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Abstract 5 

Construction productivity is of major research interest within the construction domain. Since 6 

construction is a labor-intensive industry, previous research has often focused on construction 7 

labor productivity (CLP). However, equipment is the main driver of productivity for some 8 

construction activities, so called equipment-intensive activities. Existing models of activity-level 9 

productivity often predict a single-factor productivity measure —namely CLP—, yet determining 10 

multi-factor productivity, including labor, material, and equipment, provides more comprehensive 11 

predictions of productivity. Construction productivity models are often static in nature, or 12 

incapable of capturing the subjective uncertainty of some factors influencing productivity. Fuzzy 13 

system dynamics is an appropriate technique for modeling construction productivity, since it 14 

captures the dynamism of construction projects, and addresses the subjective and probabilistic 15 

uncertainty of factors influencing productivity. The contributions of this paper are threefold: 16 

identifying the key factors influencing the productivity of equipment-intensive activities, 17 

developing a predictive model of multi-factor productivity for equipment-intensive activities using 18 

fuzzy system dynamics technique; and developing an approach to reduce uncertainty 19 

overestimation in the simulation results of fuzzy system dynamics models. 20 

                                                      
1 Post-doctoral fellow, Department of Civil & Environmental Engineering, 7-203 Donadeo Innovation 

Centre for Engineering, 9211 116 St NW, University of Alberta, Edmonton AB T6G 1H9, Canada. 
2 Tier 1 Canada Research Chair in Fuzzy Hybrid Decision Support Systems for Construction, NSERC 

Industrial Research Chair in Strategic Construction Modeling and Delivery, Ledcor Professor in 

Construction Engineering, Professor, Department of Civil & Environmental Engineering, 7-287 Donadeo 

Innovation Centre for Engineering, 9211 116 St NW, University of Alberta, Edmonton AB T6G 1H9, 

Canada. 



2 
 

Keywords 21 

Construction productivity, system dynamics, fuzzy logic, construction equipment 22 

Introduction 23 

Construction productivity has been a major research interest within the construction management 24 

domain for some time. Previous research on construction productivity has either focused on 25 

identification of the factors influencing construction productivity or on the development of 26 

predictive models for construction productivity. Due to the fact that construction is a 27 

labor-intensive industry (Jarkas 2010), previous studies on the activity-level productivity have 28 

primarily focused on construction labor productivity (CLP) (Tsehayae and Fayek 2014, Naoum 29 

2016, Tsehayae and Fayek 2016a, Mirhadi and Zayed 2016). However, construction equipment 30 

are now important resources in construction projects, and they are the drivers of productivity for 31 

some activities. Goodrum and Hass (2004) observed substantial long-term improvement in the 32 

productivity of the activities executed using equipment with significant technological 33 

advancements. Goodrum et al. (2010) developed a predictive model to measure the effect of 34 

equipment on construction productivity; this research confirms that technological advancements 35 

in construction equipment affect construction productivity. Ok and Sinha (2006) discussed that 36 

accurate prediction of the construction productivity for some activities (e.g., earthmoving 37 

operations) depends on the accurate prediction of the equipment production rate. These 38 

construction activities are identified as equipment-intensive activities, where equipment, rather 39 

than labor, is the driver of productivity. Accordingly, the factors influencing the productivity of 40 

equipment-intensive activities are different from the factors influencing the productivity of 41 

labor-intensive activities. Therefore, in order to model the productivity of equipment-intensive 42 

activities, the factors influencing the productivity of these activities must be identified. 43 
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Existing predictive models for construction productivity mostly focus on predicting CLP, 44 

which determines productivity of construction systems (i.e., construction projects or construction 45 

activities) using only one resource input (e.g., labor). Previous studies confirm that for determining 46 

productivity of construction systems, using the other resource inputs (i.e., equipment and material) 47 

in addition to labor, results in more comprehensive measures of productivity compared to CLP 48 

(Loosemore 2014). However, Carson and Abbott (2012) concluded that the construction industry 49 

suffers from a lack of predictive models that determine productivity of construction systems using 50 

such comprehensive productivity measures. 51 

Existing predictive models of construction productivity were mostly developed using static 52 

techniques (e.g., artificial neural network (ANN) model by Heravi and Eslamdoost (2015); fuzzy 53 

rule-based system model by Tsehayae and Fayek 2016a), which means that they predict a single 54 

productivity value at a given point in time. However, due to the dynamic nature of construction 55 

projects, modeling techniques that are able to track project changes over time are more suitable for 56 

modeling construction productivity. Moreover, the factors influencing construction productivity 57 

are rarely independent from each other, and changes in certain factors can impact other factors 58 

(Mawdesley and Al-Jibouri 2009). Therefore, the cause and effect relationships between the 59 

factors influencing construction productivity need to be captured, along with their individual 60 

impact on productivity. The fuzzy system dynamics (FSD) technique, which integrates system 61 

dynamics (SD) with fuzzy logic, is an appropriate technique for modeling construction 62 

productivity. The SD component of the FSD technique captures the dynamism of construction 63 

projects and the relationships between the factors influencing construction productivity, while the 64 

fuzzy logic component addresses the subjective uncertainty of these factors. 65 
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This paper presents an FSD model of activity-level construction productivity that measures the 66 

productivity of equipment-intensive activities using the three resource inputs of construction 67 

activities (i.e., labor, equipment, and material). For this purpose, the factors influencing the 68 

productivity of equipment-intensive activities were first identified. Second, in order to increase the 69 

accuracy of the predictive model, the number of factors influencing construction productivity was 70 

reduced by feature selection. Third and fourth, the qualitative and quantitative FSD models of 71 

multi-factor productivity (MFP) were developed. Finally, the FSD model was validated using a 72 

case study of earthmoving operations on an actual construction project. This paper advances the 73 

state of the art in construction productivity modeling by identifying the key factors influencing the 74 

productivity of equipment-intensive activities, and by developing the FSD model of MFP for 75 

equipment-intensive activities. This FSD model simultaneously captures the dynamism of 76 

construction productivity (i.e., changes in productivity over time) and the cause and effect 77 

relationships between the factors influencing productivity, as well as the probabilistic and 78 

subjective uncertainties of the factors influencing construction productivity. 79 

Literature Review 80 

Construction productivity 81 

In general, the productivity of a construction system (e.g., construction activity, construction 82 

project) can be calculated as the ratio of the inputs of the system (e.g., labor cost or person-hours) 83 

to its output (e.g., cubic meters of concrete placed). Talhouni (1990) introduces three different 84 

measures for construction productivity: (1) single factor productivity (SFP), which measures the 85 

productivity of construction systems using only one resource input (i.e., labor); (2) multi-factor 86 

productivity (MFP), which measures the productivity of construction systems using any 87 

combination of three resource inputs (i.e., labor, materials, and equipment); and (3) total factor 88 
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productivity (TFP), which measures the productivity of construction systems using five resource 89 

inputs (i.e., labor, materials, equipment, energy, and capital). From the construction management 90 

perspective, construction productivity is often defined at the project level or the activity level, 91 

using two measures: construction labor productivity (CLP), which is a SFP measure that uses labor 92 

as the only input of productivity (Tsehayae and Fayek 2016a), or MFP, which uses any 93 

combination of the three inputs of productivity (i.e., labor, equipment, and material) (Eastman and 94 

Sacks 2008). Measuring the TFP at the project or activity levels can be inaccurate, due to the 95 

difficulties encountered in predicting the energy and capital inputs at the project or activity levels 96 

(Thomas et al. 1990, Loosemore 2014). Thus, MFP represents the most comprehensive measure 97 

of construction productivity at the project and activity levels. However, unlike other industries for 98 

which MFP measures of productivity are available, the construction industry suffers from a lack 99 

of predictive models for determining the MFP of construction systems (Carson and Abbott 2012). 100 

