart"/>

<Binding iE="mouse" iP="rButtonReleased" oE="log" oP="translateStop"/>

<Binding iE="keyboard" iP="z" oE="log" oP="movXY"/>

<Binding iE="keyboard" iP="x" oE="log" oP="movXZ"/>

<Binding iE="keyboard" iP="c" oE="log" oP="movYZ"/>

<Binding iE="keyboard" iP="q" oE="log" oP="abortSignal"/>

<Binding iE="selection" iP="object" oE="log" oP="selectedObj"/>

<Binding iE="selection" iP="deselected" oE="log" oP="deselectedObj"/>

<Binding iE="obj1" iP="posChanged" oE="log" oP="posObj1"/>
<Binding iE="objl1" iP="qChanged" oE="log" oP="qObj1"/>
<Binding iE="obj2" iP="posChanged" oE="log" oP="posObj2"/>
<Binding iE="obj2" iP="qChanged" oE="log" oP="qObj2"/>
<Binding iE="obj3" iP="posChanged" oE="log" oP="posObj3"/>
<Binding iE="obj3" iP="qChanged" oE="log" oP="q0bj3"/>

<ObjectHolder id="copyl"/>

<ObjectHolder id="copy2"/>

<0ObjectHolder id="copy3"/>

<Binding iE="tCopyl" iP="objCopied" oE="copyl" oP="object"/>
<Binding iE="tCopy2" iP="objCopied" oE="copy2" oP="object"/>
<Binding iE="tCopy3" iP="objCopied" oE='"copy3" oP="object"/>
<Binding iE="copyl" iP="posChanged" oE="log" oP="posReplical/>
<Binding iE="copyl" iP="qChanged" oE="log" oP="qReplical"/>
<Binding iE="copy2" iP="posChanged" oE="log" oP="posReplica2"/>
<Binding iE="copy2" iP="qChanged" oE="log" oP="qReplica2"/>
<Binding iE="copy3" iP="posChanged" oE="log" oP="posReplica3"/>
<Binding iE="copy3" iP="gChanged" oE="log" oP="gReplica3"/>

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Listing 31 Logging functionality on the SB platform.

1 <Binding iE="smartboard" iP="touchPos" oE="log" oP="pointerPos"/>
<Binding iE="smartboard" iP='"penlSelected" oE="log" oP="rotateStart"/>
<Binding iE="smartboard" iP="penlReleased" oE="log" oP="rotateStop"/>
<Binding iE="smartboard" iP="peniSelected" oE="log" oP="translateStart"/>

5 <Binding iE="smartboard" iP="peniReleased" oE="log" oP="translateStop"/>
<Binding iE="smartboard" iP="pen2Selected" oE="log" oP="tramslateStart"/>
<Binding iE="smartboard" iP="pen2Released" oE="log" oP="translateStop"/>
<Binding iE="smartboard" iP="pen3Selected" oE="log" oP="translateStart"/>
<Binding iE="smartboard" iP="pen3Released" oE="log" oP="translateStop"/>

10 <Binding iE="smartboard" iP="pen4Selected" oE="log" oP="translateStart"/>
<Binding iE="smartboard" iP="pen4Released" oE="log" oP="translateStop"/>
<Binding iE="smartboard" iP="pen2Selected" oE="log" oP="movXY¥"/>
<Binding iE="smartboard" iP="pen3Selected" oE="log" oP="movXZ"/>
<Binding iE="smartboard" iP="pen4Selected" oE="log" oP="movYZ"/>

Listing 32 Logging functionality on the 3DD platform.

1 <Binding iE="keyboard" iP="z" oE="log" oP="rotateStart"/>
<Binding iE="keyboard" iP="x" oE="log" oP="rotateStop"/>
<Binding iE="keyboard" iP="z" oE="log" oP="tramnslateStart"/>
<Binding iE="keyboard" iP="x" oE="log" oP="translateStop"/>

5 <Binding iE="keyboard" iP="q" oE="log" oP="abortSignal'/>
<Binding iE="keyboard" iP="a" oE="log" oP="toggleTranslation"/>
<Binding iE="keyboard" iP="s" oE="log" oP="toggleRotation"/>

Terminating the Application

There are two ways to end the application, either by completing the task of matching the
three objects, or by aborting. Both are implemented in a platform—independent way as
showed in Listing 33. The filter class QuitMatching ends the application when it receives
either three matching signals or one abort signal.

Listing 33 InTm! code for ending the application.

1 <Filter id="quit" type="QuitMatching"/>
<Binding iE="matchFunctionl" iP="match" oE="quit" oP="signal"/>
<Binding iE="matchFunction2" iP="match" oE="quit" oP="signal"/>
<Binding iE="matchFunction3” iP="match" oE="quit" oP="signal"/>

5 <Binding iE="keyboard" iP="q" oE="quit" oP="abortSignal"/>

5.2 Performance Comparison for The Four VR Plat-
forms

The following example shows how InTml can help in the design and development of com-
parative user studies. In any user study, developers have to create different versions of a
test application, in order to cover the different conditions they want to explore. InTml
facilitated the creation of such versions, since it is trivial to change filters as part of the
retargeting process. Although this study is not very conclusive, it illustrates a powerful
aspect of InTml, which is the facilities to create variations of a same application in compar-
ative user studies. We conducted an experiment in which subjects used one of four versions

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the matching application running on different hardware platforms. We used InTml as
the implementation framework in order to share as many similarities as possible between
different hardware platforms and, at the same time, to be able to retarget the interaction
techniques to the available hardware. InTml also facilitated the creation of common metrics
among all implementations.

5.2.1 Comparison Metrics

Many user studies in VR, mentioned later, have concentrated on the systematic analysis of
interaction techniques, devices, and content characteristics. Some have studied variations
of a particular application, and some have concentrated on the reactions that people have
to this technology. Our goal is to define metrics and methods to compare all these factors
at once, for a particular application and a user community. The following sections present
a detailed analysis of these studies.

Several studies have compared interaction techniques, such as comparisons of manip-
ulation techniques [72, 109], grabbing techniques [16], and travel techniques {19]. Such
comparisons usually create environments with parameters relevant to a particular set of
interaction techniques in study, and they typically use a fixed set of devices. Other studies
have compared a smaller subset of interaction techniques in order to show advantages and
disadvantages in more detail, such as a virtual hand versus a virtual pointer {70}, HOMER
versus Vodoo Dolls [69], or speed-coupled flying with orbiting versus others [91].

Several papers have introduced new VR devices (e.g. [80, 46]), some with detailed user
studies about their benefits and characteristics (e.g [65, 60, 101]), and some with comparison
with other devices in a particular task [47]. Other papers have been devoted to the study
of small changes in devices for an application, such as a joystick versus a stylus [17], a 3D-
ball versus a tracker [47], two hand control versus one hand [7], or eye movements versus a
pointer [92]. Although these studies provide good design guidelines for VR developments,
they are of limited use in real applications when a device is not used in isolation.

Some papers have shown studies of several implementations of interesting VR appli-
cations in areas such as 3D model design [43] or non-linear drama [32], but they have
considered only a limited number of implementations, and their analysis techniques have
been very subjective.

There are also some studies on the effect of VR environments on humans, e.g. a study
of object rotation [102], a study of role of kinesthetic reference frames in two handed input
performance [6], or a study on nausea effects of navigation techniques [48]. These studies
found design guidelines that are very useful in the development of VR applications.

We argue that the important issue in a real application is the combination of all factors,
interaction techniques, devices, and people. Hence, it is difficult to directly apply previous
studies since they do not show the effect of factor combinations. Previous results are very
important as guidelines, but a set of previously tested devices and interaction techniques
have to be tested together in order to understand their relationships.

We use objective and subjective metrics to compare several versions of an application.
There are many ways to capture subjective information from the user, but we decided to use
questionnaires, because they can be filled online and they are easily processed. There are
many examples of questionnaires for user evaluation in VR applications, e.g. [106, 83], and
the more general ones are applicable to any interface [22]. Despite known disadvantages,
e.g. a lack of correlation with reality [99], we consider them useful for comparing different
implementations of a VR application.

We collected the following standard set of events for all platforms:

e SEL and DES: Selection and de-selection of objects.

e MOV_XY, MOV _XZ, MOV_YZ: Change in the plane of movement, applicable in all
platforms except 3DD.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

¢ RI and RE: Subject starts or stops an object rotation.
e TT and TE: Subject starts or stops an object movement.
o INTML_EXEC_TIME: Time for the execution of tasks in InTml, in milliseconds.

o MATCH_SIGNAL: Event received when an object and its copy are close enough so
they are considered a match.

o END_SIGNAL and ABORT_SIGNAL: Events received when the application finishes
or its aborted.

e MOV: An object has moved
e ROT: An object has been rotated

Some events can not be generalized, such as the MOV_* group, since such events do
not exist in the 3DD platform. Others behave differently in different platforms, such as
the RI/RE/TI/TE: In the 3DD platform, both groups are simultaneous to the SEL-DES
events, since once an object is grabbed, it can be rotated and translated at the same time
8. Still these events allow the development of a set of uniform metrics and an objective
comparison of different implementations. We define the following metrics, based on the raw
events described previously: Time for object matching, number of control events per object,
distance error, orientation error, and preparation time. Details of such metrics are described
below.

The events generated by an application are temporally organized as shown in Figure
5.12. Objects are manipulated in selection intervals, the intervals that start with a SEL
and end with a DES. We define the time for object matching as the sum of all selection
intervals dedicated to a particular object, intervals that might be intermixed and sparse,
but are always disjoint. The number of control events per object is the sum of all control
events, MOV_XY, MOV_XZ, MOV_YZ, RI, RE, T1, TE, inside the selection intervals of
an object.

SEL DES SEL DES SEL

Figure 5.12: Order of events throughout time.

The distance error (DE) is defined in terms of the MOV events. Every time such an
event is generated for a particular object, we save the distance to its copy, and we consider
this distance fixed during the period of time given by the MOV event and the next one, or
the end of the selection interval. The distance error can vary substantially, as is illustrated
in Figure 5.13. Ideally, the user’s interaction will steadily decrease the distance between an
object and its copy. However, errors in the user’s interpretation or in the use of the interface
can create a more erratic behavior, as in the right panel of the figure. We take the number
of times that the distance increases as a measure of the distance error in an experiment.
This measure can be computed in several ways, depending on how fine—grain detail changes
are considered, and how important the errors are. In this analysis, we use every third point,
and we record any increase in distance. All other measure techniques we used gave similar

8We also use these groups to mark the tasks’ dis-entanglement in the 3DD environment.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

results. The orientation error (OE) is defined in a similar way, except that every time a
ROT event is received, we consider the angle between the quaternions that describe the
current orientation of an object and its copy.

Distance lor experiment 36 Distince for experiment 45
- 60

- -) lg‘r

Lk !
; \ i% e ,'mfﬁl“, ’1

]
4.680408 48408 4.0284054.040+064.0604064 08405 42408 410408 420:05 430308 446000 450008 466105 47006 480405 49:06
Time Tima

Object1 +
joct 2 x
hocts o

Distanca
Distance.

3

Figure 5.13: Distance error over time.

If there are no objects selected, we assume that the user is preparing an interaction with
the system. The preparation time related to an object is the sum of all preparation intervals
that precede selection intervals for this object.

5.2.2 Method and Apparatus

We conducted an experiment in which subjects used one of four versions of an application
running on different hardware platforms. A total of 42 participants volunteered for the
experiment, 8 women and 34 men between 21 and 30 years. They were divided into 4 groups,
one for each hardware setup. Three participants did not finish the experiment, and we did
not consider their data in the analysis, so there were 10 participants for all experimental
condition except one. Participants read a general introduction to the experiment and filled
out a form with general information about themselves, inspired by the QUIS evaluation
questionnaire [82, 22] and shown in Appendix E. We guided them while they were matching
the first object, and allowed them to be free with the other two objects.

After the experiment was completed, performance data was collected and the participants
were asked to fill out a second form, a short version of the one designed by Witmer and
Singer [106] (see Appendix E) about their experiences and personal opinions. Participants
took about half an hour to complete the whole experiment.

5.2.3 Results

We will discuss in this section the general results of the experiment, the event-related results,
and the subjective results of the questionnaire evaluation.

General Results

Table 5.1 shows the InTml frame rate, the time spent in an execution of InTml behavior,
given by the average of execution time of the InTml code, and the Java3D frame rates, given
by the mean of the difference between start times of InTm! frames. We find that the InTml
execution rates for the SB and HMDJ platforms are considerably slower than for the PC
and 3DD. The InTml frame rates for the PC and 3DD environments are enough to keep the
Java3D frame rates up to speed. The implementation of the SB and HMDJ environments
should, however, be faster in order to get at least one update per Java3D frame.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Platform InTml | Java3D
Frm. R. | Frm. R.

PC 51 50.65

SB 29 57.33
HMDJ 31 34.83
3DD 60 28.68

Table 5.1: InTml and Java3D Frame Rates.

Table 5.2 shows the average duration and standard errors ? per experiment in each
platform. PC took longer than the other platforms, and HMDJ was the fastest one, despite
the lower frame rate that this platform had.

Platform | Time SE
(min)
PC 11.9 | 2.46

SB | 10.76 | 1.03
HMDJ 7.61 | 0.91
3DD 9.75 | 0.93

Table 5.2: Time per Experiment.

Event—Related Results

Most users started the task with the Beethoven face, matched second the yellow car and
the red car as the last one.

Table 5.3 shows the time for object matching, in seconds, for the 2nd and 3rd matched
objects for each platform. We notice that matching times do indeed decrease between the
second and third matching. From faster to slower matching time, we have the following
order of platforms: 3DD, SB, HMDJ, PC. It is interesting to notice the good performance
of the SB platform, despite the slower hardware that it uses. The PC platform performs
slower than the others, despite the fact that users were already familiar with the devices
used in this platform.

2nd Object 3rd Object
MEAN | SE [MEAN [SE
PC 262.6 | 103.0 134.8 | 29.4
SB 119.3 18.9 100.8 | 23.8
HMDJ 129.2 | 36.3 128.2 { 25.4
3DD 106.8 27.2 98.1 | 22.1

Platform

Table 5.3: Time for matching.

Table 5.4 shows the number of control events per platform. 3DD presents the lowest
number of control events, mainly due to the absence of MOV_* events. Despite the unifor-
mity of interaction techniques in the SB and PC platforms, SB registers significantly fewer
control events than PC.

9The standard error is defined as the standard deviation divided by the square root of the number of
samples.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Platform 2nd Object 3rd Object
MEAN | SE | MEAN | SE
PC 940.9 | 549.8 619.3 | 186.6
SB 63.3 | 11.8 62.6 | 10.5
HMDJ 26.5 3.8 26.9 2.9
3DD 4.2 2.5 3.8 1.8

Table 5.4: Number of control events.

Table 5.5 shows distance errors. Users are more accurate in the SB and HMDJ platforms
than in the PC and 3DD ones. Pairwise differences between SB and 3DD, and between
HMDJ and 3DD are significant.

Platform 2nd Object 3rd Object
MEAN [SE | MEAN | SE

PC 20.7 | 11.3 101 | 2.6

SB 3.5 1.0 27109
HMDJ 5.3 0.9 59114
3DD 136 | 3.2 19.3 | 24

Table 5.6 shows orientation errors.
platforms than in the PC and HMDJ ones.

Table 5.5: Distance error.

Users are more accurate in the SB and the 3DD

The difference between the PC and 3DD

platforms for the second object is significant.

Platform 2nd Object 3rd Object
MEAN [SE | MEAN | SE
PC 76.4 | 25.9 52.5 | 15.1
SB 157 34 159 | 31
HMDJ 28.2 | 14.6 36.9 | 6.1
3DD 13.1 | 4.3 23.1 | 4.7

Table 5.6: Orientation error.

Finally, Table 5.7 shows the preparation time per platform. The HMDJ platform requires
more time before selecting objects, followed by 3DD, SB, and PC.

Platform 2nd Object 3rd Object
MEAN | SE | MEAN | SE
PC 16.4 3.7 11.8 2.1
SB 104.9 | 139 92.4 | 17.8
HMDJ 2201 5.2 296! 6.0
3DD 94.7 | 35.4 68.5 | 25.9

Table 5.7: Preparation time.

Table 5.8 shows rankings for all platforms, according to each one of the above measures.

There are some ties due to contradictory results between the second and third matched
object. On average, the HMDJ, SB, and 3DD platforms outperform the PC. Again, it is
interesting to note the good performance of the SB platform despite the slower hardware.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Platform | TOM | NCE | DE | OE

TT [AVE |

pPC 4 41 35 4 4 3.9
SB 2 3 1] 15 3 2.1
HMDJ 3 2 2115 1 1.9
3DD 1 1] 35 3 2 2.1

Table 5.8: Rankings of platforms per metric.

Subjective Results

Users are classified according to two factors: immersive tendency and previous 3D experi-
ence. We consider that participants have had previous experience with 3D systems if they
selected any of the following options in the first questionnaire (Appendix E): Game consoles,
HMDs, Tracking devices, Stereo glasses, Passive Stereo Displays, 3D Mouse, CAD, or 3D
Video Games. Table 5.9 shows the averages of immersive tendency and previous experience.

| Platform | Immersive Tend. | 3D experience |

PC 6.05 + 0.47 90%
SB 5.5 & 0.37 80%
HMDJ 5.97 £+ 0.38 90%
3DD 5.7 + 0.51 89%

Table 5.9: Participants’ previous experiences.

Table 5.10 shows average answers of questionnaries.

Platform User Screen Learning System Sense of
Reactions Capabilities Presence

PC| 54+0.31]833+£0.08)51240.13 714044 573+04

SB | 5.58 £ 0.17 { 7.73 £ 0.16 | 5.84 +0.29 | 5.23 +£ 042 | 5.59 £ 0.35
HMDJ | 6.08 = 0.19 { 6.97 +£ 0.28 | 552 £ 0.25 | 6.45 £ 0.23 | 6.41 £ 0.34
3DD | 6.41 +£0.33 | 7.26 + 0.19 56 =01] 7.08 £0.18 | 576 + 0.53

Table 5.10: Averages of user answers in the surveys.

User reactions to the PC and SB environments are not as good as the ones for HMDJ
and 3DD. Some users complained about the difficulty of the interaction techniques in the PC
and SB environments, especially for rotations. Users in the HMDJ platform asked to map
rotations in the Z axis to the joystick’s twist capability. Users liked the screen appearance
of the PC best, and that of the HMDJ least. Users complained about the screen size in
the HMDJ environment, and about the visual feedback for selectable objects, especially in
the 3DD environment *°. In terms of learning, users did not find any interface particularly
intuitive, and the most disliked was the PC platform. The system as a whole was considered
better for participants in 3DD and PC environments than for participants in the SB and
HMDJ ones. Finally, presence ratings were in general very low, with a slight advantage for
the HMDJ platform. Users complained about the interaction techniques, the front projection
system in the SB, the mapping of the joystick in the HMDJ, and the jittering of the tracker
in the HMDJ.

A similar analysis of Table 5.8, with the information from the users, reveals that all
platforms are similar from the user’s point of view, with a slight preference for the SB
environment. It is also interesting to note that despite the fact that the PC and HMDJ

10Tn the 3DD environment, users check if an object is selectable by moving the pointer to the object’s
position, which is slow.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

environments are comparable from the user’s point of view, the HMDJ has a better objective
ranking. For this reason, both objective and subjective metrics should be taken into account
in the development of new prototypes.

5.2.4 Discussion

These four prototypes show some interesting results. The frame rates were low in SB, as
can be expected with the slower machine use. HMDJ also had a low InTml and Java3D
frame rates, possibly caused by device drivers, orientation tracker or display. Users in the
HMDJ platform completed the task faster despite its low frame rate, which makes this
platform very promising in terms of user performance. Matching times for the 3DD and
SB were comparable and better than the ones in PC and HMDJ. Users took probably
more time to prepare in these environments, and they were more efficient when they were
interacting. This result is also supported by the number of control events generated in the
PC platform compared to the others: PC users generated many more control events than
users of the other platforms. We believe that users were more comfortable and familiar with
the PC platform, so they allowed themselves more interaction mistakes than in the other
environments.

Users produced large distance errors in the PC and 3DD platforms than in the other
two. We believe that they took more time to interact and move the objects in these two
environments, and consequently the distance errors were bigger. There is a bigger number of
orientation errors than distance errors, suggesting that users spent most of the time rotating
objects, instead of moving them.

Users spent more time preparing in the SB environment than in the other ones, suggesting
that the characteristics of this environment, bigger display and slower machine, affected their
performance. However, increased preparation time resulted in lower number of errors and
shorter matching times.

From the questionnaires, we see that users reacted more critically to the PC environment
than to the others. Maybe the familiarity of this environment created a higher expectations
with respect to the interaction techniques. Screen quality was better on the PC, but it is
interesting that users gave a lower rating to the 3DD, despite the fact that they had basically
the same screen. The lack of familiarity with the Space Mouse may have affected the overall
rating of image quality.

The PC and 3DD platorms were classified as more powerful than the HMDJ and SB. We
believe this is due latency and delays on the latter two and the better machines used for the
former two. Users in 3DD complained about lack of visual feedback, despite the fact that
all platforms used the same approach: the copy of an object was not selectable, only the
original, so any attempt to select a copy did not give any feedback. We believe this is due
to the slower process of selecting an object in the 3DD platform, since users have to move a
pointer in 3D until it collides with an object. This can take more time than simply moving a
2D pointer in the display plane and using ray casting for selection, so the slower the process
the more noticeable were problems with feedback. Finally, users rated the HMDJ better in
terms of presence, maybe because vision with the HMD was limited to the virtual world, so
distractions were avoided.

We have shown how several implementations of a 3D application can be developed and
compared using objective and subjective data. Our results show that the environment that
users prefer may not necessarily be the one in which they perform best. The results also
show that implementations on slow machines can compete with faster ones, at least at a
prototype level for the interaction techniques and behavior. In summary, the development
of several prototypes of an application, instrumented by standard metrics among them, can
help understanding the best implementation for a given population.

We plan to run more studies with different applications, in order to test our methodology
more thoroughly. We also plan to add more platforms to this study, to do more studies about
controlled improvements of this application, and to compare specially tuned implementations

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in these platforms.

5.3 A Virtual Clay Application

The collaboration with Pauline Jepp at the University of Calgary evolved in a first InTml
description of tasks in her Virtual Clay Application. The Virtual Clay Application is a
multi-platform, VR environment that will allow artists to create models with virtual clay,
a virtual material with similar characteristics to real clay. InTm! code for the tasks we have
designed is included in Appendix B, and we describe here the current state of our design
effort.

We envisioned three platforms where the application should run:

PC: A standard desktop computer, with a monitor, mouse, and keyboard.

Simple3D: A platform with active stereo display '*

device.

, and a SpaceBall [25] as input

Haptic3D: A platform with active stereo display and a Phantom [76] device for input
and force-feedback.

The functionality that the application will provide includes the following tasks:

Load models. A way to save and load models will be provided. What is particularly
important for this task is that the model should be deformable as clay, and this affects
the type of information to be saved.

Navigate around the model. The application will allow users to see the model in
construction from different viewpoints. The most common navigation will consist on
rotating the model around its principal axis, which is the way artists analyze clay
models in the real world. More navigation techniques can be provided, according to
device affordances.

Manipulate modeling tools. The way artists manipulate clay in the real world is by
deforming a piece of material with a set of objects, or tools, which imprint certain
shape and texture to the piece. The application will allow users to grab tools and use
them to re—shape the virtual clay.

Spin material. A common way to model clay is by mounting a piece in a wheel and
spinning it, so an artist can define its contour. The virtual clay application should
allow artists to spin a virtual material, given a certain axis of rotation. Tools can be
used in this mode in order to shape the contour of the clay piece.

Contact feedback. If force—feedback is available, users should receive some feedback
from the manipulation they perform on the clay.

Cut material. A clay piece can be deformed with tools, and it can also be cut. The
virtual clay application will allow both modes of operation. If force—feedback is avail-
able, a cut will be performed if enough force is applied in the interaction with the
virtual material.

Undo the application. This operation will provide some degree of undo, in order to
allow users to return to previous states of their work.

11We call active stereo to the stereo technique of showing consecutive images to each eye, which are
covered by shutter glasses.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We are in the initial design stages of this application, So far, we have identified classes
for specialized devices in the Simple3D and Haptic3D platforms, and some classes for the
implementation of the navigation task in the PC platform. The special devices are a Space
Ball [25] input device, and a force—feedback Phantom arm [76]. The required interface for
the space ball is similar to the one of a Space Mouse, with a difference in the number of
buttons available. The required interface for a Phantom device is shown in Figure 5.14.
Forces and torques can be defined at any given time. The device keeps a list of objects
to collide with, that can be modified. The output consists in the current position and
orientation of the tip of the arm. This is a partial definition of the Phantom capabilities,
and we plan to extend them once we define in more detail the application for the Haptic3D

platform.
force Phantoﬂyq
torque pos
addObject
removeObject

Figure 5.14: Phantom ports.

The classes related to the PC implementation are 12:
e Material: Material models, i.e. any material that can be deformed by or deform to
any other object.

e VirtualClayEnvironment: The environment that coordinates deformation among ob-
jects.

e Mouse2Ray: The mouse position defines a ray in the current screen.
e IntersectByBSphere: Intersect with objects by using theirs bounding sphere.
e RotateByDragging: Rotates an object by using a point in its bounding sphere.

e TranslatePlane: Moves an object in a plane, given a 2D position. The input position
may come from a pointer, as a mouse or a joystick

The application uses the RotateByDragging technique in order to rotate the clay material
in the PC environment. The position of the mouse in the screen is translated into a 3D ray
that can be collided with an object. Dragging with the left mouse button rotates a point in
the bounding sphere that contains the object, once a collision has been detected. Releasing
the left mouse button releases the object, and flushes the state of the interaction technique.
The InTml code for such a behavior is shown in Listing 34.

While our current state of development does not have retargeted tasks, we are confident
that InT'm! will allow us to describe this application in the identified platforms, and to reuse
as much code as possible.

12These filter classes are defined in the file newClasses.intml, available in Appendix B.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Listing 34 InTml code for rotation in the PC-based virtual clay application.

1 <Filter
<Filter
<Filter
<Filter

5 <Binding
<Binding

<Binding
<Binding
10 <Binding
<Binding
<Binding
<Binding
<Binding
15 <Binding
<Binding
<Binding

id="mouse2Ray" type="Mouse2Ray"/>
id="getPoint" type="IntersectByBSphere"/>
id="rotate" type="RotateByDragging"/>
id="switchRot" type="Switch"/>
iE="mouse" iP="mousePos" oE="mouse2Ray" oP="pos2D"/>
iE="theCurrentViewpoint" iP="objectChanged"
oE="mouse2Ray" oP="viewpoint"/>

iE=":self" iP="screen" oE="mouse2Ray" oP="screen"/>
iE="_self" iP="clay" oE="getPoint" oP="object"/>
iE="mouse2Ray" iP="ray" oE="getPoint" oP="ray"/>

iE="clay" iP="currentBSphere" oE="getPoint" oP="compute"/>
iE="getPoint" iP="point" oE="rotate" oP="point"/>
iE="_self" iP="clay" oE="rotate" oP="object"/>

iE="mouse" iP="1ButtonPressed" oE="switch" oP="signalOn"/>
iE="mouse" iP="1ButtonReleased" oE="switch" oP="signalOff"/>
iE="switch" iP="onOff" oE="rotate" oP="on"/>

iE="switch" iP="onOff" oE="rotate" oP="flushState"/>

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Support Tools for InTml-Based
Development

In this section, we describe the general architecture of our InT'ml-based development envi-
ronment, and the tools developed within this architecture. The tools are in a first prototype
stage, more coverage of the InT'ml support and more work on the user interface are required.
Nevertheless, we consider that the current state shows the opportunities and development
power of our two-level of abstraction technique, and the possibilities of a more user—{riendly
environment. We have concentrated our work on the following tools: a library of interaction
techniques, a browser for InTml} documents, an InTml checker, and InTml compilers into
Java3D and C++. The following is a discussion of each one of these tools, preceded by a
general overview of the InTml-based development environment.

6.1 An InTml-Based Development Environment

InTm! describes VR applications and 3D interaction techniques that can be implemented
in several toolkits and environments, such as Java3D, VRJuggler, or VRML/X3D. InTml
supports two levels of abstraction during development, one suitable for designers with no
programming skills, and one for developers with a good understanding of the implementation
of components required by designers. Figure 6.1 shows our architecture for a development
environment based on InTml. Division of tasks is encouraged by its architecture: VR design-
ers define new applications by plugging-in components from the library, and VR developers
write the required code for new components. The required code might be geometry and
objects appearance details, code in the core framework for new interaction techniques and
animations, or code for the integration of new devices. VR designers create new applica-
tions by composing components from the InTml library. We have envisioned the following
tools for designers: a library browser, a semantic checker for new component definitions, a
compiler that translates applications written in InTm! to a particular framework language,
and a visual programming environment. VR developers use, extend, and maintain a white
box framework!, that implements the InTml concepts on top of a core framework or API,
and the implemented components of the InTml library.

LA white box framework is the first stage in the evolution of a framework as is defined in [74].

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VR Designer

VR Developer

Figure 6.1: Architecture of an implementation of InTml.

A new implementation of InTml, in terms of Figure 6.1, consists of creating the appropri-
ate compiler, InTm! Framework, and InTml Library Implementation for a particular Core
Framework. For example, an implementation of InTml in X3D can be defined as a set of
rules of how prototypes for interaction techniques should be defined, the InTml library im-
plementation can be a set of prototypes that implement the interfaces defined in the InTml
library, and the compiler can be embedded in a browser that reads both InTml and X3D
files, or a stand-alone module that outputs X3D files from InTml descriptions. However,
restrictions on the X3D execution model may compromise performance in such an imple-
mentation. For this reason, despite that InTml can be implemented on many platforms,
some of them may perform better and support more features than others.

The following sections describe in more detail current implementations of this develop-
ment environment architecture, and the future developments we have envisioned.

6.2 The InTml Language

We have already described the current state of the InTml language in Section 3.4. We
describe here the DTD that defines it.

The first version of InTml is described in a Data Type Definition File for XML, or DTD?.
It defines all elements required for InTml applications and for creating libraries of devices,
interaction techniques, or objects. Definitions can be divided in three main groups: InTml
entities, mechanisms of reuse, and documentation. The entire DTD is found in Appendix
C.

2We could use also XML Schema for this purpose, but at the time we started this implementation the
XML Schema specification was not entirely approved.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Some DTD-specific mechanisms were used in order to make such a description more
concise. For example, sets of attributes are enclosed in ENTITY clauses, which are macro
substitutions into elements that use them. In this way, several elements reuse the definition
of an identifier (ID), an identifier with required type (ID_TYPEREQ), or attributes for arrays
of ports (ARRAY_DEF). DTD files have a special attribute type ID, which allows the definition
of unique identifiers per file. We decided not to use this feature of a standard DTD due to
the fact that we need identifiers of several types in the same and across files, and the DTD
mechanism for IDs assumes both a file as a boundary and that there is only one type of IDs.

The InTm! elements described in the DTD can be divided into two main groups: class
elements and instance elements. The following paragraphs describe these two subcategories®.

Class elements help designers to create new classes of entities in the InTml environment:
new devices, new platforms, new filters, or new objects. The DTD elements DeviceClass,
PlatformClass, FilterClass, and ObjectClass define such types. A DeviceClass defines
new types of devices in the environment, in terms of the input and output ports available. A
PlatformClass defines a collection of input and output devices, that can be used together
in a particular application. A FilterClass defines either a simple filter, with just input
and output ports, or a composed one with internal filters, objects, object holders, constants,
and connections between them. Finally, an ObjectClass defines the input and output ports
expected from a particular type of object in the environment.

Instance elements describe instances of InTml classes inside composed filters or applica-
tions *. Filter defines an instance of a FilterClass, given a name and a type. Object
defines an instance of an UbjectClass, given a name, type, and some geometry °. An
ObjectHolder defines a new object reference, whose input and output ports are defined
by the first object to be held. Binding describes a connection between InTml instances
(filters, devices, objects) in terms of a name of an input element, its output port, and a
corresponding name of an output element with a compatible input port. IPort and OPort
define input and output ports inside InT'm! instances. They allow the definition of arrays
of ports, with either fixed or dynamic size 8. App defines all elements in an application:
A platform, objects, constants, object holders, filters, and bindings. ODevice and IDevice
define output and input devices, from a certain DeviceClass. Constant defines a constant
in an InTml application. In this way, initial values are sent to ports in an application.
Finally, a Platform is an instance of a certain PlatformClass

Four mechanisms of reuse have been designed in the InTml language. Package defines
a name space for a set of classes and applications. It avoids name conflicts between classes
and gives structure to a library of InTml concepts. Import includes definitions from other
files to the current one. Implements is an interface-based inheritance mechanism: all input
and output ports defined in an implemented filter are added to the current definition. This
mechanism is similar to the mechanism with the same name in Java. Overrides is a form of
delegation between filter classes. If class B overrides A, B contains all ports defined in A that
are not defined in B, plus the ones in B. This mechanism allows us to create applications as
enhanced versions of previous ones, by overriding some definitions and adding some more.

The InTml DTD defines some simple ways to document all previous elements. Almost
all elements require a short description, defined by ShortDesc, and might have a longer one,
with the element Description. InTml classes extracted from interaction techniques from
other authors can add a paper reference, as a PaperRef, and their classification in one or
several indexes, so library users can browse classes in a more semantic way.

3This information has been already presented in Section 3.4. It is presented here in a condensed form
from the point of view of the DTD file.

4Currently, an application is defined just as an instance, not as a type

5Geometry can be loaded from an external file or defined as one of the following primitive types: Box,
Cone, Cylinder, Ellipse

6 A port with dynamic size allows other InTml instances to connect to a port they like, without any
restriction of index. An example of when this is useful is a generic OR port, in which several boolean inputs
are combined to produce a logical OR gate.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3 Library of Interaction Techniques

We use device classes to describe the input and output devices in our lab, and filter classes
to describe some of the interaction techniques that have been proposed in the research
community in the last 10 years. Full listings of the files in the library are included in
Appendix D.

The available devices, defined in the file devices.xml are:

e Button: A basic button that sends a signal once is clicked.
e GenericJoystick: A basic joystick that outputs a 2D position

e SideWinderPro: Our InTml interface to a Microsoft SideWinder Pro joystick, imple-
ments the GenericJoystick interface and with 8 buttons (instances of the class Button),
a hat switch as the 8 possible events it can generate (up, down, left, right, NE, SE,
NW, SW), and two sliders for throttle and rotation.

e Generic3DOFTracker: A tracker that gives orientation only, as a quaternion.

e Generic6DOFTracker: Implements a Generic3DOF Tracker, it adds a 3D position as
output.

¢ InsideTrack: Implements a GenericBDOFTracker, our InsideTrak device.

o InterSenseHeadTracker: Implements a Generic6DO¥ Tracker, our head tracker from
InterSense.

o InterSenseWandTracker: Implements a Generic6DOFTracker and a Joystick. In-
cludes also 4 buttons present in the InterSense Wand.

e GenericScreen: A generic 2D, PC screen.

e FishTankScreen: A 3D output screen, aware of the viewpoint position.

e I-glasses: Visual output of the I-glasses HMD.

e VisroomScreen: Each one of the screen in the Visroom, our CAVE-like environment.
e GenericHMD: A generic head mounted display description.

e V6HMD: Virtual Research’s V6 HMD.

e GenericMouse: A general description of a mouse with three buttons and x and y
positions.

e WheelMouse: A mouse with a wheel for scrolling.
e GenericKeyboard: A generic keyboard definition, with buttons that model letter keys.

e MicroScribe3DFX: Immersion’s MicroScribe 3DFX 3d digitizer.

It is important to notice the separation that we do for abstract and concrete devices, i.e.
Generic6DOFTracker and InterSenseHeadTracker. Both have the same interface, and in
the current implementation the latter is defined completely in terms of the former, but they
represent two different needs in InTml: the first description can be reused in other concrete
devices and it can also represent common code in the implementation, while the latter allow
designers to find a particular device easier.

Interaction techniques are divided in four groups: control, travel, selection, and the
ones defined in the book by Barrileaux [8]. Control defines for the moment just one filter,
QuitbyButton, that quits an application when a button signal is received as input. Travel
defines the following filters:

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SteeringIT: Basic interaction technique associated with basic behavior in HMDs. It
receives a position and orientation, and changes the viewpoint.

FlyUnrestrictedIT: Moves the viewpoint as if one is flying around, given a starting
point, a direction, and a certain speed.

FlyInPlaneIT: Moves the viewpoint as if one is flying restricted to a plane.

WalkIT: Moves the viewpoint as if one is walking.

Most of these interaction techniques are defined as composite filters, based on a simpler
filter that defines the basic behavior, and a set of auxiliary filters and object holders that
allow the changes to be made in the corresponding objects.

Selection techniques represented in InTml are:

FeedbackOnelT: It changes the appearance of an object. It has memory, so the previ-
ously selected object restores its previous appearance once a new object is selected.

FeedbackSetIT: The same as the previous one, but for a set of objects.

SelectByTouchingIT: Selection by collision with an object that represents the user’s
pointer in the world (or her hand).

SelectByRayIT: Selection in a particular direction.

GoGoIT: Defined in [71], an interaction technique to lengthen the user’s virtual arm
for reaching distant objects

SpotlightIT: It selects a set of objects, given a direction and a radius of a cone
centered in such a direction [58].

RingMenuIT: Selection technique defined in [58] that shows a ring of objects to the user,
with the closest one as selected, and with an interior frame for readability purposes.

SelectByTouchingIT, SelectByRayIT, GoGoIT, and RingMenulIT are selection techniques
that allow users to select just one object, whereas SpotlightIT allows multiple selection.
This is why two feedback techniques are shown, one for just one object and one for groups.
It is feasible to obtain multiple object selection techniques based on the basic behavior of
the single-selection ones, but this is out of the scope of the current library.

The book by Barrileaux defines several interaction techniques. The following are a subset
of those and some auxiliary definitions required.

DObject: An object in display space. The display is the space that is in front of the
user’s view. It contains layers numbered from 1 (the closest).

WRM_MoveBasic: Implements world-relative movement in a plane.

OrbitMovement: Computes a new position and orientation around an object, given a
starting position. It keeps the distance from the starting position to the center of the
object.

OrbitCamera: Implements navigation by moving around an object. It uses orbit
movement in its implementation

PinocchioControl: Computes the new position for the 3rd person control and for the
viewpoint.

PinocchioCamera: Implements navigation by manipulating a camera representation,
with a body for position and a big nose for orientation in a plane.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e ObjectBarrilleaux: Describes an object with extended features, in order to support
interaction techniques in Barrilleaux, such as identification of objects by name.

¢ AddLabel: Adds a label to an object. It assumes the object doesn’t have one.

e RemoveLabel: Removes a label from an object. It assumes the object has one.

6.4 Tools

A professional development environment for InTml should count with a set of tools that
allows designers and developers to be more efficient in their work. Modern programming
languages usually count with a wide variety of integrated development environments (IDEs),
in which developers find a set of tools that support coding tasks: editors, source code
organizers, cross reference utilities, compilers, interpreters, documentation aids, and step—
by-step debuggers. We envision something similar for InTml-based development, suitable
for designers. Since developers create the inner details of components in core frameworks,
they use an IDE suitable for such language. Some additional tools for designers are necessary,
but we concentrate on the tools for designers, due to the fact that they are the ones less
familiar with programming, and their work can be greatly benefited by the availability of
such tools.

6.4.1 InTml Browser

The readability of InTml files, which are basically XML documents, can be greatly improved
by the advantages that XML provides. XML documents can be shown in more readable
formats by the definition of style files and translators in XSLT{108]. We have defined XSLT
scripts that generate screens as the ones shown in Figures 6.2 and 6.3. This screen shows
the following elements:

o File view. Applications and interaction techniques are classified by the file they are
contained in. It is the basic view for the library contents and the simpler way to
browse the information. Files are shown in the left-top frame of the screen. Once a
file is selected, its contents are shown in the bottom left panel.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

arks Iools

Eile CEdit View Go

InTmI Documentation_ (Tl horme
page}

File Structure

aeiecnon

fravel

yrobject
barrilleaux
devices

| campusCiemolT

WRM_MoveBasic Filter Class

: Description

| Implements world-relative movement in a plane.

Interface

barrilleaux

g Input | Output

mports...

Filter Classes:

startPos Initial position
Input position for the

B
o WERM TMoveBaEsis movement
* SwichePos plane Plane of movement New position for
» WRM MoveOffset awitcn ctvates and B98 the object

deaotlvates the filter

¢ Viewpoint2Plane
. DRM MoveOffset

Figure 6.2: File view of InTml.

e Category views. It is possible to create several hierarchical indexes for filters and
applications. In this way filters can be classified by several criteria, which can help
designers to easily understand the library and choose the best options for a particular
application. For example, all interaction techniques we have described in InTml are
classified by the paper they appear in and by this basic classification: travel, selection,
manipulation, control, and feedback 7. A list of categories replace the list of files in
the top-left corner of the screen. Once a category is selected, its categorization is
shown in the main frame (right-bottom, in Figure 6.3).

7Inspired by Bowman'’s [18] and Barrileaux’s [8] work

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

file:///home/pfigueroAveb

e

' ‘& file://home/pfiguerofweb_docs i

% A Home | Waoﬁkma‘r@si;ﬁManydrakeSQﬁ # Mandrakestore aﬂM’angfr,ReExpet’t;%MandrakeClub o, Mandrake

Indexes H T .

, INTml Documentation. ingex {nTmihome
first . Structure badel
ig" E o %
space =

papers Index ldentifier
_unknown

travel MoveUnrestricted

uzlberta.apps.campuslemolnT s Motorcycle

ualberta.apps.campusDemolnTs Motoreyclel T

ualberta.selection.SelectByRaylT
barrilleaux01

barrileaux ActivatebyTime i
barrilleaux AddLabel

barrileaux.Createl abel

barrilleaux DObject

barrilleaux. DRM MoveOffset

barrilleaux. ObjectBarrilleaux

harrilloas ne Oyrbib o maoro

ors IndesDet

Figure 6.3: Category view of InTml.

e Filter details. It presents a general description of the filter, its interface — input and
output ports —, its position in other categories, details about its ports, and bibliog-
raphy. It is shown in the bottom right panel in both views (file and category). An
example is shown in Figure 6.2.

e Composed filter details. It presents a general description of the technique, its inter-
face, its implementation — object holders, filter instances —, details about ports, and
bibliography.

e Application details. It presents a summary of the tasks — InTs and filters —, objects,

and devices that the application uses, with a detailed information of connections and
purposes of each element.

The program that generates this documentation performs the following tasks

o It creates the necessary directories and copies standard style files.

o In the case of the file view, it generates the list of files available in a predefined
directory, and it creates all the necessary files with the detailed view for each filter
class.

e Specialized views are generated for platforms and applications. A platform view shows
input and output devices by separate, and an application view shows separate lists of
objects, input devices, output devices, constants, object holders, filters and bindings.
Both views require still more work and they are part of our list of future work

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

file:///home/pfiguero/Web

e In the case of the category view, it extracts first the categories in the files. Once cat-
egories are found, it gets the classification for all classes in all available files. Initially,
classes are classified in the category _unknown, and this initial value changes accord-
ing to the real one, if any is assigned. Finally, files for each category are generated.
Classes that do not define a value for a particular category are shown as _unknown,
as it is shown in Figure 6.3. A designer can force a class to be left out of a category,
by defining its category as -hidden. For example, the Button device is left out of the
papers category since it does not apply to it.

Since there are several files in analysis and generation at the same time, the implementa-
tion uses some extensions to XSLT defined by the Xalan [4] implementation of XSLT. Some
extra shell and AWK [40] scripts were used for the creation of the file and category indexes,
since this task are either out of the scope of the XSLT processing power or they required
several passes over several InTml files, which is slow in current XSLT implementations.

6.4.2 InTml Compiler

The InTml Compiler allows developers to transform InTml documents into executable code.
Our current implementation reads InTml definitions, adds behavior code for filters, and
creates source code in Java3D that represents the InTml application 8. Figure 6.4 shows
the general architecture of the implementation.

] 1

. i BindReferences
Representation of InTml Classes InTml Virtual Machine

in Java (Java/ C++)
InTml GenerateJava3D

Generator

Code

GenerateCPlus Gene~
rators
1 1
addedCode Unit Test Extra Libraries
Classes Classes

]

Application Specific Code

Figure 6.4: Architecture of the InTml Compiler. Rounded boxes represent code generators,
rectangles are classes, ellipsis are files, and we use the UML symbol and semantics for a
package of classes.

InTmlGenerator is a program generator written in TL [23] that creates a data structure
in Java from the definitions in the InTml files. Such a structure is used for validation of the
InTml files and for code generation. The compiler uses the Visitor pattern [44] in order to
traverse the data structure and create the corresponding source code. This source code is a
set of subclasses from the InTml virtual machine abstract classes, with added code for the
particular behavior of each filter. The added code requires a special treatment:

1. Source code from InTml is created with special marks, where the programmer can add
behavior—specific code.

2. Once the code is compiled, behavior-specific code is extracted from all files created
by the compiler and it gets saved in a different file.

8There is an implementation for C4++ under development.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. If the InTm! files are compiled again, the new generated code will include the previous
version of behavior—specific code, which was saved in the previous task.

This mechanism allowed us to develop at the same time both the behavior-specific code
and the InTml virtual machine.

Let us follow an example of how the process works. Let us assume we want to implement
the InTml class in Listing 35. The class has to be given with all other related classes
and types, and with information about how to translate simple types into the underlying
language, in this case Java.

Listing 35 InTml code for Generic3DOF Tracker.
1 <DeviceClass id="Generic3DOFTracker">
<ShortDesc>A generic orientation tracker</ShortDesc>

<Description/>
<Indexes>

5 <Index id="basic" value="Devices.Input"/>
</Indexes>

<0Port id="q" type="Quaternion">
<ShortDesc>General orientation of the tracker</ShortDesc>

</0Port>
10 <0Port id="eulerAngles" type="Vector3">
<ShortDesc>General orientation of the tracker</ShortDesc>
</0Port>
</DeviceClass>

InTmlGenerator takes all the InTml files and generate Java code that creates a graph—
like structure in memory. This code has to be compiled and then traversed in order to create
the Java files that represent the InTml class. Listing 36 shows the basic code generated for
the class in Figure 35. The generator defines the class, its superclass, the fixed code for
constructors, execution method, setup method (shared code among constructors), the code
for creating ports, and the code for loading and saving properties (Properties are parameters
that can be stored in a file and loaded at runtime, for configurability purposes).

The zones enclosed by // -=-=-=-=-= are developer—specific code. The possible changes
include changes in the superclass (in the case of specialized code not visible at the InTml
level), the specific execution function, extra constructor code, changes in the accessor meth-
ods, changes in the default values for attributes, code for loading properties, and extra
methods and attributes. This code is saved in a file in order to allow future changes in
the InTml class without losing the actual code created by the developer. Listing 38 shows
the structure of the extra code in this file. Each possible addition to the standard class
is considered, and actual code is enclosed by CDATA statements. Developers should take
into account the special requirements for an InTml filter class: it should not change the
state of the scene, it should avoid dependencies not shown at the InTml level, and it should
not modify the events it receive. This is of particular importance in the design of accessor
methods and extra attributes and methods, since they can bypass the general restrictions
of the InTml model.

6.4.3 InTml Checker

The purpose of the checker is to validate a set of InTml documents, and report semantic
problems to the user. Currently, it is implemented as the first stage of the compiler. In its
current state, the checker is capable of detecting the following basic problems:

e Referenced names not found, in applications and in composed filters. In particular,
Import, Implements, or Overrides references not found.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Listing 36 Initial Java code for Generic3DOFTracker.
1 public class Generic3DDFTracker

// -=-=-=-=-= Extends/Implements definitions here
extends Device ,
// -=-=~=-=-= End Extends/Implements
5 A
public void execute()
{

super.execute();
// Do whatever is necessary with the information collected in iports.

10 // Send information through the oports.
// -=—=-=-=-= Extra execute() code here
// ==-=-=-=-= End extra execute() code
}
public Generic3DQFTracker() { super(); 1}
15 public void setup(String n)
{
super.setup(n);
// -=-=-=-=-= Extra comnstructor code here
// -=-=-=—=-= End extra constructor code
20 createPorts();
}
private void createPorts()
{

// Add QPort of type javax.vecmath.Vector3f
25 eulerAngles = new AbsOPort (this, "eulerAngles");
oports.add(eulerAngles);
// Add OPort of type javax.vecmath.Quat4f
q = new AbsOPort(this, "q");
oports.add(q);
30 };
// -=-=-=-=-= Accessor methods here
// -=-=-=-=~= End accessor methods

// Attributes

35 AbsOPort eulerAngles;
AbsOPort q;
// —-=-=-=-=-= Extra methods and attributes here
// -=-=-=-=-= End extra methods and attributes
40 public void saveDefaultProperties()
{

Properties p = new Properties();
String filename = new String("Properties" + File.separator +
getClass() .getName() + ".properties");

45 // -==-=-~=-=-= Default values for properties
// -=-=-=-=-= End default values for properties
try
{
FileDutputStream f = new FileOutputStream(filename);

50 p.store(£, "Properties for " + getClass().getName());

}

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Listing 37 Initial Java code for Generic3DOFTracker (Second part).

1

10

15

20

25

catch(Exception e)
{
StdOut.getInstance().addMsg(1, this, "Error saving properties :
+ filename);

}
}
public void loadProperties()
{
super.loadProperties();
Properties p = new Properties();
String filename = new String("Properties" + File.separator +
getClass() .getName() + ".properties");
try
{
FileInputStream f = new FileInputStream(filename);
p.load(£);
}
catch(Exception e)
{
StdOut.getInstance() .addMsg(1, this, "Properties file not found :"
+ filename);
}
// —-=-=—-=-=-= Loading properties
// -=-=-=-=-= End loading properties
}
+;

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Listing 38 Developer—specific code for Generic3DOF Tracker.

1 <Class id="Generic3DOFTracker">
<AddedPackages>
<![CDATA[import javax.vecmath.*;
import javax.media.j3d.*;
5 import intmlRT.Loader.x*;
11>
</AddedPackages>
<Extensions>
<![CDATA[extends Device
1o 11>
</Extensions>
<InsideExecute>
<!'[CDATA[if (error == 0)
{
15 float[] e;
e = this.getHMDValues();

float yaw =
float pitch (float) (e[1] * Math.PI/180);
20 float roll = (float)(e[2] * Math.PI/180);
Quat4f quat = computeb(pitch,yaw,roll);
lastQ = quat;
AbsInfo qinfo = new AbsInfo(quat);
q.push(qinfo);
25 }
else
{
Quat4f quat = new Quatdf();
AxisAngled4f aa = new AxisAngle4f(0.0f,1.0f,0.0£,0.0f);
30 quat.set(aa) ;
quat.normalize();
AbsInfo ginfo = new AbsInfo(quat);
q.push(ginfo);
}
35 11>
</InsideExecute>
<InsideConstructor>
<! [CDATA[System.loadLibrary("HMD");
error = this.startHMD();

40 if (error == 1)
{
System.out.println("Error opening the HMD.");
}
11>
45 </InsideConstructor>
<NewAccessors>

<! [CDATAL javax.vecmath.Quaté4f getq()
{ return lastQ;
}

50 11>
</NewAccessors>

(float) ((e[0] + yawOffsetProperty.floatValue())* Math.PI/180);

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Listing 39 Developer-specific code for Generic3DOFTracker (Second part).
1 <AddedElements>
<!'[CDATA[Quat4f lastQ = new Quatdf();
Quatdf computeb(float pitch, float yaw, float roll)

{
5 return compute (
~1 *((float) Math.PI*2f - roll),
-1 *((float) Math.PI*2f - yaw),
-1 * (pitch + (float)Math.PI));
}
10 Quat4f compute(float pitch, float yaw, float roll)
{
Quat4f qu = new Quat4f();
setQ(qu, pitch, yaw, roll);
return qu;
15 }
void setQ(Quat4f q, float pitch, float yaw, float roll)
{
Quatdf qx = new Quatdf((float) Math.cos(pitch/2f),
(float) Math.sin(pitch/2f), 0, 0);
20 Quatd4f qy = new Quatdf((float) Math.cos(yaw/2f), O,
(float) Math.sin(yaw/2f),0);
Quat4f gz = new Quatdf((float) Math.cos(roll/2f), 0, O,

(float) Math.sin(roll/2f));
Quat4f qt = new Quat4f();

25 gx.normalize(); qy.normalize(); qz.normalize();
//System.out.println("\tgx: " + "(" + gx + ")");
//System.out.println("\tqy: " + "(" + qy + ")");
//System.out.println("\tqz: " + "(" + qz + ")");
qt.set(gx);

30 qt.mul(qy);
qt.mul(qz);
q.set(qt);
q.normalize();

}
35 public native int startHMD();
public native int stopHMDQ);
public native float[] getHMDValues();
int error;
Integer comNumberProperty;
40 Float yawOffsetProperty;
11>
</AddedElements>
<DefaultProperties>
<! [CDATA[p.setProperty("port","3"});
45 11>
</DefaultProperties>
<LoadProperties>
<![CDATA[String cString = p.getProperty("port","3");
comNumberProperty = ConstantTranslator.String2java_lang Integer(cString);
50 System.out.println("PORT IS " + comNumberProperty);
String yString = p.getProperty("yawOffset","-980.0");
yawOffsetProperty = ConstantTranslator.String2java_lang Float(yString);
System.out.println("YAW OFFSET IS"+yawOffsetProperty);
11>
55 </LoadProperties>
</Class> 110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e Name convention errors. For example, an application’s name can not include dots in
order to avoid problems with conventions for package names, or subcomponents can
not be referenced inside an object holder.

¢ Incorrect types in a binding. The type of events of the output and input ports con-
nected in a binding elements must match.

e Input or output ports not found in a binding.

e Problems with overriding classes. An application can only override other applications,
a filter class only other filter classes, and so on.

e Name conflicts between packages, filter classes, or instances.

e More than one Implements in a class °

The implementation of the checking task is an intrinsic part of the code for creating the
data structure from the InTml files. It is implemented as else scenarios during the code,
in which the error is registered, so it can be shown to the user at the end of the compilation
stage. While this basic approach produced the desired effects, it is also intermingled with
the code, which makes it difficult to maintain. Future versions of the checker will separate
this code in order to make it more readable. In fact, some checking tasks are now described
as part of visitors, which better enclose the processing task on top of the data structure.

6.5 InTml Framework Implementation

The InTml framework provides the semantics of the InTml specification over a particular
core framework. Two implementations have been done, one in Java and one in C++. Both
implementations contain the classes shown in Listing 40.

Listing 40 Classes in the InTml Framework. Indentation is used to show inheritance.
1 Filter
InTmlSystem
InT // Concrete class for filters
Device
5 GObject
ObjectHolder
AbsApp
TSApp
AbsPort
10 IPort<T> // C++ only
AbsOPort
OPort<T> // C++ only
AbsInfo
Info<T> // C++ only

All elements inside an application can be seen as filters, according to the inheritance
hierarchy in the implementation. The current implementation of the execution model is
embedded in the TSApp class, which makes a topological sort of the filters in the application,
after breaking the cycles. There are many ways of breaking the cycles, so this may create
different execution orders. In the Java implementation, all information through ports is
considered of the same type, which may be too wide. In the C++ version, we used templates

9The current implementation supports only one implements clause.

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in order to get a finer control of types, and we plan to explore the new implementation of
templates in Java in order to have the same behavior.

The C++ implementation of the library tries to reproduce as close as possible the Java
version, for maintenance purposes. There are two noticeable differences: ports are templates,
so it is possible to have static type checking for the information flowing in the dataflow,
and a basic garbage collection technique is added, since this facility was used in the Java
implementation.

Code generation for Java is fully supported by the compiler. C++ components still have
to create their code from scratch, but it is trivial to add a C++ generator to the current
one for Java.

6.6 Library Implementation

The library of InTml elements is not implemented yet, and it is one of the main elements
of future development. We plan to create also a test application for each element in the
library, in order to provide a examples of use to designers. This collection will facilitate
the understanding of the several options available in the library, and at the same time will
provide an excellent method of testing.

6.7 Core Frameworks

As we have said, we have implemented InTml in two environments, one for Java and its
set of libraries, and one in C++ and Performer. Other implementations are possible, but
special care should be taken with the limitations that such frameworks might have. For
example, a VRML implementation is possible provided that it is required to either consider
just one event at any particular time (the basic execution model for VRML), or a drastic
design that allows nodes to act with the semantic of InTml filters.

Fach implementation presents its own advantages and difficulties: while garbage collec-
tion was useful for event handling in Java, the environment also made the implementation
difficult with the non uniform implementation for common devices (mouse, keyboard) and
others (trackers, for example). We had to use different methods to collect the information
and provide a common interface, which makes the implementation a little bit awkward.

6.7.1 Runtime Environment

The runtime environment executes an InTml application over a platform. We developed
three implementations of runtime environments, two in Java and one in C++.

The first implementation executes a Java implementation of an InTml application, which
is found by reflection techniques. Such an implementation makes the runtime environment
very simple, but it makes changes in InTml more difficult, since they have to be translated
into a Java class and then compiled in order take effect.

The second implementation solved this problem and allowed a dynamic loading of all
elements in an InTml application. Such files can be loaded from either the local file disk
or from the Internet, which makes it very convenient for future web—based deployments.
However, it makes the runtime environment dependent on the Internet, which fails in stand—
alone computers, especially in presentations.

The third environment is a dynamic loader for C++, which runs in Linux and IRIX
machines. This implementation provides an InTml solution in CAVE-like environments.
Further testing is required to give more stability to such an environment.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.8 TFuture Work

In the area of tools, we have several plans for future developments. A visual programming
environment will allow designers to create applications in an easier way, without direct
contact with XML documents. This will make the structure of an application more evident,
and it will allow the creation of more complex applications.

A library of InTml components has to be implemented, rich enough so that design-
ers could create applications without developers aid. In this way, designers will have an
environment for rapid prototyping of VR applications.

A tool for automatic retargeting is also in our plans. The main idea is to take advantage
of a library of retargeted applications, and give suggestions to users of how a new application
can be retargeted to previously known platforms. This will require a database of examples
of retargeting, which will require further use of InTml.

Further developments in the InTml framework will provide a more complete coverage of
the concepts in the InTml semantics. For example, composed filters and delays are still not
supported in the InTm! frameworks.

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Conclusions

We believe that Virtual Reality technology will be more important in the future, once the
appropriate tools are available to a wider audience. We think our work helps to move the
state of the art in this direction, and our results will help to provide a better support for
designers of VR applications.

We have separated the concerns related to any VR application into two sets, one easy to
understand without much technical background and the other highly technical. The former
level talks about behavior, content, and devices at a high level of abstraction, in a way that
facilitates the comprehension and design of complex VR applications. The latter level allows
developers to divide their work in clearly identified components, in a way that facilitates
development, reuse, and testing.

We define the concept of retargeting, as a new way for application portability, in which
an application can change both devices and interaction techniques while at the same time
reuse as much as possible of previous implementations. Retargeting provides a way for
effective migration of VR applications, so actual rapid prototyping becomes possible in this
field. This feature will facilitate the creation of several options, and as a result it will provide
a better understanding of user’s requirements and the required solution.

The formal description of the semantics of our proposal will allow several implementa-
tions of our framework, in very different ways. We believe this provides some freedom for
improved implementations, once more data is available about this technique. It will also
provide ways to test properties of the InTml environment at the level of the specification,
so important theorems can be provided and proven.

The separation of concerns we have defined allow us to support two different communi-
ties, involved in any multimedia development: artists who know about the interface and the
way to communicate certain information, and programmers who know about the technology
and how to make it work. With the creation of a language in the middle, we provide both
a communication channel and a separation mechanism for these two communities.

Supporting tools can be highly improved, with the addition of new tools and the enhance-
ment of current ones. As we have mentioned before, a visual programming environment will
allow designers to create applications in an easier way, without direct contact with XML
documents. This will make the structure of an application more evident, and it will allow
the creation of more complex applications. This area will probably require a fair amount of
development, since high quality user interfaces are required in order to support a community
of non—programmers. We will try to create proof—of—concept versions of some of the tools
we believe are a priority, and offer them to the community for feedback purposes.

A library of InTml components have to be implemented, rich enough so that design-
ers could create applications without developers aid. In this way, designers will have an
environment for rapid prototyping of VR applications.

We also want to enhance the InTml language, in order to incorporate all concepts avail-
able in the formal specification. In this way, we will provide a more complete platform, and

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a better starting point for the implementation of tools.

It is possible to further compare the systems for VR development presented in Chapter
2 with ours: Our system provides a clear and simple view of what a VR application is,
better than the ones based on languages such as C++ or Java, and similar to X3D and
Alice. Our separation of concerns is novel, although it can be applied in systems such as
Alice, in which is possible to enrich the visual programming environment with newer devices
and interaction techniques. Other systems such as HyNet [61], which uses Petri Nets for
behavior specification, and PMIW [53], which uses a combination of dataflows plus state
machine networks, also divide concerns and provide an abstract view of a VR application,
but such views are more detailed than the one in InTml, and directed to developers of 3D
interaction techniques.

Retargeting is also a novel concept in our thesis. It allows designers to change an applica-
tion according to new requirements in a new platform, without dealing with specific details
of several core technologies involved. InTml provides a clear structure for retargeting, which
is not present in other systems available now. Our formal description provides a foundation
for multiple implementations of InTml, which is necessary to provide real retargeting among
diverse platforms. Despite other systems have a more complete user interface for developers
(such as the ones for HyNet and PMIW), we believe we can provide a better environment,
due to the fact that the concepts in InTml are easier to understand than the ones in such
formalisms.

There are also several areas that we want to explore in the future. The separation of
concerns also creates problems in understanding the overall implementation of the applica-
tion, since the entire behavior is divided between high and low levels of abstraction. While
we think this is not a problem for designers who do not want to know about specific imple-
mentation details, it may be a problem for developers who try to understand a piece of code
during testing, since they also have to understand the InTml] compilation process and the
InTml framework. We want to do more work on this regard. There are also several ways to
create an application in InTml, by applying different components and connections between
them. We believe this may change in the future with the adoption of guidelines for InTml
development, extracted from previous experiences. We also mentioned the following areas
as future work in section 3.6:

e Actual comparative results between a parallel and a sequential implementation of
InTml have to be performed. Ideally, we should be able to create some analytical
methods for measuring performance advantages in a parallel implementation of a spe-
cific application, but we have to explore such possibility in more in detail.

e InTml! is a new component technology that takes into account the specific quality
attributtes required in VR applications. However, we require more applications im-
plemented in this technology to valide more thoroughly its advantages and features.
Such experimental test will require a community of users and an active developer
community to support them.

¢ Exact time management and synchronization are issues not directly visible in InTml.
This allows designers to worry about requirements without taking care of synchroniza-
tion issues. However, such issues should be addressed in a succesful VR application.
Our current approach forces designers to hide synchronization issues under filters that
transparently handle several streams into a synchronized one. This approach has to
be tested in more detail to understand its implications.

e More development tools and more complete ones are necessary in order to provide a
true professional environment for VR designers.

e As InTml libraries grow, tools for finding and organizing them will be required, in
order to make them usable and avoid work repetition.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Problems such as hardware calibration, hardware reliability, lack of 3D interaction stan-
dards, network issues, and storage issues are not addressed by our work, but we hope we
provide a way to independently handle each one of these problems, in a way that is trans-
parent to designers. This will allow the creation of better implementations with the same
interface, which is the way other communities have grown and matured.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

InTml Files for the Matching
Application

We divided the InTml application in several files, according to the generality of the defined
classes. The file library.intml comprises all general definitions, the ones that might be
exported to a general purpose library. Such elements are:

Button: It models when a button is clicked.

GenericJoystick: Generic joystick definition

JXInputJoystick: A joystick based on the JXInput interface
Generic3DOFTracker: A generic orientation tracker
Generic6DOFTracker: A generic position and orientation tracker
InterSenseWandTracker: Hand tracker from InterSense
InterSenseHeadTracker: Head tracker from InterSense
SpaceMouse: Previously called Magellan 3D Controller.
GenericScreen: A generic output screen

PCScreen: A generic output screen from a PC

IGlasses: Virtual i-glasses HMD

VirtualWindow: Passive 3D Stereo display by Dimension Technologies
VisroomScreens: Screens at the Visroom

GenericMouse: A generic mouse definition

GenericKeyboard: It defines the a keyboard as a collection of keys. It contains only
some important keys right now... Because this limited implementation doesn’t use
arrays of ports, the description is rather long.

SMARTBoard: It defines the important events from any SMART Board type of interface.
Timer: Timer in the execution environment.

VRObject: VRObjectClass defines the input and output ports of any VRObject in the
dataflow. Transformations are organized as follows: Scales, Rotations, Translations.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e Viewpoint: Viewpoint defines a basic element with just position and orientation. In
the futute, it might include a description for the avatar.

e Scene: A Scene is a set of unstructured geometry that can’t be selected, and a set of
VRobjects, which can be selected. Its implementation defines the general structures
required for selection computation.

e ControlableFilter: Defines the ports that a controlable filter should understand. It
is basically a way to disable a filter.

e Switch: It doesn’t generate repetitions due receiving the same signal several times.

e SelectByRay: Implements details of selection by intersection with a ray. It receives
position updates of a ray in the scene and it computes which object from the scene is
intersected first. Internally, it takes into account additions and removals of objects,
to and from the scene.

e SelectBy3DRay: Implements details of selection by intersection with a ray, given a
ray specification as 3D position plus orientation. It receives position and orientation
updates of a ray in the scene and it computes which object from the scene is intersected
first. Internally, it takes into account additions and removals of objects, to and from
the scene.

e SelectByTouching: It selects an object that is colliding with the virtual pointer. It
executes its operation everytime a signal is received by the 'compute’ input port. This
varies from previous Selection Techniques, and makes more clear that the position
and orientation can be obtained from the ’handRepr’. Semantically is more correct,
but it forces the system to wait two frames in order to make a selection since, as it
was in previous selection techniques, selection used to receive the proposed changes in
position and orientation, changes that were not commited at the time of execution of
such filter.

® GoGoSelection: GoGo computes a new hand position as a function of the distance
of the real hand from the chest, K, and D. It also computes a virtual position for the
hand representation, as it is described in [71].

e Joystick2Ray: It computes a ray from the joystick position. It is useful for selection
by a ray in a joystick-based environment. It uses refPos as the center of the plane that
will contain posRay, and refQ) as the normal of such plane.

e HMDJ2Ray: It computes a ray from the HMD and joystick positions, that can be used
by a SelectByRay filter. The cursor is always centered in the field of view, with an
offset given by the current joystick position. The ray is defined as centered between
the user’s eyes and passing through the joystick cursor (posRay).

The file newClasses. intml has application dependent definitions, those filters that are
important for the behavior of this application. Such filters are:

e RandomPQ: It assigns a random new position to an object that is received in objs. If
there are several objects in objs, it orders them by name and then assigns them a new
position and orientation.

e RandomRelativePQ: Assigns a random position and orientation to an object within
several constraints. Firstly, the xy of the position is fixed based on a grid which divides
the screen into six sections so as to maximize screen usage and minimize occlusion.
Secondly, the distance between each object and its copy must be equal for each pair
of objects.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e TransparentCopy: It creates a new object with half the transparency of the previous
one, and sends it through objCopied. It changes neither position not orientation, so
the copy has to be moved later on to be distinguisable. If several objects are received,
all are copied. The copy of an object with identifier 7id” is called ” CopyOfid”.

e HighlightedFeedback: It changes the color of an object to a translucent green ap-
pearance. Used for selection feedback.

e RotationBehavior: It rotates an object received in the "obj” port, between the events
buttonPressed and buttonReleased

e TranslationBehavior: It translates an object received in the "obj” port, between
the events buttonPressed and buttonReleased. The events movXZ, movXY, movYZ
change the plane of movement. By default, the movement is in plane XY

e EchoPQ: It echoes the position and orientation input events to the output. Its purpose
is to move objects in 3D just when this function is activated.

e RotTrans: It manages both translation and rotation, from a pos3D and a quaternion as
input. The object received at obj is moved when the buttonPressed signal is received.
If any of the toggle signals is received, the object will be either just moved or just
rotated. Movements are relative to the position and orientation of the pointer when
the grab signal is received.

e MatchFunction: It measures the difference in orientation and position between an
object and its copy.

o DeleteWhenSignal: It accumulates a set of objects and deletes them once a signal is
received.

e (QuitMatching: It waits until the three objects have been matched, sends a log event
and ends the application two frames later. It also quits if the user presses a designated
letter.

e OrientationCenter: It returns the intersection point of an imaginary line from the
user’s viewpoint and orientation and the near clipping plane. It assumes the clipping
plane is big enough to be intersected, and that the clipping plane is at a distance d,
when the quaternion is pointing to -z.

e HMDJPointer: The position of the pointer in a HMDJ environment is given by the
point computed by OrientationCenter, and the current joystick position. The output
is always the last value for the head’s position plus the joystick offset (pos and pos3D).
If the joystick is in dragging mode (given by buttonPressed and buttonReleased), pos
is shifted by the amount given through shift Amount.

e ControlMatching: Disables selection when rotation or translation are executing.
When rotation starts, selection and translation are disabled. When translation starts,
selection and rotation are disabled. When rotation ends, selection and translation are
enabled. If the port ’allowBothTransRot’ receives true, both orientation and transla-
tion might be active at the same time.

e ResetPosition: It allows to decouple a position from a device and a position from
an object. When the signal is received, the last position is saved and all new positions
generated are relative to the last one. It is useful when you want to come back to the
origin.

e Log: It logs all the relevant information from an application. It also logs an execution
counter, everytime it runs.

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The other files in the example define either basic characteristics of an application in a
platform, or the matching application itself, retargeted to each platform. Such files are !:

e generic3DDesktop.intml: It defines elements present in all 3DDesktop application,
which are a keyboard, a screen, a mouse3D, and an object holder for the viewpoint.

e genericHMDJ.intml: It defines a keyboard, a joystick, a 3DOF tracker, and an
1Glasses HMD as standard devices in any HMDJ~based application; and a viewpoint,
whose orientation is connected to the output of the 3DOF tracker.

e genericPC.intml: It defines a keyboard, a mouse, a screen, and a viewpoint as the
basic elements in any PC-based application.

e genericSMARTBoard.intml: It defines a keyboard, a SMART Board and a viewpoint
as the basic devices in any SMARTBoard-based application.

e genericVisroom.intml: It defines the basic devices in the Visroom — a wand, a
head tracker, and the screens — plus the viewpoint as the basic elements in any
Visroom—based application.

e matching-3ddesktop.intml: Matching application, 3DDesktop version. It connects
the 3D mouse to a hand representation geometry, which is used to select object by
colliding with them.

¢ matching-hmdj.intml: Matching application, HMDJ version. It uses the joystick and
the head orientation to define the position of a pointer, which in turn allows selection
by ray casting.

e matching-pc.intml: Matching application, PC version. It uses the standard key-
board and mouse to select and move objects.

e matching-smartboard.intml: Matching application, SMART Board version. It con-
nects pens in the SMART Board to rotation and movement operations in the appli-
cation.

¢ matching-visroom.intml: Matching application, Visroom version. It uses the Go
Go interaction technique for selection and manipulation of objects 2.

The following sections are a copy of the files already described, and the code for each
version of the application.

Library File

<?7xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE Package PUBLIC "-//pfiguero//3D Interaction Techniques ML//EN"
"http://www.cs.ualberta.ca/ "pfiguero/InTmiTemp/spec/intml.dtd">
<{-- Copyright info
library: Predefined classes, from the developer to the designer.

Copyright (C) 2001, Pablo Figueroa

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser Genmeral Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

1We skip here some files for newer versions of the application and some test files.
2This application has not been implemented yet.

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.ualberta.ca/%e2%80%9dpfiguero/InTmlTemp/spec/intml.dtd

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-=>

<!-- Changes:

May 8, 2002 : First version

May 23, 2002: PCScreen is created, in order to keep GenericScreen

as an abstract superclass of all display devices.