Depending on which resource is the main driver of the productivity, construction activities can 101 

be grouped into two categories: labor-intensive activities, where labor is the main driver of 102 

productivity (e.g., electrical and mechanical activities) (Jarkas 2010), and equipment-intensive 103 

activities, where equipment is the main driver of productivity (e.g., earthmoving activities) (Ok 104 

and Sinha 2006). While the productivity of labor-intensive activities is mainly affected by CLP, 105 

the productivity of equipment-intensive activities is mainly affected by the production rate of the 106 

equipment used for the execution of the activity. There are numerous equipment-intensive 107 

activities in different types of construction projects, including earthmoving (Ok and Sinha 2006, 108 

Jabri and Zayed 2017), pavement construction (Choi and Ryu 2015), pile construction (Zayed and 109 

Halpin 2005), and tunneling (Shaheen et al. 2009). Since the resource that drives the productivity 110 

of labor-intensive and equipment-intensive activities is different, the factors that influence the 111 
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productivity of these two types of activities are also different. However, previous research on 112 

construction productivity has failed to identify a comprehensive list of factors influencing the 113 

productivity of equipment-intensive activities. Moreover, traditionally the production rate of the 114 

equipment used for the execution of a given equipment-intensive activity is measured as the 115 

efficiency measure of the activity (Zayed and Halpin 2005, Shaheen et al. 2009, Jabri and Zayed 116 

2017). Zayed and Halpin (2005) identified 12 factors that influence the production rate of a piling 117 

activity; they developed a statistical model using the linear regression method to predict the 118 

production rate of a piling activity in terms of number piles drilled per day. Shaheen et al. (2009) 119 

identified 11 factors that influence the production rate of a tunneling activity using a tunnel boring 120 

machine (TBM); they used an expert-driven fuzzy rule-based system (FRBS) to predict the 121 

production rate of the activity based on these 11 factors. Moreover, Shaheen et al. (2009) 122 

developed a discrete event simulation model to predict the total duration of the activity based on 123 

the production rate determined by the FRBS. Finally, Jabri and Zayed (2017) developed a 124 

predictive model for the production rate of an earthmoving operation using the agent-based 125 

modeling technique. The model developed by Jabri and Zayed (2017) predicts the production rate 126 

and total duration of an earthmoving operation based on the equipment and labor properties and 127 

environmental factors that affect the activity. The production rate is commonly calculated as the 128 

output per unit time. Although the prediction of production rate in the aforementioned studies 129 

facilitates the evaluation of the duration of equipment-intensive activities, the production rate does 130 

not provide comprehensive information regarding the resource inputs (i.e., labor, equipment, and 131 

material) and consequently the cost efficiency of these activities. Moreover, there are also a few 132 

predictive models developed for equipment-intensive activities that measure the CLP of these 133 

activities (Choi and Ryu 2015). Choi and Ryu (2015) identified nine factors that influence the 134 
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productivity of highway pavement activities and developed a predictive model to measure the CLP 135 

of such activities using statistical methods. However, CLP is not an appropriate measure of 136 

productivity for equipment-intensive activities, since it does not provide any information regarding 137 

the resource input (equipment) that is the main driver of productivity for these activities. Therefore, 138 

there is a need to develop a predictive model for determining the MFP of equipment-intensive 139 

activities. 140 

Finally, the existing predictive models of construction productivity are commonly developed 141 

using static modeling techniques, such as the ANN model developed by Heravi and Eslamdoost 142 

(2015). However, dynamic modeling techniques such as SD and FSD are more appropriate for 143 

modeling construction productivity, since construction systems are dynamic (i.e., changing over 144 

time) and their components interact with each other (Mawdesley and Al-Jiboury 2009, Alzraiee et 145 

al. 2015). Moreover, SD models of construction productivity (Mawdesley and Al-Jiboury 2009, 146 

Nasirzadeh and Nojedehi 2014) cannot capture the subjective uncertainty of the factors influencing 147 

productivity. Accordingly, Nojedehi and Nasirzadeh (2017) suggested that FSD is an appropriate 148 

technique for modeling construction productivity, since this technique captures the dynamism of 149 

construction systems and the interactions between the factors influencing productivity, while 150 

simultaneously representing the probabilistic and subjective uncertainty of these factors. Nojedehi 151 

and Nasirzadeh (2017) developed a predictive model of CLP using the FSD technique. Since their 152 

predictive model is developed for labor-intensive activities and predicts CLP, it is not an 153 

appropriate model for predicting the productivity of equipment-intensive activities. Accordingly, 154 

there is a need within the existing body of construction research to develop a predictive model of 155 

the MFP for equipment-intensive activities using FSD technique, which is addressed in this paper. 156 
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Fuzzy system dynamics 157 

SD is a simulation methodology developed by Forrester (1961) for analyzing complex industrial 158 

systems. This modeling technique is able to model a dynamic system, in which the state of the 159 

system (e.g., construction productivity) changes over time and under the effect of different factors. 160 

Although SD models are able to capture the probabilistic uncertainties of real-world systems using 161 

the Monte Carlo simulation technique (Sterman 2000), these models cannot capture the 162 

non-probabilistic uncertainties (i.e., subjective, imprecise, or linguistically expressed information) 163 

of real-world systems. To address this limitation, Levary (1990) integrated SD with fuzzy logic 164 

and developed the fuzzy system dynamics (FSD) technique, which is capable of capturing 165 

deterministic values, as well as probabilistic and non-probabilistic uncertainties. Moreover, the 166 

fuzzy logic component of the FSD technique allows practitioners to evaluate subjective variables 167 

using linguistic terms, rather than precise numerical values. 168 

FSD simulation models are developed through qualitative and quantitative modeling steps. 169 

First, the qualitative FSD model is developed by identifying and modeling the factors influencing 170 

the system, which are called system variables. Next, the quantitative FSD model is developed by 171 

developing fuzzy membership functions to represent the subjective system variables and defining 172 

the relationships between the system variables quantitatively. The fuzzy membership functions 173 

representing subjective system variables can be developed by one of the several approaches 174 

proposed in the literature, either by using data (e.g., fuzzy c-means (FCM) clustering approach) or 175 

by using expert knowledge (e.g., Saaty’s priority approach). The relationships between system 176 

variables are defined by mathematical equations or by fuzzy rule-based systems (Khanzadi et al. 177 

2012, Nasirzadeh et al. 2013). There are two types of relationships between system variables: hard 178 

relationships, where the mathematical form of the relationship is known, and soft relationships, 179 
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where the mathematical form of the relationship is unknown (Coyle 2000). The hard relationships 180 

of FSD models are defined by mathematical equations, and fuzzy arithmetic operations are used 181 

in the mathematical equations that include subjective variables. The soft relationships of FSD 182 

models are defined either by mathematical equations developed statistically, if data are available 183 

to do so, or by FRBS developed by expert knowledge if data are not available (Khanzadi et al. 184 

2012).  185 

By implementing fuzzy arithmetic in the mathematical equations of the FSD models, the 186 

supports of the membership functions, which represent the simulation results, grow rapidly, 187 

producing a large amount of uncertainty (Tessem and Davidsen 1994). This phenomenon is called 188 

the overestimation of uncertainty, which reduces the ability of users to accurately predict the actual 189 

system output (e.g., actual productivity) based on the simulation results (Lin et al. 2011). The 190 

overestimation of uncertainty in the FSD models may be affected by various factors such as the 191 

number of parameters in the mathematical equations, number of time steps, membership functions 192 

of the inputs, and the method of the fuzzy arithmetic implementation. Fuzzy arithmetic operations 193 

can be implemented using one of the two following methods: the α-cut method, and the extension 194 

principle method, which uses different t-norms (Pedrycz and Gomide 2007). Implementing fuzzy 195 

arithmetic by the extension principle method using drastic product t-norm reduces the uncertainty 196 

overestimation in comparison to the α-cut method (Chang et al. 2006, Lin et al. 2011). However, 197 

in previous applications of FSD models in different construction areas such as risk analysis 198 

(Nasirzadeh et al. 2014), project contract administration (Khanzadi et al. 2012), and construction 199 

productivity (Nojedehi and Nasirzadeh 2017), fuzzy arithmetic is implemented only by the α-cut 200 

method due to its simplicity. As an example, in the results of the FSD model developed by 201 

Nojedehi and Nasirzadeh (2017), the α-cut method causes overestimation of uncertainty in the 202 
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fuzzy number that represents labor productivity of concrete pouring activity, [4.08, 29.37]
m3

month
 , 203 

where the upper bound of the support is 620% larger than its lower bound. The large amount of 204 

uncertainty in the simulation results reduces the ability of users (e.g., construction practitioners) 205 

to accurately predict the actual productivity, project cost, and project duration based on the 206 

simulation results. In this paper, this limitation is addressed by implementing fuzzy arithmetic 207 

operations using the extension principle method with the min, algebraic product, Lukasiewicz, and 208 

drastic product t-norms, and selecting the most appropriate method to increase the accuracy of the 209 

simulation results, while simultaneously reducing the amount of uncertainty. 210 

Construction Productivity Modeling Methodology 211 

This section of the paper outlines the development of the FSD model of activity-level productivity 212 

for equipment-intensive activities; this process was accomplished in the following five steps: (1) 213 

identification of the factors influencing construction productivity, (2) reduction of the 214 

dimensionality of the factors by feature selection, (3) development of the qualitative FSD model, 215 

(4) development of the quantitative FSD model, and (5) validation of the full FSD model. These 216 

five steps are presented in Fig. 1. 217 

In the first step, the factors influencing productivity of equipment-intensive activities were 218 

identified through a literature review. There are numerous studies available in the literature, 219 

which identify the factors influencing construction productivity at different levels of analysis 220 

(e.g., activity-level or project-level). In addition to micro-level factors (i.e., crew-level, 221 

activity-level, and project-level), macro-level factors (i.e., organizational-level, provincial-level, 222 

national-level, and global-level) may directly or indirectly influence construction productivity 223 

(Tsehayae and Fayek 2014). However, since the project-level and macro-level factors are static 224 

(i.e., constant) at the activity level, these factors are excluded from the FSD model presented in  225 
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this paper. Thus, in 226 

 227 

Fig. 1. Methodology for construction productivity modeling by FSD technique. 228 

this paper, the crew-level and the activity-level factors that influence the productivity of 229 

equipment-intensive activities were identified through literature review. Next, the identified 230 

factors were verified by expert knowledge using interview surveys, which were administered to 231 

managerial personnel (i.e., general management, project management, project controls, and field 232 
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engineers), and field personnel (i.e., labors/equipment operators and foremen) within a Canadian 233 

company active in the industrial construction sector. Fifteen project management surveys and 20 234 

tradespeople surveys were collected and analyzed to verify the factors influencing construction 235 

productivity identified from the literature review. The respondents of the managerial personnel 236 

survey had an average of six years of experience in the construction industry and were involved in 237 

an average of six industrial pipeline projects. The respondents of the field personnel survey were 238 

most frequently union members (i.e., 95% of the respondents), who were involved in numerous 239 

projects with and average of 10 years of experience in industrial pipeline projects. The interview 240 

surveys assessed the impact of each factor on construction productivity using a seven point Likert 241 

scale, as suggested by Tsehayae and Fayek (2014) and Dai (2006). The scale used in the interview 242 

surveys had three levels of negative impact determined by negative impacts scores (i.e., “strongly 243 

negative” [-3], “negative” [-2], and “slightly negative” [-1]), one neutral point determined by zero 244 

(i.e., “no impact” [0]), and three levels of positive impact determined by positive impacts scores 245 

(i.e., “slightly positive” [+1], “positive” [+2], “strongly positive” [+3]). Table 1 presents an 246 

example of survey questions measuring the impact of the factors that affect construction 247 

productivity. 248 

Table 1. Example of interview survey question. 249 

Factors 
Impact 

Strongly 

negative 
Negative 

Slightly 

negative 

No 

impact 

Slightly 

positive 
Positive 

Strongly 

positive 

The crew size is adequate for the 

task at hand 
-3 -2 -1 0 1 2 3 

Consequently, 72 crew-level and activity-level factors were identified through the literature 250 

review and were verified by expert knowledge to have either a negative or positive impact on 251 

construction productivity; these factors were grouped into seven categories based on their source 252 
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(e.g., foreman-related factors, location-related factors, etc.). These factors were identified through 253 

the following previous studies: Zakeri et al. (1996), Goodrum and Hass (2004), Zayed and Halpin 254 

(2005), Ok and Sinha (2006), Mortaheb et al. (2007), Goodrum et al. (2010), Kannan (2011), Choi 255 

and Ryu (2015), and Sadeghpour and Andayesh (2015). Table 2 presents the 72 identified factors, 256 

their categories, and their average impact score on construction productivity; these factors are 257 

referred to as the system variables in the following steps. 258 

Table 2. Crew- and activity-level factors influencing productivity of equipment-intensive activities. 259 

Category Factors (average impact score) 

Crew-level factors 

Labor and crew 

Crew size (+1.94), crew composition (+1.47), crew experience (+2.26), adequacy of crew 

(+1.94), crew makeup changes (-0.97), crew turnover rate (-1.66), number of languages spoken 

in the crew (-2.11), crew motivation (+2.37), level of interruptions and disruptions (-1.39), 

number of consecutive working days (-1.53), total daily overtime work (-1.47), crew skill level 

(+2.26), unscheduled breaks (-1.41), late arrival/early quit (-2.03), level of absenteeism (-1.82) 

Material and 

consumables 

Material availability (+2.03), waiting time for material (-1.77), material quality (-1.63), material 

storage practice (+1.86), pre-installation requirements (-1.06) 

Equipment and 

tools 

Number of equipment (+1.74), equipment breakdown frequency (-1.51), equipment breakdown 

downtime (-1.51), equipment maintenance frequency (-1.43), equipment maintenance downtime 

(-1.43), work equipment availability (+1.74), equipment delivery to working area (-1.80), 

appropriateness of equipment (+1.97), equipment ownership (+1.43), equipment production 

capacity (+1.97), equipment age (-1.29), equipment operator experience (+2.29), equipment 

operator education and trainings (+2.14), equipment operator skill level (+2.29), amplification of 

human energy (+1.97), level of control (+1.88), functional range (+1.71), equipment ergonomic 

design (+1.62), information feedback provision (+1.44), moving technology (+1.88), equipment 

warranty (+0.67), equipment specification (+1.97) 

Foreman 
Foreman experience (+2.11), change of foreman (-1.74), work planning skills (+2.14), leadership 

and supervisory skills (+2.14), coordination between labor and equipment operators (+2.15) 

Activity-level factors 

Task 

characteristics 

Task complexity (-1.15), total volume of work (+1.76), task repetitiveness (+1.38), out-of-

sequence work (-1.24), problems with predecessors (-1.32), construction method (+1.93), task 

waste disposal (-0.79), rework frequency (contractor initiated) (-1.71), rework cost (contractor 

initiated) (-1.71), balance between labor and equipment (+1.91) 

Location 

properties 

Spaciousness of working area (+1.57), site restrictions (-1.13), soil type (-1.61), soil moisture (-

1.61), groundwater level (-1.24), underground facilities (-1.24), hauling/delivery distance (-0.94) 

Engineering/ 

instructions 

Availability of drawings (+1.59), quality of drawings (+1.62), number of revisions on drawings 

(-1.24), design changes (-1.24), quality of specifications (+1.64), time to respond to RFIs (+1.41), 

time to do inspections (+1.35), rework frequency (design initiated) (-1.71), rework cost (design 

initiated) (-1.71) 