-=>

<!-- Devices in the Matching Test application -=>

<Package id="matchingTest">

<DeviceClass id="Button">
<ShortDesc>Basic Button</ShortDesc>
<Description>
It models when a button is clicked.
</Description>
<Indexes>
<Index id="basic" value="Devices.Input"/>
</Indexes>
<0Port id="clicked" type="boolean">
<ShortDesc>true when it’s been clicked (pressed and released)</ShortDesc>
</0Port>
<0Port id="pressed" type="boolean">
<ShortDesc>true when it’s been pressed </ShortDesc>
</0Port>
<0Port id="released" type="boolean">
<ShortDesc>true when it’s been released </ShortDesc>
</0Port>
</DeviceClass>

<DeviceClass id="GenericJoystick">
<ShortDesc>Generic joystick definition</ShortDesc>

<Description/>
<Indexes>

<Index id="basic" value="Devices.Input"/>
</Indexes>

<0Port id="xPos" type="int">
<ShortDesc>Position left-right of the joystick</ShortDesc>
</0Port>
<0Port id="yPos" type="int">
<ShortDesc>Position front-back of the joystick</ShortDesc>
</0Port>
<0Port id="pos" type="Pos2D">
<ShortDesc>(xPos, yPos)</ShortDesc>
</QPort>
<0Port id="buttonlPressed" type="AnyType">
<ShortDesc>Button 1 pressed.</ShortDesc>
</0Port>
<0Port id="button2Pressed" type="AnyType">
<ShortDesc>Button 2 pressed.</ShortDesc>
</0Port>
<0Port id="button3Pressed" type="AnyType'>
<ShortDesc>Button 3 pressed.</ShortDesc>

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

</0Port>

<0Port id="button4Pressed" type="AnyType">
<ShortDesc>Button 4 pressed.</ShortDesc>

</0Port>

<0Port id="buttonlReleased" type="AnyType">
<ShortDesc>Button 1 released.</ShortDesc>

</0Port>

<0Port id="button2Released" type="AnyType'">
<ShortDesc>Button 2 released.</ShortDesc>

</0Port>

<0Port id="button3Released" type="AnyType">
<ShortDesc>Button 3 released.</ShortDesc>

</0Port>

<0Port id="buttond4Released" type="AnyType'">
<ShortDesc>Button 4 released.</ShortDesc>

</0Port>

</DeviceClass>

<DeviceClass id="JXInputJoystick">
<ShortDesc>A joystick based on the JXInput interface</ShortDesc>

<Description/>
<Indexes>

<Index id="basic" value="Devices.Input"/>
</Indexes>

<0Port id="transform" type="Transform3D">
<ShortDesc>The information from JXInput</ShortDesc>

</0Port>

<0Port id="buttonlPressed" type="boolean'">
<ShortDesc>Button 1 pressed.</ShortDesc>

</0Port>

<0OPort id="button2Pressed" type="boolean">
<ShortDesc>Button 2 pressed.</ShortDesc>

</0Port>

<0Port id="button3Pressed" type="boolean">
<ShortDesc>Button 3 pressed.</ShortDesc>

</0Port>

<0Port id="buttonliReleased" type="boolean'">
<ShortDesc>Button 1 released.</ShortDesc>

</0Port>

<0Port id="button2Released" type="boolean">
<ShortDesc>Button 2 released.</ShortDesc>

</0Port>

<0Port id="button3Released" type="boolean'">
<ShortDesc>Button 3 released.</ShortDesc>

</0Port>

</DeviceClass>

<DeviceClass id="Generic3DOFTracker">
<ShortDesc>A generic orientation tracker</ShortDesc>

<Description/>
<Indexes>

<Index id="basic" value="Devices.Input"/>
</Indexes>

<0Port id="q" type="Quaternion">

<ShortDesc>General orientation of the tracker</ShortDesc>
</0Port>
<0Port id="eulerAngles" type="Vector3">

<ShortDesc>General orientation of the tracker</ShortDesc>
</0Port>

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

</DeviceClass>

<DeviceClass id="Generic6DOFTracker'>
<ShortDesc>A generic position and orientation tracker</ShortDesc>

<Description/>
<Indexes>
<Index id="basic" value="Devices.Input"/>
</Indexes>
<!-- Implements Generic3DOFTracker -->

<0Port id="g" type="Quaternion">
<ShortDesc>General orientation of the tracker</ShortDesc>
</0Port>
<0Port id="pos" type="Pos3D">
<ShortDesc>3D position of the tracker</ShortDesc>
</0Port>
</DeviceClass>

<DeviceClass id="InterSenseWandTracker">
<ShortDesc>Hand tracker from InterSense</ShortDesc>

<Description/>
<Indexes>
<Index id="basic" value="Devices.Input"/>
</Indexes>
<!-- Implements GenericJoystick -->

<0Port id="xPos" type="int">
<ShortDesc>Position left-right of the joystick</ShortDesc>

</0Port>

<0Port id="yPos" type="int">
<ShortDesc>Position front-back of the joystick</ShortDesc>

</0Port>

<0Port id="posJoystick" type="Pos2D">
<ShortDesc>(xPos, yPos)</ShortDesc>

</0Port>

<DPort id="buttoniPressed" type="AnyType'>
<ShortDesc>Button 1 pressed.</ShortDesc>

</0Port>

<0Port id="button2Pressed" type="AnyType">
<ShortDesc>Button 2 pressed.</ShortDesc>

</0OPort>

<0Port id="button3Pressed" type="AnyType'>
<ShortDesc>Button 3 pressed.</ShortDesc>

</0Port>

<0Port id="buttoniReleased" type="AnyType">
<ShortDesc>Button 1 released.</ShortDesc>

</0Port>

<0Port id="button2ZReleased" type="AnyType">
<ShortDesc>Button 2 released.</ShortDesc>

</0Port>

<0Port id="button3Released" type="AnyType'">
<ShortDesc>Button 3 released.</ShortDesc>

</0Port>

<!-- Implements Generic6DOFTracker -->

<0Port id="q" type="Quaternion'">
<ShortDesc>General orientation of the tracker</ShortDesc>

</0Port>

<0Port id="pos'" type="Pos3D">
<ShortDesc>3D position of the tracker</ShortDesc>

</0Port>

<0Port id="button4Pressed" type="AnyType">

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<ShortDesc>Button 4 pressed.</ShortDesc>
</0Port>
<0Port id="button4Released" type="AnyType'">
<ShortDesc>Button 4 released.</ShortDesc>
</0Port>
</DeviceClass>

<DeviceClass id="InterSenseHeadTracker">
<ShortDesc>Head tracker from InterSense</ShortDesc>

<Description/>
<Indexes>

<Index id="basic" value="Devices.Input"/>
</Indexes>

<!-- Implements Generic6DOFTracker -->
<0Port id="q" type="Quaternion">
<ShortDesc>General orientation of the tracker</ShortDesc>
</0Port>
<0Port id="pos" type="Pos3D">
<ShortDesc>3D position of the tracker</ShortDesc>
</QPort>
</DeviceClass>

<DeviceClass id="SpaceMouse">

<ShortDesc>A Logitech’s Space Mouse</ShortDesc>

<Description>
Previously called Magellan 3D Controller.

</Description>

<Indexes>
<Index id="basic" value="Devices.Input"/>

</Indexes>

<0OPort id="buttonlPressed" type="AnyType">
<ShortDesc>Button 1 pressed.</ShortDesc>

</DPort>

<0Port id="button2Pressed" type="AnyType">
<ShortDesc>Button 2 pressed.</ShortDesc>

</0Port>

<0Port id="button3Pressed" type="AnyType">
<ShortDesc>Button 3 pressed.</ShortDesc>

</0Port>

<0Port id="button4Pressed" type="AnyType">
<ShortDesc>Button 1 pressed.</ShortDesc>

</0Port>

<0Port id="button5Pressed" type="AnyType">
<ShortDesc>Button 2 pressed.</ShortDesc>

</0Port>

<0Port id="button6Pressed" type="AnyType">
<ShortDesc>Button 3 pressed.</ShortDesc>

</0Port>

<0Port id="button7Pressed" type="AnyType">
<ShortDesc>Button 1 pressed.</ShortDesc>

</0Port>

<0Port id="button8Pressed" type="AnyType">
<ShortDesc>Button 2 pressed.</ShortDesc>

</0OPort>

<0Port id="buttonlReleased" type="AnyType">
<ShortDesc>Button 1 released.</ShortDesc>

</0Port>

<0Port id="button2Released" type="AnyType'">
<ShortDesc>Button 2 released.</ShortDesc>

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

</0Poxrt>

<0Port id="button3Released" type="AnyType'>
<ShortDesc>Button 3 released.</ShortDesc>

</0Port>

<0Port id="button4Released" type="AnyType">
<ShortDesc>Button 1 released.</ShortDesc>

</QPort>

<0Port id="button5Released" type="AnyType">
<ShortDesc>Button 2 released.</ShortDesc>

</0Port>

<0Port id="button6Released" type="AnyType'>
<ShortDesc>Button 3 released.</ShortDesc>

</0Port>

<0Port id="button7Released" type="AnyType'>
<ShortDesc>Button 1 released.</ShortDesc>

</0Port>

<0Port id="button8Released" type="AnyType">
<ShortDesc>Button 2 released.</ShortDesc>

</0Port>

<!-- Implements Generic6DOFTracker -->

<0Port id="q" type="Quaternion">
<ShortDesc>General orientation of the 3D mouse</ShortDesc>

</0Port>

<0Port id="pos" type="Pos3D">
<ShortDesc>3D position of the 3D mouse</ShortDesc>

</0Port>

</DeviceClass>

<DeviceClass id="GenericScreen">
<ShortDesc>A generic output screen</ShortDesc>
<Description/>
<Indexes>
<Index id="basic" value="Devices.Dutput"/>
</Indexes>
</DeviceClass>

<DeviceClass id="PCScreen">
<ShortDesc>A generic output screen from a PC</ShortDesc>

<Description/>
<Indexes>

<Index id="basic" value="Devices.Output"/>
</Indexes>

<Implements classId="GenericScreen"/>

<0Port id="nearClippingPlane" type="float">
<ShortDesc>Near clipping plane</ShortDesc>

</0Port>

<0Port id="farClippingPlane" type="float'">
<ShortDesc>Far clipping plane</ShortDesc>

</CPort>

<0Port id="FOV" type="float">
<ShortDesc>Field of View</ShortDesc>

</0Port>

</DeviceClass>

<DeviceClass id="IGlasses">
<ShortDesc>Virtual i-glasses HMD</ShortDesc>
<Description/>
<Indexes>
<Index id="basic" value="intml.Devices.Output"/>

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

</Indexes>
<Implements classId="PCScreen"/>
</DeviceClass>

<DeviceClass id="VirtualWindow">
<ShortDesc>Passive 3D Stereo display by Dimension Technologies</ShortDesc>

<Description/>
<Indexes>
<Index id="basic" value="intml.Devices.Output"/>
</Indexes>
<Implements classId="PCScreen"/>
</DeviceClass>

<DeviceClass id="VisroomScreens">
<ShortDesc>Screens at the Visroom</ShortDesc>

<Description/>
<Indexes>
<Index id="basic" value="Devices.Dutput"/>
</Indexes>
<Implements classId="GenericScreen"/>
</DeviceClass>

<DeviceClass id="GenericMouse">
<ShortDesc>A generic mouse definition </ShortDesc>

<Description/>
<Indexes>

<Index id="basic" value="Devices.Input"/>
</Indexes>

<0Port id="xPos" type="int'">
<ShortDesc>Position in X.</ShortDesc>

</0Port>

<0Port id="yPos" type="int">
<ShortDesc>Position in Y.</ShortDesc>

</0Port>

<0Port id="mousePos" type="Pos2D">
<ShortDesc>Absolute position of the mouse pointer</ShortDesc>
<Description>Adds up xPos and yPos into one output.</Description>

</0Port>

<0Port id="rButtonPressed" type="boolean">
<ShortDesc>Right button pressed.</ShortDesc>

</0Port>

<0Port id="mButtonPressed" type="boolean">
<ShortDesc>Middle button pressed.</ShortDesc>

</0Port>

<0Port id="lButtonPressed" type="boolean">
<ShortDesc>Left button pressed.</ShortDesc>

</0Port>

<0Port id="rButtonReleased" type="boolean">
<ShortDesc>Right button released.</ShortDesc>

</0Port>

<0Port id="mButtonReleased" type="boolean'">
<ShortDesc>Middle button released.</ShortDesc>

</GPort>

<0Port id="1ButtonReleased" type="boolean'">
<ShortDesc>Left button released.</ShortDesc>

</0Port>

</DeviceClass>

<DeviceClass id="GenericKeyboard">

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<ShortDesc>A generic keyboard definition.</ShortDesc>

<Description>
It defines the a keyboard as a collection of keys. It contains only some
important keys right now... Because this limited implementation doesn’t
use arrays of ports, the description is rather long.

</Description>

<Indexes>
<Index id="basic" value="Devices.Input"/>

</Indexes>

<DPort id="a" type="boolean"><ShortDesc>Key ’a’ pressed</ShortDesc></0Port>
<0Port id="b" type="boolean"><ShortDesc>Key ’b’ pressed</ShortDesc></0Port>
<0Port id="c" type="boolean'"><ShortDesc>Key ’c’ pressed</ShortDesc></0Port>
<0Port id="d" type="boolean"><ShortDesc>Key ’d’ pressed</ShortDesc></0Port>
<QPort id="q" type="boolean"><ShortDesc>Key ’q’ pressed</ShortDesc></0Port>
<0Port id="p" type="boolean"><ShortDesc>Key ’p’ pressed</ShortDesc></0Port>
<0Port id="s" type="boolean"><ShortDesc>Key ’s’ pressed</ShortDesc></0Port>
<0Port id="x" type="boolean"><ShortDesc>Key ’x’ pressed</ShortDesc></0Port>
<0Port id="z" type="boolean"><ShortDesc>Key ’z’ pressed</ShortDesc></0Port>
</DeviceClass>

<DeviceClass id="SMARTBoard">
<ShortDesc>A SMART Board by SMART Technologies</ShortDesc>
<Description>
It defines the important events from any SMART Board type of interface.
</Description>
<Indexes>
<Index id="basic" value="Devices.ID"/>
</Indexes>
<Implements classId="GenericScreen"/>
<QPort id="xPos" type="int">
<ShortDesc>Position in X.</ShortDesc>
</0Port>
<0Port id="yPos" type="int">
<ShortDesc>Position in Y.</ShortDesc>
</0Port>
<0Port id="touchPos" type="Pos2D">
<ShortDesc>Absolute position of a tool in the screen</ShortDesc>
<Description>Adds up xPos and yPos into one output.</Description>
</0Port>
<0Port id="screenSelected" type="boolean">
<ShortDesc>The screen has been touched with no pen selected.</ShortDesc>
</0Port>
<0Port id="screenReleased" type="boolean">
<ShortDesc>The screen has been released with no pen selected.</ShortDesc>
</0Port>
<0Port id="penlSelected" type="boolean">
<ShortDesc>The pen 1 has been selected.</ShortDesc>
</0Port>
<0Port id="pen2Selected" type="boolean">
<ShortDesc>The pen 2 has been selected.</ShortDesc>
</0Port>
<0Port id="pen3Selected" type="boolean">
<ShortDesc>The pen 3 has been selected.</ShortDesc>
</QPort>
<0Port id="pend4Selected" type="boolean">
<ShortDesc>The pen 4 has been selected.</ShortDesc>
</0Port>
<0Port id="penliReleased" type="boolean">
<ShortDesc>The pen 1 has been released.</ShortDesc>

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

</0Port>

<0Port id="pen2ZReleased" type="boolean'">
<ShortDesc>The pen 2 has been released.</ShortDesc>

</0Port>

<DPort id="pen3Released" type="boolean">
<ShortDesc>The pen 3 has been released.</ShortDesc>

</0Port>

<0Port id="pend4Released" type="boolean">
<ShortDesc>The pen 4 has been released.</ShortDesc>

</0Port>

</DeviceClass>

<DeviceClass id="Timer">
<ShortDesc>Timer in the execution environment</ShortDesc>
<OPort id="secs" type="int">
<ShortDesc>Seconds since the program initijalization</ShortDesc>
</0Port>
<0Port id="curTime" type="Time">
<ShortDesc>Seconds since the program initialization</ShortDesc>
</0Port>
<0Port id="ticks" type="int">
<ShortDesc>Simulation steps</ShortDesc>
<Description>Number of simulation steps, since the program initialization </Description>
</0Port>
</DeviceClass>

<ObjectClass id="VRObject">
<ShortDesc>Interface for a VR object in the dataflow</ShortDesc>
<Description>
VRObjectClass defines the input and output ports of any VRObject
in the dataflow.
Transformations are organized as follows:
Scales, Rotations, Translations

</Description>
<Indexes>

<Index id="basic" value="Objects.VRObject"/>
</Indexes>

<IPort id="setPos" type="Pos3D">
<ShortDesc>Changes the world position of an object</ShortDesc>
<Description>
Changes the world-related position of an object.
It is considered a relative position if it is contained in
another object.
</Description>
</IPort>
<0Port id="posChanged" type="Pos3D">
<ShortDesc>Informs when the object moves</ShortDesc>
</0Port>
<IPort id="setQ" type="Quaternion">
<ShortDesc>Changes the world orientation of an object</ShortDesc>
<Description>
Changes the world-related orientation of an object.
It is considered a relative orientation if it is contained in
another object.
</Description>
</IPort>
<0Port id="qChanged" type="Quaternion">
<ShortDesc>Informs when the object rotates</ShortDesc>
</0Port>

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<IPort id="setScale" type="Vector3">
<ShortDesc>Changes the scale of an object</ShortDesc>
<Description>
Changes the size of an object. It is considered a relative
size if it is contained in another object.
</Description>
</IPort>
<0Port id="scaleChanged" type="Vector3">
<ShortDesc>Informs when the object changes its size</ShortDesc>
</0Port>
<IPort id="setMatrix" type="Matrix4">
<ShortDesc>Changes the rigid transformations.</ShortDesc>
<Description>
Changes the rigid transformations that apply to the object.
It is useful when it necessary to apply rigid transformations
at once and at a specific order.
</Description>
</IPort>
<IPort id="addObject" type="VRObject'">
<ShortDesc>Adds a new part to this object</ShortDesc>
</IPort>
<0Port id="objectAdded" type="VRObject">
<ShortDesc>Informs when a part is added to the object</ShortDesc>
</0Port>
<IPort id="removeObject" type="VRObject">
<ShortDesc>Removes a part from this object</ShortDesc>
</IPort>
<0Port id="objectRemoved" type="VRObject">
<ShortDesc>Informs when a part is removed from the object</ShortDesc>
</0Port>
<IPort id="setTransparency" type="float">
<ShortDesc>Defines the current transparency of an object (0-1)</ShortDesc>
</IPort>
<0OPort id="transparencyChanged" type="float">
<ShortDesc>Informs changes in the transparency</ShortDesc>
</0Port>
<IPort id="highlightState" type="boolean">
<ShortDesc>true if the object has to appear higlighted</ShortDesc>
</IPort>
<0Port id="highlightChanged" type="boolean">
<ShortDesc>Informs when the highlight state changes</ShortDesc>
</0Port>
<IPort id="setVisible" type="boolean">
<ShortDesc>true if the object has to be visible</ShortDesc>
</IPort>
<0Port id="visibilityChanged" type="boolean'">
<ShortDesc>Informs when the visibility state changes</ShortDesc>
</0Port>
</ObjectClass>

<ObjectClass id="Viewpoint">
<ShortDesc>Representation of a viewpoint in the application</ShortDesc>
<Description>

Viewpoint defines a basic element with just position and orientation.

In the futute, it might include a description for the avatar.

</Description>
<Indexes>

<Index id="basic" value="Objects.Viewpoint"/>
</Indexes>

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<IPort id="setPos" type="Pos3D">
<ShortDesc>Changes the world position of an object</ShortDesc>
<Description>
Changes the world-related position of an object.
It is considered a relative position if it is contained in
another object.
</Description>
</IPort>
<0OPort id="posChanged" type="Pos3D">
<ShortDesc>Informs when the object moves</ShortDesc>
</0Port>
<IPort id="setQ" type="Quaternion">
<ShortDesc>Changes the world orientation of an object</ShortDesc>
<Description>
Changes the world-related orientation of an object.
It is considered a relative orientation if it is contained in
another object.
</Description>
</IPort>
<0Port id="qChanged" type="Quaternion">
<ShortDesc>Informs when the object rotates</ShortDesc>
</0Port>
<IPort id="setEuler" type="Vector3">
<ShortDesc>Changes orientation by new Euler angles</ShortDesc>
<Description>
Changes the orientation of the viewpoint to the new
Euler angles.
</Description>
</IPort>
<IPort id="setVisible" type="boolean">
<ShortDesc>true if the object has to be visible</ShortDesc>
</IPort>
<0Port id="visibilityChanged" type="boolean">
<ShortDesc>Informs when the visibility state changes</ShortDesc>
</0Port>
</ObjectClass>

<0ObjectClass id="Scene">
<ShortDesc>Interface for a Scene in the dataflow</ShortDesc>
<Description>
A Scene is a set of unstructured geometry that can’t be selected, and a
set of VRobjects, which can be selected. Its implementation defines the
general structures required for selection computation.

</Description>
<Indexes>

<Index id="basic" value="Objects.Scene"/>
</Indexes>

<!-- Implements VRObject -->
<IPort id="setPos" type="Pos3D">
<ShortDesc>Changes the world position of an object</ShortDesc>
<Description>
Changes the world-related position of an object.
It is considered a relative position if it is contained in
another object.
</Description>
</IPort>
<0Port id="posChanged" type="Pos3D">
<ShortDesc>Informs when the object moves</ShortDesc>
</0Port>

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<IPort id="set(Q" type="Quaternion">
<ShortDesc>Changes the world orientation of an object</ShortDesc>
<Description>
Changes the world-related orientation of an object.
It is considered a relative orientation if it is contained in
another object.
</Description>
</IPort>
<0Port id="qChanged" type="Quaternion">
<ShortDesc>Informs when the object rotates</ShortDesc>
</0Port>
<IPort id="setScale" type="Vector3">
<ShortDesc>Changes the scale of an object</ShortDesc>
<Description>
Changes the size of an object. It is considered a relative
size if it is contained in another object.
</Description>
</IPort>
<0Port id="scaleChanged" type="Vector3">
<ShortDesc>Informs when the object changes its size</ShortDesc>
</0Port>
<IPort id="setMatrix" type="Matrix4'>
<ShortDesc>Changes the rigid transformations.</ShortDesc>
<Description>
Changes the rigid transformations that apply to the object.
It is useful when it necessary to apply rigid transformations
at once and at a specific order.
</Description>
</IPort>
<IPort id="addObject" type="VRObject">
<ShortDesc>Adds a new part to this object</ShortDesc>
</IPort>
<0Port id="objectAdded" type="VRObject">
<ShortDesc>Informs when a part is added to the object</ShortDesc>
</0Port>
<IPort id="removeObject" type="VRObject">
<ShortDesc>Removes a part from this object</ShortDesc>
</IPort>
<0Port id="objectRemoved" type="VRObject">
<ShortDesc>Informs when a part is removed from the object</ShortDesc>
</0Port>
<IPort id="setTransparency" type="float”>
<ShortDesc>Defines the current transparency of an object (0-1)</ShortDesc>
</IPort>
<0Port id="transparencyChanged" type="float">
<ShortDesc>Informs changes in the transparency</ShortDesc>
</0Port>
<IPort id="highlightState" type="boolean">
<ShortDesc>true if the object has to appear higlighted</ShortDesc>
</IPort>
<OPort id="highlightChanged" type="boolean">
<ShortDesc>Informs when the highlight state changes</ShortDesc>
</0Port>
</0ObjectClass>

<FilterClass id="ControlableFilter">
<ShortDesc>Generic behavior of a filter</ShortDesc>

<Description>
Defines the ports that a controlable filter should understand.

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It is basically a way to disable a filter.

</Description>
<Indexes>

<Index id="basic" value="InTs.Control"/>
</Indexes>

<IPort id="on" type="boolean'>
<ShortDesc>Defines if the filter is working or not</ShortDesc>
<Description>
At startup, every filter is off. If an event with ’true’ is
received, the filter is activated, and is the event’s value is ’false’
the filter is deactivated, so no other input is considered.
If ’false’ is received by this port,
the filter’s state should be kept, so the next time it is turned on
it will continue its execution.
</Description>
</IPort>
<IPort id="flushState" type="AnyType">
<ShortDesc>Clears the current internal state</ShortDesc>
<Description>
If anything is received in this port, the internal state of the
filter is set as if it were running for the first time.
</Description>
</IPort>
<0Port id="inMode" type="AnyType">
<ShortDesc>Event sent when the filter is executing</ShortDesc>
<Description>
This port sends events everytime the filter is performing an
operation. It can be used for modal operations, when only one
has to be active at a particular time of the execution.
</Description>
</0Port>
<0Port id="finishing" type="AnyType">
<ShortDesc>Event sent when the filter is about to finish</ShortDesc>
<Description>
This event is sent after the execution of the filter has ended,
and we want to tell other filters to react to this.
</Description>
</0Port>
</FilterClass>

<FilterClass id="Switch">
<ShortDesc>Turns on and off, from two signals</ShortDesc>
<Description>
It doesn’t generate repetitions due receiving the same signal
several times.

</Description>
<Indexes>

<Index id="basic" value="InTs.Control"/>
</Indexes>

<IPort id="signalOn" type="AnyType">
<ShortDesc>0n signal</ShortDesc>

</IPort>

<IPort id="signalOff" type="AnyType'">
<ShortDesc>0ff signal</ShortDesc>

</IPort>

<0Port id="on0ff" type="boolean">
<ShortDesc>Boolean from the two inputs</ShortDesc>

</0Port>
</FilterClass>

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<FilterClass id="SelectByRay">
<ShortDesc>Selection by intersection with a ray from the image plane</ShortDesc>
<Description>
Implements details of selection by intersection with a ray.
It receives position updates of a ray in the scene
and it computes which object from the scene is intersected first.
Internally, it takes into account additions and removals of objects, to
and from the scene.

</Description>
<Indexes>

<Index id="basic" value="InTs.Selection"/>
</Indexes>

<Implements classId="ControlableFilter"/>

<IPort id="pos" type="Pos2D">
<ShortDesc>Position in the image plane for the selection</ShortDesc>

</IPort>

<IPort id="scene" type="Scene">
<ShortDesc>Selectable objects</ShortDesc>

</IPort>

<OPort id="object" type="VRObject">
<ShortDesc>Selected object</ShortDesc>

</0Port>

<0Port id="deselected" type="boolean">
<ShortDesc>Last selected object deselected</ShortDesc>

</0Port>
</FilterClass>

<FilterClass id="SelectBy3DRay">

<ShortDesc>Selection by intersection with a ray in 3D</ShortDesc>

<Description>
Implements details of selection by intersection with a ray, given a
ray specification as 3D position plus orientation.
It receives position and orientation updates of a ray in the scene
and it computes which object from the scene is intersected first.
Internally, it takes into account additions and removals of objects, to
and from the scene.

</Description>
<Indexes>

<Index id="basic" value="InTs.Selection"/>
</Indexes>

<Implements classId="ControlableFilter"/>
<IPort id="pos" type="Pos3D">
<ShortDesc>Position in the image plane for the selection</ShortDesc>
</IPort>
<IPort id="q" type="Quaternion'">
<ShortDesc>Position in the image plane for the selection</ShortDesc>
</IPort>
<IPort id="scene" type="Scene">
<ShortDesc>Selectable objects</ShortDesc>
</IPort>
<0Port id="object" type="VRObject">
<ShortDesc>Selected object</ShortDesc>
</0Port>
<0Port id="deselected" type="boolean">
<ShortDesc>Last selected object deselected</ShortDesc>
</0Port>
</FilterClass>

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<FilterClass id="SelectByTouching">

<ShortDesc>Selection by collision with a virtual pointer.</ShortDesc>

<Description>
It selects an object that is colliding with the virtual pointer.
It executes its operation everytime a signal is received by the
’compute’ input port. This varies from previous Selection Techniques,
and makes more clear that the position and orientation can be
obtained from the ’handRepr’. Semantically is more correct, but
it forces the system to wait two frames in order to make a selection
since, as it was in previous selection techniques, selection used to
receive the proposed changes in position and orientation, changes that
weren’t commited at the time of execution of such filter.

</Description>
<Indexes>

<Index id="basic" value="InTs.Selection"/>
</Indexes>

<Implements classId="ControlableFilter"/>
<IPort id="compute" type="AnyType" policy="ANY"></IPort>
<IPort id="handRepr" type="VRObject"></IPort>
<IPort id="scene" type="Scene"></IPort>
<0OPort id="object" type="VRObject'"></0QPort>
<0Port id="deselected" type="AnyType">
<ShortDesc>Last selected object deselected</ShortDesc>
</0Port>
</FilterClass>

<FilterClass id="GoGoSelection">
<ShortDesc>Go-Go Interaction Technique, by Poupyrev.</ShortDesc>
<Description>
GoGo computes a new hand position as a function of the distance
of the real hand from the chest, K, and D. It also computes a
virtual position for the hand representation, as it is described
in the Poupyrev’s paper.

</Description>
<Indexes>

<Index id="basic" value="InTs.Selection"/>
</Indexes>

<Implements classId="ControlableFilter"/>
<JPort id="K" type="float" defValue="0.167"></IPort>
<IPort id="D" type="float" defValue="0.6"></IPort>
<IPort id="posHead" type="Pos3D"></IPort>
<IPort id="qHead" type="Quaternion"></IPort>
<IPort id="posHand" type="Pos3D"></IPort>
<IPort id="qHand" type="Quaternion"></IPort>
<IPort id="handRepr" type="VRObject"></IPort>
<IPort id="scene" type="Scene"></IPort>
<0Port id="object" type="VRObject"></0OPort>
<0Port id="gogoPos" type="Pos3D"></0OPort>
<0Port id="gogoQ" type="Quaternion"></DPort>
<0Port id="deselected" type="AnyType'">
<ShortDesc>Last selected object deselected</ShortDesc>
</CPort>
</FilterClass>

<FilterClass id="Joystick2Ray">
<ShortDesc>Gets a ray from the joystick position</ShortDesc>
<Description>
It computes a ray from the joystick position. It is useful for selection
by a ray in a joystick-based enviromment. It uses refPos

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

as the center of the plane that will contain posRay, and refQ as the
normal of such plane.

</Description>
<Indexes>

<Index id="basic" value="InTs.Selection"/>
</Indexes>

<IPort id="pos" type="Pos2D">
<ShortDesc>Joystick’s position</ShortDesc>

</IPort>

<IPort id="refPos" type="Pos3D" defValue="0, 0, O">
<ShortDesc>Reference position</ShortDesc>

</IPort>

<IPort id="refQ" type="Quaternion" defValue="0, 0, 0, 1">
<ShortDesc>Reference orientation</ShortDesc>

</IPort>

<0Port id="posRay" type="Pos3D">
<ShortDesc>Position of the ray</ShortDesc>

</0Port>

<0Port id="gqRay" type="Quaternion">
<ShortDesc>Rotation of the ray</ShortDesc>

</0Port>
</FilterClass>

<FilterClass id="HMDJ2Ray">

<ShortDesc>Gets a ray from the HMD and joystick position</ShortDesc>

<Description>
It computes a ray from the HMD and joystick positions, that can be used
by a SelectByRay filter. The cursor’s is always centered in the field
of view, with an offset given by the current joystick position. The
ray is defined as centered between the user’s eyes and passing through
the joystick cursor (posRay).

</Description>
<Indexes>

<Index id="basic" value="InTs.Selection"/>
</Indexes>

<IPort id="headQ" type="Quaternion">
<ShortDesc>Head orientation</ShortDesc>

</IPort>

<IPort id="headPos" type="Pos3D">
<ShortDesc>Head position</ShortDesc>

</IPort>

<IPort id="jPos" type="Pos2D">
<ShortDesc>Joystick position</ShortDesc>

</IPort>

<0Port id="posRay" type="Pos3D">
<ShortDesc>Position of the ray</ShortDesc>

</0Port>

<0Port id="qRay" type="Quaternion">
<ShortDesc>Rotation of the ray</ShortDesc>

</0Port>
</FilterClass>

</Package>

Application Specific Classes

<7xml version="1.0" encoding="UTF-8"7>

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<!DOCTYPE Package PUBLIC "-//pfiguero//3D Interaction Techniques ML//EN"
"http://www.cs.ualberta.ca/ “pfiguero/InTmlTemp/spec/intml.dtd">
<t-- Copyright info
newClasses: Classes defined by the designer, used in the Matching test

Copyright (C) 2001, Pablo Figueroa

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser Gemeral Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111~-1307 USA

-—>
<t{~~ Changes:
May 8, 2002: First version
-—>
<!~- Devices in the Matching Test application -—>

<Package id="matchingTest">

<FilterClass id="RandomPQ">
<ShortDesc>Assign a random position and orientation to an object</ShortDesc>
<Description>
It assigns a random new position to an object that is received in objs.
If there are several objects in objs, it orders them by name and then
assigns them a new position and orientation.

</Description>
<Indexes>

<Index id="basic" value="InTs.Init"/>
</Indexes>

<IPort id="objs" type="VRObject'">
<ShortDesc>0Object to be changed</ShortDesc>

</IPort>

<IPort id="gridDimension" type="int">
<ShortDesc>0bject to be changed</ShortDesc>

</IPort>

<IPort id="viewpoint" type="Viewpoint">
<ShortDesc>Current viewpoint</ShortDesc>

</IPort>

<IPort id="outputDevice" type="GenericScreen">
<ShortDesc>It is used to know a valid new position</ShortDesc>

</IPort>

</FilterClass>

<FilterClass id="RandomRelativePQ">
<ShortDesc>Assign a random position and orientation to pairs of objects</ShortDesc>
<Description>

Assign a random position and orientation to an object within several

constraints. Firstly, the xy of the position is fixed based on a grid

which divides the screen into six sections so as to maximize screen

usage and minimize occlusion. Secondly, the distance between each

object and its copy must be equal for each pair of objects.

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.ualberta.ca/~pfiguero/InTmlTemp/spec/intml.dtd

</Description>
<Indexes>
<Index id="basic" value="InTs.Init"/>
</Indexes>
<IPort id="obj1" type="VRObject">
<ShortDesc>0bject to be changed</ShortDesc>
</IPort>
<IPort id="copyl" type="VRObject">
<ShortDesc>Object to be changed relative to the first object</ShortDesc>
</IPort>
<IPort id="obj2" type="VRObject">
<ShortDesc>0bject to be changed</ShortDesc>
</IPort>
<IPort id="copy2" type="VRObject">
<ShortDesc>0bject to be changed relative to the first object</ShortDesc>
</IPort>
<IPort id="obj3" type="VRObject">
<ShortDesc>0bject to be changed</ShortDesc>
</IPort>
<IPort id='"copy3" type="VRObject">
<ShortDesc>0bject to be changed relative to the first object</ShortDesc>
</IPort>
<IPort id="outputDevice" type="GenericScreen">
<ShortDesc>It is used to know a valid new position</ShortDesc>
</IPort>
<IPort id="viewPoint" type="Viewpoint">
<ShortDesc>Used to know the position and orientation of viewpoint</ShortDesc>
</IPort>
</FilterClass>

<FilterClass id="TransparentCopy">

<ShortDesc>Makes a transparent copy of an object</ShortDesc>

<Description>
It creates a new object with half the transparency of the previous one,
and send it through objCopied. It doesn’t change position nor orientation,
so the copy has to be moved later on to be distinguisable. If several objects are
received, all are copied. The copy of an object with identifier "id" is
called "CopyOfid".

</Description>
<Indexes>

<Index id="basic" value="InTs.Init"/>
</Indexes>

<IPort id="obj" type="VRObject" policy="ALL">
<ShortDesc>0bject to be copied</ShortDesc>
</IPort>
<0Port id="objCopied" type="VRObject">
<ShortDesc>Transparent copy of the input</ShortDesc>
</0Port>
</FilterClass>

<FilterClass id="HighlightedFeedback">
<ShortDesc>It changes an object’s appearance to highlighted</ShortDesc>
<Description>
It changes the color of an object to a translucent green appearance.
Used for selection feedback.

</Description>
<Indexes>

<Index id="basic" value="InTs.Manipulation"/>
</Indexes>

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<IPort id="obj" type="VRObject">
<ShortDesc>0bject to be changed</ShortDesc>
</IPort>
<IPort id="deselected" type="boolean">
<ShortDesc>Last selected object deselected</ShortDesc>
</IPort>
<0Port id="currentObject" type="VRObject">
<ShortDesc>Current highlighted objects</ShortDesc>
</0Port>
</FilterClass>

<FilterClass id="RotationBehavior">
<ShortDesc>It rotates an object when a button is dragged</ShortDesc>
<Description>
It rotates an object received in the "obj" port, between the events
buttonPressed and buttonReleased

</Description>
<Indexes>

<Index id="basic" value="InTs.Manipulation"/>
</Indexes>

<Implements classId="ControlableFilter"/>
<IPort id="scaleMov" type="float">
<ShortDesc>Scaling for the input movement</ShortDesc>
</IPort>
<IPort id="buttonPressed" type="boolean">
<ShortDesc>Start the rotation of the object</ShortDesc>
</IPort>
<IPort id="buttonReleased" type="boolean">
<ShortDesc>Stop the rotation of the object</ShortDesc>
</IPort>
<IPort id="pointerPos" type="Pos2D">
<ShortDesc>Current pointer position</ShortDesc>
</IPort>
<IPort id="obj" type="VRObject">
<ShortDesc>DObject to be rotated</ShortDesc>
</IPort>
<IPort id="deselected" type="boolean">
<ShortDesc>Last selected object deselected</ShortDesc>
</IPort>
</FilterClass>

<FilterClass id="TranslationBehavior">
<ShortDesc>It translates an object when a button is dragged</ShortDesc>
<Description>
It translates an object received in the "obj" port, between the events
buttonPressed and buttonReleased. The events movXZ, movXY, movYZ
change the plane of movement. By default, the movement is in plane XY

</Description>
<Indexes>

<Index id="basic" value="InTs.Manipulation"/>
</Indexes>

<Implements classId="ControlableFilter"/>
<IPort id="scaleMov" type="float">
<ShortDesc>Scaling for the input movement</ShortDesc>
</IPort>
<IPort id="buttonPressed" type="boolean">
<ShortDesc>Start the rotation of the object</ShortDesc>
</IPort>
<IPort id="buttonReleased" type="boolean">

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<ShortDesc>Stop the rotation of the object</ShortDesc>
</IPort>
<IPort id="pointerPos" type="Pos2D">
<ShortDesc>Current pointer position</ShortDesc>
</IPort>
<IPort id="movXY" type="boolean">
<ShortDesc>Changes the movement to the plane XY</ShortDesc>
</IPort>
<IPort id="movXZ" type="boolean">
<ShortDesc>Changes the movement to the plane XZ</ShortDesc>
</IPort>
<IPort id="movYZ" type="boolean">
<ShortDesc>Changes the movement to the plane YZ</ShortDesc>
</IPort>
<IPort id="obj" type="VRObject">
<ShortDesc>0Object to be rotated</ShortDesc>
</IPort>
<IPort id="deselected" type="boolean'">
<ShortDesc>Last selected object deselected</ShortDesc>
</IPort>
</FilterClass>

<FilterClass id="EchoPQ">
<ShortDesc>Echoes position and orientation from input to output</ShortDesc>
<Description>
It echoes the position and orientation input events to the output. Its
purpose is to move objects in 3D just when this function is activated.

</Description>
<Indexes>

<Index id="basic" value="InTs.Init"/>
</Indexes>

<Implements classId="ControlableFilter"/>
<IPort id="setPos" type="Pos3D">
<ShortDesc>New position events</ShortDesc>
<Description>
Position events to be queued to the output
</Description>
</IPort>
<0Port id="posChanged" type="Pos3D">
<ShortDesc>Position events that have been received</ShortDesc>
</CPort>
<IPort id="set(Q" type="Quaternion">
<ShortDesc>New orientation events</ShortDesc>
</IPort>
<DPort id="qChanged" type="Quaternion">
<ShortDesc>0rientation events that have been received</ShortDesc>
</0Port>
</FilterClass>

<FilterClass id="RotTrans">

<ShortDesc>Executes translation and rotation of an object</ShortDesc>

<Description>
It manages both translation and rotation, from a pos3D and a quaternion
as input. the object received at obj is moved when the buttonPressed
signal is received. If any of the toggle signals is received, the
object will be either just moved or just rotated. Movements are relative
to the position and orientation of the pointer when the grab signal is
received.

</Description>

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<Indexes>
<Index id="basic" value="InTs.Manipulation"/>
</Indexes>
<Implements classId="ControlableFilter"/>
<IPort id="buttonPressed" type="boolean">
<ShortDesc>Grab the object</ShortDesc>
</IPort>
<IPort id="buttonReleased" type="boolean">
<ShortDesc>Release the object</ShortDesc>
</IPort>
<IPort id="toggleTranslation" type="AnyType">
<ShortDesc>Turns on/off the translation behavior</ShortDesc>
</IPort>
<IPort id="toggleRotation" type="AnyType">
<ShortDesc>Turns on/off the rotation behavior</ShortDesc>
</IPort>
<IPort id="obj" type="VRObject">
<ShortDesc>0Object to be rotated</ShortDesc>
</IPort>
<IPort id="deselected" type="boolean">
<ShortDesc>Last selected object deselected</ShortDesc>
</IPort>
<IPort id="setPos" type="Pos3D">
<ShortDesc>New position events</ShortDesc>
<Description>
Position events to be queued to the output
</Description>
</IPort>
<IPort id="setQ" type="Quaternion">
<ShortDesc>New orientation events</ShortDesc>
</IPort>
</FilterClass>

<FilterClass id="MatchFunction">
<ShortDesc>It measures how far are two objects</ShortDesc>
<Description>
It measures the difference in orientation and position between an object
and its copy.