Next, the number of system variables was reduced by feature selection to increase the accuracy 260 

of the predictive model for construction productivity (Ahmad and Pedrycz 2011). There are 261 
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various methods for feature selection, out of which correlation-based feature selection (CFS) is the 262 

most common approach, due to its simplicity (Hall 1998). CFS reduces the dimensionality of the 263 

dataset by selecting the subset of the factors that have the highest Pearson correlation coefficient 264 

with the system output (e.g., productivity), and that have the lowest Pearson correlation coefficient 265 

with the other factors of the subset. For developing FRBS, Ahmad and Pedrycz (2011) proposed 266 

the use of wrapper methods for feature selection. Wrapper methods are based on evolutionary 267 

search methods (e.g., genetic algorithms [GAs]), which search for the subset of data where the 268 

FRBS has the highest accuracy (e.g., the lowest root mean square error). Feature selection was 269 

implemented using the following two approaches: CFS was applied to soft relationships that are 270 

defined by statistically-developed mathematical equations, and the wrapper method, using GA was 271 

applied to soft relationships that are defined by data-driven FRBS. 272 

In the third step, the qualitative FSD model was developed by identifying two types of 273 

relationships between the system variables: soft relationships and hard relationships. Soft 274 

relationships were identified based on existing knowledge about real-world systems, which was 275 

acquired through a literature review and expert judgment, as suggested by Sterman (2000). The 276 

list of the factors that influence the productivity of equipment-intensive activities (refer to Table 277 

2) was developed using literature review, as discussed previously; thus the soft relationships 278 

between these factors and MFP were confirmed by the literature. Moreover, these soft relationships 279 

were also verified by the expert knowledge obtained through the interview surveys, as discussed 280 

earlier. On the other hand, the hard relationships between the system variables were identified 281 

using the equations, which define the relationships. Equation 1 presents an example of the hard 282 

relationship between “crew size”, “planned crew size,” and “absenteeism”: 283 

 𝐶𝑟𝑒𝑤 𝑆𝑖𝑧𝑒 = 𝑃𝑙𝑎𝑛𝑛𝑒𝑑 𝐶𝑟𝑒𝑤 𝑆𝑖𝑧𝑒 − 𝐴𝑏𝑠𝑒𝑛𝑡𝑒𝑒𝑖𝑠𝑚  (1) 
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In the fourth step, the quantitative FSD model was developed. First, the objective and 284 

subjective system variables were identified based on their scales of measure, where objective 285 

variables were evaluated using crisp numbers (e.g., 10 years of experience) and subjective 286 

variables were evaluated using subjective scales (e.g., high crew motivation) (Tsehayae and Fayek 287 

2016b). Then, objective system variables were represented by crisp numbers, and fuzzy 288 

membership functions were developed to represent the subjective system variables. These fuzzy 289 

membership functions can be developed by one of several approaches proposed in the literature 290 

that use either data or expert knowledge. Fuzzy membership functions were developed by FCM 291 

clustering, which is a machine learning technique that is commonly used for developing fuzzy 292 

membership functions using data (Pedrycz 2013). FCM clustering was also used to develop the 293 

FRBS for defining the relationships between the system variables by projecting the clusters into 294 

the input space (e.g., the values of the factors influencing productivity) and the output space (e.g., 295 

the value of productivity) (Pedrycz 2013). 296 

Next, the soft relationships of the system were defined quantitatively. The soft relationships 297 

were defined either by data-driven FRBS developed using FCM clustering (Gerami Seresht and 298 

Fayek 2015) or by mathematical equations developed using linear regression (Nasirzadeh et al. 299 

2014). The performance of the two methods in defining the soft relationships of the system was 300 

evaluated using the root mean square error (RMSE); then, the method with the lowest RMSE was 301 

chosen for defining each relationship. FCM clustering and linear regression methods were 302 

implemented using 90% cross validation, which uses 90% of the data for training and 10% of the 303 

data for validation (i.e., measuring RMSE). Since the mathematical form of hard relationships was 304 

known, unlike soft relationships, these relationships were defined using mathematical equations. 305 

Fuzzy arithmetic was then used to solve both the soft relationships defined using mathematical 306 
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equations as well as all the hard relationships, since they both contain subjective system variables. 307 

Fuzzy arithmetic operations were implemented by the α-cut method and the extension principle 308 

method using four common t-norms (min, algebraic product, Lukasiewicz and drastic product). 309 

Finally, in the fifth step, the FSD model of construction productivity was validated using a case 310 

study of earthmoving operations. Since the common validation tests such as statistical hypothesis 311 

test are not appropriate for the validation of SD (and FSD) models (Forrester and Senge 1980), 312 

Barlas (1996) introduced two approaches for validation of the SD (and FSD) models: structure 313 

validity and behavior validity. The structural validation of the FSD model presented in this paper 314 

was determined using the dimensional consistency test and the structure verification test (Barlas 315 

1996, Qudrat-Ullah and Seong 2010). The dimensional consistency test is a simple dimensional 316 

analysis of the mathematical equations of the FSD models that is appropriate for validation of hard 317 

relationships (Forrester and Senge 1980, Qudrat-Ullah and Seong 2010). On the other hand, soft 318 

relationships of FSD models can be validated by the structure verification test (Forrester and Senge 319 

1980, Qudrat-Ullah and Seong 2010), which compares the structure of the model with the 320 

real-world system empirically using expert knowledge or theoretically using relevant literature. 321 

The behavioral validity of the FSD model was evaluated using the pattern verification test, as 322 

suggested by Barlas (1996). The pattern verification test compares the pattern of system results 323 

(e.g., number of peaks of the simulation results, frequency) to field data.  324 

Fuzzy System Dynamics Model of Multi-factor Productivity for Equipment-intensive 325 

Activities 326 

Seventy-two activity-level factors influencing the productivity of equipment-intensive activities, 327 

hereafter referred to as system variables, were identified through the literature review and were 328 

verified by expert knowledge. In order to increase the accuracy of the FSD model of construction 329 
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productivity, the number of system variables was reduced by feature selection, as discussed in the 330 

methodology. Twenty-five system variables, divided into six categories (i.e., crew-related factor), 331 

were selected for the development of the FSD model, which are presented below in Table 3. 332 

Table 3. System variables for FSD model of activity-level construction productivity. 333 

Category Factors 

Equipment-related Factors 
Number of Equipment, Equipment Capacity, Equipment Ownership, Equipment 

Functional Range, Operator Experience, Labour and Equipment Balance 

Location-related Factors 
Distance, Site Restrictions, Underground Facilities, Groundwater Level, Soil Type, 

Soil Moisture 

Weather-related Factors Gust Speed, Temperature, Total Precipitation 

Task-related Factors Daily Overtime Work, Total Work Volume 

Crew-related Factors 
Crew Experience, Crew Composition, Crew Size, Crew Motivation, Absenteeism, 

Foreman Experience 

Material-related Factors Material Pre-Installation Requirements, Material Quality 

Once the system variables were selected, the qualitative FSD model of construction 334 

productivity was developed by identifying the relationships between the variables. As discussed 335 

in the methodology section, at the qualitative FSD modeling stage, the existence of these 336 

relationships is identified only. The soft relationships between the system variables and 337 

productivity were verified by the literature and expert knowledge. Moreover, the soft relationships 338 

between the system variables were identified by the researchers based on their knowledge about 339 

the real-world system (e.g., crew motivation and absenteeism). According to previous research, 340 

the soft relationships between system variables need to be identified by the modelers based on 341 

their knowledge about the real-world system; once the SD or FSD models are validated, the soft 342 

relationships between the system variables will be verified (Nojedehi and Nasirzadeh 2017, Ding 343 

et al. 2018). For presentation clarity, the qualitative FSD model of construction productivity 344 

presented in this paper is broken into two components: a stock and flow diagram, and a cause and 345 

effect diagram. Fig. 2 presents the stock and flow diagram that measures the MFP of the system 346 

using its three inputs (i.e., labor direct cost, equipment direct cost, and material direct cost), and it 347 



18 
 

measures the total cost rate and the total activity direct cost using the MFP and the production rate 348 

of the activity. 349 

 350 

Fig. 2. Stock and flow diagram of qualitative FSD model of construction productivity. 351 