</Description>
<Indexes>

<Index id="basic" value="InTs.Manipulation"/>
</Indexes>

<Implements classId="ControlableFilter"/>
<IPort id="obj" type="VRObject">
<ShortDesc>0bject that has been moved</ShortDesc>
</IPort>
<IPort id="copyObj" type="VRObject">
<ShortDesc>Reference object</ShortDesc>
</IPort>
<IPort id="compute" type="AnyType'">
<ShortDesc>If info is received, this function is executed</ShortDesc>
</IPort>
<0Port id="match" type="VRObject">
<ShortDesc>The object is sent here when the two objects match</ShortDesc>
</0Port>
</FilterClass>

<FilterClass id="DeleteWhenSignal">
<ShortDesc>Delete a set of objects when a signal is received</ShortDesc>

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<Description>
It accumulates a set of objects and deletes them once a signal is received.

</Description>
<Indexes>

<Index id="basic" value="InTs.Manipulation"/>
</Indexes>

<IPort id="obj" type="VRObject">

<ShortDesc>0bjects that have to be deleted</ShortDesc>
</IPort>
<IPort id="signal" type="AnyType">

<ShortDesc>Signal that triggers the behavior</ShortDesc>
</IPoxrt>

</FiltexrClass>

<FilterClass id="QuitMatching">
<ShortDesc>Ends the application when the objects have been matched</ShortDesc>
<Description>
It waits until the three objects have been matched, send a log event
and ends the application two frames later. It also quits if the user
presses a designated letter.

</Description>
<Indexes>

<Index id="basic" value="InTs.Control"/>
</Indexes>

<IPort id="signal" type="AnyType">
<ShortDesc>Signal to quit the application</ShortDesc>
</IPort>
<IPort id="abortSignal" type="AnyType">
<ShortDesc>Signal to abort the application</ShortDesc>
</IPort>
<0Port id="endInfo" type="String">
<ShortDesc>Sent when the application is about the quit</ShortDesc>
</0Port>
</FilterClass>

<FilterClass id="QrientationCenter">
<ShortDesc>Center of the current’s head orientation</ShortDesc>
<Description>
It returns the intersection point of an imaginary line from the user’s
viewpoint and orientation and the near clipping plane. It assumes the
clipping plane is big enough to be intersected, and that the clipping
plane is at a distance d, when the quaternion is pointing to -z.

</Description>
<Indexes>

<Index id="basic" value="InTs.Control"/>
</Indexes>

<IPort id="p" type="Pos3D">
<ShortDesc>User’s head position</ShortDesc>
</IPort>
<IPort id="q" type="Quaternion">
<ShortDesc>User’s head orientation</ShortDesc>
</IPort>
<IPort id="screen" type="PCScreen">
<ShortDesc>Current screen parameters (i.e. clipping planes)</ShortDesc>
</IPort>
<0Port id="pos" type="Pos3D">
<ShortDesc>Intersection point in the clipping plane</ShortDesc>
</0Port>
</FilterClass>

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<FilterClass id="HMDJPointer">

<ShortDesc>Defines the position of a pointer in a HMDJ</ShortDesc>

<Description>
The position of the pointer in a HMDJ environment is given by the
point computed by OrientationCenter, and the current joystick
position. The output is always the last value for the head’s
position plus the joystick offset (pos and pos3D). If the joystick is
in dragging mode (given by buttonPressed and buttonReleased), pos is
shifted by the amount given through shiftAmount.

</Description>
<Indexes>

<Index id="basic" value="InTs.Control"/>
</Indexes>

<IPort id="headCenter" type="Pos3D">
<ShortDesc>Intersection point in the clipping plane</ShortDesc>
</IPort>
<IPort id="jPos" type="Pos2D">
<ShortDesc>Joystick position, in the clipping plane</ShortDesc>
</IPort>
<IPort id="screen" type="PCScreen'">
<ShortDesc>Current screen parameters (i.e. clipping planes)</ShortDesc>
</IPort>
<IPort id="shiftAmount" type="float">
<ShortDesc>Shift amount when dragging</ShortDesc>
</IPort>
<IPort id="buttonPressed" type="boolean">
<ShortDesc>Start dragging mode for the joystick</ShortDesc>
</IPort>
<IPort id="buttonReleased" type="boolean">
<ShortDesc>Stop dragging mode for the joystick</ShortDesc>
</IPort>
<0OPort id="pos" type="Pos2D">
<ShortDesc>Pointer position over the enlarged clipping plane</ShortDesc>
</0Port>
<OPort id="pos3D" type="Pos3D">
<ShortDesc>3D Pointer position</ShortDesc>
</0Port>
</FilterClass>

<FilterClass id="ControlMatching">

<ShortDesc>Control of InTs in execution</ShortDesc>

<Description>
Disables selection when rotation or translation are executing
When rotation starts, selection and translation are disabled
When translation starts, selection and rotation are disabled
When rotation ends, selection and translation are enabled.
If the port ’allowBothTransRot’ receives true, both orientation
and translation might be active at the same time.

</Description>
<Indexes>

<Index id="basic" value="InTs.Control"/>
</Indexes>

<IPort id="allowBothTransRot" type="boolean">
<ShortDesc>Allow both InTs active at the same time.</ShortDesc>

</IPort>

<IPort id="selection" type="ControlableFilter">
<ShortDesc>Selection technique</ShortDesc>

</IPort>

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<IPort id="rotation" type="ControlableFilter">
<ShortDesc>Rotation technique</ShortDesc>

</IPort>

<IPort id="translation" type="ControlableFilter'">
<ShortDesc>Translation technique</ShortDesc>

</IPort>

<IPort id="inModeRotatiomn" type="AnyType">
<ShortDesc>Rotation is executing</ShortDesc>

</IPort>

<IPort id="inModeTranslation" type="AnyType">
<ShortDesc>Translation is executing</ShortDesc>

</IPort>

<IPort id="endRotation" type="AnyType">
<ShortDesc>End of rotation</ShortDesc>

</IPort>

<IPort id="endTranslation" type="AnyType">
<ShortDesc>End of translation</ShortDesc>

</IPort>

<IPort id="matchli" type="ControlableFilter">
<ShortDesc>Matching function 1</ShortDesc>

</IPort>

<IPort id="match2" type="ControlableFilter">
<ShortDesc>Matching function 2</ShortDesc>

</IPort>

<IPort id="match3" type="ControlableFilter">
<ShortDesc>Matching function 3</ShortDesc>

</IPort>
</FilterClass>

<FilterClass id="ResetPosition">
<ShortDesc>Resets a position when a signal is received</ShortDesc>
<Description>
It allows to decouple a position from a device and a position from an
object. When the signal is received, the last position is saved and
all new positions generated are relative to the last one. It is useful
when you want to come back to the origin.

</Description>
<Indexes>

<Index id="basic" value="InTs.Init"/>
</Indexes>

<IPort id="setPos" type="Pos3D">
<ShortDesc>new position</ShortDesc>

</IPort>

<IPort id="reset" type="AnyType">
<ShortDesc>Set new zero</ShortDesc>

</IPort>

<0Port id="pos" type="Pos3D">
<ShortDesc>New position</ShortDesc>

</0Port>

</FilterClass>

<FilterClass id="Log">
<ShortDesc>Logs the application execution</ShortDesc>
<Description>
It logs all the relevant information from an application. It also logs
an execution counter, everytime it runms.
</Description>
<Indexes>

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<Index id="basic" value="InTs.Control"/>

</Indexes>

<IPort id="curTime" type="Time'">
<ShortDesc>Current time</ShortDesc>

</IPort>

<IPort id="userId" type="String">
<ShortDesc>User id</ShortDesc>

</IPort>

<IPort id="matchSignal" type="VRObject">
<ShortDesc>Signal of a matching in the world</ShortDesc>

</IPort>

<IPort id="platformId" type="String">
<ShortDesc>Hardware platform identification</ShortDesc>

</IPort>

<IPort id="endSignal" type="AnyType'">
<ShortDesc>Message before finishing the application</ShortDesc>

</IPort>

<IPort id="abortSignal" type="AnyType">
<ShortDesc>Message before aborting the application</ShortDesc>

</IPort>

<!-~ Important events in the execution -->

<IPort id="posObji" type="Pos3D">
<ShortDesc>Position of object 1</ShortDesc>

</IPort>

<IPort id="posReplical" type="Pos3D">
<ShortDesc>Position of replica of object 1</ShortDesc>

</IPort>

<IPort id="posObj2" type="Pos3D">
<ShortDesc>Position of object 2</ShortDesc>

</IPort>

<IPort id="posReplica2" type="Pos3D">
<ShortDesc>Position of replica of object 2</ShortDesc>

</IPort>

<IPort id="posObj3" type="Pos3D">
<ShortDesc>Position of object 3</ShortDesc>

</IPort>

<IPort id="posReplica3" type="Pos3D">
<ShortDesc>Position of replica of object 3</ShortDesc>

</IPort>

<IPort id="qObjl" type="Quaternion">
<ShortDesc>0Orientation of object 1</ShortDesc>

</IPort>

<IPort id="qReplical" type="Quaternion">
<ShortDesc>0rientation of replica of object 1</ShortDesc>

</IPort>

<IPort id="qObj2" type="Quaternion">
<ShortDesc>Orientation of object 2</ShortDesc>

</IPort>

<IPort id="qReplical2" type="Quaternion">
<ShortDesc>0rientation of replica of object 2</ShortDesc>

</IPort>

<IPort id="qO0bj3" type="Quaternion">
<ShortDesc>0rientation of object 3</ShortDesc>

</IPort>

<IPort id="qReplica3" type="Quaternion">
<ShortDesc>0rientation of replica of object 3</ShortDesc>

</IPort>

<IPort id="selectedObj" type="VRDbject">
<ShortDesc>New selected Object</ShortDesc>

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

</IPort>
<IPort id="deselectedObj" type="AnyType">
<ShortDesc>Last object has been deselected</ShortDesc>
</IPort>
<IPort id="movXY" type="boolean">
<ShortDesc>Changes the movement to the plane XY</ShortDesc>
</IPort>
<IPort id="movXZ" type="boolean">
<ShortDesc>Changes the movement to the plane XZ</ShortDesc>
</IPort>
<IPort id="movYZ" type="boolean">
<ShortDesc>Changes the movement to the plane YZ</ShortDesc>
</IPort>
<IPort id="pointerPos" type="Pos2D">
<ShortDesc>Absolute position of the pointer</ShortDesc>
<Description>Position of the pointer in the image plane.</Description>
</IPort>
<IPort id="rotateStart" type="boolean">
<ShortDesc>Rotate functionality has been selected.</ShortDesc>
</IPort>
<IPort id="rotateStop" type="boolean">
<ShortDesc>Rotate functionality has been released.</ShortDesc>
</IPort>
<IPort id="translateStart" type="boolean">
<ShortDesc>Translate functionality has been selected.</ShortDesc>
</IPort>
<IPort id="translateStop" type="boolean">
<ShortDesc>Translate functionality has been released.</ShortDesc>
</IPort>
<!-- 3D Mouse events -—>
<IPort id="toggleTranslation" type="AnyType">
<ShortDesc>Turns on/off the translation behavior</ShortDesc>
</IPort>
<IPort id="toggleRotation" type="AnyType">
<ShortDesc>Turns on/off the rotation behavior</ShortDesc>

</IPort>
<!-- Mouse events -—>
<!-- Keyboard events -->
<t-- Joystick events -->
<!-- Tracker events —-->
</FilterClass>
</Package>

Matching Application. PC Version
<7xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE App PUBLIC "-//pfiguero//3D Interaction Techniques ML//EN"
"http://www.cs.ualberta.ca/ pfiguero/InTmlTemp/spec/intml.dtd">
<!-- Copyright info
matchingAppPC2: The matching application, standard PC version
Copyright (C) 2001, Pablo Figueroa

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.ualberta.ca/'pfiguero/InTmlTemp/spec/intml

License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

-——>
<!-- Assumptions
- The initial viewpoint is looking to -z from (0,0,0)
- The valid x, y positions are between (-20, 20)
-—>

<App id="matchingTest.matchingAppPC2">
<ShortDesc>Matching application in the PC platform</ShortDesc>
<Description>
Rotation is doing by dragging the mouse with the left button
Translation is doing by choosing a plane with a key (z/x/c) and dragging
the mouse with the right button
Random positions are now computed by RandomRelativePQ, which makes a
better job than RandomPQ. Now random positions are deterministic, so
we can define a position of all objects with just a number. The distance
between an object and its copy is constant, and it also
divides the screen in 6 areas, and put the objects in them.
</Description>
<Import id="matchingTest"/>
<Overrides classId="matchingTest.genericPCApp"/>

<!-- Load objects —->

<Object id="objl" filename="media/car.3ds" type="VRObject"/>
<Object id="obj2" filename="media/Dodge32.3ds" type="VRObject"/>
<Object id="obj3" filename="media/beethoven.obj" type="VRObject"/>
<Object id="selectablelbjs" type="Scene"/>

<Binding iE="_self" iP="obj1" oE="selectableDbjs" oP="addObject"/>
<Binding iE="_self" iP="obj2" oE="selectableObjs" oP="addObject"/>
<Binding iE="_self" iP="obj3" oE="selectableObjs" oP="addObject"/>

<t-- Create viewpoint -->
<Constant id="pV" type="Pos3D" value="0 0 0"/>
<Constant id="qV" type="Quaternion" value="0 0 -1 0"/>
<Constant id="notVisible" type="boolean" value="false"/>
<0bject id="viewpoint" filename="" type="Viewpoint"/>
<Binding iE="_self" iP="pV" oE="viewpoint" oP="setPos"/>
<Binding iE="_self" iP="qV" oE="viewpoint" oP="setQ"/>
<Binding iE="_self" iP="notVisible" oE="viewpoint" oP="setVisible"/>
<l-- Link it to the viewpoint in the system -->
<Binding iE="_self" iP="viewpoint" oE="theCurrentViewpoint" oP="object"/>

<t-- Localize objects at random -->
<Constant id="dimGrid" type="int" value="10"/>
<Filter id="randomRelativePQ" type="RandomRelativePQ"/>

<Binding iE="_self" iP="obj1" oE="randomRelativePQ" oP="objl1"/>
<Binding iE="_self" iP="obj2" oE="randomRelativePQ" oP="obj2"/>

<Binding iE="_self" iP="obj3" oE="randomRelativePQ" oP="obj3"/>
<!-- Bind the current output display to randomRelativePQ.outputDevice -->

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<Binding iE="_self" iP="screen" oE="randomRelativePR" oP="outputDevice"/>

<!-- Bind the current viewpoint to randomRelativePQ.outputDevice -->
<Binding iE="_self" iP="viewpoint" oE="randomRelativePQ" oP="viewPoint"/>

<!-- Create transparent copies of objects and localize them at random -->
<Filter id="tCopyl" type="TransparentCopy"/>

<Filter id="tCopy2" type="TransparentCopy"/>

<Filter id="tCopy3" type="TransparentCopy"/>

<Object id="transparentObjs" type="Scene"/>

<Binding iE="_self" iP="obj1" oE="tCopyl" oP="obj"/>

<Binding iE="_self" iP="0bj2" oE="tCopy2" oP="obj"/>

<Binding iE="_self" iP="obj3" oE="tCopy3" oP="obj"/>

<Binding iE="tCopyl" iP="objCopied" oE="randomRelativePQ" oP="copyl"/>
<Binding iE="tCopy2" iP="objCopied" oE="randomRelativePQ" oP="copy2"/>
<Binding iE="tCopy3" iP="objCopied" oE="randomRelativePQ" oP="copy3"/>
<Binding iE="tCopyl" iP="objCopied" oE="transparent0bjs" oP="addObject"/>
<Binding iE="tCopy2" iP="objCopied" oE="transparentObjs" oP="addObject"/>
<Binding iE="tCopy3" iP="objCopied" oE="transparentObjs" oP="addObject"/>

<l-- Make selectable0bjs selectable -->

<!-- Create selection technique and bind it as necessary -—>
<Filter id="selection" type="SelectByRay"/>
<Binding iE="_self" iP="selectableObjs" oE="selection" oP="scene"/>
<Binding iE="mouse" iP="mousePos" oE="selection" oP="pos"/>

<1-- Give feedback of selection -->

<Filter id="highlight" type="HighlightedFeedback"/>

<Binding iE="selection" iP="object" oE="highlight" oP="obj"/>

<Binding iE="selection" iP="deselected" oE="highlight" oP="deselected"/>

<!~~ @Grab an object (See translate or rotate) -->

<!-~ Rotate an object -—>

<Filter id="rotateObj" type="RotationBehavior"/>

<Binding iE="mouse" iP="1ButtonPressed" oE="rotateObj" oP="buttonPressed"/>
<Binding iE="mouse" iP="1ButtonReleased" oE='"rotateObj" oP="buttonReleased"/>
<Binding iE="mouse" iP="mousePos" oE="rotateObj" oP="pointerPos"/>

<Binding iE="selection" iP="object" oE="rotateObj" oP="obj"/>

<Binding iE="selection" iP="deselected" oE="rotateDbj" oP="deselected"/>

<!{-~ Translate an object -->

<Filter id="translateObj" type="TranslationBehavior"/>

<Binding iE="mouse" iP="rButtonPressed" oE="translateObj" oP="buttonPressed"/>
<Binding iE="mouse" iP="rButtonReleased" oE="translateObj" oP="buttonReleased"/>
<Binding iE="mouse" iP="mousePos" oE="translateObj" oP="pointerPos"/>

<Binding iE="keyboard" iP="z" oE="translateObj" oP="movXY"/>

<Binding iE="keyboard" iP="x" oE="translateObj" oP="movXZ"/>

<Binding iE="keyboard" iP="c¢" oE="translateObj" oP="movY¥Z"/>

<Binding iE="selection" iP="object" oE="translateObj" oP="obj"/>

<Binding iE="selection" iP="deselected" oE="translateObj" oP="deselected"/>

<t-- Release an object -->
<i-- (Done by rotate and translate) -->
<!-- Compute matching function -—>

<Filter id="matchFunctionl" type="MatchFunction"/>
<Filter id="matchFunction2" type="MatchFunction"/>

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<Filter id="matchFunction3" type="MatchFunction"/>

<Binding iE="_self" iP="objl" oE="matchFunctionl" oP="obj"/>

<Binding iE="tCopyl" iP="objCopied" oE="matchFunctionl" oP="copyObj"/>
<Binding iE="_self" iP="obj2" oE="matchFunction2" oP="obj"/>

<Binding 1E="tCopy2" iP="objCopied" oE="matchFunction2" oP="copyObj"/>
<Binding iE="_self" iP="obj3" oE="matchFunction3" oP="obj"/>

<Binding iE="tCopy3" iP="objCopied” oE="matchFunction3" oP="copyObj"/>
<Binding iE="obji" iP="posChanged" oE="matchFunctionl" oP="compute"/>
<Binding iE="obj1" iP="qChanged" oE="matchFunctionl" oP="compute"/>
<Binding iE="obj2" iP="posChanged" oE="matchFunction2" oP="compute"/>
<Binding iE="obj2" iP="qChanged" oE="matchFunction2" oP="compute"/>
<Binding iE="obj3" iP="posChanged" oE="matchFunction3" oP="compute"/>
<Binding i1E="obj3" iP="qChanged" oE="matchFunction3" oP="compute"/>

<!-- Control all InTs -—>
<Filter id="control" type="ControlMatching"/>
<Binding iE="_self" iP="selection" oE="control" oP="selection"/>

<!-- Link platform-specific InTs -->
<Binding iE="_self" iP="rotateObj" oE="control" oP="rotation"/>
<Binding iE="rotateObj" iP="inMode" oE="control" oP="inModeRotation"/>
<Binding iE="_self" iP="translateObj" oE="control" oP="translation"/>
<Binding iE="translateObj" iP="inMode" oE="control" oP="inModeTranslation"/>
<Binding iE="rotate(bj" iP="finishing" oE="control" oP="endRotation"/>
<Binding iE="translateObj" iP="finishing" oE="control" oP="endTranslation"/>
<Binding iE="_self" iP="matchFunctioni" oE="control" oP="matchi"/>
<Binding iE="_self" iP="matchFunction2" oE="control" oP="match2"/>
<Binding iE="_self" iP="matchFunction3" oE="control" oP="match3"/>

<I-- Delete objects once they match -->

<Filter id="deleteUbjsl" type="DeleteWhenSignal"/>

<Filter id="deleteObjs2" type="DeleteWhenSignal"/>

<Filter id="deleteObjs3" type="DeleteWhenSignal"/>

<Binding iE="_self" iP="objl" oE="deleteObjsl" oP="obj"/>

<Binding iE="tCopyl" iP="objCopied" oE="deleteObjsi" oP="obj"/>
<Binding iE="matchFunctionl" iP="match" oE="deleteObjsi" oP="signal"/>
<Binding iE="_self" iP="obj2" oE="deletelbjs2" oP="obj"/>

<Binding iE="tCopy2" iP="objCopied" oE="deleteUbjs2" oP="obj"/>
<Binding iE="matchFunction2" iP="match" oE="deleteObjs2" oP="signal'/>
<Binding iE="_self" iP="obj3" oE="deleteObjs3" oP="obj"/>

<Binding iE="tCopy3" iP="objCopied" oE="deleteObjs3" oP="obj"/>
<Binding iE="matchFunction3" iP="match" oE="deleteObjs3" oP="signal"/>

<!-- End of the application -->

<Filter id="quit" type="QuitMatching"/>

<Binding iE="matchFunctioni" iP="match" oE="quit" oP="signal"/>
<Binding iE="matchFunction2" iP="match" oE="quit" oP="signal"/>
<Binding iE="matchFunction3" iP="match" oE="quit" oP="signal"/>
<Binding iE="keyboard" iP="q" oE="quit" oP="abortSignal"/>

<!-- Log start/stop times -->

<Filter id="log" type="Log"/>

<IDevice id="timer" type="Timer"/>

<Binding iE="timer" iP="curTime" oE="log" oP="curTime"/>
<Binding iE="quit" iP="endInfo" oE="log" oP="endSignal"/>

<!-- Identify user and platform ~->
<l-- Change this constant to an id for a particular user -->

<Constant id="userId" type="String" value="Test user"/>
<Constant id="platformId" type="String" value="PC"/>

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<Binding iE="_self" iP="userId" oE="log" oP="userId"/>
<Binding iE="_self" iP="platformId" oE="log" oP="platformId"/>

<!-- log the experience -->

<l-- initial transformations, selected objects, position and orientation
while moving, match times -->

<Binding iE="matchFunctionl" iP="match" oE="log" oP="matchSignal"/>

<Binding iE="matchFunction2" iP="match" oE="log" oP="matchSignal"/>

<Binding iE="matchFunction3" iP="match" oE="log" oP="matchSignal"/>

<Binding iE="mouse" iP="mousePos" oE="log" oP="pointerPos"/>

<Binding iE="mouse" iP="1ButtonPressed" oE="log" oP="rotateStart"/>

<Binding iE="mouse" iP="lButtonReleased" oE="log" oP="rotateStop"/>

<Binding iE="mouse" iP="rButtonPressed" oE="log" oP="tramnslateStart"/>

<Binding iE="mouse" iP="rButtonReleased" oE="log" oP="translateStop"/>

<Binding iE="keyboard" iP="z" oE="log" oP="movXY"/>

<Binding iE="keyboard" iP="x" oE="log" oP="movXZ"/>

<Binding iE="keyboard" iP="c" oE="log" oP="movYZ"/>

<Binding iE="keyboard" iP="q" oE="log" oP="abortSignal"/>

<Binding iE="selection" iP="object" oE="log" oP="selectedObj"/>

<Binding iE="selection" iP="deselected" oE="log" oP="deselectedObj"/>

<Binding iE="objl1" iP="posChanged" oE="log" oP="posObj1"/>
<Binding iE="obj1" iP="qChanged" oE="log" oP="qObji"/>
<Binding iE="obj2" iP="posChanged" oE="log" oP="posObj2"/>
<Binding iE="obj2" iP="qChanged" oE="log" oP="q0bj2"/>
<Binding iE="obj3" iP="posChanged" oE="log" oP="pos0bj3"/>
<Binding iE="obj3" iP="qChanged" oE="log" oP="qObj3"/>

<ObjectHolder id="copyl"/>
<ObjectHolder id="copy2"/>
<ObjectHolder id="copy3"/>
<Binding iE="tCopyl" iP="objCopied" oE="copyl" oP="object"/>
<Binding iE="tCopy2" iP="objCopied" oE="copy2" oP="object"/>
<Binding iE="tCopy3" iP="objCopied" oE="copy3" oP="object"/>

<Binding iE="copyl" iP="posChanged" oE="log" oP="posReplical"/>
<Binding iE="copyl" iP="¢Changed" oE="log" oP="qReplical"/>
<Binding iE="copy2" iP="posChanged" oE="log" oP="posReplica2"/>
<Binding iE="copy2" iP="qChanged" oE="log" oP="qReplica2"/>
<Binding iE="copy3" iP="posChanged" oE="log" oP="posReplica3"/>
<Binding iE="copy3" iP="qChanged" oE="log" oP="qReplica3"/>

</App>

Matching Application. SB Version

<?7xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE App PUBLIC "~//pfiguero//3D Interaction Techniques ML//EN"
"http://wuw.cs.ualberta.ca/ pfiguero/InTmlTemp/spec/intml.dtd">
<1-- Copyright info
matchingAppSMARTBoard: The matching application, SMART Board version

Copyright (C) 2001, Pablo Figueroa
This library is free software; you can redistribute it and/or

modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.ualberta.ca/~pfiguero/InTmlTemp/spec/intml

version 2.1 of the Licemnse, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
->

<!-- Assumptions

- The initial viewpoint is looking to -z from (0,0,0)

-=>

<App id="matchingTest.matchingAppSMARTBoard2">
<ShortDesc>Matching application in the SMART Board platform</ShortDesc>
<Import id="matchingTest"/>
<Overrides classId="matchingTest.genericSMARTBoardApp"/>

<!-- Load objects ~—>

<Object id="objl" filename="media/car.3ds" type="VRObject"/>
<Object id="obj2" filename="media/Dodge32.3ds" type="VRObject"/>
<Object id="obj3" filename="media/beethoven.obj" type="VRObject"/>
<Object id="selectablelObjs" type="Scene"/>

<Binding iE="_self" iP="objl" oE="selectableObjs" oP="addObject"/>
<Binding iE="_self" iP="obj2" oE="selectableObjs" oP="addObject"/>
<Binding iE="_self" iP="obj3" oE="selectableObjs" oP="addObject"/>

<!-- Create viewpoint -->
<Constant id="pV" type="Pos3D" value="0 0 0"/>
<Constant id="qV" type="Quaternion" value="0 0 -1 0"/>
<Constant id="notVisible" type="boolean" value="false"/>
<Object id="viewpoint" filename="" type="Viewpoint"/>
<Binding iE="_self" iP="pV" oE="viewpoint" oP="setPos"/>
<Binding iE="_self" iP="qV" oE="viewpoint" oP="setQ"/>
<Binding iE="_self" iP="notVisible" oE="viewpoint" oP="setVisible"/>
<!-- Link it to the viewpoint in the system -->
<Binding iE="_self" iP="viewpoint" oE="theCurrentViewpoint" oP="object"/>

<!-- Localize objects at random -->
<Filter id="randomRelativePQ" type="RandomRelativePQ"/>

<Binding iE="_self" iP="objl" oE="randomRelativePQ" oP="objl"/>
<Binding iE="_self" iP="obj2" oE="randomRelativePQ" oP="obj2"/>
<Binding iE="_self" iP="obj3" oE="randomRelativePQ" oP="obj3"/>
<!-~ Bind the current output display to randomRelativeP(].outputDevice ——>
<Binding iE="_self" iP="smartboard" oE="randomRelativePQ" oP="outputDevice"/>

<!-~- Bind the current viewpoint to randomRelativePQ.outputDevice -->
<Binding iE="_self" iP="viewpoint" oE="randomRelativePQ" oP="viewPoint"/>

<!-- Create tramnsparent copies of objects and localize them at random -->
<Filter id="tCopyl" type="TransparentCopy"/>

<Filter id="tCopy2" type="TransparentCopy"/>

<Filter id="tCopy3" type="TransparentCopy"/>

<Object id="transparentObjs" type="Scene"/>

<Binding iE="_self" iP="objl" oE="tCopyl" oP="obj"/>

<Binding iE="_self" iP="obj2" oE="tCopy2" oP="obj"/>

<Binding iE="_self" iP="obj3" oE="tCopy3" oP="obj"/>

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<Binding iE="tCopyl" iP="objCopied" oE="randomRelativePQ" oP="copyl"/>
<Binding iE="tCopy2" iP="objCopied" oE="randomRelativePQ" oP="copy2"/>
<Binding iE="tCopy3" iP="objCopied" oE="randomRelativePQ" oP="copy3"/>
<Binding iE="tCopyl" iP="objCopied" oE="transparentObjs" oP="addObject"/>
<Binding iE="tCopy2" iP="objCopied" oE="transparentObjs" oP="addObject"/>
<Binding iE="tCopy3" iP="objCopied" oE="transparentObjs" oP="addObject"/>

<!-- Make selectableObjs selectable -->

<Filter id="selection" type="SelectByRay"/>

<Binding iE="smartboard" iP="touchPos" oE="selection" oP="pos"/>

<Binding iE="smartboard" iP="screenReleased" oE="selection" oP="flushState"/>

<Binding iE="_self" iP="selectableObjs" oE="selection" oP="scene"/>

<!-- Give feedback of selection -->

<Filter id="highlight" type="HighlightedFeedback”/>

<Binding iE="selection" iP="object" oE="highlight" oP="obj"/>

<Binding iE="selection" iP="deselected" oE="highlight" oP="deselected"/>
<!-- Release the current state once a pen release the screen-—>

<Binding iE="smartboard" iP="penlReleased" oE='"selection" oP="flushState"/>

<Binding iE="smartboard" iP="pen2Released" oE="selection" oP="flushState"/>

<Binding iE="smartboard" iP="pen3Released" oE="selection" oP="flushState"/>

<Binding iE="smartboard" iP="pen4Released" oE="selection" oP="flushState"/>

<{-- Grab an object (See translate or rotate) —-->

<!-- Rotate an object -->

<Filter id="rotateObj" type="RotationBehavior"/>

<Binding iE="smartboard" iP="penlSelected" oE="rotateObj" oP="buttonPressed"/>

<Binding iE="smartboard" iP="penlReleased" oE="rotateObj" oP="buttonReleased"/>

<Binding iE="smartboard" iP="touchPos" oE="rotateObj" oP="pointerPos"/>

<Binding iE="selection" iP="object" oE="rotateDbj" oP="obj"/>

<Binding iE="selection" iP="deselected" oE="rotatelbj" oP="deselected"/>

<!-- Translate an object —->
<Filter id="translateObj" type="TranslationBehavior"/>

<Binding iE="smartboard" iP="pen2Selected" oE="translateObj" oP="buttonPressed"/>
<Binding iE="smartboard" iP="pen2Released" oE="translateObj" oP="buttonReleased"/>
<Binding iE="smartboard" iP="pen2Selected" oE="translateObj" oP="movXY"/>
<Binding iE="smartboard" iP="pen3Selected" oE="translateObj" oP="movXZ"/>

oE="translateObj"
oE="translateObj"
oE="translateObj"
oE="translateObj"
oE="translateObj"

oP="buttonPressed"/>
oP="buttonReleased"/>
oP="movYZ"/>
oP="buttonPressed"/>
oP="buttonReleased"/>

iP="touchPos" oE="translateObj" oP="pointerPos"/>
iE="selection" iP="object" oE="translateObj" oP="obj"/>
iE="selection" iP="deselected" oE="translateUbj" oP="deselected"/>

<Binding iE="smartboard" iP="pen3Selected"
<Binding iE="smartboard" iP="pen3Released"
<Binding iE="smartboard" iP="pen4Selected"
<Binding iE="smartboard”" iP="pendSelected"
<Binding iE="smartboard" iP="pendReleased"
<Binding iE="smartboard"

<Binding

<Binding

<!-- Release an object -->

<t—- (Done by rotate and translate) -->
<!-- Compute matching function —-->

<Filter id="matchFunctionl" type="MatchFunction"/>
<Filter id="matchFunction2" type="MatchFunction"/>
<Filter id="matchFunction3" type="MatchFunction"/>

<Binding iE="_self" iP="obj1" oE="matchFunctioni" oP="obj"/>

<Binding iE="tCopyl" iP="objCopied" oE="matchFunctionl" oP="copyObj"/>

<Binding iE="_self" iP="0bj2" oE="matchFunction2" oP="obj"/>

<Binding iE="tCopy2" iP="objCopied" oE="matchFunction2" oP="copy0Obj"/>

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<Binding iE="_self" iP="obj3" oE="matchFunction3" oP="obj"/>

<Binding iE="tCopy3" iP="objCopied" oE="matchFunction3" oP="copyObj"/>
<Binding iE="obj1" iP="posChanged" oE="matchFunctionl" oP="compute"/>
<Binding iE="objl" iP="qChanged" oE="matchFunctionl" oP="compute"/>
<Binding iE="obj2" iP="posChanged" oE="matchFunction2" oP="compute'/>
<Binding iE="obj2" iP="qChanged" oE="matchFunction2" oP="compute"/>
<Binding iE="obj3" iP="posChanged" oE="matchFunction3" oP="compute"/>
<Binding iE="obj3" iP="qChanged" oE="matchFunction3" oP="compute"/>

<!-- Control all InTs ~->
<Filter id="control" type="ControlMatching"/>
<Binding iE="_self" iP="selection" oE="control" oP="selection"/>

<!{-- Link platform-specific InTs -->
<Binding iE="_self" iP="rotateObj" oE="control" oP="rotation"/>
<Binding iE="rotateObj" iP="inMode" oE="control" oP="inModeRotation"/>
<Binding iE="_self" iP="translateObj" oE="control" oP="translation"/>
<Binding iE="translateObj" iP="inMode" oE="control" oP="inModeTranslation"/>
<Binding iE="rotatelbj" iP="finishing" oE="control" oP="endRotation"/>
<Binding iE="translateCObj" iP="finishing" oE="control" oP="endTranslation"/>
<Binding iE="_self" iP="matchFunctionl" oE="control" oP="matchl"/>
<Binding iE="_self" iP="matchFunction2" oE="control" oP="match2"/>
<Binding iE="_self" iP="matchFunction3" oE="control" oP="match3"/>

<!-- Delete objects once they match -->

<Filter id="deleteObjsl" type="DeleteWhenSignal"/>

<Filter id="deleteDbjs2" type="DeleteWhenSignal"/>

<Filter id="deleteObjs3" type="DeleteWhenSignal"/>

<Binding iE="_self" iP="objl" oE="deleteObjsi" oP="obj"/>

<Binding iE="tCopyl" iP="objCopied" oE="deleteObjsl" oP="obj"/>
<Binding iE="matchFunctioni" iP="match" oE="deleteObjsi" oP="signal'/>
<Binding iE="_self" iP="obj2" oE="deleteObjs2" oP="obj"/>

<Binding iE="tCopy2" iP="objCopied" oE="deleteObjs2" oP="obj"/>
<Binding iE="matchFunction2" iP="match" oE="deleteObjs2" oP="signal"/>
<Binding iE="_self" iP="obj3" oE="deletelObjs3" oP="obj"/>

<Binding iE="tCopy3" iP="objCopied" oE="deletelbjs3" oP="obj"/>
<Binding iE="matchFunction3" iP="match" oE="deleteObjs3" oP="signal'"/>

<i-- End of the application -->

<Filter id="quit" type="QuitMatching"/>

<Binding iE="matchFunctionl" iP="match" oE="quit" oP="signal"/>
<Binding iE="matchFunction2" iP='"match" oE="quit" oP="signal"/>
<Binding iE="matchFunction3" iP="match" oE="quit" oP="signal"/>
<Binding iE="keyboard" iP="q" oE="quit" oP="abortSignal"/>

<!-- Log start/stop times ——>

<Filter id="log" type="Log"/>

<IDevice id="timer" type="Timer"/>

<Binding iE="timer" iP="curTime" oE="log" oP="curTime"/>
<Binding iE="quit" iP="endInfo" oE="log" oP="endSignal"/>

<!-- Identify user and platform —->

<!-- Change this constant to an id for a particular user -->
<Constant id="userId" type="String" value="Test user"/>
<Constant id="platformId" type="String" value="SMART Board"/>
<Binding iE="_self" iP="userId" oE="log" oP="userld"/>
<Binding iE="_self" iP="platformId" oE="log" oP="platformId"/>

<!-- log the experience -->
<!-- initial transformations, selected objects, position and orientation while

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

moving, match times -->

<Binding
<Binding
<Binding
<Binding
<Binding
<Binding
<Binding
<Binding
<Binding
<Binding
<Binding
<Binding
<Binding
<Binding
<Binding
<Binding
<Binding
<Binding
<Binding
<Binding

<Binding
<Binding
<Binding
<Binding
<Binding
<Binding

iE="matchFunctionl"
iE="matchFunction2"
iE="matchFunction3"

iE="smartboard"
iE="smartboard"
iE="smartboard"
iE="smartboard"
iE="smartboard"
iE="smartboard"
iE="smartboard"
iE="smartboard"
iE="smartboard"
iE="smartboard"
iE="smartboard"
iE="smartboard"
iE="smartboard"
iE="smartboard"

iP="match" oE="log" oP="matchSignal"/>
iP="match" oE="log" oP="matchSignal"/>
iP="match" oE="log" oP="matchSignal"/>

iP="touchPos" oE="log" oP="pointerPos"/>

iP="peniSelected"
iP="peniReleased"
iP="peniSelected"
iP="penlReleased"
iP="pen2Selected"
iP="pen2Released"
iP="pen3Selected"
iP="pen3Released"
iP="pen4Selected"
iP="pen4Released"
iP="pen2Selected"
iP="pen3Selected"
iP="pen4Selected"

oE="log" oP="rotateStart"/>
oE="log" oP="rotateStop"/>
oE="log" oP="translateStart"/>
oE="log" oP="translateStop"/>
oE="log" oP="translateStart"/>
oE="log" oP="translateStop"/>
oE="log" oP="translateStart"/>
oE="log" oP="translateStop"/>
oE="log" oP="translateStart"/>
oE="log" oP="translateStop"/>
oE="log" oP="movXY"/>

oE="log" oP="movXZ"/>

oE="log" oP="movYZ"/>

iE="gelection" iP="object" oE="log" oP="selectedObj"/>
iE="selection" iP="deselected" oE="log" oP="deselectedObj"/>
iE="keyboard" iP="q" oE="log" oP="abortSignal"/>

iE="obj1"
iE="obj1"
iE="obj2"
iE="0bj2"
iE="obj3"
iE="0bj3"

<ObjectHolder id="copyl"/>
<0ObjectHolder id="copy2"/>
<0ObjectHolder id="copy3"/>

<Binding
<Binding
<Binding

<Binding
<Binding
<Binding
<Binding
<Binding
<Binding

</App>

iE="tCopyl" iP="objCopied"
iE="tCopy2" iP="objCopied"
iE="tCopy3" iP="objCopied"

iE="copyl"
iE="copyl"
iE="copy2"
iE="copy2"
iE="copy3"
iE="copy3"

iP="posChanged"

iP="posChanged" oE="log" oP="posObjl"/>
iP="qChanged" oE="log" oP="qObji"/>
iP="posChanged" oE="log" oP="pos0Obj2"/>
iP="qChanged" oE="log" oP="q0bj2"/>
iP="posChanged" oE="log" oP="pos0bj3"/>
iP="qChanged" oE="log" oP="q0bj3"/>

oE="copyl" oP="object"/>
oE="copy2" oP="object"/>
oE="copy3" oP="object"/>

oE="log" oP="posReplical"/>
iP="qChanged" oE="log" oP="qReplical"/>
iP="posChanged" oE="log" oP="posReplica2"/>
iP="qgChanged" oE="log" oP="gqReplica2"/>
iP="posChanged" oE="log" oP="posReplica3"/>
iP="qChanged" oE="log" oP="qReplica3"/>

Matching Application. HMDJ Version

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE App PUBLIC "-//pfiguero//3D Interaction Techniques ML//EN"

<!-- Copyright info

hmdj :

It has the following fixed characteristics:

"http://www.cs.ualberta.ca/ “pfiguero/InTmlTemp/spec/intml.dtd">

An environment with the I-glasses and a joystick

- A joystick, a keyboard, and the i-glasses HMD, with its tracker
- theRenderedScene is an ObjectHolder that contains the rendered scene

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.ualberta.ca/~pfiguero/InTmlTemp/spec/intml.dtd

- theCurrentViewpoint is an ObjectHolder with the current viewpoint
- the viewpoint rotates according to the tracker position

Copyright (C) 2001, Pablo Figueroa

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-=>

<App id="matchingTest.hmdjApp">
<ShortDesc>Generic app for an I-glasses HMD and a Joystick</ShortDesc>
<Import id="matchingTest"/>
<IDevice id="keyboard" type="GenericKeyboard"/>
<IDevice id="joystick" type="GenericJoystick"/>
<IDevice id="tracker" type="Generic3DOFTracker"/>
<ODevice id="hmd" type="IGlasses"/>
<0bjectHolder id="theCurrentViewpoint"/>
<0ObjectHolder id="theRenderedScene"/>

<t-- Standard head behavior -->
<Binding iE="tracker" iP="q" oE="theCurrentViewpoint" oP="setQ"/>

</App>

Matching Application. 3DD Version

<?xml version="1.0" encoding="UTF-8"7>
<IDOCTYPE App PUBLIC "-//pfiguero//3D Interaction Techniques ML//EN"
"http://www.cs.ualberta.ca/ "pfiguero/InTmlTemp/spec/intml.dtd">
<!-- Copyright info
matchingApp3DDesktop2: The matching application, 3D Desktop. Versiomn 2

Copyright (C) 2001, Pablo Figueroa

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.ualberta.ca/~pfiguero/InTmlTemp/spec/intml.dtd

-—>
<!-- Assumptions
- The initial viewpoint is looking to -z from (0,0,0)
~ The valid x, y positions are between (-20, 20)
-
<App id="matchingTest.matchingApp3DDesktop3">
<ShortDesc>Matching application in the 3D Desktop platform</ShortDesc>
<Description>

It uses the keyboard instead of the buttons in the 3dmouse.