There are four stock variables (i.e., representing accumulation in FSD models) in Fig. 2, which 352 

represent the cumulative costs of the three input resources “total equipment cost”, “total labor 353 

cost”, and “total material cost”, and the total direct cost of the activity “total activity direct cost”. 354 

There are four flow variables (i.e., representing the rate of increase/decrease in the stock variables 355 

of FSD models) in Fig. 2, which represent the daily cost of the three input resources (i.e., 356 

“equipment cost rate”, “labor cost rate”, and “material cost rate”) and the total daily direct cost of 357 

the activity (i.e., “total cost rate”). The MFP, the three inputs of MFP (i.e., “labor direct cost”, 358 

“equipment direct cost”, and “material direct cost”), and the “production rate” of the activity are 359 

presented as dynamic variables, where their values are determined by the cause and effect diagram 360 
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presented in Fig. 3. In FSD models, the dynamic variables represent the variables that change in 361 

value due to their relationships with other variables. All relationships between the variables of the 362 

stock and flow diagram (represented by arrows in Fig. 2) are hard relationships. Fig. 3 presents the 363 

cause and effect diagram that measures the three inputs of MFP, and the production rate of the 364 

activity (inputs of the stock and flow diagram) using the system variables (refer to Table 3). 365 

 366 

Fig. 3. Cause and effect diagram of qualitative FSD model of construction productivity. 367 

The system variables that are selected for predicting the productivity of equipment-intensive 368 

activities (refer to Table 3) are presented in Fig. 3 as dynamic variables. These variables are used 369 

in the cause and effect diagram to predict the value of the three inputs of MFP (i.e., “labor direct 370 

cost”, “equipment direct cost”, and “material direct cost”), as well as the “production rate” of the 371 
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activity. There are also two types of relationships that exist between the system variables in the 372 

cause and effect diagram: soft relationships, such as the relationship between “crew motivation” 373 

and “equipment direct cost”, and hard relationships, such as the relationship between “crew size” 374 

and “planned crew size” and “absenteeism”. 375 

Next, in order to develop the quantitative FSD model of construction productivity, the 376 

objective and subjective system variables were identified. Referring to Table 3, there are 20 377 

objective system variables and 5 subjective system variables. The subjective variables of the 378 

system include site restrictions, soil moisture, crew motivation, material quality, and material 379 

pre-installation requirements. Soil moisture can be also an objective system variable if it is 380 

measured numerically using soil tests; however, this factor is considered as a subjective system 381 

variable, since it may also be measured by subjective expert judgment if the test results are not 382 

available. Once the objective and subjective system variables were identified, the subjective 383 

system variables were represented by fuzzy membership functions. Each subjective variable was 384 

represented by five—as suggested by Pedrycz (2013)—triangular fuzzy membership functions, 385 

which are commonly used in engineering applications. As discussed in the methodology section, 386 

these fuzzy membership functions were developed using the FCM clustering technique, which is 387 

a data-driven technique for developing fuzzy membership functions. Fig. 4 shows the fuzzy 388 

membership functions developed for the representation of crew motivation, as an example. 389 
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 390 

Fig. 4. Fuzzy membership functions for representing crew motivation. 391 

Next, the soft relationships between the system variables were defined quantitatively, either by 392 

data-driven FRBS —developed by the FCM clustering technique— or mathematical equations —393 

developed by statistical techniques—, as discussed in the methodology section. Table 4 shows 394 

these soft relationships and the approach by which each soft relationship was defined. 395 

Table 4. Soft relationships of FSD model of activity-level construction productivity. 396 

Relationship Output Relationship Inputs 

Numerical 

Definition 

Approach 

Equipment Direct 

Cost 

Distance, Number of Equipment, Site Restrictions, Underground 

Facilities, Operator Experience, Equipment Ownership, Equipment 

Capacity, Daily Overtime Work, Total Work Volume, Soil Type, 

Soil Moisture, Groundwater Level, Total Precipitation, Temperature, 

Gust Speed, Foreman Experience, Labour and Equipment Balance, 

Crew Size 

Linear 

Regression 

Labor Direct Cost 

Crew Motivation, Crew Size, Crew Experience, Absenteeism, Gust 

Speed, Distance, Underground Facilities, Temperature, Daily 

Overtime Work, Operator Experience, Equipment Capacity, Labour 

and Equipment Balance 

Linear 

Regression 

Material Direct Cost 
Material Quality, Material Pre-Installation Requirements, Crew 

Experience, Crew Composition, Operator Experience, Distance 

Linear 

Regression 

Production Rate 
Site Restrictions, Number of Equipment, Equipment Functional 

Range, Equipment Capacity, Soil moisture, soil Type, Gust Speed 

Linear 

Regression 
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Number of Equipment Equipment Ownership, Equipment Capacity, Total Volume of Work FCM Clustering 

Equipment Capacity Total Volume of Work FCM Clustering 

Equipment Ownership Number of Equipment, Total Volume of Work FCM Clustering 

Groundwater Level Total Precipitation FCM Clustering 

Soil Moisture Total Precipitation, Soil Type, Groundwater Level FCM Clustering 

Daily Overtime Work Total Volume of Work FCM Clustering 

Total Work Volume Soil Moisture, Soil Type FCM Clustering 

Crew Experience Crew Size, Crew Composition, Operator Experience FCM Clustering 

Crew Composition Crew Size FCM Clustering 

Absenteeism Crew Motivation FCM Clustering 

Material Quality Material Pre-Installation Requirements FCM Clustering 

As presented in Table 4, 11 soft relationships in the FSD model were defined by FRBS, and 397 

four of those relationships were defined by statistically-developed mathematical equations. 398 

Accordingly, in some cases, defining the soft relationships of FSD models using data-driven FRBS 399 

developed by FCM clustering can increase the accuracy of FSD models compared to using 400 

statistically-developed mathematical equations. However, neither of the two methods is 401 

universally the best approach for defining the soft relationships of the system. In order to simulate 402 

the FSD model and predict the productivity of any given equipment-intensive activity, the soft 403 

relationships of the system (presented in Table 4) were evaluated at each time step (i.e., daily). 404 

Once the soft relationships were defined, the hard relationships were defined quantitatively using 405 

mathematical equations, as discussed in the methodology. There are nine hard relationships in the 406 

FSD model, which were defined by the mathematical equations presented in Table 5. 407 

In order to simulate the FSD model and predict the productivity of any given 408 

equipment-intensive activity, the mathematical equations presented in Table 5 were solved at each 409 

time step (i.e., daily).  410 
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Table 5. Hard relationships of FSD model of activity-level construction productivity. 411 

Relationship 

Output 
Mathematical Equation 

Labor Cost 

Rate 
Labor Cost Rate (

$

day
) = Labor Direct Cost (

$

units
) × Production Rate (

units

day
) 

Equipment 

Cost Rate 
Equipment Cost Rate (

$

day
) = Equipment Direct Cost (

$

units
) × Production Rate (

units

day
) 

Material Cost 

Rate 
Material Cost Rate (

$

day
) = Material Direct Cost (

$

units
) × Production Rate (

units

day
) 

Total Labor 

Cost* 
Total Labor Cost ($) = ∫ Labor Cost Rate (

$

day
) . 𝑑𝑡 (day) 

Total 

Equipment 

Cost* 

Total Equipment Cost ($) = ∫ Equipment Cost Rate (
$

day
) . 𝑑𝑡 (day) 

Total Material 

Cost* 
Total Material Cost ($) = ∫ Material Cost Rate (

$

day
) . 𝑑𝑡 (day) 

Multi Factor 

Productivity 

Multi Factor Productivity (
$

units
) = Labor Direct Cost (

$

units
) + 

Equipment Direct Cost (
$

units
) + Material Direct Cost (

$

units
) 

Labor and 

Equipment 

Balance** 

Labor and Equipment Balance =
Crew Size (Person)

Number of Equipment (Count)
 

Crew Size*** Crew Size (Person) = Planned Crew Size (Person) − Absenteeism(Person) 

* 𝑑𝑡 stands for the time step’s duration used for simulation of FSD model that is equal to one day in this paper. 412 
** Number of equipment represents the number of equipment, which are working on the activity. 413 
*** Planned crew size stands for the crew size that is specified for execution of the activity in planning phase, and 414 
absenteeism represent the number of absent crew members. 415 

Model Validation and Construction Application 416 

The FSD model of construction productivity was developed by integrating AnyLogic®, Matlab® 417 

software, and a Fuzzy Calculator class, which was developed in the Python programming 418 

language. AnyLogic® was used to develop the SD component of the model; and Matlab® and the 419 

Fuzzy Calculator class were used to develop the fuzzy components of the model. AnyLogic® 420 

calculates the results of the mathematical equations, in which all system variables are objective. 421 

The Fuzzy Calculator class calculates the results of the mathematical equations that include 422 

subjective system variables, and Matlab® calculates the results of the FRBS. The Fuzzy Calculator 423 

class was developed by the authors for implementing fuzzy arithmetic on triangular fuzzy numbers 424 
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using the α-cut method and the extension principle method, the latter of which uses min, algebraic 425 

product, Lukasiewicz, and drastic product t-norms. 426 

The FSD model was evaluated through structural and behavioral validation tests, as discussed 427 

in the methodology section. The structural validity of the FSD model was evaluated using the 428 

dimensional consistency test and the structure verification test. The dimensional consistency test 429 

is implemented by dimensional analysis of the mathematical equations, which defines the hard 430 

relationships of the system. Referring to Table 5, the dimensional consistency test determines if 431 

the units of measure on both sides of each equation are consistent or not. For example, in Equation 432 

2, the unit of measure for the left side of the equation is (
$

day
), and the unit of measure for the right 433 

side of the equation is (
$

units
) × (

units

day
) = (

$

day
), which shows that Equation 2 has dimensional 434 

consistency. 435 

 𝐿𝑎𝑏𝑜𝑟 𝐶𝑜𝑠𝑡 𝑅𝑎𝑡𝑒 (
$

day
) = 𝐿𝑎𝑏𝑜𝑟 𝐷𝑖𝑟𝑒𝑐𝑡 𝐶𝑜𝑠𝑡 (

$

units
) × 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 (

units

day
)  (2) 

The structure verification test was implemented by verifying the list of the system variables 436 

(i.e., factors influencing construction productivity) and the soft relationships of the system through 437 

expert knowledge, which was acquired by the interview surveys, as discussed in the methodology 438 

section. In order to evaluate the behavior validity of the FSD model, the model was implemented 439 

on a case study of earthmoving operations on a pipeline maintenance project in Alberta, Canada. 440 

This project included 79 work packages (i.e., digs), each of which includes the following activities: 441 

excavation, sandblasting, welding, coating, and backfilling. The case study presented in this paper 442 

is focused on the earthmoving activities (i.e., excavation and backfilling), which are executed by 443 

eight earthmoving crews. Field data were collected for these two equipment-intensive activities, 444 

excavation and backfilling, by documenting the value of the factors that influence construction 445 
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productivity. Field data were also collected for the actual activity-level MFP of the two activities, 446 

measured in 
$

𝑚3, using the daily costs of the input resources (i.e., labor, equipment, and material) 447 

measured in dollars and the daily quantity of work completed measured in cubic meters (i.e., 448 

volume of earth excavated or backfilled). Various sources were used for field data collection, 449 

including contract documents, project scorecards, project timesheets, and onsite observations by 450 

the researchers. Due to confidentiality constraints, all field data were normalized into the range of 451 

[0,1] using Equation 3. 452 

 𝑉𝑖,𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑉𝑖−min(Vi)

𝑚𝑎𝑥(𝑉𝑖)−𝑚𝑖𝑛(𝑉𝑖)
, (3) 

where 𝑉𝑖,𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 stands for the normalized value of any system variable and Vi represents the 453 

original value of the system variable. In order to run the simulation model, the initial values of the 454 

system variables are entered, where the values of the objective system variables are entered as 455 

crisp numbers (e.g., four people for crew size), and the values of the subjective system variables 456 

are entered as linguistic terms, which are represented by fuzzy membership functions (e.g., high 457 

crew motivation). Table 6 presents the results of simulation for the MFP for earthmoving 458 

operations in a 30-day period and compares the results to the actual field data; Fig. 5 presents these 459 

results graphically. 460 

Table 6. Simulation results and actual field data for MFP. 461 

Simulation Time 

(day) 
Simulation Results Actual Field Data 

Error 

|simulation result − actual Field data| 

1 0.321 0.365 0.044 

2 0.552 0.582 0.03 

3 0.858 0.775 0.083 

4 0.949 0.978 0.029 

5 0.738 0.749 0.011 

6 0.911 0.978 0.067 

7 0.798 0.775 0.023 

8 0.714 0.500 0.214 
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9 0.692 0.775 0.083 

10 0.320 0.206 0.114 

11 0.273 0.146 0.127 

12 0.824 0.929 0.105 

13 0.810 0.765 0.045 

14 0.633 0.765 0.132 

15 0.933 0.929 0.004 

16 0.857 0.765 0.092 

17 0.540 0.765 0.225 

18 0.000 0.054 0.054 

19 0.234 0.039 0.195 

20 0.744 0.926 0.182 

21 0.873 0.926 0.053 

22 0.873 0.912 0.039 

23 0.988 0.912 0.076 

24 0.942 0.912 0.03 

25 0.551 0.504 0.047 

26 0.630 0.450 0.18 

27 0.823 1.000 0.177 

28 0.949 1.000 0.051 

29 0.898 1.000 0.102 

30 0.903 0.894 0.009 

 462 

Fig. 5. Simulation results for MFP in comparison to actual field data. 463 
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The y-axis in Fig. 5 shows the normalized value of the MFP of the earthmoving operations, 464 

and the x-axis shows the duration of earthmoving operations measured in days. The simulation 465 

results can be presented as fuzzy numbers or defuzzified values. Defuzzification is the process of 466 

converting a fuzzy number to a crisp number. In order to present the simulation results as fuzzy 467 

numbers, the results need to be presented at each time step. Representing the simulation results as 468 

fuzzy numbers is not appropriate for the pattern verification test, since this test compares changes 469 

in the results over the simulation time to the actual field data. The simulation results presented in 470 

Fig. 5 are the defuzzified values of MFP for the earthmoving operations, which are defuzzified 471 

using the using center of area method (COA). Referring to Fig. 5, behavioral validity of the FSD 472 

model may be evaluated by the pattern verification test, which shows the following: the trends in 473 

the actual MFP values (i.e., an increase or decrease of productivity between any two consecutive 474 

points) are predicted correctly by the simulation results in 70% of cases (refer to Table 6); and the 475 

turning points in the actual MFP values (i.e., the points in which the trend of productivity changes) 476 

are predicted correctly by the simulation results in 70% of cases (refer to Table 6). Finally, the 477 

RMSE of the simulation results is 0.11, which is calculated using Equation 4. 478 

 
RMSE = √

∑(simulation result−actual field data)2

n
. (4) 

In addition, the normalized root mean square error (NRMSE) of the simulation results is 15%. 479 

The NRMSE compares the RMSE of the data to the average value of the actual field data using 480 

Equation 5. 481 

 NRMSE =
RMSE

Mean(actual field data)
. (5) 

Kleijnen (1995) introduced regression analysis of SD [or FSD] models as an appropriate 482 

approach for identification of the most significant factors in SD [or FSD] models. In this approach, 483 

the value of independent system variables (i.e., system variables that are not affected by any other 484 
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system variables) are changed between the minimum and maximum values (i.e., [0,1] in this case 485 

study) and the effect of these factors on the simulation results is analyzed using regression analysis 486 