It uses RotTrans instead of EchoPf}

Random positions are now computed by RandomRelativePQ, which makes a
better job than RandomPQ. Now random positions are deterministic, so
we can define a position of all objects with just a number. The distance
between an object and its copy is constant, and it also
divides the screen in 6 areas, and put the objects in them.

It also has a key for reseting the pointer’s position

</Description>
<Import id="matchingTest"/>
<Overrides classId="matchingTest.generic3DDesktopApp"/>

<!-- Load objects —->

<Object id="objl" filename="media/car.3ds" type="VRObject"/>
<Object id="obj2" filename="media/Dodge32.3ds" type="VRObject"/>
<Object id="obj3" filename="media/beethoven.obj" type="VRObject"/>
<Object id="selectableObjs" type="Scene"/>

<Binding iE="_self" iP="obji" oE="selectableObjs" oP="addObject"/>
<Binding iE="_self" iP="obj2" oE="selectable(bjs" oP="addObject"/>
<Binding iE="_self" iP="obj3" oE="selectableDbjs" oP="addObject"/>

<!-- Create viewpoint -->
<Constant id="pV" type="Pos3D" value="0 0 0"/>
<Constant id="qV" type="Quaternion" value="0 0 -1 0"/>
<Constant id="notVisible" type="boolean" value="false"/>
<Object id="viewpoint" filename="" type="Viewpoint'/>
<Binding iE="_self" iP="pV" oE="viewpoint" oP="setPos"/>
<Binding iE="_self" iP="qV" oE="viewpoint" oP="setQ"/>
<Binding iE="_self" iP="notVisible" oE="viewpoint" oP="setVisible"/>
<l-- Link it to the viewpoint in the system -->
<Binding iE="_self" iP="viewpoint" oE="theCurrentViewpoint" oP="object"/>

<t-- Localize objects at random -->
<Filter id="randomRelativePQ" type="RandomRelativePQ"/>

<Binding iE="_self" iP="objl" oE="randomRelativePQ" oP="obj1"/>
<Binding iE="_self" iP="obj2" oE="randomRelativePQ" oP=“obj2"/>
<Binding iE="_self" iP="obj3" oE="randomRelativePQ" oP="obj3"/>
<!-- Bind the current output display to randomRelativePQ.outputDevice —-->
<Binding iE="_self" iP="screen" oE="randomRelativePQ" oP="outputDevice"/>

<!-- Bind the current viewpoint to randomRelativePQ.outputDevice -->
<Binding iE="_self" iP="viewpoint" oE="randomRelativePQ" oP="viewPoint"/>

<!-- Create transparent copies of objects and localize them at random -->
<Filter id="tCopyl" type="TransparentCopy"/>

<Filter id="tCopy2" type="TransparentCopy"/>

<Filter id="tCopy3" type="TransparentCopy"/>

<Object id="transparentObjs" type="Scene"/>

<Binding iE="_self" iP="obj1" oE="tCopyl" oP="obj"/>

<Binding iE="_self" iP="obj2" oE="tCopy2" oP="obj"/>

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<Binding iE="_self" iP="obj3" oE="tCopy3" oP="obj"/>

<Binding iE="tCopyl" iP="objCopied" oE="randomRelativePQ" oP="copyl"/>
<Binding iE="tCopy2" iP="objCopied" oE="randomRelativePQ" oP="copy2"/>
<Binding iE="tCopy3" iP="objCopied" oE="randomRelativePQ" oP="copy3"/>
<Binding iE="tCopyl" iP="objCopied" oE="transparentObjs" oP="addObject"/>
<Binding iE="tCopy2" iP="objCopied" oE="transparentObjs" oP="addObject"/>
<Binding iE="tCopy3" iP="objCopied" oE="transparentObjs" oP="addObject"/>

<!-- Make selectableObjs selectable -->

<!-- Create selection technique and bind it as necessary -->
<Filter id="selection" type="SelectByTouching"/>
<Object id="vHand" filename="media/pointer.obj" type="VRObject"/>
<Binding iE="_self" iP="selectableObjs" oE="selection" oP="scene"/>
<Binding iE="mouse3D" iP="pos" oE="selection" oP="compute"/>
<Binding iE="mouse3D" iP="q" oE="selection" oP="compute"/>
<Binding iE="_self" iP="vHand" oE="selection” oP="handRepr"/>
<Filter id="resetPosition" type="ResetPosition"/>
<Binding iE="mouse3D" iP="pos" oE="resetPosition" oP="setPos"/>
<Binding iE="resetPosition" iP="pos" oE="vHand" oP="setPos"/>
<Binding iE="mouse3D" iP="q" oE="vHand" oP="setQ"/>

<1-- Give feedback of selection ~->

<Filter id="highlight" type="HighlightedFeedback"/>

<Binding iE="selection" iP="object" oE="highlight" oP="obj"/>

<Binding iE="selection" iP="deselected" oE="highlight" oP="deselected"/>

<!-- Grab an object (See translate or rotate) -->

<!-- Rotate and Translate an object -->

<Filter id="rotTrans" type="RotTrans"/>

<Binding iE="selection" iP="object" oE="rotTrans" oP="obj"/>

<Binding iE="selection" iP="deselected" oE="rotTrans" oP="deselected"/>
<Binding iE="keyboard" iP="z" oE="rotTrans" oP="buttonPressed"/>
<Binding iE="keyboard" iP="x" oE="rotTrans" oP="buttonReleased"/>
<Binding iE="keyboard" iP="a" oE="rotTrans" oP="toggleTranslation"/>
<Binding iE="keyboard" iP="s" oE="rotTrans" oP="toggleRotation'/>
<Binding iE="mouse3D" iP="q" oE="rotTrans" oP="setQ"/>

<Binding iE="mouse3D" iP="pos" oE="rotTrans" oP="setPos"/>

<!-- Release an object -->
<!-- (Done by rotate and translate) ~->
<!-- Compute matching function ~~>

<Filter id="matchFunctionl" type="MatchFunction"/>

<Filter id="matchFunction2" type="MatchFunction"/>

<Filter id="matchFunction3" type="MatchFunction"/>

<Binding iE="_self" iP="obji" oE="matchFunctionl" oP="obj"/>

<Binding iE="tCopyl" iP="objCopied" oE="matchFunctioni" oP="copyDbj"/>
<Binding iE="_self" iP="o0bj2" oE="matchFunction2" oP="obj"/>

<Binding iE="tCopy2" iP="objCopied" oE="matchFunction2" oP="copylbj"/>
<Binding iE="_self" iP="obj3" oE="matchFunction3" oP="obj"/>

<Binding iE="tCopy3" iP="objCopied" oE="matchFunction3" oP="copyObj"/>
<Binding iE="obji" iP="posChanged" oE="matchFunctionl" oP="compute"/>
<Binding iE="objl" iP="qChanged" oE="matchFunctionl" oP="compute"/>
<Binding iE="obj2" iP="posChanged" oE="matchFunction2" oP="compute"/>
<Binding iE="obj2" iP="qChanged" oE="matchFunction2" oP="compute"/>
<Binding iE="obj3" iP="posChanged" oE="matchFunction3" oP="compute"/>
<Binding iE="obj3" iP="qChanged" oE="matchFunction3" oP="compute"/>

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<!t-- Control all InTs -—>
<Filter id="control" type="ControlMatching"/>
<Filter id="switchl" type="Switch"/>
<Filter id="switch2" type="Switch"/>
<Constant id="bothActive" type="boolean" value="true"/>
<Constant id="startFalse" type="boolean" value="false"/>
<Binding iE="_self" iP="bothActive" oE="control" oP="allowBothTransRot"/>
<Binding iE="_self" iP="selection" oE="control" oP="selection"/>

<!-- Link platform-specific InTs -->
<Binding iE="_self" iP="rotTrans" oE="control" oP="rotation"/>
<Binding iE="_self" iP="rotTrans" oE="control" oP="translation"/>
<!-- Can both InTs be active at the same time? -->
<Binding iE="rotTrans" iP="inMode" oE="control" oP="inModeRotation"/>
<Binding iE="keyboard" iP="x" oE="control" oP="endRotation"/>
<Binding iE="rotTrans" iP="inMode" oE="control" oP="inModeTranslation"/>
<Binding iE="keyboard" iP="x" oE="control" oP="endTranslation"/>
<Binding iE="keyboard" iP="z" oE="switchl" oP="signalOn"/>
<Binding iE="keyboard" iP="x" oE="switchl" oP="signalOff"/>
<Binding iE="switchl" iP="onOff" oE="rotTrans" oP="on"/>
<Binding iE="keyboard" iP="z" oE="switch2" oP="signalOff"/>
<Binding iE="keyboard" iP="x" oE="switch2" oP="signalOn"/>
<Binding iE="switch2" iP="onOff" oE="selection" oP="on"/>
<Binding iE="_self" iP="matchFunctionl" oE="control" oP="matchi"/>
<Binding iE="_self" iP="matchFunction2" oE="control" oP="match2"/>
<Binding iE="_self" iP="matchFunction3" oE="control" oP="match3"/>
<Binding iE="matchFunctioni" iP="match" oE="control" oP="endTranslation"/>
<Binding iE="matchFunction2" iP="match" oE="control" oP="endTranslation"/>
<Binding iE="matchFunction3" iP="match" oE="control" oP="endTranslation"/>
<Binding iE="matchFunctionl" iP="match" oE="control" oP="endRotation"/>
<Binding iE="matchFunction2" iP="match" oE="control" oP="endRotation"/>
<Binding iE="matchFunction3" iP="match" oE="control" oP="endRotation"/>
<Binding iE="keyboard" iP="p" oE="resetPosition" oP="reset"/>

<!-- Delete objects once they match -->

<Filter id="deleteObjsi" type="DeleteWhenSignal"/>

<Filter id="deleteObjs2" type="DeleteWhenSignal"/>

<Filter id="deleteObjs3" type="DeleteWhenSignal"/>

<Binding iE="_self" iP="objl" oE="deleteObjsl" oP="obj"/>

<Binding iE="tCopyl" iP="objCopied" oE="deleteObjsi" oP="obj"/>
<Binding iE="matchFunctionl" iP="match" oE="deleteObjsi" oP="signal"/>
<Binding iE="_self" iP="obj2" oE="deletelbjs2" oP="obj"/>

<Binding iE="tCopy2" iP="objCopied" oE="deleteObjs2" oP="obj"/>
<Binding iE="matchFunction2" iP="match" oE="deleteObjs2" oP="signal'"/>
<Binding iE="_self" iP="obj3" oE="deleteObjs3" oP="obj"/>

<Binding iE="tCopy3" iP="objCopied" oE="deleteObjs3" oP="obj"/>
<Binding iE="matchFunction3" iP="match" oE="deleteObjs3" oP="signal"/>

<!-- End of the application -->

<Filter id="quit" type="QuitMatching"/>

<Binding iE="matchFunctionl" iP="match" oE="quit" oP="signal"/>
<Binding iE="matchFunction2" iP="match" oE="quit" oP="signal"/>
<Binding iE="matchFunction3" iP="match" oE="quit" oP="signal"/>
<Binding iE="keyboard" iP="q" oE="quit" oP="abortSignal"/>

<!-- Log start/stop times -->
<Filter id="log" type="Log"/>

<IDevice id="timer" type="Timer"/>
<Binding iE="timer" iP="curTime" oE="log" oP="curTime"/>

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<Binding iE="quit" iP="endInfo" oE="log" oP="endSignal"/>

<!-- Identify user and platform -->

<!-- Change this constant to an id for a particular user -->
<Constant id="userId" type="String" value="Test user"/>
<Constant id="platformId" type="String" value="3DDesktop"/>
<Binding iE="_self" iP="userId" oE="log" oP="userId"/>
<Binding iE="_self" iP="platformId" oE="log" oP="platformId"/>

<t-- log the experience -—>

<!-- initial transformations, selected objects, position and orientation
while moving, match times -—>

<Binding iE="matchFunctioni" iP="match" oE="log" oP="matchSignal"/>

<Binding iE="matchFunction2" iP="match" oE="log" oP="matchSignal"/>

<Binding iE="matchFunction3" iP="match" oE="log" oP="matchSignal"/>

<Binding iE="keyboard" iP="z" oE="log" oP="rotateStart"/>

<Binding iE="keyboard" iP="x" oE="log" oP="rotateStop"/>

<Binding iE="keyboard" iP="z" oE="log" oP="translateStart"/>

<Binding iE="keyboard" iP="x" oE="log" oP="translateStop"/>

<Binding iE="keyboard" iP="q" oE="log" oP="abortSignal"/>

<Binding iE="selection" iP="object" oE="log" oP="selectedlbj"/>

<Binding iE="selection" iP="deselected" oE="log" oP="deselectedObj"/>

<Binding iE="keyboard" iP="a" oE="log" oP="toggleTranslation"/>
<Binding iE="keyboard" iP="s" oE="log" oP="toggleRotation"/>

<Binding iE="objl" iP="posChanged" oE="log" oP="posObji"/>
<Binding iE="objl" iP="qChanged" oE="log" oP="qObjl"/>
<Binding iE="obj2" iP="posChanged" oE="log" oP="posObj2"/>
<Binding iE="obj2" iP="qChanged" oE="log" oP="qObj2"/>
<Binding iE="obj3" iP="posChanged" oE="log" oP="pos0bj3"/>
<Binding iE="obj3" iP="qChanged" oE="log" oP="q0bj3"/>

<ObjectHolder id="copyl'/>
<ObjectHolder id="copy2'/>
<0ObjectHolder id="copy3"/>
<Binding iE="tCopyl" iP="objCopied" oE="copyl" oP="object"/>
<Binding iE="tCopy2" iP="objCopied" oE="copy2" oP="object"/>
<Binding iE="tCopy3" iP="objCopied" oE="copy3" oP="object"/>

<Binding iE="copyl" iP="posChanged" oE="log" oP="posReplical"/>
<Binding iE="copyl" iP="qChanged" oE="log" oP="qReplical"/>
<Binding iE="copy2" iP="posChanged" oE="log" oP="posReplica2"/>
<Binding iE="copy2" iP="qChanged" oE="log" oP="qReplica2"/>
<Binding iE="copy3" iP="posChanged" oE="log" oP="posReplica3"/>
<Binding iE="copy3" iP="qChanged" oE="log" oP="qReplica3"/>

</App>

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B

InTml Files for the Virtual Clay
Application

The InTml files for the virtual clay application are listed in this appendix. The file
library.intml is the same one as in the matching application, and for this reason is omitted
here.

Application Specific Classes

<?7xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE Package PUBLIC "-//pfiguero//3D Interaction Techniques ML//EN"
"http://www.cs.ualberta.ca/ pfiguero/InTmlTemp/spec/intml.dtd">
<t-- Copyright info
newClasses: Classes defined by the designer, used in the Virtual Clay app.

Copyright (C) 2001, Pablo Figueroa

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later versionm.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
->

<!-- Changes:

Aug 13, 2002: First version
-—>

<t-- Devices in the Matching Test application -—>

<Package id="virtualClay">

<Import id="library"/>

<Import id="uofaDevices"/>

<ObjectClass id="Material">
<ShortDesc>Defines a deformable object with a certain density</ShortDesc>
<Description>

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.ualberta.ca/~pfiguero/InTmlTemp/spec/intml.dtd

Material models any material that can be deformed by or deform to
any other object.

</Description>
<Indexes>

<Index id="basic" value="Objects"/>
</Indexes>

<IPort id="setPos" type="Pos3Df">
<ShortDesc>Changes the world position of an object</ShortDesc>
<Description>
Changes the world-related position of an object.
It is considered a relative position if it is contained in
another object.
</Description>
</IPort>
<0Port id="currentPos" type="Pos3Df">
<ShortDesc>Informs when the object moves</ShortDesc>
</0Port>
<IPort id="setQ" type="Quaternion">
<ShortDesc>Changes the world orientation of an object</ShortDesc>
<Description>
Changes the world-related orientation of an object.
It is considered a relative orientation if it is contained in
another object.
</Description>
</IPort>
<0Port id="currentQ" type="Quaternion">
<ShortDesc>Informs when the object rotates</ShortDesc>
</0Port>
<IPort id="forces" type="Force">
<ShortDesc>Current forces applied to this material</ShortDesc>
</IPort>
<IPort id="density" type="float">
<ShortDesc>Density of the material, 1 for hard, O for vapor</ShortDesc>
</IPort>
<IPort id="deformedBy" type="Material>
<ShortDesc>0bject in contact</ShortDesc>
</IPort>
<IPort id="spin" type="SpinParameters">
<ShortDesc>Makes the material spin over an axis</ShortDesc>
</IPort>
<IPort id="cutBy" type="Material>
<ShortDesc>Cuts this object with the one received here</ShortDesc>
</IPort>
<0Port id="deformed" type="Deformation">
<ShortDesc>Information about the deformation in the object</ShortDesc>
</0Port>
<0Port id="currentVel" type="Speed">
<ShortDesc>Current velocity of the object</ShortDesc>
</0Port>
<0Port id="currentAccel" type="Acceleration">
<ShortDesc>Current acceleration of the object</ShortDesc>
</0Port>
<0Port id="currentBSphere" type="VRObject">
<ShortDesc>Current bounding sphere</ShortDesc>
</0Port>
</0ObjectClass>

<0ObjectClass id="VirtualClayEnvironment'">
<ShortDesc>Environment for deformable objects</ShortDesc>

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<Description>
The environment that coordinates deformation among objects

</Description>
<Indexes>

<Index id="basic" value="Objects"/>
</Indexes>

<IPort id="addObject" type="Material">
<ShortDesc>Adds a new part to this object</ShortDesc>
</IPort>
<0Port id="objectAdded" type="Material">
<ShortDesc>Informs when a part is added to the object</ShortDesc>
</0Port>
<IPort id="removeObject" type="Material">
<ShortDesc>Removes a part from this object</ShortDesc>
</IPort>
<0Port id="objectRemoved" type="Material">
<ShortDesc>Informs when a part is removed from the object</ShortDesc>
</0Port>
<IPort id="splitObject" type="String">
<ShortDesc>Splits an object into its pieces</ShortDesc>
</IPort>
<0Port id="splittedObject" type="String">
<ShortDesc>Splitted object</ShortDesc>
</0Port>
<IPort id="compute" type="AnyType">
<ShortDesc>Event that triggers a computation step</ShortDesc>
</IPort>
<0Port id="collidingObjects" type="Material2">
<ShortDesc>0Objects in a collision</ShortDesc>
<Description>
Objects involved in a collision, at a certain time. Right now handles
collisions of two objects only, and only of of them will receive the
’deformedBy’ event (the one with lower density, or at random, if
densities are the same). Material2 is an array of 2 objects of type
Material
</Description>
</0Port>
</ObjectClass>

<FilterClass id="Mouse2Ray">
<ShortDesc>Computer a ray in 3D from the mouse position</ShortDesc>
<Description>
The mouse position defines a ray in the current screen

</Description>

<Indexes>
<Index id="basic" value="Objects"/>

</Indexes>

<IPort id="pos2D" type="Pos2Di">
<ShortDesc>Pointer position</ShortDesc>

</IPoxrt>

<IPort id="screen" type="GenericScreen">
<ShortDesc>Screen information</ShortDesc>

</IPort>

<IPort id="viewpoint" type="Viewpoint'">
<ShortDesc>Current viewpoint</ShortDesc>

</IPort>

<0Port id="ray" type="Ray">
<ShortDesc>Current ray</ShortDesc>

</0Port>

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

</FilterClass>

<FilterClass id="IntersectByBSphere">
<ShortDesc>Intersects an object by using its bounding sphere</ShortDesc>
<Description>
The intersection is with a ray and gives a point
</Description>
<Indexes>
<Index id="basic" value="Objects"/>
</Indexes>
<IPort id="ray" type="Ray">
<ShortDesc>Intersecting ray</ShortDesc>
</IPort>
<IPort id="object" type="Material'>
<ShortDesc>0bject to intersect</ShortDesc>
</IPort>
<IPort id="compute" type="AnyType">
<ShortDesc>Causes a computation</ShortDesc>
</IPort>
<0Port id="point" type="Pos3Di">
<ShortDesc>Point of intersection in the sphere</ShortDesc>
</0Port>
</FilterClass>

<FilterClass id="RotateByDragging'">
<ShortDesc>Rotates by using a point in its bounding sphere</ShortDesc>
<Description>
The point gives the dragging behavior. The initial point is the
reference for the rotation. Subsequent points define the angle
of rotation. The initial point can be flushed by flushing the state
of the filter, available by the input ports from ControlableFilter

</Description>
<Indexes>

<Index id="basic" value="Objects"/>
</Indexes>

<Implements id="ControlableFilter"/>
<IPort id="object" type="Material">
<ShortDesc>0Object to rotate</ShortDesc>
</IPort>
<IPort id="point" type="Pos3Df">
<ShortDesc>Point of the bounding sphere, for dragging</ShortDesc>
</IPort>
</FilterClass>

<FilterClass id="TranslatePlane">
<ShortDesc>Moves an object in a plane, given a 2D pos</ShortDesc>
<Description>
The input position may come from a pointer, as a mouse or
a joystick
</Description>
<Indexes>
<Index id="basic" value="Objects"/>
</Indexes>
<Implements id="ControlableFilter"/>
<IPort id="object" type="Material">
<ShortDesc>0bject to move</ShortDesc>
</IPort>
<IPort id="pos2D" type="Pos2Di">
<ShortDesc>Pointer position</ShortDesc>

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

</IPoxrt>
<IPort id="plane" type="CartesianPlaneID">
<ShortDesc>Plane of movement</ShortDesc>
</IPort>
<IPort id="scaleFactor" type="float">
<ShortDesc>Scale factor for the pointer position</ShortDesc>
</IPort>
</FilterClass>

</Package>

Application Specific Devices

<?xml version="1.0" encoding="UTF-8"7>
<IDOCTYPE Package PUBLIC "-//pfiguero//3D Interaction Techniques ML//EN"
"http://www.cs.ualberta.ca/“pfiguero/InTmlTemp/spec/intml.dtd">
<!-- Copyright info
Physical Devices: Translations and extensions to basic types in the
library.

Copyright (C) 2001, Pablo Figueroa

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public -
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-—>

<'-- Changes:

Aun 13, 2002 : First version
-—>

<!-- Devices in the Matching Test application -—>

<Package id="uofaDevices">

<Import id="library"/>

<DeviceClass id="SpaceBall">
<ShortDesc>A 3D Connexion’s SpaceBall</ShortDesc>
<Description>
A 6DOF device, with a ball instead of the puck in the SpaceMouse
</Description>
<Indexes>
<Index id="basic" value="Devices.Input"/>
</Indexes>
<0Port id="buttons" type="Button" isArray="true"
typeArray="static" maxArray="12">
<ShortDesc>SpaceBall buttons</ShortDesc>
</0Port>
<Device id="trackedPos" type="Generic6DOFTracker"/>
</DeviceClass>

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.ualberta.ca/~pfiguero/InTmlTemp/spec/intml.dtd

<DeviceClass id="Phantom">
<ShortDesc>A Phantom device</ShortDesc>
<Description>
A force-feedback arm
</Description>
<Indexes>
<Index id="basic" value="Devices.Input"/>
</Indexes>
<IPort id="force" type="Force'>
<ShortDesc>Sets a new force in the device</ShortDesc>
</IPort>
<IPort id="torque" type="Torque">
<ShortDesc>Sets a new torque in the device</ShortDesc>
</IPort>
<IPort id="addObject" type="VRObject'">
<ShortDesc>Adds a new object to collide with</ShortDesc>
</IPort>
<IPort id="removeObject" type="VRObject">
<ShortDesc>Removes an object from the collision list</ShortDesc>
</IPort>
<!{-- Implements Generic6DOFTracker -->
<0Port id="q" type="Quaternion">
<ShortDesc>General orientation of the tracker</ShortDesc>
</0Port>
<0Port id="pos" type="Pos3D">
<ShortDesc>3D position of the tracker</ShortDesc>
</0Port>
</DeviceClass>

</Package>

Virtual Clay Application. PC Version

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE App PUBLIC "-//pfiguero//3D Interaction Techniques ML//EN"
"http://wuw.cs.valberta.ca/"pfiguero/InTmlTemp/spec/intml.dtd">
<l-~ Copyright info
virtualClayApp: The Virtual Clay application

Copyright (C) 2001, Pablo Figueroa

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.ualberta.ca/~pfiguero/InTmlTemp/spec/intml.dtd

-—>
<App id="virtualClayPC.app">
<ShortDesc>Virtual Clay application. PC Version</ShortDesc>
<Import id="library"/>
<Import id="uofaDevices"/>

<IDevice id="keyboard" type="GenericKeyboard"/>

<IDevice id="mouse" type="GenericMouse"/>

<ODevice id="screen" type="PCScreen'/>

<ObjectHolder id="theCurrentViewpoint"/>

<Object id="viewpoint" filename="" type="Viewpoint"/>

<Binding iE="_self" iP="viewpoint" oE="theCurrentViewpoint" oP="object"/>

<!{-- Object to be modeled -->
<0Object id="clay" type="Material'/>

<l-- Load Objects -->

<!-- Move Viewpoint -->
<l-- Rotation -->
<Filter id="mouse2Ray" type="Mouse2Ray"/>
<Filter id="getPoint" type="IntersectByBSphere'/>
<Filter id="rotate" type="RotateByDragging"/>
<Filter id="switchRot" type="Switch"/>
<Binding iE="mouse" iP="mousePos" oE="mouse2Ray" oP="pos2D"/>
<Binding iE="theCurrentViewpoint" iP="objectChanged"
oE="mouse2Ray" oP="viewpoint"/>
<Binding iE="_self" iP="screen" oE="mouse2Ray" oP="screen"/>
<Binding iE="_self" iP="clay" oE="getPoint" oP="object"/>
<Binding iE="mouse2Ray" iP="ray" oE="getPoint" oP="ray"/>
<Binding iE="clay" iP="currentBSphere" oE="getPoint" oP="compute"/>
<Binding iE="getPoint" iP="point" oE="rotate" oP="point"/>
<Binding iE="_self" iP="clay" oE="rotate" oP="object"/>
<Binding iE="mouse" iP="lButtonPressed" oE="switch" oP="signalOn"/>
<Binding iE="mouse" iP="1ButtonReleased" oE="switch" oP="signalOff"/>
<Binding iE="switch" iP="onOff" oE="rotate" oP="on"/>
<Binding iE="switch" iP="onOff" oE="rotate" oP="flushState"/>

<!-- Translation -->

<Filter id="transXY" type="TranslatePlane">
<Filter id="transXZ" type="TranslatePlane">
<Filter id="switchXY" type="Switch"/>

<Filter id="switchXZ" type="Switch"/>

<Constant id="xy" value="XY"/>

<Constant id="xz" value="XZ"/>

<Constant id="scale" type="float" value="0.001"/>

<Binding iE="mouse" iP="mButtonPressed" oE="switchXY" oP="signalOn"/>
<Binding iE='"mouse" iP="mButtonReleased" oE="switchXY" oP="signalOff"/>
<Binding iE="switchXY" iP="onOff" oE="transXY" oP="on"/>

<Binding iE="mouse" iP="mButtonReleased" oE="transXY" oP="flushState"/>
<Binding iE="_self" iP="xy" oE="transXY" oP="plane"/>

<Binding iE="mouse" iP="mousePos" oE="transXY" oP="pos2D"/>

<Binding iE="_self" iP="clay" oE="transXY" oP="object"/>

<Binding iE="_self" iP="scale" oE="transXY" oP="scaleFactor"/>

<Binding iE="mouse" iP="rButtonPressed" oE="switchXZ" oP="signalOn"/>
<Binding iE="mouse" iP="rButtonReleased" oE="switchXZ" oP="signalOff"/>
<Binding iE="switchXZ" iP="on0Off" oE="transXZ" oP="on"/>

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<Binding iE="mouse" iP="rButtonReleased” oE="transXZ" oP="flushState"/>
<Binding iE="_self" iP="xz" oE="transXZ" oP="plane"/>

<Binding iE="mouse" iP="mousePos" oE="transXZ" oP="pos2D"/>

<Binding iE="_self" iP="clay" oE="transXZ" oP="object"/>

<Binding iE="_self" iP="scale" oE="transXZ" oP="scaleFactor"/>

<!~- Spin Material -->
<t~~ Move Tool -—->
<!-- Contact Feedback -->
<l-- Cut Material -->
<!-- Undo ~~>

</App>

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C

DTD for InTml Files

The following is a transcript of the InTml DTD file. ENTITY elements define macros that can
be reused in the following elements. Elements define which other elements can contain and
available attributes. Contained elements are described in other entities in the document,
and indicate their cardinality (no decoration is 1, * indicates 0 or more, and + 1 or more).
The special keyword EMPTY defines an elements with no contained elements. Attributes
indicate their name, their type, and their default value, if any. For more details, consult

[26].
<!-~ Interaction Techniques Markup Language -->
<l-- Version 1.5 -=>
<!-- Author: Pablo Figueroa -=>
<!-- Contact Info: pfiguero@cs.unalberta.ca -=>
<!-~ Changes:

May 21 2002:

Constants have also a type, in order to allow fast development
of loaders (i.e. InTmllLoader).
May 9 2002:
Change App definition from
App ((Import)*, (Overrides)*, (ODevice | IDevice)*, Platform?,
(Object | Constant | ObjectHolder)*, Filter*,
Binding*)
to
App ((Import, Overrides, ODevice, IDevice, Platform,
Object, Constant, ObjectHolder, Filter,
Binding)*)
in order to allow the definition of elements in any order. The
semantics changes for Platform, which now has to be checked later on
for repetitioms.
May 7 2002:
Policy is changed to IPorts, since it can’t vary among bindings.
Jan 24 2002:
Name changed to InTml
Policy is added to Binding. It’s semantic is application dependant,
and three default names are defined: ADD (add events), ANY (pick any
event), and AVE (average of the events).

Check:
Packages names... in FilterClassSet? in FilterClass? Import?
notation a.b.c...
Filter/Object/DeviceClass vs Filter/Object/Device
June 8 2001:
target/port changed to origin/destination in TARGET_DEF
Binding is limited to FilterClass and App. Removed from

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Filter and Object.
Input is eliminated from ObjectHolder. Use Binding instead.
Input is eliminated from App. There are no aliases anymore.
Port is eliminated from IPort and OPort.
Port is eliminated from Binding. Instead, a more complex syntax
is used in binding. Now, origin and destination has
the form a.b.c([i]
origin/destination in Binding are changed to iE/iP/iI/oE/oP/ol
Scene is eliminated from App. It is now defined as an Object
with type Scene
IT is eliminated from App. It is now defined as Filter
A definition of a paper is taken out of this specification.
It has to be defined by a companion DTD
May 29 2001:
FilterClassSet changed to Package
Documentation goes to the desc file at docDTD. Using dtdZhtml from
http://www.oac.uci.edu/indiv/ehocd/per1SGML . html
May 25 2001:
Integrate ITs to Filters
Arrays of I/D ports
An interface can "Implement" another
Add ObjectClass as a definition for types that can be modified
Add DeviceClass
Add Platform
March 2001:
InitArgs and Args in ITClass has been removed.
I/0Port manage Refs, in order to manage an ITClass interface.
Support for applications added
Change of the project’s name to 3dml
Website is now http://www.cs.ualberta.ca/ pfiguero/3dml/spec/3dml.dtd
The Binding group has been removed
Rules about content are included as invariants (inside comments)
->

<!ENTITY % ID

"id ID #REQUIRED">
<!ENTITY J ID2

"id NMTOKEN #REQUIRED">
<!ENTITY % ID3

"id NMTOKEN #IMPLIED">
<!ENTITY % ID_TYPE

“4ID2;

type NMTOKEN #IMPLIED">
<!ENTITY % ID_TYPEREQ

"ID2;

type NMTOKEN #REQUIRED">
<VENTITY % ID_TYPE_DEF

"%ID_TYPE;

defValue CDATA #IMPLIED">
<!ENTITY % ID_TYPEREQ_DEF

"%ID_TYPEREQ;

defValue CDATA #IMPLIED">
<!ENTITY % DESC_INITO

"ShortDesc?, Description?">
<!ENTITY % DESC_INIT

"YDESC_INITO;, Indexes?, PaperRefx">
<!ENTITY % BOOLENUM

"(true | false)'">

<!{ENTITY % ARRAY_DEF

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.oac.uci.edu/indiv/ehood/perlSGML.html
http://www.cs.ualberta.ca/~pfiguero/3dml/spec/3dml.dtd

’isArray (truelfalse) "false"
typeArray (staticldynamic) "dynamic"
maxArray NMTOKEN #IMPLIED’>

o e e e e e -—>
<!ELEMENT Package (Import*, (FilterClass | ObjectClass | DeviceClass)+)>
<VATTLIST Package %ID3;>

e e e e e e e e e e e -—>
<1ELEMENT Import EMPTY >
<IATTLIST Import %ID2; >

L -2
<VELEMENT FilterClass (%DESC_INIT; , Implementsx,

(Filter | Object | ObjectHolder | Constant |

Binding | IPort | OPort)*) >
<VATTLIST FilterClass %ID; >

K o e e e e e e e e e e e e e e et e e e -—>
<!ELEMENT ObjectClass (/DESC_INIT; , Implementsx, (IPort | OPort)*) >
<!ATTLIST ObjectClass %ID; >

L N -=>
<|ELEMENT DeviceClass (}DESC_INIT; , Implements*, (IPort | OPort)*) >
<VATTLIST DeviceClass ID; >

K i et e et e e e s -->
<)ELEMENT ShortDesc (#PCDATA) >

L -=>
<!ELEMENT Description (#PCDATA) >

Cmm i i ettt e et i e e e e et et -—>
<|ELEMENT Indexes {(Index*) >

E —>
<!ELEMENT PaperRef EMPTY >
<VATTLIST PaperRef %ID2;

detail NMTOKEN #REQUIRED >

it i ittt es i saa s ss it eanaa e -=>
<1ELEMENT Implements EMPTY >
<VATTLIST Implements classld NMTOKEN #REQUIRED >

Clmm e e i i e e et e e e e -—=>
<!ELEMENT Filter (%DESC_INITO;) >
<VATTLIST Filter %ID_TYPEREQ; >

L -—>
<!ELEMENT Object (%DESC_INITO;) >
<VATTLIST Object %ID_TYPEREQ;
filename CDATA #IMPLIED
primitive (Box | Cone | Cylinder | Ellipse) "Box" >

D -=>

<!ELEMENT ObjectHolder EMPTY >
<IATTLIST ObjectHolder %ID2; >

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<VELEMENT Binding EMPTY >
<'ATTLIST Binding iE NMTOKEN #REQUIRED
iP NMTOKEN #REQUIRED
iI ~ NMTOKEN #IMPLIED
oE NMTOKEN #REQUIRED
oP NMTOKEN #REQUIRED
ol NMTOKEN #IMPLIED >

o e e e e e e e e —-—>
<1ELEMENT Index EMPTY >
<VATTLIST Index id NMTOKEN #REQUIRED
value NMTOKEN #REQUIRED >
L -—=>

<!'ELEMENT IPort (%DESC_INITO;) >
<'ATTLIST IPort J%ID_TYPEREQ _DEF;

%ARRAY_DEF;
policy CDATA #IMPLIED >

R -=>
<V\ELEMENT OPort (%DESC_INITO;) >
<VATTLIST OPort %ID_TYPEREQR;

#ARRAY_DEF; >

o e e e e e et e e -—>

<!ELEMENT App (%DESC_INIT; , (Import | Overrides | ODevice | IDevice |
Platform |

UObject | Constant | ObjectHolder | Filter |

Binding)*) >

<VATTLIST App %ID2; >

lmm i i e st e s e e e -=>

<!ELEMENT ODevice (%DESC_INITO;) >
<VATTLIST ODevice %ID_TYPEREQ; >

o i i i i e ittt ettt et et assat ittt ittt —-—>
<!ELEMENT IDevice (%DESC_INITO;) >
<VATTLIST IDevice %ID_TYPEREQ; >

e i i i it i i e it e e e e e e e e -—>
<!ELEMENT Constant EMPTY >
<VATTLIST Constant %ID_TYPE;

value CDATA #REQUIRED >

o i ittt i i it e e -
<YELEMENT PlatformClass (¥DESC_INIT; , (Import)*, (IDevice | ODevice)*) >
<1ATTLIST PlatformClass %ID; >

R -=>
<{ELEMENT Platform EMPTY >
<'ATTLIST Platform }ID_TYPEREQ; >

<!-- Implementation tags. Just when the language is implemented -->

L -—>
<!ELEMENT Overrides EMPTY >
<VATTLIST Overrides classId NMTOKEN #REQUIRED >

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix D

Library of Reusable Concepts in
InTml

These is a copy of the files that define the InTml library. They define basic VR-related
devices, basic definition for geometric objects, control techniques, navigation techniques, se-
lection techniques, feedback techniques, and a subset of the interaction techniques described
in [8].

Devices

<?7xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE Package PUBLIC "-//pfiguero//3D Interaction Techniques ML//EN"
"intml.dtd">
<!-- Copyright info
devices: Device definition classes.

Copyright (C) 2001, Pablo Figueroa

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

-—>
<!-- 3D Interaction Techniques Markup Language -->
<V-- Version 0.01 -=>
<t-- Author: Pablo Figueroa -=>
<!-- Contact Info: pfiguero@cs.ualberta.ca -=>

<V-- Changes:
First version
-—>
<!-- Devices in a VR application -=>
<Package id="devices">
<DeviceClass id="Button">

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<ShortDesc>Basic Button</ShortDesc>
<Description>
It models the states on a button. Check the model and change the
simple output of a signal for a boolean. After this change the name
</Description>
<Indexes>
<Index id="first" value="intml.Devices.Input.Abstract"/>
<Index id="papers" value="_hidden"/>
</Indexes> ‘
<0OPort id="clicked" type="boolean">
<ShortDesc>true when it’s been clicked (pressed/released)</ShortDesc>
</0Port>
</DeviceClass>
<DeviceClass id="GenericJoystick">
<ShortDesc>Generic joystick definition</ShortDesc>
<Description/>
<Indexes>
<Index id="first" value="intml.Devices.Input.Abstract"/>
<Index id="papers" value="_hidden"/>
</Indexes>
<0Port id="xPos" type="int">
<ShortDesc>Position left-right of the joystick</ShortDesc>
</0Port>
<0Port id="yPos" type="int">
<ShortDesc>Position front-back of the joystick</ShortDesc>
</0Port>
<0Port id="pos" type="Pos2D">
<ShortDesc>(xPos, yPos)</ShortDesc>
</CPort>
</DeviceClass>
<DeviceClass id="SideWinderPro'">
<ShortDesc>Microsoft's SideWinder joystick</ShortDesc>
<Description/>
<Indexes>
<Index id="first" value="intml.Devices.Input"/>
<Index id="papers" value="_hidden"/>
</Indexes>
<Implements classId="GenericJoystick"/>
<0Port id="buttonClicked" isArray="true"
maxArray="8" type="boolean" typeArray="static">
<ShortDesc>Available buttons in the SideWinderPro</ShortDesc>
</0Port>
<0Port id="hatSwitchClicked" isArray="true" maxArray="8"
type="boolean" typeArray="static">
<ShortDesc>Directional control</ShortDesc>
<Description> It provides directional control with the thumb. The
output buttons are arranged counter-clockwise, starting from
front (left-front, left, ...) </Description>
</0Port>
<0Port id="throttle" type="int">
<ShortDesc>A value that indicates an incremental action.</ShortDesc>
</0Port>
<0Port id="rotation" type="int">
<ShortDesc>A value that indicates the rotation of the joystick.</ShortDesc>
</0Port>
</DeviceClass>
<DeviceClass id="Generic3DOFTracker'">
<ShortDesc>A generic orientation tracker</ShortDesc>
<Description/>

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<Indexes>
<Index id="first" value="intml.Devices.Input.Abstract"/>
<Index id="papers" value="_hidden"/>
</Indexes>
<0Port id="q" type="Quaternion">
<ShortDesc>General orientation of the tracker</ShortDesc>
</0Port>
</DeviceClass>
<DeviceClass id="Generic6DOFTracker">
<ShortDesc>A generic position and orientation tracker</ShortDesc>
<Description/>
<Indexes>
<Index id="first" value="intml.Devices.Input.Abstract"/>
<Index id="papers" value="_hidden"/>
</Indexes>
<Implements classId="Generic3DOFTracker"/>
<0Port id="pos" type="Pos3D">
<ShortDesc>3D position of the tracker</ShortDesc>
</0Port>
</DeviceClass>
<DeviceClass id="Insidetrack">
<ShortDesc>Polhemus insidetrack 6DOF tracker</ShortDesc>
<Description/>
<Indexes>
<Index id="first" value="intml.Devices.Input"/>
<Index id="papers" value="_hidden"/>
</Indexes>
<Implements classId="Generic6DOFTracker"/>
</DeviceClass>
<DeviceClass id="InterSenseWandTracker">
<ShortDesc>Hand tracker from InterSense</ShortDesc>
<Description/>
<Indexes>
<Index id="first" value="intml.Devices.Input"/>
<Index id="papers" value="_hidden"/>
</Indexes>
<Implements classId="GenericJoystick"/>
<Implements classId="Generic6DOFTracker"/>
<DPort id="buttonClicked" isArray="true" maxArray="4"
type="boolean" typeArray="static">
<ShortDesc>Available buttons in the wand.</ShortDesc>
</0Port>
</DeviceClass>
<DeviceClass id="InterSenseHeadTracker">
<ShortDesc>Head tracker from InterSense</ShortDesc>
<Description/>
<Indexes>
<Index id="first" value="intml.Devices.Input"/>
<Index id="papers" value="_hidden"/>
</Indexes>
<Implements classId="Generic6DOFTracker"/>
</DeviceClass>
<DeviceClass id="GenericScreen">
<ShortDesc>A generic output screen</ShortDesc>
<Description/>
<Indexes>
<Index id="first" value="intml.Devices.Output"/>
<Index id="papers" value="_hidden"/>
</Indexes>

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

</DeviceClass>
<DeviceClass id="FishTankScreen">
<ShortDesc>A 3D output screen with viewpoint position</ShortDesc>
<Description/>
<Indexes>
<Index id="first" value="intml.Devices.Output"/>
<Index id="papers" value="_hidden"/>
</Indexes>
</DeviceClass>
<DeviceClass id="I-glasses'">
<ShortDesc>Virtual i-glasses HMD</ShortDesc>
<Description/>
<Indexes>
<Index id="first" value="intml.Devices.Output"/>
<Index id="papers" value="_hidden"/>
</Indexes>
</DeviceClass>
<DeviceClass id="VisroomScreens">
<ShortDesc>Screens at the Visroom</ShortDesc>
<Description/>
<Indexes>
<Index id="first" value="intml.Devices.Output"/>
<Index id="papers" value="_hidden"/>
</Indexes>
</DeviceClass>
<DeviceClass id="VisroomScreen">
<ShortDesc>A Particular screen at the Visroom</ShortDesc>
<Description/>
<Indexes>
<Index id="first" value="intml.Devices.Dutput"/>
<Index id="papers" value="_hidden"/>
</Indexes>
</DeviceClass>
<DeviceClass id="GenericHMD">
<ShortDesc>A generic HMD</ShortDesc>
<Description/>
<Indexes>
<Index id="first" value="intml.Devices.Qutput.Abstract"/>
<Index id="papers" value="_hidden"/>
</Indexes>
</DeviceClass>
<DeviceClass id="V6HMD">
<ShortDesc>Virtual Research - V6 HMD</ShortDesc>
<Description/>
<Indexes>
<Index id="first" value="intml.Devices.Qutput"/>
<Index id="papers" value="_hidden"/>
</Indexes>
</DeviceClass>
<DeviceClass id="GenericMouse">
<ShortDesc>A generic mouse definition </ShortDesc>
<Description/>
<Indexes>
<Index id="first" value="intml.Devices.Input"/>
<Index id="papers" value="_hidden"/>
</Indexes>
<0Port id="xPos" type="int">
<ShortDesc>Position in X.</ShortDesc>
</0Port>

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<0Port id="yPos" type="int">
<ShortDesc>Position in Y.</ShortDesc>
</0Port>
<0Port id="mouseMove'" type="Pos2D">
<ShortDesc>Absolute position of the mouse pointer</ShortDesc>
<Description>Adds up xPos and yPos into one output.</Description>
</0Port>
<0Port id="rButtonDn" type="boolean">
<ShortDesc>Right button pressed.</ShortDesc>
</0Port>
<0Port id="mButtonDn" type="boolean">
<ShortDesc>Medium button pressed.</ShortDesc>
</0Port>
<0Port id="1ButtonDn" type="boolean">
<ShortDesc>Left button pressed.</ShortDesc>
</0Port>
<0Port id="rButtonUp" type="boolean">
<ShortDesc>Right button released.</ShortDesc>
</0Port>
<0Port id="mButtonUp" type="boolean">
<ShortDesc>Medium button released.</ShortDesc>
</0Port>
<0Port id="1ButtonUp" type="boolean">
<ShortDesc>Left button released.</ShortDesc>
</0Port>
</DeviceClass>
<DeviceClass id="WheelMouse">
<ShortDesc>A mouse with a wheel for scrolling</ShortDesc>
<Description/>
<Indexes>
<Index id="first" value="intml.Devices.Input"/>
<Index id="papers" value="_hidden"/>
</Indexes>
<Implements classId="GenericMouse"/>
</DeviceClass>
<DeviceClass id="GenericKeyboard">
<ShortDesc>A generic keyboard definition</ShortDesc>
<Description/>
<Indexes>
<Index id="first" value="intml.Devices.Input"/>
<Index id="papers" value="_hidden"/>
</Indexes>
<0Port id="asciiKeyClicked" isArray="true" maxArray="256"
type="boolean" typeArray="static">
<ShortDesc>A button for each ASCII code in the keyboard.</ShortDesc>
</QPort>
</DeviceClass>
<DeviceClass id="MicroScribe3DFX">
<ShortDesc>Immersion - MicroScribe 3DFX 3d digitizer </ShortDesc>
<Description/>
<Indexes>
<Index id="first" value="intml.Devices.Input"/>
<Index id="papers" value="_hidden"/>
</Indexes>
<0Port id="pos" type="Pos3D">
<ShortDesc>The current position.</ShortDesc>
</DPort>
</DeviceClass>
</Package>

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Object Definitions

<7xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Package PUBLIC "-//pfiguero//3D Interaction Techniques ML//EN"
"intml.dtd">
<!-- Copyright info
objects: Generic object definitionms.

Copyright (C) 2001, Pablo Figueroa

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

-2
<!-- 3D Interaction Techniques Markup Language -—>
<!-- Version 0.01 -—>
<t{-- Author: Pablo Figueroa -—>
<!-- Contact Info: pfiguero@cs.ualberta.ca -—>

<!-- Changes:
First version
-—>

<!-- Main types in a VR application -=>
<Package id="objects'">

<ObjectClass id="VRObject">
<ShortDesc>Interface for a VR object in the dataflow</ShortDesc>
<Description>
VRObjectClass defines the input and output ports of any VRObject
in the dataflow.
Transformations are organized as follows:
Rotations, scales, translations
</Description>
<Indexes>
<Index id="first" value="intml.Object"/>
<Index id="papers" value="_hidden"/>
</Indexes>
<IPort id="setPos" type="Pos3D">
<ShortDesc>Changes the world position of an object</ShortDesc>
<Description>
Changes the world-related position of an object. It is considered a relative
position if it is contained in another object.
</Description>
</IPort>
<DPort id="posChanged" type="Pos3D">

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<ShortDesc>Informs when the object moves</ShortDesc>
</0Port>
<IPort id="setQ" type="Quaternion">
<ShortDesc>Changes the world orientation of an object</ShortDesc>
<Description>
Changes the world-related orientation of an object. It is considered a relative
orientation if it is contained in another object.
</Description>
</IPort>
<0Port id="qChanged" type="Quaternion">
<ShortDesc>Informs when the object rotates</ShortDesc>
</0Port>
<IPort id="setScale" type="Vector3">
<ShortDesc>Changes the scale of an object</ShortDesc>
<Description>
Changes the size of an object. It is considered a relative
size if it is contained in another object.
</Description>
</IPort>
<0Port id="scaleChanged" type="Vector3">
<ShortDesc>Informs when the object changes its size</ShortDesc>
</0Port>
<IPort id="setMatrix" type="Matrix4">
<ShortDesc>Changes the rigid transformations.</ShortDesc>
<Description>
Changes the rigid transformations that apply to the object.
It is useful when it necessary to apply rigid transformations
at once and at a specific order.
</Description>
</IPort>
<IPort id="addObject" type="VRObject'">
<ShortDesc>Adds a new part to this object</ShortDesc>
</IPort>
<0Port id="objectAdded" type="VRObject">
<ShortDesc>Informs when a part is added to the object</ShortDesc>
</0Port>
<IPort id="removeObject" type="VRObject">
<ShortDesc>Removes a part from this object</ShortDesc>
</IPort>
<0Port id="objectRemoved" type="VRObject">
<ShortDesc>Informs when a part is removed from the object</ShortDesc>
</0Port>
<IPort id="setBB" type="boolean">
<ShortDesc>Defines if the bounding box is visible or not</ShortDesc>
</IPort>
<0Port id="BBChanged" type="boolean">
<ShortDesc>Informs changes in the bounding box visibility</ShortDesc>
</0Port>
<IPort id="setColor" type="Color">
<ShortDesc>Changes the main color of an object</ShortDesc>
</IPort>
<0Port id="colorChanged" type="Color">
<ShortDesc>Informs when the color changes</ShortDesc>
</0OPort>
</0ObjectClass>

<ObjectClass id="Scene'>
<ShortDesc>Interface for a Scene in the dataflow</ShortDesc>
<Description>

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A Scene is a set of unstructured geometry that can’t be selected, and a
set of VRobjects, which can be selected. Its implementation defines the
general structures required for selection computation.
</Description>
<Indexes>
<Index id="first" value="intml.Object"/>
<Index id="papers" value="_hidden"/>
</Indexes>
<Implements classId="VRObject"/>
</DbjectClass>

<ObjectClass id="VRSystem">
<ShortDesc>VR runtime engine</ShortDesc>
<Description>
The VRSystem represents the virtual machine that runs a particular
application. It’s interface represents all possible modifications
in a virtual enviromment (VE).
</Description>
<Indexes>
<Index id="first" value="intml.Object"/>
<Index id="papers" value="_hidden"/>
</Indexes>
<IPort id="addObject" type="VRObject">
<ShortDesc>Adds an object to the VE</ShortDesc>
</IPort>
<0Port id="objectAdded" type="VRObject">
<ShortDesc>Informs when a part is added to the VE</ShortDesc>
</0Port>
<IPort id="removeObject" type="VRObject">
<ShortDesc>Deletes an object to the VE</ShortDesc>
</IPort>
<0Port id="objectRemoved" type="VRObject">
<ShortDesc>Informs when an object is deleted from the VE</ShortDesc>
</QPort>
<IPort id="setScene" type="Scene">
<ShortDesc>Defines the current scene.</ShortDesc>
<Description>
Defines the current scene. There is only one active scene in a VE.
</Description>
</IPort>
<0Port id="sceneChanged" type="Scene">
<ShortDesc>Informs when the scene is changed.</ShortDesc>
</0Port>
<IPort id="addFilter" type="FilterClass">
<ShortDesc>Adds a new unconnected filter to the VE</ShortDesc>
</IPort>
<0Port id="filterAdded" type="FilterClass">
<ShortDesc>Informs when a filter is added to the VE</ShortDesc>
</0Port>
<IPort id="removeFilter" type="FilterClass">
<ShortDesc>Removes an unconnected filter from the VE</ShortDesc>
</IPort>
<0Port id="filterRemoved" type="FilterClass">
<ShortDesc>Informs when a filter is removed from the VE</ShortDesc>
</0Port>
<IPort id="addConnection" type="Binding">
<ShortDesc>Adds a new connection between filters in the VE</ShortDesc>
</IPort>

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<0Port id="connectionAdded" type="Binding">

<ShortDesc>Informs when a connection is added to the VE</ShortDesc>
</0QPort>
<IPort id="removeConnection" type="Binding">

<ShortDesc>Removes a connection between filters in the VE</ShortDesc>
</IPort>
<0Port id="connectionRemoved" type="Binding">

<ShortDesc>Informs when a connection is deleted from the VE</ShortDesc>
</0Port>

</ObjectClass>

</Package>

Application Control Techniques

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE Package PUBLIC "-//pfiguero//3D Interaction Techniques ML//EN"
"intml.dtd">
<!-~ Copyright info
control: InTs for application control

Copyright (C) 2001, Pablo Figueroa

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

-—=>
<1-- 3D Interaction Techniques Markup Language -->
<t-- Version 0.0t -—>
<!-- Author: Pablo Figueroa -->
<!-- Contact Info: pfiguero@cs.ualberta.ca -—>

<t-- Changes:
First version
-—>

<!-- General Control Techniques -—>
<Package id="ualberta.control">

<FilterClass id="QuitbyButton">
<ShortDesc>Quit when a button is pressed</ShortDesc>
<Description>
It terminates the application
when the button is pressed.
</Description>
<Indexes>
<Index id="first"

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

value="intml.control"/>
<Index id="papers"
value="_hidden"/>
</Indexes>
<IPort id="bClicked" type="boolean">
<ShortDesc>Button that quits the application</ShortDesc>
</IPort>
</FilterClass>

</Package>

Navigation Techniques

<?xml version="1.0"7>
<!DOCTYPE Package PUBLIC "-//pfiguero//3D Interaction Techniques ML//EN"
"intml.dtd">
<!-- Copyright info
travel: Travel interaction techniques.

Copyright (C) 2001, Pablo Figueroa

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later versionm.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

-—>
<!-- 3D Interaction Techniques Markup Language -->
<!-- Version 0.01 -—=>
<!-- Author: Pablo Figueroa -->
<}-- Contact Info: pfiguero@cs.ualberta.ca -—->

<!-- Changes:
First version
-=>

<!-- Travel Techmniques -=>

<Package id="travel">
<Import id="objects"/>

<FilterClass id="SteerHead">
<IPort id="headPos" type="Pos3D" defValue="0, 0, 0"></IPort>
<IPort id="headQ" type="Quaternion" defValue="0 ,0 , 0, 1"></IPort>
<IPort id="posDffset" type="Pos3D" defValue="0, 0, 0"></IPort>
<IPort id="qOffset" type="Quaternion" defValue="0Q ,0, 0, 1"></IPort>
<0Port id="pos" type="Pos3D"></0Port>
<0Port id="q" type="Quaternion"></OPort>

</FilterClass>

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<FilterClass id="MoveUnrestricted">
<ShortDesc>Move at a certain speed from an starting position</ShortDesc>
<Description>
MovelUnrestricted computes a
new position, given a starting
point, a direction, and a certain speed.
</Description>
<Indexes>
<Index id="first"
value="intml.travel/>
<Index id="papers"
value="_unknown"/>
</Indexes>
<IPort id="direction" type="Quaternion" defValue="0 ,0 , 0, 1">
<ShortDesc>Direction of movement</ShortDesc>
</IPort>
<IPort id="posOffset" type="Pos3D" defValue="0, 0, 0">
<ShortDesc>Starting position</ShortDesc>
</IPort>
<IPort id="qOffset" type="Quaternion" defValue="0 ,0, 0, 1">
<ShortDesc>Starting orientation</ShortDesc>
</IPort>
<IPort id="speed" type="float" defValue="1.0">
<ShortDesc>Speed of movement</ShortDesc>
</IPort>
<IPort id="timer" type="int">
<ShortDesc>Number of seconds</ShortDesc>
<Description>
The first value received is
taken as time O.
</Description>
</IPort>
<0OPort id="pos" type="Pos3D">
<ShortDesc>Computed position</ShortDesc>
</0Port>
<0Port id="q" type="Quaternion">
<ShortDesc>Computed orientation</ShortDesc>
</0Port>
</FilterClass>

<FilterClass id="MoveInGround">
<IPort id="direction" type="Quaternion" defValue="0 ,0 , 0, 1"></IPort>
<IPort id="posOffset" type="Pos3D" defValue="0, 0, 0"></IPort>
<IPort id="qOffset" type="Quaternion" defValue="0 ,0, 0, 1"></IPort>
<IPort id="speed" type="float" defValue="1.0"></IPort>
<IPort id="plane" type="Plane3D" defValue="0, 0, 0, 1, 0, 0"></IPort>
<0Port id="pos" type="Pos3D"></0Port>
<0Port id="q" type="Quaternion"></0Port>

</FilterClass>

<FilterClass id="Walk">
<IPort id="p" type="Pos3D" defValue="0, 0, 0"></IPort>
<IPort id="posOffset" type="Pos3D" defValue="0, 0, 0"></IPort>
<0Port id="pos" type="Pos3D"></0Port>

</FilterClass>

<FilterClass id="SteeringIT">
<Filter id="steer" type="SteerHead"></Filter>

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<ObjectHolder id="v"/>

<IPort id="pos" type="Pos3D">

</IPort>

<IPort id="q" type="Quaternion">

</IPort>

<IPort id="viewpoint" type="VRObject">

</IPort>

<IPort id="posOffset" type="Pos3D" defValue="0, 0, 0">
</IPort>

<IPort id="qOffset" type="Quaternion" defValue="0 ,0, 0, 1">
</IPort>

<Binding iE="steer" iP="pos" oE="v" oP="setPos" />

<Binding iE="steer" iP="q" oE="v" oP="setQ" />

<Binding iE="_self" iP="pos" oE="steer" oP="headPos" />

<Binding iE="_self" iP="q" oE="steer" oP="headQ" />

<Binding iE="_self" iP="viewpoint" oE="v" oP="object" />

<Binding iE="_self" iP="posOffset" oE="steer" oP="posOffset" />

<Binding iE="_self" iP="qOffset" oE="steer" oP="qOffset" />
</FilterClass>

<FilterClass id="FlyUnrestrictedIT">
<Filter id="fly" type="MoveUnrestricted"></Filter>
<0ObjectHolder id="v"/>

<IPort id="q" type="Quaternion">

</IPort>

<IPort id="viewpoint" type="VRDbject'>

</IPort>

<IPort id="posOffset" type="Pos3D" defValue="0, 0, 0">
</IpPort>

<IPort id="qOffset" type="Quaternion" defValue="0 ,0, 0, 1">
</IPort>

<IPort id="speed" type="float" defValue="1.0">

</IPort>

<Binding iE="fly" iP="pos" oE="v" oP="setPos" />

<Binding iE="fly" iP="q" oE="v" oP="setQ" />

<Binding iE="_self" iP="q" oE="fly" oP="direction" />

<Binding iE="_self" iP="viewpoint" oE="v" oP="object" />

<Binding iE="_self" iP="posOffset" oE="fly" oP="posOffset" />

<Binding iE="_self" iP="qOffset" oE="fly" oP="qOffset" />

<Binding iE="_self" iP="speed" oE="fly" oP="speed" />
</FilterClass> .

<FilterClass id="FlyInPlaneIT">
<Filter id="fly" type="MoveInGround"></Filter>
<ObjectHolder id="v"/>

<IPort id="q" type="Quaternion'>

</IPort>

<IPort id="viewpoint" type="VRObject">

</IPort>

<IPort id="posOffset" type="Pos3D" defValue="0, 0, 0">
</IPort>

<IPort id="qOffset" type="Quaternion" defValue="0 ,0, 0, 1">
</IPort>

<IPort id="speed" type="float" defValue="1.0">

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

</IPort>
<JPort id="plane" type="Plane3D" defValue="0, 0, 0, 1, 0, 0">
</IPort>

<Binding iE="fly" iP="pos" oE="v" oP="setPos" />

<Binding iE="fly" iP="q" oE="v" oP="setQ" />

<Binding iE="_self" iP="q" oE="fly" oP="direction" />

<Binding iE="_self" iP="viewpoint" oE="v" oP="object" />

<Binding iE="_self" iP="posOffset" oE="fly" oP="posOffset" />

<Binding iE="_self" iP="qOffset" oE="fly" oP="qOffset" />

<Binding iE="_self" iP="speed" oE="fly" oP="speed" />

<Binding iE="_self" iP="plane" oE="fly" oP="plane" />
</FilterClass>

<FilterClass id="WalkIT">
<Filter id="walk" type="Walk"></Filter>
<0ObjectHolder id="v" />

<IPort id="p" type="Pos3D">

</IPort>

<IPort id="viewpoint" type="VRObject">

</IPort>

<IPort id="posOffset" type="Pos3D" defValue="0, 0, 0">
</IPort>

<Binding iE="walk" iP="pos" oE="v" oP="setPos" />

<Binding iE="_self" iP="p" oE="walk" oP="p" />

<Binding iE="_self" iP="viewpoint" oE="v" oP="object" />

<Binding iE="_self" iP="posOffset" oE="walk" oP="posOffset" />
</FilterClass>

</Package>

Selection and Feedback Techniques

<7xml version="1.0" encoding="UTF-8"7>
<IDOCTYPE Package PUBLIC "-//pfiguero//3D Interaction Techniques ML//EN"
"intml.dtd">
<!-- Copyright info
selection: Selection interaction techniques.

Copyright (C) 2001, Pablo Figueroa

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

>

<!-- 3D Interaction Techniques Markup Language -->
<t-- Version 0.01 -=>
<!-- Author: Pablo Figueroa -=>
<!-- Contact Info: pfiguero@cs.ualberta.ca -=>

<!-- Changes:
June 10 2001:
Changed to the new specification
Mayo 2001:
First version
-

<!-- Selection Techniques -=>

<Package id="ualberta.selection">
<Import id="objects"/>

<!-- This class has to be defined in the implementation --—>
<FilterClass id="SelectByTouching">
<Description>

Implements details of selection by collision detection.
It receives position and orientation updates of handRepr
and it computes which object from the scene is intersected
by handRepr. It allows dynamic changes to the scene by
connecting the ports addObject and removeObject.
</Description>
<Indexes>
<Index id="first"
value="intml.selection.details"/>
<Index id="papers"
value="_hidden"/>
</Indexes>
<IPort id="p" type="Pos3D" defValue="handRepr.posChanged">
<ShortDesc>Change of position</ShortDesc>
</IPort>
<IPort id="q" type="Quaternion" defValue="handRepr.qChanged">
<ShortDesc>Change of rotation</ShortDesc>
</IPort>
<IPort id="handRepr" type="VRObject">
<ShortDesc>0bject that represents the users’ hand</ShortDesc>
</IPort>
<IPort id="scene" type="Scene">
<ShortDesc>Selectable objects</ShortDesc>
</IPort>
<IPort id="addObjectToScene" type="VRObject">
<ShortDesc>Dynamically added objects</ShortDesc>
</IPort>
<IPort id="removelbjectFromScene" type="VRObject">
<ShortDesc>Dynamically removed objects</ShortDesc>
</IPort>
<0Port id="object" type="VRObject">
<ShortDesc>S8elected object</ShortDesc>
</0Port>
</FilterClass>

<FilterClass id="SelectByRay">
<Description>

Implements details of selection by intersection with a ray.
It receives position and orientation updates of a ray in the scene

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and it computes which object from the scene is intersected first.
It allows dynamic changes to the scene by
connecting the ports addObject and removeObject.
</Description>
<Indexes>
<Index id="first"
value="intml.selection.details"/>
<Index id="papers"
value="_hidden"/>
</Indexes>
<IPort id="p" type="Pos3D" defValue="0, 0, 0">
<ShortDesc>Position of the ray</ShortDesc>
</IPort>
<IPort id="q" type="Quaternion" defValue="0, 0, 0, 1">
<ShortDesc>Rotation of the ray</ShortDesc>
</IPort>
<IPort id="scene" type="Scene">
<ShortDesc>Selectable objects</ShortDesc>
</IPort>
<IPort id="addObjectToScene" type="VRObject">
<ShortDesc>Dynamically added objects</ShortDesc>
</IPort>
<IPort id="remove0bjectFromScene" type="VRObject">
<ShortDesc>Dynamically removed objects</ShortDesc>
</IPort>
<0Port id="object" type="VRObject">
<ShortDesc>Selected object</ShortDesc>
</0Port>
</FilterClass>

<FilterClass id="Feedback0One">
<ShortDesc>Changes the appearance of an object</ShortDesc>
<Description>
It changes the appearance of the object that
is received in its input port. It is useful
as feedback of an operation that selects one
object. It is meant to have two object holders as output,
one for the current object and the other for the previous
object, in order to change back its state.
</Description>
<Indexes>
<Index id="first"
value="intml.feedback.details"/>
<Index id="papers"
value="_hidden"/>
</Indexes>
<IPort id="obj" type="VRObject">
<ShortDesc>0bject to be changed</ShortDesc>
</IPort>
<IPort id="type" type="String" defValue="boundingBox">
<ShortDesc>Type of change.</ShortDesc>

<Description>
Type of change. It can be "boundingBox" or "color"
</Description>
</IPort>

<IPort id="color" type="Color" defValue="1, 1, 1">
<ShortDesc¢>Feedback color</ShortDesc>
<Description>
Feedback color. If type is "color" the object will be

185

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

changed to this color.
</Description>

</IPort>

<0Port id="currentObject" type="VRObject">
<ShortDesc>0bject to be changed.</ShortDesc>

</0Port>

<0Port id="setBBCurrent" type="boolean">
<ShortDesc>Current value for the BB.</ShortDesc>

</0Port>

<0Port id="setColorCurrent" type="Color">
<ShortDesc>Current value for color.</ShortDesc>

</0Port>

<0Port id="previousObject" type="VRObject">
<ShortDesc>Previous changed object.</ShortDesc>

</0Port>

<0Port id="setBBPrevious" type="boolean">
<ShortDesc>Previous value for the BB.</ShortDesc>

</0Port>

<0Port id="setColorPrevious" type="Color">
<ShortDesc>Previous value for color.</ShortDesc>

</0Port>
</FilterClass>

<FilterClass id="FeedbackSet">
<ShortDesc>Changes the appearance of a set of objects</ShortDesc>
<Description>
It changes the appearance of the set of objects that
is received in its input port. It is useful
as feedback of an operation that selects a set of
objects. It is meant to have two object holders as output,
one for the current set and the other for the previous,
in order to change back its state.
</Description>
<Indexes>
<Index id="first"
value="intml.feedback.details"/>
<Index id="papers"
value="_hidden"/>
</Indexes>
<IPort id="obj" type="Scene">
<ShortDesc>Set of objects to be changed</ShortDesc>
</IPort>
<IPort id="type" type="String" defValue="boundingBox">
<ShortDesc>Type of change.</ShortDesc>

<Description>
Type of change. It can be "boundingBox" or "color"
</Description>
</IPort>

<IPort id="color" type="Color" defValue="1, 1, 1">

<ShortDesc>Feedback color</ShortDesc>
<Description>

Feedback color. If type is "color" the objects will be

changed to this color.
</Description>

</IPort>

<0Port id="currentObject" type="Scene'">
<ShortDesc>0bjects to be changed.</ShortDesc>

</0Port>

<0Port id="setBBCurrent" type="boolean">

186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<ShortDesc>Current value for the BB.</ShortDesc>
</0Port>
<0Port id="setColorCurrent" type="Coloxr">
<ShortDesc>Current value for color.</ShortDesc>
</0Port>
<0Port id="previousObject" type="Scene">
<ShortDesc>Previous changed objects.</ShortDesc>
</0Port>
<0Port id="setBBPrevious" type="boolean">
<ShortDesc>Previous value for the BB.</ShortDesc>
</0Port>
<0Port id="setColorPrevious" type="Color">
<ShortDesc>Previous value for color.</ShortDesc>
</0Port>
</FilterClass>

<FilterClass id="FeedbackScaleSet">
<ShortDesc>Changes the position and scale of a set of objects</ShortDesc>
<Description>
It changes the scale and position of a set of objects,
according to the rules of the IT "ScaleGrab". It is meant to be used
with two holders as output, one for the current selected set of
objects, and the other for the previous one.
</Description>
<Indexes>
<Index id="first" value="intml.feedback.details"/>
<Index id="papers" value="mine97"/>
</Indexes>
<IPort id="pHead" type="Pos3D" defValue="0, 1, 0">
<ShortDesc>Head position.</ShortDesc>
</IPort>
<IPort id="qHead" type="Quaternion" defValue="0, 0, 0, 1">
<ShortDesc>Head orientation.</ShortDesc>
</IPort>
<IPort id="obj" type="Scene">
<ShortDesc>Selected objects.</ShortDesc>
</IPort>
<IPort id="maxRadius" type="float" defValue="1.0">
<ShortDesc>Maximum radius of the scaled objects.</ShortDesc>
</IPort>
<0Port id="currentObjects" type="Scene">
<ShortDesc>Current selected objects.</ShortDesc>
</0Port>
<0Port id="setMatrixCurrent" type="Matrix4">
<ShortDesc>Current scale for the set.</ShortDesc>
</0Port>
<0Port id="previousObjects" type="Scene">
<ShortDesc>Previous set of selected objects</ShortDesc>
</0Port>
<0Port id="setMatrixPrevious" type="Matrix4">
<ShortDesc>Previous scale.</ShortDesc>
</0Port>
</FilterClass>

<FilterClass id="GoGo">
<ShortDesc>Lengthening behavior of GoGoIT.</ShortDesc>
<Description>
GoGo computes a new hand position as a function of the distance
of the real hand from the chest, K, and D.