(Kleijnen 1995, Phan et al. 2018). Next, the significance of the factors’ influence on the FSD model 487 

is identified based on the regression coefficient, where the system variable with the highest 488 

absolute value of regression coefficient has the most significant effect on the FSD model. The FSD 489 

model presented in this paper has 12 independent system variables (refer to Fig. 2 and Fig. 3): gust 490 

speed, total precipitation, temperature, soil type, underground facilities, site restrictions, distance, 491 

equipment operator experience, foreman experience, crew motivation, equipment functional 492 

range, and material pre-installation requirements. The regression analysis approach was 493 

implemented on these independent system variables, and the results of the analysis show that the 494 

most significant variables in the FSD model are: (1) crew motivation, which has a negative 495 

correlation with the simulation results; (2) equipment operator experience, which has a positive 496 

correlation with the simulation results; and, (3) gust speed, which has a positive correlation with 497 

the simulation results. 498 

By implementing fuzzy arithmetic operations on the mathematical equations of the FSD model, 499 

the support of the resulting fuzzy numbers grows rapidly, which is interpreted as an overestimation 500 

of uncertainty. In general, an increase in the length of the support of a fuzzy number shows an 501 

increase in the amount of uncertainty represented by that fuzzy number. The overestimation of 502 

uncertainty in FSD models is affected by the chosen fuzzy arithmetic implementation method, 503 

which is used to solve the mathematical equations of the FSD model. Accordingly, the effect of 504 

fuzzy arithmetic implementation methods on the simulation results were evaluated to determine 505 

the most appropriate method. The results of the simulation for the “Total Cost Rate” of the activity 506 
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were calculated using the α-cut method and using the extension principle method with the min, 507 

algebraic product, Lukasiewicz, and drastic product t-norms, as presented in Table 7. 508 

Table 7. Simulation results and actual field data representing fuzzy number for total cost rate. 509 

Sim. 

Time 

Min t-norm 
Algebraic Product  

t-norm 
Lukasiewicz t-norm 

Drastic Product  

t-norm Actual Field  

Data Sim. 

Results * 

Support 

Length 

Sim. 

Results* 

Support 

Length 

Sim. 

Results* 

Support 

Length 

Sim. 

Results* 

Support 

Length 

1 0.069 0.154 0.064 0.154 0.062 0.125 0.062 0.125 0.049 

2 0.254 0.295 0.249 0.295 0.247 0.232 0.247 0.231 0.261 

3 0.075 0.181 0.070 0.181 0.070 0.159 0.069 0.159 0.027 

4 0.069 0.154 0.064 0.154 0.062 0.125 0.062 0.125 0.029 

5 0.089 0.207 0.084 0.207 0.083 0.184 0.083 0.184 0.027 

6 0.382 0.321 0.379 0.321 0.375 0.217 0.375 0.217 0.417 

7 0.023 0.070 0.019 0.070 0.018 0.055 0.018 0.055 0.050 

8 0.043 0.130 0.039 0.130 0.038 0.115 0.038 0.115 0.054 

9 0.165 0.207 0.162 0.207 0.158 0.139 0.158 0.138 0.074 

10 0.184 0.222 0.180 0.222 0.177 0.153 0.177 0.152 0.089 

11 0.333 0.307 0.329 0.307 0.326 0.217 0.326 0.217 0.424 

12 0.154 0.234 0.149 0.234 0.146 0.186 0.146 0.186 0.127 

13 0.147 0.216 0.142 0.216 0.139 0.165 0.139 0.165 0.120 

14 0.165 0.249 0.160 0.249 0.158 0.202 0.158 0.202 0.134 

15 0.177 0.242 0.173 0.242 0.170 0.187 0.170 0.187 0.140 

16 0.203 0.249 0.198 0.249 0.195 0.187 0.195 0.187 0.155 

17 0.203 0.249 0.198 0.249 0.195 0.187 0.195 0.187 0.155 

18 0.206 0.250 0.201 0.250 0.198 0.186 0.198 0.186 0.149 

19 0.208 0.254 0.204 0.254 0.201 0.192 0.201 0.191 0.144 

20 0.222 0.245 0.218 0.245 0.215 0.169 0.215 0.169 0.156 

21 0.205 0.218 0.202 0.218 0.199 0.113 0.198 0.110 0.138 

22 0.203 0.249 0.198 0.249 0.195 0.187 0.195 0.187 0.120 

23 0.629 0.393 0.626 0.393 0.622 0.235 0.621 0.233 0.544 

24 0.259 0.277 0.255 0.277 0.252 0.201 0.252 0.202 0.174 

25 0.280 0.275 0.276 0.275 0.273 0.188 0.273 0.188 0.183 

26 0.238 0.261 0.234 0.261 0.231 0.187 0.231 0.186 0.132 

27 0.069 0.173 0.064 0.173 0.064 0.153 0.064 0.153 0.381 

28 0.294 0.285 0.290 0.285 0.287 0.198 0.286 0.198 0.183 

29 0.254 0.295 0.249 0.295 0.247 0.232 0.246 0.231 0.120 

30 0.320 0.315 0.316 0.315 0.313 0.236 0.313 0.236 0.173 

RMSE 0.0915 0.0898 0.0884 0.0883 - 

* Sim. Results stands for the defuzzified value of the simulation results using the t-norm that is presented in the 510 
first row. 511 
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The simulation results presented in Table 7 show the following: the implementation of fuzzy 512 

arithmetic operations using the α-cut method and using the extension principle method with the 513 

min t-norm always return the same results (Elbarkouky et al. 2016); using the α-cut method and 514 

the extension principle method with the min t-norm return the largest defuzzified values of the 515 

simulation results, followed by the extension principle method with the algebraic product t-norm, 516 

Lukasiewicz t-norm, and drastic product t-norm, respectively; and finally, using the extension 517 

principle method with the drastic product t-norm has the lowest RMSE, followed by the extension 518 

principle method with the Lukasiewicz t-norm, algebraic product t-norm, and min t-norm (and the 519 

α-cut method), respectively. In order to compare the uncertainty overestimation caused by the 520 

fuzzy arithmetic implementation methods, the length of the support of the fuzzy number for “Total 521 

Cost Rate” is presented in Table 7, and it is shown graphically in Fig. 6. The length of the support 522 

of the fuzzy number for “Total Cost Rate” represents the level of uncertainty overestimation. 523 

 524 

Fig. 6. Length of support of fuzzy numbers for total cost rate. 525 

Referring to Table 7 and Fig. 6, a comparison of the length of the support of the fuzzy number 526 

for “Total Cost Rate” shows the following: the length of the support of the fuzzy number is always 527 
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equal when using the α-cut method and when using the extension principle method with the min 528 

and algebraic product t-norms; and using the extension principle method with the drastic product 529 

t-norm returns a fuzzy number with the smallest length of the support, followed by the extension 530 

principle with the Lukasiewicz t-norm; and the other methods (i.e., using the α-cut method, using 531 

the extension principle method with the min and algebraic product t-norms) return a fuzzy number 532 

with the largest support length. Based on the fact that the extension principle method using the 533 

drastic product t-norm has both the lowest RMSE and the smallest uncertainty overestimation, this 534 

method was deemed to be the most appropriate method for fuzzy arithmetic implementation in the 535 

FSD model presented in this paper. 536 

Discussion 537 

The FSD model of construction productivity presented in this paper can be used to predict the MFP 538 

of equipment-intensive activities for construction projects. Accordingly, the FSD model can 539 

facilitate the construction planning process by allowing users to predict the productivity of 540 

construction activities for different execution plans prior to the execution phase. Users can change 541 

the system variables based on their execution plans (e.g., changing the crew size or number of 542 

equipment) and simulate the model to predict the productivity, and accordingly, they can select 543 

the most appropriate execution plan for the activity. The FSD model of productivity can predict 544 

the daily value of MFP, which provides more information about productivity, as compared to 545 

existing static productivity models, by allowing users to track changes in productivity over time. 546 

Moreover, this model allows construction planners to analyze the effect of each system variable 547 

(e.g., number of equipment) on construction productivity in order to optimize these variables. For 548 

the purpose of analysis, the system variable that is being analyzed must first be changed in the 549 

desirable range, while the other system variables are kept unchanged; once this is accomplished, 550 
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the FSD model can then be simulated. Accordingly, the results of simulation represent the effect 551 

of the system variables that were changed in step 1 on construction productivity.  552 

The FSD model of construction productivity presented in this paper is capable of capturing the 553 

probabilistic and non-probabilistic uncertainties of the system variables, as well as the 554 

deterministic values for the system variables. In order to capture these probabilistic uncertainties, 555 

the model allows users to represent variables with probabilistic distributions, such as the 556 

temperature in future projects. For capturing the non-probabilistic uncertainties of the system 557 

variables, the model allows users to determine the values of the subjective system variables using 558 

linguistic terms, which are represented by fuzzy membership functions, such as high crew 559 

motivation (refer to Fig. 4). Due to the fact that the case study presented in this paper was extracted 560 

from a previously executed construction project, the system variables do not exhibit any 561 

probabilistic uncertainty; accordingly, in the case study presented in this paper, the system 562 

variables are represented by either deterministic values or by fuzzy membership functions. 563 

In comparison to the SD models of productivity developed by Nasirzadeh and Nojedehi (2013) 564 

and Mawdesley and Al-Jiboury (2009), the FSD model of productivity presented in this paper can 565 

increase the accuracy of productivity predictions by capturing the effect of subjective variables 566 

(e.g., crew motivation) on productivity, as well as allowing practitioners to evaluate these variables 567 

using linguistic terms rather than precise numerical values. In contrast to the FSD model developed 568 

by Nojedehi and Nasirzadeh (2017), which is for labor-intensive activities and predicting CLP, the 569 

predictive model presented in this paper predicts MFP, which is the appropriate measure of 570 

productivity for equipment-intensive activities. Moreover, the predictive model presented in this 571 

paper provides construction practitioners with information regarding the cost of the three input 572 

resources of an activity (equipment cost, labor cost, and material cost), while the predictive models 573 
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of CLP provide this information for one input resource only (i.e., labor). Finally, the comparison 574 

of the two fuzzy arithmetic implementation methods (i.e., the α-cut method and the extension 575 

principle method) shows that the implementation of fuzzy arithmetic operations by the extension 576 

principle using drastic product t-norm reduces the overestimation of uncertainty in comparison to 577 

the α-cut method, while increasing the accuracy of the simulation results, in contrast to previously 578 

developed FSD models (e.g., Nojedehi and Nasirzadeh 2017, Khanzadi et al. 2012), which only 579 

employ the α-cut method. Reducing the uncertainty overestimation of the simulation results 580 

increases the ability of construction practitioners to accurately predict the actual productivity of an 581 

activity based on the simulation results. 582 

The FSD model presented in this paper has a few limitations, which need to be addressed in 583 

future research. First, the computational approach used for implementing fuzzy arithmetic 584 

operations is only applicable to triangular fuzzy numbers; thus the FSD model is limited to the use 585 

of triangular fuzzy numbers for representing subjective system variables. Next, for defining the 586 

soft relationships of the FSD model, the accuracy of FCM clustering technique decreases as the 587 

number of input variables increases (i.e., high dimensionality of soft relationships). Accordingly, 588 

in this paper, for defining high dimensional soft relationships, statistically developed mathematical 589 

equations outperformed the FRBSs developed by FCM clustering in terms of accuracy. In the 590 

future, the accuracy of the FCM clustering technique for defining high dimensional soft 591 

relationships can be increased by developing a method to increase the weights of the output 592 

variables in comparison to the input variables. Finally, the FSD model of MFP presented in this 593 

paper has been developed using field data collected for earthmoving activities. In order to develop 594 

a generic model of MFP for different types of equipment-intensive activities, new field data for 595 
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other types of equipment-intensive activities need to be collected, and the FSD model needs to be 596 

updated with the new field data. 597 

Conclusions and Future Research 598 

Construction productivity has long been a major research interest within the construction 599 

engineering domain. Due to the fact that construction is a labor-intensive industry, the majority of 600 

previous studies have been focused on construction labor productivity (CLP). However, with 601 

recent advancement in technology, construction equipment are now the main drivers of 602 

productivity for some construction activities, which are identified as equipment-intensive 603 

activities. Since the main driver of productivity for equipment-intensive and labor intensive 604 

activities are different, the factors influencing the productivity of these two activities are also 605 

different. Accordingly, the predictive models that have been developed for labor-intensive 606 

activities cannot predict the productivity of equipment-intensive activities accurately. This paper 607 

presents the list of 72 factors that influence the productivity of equipment-intensive activities 608 

identified through a literature review and verified by expert knowledge collected through interview 609 

surveys. It presents a predictive model of productivity for equipment-intensive activities using the 610 

FSD modeling technique. The FSD model presented in this paper predicts the MFP of 611 

equipment-intensive activities considering three inputs resources of these activities (i.e., labor, 612 

equipment, and material). 613 

In this model, the subjective factors influencing construction productivity (e.g., crew 614 

motivation) are represented by fuzzy membership functions. Representation of subjective factors 615 

by fuzzy membership functions enhances the applicability of the predictive model by allowing 616 

practitioners to evaluate the value of subjective variables using linguistic terms (e.g., high crew 617 

motivation), rather than numerical values. Moreover, in this paper, the accuracy of FCM clustering 618 
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and linear regression methods were compared for defining the soft relationships of the FSD model. 619 

Although the FCM clustering method has not been used for defining soft relationships in previous 620 

research, the results of comparison show that, in some cases, the use of the FCM clustering method 621 

can increase the accuracy of FSD models, as compared to the use of the linear regression method. 622 

However, neither of the two methods is universally the best method for defining the soft 623 

relationships of the system. Previous applications of the FSD modeling technique in construction 624 

show that the use of fuzzy arithmetic operations for solving the mathematical equations of the FSD 625 

model can cause overestimation of uncertainty in the fuzzy numbers representing the simulation 626 

results. In this paper, the two methods of fuzzy arithmetic implementation (i.e., the α-cut method 627 

and the extension principle method using min, algebraic product, Lukasiewicz, and drastic product 628 

t-norms) were evaluated in order to reduce the overestimation of uncertainty and increase the 629 

accuracy of the FSD model. Accordingly, the extension principle method using the drastic product 630 

t-norm was found to be the most appropriate method for implementing fuzzy arithmetic in the FSD 631 

model, since it has the highest accuracy in calculating the simulation results and the lowest level 632 

of uncertainty overestimation. 633 

This paper contributes to construction productivity research by identifying the key factors that 634 

influence the productivity of equipment-intensive activities, and developing a predictive model of 635 

MFP for equipment-intensive activities using FSD technique. The MFP model presented in this 636 

paper provides practitioners with information regarding the cost of the three input resources of an 637 

activity, in contrast to existing models that predict CLP, which provide information for only one 638 

input resource. This paper also contributes to the application of FSD technique in construction 639 

research by developing an approach to reduce the uncertainty overestimation in the simulation 640 

results of FSD models. Reducing the uncertainty overestimation in the simulation results increases 641 
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the ability of practitioners to accurately evaluate the actual system output (e.g., actual productivity) 642 

based on the simulation results. 643 

In the future, this study will be extended by developing an FSD model for the activity-level 644 

MFP of labor-intensive activities. Moreover, the FSD model of project-level MFP will be 645 

developed as an integration of the two activity-level FSD models of MFP, equipment-intensive 646 

and labor-intensive, as well as by including the factors influencing construction productivity at the 647 

project level. The soft relationships of the FSD model were defined either by mathematical 648 

equations developed using linear regression or by FRBS developed using FCM clustering, the 649 

latter of which is a machine learning technique. In order to increase the accuracy of the FSD models 650 

in future studies, other machine learning techniques, such neuro-fuzzy systems and ANNs, will be 651 

evaluated for the purpose of defining the soft relationships between the system variables. 652 
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