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

</Description>
<Indexes>
<Index id="first" value="intml.selection.details"/>
<Index id="papers" value="poupyrev96"/>
</Indexes>
<IPort id="pHead" type="Pos3D" defValue="0, 1, 0">
<ShortDesc>Head position.</ShortDesc>
</IPort>
<IPort id="pHand" type="Pos3D" defValue="0, 0, -1">
<ShortDesc>Hand position.</ShortDesc>
</IPort>
<IPort id="K" type="float" defValue="0.5">
<ShortDesc>Coefficient k (0..1)</ShortDesc>
</IPort>
<IPort id="D" type="float" defValue="0.6">
<ShortDesc>Distance for lenghtening</ShortDesc>
<Description>
Minimum distance for lengthening behavior. Usually 2/3 of the
user’s arm length.
</Description>
</IPort>
<0Port id="pos" type="Pos3D">
<ShortDesc>New hand position.</ShortDesc>
</0Port>
<0Port id="setVisible" type="boolean">
<ShortDesc>true if lengthening behavior is inactive.</ShortDesc>
</0Port>
</FilterClass>

<FilterClass id="Spotlight'">
<ShortDesc>Main computation for selection by a spotlight.</ShortDesc>
<Description>
Spotlight computes the direction and angle of the spotlight
cone that starts in the user’s head. It returns a set of objects
that are inside the cone.
</Description>
<Indexes>
<Index id="first" value="intml.selection.details"/>
<Index id="papers" value="liang93"/>
</Indexes>
<IPort id="pHead" type="Pos3D" defValue="0, 0, 0">
<ShortDesc>Head position</ShortDesc>
</IPort>
<IPort id="qHead" type="Quaternion" defValue="0, 0, 0, 1">
<ShortDesc>Head orientation</ShortDesc>
</IPort>
<IPort id="pHand" type="Pos3D" defValue="0, -1, 0">
<ShortDesc>Hand position</ShortDesc>
</IPort>
<IPort id="qHand" type="Quaternion" defValue="0, 0, 0, 1">
<ShortDesc>Hand orientation</ShortDesc>
</IPort>
<JPort id="a" type="float" defValue="1.0">
<ShortDesc></ShortDesc>
</IPort>
<IPort id="scene" type="Scene" defValue="">
<ShortDesc>0bjects to be selected</ShortDesc>
</IPort>
<IPort id="addObjectToScene" type="VRObject">

188

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<ShortDesc>Dynamically added objects</ShortDesc>
</IPort>
<IPort id="removeObjectFromScene" type="VRObject'">
<ShortDesc>Dynamically removed objects</ShortDesc>
</IPort>
<0Port id="object" type="Scene">
<ShortDesc>Selected objects</ShortDesc>
</0Port>
</FilterClass>

<FilterClass id="FeedbackOneIT">
<ShortDesc>Changes the appearance of a selected object</ShortDesc>
<Description>
It changes the appearance of an object. It has memory, so the previously
selected object restores its previous appearance once a new object is selected.
</Description>
<Indexes>
<Index id="first" value="intml.feedback"/>
<Index id="papers" value="_hidden"/>
</Indexes>
<Filter id="feedback" type="FeedbackOne">
<ShortDesc>Main computation</ShortDesc>
</Filter>
<ObjectHolder id="current" />
<ObjectHolder id="previous" />

<IPort id="obj" type="VRObject">
<ShortDesc>0Object to be changed</ShortDesc>
</IPort>
<IPort id="type" type="String">
<ShortDesc>Type of change</ShortDesc>
</IPort>
<IPort id="color" type="Color">
<ShortDesc>Color for the changed object</ShortDesc>
</IPort>

<Binding iE="feedback" iP="setBBCurrent" oE="current" oP="setBB" />
<Binding iE="feedback" iP="setColorCurrent" oE="current" oP="setColor" />
<Binding iE="feedback" iP="setBBPrevious" oE="previous" oP="setBB" />
<Binding iE="feedback" iP="setColorPrevious" oE="previous" oP="setColor" />
<Binding iE="feedback" iP="currentObject" oE="current" oP="object" />
<Binding iE="feedback" iP="previousObject" oE="previous" oP="object" />
<Binding iE="_self" iP="obj" oE="feedback" oP="obj" />
<Binding iE="_self" iP="type" oE="feedback" oP="type" />
<Binding iE="_self" iP="color" oE="feedback" oP="color" />

</FilterClass>

<FilterClass id="FeedbackSetIT">
<Filter id="feedback" type="FeedbackSet"></Filter>
<ObjectHolder id="current" />
<ObjectHolder id="previous" />

<IPort id="obj" type="Scene"></IPort>

<IPort id="type" type="String"></IPort>

<IPort id="color" type="Color"></IPort>

<Binding iE="feedback" iP="setBBCurrent" oE="current" oP="setBB" />

<Binding iE="feedback" iP="setColorCurrent" oE="current" oP="setColor" />
<Binding iE="feedback" iP="setBBPrevious" oE="previous" oP="setBB" />

189

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<Binding iE="feedback" iP="setColorPrevious" oE="previous" oP="setColor" />
<Binding iE="feedback" iP="currentObject" oE="current" oP="object" />
<Binding iE="feedback" iP="previousObject" oE="previous" oP="object" />
<Binding iE="_self" iP="obj" oE="feedback" oP="obj" />
<Binding iE="_self" iP="type" oE="feedback" oP="type" />
<Binding iE="_self" iP="color" oE="feedback" oP="color" />

</FilterClass>

<FilterClass id="FeedbackScaleSetIT">
<Filter id="feedback" type="FeedbackScaleSet"></Filter>
<ObjectHolder id="current" />
<ObjectHolder id="previous" />

<IPort
<IPort
<IPort
<JIPort

id="obj" type="Scene"></IPort>
id="maxRadius" type="float"></IPort>
id="pHead" type="Pos3D"></IPort>
id="qHead" type="Quaternion"></IPort>

<Binding iE="feedback" iP="setMatrixCurrent" oE="current" oP="setMatrix" />
<Binding iE="feedback" iP="setMatrixPrevious" oE="previous" oP="setMatrix" />
<Binding iE="feedback" iP="currentObjects" oE="current" oP="object" />
<Binding iE="feedback" iP="previousObjects" oE="previous" oP="object" />
<Binding iE="_self" iP="obj" oE="feedback" oP="obj" />
<Binding iE="_self" iP="maxRadius" oE="feedback" oP="maxRadius" />
<Binding iE="_self" iP="pHead" oE="feedback" oP="pHead" />
<Binding iE="_self" iP="qHead" oE="feedback" oP="qHead" />

</FilterClass>

<FilterClass id="SelectByTouchingIT">
<Filter id="select" type="SelectByTouching"></Filter>
<Filter id="feedback" type="FeedbackOnelIT"></Filter>
<0ObjectHolder id="hand" />

<IPort
<IPort
<IPort
<IPort
<IPort
<IPort
<IPort
<IPort
<0Port

id="pos" type="Pos3D"></IPort>

id="q" type="Quaternion"></IPort>

id="handRepr" type="VRObject"></IPort>

id="scene" type="Scene'"></IPort>
id="add0bjectToScene" type="VRObject"></IPort>
id="removeObjectFromScene" type="VRObject"></IPort>
id="type" type="String"></IPort>

id="color" type="Color"></IPort>

id="object" type="VRObject"></0Port>

<Binding iE="select" iP="object" oE="feedback" oP="obj" />

<Binding iE="_self" iP="pos" oE="select" oP="p" />

<Binding iE="_self" iP="pos" oE="hand" oP="p" />

<Binding iE:"_selfll iP:Ilqll 0E="Select" °P=|Iqll />

<Binding iE="_self" iP="q" oE="select" oP="q" />

<Binding iE="_self" iP="handRepr" oE="select" oP="handRepr" />

<Binding iE="_self" iP="handRepr" oE="hand" oP="object" />

<Binding iE="_self" iP="scene" oE="select" oP="scene" />

<Binding iE="_self" iP="addObjectToScene" oE="select" oP="addObjectToScene" />

<Binding iE="_self" iP="removeObjectFromScene" oE="select" oP="removeObjectFromScene" />

<Binding iE="_self" iP="type" oE="feedback" oP="type" />

<Binding iE="_self" iP="color" oE="feedback" oP="color" />

<Binding iE="select" iP="object" oE="_self" oP="object" />
</FilterClass>

<FilterClass id="SelectByRayIT">

190

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<ShortDesc>Selection in a particular direction</ShortDesc>
<Description>
SelectByRayIT selects an object
from a set given a position and
a direction.
Pending: Add a ray as feedback
</Description>
<Indexes>
<Index id="first"
value="intml.selection"/>
<Index id="papers"
value="_unknown"/>
</Indexes>
<Filter id="select" type="SelectByRay"></Filter>
<Filter id="feedback" type="FeedbackOneIT"></Filter>

<IPort id="pos" type="Pos3D"></IPort>

<IPort id="q" type="Quaternion"></IPort>

<IPort id="scene" type="Scene'"></IPort>

<IPort id="addObjectToScene" type="VRObject"></IPort>
<IPort id="removeObjectToScene" type="VRObject"></IPort>
<JPort id="type" type="String"></IPort>

<IPort id="color" type="Color"></IPort>

<0Port id="object" type="VRObject"></0Port>

<Binding iE="select" iP="object" oE="feedback" oP="obj" />
<Binding iE="_self" iP="pos" oE="select" oP="p" />
<Binding iE="_self" iP="q" oE="select" oP="q" />
<Binding iE="_self" iP="scene" oE="select" oP="scene" />
<Binding iE="_self" iP="addObjectToScene" oE="select" oP="addObjectToScene" />
<Binding iE="_self" iP="removeObjectToScene" oE="select" oP="removeObjectFromScene" />
<Binding iE="_self" iP="type" oE="feedback" oP="type" />
<Binding iE="_self" iP="color" oE="feedback" oP="color" />
<Binding iE="select" iP="object" oE="_self" oP="object" />
</FilterClass>

<FilterClass id="GoGoIT">
<Filter id="gogo" type="GoGo"></Filter>
<Filter id="select" type="SelectByTouchingIT"></Filter>
<Object id="cubeObj" type="VRObject" primitive="Box"></Object>
<ObjectHolder id="cube" />

<IPort id="K" type="float" defValue="0.167"></IPort>
<IPort id="D" type="float" defValue="0.6"></IPort>
<IPort id="posHead" type="Pos3D"></IPort>

<IPort id="qHead" type="Quaternion"></IPort>

<IPort id="posHand" type="Pos3D"></IPort>

<IPort id="qHand" type="Quaternion'"></IPort>

<IPort id="handRepr" type="VRObject"></IPort>

<IPort id="scene" type='"Scene"></IPort>

<IPort id="addObjectToScene" type="VRObject"></IPort>
<IPort id="removeObjectFromScene" type="VRObject"></IPort>
<IPort id="type" type="String"></IPort>

<IPort id="color" type="Color"></IPort>

<0Port id="object" type="VRObject"></OPort>

<Binding iE="gogo" iP="setVisible" oE="cube" oP="setVisible" />
<Binding iE="_self" iP="cubeObj" oE="cube" oP="object" />
<Binding iE="_self" iP="cubeObj" oE="cube" oP="object" />

191

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<Binding
<Binding
<Binding
<Binding
<Binding
<Binding
<Binding
<Binding
<Binding
<Binding
<Binding
<Binding
<Binding
<Binding
<Binding
<Binding
</FilterCla

iE="gogo" iP="pos" oE='"select" oP="pos" />

iP="qHand" oE="select" oP="q" />

ip="¥" 0E="g0g0" oP="K" />

iP="D" oE="gogo" oP="D" />

iP="posHead" oE="gogo" oP="pHead" />

iP="posHand" oE="gogo" oP="pHand" />

iP="posHand" oE="cube" oP="p" />

iP="gHand" oE="select" oP="q" />

iP="qHand" oE="cube" oP="q" />

iP="handRepr" oE="select" oP="handRepr" />

iP="scene" oE="select" oP="scene" />

iP="add0ObjectToScene" oE="select" oP="add0ObjectToScene" />
iP="removeObjectFromScene" oE="select" oP="removeObjectFromScene" />
iP="type" oE="select" oP="type" />

iP="color" oE="select" oP="color" />

iE="select" iP="object" oE="_self" oP="object" />

iE="_self"
iE="_self"
iE="_self"
iE="_self"
iE="_self"
iE="_self"
iE="_self"
iE="_self"
iE="_self"
iE="_self"
iE="_self"
iE="_self"
iE="_self"
iE="_self"
s8>

<FilterClass id="SpotlightIT">
<ShortDesc>Select objects with a spotlight</ShortDesc>

<Descript

ion>

It selects a set of objects, given

a direction and a radius of a cone

centered in such direction.
</Description>

<Indexes>

<Index id="first" value="intml.selection"/>
<Index id="papers" value="liang93"/>

</Indexes

>

<Filter id="select" type="Spotlight">
<ShortDesc>Basic selection behavior</ShortDesc>

</Filtexr>

<Filter id="feedback" type="FeedbackSetIT">
<ShortDesc>Visual feedback</ShortDesc>

</Filter>

<IPort id="posHead" type="Pos3D"></IPort>

<IPort id="gHead" type="Quaternion"></IPort>

<IPort id="posHand" type="Pos3D"></IPort>

<IPort id="qHand" type="Quaternion"></IPort>

<IPort id="a" type="float"></IPort>

<IPort id="scene" type="Scene"></IPort>
="addObjectToScene" type="VRObject"></IPort>
<IPort id="removeObjectToScene" type="VRObject"></IPort>
<IPort id="type" type="String"></IPort>

<IPort id='"color" type="Color"></IPort>

<0Port id="object" type="VRObject"></OPort>

<IPort id

<Binding
<Binding
<Binding
<Binding
<Binding
<Binding
<Binding
<Binding
<Binding
<Binding
<Binding

iE="select" iP="object" oE="feedback" oP="obj" />

iE="_self"
iE="_self"
iE="_self"
iE="_self"
iE="_self"
iE="_self"
iE="_self"
iE="_self"
iE="_self"
iE="_self"

iP="posHead" oE="select" oP="pHead" />

iP="qHead" oE="select" oP="qHead" />

iP="posHand" oE="select" oP="pHand" />

iP="qHand" oE="select" oP="qHand" />

iP="a" oE="select" oP="a" />

iP="scene" oE="select" oP="scene" />

iP="add0ObjectToScene" oE="select" oP="addObjectToScene" />
iP="removeObjectToScene" oE="select" oP="removeObjectFromScene" />
iP="type" oE="feedback" oP="type" />

iP="color" oE="feedback" oP="coloxr" />

192

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<Binding iE="select" iP="object" oE="_self" oP="object" />
</FilterClass>

<FilterClass id="SelectByScaleIT">
<Filter id="select" type="SpotlightIT"></Filter>
<Filter id="feedback" type="FeedbackScaleSetIT"></Filter>

<IPort id="posHead" type="Pos3D"></IPort>

<IPort id="qHead" type="Quaternion'"></IPort>

<IPort id="posHand" type="Pos3D"></IPort>

<IPort id="qHand" type="Quaternion"></IPort>

<IPort id="a" type="float"></IPort>

<IPort id="scene" type="Scene"></IPort>

<IPort id="addObjectToScene" type="VRObject"></IPort>
<IPort id="removeObjectToScene" type="VRObject"></IPort>
<IPort id="maxRadius" type="float"></IPort>

<QPort id="object" type="Scene"></0Port>

iE="select" iP="object" oE="feedback" oP="obj" />

iP="posHead" oE="select" oP='"posHead" />

iP="posHead" oE="feedback" oP="pHead" />

iP="gHead" oE="select" oP="qHead" />

iP="qHead" oE="feedback" oP="qHead" />

iP="posHand" oE="select" oP="posHand" />

iP="qHand" oE="select" oP="gHand" />

iP="a" oE="select" oP="a" />

iP="gcene" oE="select" oP="scene" />

iP="add0ObjectToScene" oE="select" oP="addObjectToScene" />
iP="removeObjectToScene" oE="select" oP="removeObjectToScene" />
iP="maxRadius" oE="feedback" oP="maxRadius" />

iE="select" iP="object" oE="_self" oP="object" />

<Binding

<Binding iE="_self"
<Binding iE="_self"
<Binding iE="_self"
<Binding iE="_self"
<Binding iE="_self"
<Binding iE="_self"
<Binding iE="_self"
<Binding iE="_self"
<Binding iE="_self"
<Binding iE="_self"
<Binding iE="_self"
<Binding

</FilterClass>

<FilterClass id="RingMenu'>

<ShortDesc>Basic behavior of a ring menu</ShortDesc>
<Description>

A ring menu shows some options

arranged in a ring.The selected

option is the closest to the head

position. There is an object who

acts as a frame that receives

its coordinates from this object.
</Description>

<Indexes>

<Index id="first" value="intml.control"/>

<Index id="papers" value="1liang93"/>
</Indexes>
<IPort id="posOffset" type="Pos3D" defValue="0, 0, 0">

<ShortDesc>Starting position from the hand</ShortDesc>

</IPort>

<IPort id="qOffset" type="Quaternion" defValue="0, 0, 0, 1">
<ShortDesc>Starting orientation from the hand</ShortDesc>

</IPort>

<IPort id="pHead" type="Pos3D" defValue="0, 0, 0">
<ShortDesc>Viewpoint position</ShortDesc>

</IPort>

<IPort id="pHand" type="Pos3D" defValue="0, 0, 2">
<ShortDesc>Hand position</ShortDesc>

</IPort>

193

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<IPort id="gqHand" type="Quaternion" defValue="0, 0, 0, 1">
<ShortDesc>hand orientation</ShortDesc>
</IPort>
<IPort id="setObjs" type="Scene">
<ShortDesc>0bjects in the menu</ShortDesc>
</IPort>
<0Port id="object" type="VRObject">
<ShortDesc>selected object</ShortDesc>
</0Port>
<0OPort id="pos" type="Pos3D">
<ShortDesc>Frame position</ShortDesc>
</0Port>
<0Port id="q" type="Quaternion">
<ShortDesc>Frame orientation</ShortDesc>
</0Port>
<0OPort id="setFrameVisible" type="boolean">
<ShortDesc>If the frame should be visible or not</ShortDesc>
</0Port>
</FilterClass>

<FilterClass id="RingMenulT">
<ShortDesc>Menu in a ring</ShortDesc>
<Description>
Selection technique that
shows a ring of objects
to the user, with the closest
one as selected, and with an
interior frame for readability
purposes.
</Description>
<Indexes>
<Index id="first"
value="intml.control"/>
<Index id="papers"
value="1iang93"/>
</Indexes>
<Filter id="menu" type="RingMenu"></Filter>
<0Object id="frameObj" type="VRObject" primitive="Cylinder"></Object>
<0ObjectHolder id="frame" />

<IPort id="posOffset" type="Pos3D"></IPort>
<IPort id="qOffset" type="Quaternion"></IPort>
<IPort id="posHand" type="Pos3D"></IPort>
<IPort id="qHand" type="Quaternion"></IPort>
<IPort id="setObjs" type="Scene"></IPort>
<0Port id="object" type="VRObject"></0OPort>

<Binding iE="menu" iP="object" oE="_self" oP="object" />
<Binding iE="menu" iP="pos" oE="frame" oP='"setPos" />
<Binding iE="menu" iP="q" oE="frame" oP="setQ" />
<Binding iE="_self" iP="frameObj" oE="frame" oP="object" />
<Binding iE="_self" iP="posDffset" oE="menu" oP="posOffset" />
<Binding iE="_self" iP="qOffset" oE="menu" oP="qOffset" />
<Binding iE="_self" iP="posHand" oE="menu" oP="pHand" />
<Binding iE="_self" iP="gqHand" oE="menu" oP="qHand" />
<Binding iE="_self" iP="setObjs" oE="menu" oP="set0bjs" />
<Binding iE="menu" iP="object" oE="_self" oP="object" />
</FilterClass>

194

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

</Package>

Interaction Techniques from Barrileaux

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE Package PUBLIC "-//pfiguero//3D Interaction Techniques ML//EN"
"intml.dtd">
<!-- Copyright info
barrilleaux: InTs from his book "3D User Interfaces with Java3D"

Copyright (C) 2001, Pablo Figueroa

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

-=>
<!-- 3D Interaction Techniques Markup Language -->
<!-- Version 0.01 -—>
<!-- Author: Pablo Figueroa -—>
<!-- Contact Info: pfiguero@cs.ualberta.ca -->
<!-- Changes:

June 20 2001:
First version

-=>
<!-- Techniques described in Barrilleaux’s -=>

<Package id="barrilleaux">
<Import id="objects"/>
<Import id="ualberta.appEnv.classes"/>

<ObjectClass id="DObject">
<ShortDesc>0bject in display space</ShortDesc>
<Description>
An object in display space. The display is the space that is in front
of the user’s view. It contains layers numbered from 1 (the closest)
and above.
</Description>
<Indexes>
<Index id="first" value="intml.Object"/>
<Index id="space" value="display"/>
<Index id="papers" value="barrilleaux01"/>
</Indexes>
<IPort id="setPos" type="Pos2D">
<ShortDesc>Changes the position of an object</ShortDesc>
<Description>

195

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Changes the position of an object. It is considered a relative
position if it is contained in another object.
</Description>
</IPort>
<0Port id="posChanged" type="Pos3D">
<ShortDesc>Informs when the object moves</ShortDesc>
</0Port>
<IPort id="setRotation" type="float">
<ShortDesc>Changes the rotation of an object</ShortDesc>
<Description>
Changes the rotation of an object from the horizon.
It is considered a relative
rotation if it is contained in another object.
</Description>
</IPort>
<0Port id="rotChanged" type="float">
<ShortDesc>Informs when the object rotates</ShortDesc>
</QPort>
<IPort id="setLayer" type="int'">
<ShortDesc>Changes the display’s layer of an object.</ShortDesc>
<Description>
Changes the layer in the display of an object
</Description>
</IPort>
<0Port id="layerChanged" type="int">
<ShortDesc>Informs when the layer of the object changes.</ShortDesc>
</0Port>
<IPort id="setScale" type="Vector2">
<ShortDesc>Changes the scale of an object</ShortDesc>
<Description>
Changes the size of an object. It is considered a relative
size if it is contained in another object.
</Description>
</IPort>
<0Port id="scaleChanged" type="Vector2">
<ShortDesc>Informs when the object changes its size</ShortDesc>
</0Port>
<IPort id="setMatrix" type="Matrix3">
<ShortDesc>Changes the rigid transformations.</ShortDesc>
<Description>
Changes the rigid transformations that apply to the object.
It is useful when it necessary to apply rigid transformations
at once and at a specific order.
</Description>
</IPort>
<IPort id="addObject" type="VRObject">
<ShortDesc>Adds a new part to this object</ShortDesc>
</IPort>
<0Port id="objectAdded" type="VRObject">
<ShortDesc>Informs when a part is added to the object</ShortDesc>
</0Port>
<IPort id="removeObject" type="VRObject">
<ShortDesc>Removes a part from this object</ShortDesc>
</IPort>
<0Port id="objectRemoved" type="VRObject">
<ShortDesc>Informs when a part is removed from the object</ShortDesc>
</0Port>
<IPort id="setBB" type="boolean">
<ShortDesc>Defines if the bounding box is visible or not</ShortDesc>

196

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

</IPort>
<0Port id="BBChanged" type="boolean">
<ShortDesc>Informs changes in the bounding box visibility</ShortDesc>
</0Port>
<IPort id="setColor" type="Color">
<ShortDesc>Changes the main color of an object</ShortDesc>
</IPort>
<0Port id="colorChanged" type="Color">
<ShortDesc>Informs when the color changes</ShortDesc>
</0Port>
</0ObjectClass>

<FilterClass id="WRM_MoveBasic">
<Description>
Implements world-relative movement in a plane.
</Description>
<Indexes>
<Index id="first"
value="intml.control.move.details"/>
<Index id="papers"
value="barrilleaux01"/>
</Indexes>
<IPort id="startPos" type="Pos3D">
<ShortDesc>Initial position</ShortDesc>
<Description>
Initial position, when the movement is activated.
</Description>
</IPort>
<IPort id="p" type="Pos2D" defValue="0, 0">
<ShortDesc>Input position for the movement</ShortDesc>
<Description>
It saves the position when changes to true. Later om, it
computes an offset with this start position and the current
input position
</Description>
</IPort>
<IPort id="plane" type="Plane3D">
<ShortDesc>Plane of movement</ShortDesc>
</IPort>
<IPort id="switch" type="boolean">
<ShortDesc>activates and deactivates the filter</ShortDesc>
</IPort>
<IPort id="object" type="VRObject">
<ShortDesc>0bject to be moved</ShortDesc>
</IPort>
<IPort id="viewpoint" type="VRObject">
<ShortDesc>current viewpoint</ShortDesc>
</IPort>
<0Port id="pos" type="Pos3D">
<ShortDesc>New position for the object</ShortDesc>
</0Port>
</FilterClass>

<FilterClass id="Switch2Pos">
<Description>
Sends the last position when the input switch changes from
false to true.
</Description>
<Indexes>

197

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<Index id="first"
value="intml.control.move.details"/>
<Index id="papers"
value="barrilleaux01"/>
</Indexes>
<IPort id="p" type="Pos2D" defValue="0, 0">
<ShortDesc>Input position for the movement</ShortDesc>
</IPort>
<IPort id="switch" type="boolean">
<ShortDesc>activates and deactivates the filter</ShortDesc>
</IPort>
<0Port id="pos" type="Pos3D">
<ShortDesc>Position when the switch changes to true</ShortDesc>
</0Port>
</FilterClass>

<FilterClass id="WRM_MoveOffset">
<Description>
Implements world-relative movement in a plane, with an offset from
the starting position
</Description>
<Indexes>
<Index id="first"
value="intml.control.move"/>
<Index id="papers"
value="barrilleaux01"/>
</Indexes>
<Filter id="moveBasic" type="WRM_MoveBasic"></Filter>
<Filter id="switch2Pos" type="Switch2Pos"></Filter>
<ObjectHolder id="target" />
<IPort id="p" type="Pos2D" defValue="0, 0">
<ShortDesc>Input position for the movement</ShortDesc>
</IPort>
<IPort id="plane" type="Plane3D">
<ShortDesc>Plane of movement</ShortDesc>
</IPort>
<IPort id="switch" type="boolean">
<ShortDesc>activates and deactivates the filter</ShortDesc>
</IPort>
<IPort id="object" type="VRObject">
<ShortDesc>0bject to be moved</ShortDesc>
</IPort>
<IPort id="viewpoint" type="VRObject">
<ShortDesc>current viewpoint</ShortDesc>
</IPort>
<0Port id="pos" type="Pos3D">
<ShortDesc>New position for the object</ShortDesc>
</0Port>

<Binding iE="_self" iP="pos" oE="moveBasic" oP='"p" />

<Binding iE="_self" iP="pos" oE="switch2Pos" oP="p" />

<Binding iE="_self" iP="plane" oE="moveBasic" oP="plane" />
<Binding iE="_self" iP="switch" oE="moveBasic" oP="switch" />
<Binding iE="_self" iP="switch" oE="switch2Pos" oP="switch" />
<Binding iE="_self" iP="object" oE="moveBasic" oP="object" />
<Binding iE="_self" iP="object" oE="target" oP="object" />
<Binding iE="_self" iP="viewpoint" oE="moveBasic" oP="viewpoint" />
<Binding iE="moveBasic" iP="pos" oE="_self" oP="p" />

<Binding iE="moveBasic" iP="pos" oE="target" oP="setPosition" />

198

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<Binding iE="switch2Pos" iP="pos" oE="moveBasic" oP="startPos" />
</FilterClass>

<FilterClass id="Viewpoint2Plane">
<Description>
Computes a plane perpendicular to the viewpoint at a given distance.
</Description>
<Indexes>
<Index id="first"
value="intml.control.move.details"/>
<Index id="papers"
value="barrilleaux01"/>
</Indexes>
<IPort id="v" type="Viewpoint">
<ShortDesc>Viewpoint</ShortDesc>
</IPort>
<IPort id="d" type="float" defValue="0.0">
<ShortDesc>Distance from the viewpoint</ShortDesc>
</IPort>
<0Port id="plane" type="Plane2D">
<ShortDesc>Plane perpendicular to the viewpoint</ShortDesc>
</0Port>
</FilterClass>

<FilterClass id="DRM_MoveOffset">
<Description>
Implements display-relative movement in a plane, with an offset from
the starting position
</Description>
<Indexes>
<Index id="first"
value="intml.control.move"/>
<Index id="papers"
value="barrilleaux01"/>
</Indexes>
<Filter id="moveBasic" type="WRM_MoveBasic"></Filter>
<Filter id="switch2Pos" type="Switch2Pos"></Filter>
<Filter id="v2Plane" type="Viewpoint2Plane"></Filter>
<ObjectHolder id="target" />
<IPort id="p" type="Pos2D" defValue="0, 0">
<ShortDesc>Input position for the movement</ShortDesc>
</IPort>
<IPort id="switch" type="boolean">
<ShortDesc>activates and deactivates the filter</ShortDesc>
</IPort>
<IPort id="object" type="VRObject">
<ShortDesc>0Object to be moved</ShortDesc>
</IPort>
<IPort id="viewpoint" type="VRObject">
<ShortDesc>current viewpoint</ShortDesc>
</IPort>
<0Port id="pos" type="Pos3D">
<ShortDesc>New position for the object</ShortDesc>
</0Port>

<Binding iE="_self" iP="pos" oE="moveBasic" oP="p" />
<Binding iE="_self" iP="pos" oE="switch2Pos" oP="p" />

<Binding iE="_self" iP="switch" oE="moveBasic" oP="switch" />
<Binding iE="_self" iP="switch" oE="switch2Pos" oP="switch" />

199

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<Binding iE="_self" iP="object" oE="moveBasic" oP="object" />

<Binding iE="_self" iP="object" oE="target" oP="object" />

<Binding iE="_self" iP="viewpoint" oE="moveBasic" oP="viewpoint" />

<Binding iE="_self" iP="viewpoint" oE="v2Plane" oP="v" />

<Binding iE="moveBasic" iP="pos" oE="_self" oP="p" />

<Binding iE="moveBasic" iP="pos" oE="target" oP="setPosition" />

<Binding iE="switch2Pos" iP="pos" oE="moveBasic" oP='"startPos" />

<Binding iE="v2Plane" iP="plane" oE="moveBasic" oP="plane" />
</FilterClass>

<FilterClass id="OrbitMovement">
<Description>
Computes a new position and orientation around an object, given
a starting position. It keeps the distance from the starting position
to the center of the object.
</Description>
<Indexes>
<Index id="first"
value="intml.navigation.details"/>
<Index id="papers"
value="_hidden"/>
</Indexes>
<IPort id="obj" type="VRObject">
<ShortDesc>0Object to orbit around to</ShortDesc>
<Description>
Reference for the orbit
</Description>
</IPort>
<IPort id="alpha" type="float">
<ShortDesc>Horizontal angle</ShortDesc>
</IPort>
<IPort id="beta" type="float">
<ShortDesc>vertical angle</ShortDesc>
</IPort>
<IPort id="startPos" type="Pos3D">
<ShortDesc>Starting position</ShortDesc>
</IPort>
<IPort id="startQ" type="Quaternion">
<ShortDesc>Starting rotation</ShortDesc>
</IPort>
<0Port id="pos" type="Pos3D">
<ShortDesc>New position</ShortDesc>
</0Port>
<0Port id="q" type="Quaternion">
<ShortDesc>New orientation</ShortDesc>
</0Port>
</FilterClass>

<FilterClass id="OrbitCamera'">
<Description>
Implements navigation by moving around an object
</Description>
<Indexes>
<Index id="first"
value="intml.navigation"/>
<Index id="papers"
value="barrilleaux01"/>
</Indexes>
<Filter id="orbitMovement" type="OrbitMovement"></Filter>

200

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<ObjectHolder id="v" />

<IPort id="obj" type="VRObject">
<ShortDesc>0Object to orbit around to</ShortDesc>
<Description>

Reference for the orbit

</Description>

</IPort>

<IPort id="alpha" type="float">
<ShortDesc>Horizontal angle</ShortDesc>

</IPort>

<IPort id="beta" type="float">
<ShortDesc>vertical angle</ShortDesc>

</IPort>

<IPort id="viewpoint" type="VRObject">
<ShortDesc>current viewpoint</ShortDesc>

</IPort>

<Binding iE="_self" iP="obj" oE="orbitMovement" oP="obj" />

<Binding iE="_self" iP="alpha" oE="orbitMovement" oP="alpha" />

<Binding iE="_self" iP="beta" oE="orbitMovement" oP="beta" />

<Binding iE="_self" iP="viewpoint" oE="v" oP="object" />

<Binding iE="viewpoint" iP="posChanged" oE="orbitMovement" oP="startPos" />

<Binding iE="viewpoint" iP="qChanged" oE="orbitMovement" oP="startQ" />

<Binding iE="orbitMovement" iP="pos" oE="v" oP="setPosition" />

<Binding iE="orbitMovement" iP="q" oE="v" oP="setOrientation" />
</FilterClass>

<FilterClass id="PinocchioControl">
<Description>
Computes the new position for the 3rd person control and for the viewpoint.
</Description>
<Indexes>
<Index id="first" value="intml.navigation.details"/>
<Index id="papers" value="barrilleaux01"/>
</Indexes>
<IPort id="pinocchio" type="DObject'>
<ShortDesc>3rd person control</ShortDesc>
<Description>
A control that represents the position and orientation of
the viewpoint. It has two parts, body and nose, that control
each of these parameters.
</Description>
</IPort>
<IPort id="dragControl" type="boolean">
<ShortDesc>inDragging</ShortDesc>
</IPort>
<IPort id="p" type="Pos2D">
<ShortDesc>input position for the movement</ShortDesc>
</IPort>
<IPort id="selObject" type="DObject">
<ShortDesc>selected part of pinocchio (body or nose)</ShortDesc>
</IPort>
<0Port id="posP" type="Pos2D">
<ShortDesc>New position for pinocchio</ShortDesc>
</0Port>
<0Port id="qP" type="float">
<ShortDesc>New orientation for pinocchio</ShortDesc>
</0Port>
<0Port id="pos" type="Pos3D">

201

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<ShortDesc>New viewpoint position</ShortDesc>
</0Port>
<0Port id="q" type="Quaternion">

<ShortDesc>New viewpoint orientation</ShortDesc>
</DPort>

</FilterClass>

<FilterClass id="PinocchioCamera">
<Description>
Implements navigation by manipulating a camera representation, with a body
for position and a big nose for orientation in a plane.
</Description>
<Indexes>
<Index id="first" value="intml.navigation"/>
<Index id="papers" value="barrilleaux01"/>
</Indexes>
<Filter id="control" type="PinocchioControl"></Filter>
<0ObjectHolder id="rep" />
<ObjectHolder id="v" />

<IPort id="pinocchio" type="DObject">
<ShortDesc>3rd person control</ShortDesc>
<Description>
A control that represents the position and orientation of
the viewpoint. It has two parts, body and nose, that control
each of these parameters.
</Description>
</IPort>
<IPort id="dragControl" type="boolean">
<ShortDesc>inDragging</ShortDesc>
</IPort>
<IPort id="p" type="Pos2D">
<ShortDesc>input position for the movement</ShortDesc>
</IPort>
<IPort id="selObject" type="DObject">
<ShortDesc>selected part of pinocchio (body or nose)</ShortDesc>
</IPort>
<IPort id="viewpoint" type="VRObject">
<ShortDesc>current viewpoint</ShortDesc>
</IPort>

<Binding iE="_self" iP="pinocchio" oE="rep" oP="object" />
<Binding iE="_self" iP="pinocchio" oE="control" oP="pinocchio" />
<Binding iE="_self" iP="dragControl" oE="control" oP="dragControl" />
<Binding iE="_self" iP="p" oE="control" oP="p" />
<Binding iE="_self" iP="selObject" oE="control" oP="selObject" />
<Binding iE="_self" iP="viewpoint" oE="v" oP="object" />
<Binding iE="control" iP="posP" oE="rep" oP="setPosition" />
<Binding iE="control" iP="qP" oE="rep" oP="setRotation" />
<Binding iE="control" iP="pos" oE="v" oP="setPosition" />
<Binding iE="control" iP="q" oE="v" oP="setOrientation" />
</FilterClass>

<ObjectClass id="ObjectBarrilleaux">
<Description>
Describes an object with extended features, in order to support InTs in
Barrilleaux.
</Description>
<Indexes>

202

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<Index id="first" value="intml.Object"/>
<Index id="papers" value="barrilleaux01"/>
</Indexes>
<Implements classId="VRObject"/>
<IPort id="getObjectbyName" type="String">
<ShortDesc>sends the object with the given name</ShortDesc>
</IPort>
<0Port id="objectbyName" type="VRObject">
<ShortDesc>Response to getObjectbyName</ShortDesc>
</DPort>
</0bjectClass>

<FilterClass id="CreateLabel">

<Description>
Creates a label given a string.

</Description>

<Indexes>
<Index id="first" value="intml.manipulation.details"/>
<Index id="papers" value="barrilleaux01"/>

</Indexes>

<IPort id="text" type="String">
<ShortDesc>Text for the label</ShortDesc>

</IPort>

<IPort id="axis" type="Vector3" defValue="0 1 0">
<BhortDesc>Axis to put the label, relative to the object</ShortDesc>

</IPort>

<IPort id="offset" type="float">
<ShortDesc>0ffset from an axis</ShortDesc>

</IPort>

<0Port id="label" type="VRObject">
<ShortDesc>current viewpoint</ShortDesc>

</0Port>
</FilterClass>

<FilterClass id="AddLabel">
<Description>
Adds a label to an object. It assumes the object doesn’t have onme.
</Description>
<Indexes>
<Index id="first" value="intml.manipulation"/>
<Index id="papers" value="barrilleaux01"/>
</Indexes>
<ObjectHolder id="obj" />
<Filter id="createLabel" type="CreateLabel'></Filter>

<IPort id="text" type="String">
<ShortDesc>Text for the label</ShortDesc>
</IPort>
<IPort id="axis" type="Vector3" defValue="0 1 O">
<ShortDesc>Axis to put the label, relative to the object</ShortDesc>
</IPort>
<IPort id="offset" type="float">
<ShortDesc>0ffset from an axis</ShortDesc>
</IPort>
<IPort id="object" type="VRObject">
<ShortDesc>0bject that will contain the label</ShortDesc>
</IPort>
<0Port id="label" type="VRObject">

203

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<ShortDesc>current viewpoint</ShortDesc>
</0Port>

<Binding iE="_self" iP="text" oE='"createLabel" oP="text" />

<Binding iE="_self" iP="axis" oE="createLabel" oP="axis" />

<Binding iE="_self" iP="offset" oE="createLabel" oP="offset" />

<Binding iE="_self" iP="object" oE="obj" oP="object" />

<Binding iE="createLabel" iP="label" oE="obj" oP="addObject" />
</FilterClass>

<FilterClass id="RemoveLabel">

<Description>
Removes a label from an object. It assumes the object has one object with
name "label".

</Description>

<Indexes>
<Index id="first" value="intml.manipulation"/>
<Index id="papers" value="barrilleaux01"/>

</Indexes>

<ObjectHolder id="obj" />

<ObjectHolder id="obj2" />

<Constant id="name" value="label"/>

<IPort id="object" type="ObjectBarrilleaux">
<ShortDesc>0Object that will contain the label</ShortDesc>
</IPort>

<Binding iE="_self" iP="object" oE="obj" oP="object" />

<Binding iE="_self" iP="object" oE="obj2" oP="object" />

<Binding iE="_self" iP="name" oE="obj" oP="getObjectbyName" />

<Binding iE="obj" iP="objbyName" oE="obj" oP="removeObject" />
</FilterClass>

<ObjectClass id="ActivatebyTime">
<Description>
Turns on a variable for a certain period of time.
</Description>
<Indexes>
<Index id="first" value="intml.manipulation.details"/>
<Index id="papers" value="barrilleaux01'"/>
</Indexes>
<IPort id="getObjectbyName" type="String">
<ShortDesc>sends the object with the given name</ShortDesc>
</IPort>
<0Port id="objectbyName" type="VRObject">
<ShortDesc>Response to getObjectbyName</ShortDesc>
</0Port>
</ObjectClass>

</Package>

204

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix E

User Study Proposal to the
Ethics Committee

The user study had to be approved by the Ethics committe at the University. This are the
documents we presented for such approval.

205

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Request for Ethical Review

Date November 4th, 2002
Researchers, Faculty Affiliation, Phone, Email

Walter F. Bischof
Associate Professor
492 3114
wib@cs.ualberta.ca

Pierre Boulanger
Associate Professor
492 3031
pierreb@cs.ualberta.ca

Pablo Figueroa

PhD Student

4927418
pfiguero@cs.ualberta.ca

Title of Proposal, Type (e.g., research project, grant application}
User Study on Retargetable Virtual Reality Interfaces. Research Project.
Short Summary of Project (50 words or less)

We are conducting comparative studies on the use of virtual reality hardware, when the task in each setup is
exactly the same. Each participant will be exposed to a task in a particular hardware setup, and we will
collect performance data and opinions from questionnaires. We will compare results between subjects
exposed to different hardware setups, which are: a standard PC, a SMART Board, a PC with a joystick and
a head mounted display, a PC with stereo screen and a space mouse, and our Visroom. The analysis of the
data will allow us to infer user preferences and performance issues related to the technology described.

1. Describe the source of research particlpants or data. For particip not obtalned tt gh the
104/105 sy i ing the in which participation will be solicited and the nature of any
inducements or promises offered for participation.

We are planning to recruit volunteers by smail, in the Computing Science Department or in other faculties of
the University. The text of such an email is attached in Appendix 1.

2. Describe the procedure to be used.

a) Participants read the general introduction of the experiment {See Appendix 2).

b) Participants read an sign the informed consent form (Appendix 5). If they decide not to continue,
they can live the experiment at any time.

C) Participants fill a form with general information about them (See Appendix 3).

d) Participants start the test by a directed example, in which they get familiar with the interface and
the way it works.

e) Participants perform the task in one of the four implementations of the application: A standard PC,
a PC with a Space Mouse, a SMART Board, or a head mounted display with a joystick. Participants
can decide not to do the experiment at any time, and the information recollected won't be included
in the study.

206

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mailto:wfb@cs.ualberta.ca
mailto:pierreb@cs.ualberta.ca

f) Atthe end of the task, participants will be asked to fill a second form, with their opinions about the
application and the experiment {See Appendix 4).

3. Describe how you will deal with the issues of informed consent and continuing voluntariness of
participation in the proposed research.

Participants are required to sign an informed consent form and will be informed that they may leave the
experiment at any time.

4. Describe how you will grant anonymity to particip and how resp will be kept
confidential. If names or other identifying information are coded with data, describe how access to
data is limited and safeguarded. Indlcate who will have access If appropriate, describe how consent
is obtained from particip for p to anonymity/ iality. If data are to be taken from
existing sources, discuss the implications of p isting (implicit or licit) guarantees of

confidentiality/anonymity. . .

Data provided by each participant will be coded in such a way that anonymity of participants is guaranteed.
Data will only be accessible to authorized personnel. Published data will contain no indication of the
participants' identities.

5.1f | 1t and/or deception is to be employed, provide justification. Indicate how and

when participants will be informed of the cor Iment and/or d

We will not use concealment nor deception in our experiment.

6. Describe the nature of any risks to the physical or psychological well-being or integrity of
participants that might arise from your procedures, and discuss your justifications, safeguards, and
resolutions for these risks where appropriate.

In the event of sickness or dizziness on the part of the participant, the experiment will be terminated
immediately.

7. Indicate when participants will be debriefed, and describe the nature and extent of debriefing.

Participants will be informed about the nature of the experiment beforehand and will be fully briefed about
goalsiresult after the experiment. They will also be encouraged to ask questions. See appendixes for details.

8. Describe any apparatus, element of the physu:al enwronment substance or other materials that
could cause harm to a participant if a malfs ident, allergic reaction, or side-effect
were to occur. If the participant comes mto contact W|th a potentlally hazardous apparatus or
material, who will be r ible for chec} for d and on what schedule wilt
inspections be made? If participants come into contact with some substance that could cause harm,
please document your safeguards.

We do not expose participants to hazardous apparatus or materials.

9. Describe qualificati ofr h | if special conditions exist within the research that
could cause physmal or,. ye hologi 1 harm or if participants require special attention b of
physical or psy o] istics, or if made ad bie by other exi i

N/A

10. Describe any potentially hazardous duties that will be required of research personnel, including
physical, mental, or legal risks. Describe the safeguards you have implemented for your personnel.

N/A

207

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ethics Statement

| have read the University Standards for the Protection of Human Research Participants (1999) and agree
that the proposed research will be conducted in accordance with the guidelines and policies therein.

Signature of researcher Date

Signature of researcher Date

Signature of researcher Date

Signature of Department Chair Date
208

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Call for Participants

The following email will be sent to the Computing Science Department, asking for partici-
pants in the experiment.

Subject: Call for volunteers in Virtual Reality
Hello,

We are conducting an experiment on interfaces for virtual reality
applications and we are interested in your participation. We will measure
your performance and your opinion about a simple task, moving and rotating
three graphical objects to a certain target position. Each participant
will perform this task for about 1 hour, in one of the hardware platforms
available in the Computer Graphics Lab. The data we will collect from your
participation will be anonymous, and will allow us to compare different
hardware setups in the virtual reality domain.

Thanks in advance for your collaboration. If you are interested in
volunteering please contact us by email to robyn@cs.ualberta.ca, with
your schedule preferences.

209

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Matching Test. Introduction. UofA, Pablo Figueroa Page 1 of 3

A Matching Test

The purpose of this test is to compare different implementations of the same task in different hardware
platforms. Tha task is a matching test, in which an object has to be moved to a target position. This
particular test shows three objects: a red car, a yellow car, and a blue model [1} of Beethoven's face [2].
Each object has a semi-transparent copy, that defines the target position and orientation. In the
application, you can select an object (not its copy), grab it, move it, and rotate it, until it matches its
corresponding copy. Once an object and its copy are close enough, they dissapear. You can move the
objects in any order, until all of them have been matched, in which moment the application ends. An
example of how this application looks it is shown in the following figure.

http://www.cs.ualberta.ca/~pfiguero/Fall2002/MatchingEval/introduction.html 07/11/2002

210

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.ualberta,ca/~pfiguero/Fall2002/MatchingEval/introduction.html

Matching Test. Introduction. UofA, Pablo Figueroa Page 2 of 3

@ intmiftT.Loader.MaininTmit cader

First, you will be asked to fill an introductory form with general information. After that we will ask you
to match the three objects in a particular hardware platform, as soon as you can, and when you finish, we
will ask you to fill a form with your opinions about the experience.

Thanks for your collaboration!

Special Considerations

http://www.cs.ualberta.ca/~pfiguero/Fall2002/MatchingEval/introduction.html 07/11/2002

211

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.ualberta.ca/~pfiguero/Fall2002/MatchingEval/introduction.html

Matching Test. Introduction. UofA, Pablo Figueroa Page 3 of 3

Each hardware platform has a different way to manipulate the objects, according to the particular input
and output devices. The following links describe some details about each platform and the way tasks are
accomplished.

Standard PC
SMART Board

HMD and Joystick
PC and SpaceMouse

People involved

Pablo Figueroa. PhD Student
Robyn Taylor. Research Assistant

References

[1] - Models provided as free of charge by Viewpoint.
[2] - Model provided as an example in the Java 3D distribution

http://www.cs.ualberta.ca/~pfiguero/Fall2002/MatchingEval/introduction. html 07/11/2002

212

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.ualberta.ca/~pfiguero/Fall2002/MatchingEval/introduction.html

User Experience Questionnaire. Introduction httpu//www cs. uatbertu.ca/~pfiguero/Fall 2002/Matching Eval/g 1b.htmi

Introductory Questionnare

The following questions ate general information about you and your involvement with computers.

fdentification ’)) o Agé {Gender:

M ¢ F

4
4

e
-20 21 -25 2630 3!35 3540 4l+

Past Experience

How many operating systems (Varieties of Windows, Linux, Unix, Mac, ..) have you worked with?

rnone ‘534

¢ more than 6

Of the following devices, software, and systems, check those that you have persmnlly used:

Touch Screen]™ Tmckmg devices [211™ Voice Recognition ™ iw
Joystick ™ Stereo glnsses 1355 CAD (Computer Aided Design)§™ I
Track Ball{"” Pnssw: Slereo Displays [411 Video Editing Systems}” i
Graphics tablet 7™ 3D Mouse [3] Drawing/Painling Programs{™ ™
Game Consoles |~ | 3D Video Games]™ [
SMART Boards [1]7 B 2D Video Gamesj™ P
Head Mounted Display I~ Graphics Software{”

{Pen Based Computer [I

Please write your comments (if any) about these list here:

Description

[1). A SMART Board is a device prod: by SMART T ies for ased p

[2]. A Tracking device allow the compuler to know the position and orientation of lhe user's hand or hend.

[3]. A stereo glasses device allows an user to see a special image in 3D.

[4}. A Passive sterco display allow users to see images in 3D without wearing special glasses.

[5]. A 3D mouse allow an user to move a pointer in 3D.

Immersive Tendency

Please circle the number that most appropiately reflect your impressions about using this computer system. Not Applicable = NA

How easily can you switch your attention Ditficult ; ¢ " s T i T i € NA
from the task in which you are currently 1]€2@3 C4:¢5(¢61c7 (81

involved to a new task?

How frequently do you get emotionally ever © NA
involved (angry, sad, or happy) in something you do?

How well do you feel today? Not so well ©NA
Are you easily distracted when working on Always ¢ NA
a ta:

How ofien do you play arcads or video Never “NA
games? (often is everyday)

How well do you concentrate on Never £ NA
tasks you do not like?

Please write your comments about your immersive tendency here:

1of 1 10/28/02 11:28

213

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

User Experience Questionnaire. After Experience Q.

http://www .cs.ualberta.ca/~ptiguero/Fali2002/Matching Eval/q2b.htmi

Questionnare About the Experience

The following questions are about your opinion of the experience you just had.

Hdentification {2} |

Please circle the number that most

Overall User Reactions

Overall reactions to the systém

reflect your i

about using this computer system. Not Applicable = NA

Terible i er ey e =5 E‘Wonderl'ul £ NA
:Fruslmiing ‘ : P 5 :ESmisl’yiug £NA
Dl P w5 ‘;Sl' lati “NA
:Dil'ﬁcuh e €2 (‘4 o Easy 7 NA
élnadequnle power \’c*‘ R (2 o3 F{'A & s Adequaie power + NA
Rigd "fl e RS .“ g Flexible NA

Please write your general comments about the system here:

Screen

4.1n Objects in the screen Hard to see " NA

4.1.1 Quality of the image Fuzzy ¢ NA

e gy on s e Cofor jga oo M e

Please write your comments about the screen here:

Learning
6.1 Learning 1o operate the system Ditficuli
6.1.1 Getting started Ditticult
. {63 1Remembering specilic rules about ifticult
executing tasks
6.4 Tasks can be performed in a Never
straightforward manner
eveloping fine control of movement Hticall
Please write your comments about learning hese:
System Capabilities
System speed iToo slow ~NA

lof2

214

10/28/02 11:29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.ualberta.ca/~pnguero/Fall2002/MatchiugEval/q2b.html

User Experience Questionnaire. After Experience Q. http:/fwww.cs.ualberta.ca/~pfiguero/Fall2002/MatchingEval/q2b.html

7.1.1 Response time for most operations Too stow i TR RS :Fnst enough 7 NA
7.2.2 System failures occur Frequently 1 e F7 ¢ Seldom ©NA
7.4 Correcting your mistakes Dilficult 1 e rT vy Easy P NA
Please write your comments about syslem capabilities here:
Presence Items
+How much were you able 10 Not too much i|Total control «
ontrol events? : NA
‘How responsive was the environment Not Perfect s
to actions that you initiated? responsive response NA
How natural did your interactions with Not natural 7|Natural Iy
the environment seem? NA
How completely were afl your senses Not at all Completely -
engaged? NA
How natural was the mechanism which Not nt ult |Natural ¢
lled through the environmen NA
. {How aware were you of your dispiay and Not at all Very awiie ~
control devices? NA
How much fatigue did you feel during your experience with the virtal i Not at all A lot ~
; jenvironment? Na
How compeliing was your sense of objecis Not at all Very A
moving through the space? compelling NA
Were you able to anticipate what would Not at all [Always -
happen next in response to the actions thal you NA
performed
How well could you move or manipulate Not at all Very well -
objects in the virtual environment? NA
How involved were you in the virtual Not at all Very involved | ¢
environment experience? NA
How proficient in moving and interacting with Not at all Very proficient | ¢
the virtual environment did you feel at the end A
of the experience?
How much did the visual display quality interfere Interfere a fot
or distract you from performing assigned tasks
or required activities? i
How ‘much did the conirof devices interfere with | Interfere a lot “{|Not at all s
the performance of assigned tasks or with other i NA
activities? i
Please write your comments about your sense of presence here:
20f2 10/28/02 11:29

215

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.Lialberta.ca/~pfiguero/Fall2002/MatchingEval/q2b.htiul

Informed Consent Form

User Performance and Satisfaction in a Matching Test

Informed Consent Form
1, agree to participate in the study “User Perfor-
mance and Satisfaction in a Matching Test” under the direction of Dr. Pierre Boulanger.
I am aware that the application will record information about my performance during the
tagk, for later analysis. I understand that my opinions in the questionnaires are anony-
mous and that my name will not be associated with the data. I understand that the use
of these computers and virtual reality hardware might cause dizziness. I understand that
the experiment takes approximately 1 hour to complete, and that I am free to discontinue
participation at any time.

Signature: Date:

216

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix F

A Brief Introduction to Z

This appendix gives a short introduction to the Z specification language and its notation,
useful for understanding Section 3.5. A more complete description can be found in [87, 107).

The basic construct in Z is a schema. A schema defines both a type and a set of
conditions. It can be used to describe a type, or a transformation over a type of values. The
basic syntax of a schema is as follows

__SchemaName
al: T1
a2 : seq(bag T2)

conditions...

In this example, a schema with name SchemaName is declared, as a set of variables and
a set of conditions. Any instance of this schema will have two elements, af or type T1, and
a2, a sequence of bags of T2. T1 and T2 can be at the same time schemas by themselves,
or basic types which are not described further. Conditions are predicates in propositional
logic about the variables inside the schema, i.e. al and a2.

A generic definition is a schema without a name, that defines functions that can be used
in other schemas. A generic definition can also have parameters, in order to allow a more
general definition of concepts. For example, from Section 3.5 we have:

= [X]
~ | :seq X XxN—seq X

Vst:seqX;i:Ne
stli=(..1)<st

This defines the function | with two arguments: a sequence of elements of type X (a
schema parameter), and a natural number. The function maps these two values to a sequence
of elements of type X. The condition part in this example has also some interesting notation.
It can be read as follows: For any sequence st of elements of type X, and for any 7 natural
number, st | 4 corresponds to the domain restriction of st, for the elements between the
natural numbers 1 and i.

A variable of type SchemaName can be declared as var : SchemaName. Variables inside
var can be named as var.al or war.a2. P SchemaName corresponds to the power set (a set
of variables) of variables of type SchemaName. §SchemaName refers to a particular instance
such a type.

Variables can be decorated in several ways, in order to add some semantics about their
purpose. var? refers to an input variable in a schema, while var! is an output variable. var’
refers to the state of var after certain operation, described by the schema that contains both
variables.

217

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Names for variables in a schema can be replaced, and variables can be hidden. For exam-
ple SchemaName[newName/al] is a schema identical to SchemaName, with the difference
that all occurrences of al are replaced by newName. The schema SchemaName \ (al) is
the following schema:

—_SchemalName \ (al)
a2 : seq(bag T2)

Jdal: T1 e conditions...

A schema can be decorated by two special symbols: A and E. ASchema is a schema
that repeats twice the variables and constraints in Schema, once as they are, and a second
copy decorated with . Its purpose is to indicate an operation on Schema, a change in its
state. ESchema also defines both copies of variables, but also defines that both copies are
the same. It refers to operations that does not change the state of Schema.

218

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

] 3D Connexion. Spacemouse plus. http://www.logicad3d.com/spacemouseplus.htm.
] Alias Wavefront. 3D Max. http://www.discreet.com/products/3dsmax/, 2003.
]

Alias Wavefront. Maya. bttp://www.aliaswavefront.com/en/products/
maya/index.shtml, 2003.

[4] Apache Foundation. Xalan website. http://xml.apache.org/xalanj/index.html.

[5] Avango: A distributed virtual reality framework.
http://imk.gmd.de/docs/ww/ve/projects/projl_2.mhtml, 2000.

[6] Ravin Balakrishnan and Ken Hinckley. The role of kinesthetic reference frames in
two-handed input performance. In Proceedings of the 12th annual ACM symposium
on User interface software and technology, pages 171-178. ACM Press, 1999.

[7] Ravin Balakrishnan and Gordon Kurtenbach. Exploring bimanual camera control and
object manipulation in 3d graphics interfaces. In Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 56-62. ACM Press, 1999.

[8] Jon Barrileaux. 3D User Interfaces With Java 3D. Manning Publications, August
2000.

[9] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice.
Addison-Wesley, 2nd edition, 2003.

[10] Shuvra S. Battacharyya, Praveen K. Murthy, and Edward A. Lee. Software Synthesis
from Dataflow Graphs. Kluwer Academic Publishers, 1996.

[11] Steve Benford, Chris Greenhalgh, and David Lloyd. Crowded collaborative virtual en-
vironments. In Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 59-66. ACM Press, 1997.

[12] Allen Bierbaum, Christopher Just, Patrick Hartling, Kevin Meinert, Albert Baker, and
Carolina Cruz-Neira. VR Juggler: A Virtual Platform for Virtual Reality Application
Development. In Proceedings of IEEE Virtual Reality, pages 89-96, 2001.

[13] Roland Blach, Jiirgen Landauer, Angela Rosch, and Andreas Simon. A highly flexible
virtual reality system. Future Generation Computer Systems, 14(3-4):167-178, 1998.

[14] Blender.org. Blender. http://www.blender.org/, 2003.

[15] 1. M. Boier-Martin. Adaptive graphics. Computer Graphics and Applications, 23(1):6-
10, January 2003.

[16] Doug A. Bowman and Larry F. Hodges. An evaluation of techniques for grabbing and
manipulating remote objects in immersive virtual environments. In Proceedings of the
1997 symposium on Interactive 3D graphics, pages 35-ff. ACM Press, 1997.

[17] Doug A. Bowman and Larry F. Hodges. Toolsets for the development of highly in-
teractive and information-rich environments. The International Journal of Virtual
Reality, 3(2):12-20, 1997.

[18] Doug A. Bowman and Larry F. Hodges. Formalizing the design, evaluation, and
application of interaction techniques for immersive virtual environments. The Journal
of Visual Languages and Computing, 10(1):37-53, Februrary 1999.

219

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.logicad3d.com/spacemouseplus.htm
http://www.discreet.com/products/3dsmax/j2003
http://www.aliaswavefront.com/en/products/
http://xml.apache.org/xalanj/index.html
http://imk.gmd.de/docs/ww/ve/projects/projl_2.mhtml
http://www.blender.org/

[19] Doug A. Bowman, D. Koller, and Larry F. Hodges. A methodology for the evaluation
of travel techniques for immersive virtual environments. Virtual Reality, pages 120~

131, 1998.

[20] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. Pattern-Oriented Software Architecture. A System of Patterns. John Wiley &
Sons, 1996.

[21] Rikk Carey and Gavin Bell. The Annotated Vrml 2.0 Reference Manual. Addison-
Wesley, 1997.

[22] J. P. Chin, V. A. Diehl, and L. K. Norman. Development of an instrument measuring
user satisfaction of the human-computer interface. In Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 213-218. ACM Press, 1988.

[23] Craig Cleaveland. Program Generators with XML and Java. Prentice Hall, 2001.

[24] Christian S. Collberg. Reverse interpretation + mutation analysis = automatic retar-
geting. In ACM, editor, PLDI, pages 57-70, 1997.

[25] 3D Connexion. Space ball. product description.
http://www.3dconnexion.com/spaceball5000.htm, 2003.

[26] W3 Consortium. Extensible markup language zml 1.0 secondedition.
http:/ /www.w3.org/TR/2000/ REC-xml-20001006, October 2000.

[27] W3C Consortium. Validator for xml schema.

http://www.w3.0rg/2001/03/webdata/xsv, 2002.

[28] World Wide Web Consortium. W3¢ xml pointer, xml base and xml linking.
http://www.w3.org/XML/Linking, 2000.

[29] Bredemeyer Consulting. Motivating software architecture.
http://www.bredemeyer.com/why.htm, 2001.

[30] Matthew Conway, Steve Audia, Tommy Burnette, Dennis Cosgrove, and Kevin Chris-
tiansen. Alice: lessons learned from building a 3d system for novices. In Proceedings
of the SIGCHI conference on Human factors in computing systems, pages 486-493.
ACM Press, 2000.

[31] Microsoft Corporation. Sidewinder force feedback 2 joystick.
http://www.microsoft.com/hardware/sidewinder/FFB2.asp.

[32] Mike Craven, Ian Taylor, Adam Drozd, Jim Purbrick, Chris Greenhalgh, Steve Ben-
ford, Mike Fraser, John Bowers, Kai-Mikael Jai-Aro, Bernd Lintermann, and Michael
Hoch. Exploiting interactivity, influence, space and time to explore non-linear drama
in virtual worlds. In Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 30-37. ACM Press, 2001.

[33] The cubes example in vr juggler 1.0.5. share/samples/ogl/cubes, 2000.

[34] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Methods,
Tools, and Applications. Addison—Wesley, 2000.

[35] Raimund Dachselt, Michael Hinz, and Klaus Meiner. Contigra: an xml-based architec-
ture for component-oriented 3d applications. In Proceeding of the seventh international
conference on 3D Web technology, pages 155-163. ACM Press, 2002.

[36] Raimund Dachselt and Enrico Rukzio. Behavior3d: an xml-based framework for 3d
graphics behavior. In Proceeding of the eighth international conference on 3D web
technology, pages 101-ff. ACM Press, 2003.

[37] Leonard Daly. Vrml2x3d.x3d. http://realism.com/x3d/presentations/ Web3D-
2002 /worlds/Example/vrml2.x3d, 2002.

[38] DecisionSoft. Xml schema validator. http://tools.decisionsoft.com/schemaValidate.html.
[39] The dive home page. http://www.sics.se/dive/dive.html, 1991.

220

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.3dconnexion.com/spaceball5000.htm
http://www.w3.org/TR/2000/
http://www.w3.org/2001/03/webdata/xsv
http://www.w3.org/XML/Linking
http://www.bredemeyer.com/why.htm
http://www.microsoft.com/hardware/sidewinder/FFB2.asp
http://realism.com/x3d/presentations/Web3D-
http://tools.decisionsoft.com/schemaValidate.html
http://www.sics.se/dive/dive.html

[40] Dale Dougherty and Arnold Robbins. Sed & Awk. O’Reilly & Associates, 2nd edition,
1997.

[41] Ralf Drner and Paul Grimm. Customizable interactions in 3d web applications with
meta beans. In Proceedings of the sixth international conference on 3D Web technology,
pages 127-134. ACM Press, 2001.

[42] Matthew Eldridge, Homan Igehy, and Pat Hanrahan. Pomegranate: a fully scalable
graphics architecture. In Proceedings of the 27th annual conference on Computer
graphics and interactive techniques, pages 443-454. ACM Press/Addison-Wesley Pub-
lishing Co., 2000.

[43] M. Foskey, M.A. Otaduy, and M.C. Lin. Artnova: touch-enabled 3d model design. In
Virtual Reality, 2002. Proceedings. IEEE, pages 119-126. IEEE, 2002.

[44] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994,

[45] Enrico Gobbetti, Jean-Francis Balaguer, and Daniel Thalmann. Vb2: an architecture
for interaction in synthetic worlds. In Proceedings of the 6th annual ACM symposium
on User interface software and technology, pages 167-178. ACM Press, 1993.

[46] Ken Hinckley, Randy Pausch, John C. Goble, and Neal F. Kassell. Passive real-
world interface props for neurosurgical visualization. In Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 452-458. ACM Press, 1994.

[47] Ken Hinckley, Joe Tullio, Randy Pausch, Dennis Proffitt, and Neal Kassell. Usability
analysis of 3d rotation techniques. In Proceedings of the 10th annual ACM symposium
on User interface software and technology, pages 1-10. ACM Press, 1997.

[48] P.A. Howarth and M. Finch. The nauseogenicity of two methods of navigating within
virtual interfaces. Applied Ergonimics, 30:39-45, 1999,

[49] Greg Humphreys, Matthew Eldridge, Ian Buck, Gordan Stoll, Matthew Everett, and
Pat Hanrahan. Wiregl: a scalable graphics system for clusters. In Proceedings of

the 28th annual conference on Computer graphics and interactive technigques, pages
129-140. ACM Press, 2001.

[50] Virtual I-O. Virtual i-o glasses, 1995.
[51] VRCO Inc. Cavelib user’s manual. http://www.vrco.com/CAVE_USER/index.html.

[62] Carnegie Mellon Software Engineering Institute. Why is software architec-
ture important? http://www .sei.cmu.edu/publications/ documents/96.reports/
96tr003/96tr0032.htm, 2003.

[53] Robert J. K. Jacob, Leonidas Deligiannidis, and Stephen Morrison. A software model
and specification language for non-wimp user interfaces. Transactions on Computer
Human Interaction, 6(1):1-46, March 1999.

[64] Hua Jiang, G. Drew Kessler, and Jean Nonnemaker. Demis: a dynamic event model
for interactive systems. In Proceedings of the ACM symposium on Virtual reality
software and technology, pages 97-104. ACM Press, 2002.

[65] Daryl Kulak and Eamonn Guiney. Use Cases: Requirements in Context. Addison
Wesley, 2nd edition, 2003.

[56] Yu-Kwong Kwok and Ishfaqg Ahmad. Static scheduling algorithms for allocating di-
rected task graphs to multiprocessors. ACM Computing Surveys (CSUR), 31(4):406-
471, 1999.

[57] Edward A. Lee and Thomas M. Parks. Dataflow process networks. In Proceedings of
the IEEE, pages 773-799, May 1995.

[58] Jiandong Liang and Mark Green. Geometric modeling using six degrees of freedom
input devices. In 8rd International Conference on CAD and Computer Graphics, pages
217-222, 1993.

221

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.vrco.com/CAVE_USER/index.html
http://www.sei.cmu.edu/publications/

[59] Blair Maclntyre and Steven Feiner. Language-level support for exploratory program-
ming of distributed virtual environments. In UIST, pages 83-94. ACM, 1996.

[60] Andrea H. Mason, Masuma A. Walji, Elaine J. Lee, and Christine L. MacKenzie.
Reaching movements to augmented and graphic objects in virtual environments. In
Proceedings of the SIGCHI conference on Human factors in computing systems, pages
426-433. ACM Press, 2001.

[61] M. Massink, D. J. Duke, and S. Smith. Towards hybrid interface specification for
virtual environments. In D. J. Duke and A. Puerta, editors, Design, Specification and
Verification of Interactive Systems 99, pages 30-51, Wien, 1999. Springer-Verlag.

[62] Deborah J. Mayhew. The Usability Engineering Lifecycle: A Practitioner’s Handbook
for User Interfac. Morgan Kaufmann, 1999.

[63] Sun Microsystems. Java 3D Home Page. http://java.sun.com/products/ java-
media/3D/index.html, 1997.

[64] Steven Molnar, John Eyles, and John Poulton. Pixelflow: high-speed rendering using
image composition. In Proceedings of the 19th annual conference on Computer graphics
and interactive techniques, pages 231-240. ACM Press, 1992.

[65] Brad A. Myers, Rishi Bhatnagar, Jeffrey Nichols, Choon Hong Peck, Dave Kong,
Robert Miller, and A. Chris Long. Interacting at a distance: measuring the perfor-
mance of laser pointers and other devices. In Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 33—40. ACM Press, 2002.

[66] Satoshi Nishimura and Tosiyasu L. Kunii. Ve¢-1: a scalable graphics computer with
virtual local frame buffers. In Proceedings of the 28rd annual conference on Computer
graphics and interactive techniques, pages 365-372. ACM Press, 1996.

[67] Manuel Oliveira, Jon Crowcroft, and Mel Slater. Component framework infrastruc-
ture for virtual environments. In Proceedings of the third international conference on
Collaborative virtual environments, pages 139-146. ACM Press, 2000.

[68] Jan Philipps and Bernhard Rumpe. Refinement of pipe-and-filter architectures. In
J. M. Wing, J. Woodcock, and J. Davies, editors, FM’99 ~ Formal Methods, Pro-
ceedings of the World Congress on Formal Methods in the Development of Computing
System. LNCS 1708, pages 96-115. Springer, 1999.

[69] Jeffrey S. Pierce and Randy Pausch. Comparing Voodoo Dolls and HOMER: Exploring
the Importance of Feedback in Virtual Environments. In Proceedings of the CHI
Conference, pages 105-112. ACM, 2002.

[70] 1. Poupyrev, S. Weghorst, M. Billinghurst, and T. Ichikawa. Egocentric object ma-
nipulation in virtual environments: Empirical evaluation of interaction techniques. In

Eurographics. Blackwell Publishers, 1998.

[71} Ivan Poupyrev, Mark Billinghurst, Suzanne Weghorst, and Tadao Ichikawa. The go-go
interaction technique: non-linear mapping for direct manipulation in vr. In Proceedings
of the 9th annual ACM symposium on User interface software and technology, pages
79-80. ACM Press, 1996.

[72] Ivan Poupyrev, Suzanne Weghorst, Mark Billinghurst, and Tadao Ichikawa. A frame-
work and testbed for studying manipulation techniques for immersive vr. In Proceed-
ings of the ACM symposium on Virtual reality software and technology, pages 21-28.
ACM Press, 1997.

[73] The matrix and quaternion faq. http://skal.planet-d.net/demo/matrixfaq.htm.

[74] Don Roberts and Ralph Johnson. Patterns for evolving frameworks. In Dirk Riehle
Robert Martin and Frank Buschmann, editors, Pattern Languages of Program Design
3. Addison-Wesley, 1998.

[75} 11 Russell M. Taylor, Thomas C. Hudson, Adam Seeger, Hans Weber, Jeffrey Juliano,
and Aron T. Helser. VRPN: A device-independent, network-transparent VR, periph-
eral system. In Proceedings of the ACM symposium on Virtual reality software and
technology, pages 55-61. ACM Press, 2001.

222

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://java.sun.com/products/
http://skal.planet-d.net/demo/matrixfaq.htm

[76] SensAble Technologies. Products: Phantom and ghost.
http://www.sensable.com/products/ phantom_ghost/phantom.asp, 2003.

[77] Sense8. Worldtoolkit release 8 technical overview.
http://www.sense8.com/products/wtk_tech.pdf, February 1998.

[78] Sense8. Virtual reality development tools. The sense8 product line.
http://www.sense8.com/products/index.html, 2000.

[79] SGL Iris performer home page. http://www.sgi.com/software/performer, 2003.

[80] Ehud Sharlin, Pablo Figueroa, Mark Green, and Benjamin Watson. A wireless, inex-
pensive optical tracker for the cave. In Virtual Reality. IEEE, 2000.

[81] Chris Shaw, Jiandong Liang, Mark Green, and Yungi Sun. The decoupled simulation
model for virtual reality systems. In Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 321-328. ACM Press, 1992.

[82] Ben Shneiderman. Designing the user interface: Strategies for effective human-
computer interaction. Addison—Wesley, 3rd edition, 1998.

[83] Mel Slater, Anthony Steed, John McCarthy, and Francesco Maringelli. The influence
of body movement on subjcetive presence in viertual environments. Human Factors,

40(3):469-478, 1998.

[84] Shamus Smith, David Duke, and Meike Massink. The hybrid world of virtual environ-
ments. Computer Graphics Forum, 18(3):297-308, September 1999. ISSN 1067-7055.

[85] Shamus P. Smith and David J. Duke. Binding virtual environments to toolkit capa-
bilities. Computer Graphics Forum, 19(3), August 2000.

[86] David N. Snowdon and Adrian J. West. The AVIARY VR System: A Prototype
Implementation. In 6th ERCIM Workshop, June 1994.

[87] Mike Spivey. The Z Notation: A Reference Manual. Prentice-Hall, 2nd edition edition,
1992.

[88] Kay M. Stanney, Mansooreh Mollaghasemi, Leah Reeves, Robert Breaux, and
David A. Graeber. Usability engineering of virtual environments (VEs): Identify-
ing multiple criteria that drive effective ve system design. International Journal of
Human Computer Studies, 58(4):447-481, 2003.

[89] Anthony Steed and Mel Slater. A dataflow representation for defining behaviours
within virtual environments. In VRAIS, pages 163-167. IEEE, 1996.

[90] Marc P. Stevens, Robert C. Zeleznik, and John F. Hughes. An architecture for an
extensible 3d interface toolkit. In Proceedings of the Tth annual ACM symposium on
User interface software and technology, pages 59-67. ACM Press, 1994.

[91] Desney S. Tan, George G. Robertson, and Mary Czerwinski. Exploring 3D navigation:
combining speed-coupled flying with orbiting. In Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 418-425. ACM Press, 2001.

[92] Vildan Tanriverdi and Robert J. K. Jacob. Interacting with eye movements in vir-
tual environments. In Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 265-272. ACM Press, 2000.

[93] Vildan Tanriverdi and Robert J.K. Jacob. Vrid: A design model and methodology
for developing virtual reality interfaces. In ACM, editor, Proceedings of the ACM
Symposium of Virtual Reality Software and Technology, pages 175-182. ACM Press,
2001.

[94] SMART Technologies. Smart board interactive whiteboard.
http:/ /www.smarttech.com/Products/smartboard/index.asp.

[95] D. Touraine, P. Bourdot, Y. Bellik, and L. Bolot. A framework to manage mul-
timodal fusion of events for advanced interactions within virtual environments. In
S. Miiller W. St?rzlinger, editor, Virtual Environments ’02, Eurographics, pages
159-168. Springer-Verlag Wien New York, 2002. Proc’s Eurographics Workshop,
Barcelona, Spain, 2002.

223

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.sensable.com/products/
http://www.sense8.com/products/wtk_tech.pdf
http://www.sense8.com/products/index.html
http://www.sgi.com/software/performer
http://www.smarttech.com/Products/smartboard/index.asp

[96] H. Tramberend. Avocado: a distributed virtual reality framework. In Virtual Reality,
1999. Proceedings., pages 14-21. IEEE, 1999.

[97] Carnegie Mellon University and University of Virginia. Alice: Easy interactive 3D
graphics. http://www.alice.org, 1999.

[98] Scholarly Technology Group. Brown University. Xml validation form.
http://www.stg.brown.edu/service/xmlvalid/.

[99] Martin Usoh, Ernest Catena, Sima Arman, and Mel Slater. Using presence ques-
tionnaires in reality. Presence: Teleoperators & Virtual Environments, 9(5):497-503,
October 2000.

[100] VRCO. Cavelib library. http://www.vrco.com/products/cavelib/ cavelib.html, 2003.

[101] Colin Ware and Ravin Balakrishnan. Reaching for objects in vr displays: lag and
frame rate. ACM Transactions on Computer-Human Interaction (TOCHI), 1(4):331-
356, 1994.

[102] Colin Ware and Jeff Rose. Rotating virtual objects with real handles. ACM Transac-
tions on Computer-Human Interaction (TOCHI), 6(2):162-180, 1999.

[103] Ken Watsen and Mike Zyda. Bamboo - a portable system for dynamically extensible,
real-time, networked, virtual environments. In Virtual Reality Annual International
Symposium, pages 252-259. IEEE, 1998.

[104] Web3D Consortium. Extensible 3D (X3DTM) Graphics. Home Page.
http://www.web3d.org/x3d.htm], 2003.

[105] A.J. West, T.L.J. Howard, R.J. Hubbold, A.D. Murta, D.N. Snowdon, and D.A.
Butler. Aviary — a generic virtual reality interface for real applications. In Virtual
Reality Systems, May 1992.

[106] Bob Witmer and Michael J. Singer. Measuring presence in virtual environments: A
presence questionnaire. Presence: Teleoperators & Virtual Environments, 7(3):225~
241, 1998.

[107] Jim Woodcock and Jim Davies. Using Z. Specification, Refinement, and Proof. Pren-
tice Hall, 1996.

[108] XSLT: XSL Transformations. http://www.w3.org/TR/xslt11/.

[109] Shumin Zhai and Paul Milgram. Human performance evaluation of manipulation
schemes in virtual environments. In Proceedings of IEEE Virtual Reality Annual
International Symposium (VRAIS), pages 155-161, 1993.

224

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.alice.org
http://www.stg.brown.edu/service/xmlvalid/
http://www.vrco.com/products/cavelib/
http://www.web3d.org/x3d.html
http://www.w3.org/TR/xsltll/

